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EXECUTIVE SUMMARY

Given manning-training-equipment datasets from Naval FA-18 squadrons, a machine learning model for
determining the monthly mean number of mission capable jets per squadron is created. This model is then
extended and used as an input to create an ensemble of models determining the flight hour execution of a
squadron over a three-month period. The ensemble of models is then used to credit squadron performance and
readiness, and can correctly classify a squadron’s future performance with 75 percent accuracy 90-days in
advance.
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1. INTRODUCTION

The concept of “readiness” in Naval aviation relies on three key aspects: manning, training, and
equipment. “Manning” refers to the available man-power including both the enlisted maintainers and
pilots. Manning also includes how experienced the mamtainers are. “Training” refers to how well the pilots
are trained and the quantity of flight hours executed. Fmally, “equipment” refers to the necessary aircraft,
supplies, etc. Even without a strict definition, it is immediately clear that impairing any of these three key
factors would result in decreased readiness for a squadron. Two key metrics are used in the Naval aviation
community to measure the health and readiness of a squadron: mission capable aircraft and flight hour
execution. Specifically, a mission capable (MC) aircraft is one which meets or exceeds the minimum
requirements to be operated and complete a mission. The MC meiric 1s most useful when viewed in the
context of the activity phase, MC entitlement (based on phase and funding), and the size of the squadron
{most squadrons are composed of 10 or 12-jets). Similarly, flight hour execution is most relevant when
interpreted as a fraction of the total number of flight hours entitled to a squadron. Squadron flight hour
execution 1s evaluated on a quarterly (calendar year) basis and is closely comnected to MC,

Since their introduction in 1999 the total number of Naval FA-18 Super Homets has increased nearly
linearly to a current number of almost 600 aircraft[1]. There are two variants of Super Hornets — the single
seat ' and two-seat . Additionally, the Navy still uses some of the older FA-18 single-seat C' Hornets.
The FA-18’s can be m one of several readiness states at any given time: not mission capable for supply
{NMCS), not mission capable for maintenance (NMCM), partially mission capable (PMC), or fully
mission capable (FMC). Ideally, the number of mission capable aircraft would scale linearly with the
number of total aircraft, but this is not the case. Figure 1 shows the number of FA-18’s m inventory and the
number of MC aircraft by year. In the late 1990s and early 2000s the relationship between MC aircraft and
inventory was as expected, but near 2007 there is a clear deviation and the number of MC aircraft plateaus.
This 15 a well-documented i1ssue and new Super Homets will continue to be manufactured through at least
2023 [2, 3] while readiness improvements are increasingly becoming the focus of leadership [4]. However,
Figure 1 implies that this readiness issue may be more complex. Figures 2a and 2b show an increased
number of maintenance man-hours per flight hour required implying that the issue may be due to an aging
fleet with aircraft that are more difficult (or time-consuming) to repair or aircraft that need repairs more
often. Figure 2 shows increasing maintenance man-hours: showing flight hours per month for the fleet vs
year (a), and maintenance man-hours per flight hour vs. year (b).

The ability to accurately monitor and predict readiness is extremely important and non-trivial. Predictive
power gives squadrons and decision makers the time and ability to reallocate resources, adjust manning
levels, and make smarter decisions before a problem has happened. By creating machine learning models
to predict readiness, rather than intuition and human insights, there is also the possibility of discovering
unintuitive insights into squadron operations.

The goal of this analysis is to predict FA-1§ squadron readiness via monthly MC and quarterly flight
hour execution. Further, this analysis provides the ability to monitor readiness as a squadron moves
through a quarter. This is accomplished in two steps. First, a model is created to predict the mean number
of mission capable aircraft for each squadron on a monthly basis. This model is then extended and used as
an input for a second machine learning model which predicts the flight hour execution of a squadron over a
quarter. Section 2 reviews the man-train-equip datasets along with their conditioning and transformation,
Section 3 delineates the analysis strategy for all machine learning models, Section 4 describes the monthly
MC prediction models, Section 5 analyzes and evaluates the quarterly squadron flight hour execution
model, Section 6 validates and mterprets the machine learning model results, and Section 7 reviews the
conclusions and discusses future work.
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Figure 1. Number of FA-18 jets by year. The number of total jets in inventory increases nearly linearly
while the number of MC jets plateaus in ~2007 [5].
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flight hour vs. year (b) [5].



2. DATA CONDITIONING AND TRANSFORMATION

Due to the disparate attributes describing the pillars of readiness (man-train-equip), there are many
different datasets that are joined to create a master dataset. Table 1 shows the most important data sources
used in this analysis. Some of these datasets rely on hand-entered values, others on automatically
populated values, and others on subjective attributes. Therefore, each dataset must be handled individually
and carefully.

Table 1. Most important data scurces and attributes used for analysis.

Man Equipment Train
Enlisted Fit/Fill | Deckplate Flight Hours
Officer Fit/Fill | AMSRR Training Progression
AMEX 1.0 FHRM N40 T-Rating
NAE Actualls | NAVAIR Reports
Lot
NAE Actuals
MC/RBA/NMCS/NMCM

2.1 Data Sources and Aggregation

Since the only features common to all of the datasets are the squadron and date, although the date ranges
do not always overlap, these features are used to join the data. There is an added complication in that some
datasets record information on a monthly basis while others record daily or weekly. For those that record
daily and weekly, aggregate monthly values are created including the mean value, standard deviation, max,
min, sum, and ¢ount.

2.2 Feature Construction

Once all of the datasets are joined into a master dataset, new features are constructed. Aggregate
“entitlements” are constructed features that are meant to be indicative of a squadrons’ ideal behavior given
size and funding. The pilot entitlement ( Pg,,;) describes the number of pilots that a squadron is entitled to
and is defined as

Pgpe = PAA+5 D

where /7 A A is the primary aircraft authorized or the number of jets in the squadron (usually 10 or 12). The
Fp,y is then used to create the flight hour entitlement (¥ H g,,;) which is the flight hour execution (F Hg,)
goal of a squadron and defined as

FHgn = Pea < Foy x 27 (2)

where Fi; is the funding percentage as defined by the squadron activity phase. The F' Hg,,; can be
calculated on a monthly basis, but squadrons are directed to meet quarterly flight hour execution goals. The
flight hour ratio (F" H,4;,) is then the final readiness metric, and the target to be predicted in Section 3, and
is defined as

FHEm

3
FHpm ©)

FHra,tio =

where F'Hp,, are the total flight hours executed within the quarter.



Similar to flight hour entitlements, there are entitlements for the number of ready basic aircraft (RBA)'
that a squadron is expected to have and is a fraction of their total potential up-aircraft (P AA). The
RBAp,;: is defined as

PAA x Fy, x0.75

4

Although they are not directly associated, it is clear that the funding allotment effects the number of
mission capable aircraft which directly effects the expected flight hour execution (F Hgpy). As with
Equation 3, the ratio of mission capable aircraft and the number of entitled MC aircraft is important and
defined as

M

MUyatio = m
T2t

(5

There are many constructed features concerning the manning of the squadrons based on both rate and
rank®. The key manning features are: basic allowed (B A) which is the number of people that a squadron
may request for a given position; onboard or fill (ON B D, F'ill) which is the number of people that a
squadron has received for a given position; and fit (F%+{) which 1s determined based on experience working
with aircraft and rank. The aggregate constructed features are then the onboard ratio (ON B . 45.),

ONBD

ONBDrmf'io - BA (6)
and the fit ratio (F'it,qz40),
Flit
Fétrat'io - ﬂ (7)

These quantities are constructed overall for a squadron and also for individual rates. However, not all rates
are assumed to equally influence FA-18 readiness. The rates that correspond directly to aircraft maintainers
are collectively known as D E M OT rates. The DEM OT sailor’s rates are AD, AE, AM, AO, AT, AME,
(S, and PR which correspond to the aviation machinist’s mate, aviation electrician’s mate, aviation
structural mechanic (hydraulics and structures), aviation ordnanceman, aviation electronics technician
{safety equipment), aviation structural mechanic (safety equipment), culinary specialist, and aircrew
survival equipmentman respectively [6]. The DFEM OT onboard ratio (0N BDPEMOTY and the

ratio

DEMOT fit ratio (Fit2EMOTy are constructed exactly as in equations 6 and 7 but restricted to DEMOT

ratio
rates.

The final set of constructed features attempt to capture the maintenance man-hour information as shown
in Figure 2b. Additionally, the following features attempt express the idea of “maintenance capacity™ [7].
Mamtenance capacity guidelines presume that since MC can be stored over time (neglecting scheduled
maintenance) and man-hours can not, quantities communicating information regarding man-hour efficiency
and usage may be useful in predicting readiness. To this end, the total number of maintenance man-hours

(MMH) per DEMOT sailor (%), the maintenance man-hours per MC hour ( AJ/EIJCAiH ), the flight

hours per MC hour (%), and the maintenance man-hours per flight hour (ﬂ}f }J}{E Ij

added to the datasets.

) are constructed and

'In most cases, RBA and MC are equivalent metrics and the syntax used depends on the context.
2«Rate” describes the job function and “rank™ describes the level of experience and position in the military hierarchy.



The constructed dataset has 1165 features and 3118 samples (squadron-months). The data was collected
from January 2010 to October 2017, includes 35 unique squadrons, and is from 11 unique carrier air wings.

2.3 Data Transformation

As discussed in Section 3, it is essential to construct quarterly datasets in which all data for a single
squadron from a calendar-year quarter is contained in a single sample. Also included is historical data from
previous quarters for each squadron. To make the datasets as realistic as possible, three datasets are
constructed — one for each month in the quarter. Each dataset includes the historical information along with
all information that is known on the first day of that month in the quarter. For example, the month two
dataset will include all information from the previous month, all information from the previous quarter, but
mcomplete information for the current month and the next (future) month. Explicitly, a feature like the
value of the mean number of MC aircraft for the current month and future months cannot be known, but
values from the previous month and previous quarter would be known. However, future information
relating to activity phase, funding, onboarding information, age and use of aircraft, etc. is known in

advance and may be included. After all transformations are complete, the resulting datasets are shown in
Table 2.

Table 2. Final dataset information used for analysis. Here, the number of samples is the number of
squadron-quarters there are. Note that the humber of features increases as more historical informa-
tion becomes available for use.

Month in Quarter | Number of Features | Number of Samples
1 4531 728
2 5354 728
3 6178 728
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3. ANALYSIS STRATEGY

he goal of this analysis is to predict FA-18 readiness as indicated by the quarterly F'H,..;;, and classify
squadrons as meeting > 98%, < 82%, or in-between of their quarterly F H,.,.;,. Since a squadron’s ability
to execute flight hours is contingent on their number of MC aircraft, it is also important to predict the mean
monthly MC of a squadron on a monthly basis and use this as an input feature for a quarterly 'H
execution model. This general strategy is shown in Figure 3. Although the features to be used in each
model is determined by the model itself via feature importance [8], it is hypothesized by subject matter
experts that the manning information, especially for DEM OT sailors, and general aircraft information
(e.g., years in service and lot) will be key features in determining a monthly MC prediction. It is also
assumed that the monthly MC prediction, historical flight hours, and historical squadron behavior will be
good indicators of quarterly F'H execution.

Input Features
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Figure 3. Model strategy. The input features shown are for illustrative purposes only; actual features
used are determined by each model via feature importance.

In all machine learning models created, as specified in Sections 4 and 3, the data are randomly split into
a training set containing 75% of the data and a hold-out set with 25% of the data. All models are created
using the training set and evaluated using the hold-out set.

It is also crucial to be able to track the progress of a squadron as they move through the quarter. To this
end, a monthly MC machine learning regression model and a quarterly #' H, ., classifier model are
created for each month in the quarter. It is necessary to make this distinction between months in a quarter
because each month incorporates additional historical information; subsequent months have access to more
historical data than the previous month. For example, the MC model and FH execution model for month 1
of the quarter only rely on historical data and current/future data that would be available on the first day of
the quarter (see Section 2.3 for details). Then, the MC model and FH execution model for month 2 of the
quarter will have all of the same data available to it that month 1 did, but it will have additional information
regarding the squadron performance during month 1. Additionally, the month 1 F' model predicts flight
hour execution ~90 days in the future while the month 2 model predicts ~ 60 days in the future and the



month 3 model predicts ~ 30 days in the future®, To this end, a total of 6 models are created and combined
to create an ensemble of models.

Furthermore, it is beneficial to have distinct MC and FH models combined to create an ensemble rather
than a single combined model. Having multiple models allows for the MC model to be used independently,
if desired, and have higher granularity. In many cases it 1s advantageous to predict a monthly MC.,
Furthermore, flight hour execution is a quarterly goal for a squadron and, therefore, it may be deceiving to
view or predict it on a monthly basis. This i1s because planned exercises, holidays, weather, etc. are
accounted for by individual squadrons. For example, squadrons ofien over-execute in November to prepare
for lower flight hours in December. Lastly, separating the MC and FH models allows for increased
mterpretability. Thus, individual models for MC and FH predicting individually and on different
time-scales 1s a highly attractive characteristic.

3The period that the models predict over changes slightly depending on the length of the months in the quarter that are being
predicted.



4. MC MODEL

The goal of the MC model, as outlined in Section 3, is to use only the data available on the first day of
the month and predict the mean number of MC aircraft for that month. Three MC models are created — one
for each month m the quarter. All MC models are created using a traming set consisting of a random
selection of 75% of the data and are evaluated using a hold-out set consisting of the remaining 25% of the
data. All model evaluation mefrics are derived from the hold-out set and should be representative of how
the MC model will perform and generalize to new data.

4.1 MC Model Creation and Parameters

A quantile regression forest [9] is used for the creation of the MC model. Quantile regression forests are
created such that they have exactly 1 sample in each leaf for every tree in the forest. This means that when
a sample is classified as belonging to a leaf, instead of it taking the mean value of training set values that
were used when creating the tree it takes the mean value of an actual, pure, sample. In doing so, the
prediction of the forest can then be interpreted by looking at the distribution of responses from each tree.
The distribution of responses may then be used to determine a prediction interval [10], and the overall
response is still taken to be the mean of the tree outputs. A prediction interval is incredibly useful because
it provides a way to estimate the likelihood of future observations falling into the specified interval. The
distributions of responses may also be interpreted to determine the agreement between trees in the forest.
For example, if all of the trees in the forest predict a similar response value, then that prediction should
have a higher confidence than a prediction in which trees predict very different values — indicating that the
forest is conflicted.

To determine the optimal monthly MC model parameters an ablation study was performed. A model is
first created using 500 trees and all available features. A feature importance algorithm [8] is then run and
the least important feature is removed. This process is repeated until there are no remaining features, and
the model metrics, %, mean squared error (MSE), and the mean absolute error (MAE), are recorded for
each iteration of the model. The model metrics, shown in Fig 4, are then evaluated to determine the optimal
number of features to be used m the model. It is clear that all model metrics plateau after ~40 features are
considered. To be well within the plateau region, 20{} features are selected for model creation and then
hand-tuned to mitigate redundancies and duplications. For example, it would be undesirable for a model to
use a feature for FA-18 E’s, F’s, and then a combined E/F value. This is because redundancies may place
undue importance on a feature and infroduce biases. It is important to note that only metrics for the month
1 model are shown, but the same procedure is followed for all models. Furthermore, although it would be
possible to use every available feature, it is preferred to have a more simplistic model that may be
human-interpretable. An interpretable model offers insights into how to influence a squadron’s performance
and, as outlined is Section 7, may be used to offer an optimized course of action (COA) in the future.



* E
0.84— ghosedty -
|- . .'““"u . *Oete .
— L]
. . ot
0.82— et 0
— .
0.8—-*
078
[T o
0.76 —
074/
F
0.72—
[Ce
0.7
4
e
0.68—
0 20 40 60 80 100
Number of Features
(a)
S - <] 14,
o 09 13
= . 1< Fe
50.85 « §1-2:
=4 an @ 1.1
c 08— < )
g - g 1
0.75; ! 0'9:: |
0.7 -':-‘-h 08— “~un
. e . E e ) .
0.65 N 07E -
" i i 1 n PR T S S —— | i n n IR TR S S N — | E— i n 1 " i a1 PR— ad
0 20 40 60 80 100 0 20 40 60 80 100
Number of Features Number of Features
(b) (c)

Figure 4. MC regression model metrics. Metrics are shown vs number of features used to create
model where (a) shows r? values, (b) shows the mean absolute error, and (c) shows the mean
squared error. All metrics plateau after ~40 features. Note that metrics are only shown for the month
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Once the model features have been curated, the number of trees to use in the forest is examined. Figure 5
shows the 2 value versus the number of trees in the forest for the month 1 MC model. A plateau is seen
after ~200 trees, and 500 trees is selected to be well within the plateau region. No additional alterations are
made to the MC model quantile regression forest from the default hyperparameters specified in the
scikit-learn package [11].
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Figure 5. 2 versus number of trees in forest for month 1 MC model.

4.2 MC Results and Evaluation

The final month 1 MC model features and feature importance is shown in Figure 6. The suffix number
signifies the month in the quarter and “pqm” indicates the previous quarter. For example, the feature
meRatio 3 pgm is the M C, 4, as defined by equation 5 for the third month of the previous quarter. Note
that month 2 and 3 models use the same features but include additional historical data from the previous
months.
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Figure 6. Normalized feature importance for all features used in the month 1 MC model. The suffix
number signifies the month in the quarter and “pgm” indicates the previous quarter. The importance,
X-axis, is unitless and is log-scale.

The following list details Figure 6 content definitions from the top listed item down starting at the top
left:
« FHpMCH is flight hours per MC hour,
« MMHpMCH is maintenance man-hours per MC hour,
« MMHpDEMOT is maintenance man-hours per D EMOT basic allowed,

« mmeh I8 total maintenance man-hours,

. - 2 DEMOT
o demot_fit Eatio is %f‘wm

+ demot_onbd Ratio is ON BDDEMOT
« demot_ba is BApemoT,

o demot_fit is PP EMOT

+ demot_onbd is ON B DPEMOT

« fitRatio is Pitpatio,

« onbdKatio is ON BD s,
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amsrr.nmes_std_fo — 18C EF 1s the standard deviation of the number of not mission capable for
supply FA-1§ C/E/F aircraft from the AMSRR data,

amsrr.nmes_mean_fa — 18ce f 1s the mean number of not mission capable for supply FA-18
C/E/F aircraft from the AMSRR data,

amsrr.nmem_std_fa — 18C EF 1s the standard deviation of the number of not mission capable for
maintenance FA-18 C/E/F aircraft from the AMSRR data,

fhRatiois FHyatio,
FhEntis FHp.,
mcHatio 18 MChraio,
rbaEnt is RBAg.,,

amsrr.mcmar_fa — 18cef 1s the maximum value for the number of MC FA-18 C/E/F aircraft
from the AMSRR data,

amsrr.me_min_fa — 18cef 1s the minimum value for the number of MC FA-18 C/E/F aircraft from
the AMSRR data,

amsrr.mc_mean_fa — 18cef is the mean value for the number of MC FA-18 C/E/F aircraft from
the AMSRR data.

The most important features are the historical mean MC information, with entitlement information
{likely as it relates to funding and phase), fit/fill information overall and for D EM Q7 sailors, and
maintenance man-hour information are also important. The model also does not improve with additional
historical data prior to one quarter and does not require planned future information further than the next
months in the current quarter. As is to be expected, all models perform equivalently as shown in Table 3.
Table 3 also includes information for a generalized MC model discussed in Section 4.3.

Table 3. MG model metrics for each MC model. Metrics shown are »2, mean absolute error (MAE),
and mean squared error (MSE). All metrics are derived from hold-out set.

MC Model Month r? MAE | MSE

1 0.822 | 0.704 | 0.791
2 0.792 | 0.792 | 1.020
3 0.801 | 0.734 | 0.907
Generalized 0.783 | 0.746 | 1.082

Figure 7 shows the true versus predicted MC for the month 1 model. The red line shows a perfect
prediction. As expected from Table 3, there is very good agreement between the actual and predicted MC.
Further, since the predicted MC 1s from the hold-out set, this is representative of how the MC model can be
expected to perform on new data that the model has never seen before. The information from Figure 7 can
be viewed in terms of the residual value (predicted - actual MC) and is shown in Figure 8. The red line in
Figure 8 15 a Gaussian fit to the data and 1s performed using the MINUIT package [12] as inplemented in
the ROOT data analysis framework [13]. The 2 goodness-of-fit test [14] shows that the residual is well
described by a Gaussian centered on 0 with a sigma consistent with +1 MC. This shows that the MC model
1s not biased to over or under-predict MC, and that the hold-out set is a generalized representation of the
training set.
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Figure 8. The MC prediction residual (predicted - actual) for month 1. The red line shows a Gaussian
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Finally, as discussed in Section 4.1, since a quantile regression forest is used, a prediction interval can be
determined for each individual prediction. Figure 9 shows MC versus the sample number for the month 1
MC model using the hold-out set of data. The samples are ordered such that the actual MC value, shown in
red, is increasing. The blue points are the predicted MC values connected by a simple line including an
extremely small statistical uncertainty from the standard uncertainty on the mean of the predictions from
the quantile regression forest. The green and yellow shaded areas show the +1¢ and +2¢ prediction
intervals respectively. Figure 9 again shows that the predicted and actual MC values are extremely similar.
However, the prediction interval is generally smaller, and the predictions more accurate, when the actual
MC is mid-range with less predictive power when MC is extremely low, <~4, or very large, >~-10. This is
likely due to fewer data samples for the edge cases. Additionally, it is clear that the prediction intervals
provide valuable insight into the confidence of the predicted value. In this way, the model itself can provide
guidance into how its results should be interpreted.
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Figure 9. MC vs. the sample number for MC model month 1. Red dots show the actual MC and the
sample numbers are ordered for increasing MC. Blue points show the predicted MC including

statistical uncertainty. The blue lines are connected with a simple line to guide the eye. Green and
yellow shaded areas show +1¢ and +2¢ prediction intervals respectively.
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4.3 Generalized MC Model

In certain circumstances it may be beneficial to have a single generalized MC model rather than an MC
model specific to each month in a quarter. It may also be useful to have an MC model that does not rely on
historical or future data. For example, if there is a new squadron or if enough changes have been made to a
squadron to make it discontinuous from its historical data then a more general MC model will be extremely
valuable.

Following the same procedure as the previous MC models, as outlined in Section 4.1, a generalized MC
model has been created. Since there 1s no future or historical information, the dataset has also changed.
There are now only 221 features, but 2914 samples (squadron-months). As with all models, the machine
learning models are trained using a random 75% selection of the data and evaluated using a hold-out set
consisting of the remaining 25% of the data. The performance of the generalized model is shown in
Table 3. Even though the generalized model does not include historical or future information, it performs
extremely well and is competitive with month-specific models.

The features used in the generalized MC model and their relative importance is shown in Figure 10.
Features used in the generalized model but not the month-specific models include ON B D and fit
information for the rates YN, NC, AD, MA, PS, AM, and AN. These rates, some of which are DEMOT
sailors, correspond to the yeoman, Navy counselor, aviation machinist, master-at-arms, personnel
specialist, aviation structural mechanic, and airman respectively. The Fleet Readiness Training Plan
(FRTP) phase is also now included, likely as it is related to funding and entitlements. It is also interesting
that when maintenance man-hour information is not available (because this information is only available as
historical information) the model chooses to include lot information which is related to when the aircraft
was manufactured.

fhEnt

efitfill.onboard_yn
efitfill.onboard_nc
efitfill.fit_ad
decktt.lot_std_fa-18cef
efitfill.fit_ma
decktt.lot_count_fa-18cef
efitfill.onboard_ps
demot_fitRatio

fitRatio

demot_onbdRatio
decktt.lot_median_fa-18cef
decktt.lot_mean_fa-18ef
onbdRatio

rbaEnt

efitfill.fit_am
efitfill.onboard_an
decktt.lot_mean_fa-18cef
demot_ba

efitfill.lba_am
decktt.lot_sum_fa-18cef
naeactuals.paa
encoded.frtp_mode

0.0 0.2
Importance

Figure 10. Normalized feature importance for all features used in the generalized MC model.
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The MC versus the sample number for the generalized model is shown in Figure 11. Interpretation is the
same as in Figure 9. Figure 11 shows that the model performs extremely well and that a generalized model
is much more likely to accurately predict very high and low actual MC values. This is likely due to the
increased size of the dataset.
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Figure 11. MC vs the sample number for generalized MC model. Red dots show the actual MC and
the sample numbers are ordered for increasing MC. Blue points show the predicted MC including
statistical uncertainty. The blue lines are connected with a simple line to guide the eye. Green and
yellow shaded areas show +1¢ and +2¢ prediction intervals respectively.

The generalized and month-specific MC models have shown that each squadron, which was original
thought to be unique, actually behaves in a consistent and predictable way. As a standalone result, the MC
models are a powerful tool to predict a key aspect of readiness.
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5. COMBINED MC-FH EXECUTION MODEL

monthly MC models from Section 4 are then used as an input to create an ensemble flight hour execution
model called the MC-FH model. The distribution of quarterly flight hour ratios (' Hge/ F H gyt ) is shown
in Figure 12. Because the flight hours executed is incredibly complicated and relies heavily on
undeterminable attributes, like weather, a probabilistic classification model is created rather than a
regression model. The goal is then to predict whether a squadron will meet > 98% of their flight hour
entitlement (green), less than 82% of their entitlement (red), or in-between (yellow). These classes are
shown in Figure 12, As with the MC model, an MC-FH model is created for each month in the quarter so
that a prediction for the squadrons’ flight hour ratio at the end of the quarter can be made on the first day of
each month in the quarter. Each model is tramed on a random selection of 75% of the data and evaluated on
a hold-out set composed of the remaining 25% of data. Note that this is the exact same training and
hold-out set used in the creation of the MC models. Having separate MC-FH month models allows the
progression of a squadron to be tracked as it moves through the quarter.

30 u Entries 728
B Mean 1.182 £ 0.0152
25 L Std Dev  0.4091 +0.01075
B Il
20 |
15| f[‘
10
5 I _ ]JLIL_LL ‘H |
Eola L b o

0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
Quarterly FH_ /FH,
Ex

Figure 12. Histogram of the quarterly flight hour ratio is shown. Delinieations for > 98% of their flight
hour entitlement (green), less than 82% of their entitlement (red), or in-between (yellow) is shown.
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5.1 Model Creation

The first step in creating the MC-FH model is to include the predicted MC as an mput feature for the
MC-FH model to select. Then, a random forest probabilistic classifier with 500 trees that is able to use all
features (see Section 2) 1s trained. As with the MC model, a feature importance algorithm is run and the
least important feature 1s removed from the dataset. This process 1s repeated until there are no remaining
features. Machine learning metrics for each model are recorded and shown in Figure 13. Figure 13a shows
the F1 score [15] versus the number of features used in the model, and Figure 13b shows the model
accuracy versus the number of features used in the model. Both metrics show volatility when a low number
of features is used and then plateau as the number of available features increase. The most important 200
features are selected and then hand-tuned to mitigate redundancies and feature conflicts.

5.2 Model Results and Evaluation

The final feature list for the month 1 MC-FH model shown in Figure 14 has many interesting features —
from the top:

+ the predicted and historical MC ratio,

* the number of pilots currently on board (COB),

+ the historical flight hour information

+ the allocation information (related to funding),

+ the historical flight hour ratios,

* the mean number of partially mission capable aircraft,

+ the mean number of not mission capable for supply aircraft,
* the mean number of not mission capable for maintenance aircraft,
* the predicted and historical mean MC aircraft,

+ the number of FA-18 C/E/F’s in reporting (IR},

* the number of fully mission capable aircraft,

+ the number of aircraft assigned to the squadron.

The mean MC predicted by the MC model and the associated MC ratio are the two most important
features. This is reassuring and increases trust in the MC model. The remaining features are entirely
related to the state of the squadrons” aircraft, funding, and the number of pilots. The feature list tells an
intuitive story: if a squadron has the people, jets, and funding, they will execute their flight hour
entitlement. It is also worth noting that historical data earlier than the previous quarter and future quarter
data is unnecessary. The same feature list with additional historical information is used for the month 2 and
month 3 ensemble MC-FH models.

The MC-FH model results for all three MC-FH month models, as evaluated on the hold-out dataset, are
shown in the form of confusion matrices [16] in Figure 15. These results are also summarized using their
precision, recall (accuracy), and F1-score [17] in Tables 4, 5, and 6. It is immediately apparent that because
the classes (red, yellow, green) are unbalanced there is bias in the model. Specifically, the model is more
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Figure 13. Machine learning metrics shown for month 1 MC-FH model created using variable num-
bers of features. (a) shows F1 score vs. number of features used in month 1 MC-FH model. (b)
shows accuracy vs. the number of features used in menth 1 MC-FH model.

likely to predict green than any other class. Also, as expected, the MC-FH models improve as the quarter
progresses. Again, this is likely because each successive model is predicting a shorter distance into the
future. However, even for the month 1 MC-FH model, predicting the flight hour ratio ~90 days in advance
with an average accuracy (recall) of 75% is an extremely powerful result. Further, since this is a multi-class
classifier, an accuracy of 75% is astounding.

A multi-class random forest also allows for a probabilistic interpretation of the results. Instead of a
single prediction, the MC-FII models may give each class (green, yellow, and red) a probability by
comparing the number of trees that predicted each class. These probabilities provide decision makers more
information and insight prior to a decision being made. The probabilistic interpretation of the MC-FH
model is discussed in Section 6.2.
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Figure 14. Normalized feature importance for the month 1 MC-FH model.
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Figure 15. Confusion matrices for all three MC-FH models.

Table 4. Month 1 MC-FH model metrics. Support is the number of events from each class in the
hold-out set.

Class Support  Precision | Recall (Acuracy)| F1
Green 118 0.76 1.00 0.86
Yellow 32 0.56 0.16 0.24
Red 26 0.82 0.35 0.49
Average Total 176 0.73 0.75 0.69
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Table 5. Month 2 MC-FH model metrics. Support is the number of events from each class in the
hold-out set.

Class Support | Precision | Recall (Acuracy)| F1
Green 118 0.83 0.99 0.90
Yellow 32 0.73 0.34 0.47
Red 26 0.80 0.62 0.70
Average Total 176 0.81 0.82 0.79

Table 6. Month 3 MC-FH model metrics. Support is the number of events from each class in the
hold-out set.

Class Support | Precision | Recall (Acuracy)| F1
Green 118 0.91 0.99 0.95
Yellow 32 0.71 0.47 0.57
Red 26 0.81 0.81 0.81
Average Total 176 0.86 0.87 0.86
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6. VALIDATION AND INTERPRETATION

With all three MC-FH ensemble models created, the models should now be validated and interpreted.
Specifically, any biases in the model should be identified and the resulting predictions should be interpreted
with care.

6.1 MC-FH Model Validation

To ensure there are no obvious biases introduced due to model selection or choice of hold-out and
training sets, the model behavior for different subsets of the data must be studied.

First, Figure 16 shows the accuracy of the MC-FH model on the hold-out set for each month in each
quarter. All months have similar behavior wherein the accuracy of the MC-FH model improves as the
quarter progresses. Further, each model month in each quarter has similar accuracy. However, there are
several minor differences. The accuracy of the first quarter is slightly lower than that of the other quarters.
This is expected, understood, behavior and is due to conditions that influence flight hour execution and
readiness but are not accounted for in the data. For example, the weather in winter (quarter 1) has a large
influence on whether or not a squadron can execute their flight hours. Holidays, lengths of months,
scheduled operations, etc. are also not included in the model creation but cause slight discrepancies
between the model behavior over the different quarters.
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Figure 16. Accuracy vs. month for every month shown including statistical uncertainty.

Second, the model performance is measured for each individual squadron. This is meant to check that
the MC-FH model accurately predicts the readiness of all squadrons equally well. The same analysis is
performed as in Figure 16; however, since there are 35 squadrons and the hold-out set is rather small,
statistical uncertainty dominates and no concrete statements may be made. Although, there does not seem
to be a bias present relating to the individual squadrons, carrier air wings, or any similar categorization.
This is because if those features were predictive then they would not have been discarded during the feature
selection process. Furthermore, the model was shown to generalize well as discussed in Section 5.2.

6.2 Probabilistic Interpretation

As previously described, the MC-FH model output is a vector of probabilities corresponding to each
class (red-yellow-green). The highest class probability corresponds to the most likely class as predicted by
the model, and is called the prediction confidence. Ideally, the prediction confidence would correspond
directly the probability of a correct prediction. However, this is not the case because of systematic

25



uncertainties associated with shared features between trees in the random forest (tree dependence), Monte
Carlo noise due to a finite number of trees, inaccurate training data from the MC model, and other
uncontrollable biases [18, 19]. These biases and systematic uncertainties are encapsulated in Figures 17
and 18. Figure 17 shows the probability of a correct prediction versus the prediction confidence including
statistical uncertainties for the month 2 MC-FH model. The probability of a correct prediction and the
prediction confidence are extremely similar and nearly linear which means that the systematic uncertainties
must be small. Figure 18 shows the probability of a correct prediction versus the prediction delta including
statistical uncertainty, Here, the prediction delta 1s the difference between the most likely class probability
{the prediction confidence) and the second most likely class probability. The prediction delta encapsulates
all of the information contained in the probabilistic result and can give an impression of how distinctly the
model classifies a sample. For example, if the model predicts green-yellow-red as 50-25-25 that is a much
different prediction than 50-49-1. In both cases the prediction confidence is 50%, but in the first scenario
the prediction delta is 25 and in the second case the prediction delta is 1.

Additionally, imperfections from the MC model prediction are propagated through and will influence the
final MC-FH prediction. To account for this uncertainty, when a prediction is made the MC value is varied
within +1¢ with a step-size of (0.1. The standard uncertainty {the standard deviation divided by the
square-root of the number of points) is then applied to the nominal value. This uncertainty has very little
effect on the final MC-FH prediction, likely because the complete MC-FH model has compensated for the
uncertainty in the MC prediction during training.

Overall, when the prediction from the MC-FH model is being interpreted Figures 17 and 18 allow for
better, smarter decisions to be made. In practice, decision makers may set their own confidence thresholds
for action and different thresholds may be set under any number of conditions. In this context, a
probabilistic interpretation of the MC-FH model allow the results as shown in Section 5.2 to create an even
stronger final result.

6.3 Statistical Interpretation

Although most of the features used are only statistically meaningful when combined in complicated
ways, MC is such a strong indicator of readiness that it has a direct correlation to flight hour execution.
Figure 19 shows the probability of a class (green-yellow-red) versus the MC ratio for each class. Figure 19
uses all available data and the MC from the final month in the quarter, though other months show similar
behavior. It 1s clear that the probability of a squadron executing =98% of their flight hour entitlement falls
rapidly if their MC is below their entitlement. Further, if their MC ratio falls below 0.8 then it becomes
extremely unlikely that a squadron will meet their flight hour entitlement. Surprisingly, if a squadron has
mote MC aircraft than their MC entitlement, they see diminishing returns in the probability of executing
>98% of their flight hour entitlement.

Other features of the MC and MC-FH model are separated into “levers” and “drivers”. Levers are
properties that can be changed, for example, increasing funding, transferring maintainers, etc. Drivers are
features which influence readiness but cannot be changed. Examples of drivers include the age of the
aircraft and the aircraft years in service. It would be desirable to interpret how the model is influenced by
changes to less directly correlated features, specifically the levers. To this end, embedded simulation [20] is
used to adjust the levers and monitor the model response. No human-interpretable result is found, but the
method and findings are discussed in Appendix A.
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7. CONCLUSIONS AND FUTURE WORK

In conclusion, using man-train-equip datasets, an MC aircraft regression model was created as an input
for a squadron quarterly probabilistic flight hour execution predictive model. The ensemble MC-FH model
1s able to accurately predict the flight hour execution of a squadron as a fraction of their flight hour
entitlement with 75% accuracy on the first day of the quarter — 90 days in advance. Separate MC-FH
models were created for each month in the quarter in order to incorporate additional historical information,
for a total of 6 individual models. By utilizing each model, it is possible to track the readiness and
predicied behavior of a squadron as they progress through a quarter. Additionally, a statistical
interpretation of the results provides insights into the MC ratio and how a squadron is impacted by fewer or
additional MC aircraft.

The generalized MC model may also be considered as a standalone product. Although it does not predict
readiness more than 1 month mto the future, it may be used as a gauge to measure the current capacity of a
squadron. Furthermore, the generalized MC model may be combined with the statistical interpretation of
the MC-FH model to quickly assess a squadron’s readiness.

Future work includes making certain that the MC-FH models perform well when different hold-out sets
are chosen. For example, a hold-out set composed of date range or a never-before-seen squadron. Also,
new data and additional data sources may be incorporated to improve the models. Furthermore, eventually,
these predictive models may take on a prescriptive role and affect or optimize the course of action of a
squadron. However, since resources can only be moved from one squadron to another, an enterprise-level
algorithm will need to be created to determine the optimal allocation of resources. Lastly, a user-interface
should be created so that a squadron’s expected performance can be measured and tracked by maintainers,
aviators, commanding officers, and leadership.
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APPENDIX A
EMBEDDED SIMULATION

Conceptually, embedded simulation [20] involves simulating event data where actual events are rare and
getting more data 1s unfeasible. Embedded simulation 1s also contingent on two assumptions: the system 1s
understood sufficiently well, and the event is independent of other activity in the sample or that dependence
is known. Specifically, the rare event to be studied is simulated and embedded inside of actual data
samples. In doing so, it is possible to create data that 1s realistic enough to make analysis decisions with or
determine relationships in the data.

For the MC-IH model, it would be advantageous to know how levers interact and influence each other.
Since many levers, such as pilot COB, are not expected to influence any other levers or drivers, that feature
may be safely simulated and embedded in different samples. Usually, simulating a feature requires
knowing the underlying distribution of that feature; however, in the case of levers like pilot COB, a simple
arid search or choosing all possible values in a range is acceptable. By embedding the simulated features in
different actual data samples, it 15 possible to generate a realistic larger dataset and study the MC-FH model
response to samples with different combinations of lever values.

The features (levers) to be embedded and then simulated are:

« amsrr.memean_fa — 18cef 14
* amsrr.amcmean_fa — 18cef 3 pgm

* naeactuals.pilot cob 1.

MC and pilot COB values range between their (rmén — 1) and (maz + 1) in step-sizes of {.1. The hold-out
set samples are then duplicated and the simulated levers are inserted. The total number of simulated
samples 15 1692600. Having a large number of simulated samples has the additional effect of reducing any
biases that may be present in the actual data.

Figure A-1 shows 2-dimensional histograms of the simulated armsrr.mc_mearn_ fa — 18cef_3_pgm
versus the simulated amsrr.me mean_fa — 18cef 1 as categorized by the month 1 MC-FH model.
Figure A-1(a) shows the distribution of values when the sample is predicted by the month 1 MC-FH model
to meet =98% of their flight hour entitlement, and Figure A-1(b) shows the same distribution when the
sample 1s predicted to meet < 82% of their flight hour entitlement. It is clear that there 1s a distinct behavior
in each plot where Figure A-1(b} has a higher concentration of samples in the lower left corner
corresponding to a low M Cpyms and a low M ¢, and Figure A-1(a) is more evenly distributed with a lower
concentration of samples in the lower left corner. However, there is not a clean delineation between the
plots and there 1s a non-zero background covering the space in Figure A-1(b) signifying that these two
levers alone do not fully represent the MC-FH model. Figure A-2 shows only the normalized MC
distributions from the embedded simulation and their classification according to the MC-FH model. Again,
it is clear that A/ C'1s a good predictor, but the MC-FH model 1s much more complicated.

Additional parameters were studied in the same manner but were less human-interpretable,

*This is the feature predicted by the MC models.
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Figure 20. (a) shows the relationship between MC,,,,.; vs. M C determined via embedded simulation
when the MC-FH model predicted >98% as a 2D histogram. (b) shows the relationship between
MChpyms vs. MC determined via embedded simulation when the MC-FH model predicted <82% as

a 2D histogram. Striations are due to binning choices and simulation step-size.
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Figure 21. Normalized histogram of MC from embedded simulation classified according to MC-FH
prediction.

A-3



This page is intentionally blank.



INITIAL DISTRIBUTION

84310 Library (1)
85300 Archive/Stock (1)
54320 Dr. Benjamin Michlin (1)
54340 Rick Cruz (1)
71740 Josh Duclos (1)
54320 Dean Lee (1)
55180 Vincent Siu (1)
56000 Charles Yetman (1)

Defense  Technical Information  Center
Fort Belvoir, VA 22060-6218 (1)



This page is intentionally blank.



REPORT DOCUMENTATION PAGE OME i ppraved 88

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - T0)
December 2019 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Predicting FA-18 Squadron Readiness and 5b. GRANT NUMBER
Quarterly Flight Hour Execution
Using Machine Learning 5c. PROGRAM ELEMENT NUMBER
6. AUTHORS 5d-PROJECTNUMBER

Dr. Benjamin Michlin Dean Lee e TASK NUMBER

Dr. Ruey Chang Vincent Siu
Rick Cruz Charles Yetman

o 5f. WORK UNIT NUMBER
Josh Duclos NIWC Pacific

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION

NIWC Pacific REPORT NUMBER
53560 Hull Street
San Diego, CA 92152-5001 TR-3183
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Commander, Naval Air Forces (CNAF) CNAF
PO Box 357051

. 11. SPONSOR/MONITOR’S REPORT
San Diego, CA 92135-7051 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: Approved for public release.

13. SUPPLEMENTARY NOTES
This is a work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated
without restriction.

14. ABSTRACT

Given manning-training-equipment datasets from Naval FA-18 squadrons, a machine learning model for determining the monthly mean number
of mission capable jets per squadron is created. This model is then extended and used as an input to create an ensemble of models determining
the flight hour execution of a squadron over a three-month period. The ensemble of models is then used to predict squadron performance and
readiness, and can correctly classify a squadron's future performance with 75% accuracy 90-days in advance.

15. SUBJECT TERMS
Data conditioning and transformation; data sources and aggregation; MC model creation and parameters; MC-FH Model;
probabilistic interpretation; statistical interpretation; MC regression model; MC prediction residual; MC prediction interval; MC-
FH confusion matrices; class probability vs MC ratio; embedded simulation for MC

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT| c. THIS PAGE ABSTRACT SKGES Dr. Benjamin Michlin
U U U U o 19B. TEL EPHONE NUMBER (Include area code)
619-553-2925

Standard Form 298 (Rev. 10/17)
Prescribed by ANSI Std. Z39.18



This page is intentionally blank.



This page is intentionally blank.



DISTRIBUTION STATEMENT A: Approved for public release.

Naval Information
Warfare Center

v

PACIFIC

Naval Information Warfare Center Pacific (NIWC Pacific)
San Diego, CA 92152-5001



