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1. INTRODUCTION 

Safety and performance control of energetic materials, such as propellants, explosives and 

pyrotechnics, demands characterization of the sensitivity of such materials to transient loads.  The 

sensitivity of a heterogeneous energetic material (HE) to shock or impact loading is an intrinsically multi-

scale phenomenon.  The reactive heat release and transition to detonation observed at the system (macro-) 

scale is initiated at the meso-scale, i.e. at the level of heterogeneities such as interfaces and defects (voids, 

cracks) in the material. Prediction of the response of a HE therefore must account for the sub-scale (typically 

meso-scale) thermo-mechanics that initiates the shock-to-detonation transition. Modeling of such a multi-

scale process hinges critically on the fidelity of the material models used in the computations of the meso-

scale response, in particular the dynamics of void collapse and hotspot formation. In a multi-scale 

simulation of the response of a HE, the macro-scale model typically homogenizes the meso-scale physics; 

crucial energy release terms from the meso-scale then serve as closure models, appearing as source terms 

in the macro-scale governing equations. These closure models have typically been supplied through semi-

empirical phenomenological models such as ignition-and-growth , CREST , SURF  and others . Such so-

called “burn models” have to be fit to data from expensive and time-consuming physical experiments . An 

alternative route, made possible by advances in computational hardware and software resources, is to 

construct burn models by using numerical (in silico) experiments . 

To be useful in predictive modeling of the response of HEs, numerical simulations of the meso-scale 

dynamics must accurately portray the thermo-mechanical events at the meso-scale. One important physical 

mechanism for meso-scale energy localization is void or pore collapse in the heterogeneous energetic 

material. It has been shown experimentally  and computationally  that shock-induced void collapse in the 

energetic material can lead to intense hot spots that can potentially initiate thermal runaway and SDT. 

Simulations of void collapse have been performed by various researchers  to predict the characteristics of 

hotspots formed due to collapse of voids of different shapes and sizes. Experiments, meso-scale continuum 

simulations, and nano-scale MD simulations all point to the very high temperatures reached upon void 

collapse. However, at least in meso-scale continuum mechanical calculations, there is sparse understanding 

regarding the effect of uncertainties in material properties and models used in the meso-scale model on the 

predicted hotspot characteristics, chiefly the temperature of the hotspot. This work provides the first 

quantification of the effect of parametric uncertainties on the predicted hotspot characteristics for HMX, a 

commonly used HE material.   

Uncertainty in the material models propagates from the meso-scale to the macro-scale because the macro-

scale response of the energetic material is intimately linked to meso-scale physics. In recent work , a multi-

scale model was developed for the simulation of shock response of neat pressed HMX. A hierarchical 
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approach was used, where the energy deposition rate in a macro-scale control volume was supplied in the 

form of an ignition-and-growth surrogate model. The hot spot ignition and growth rates were obtained from 

the meso-scale calculations and cast as surrogate models to represent the functions 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑)and 

𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) respectively, where 𝑃𝑠 is the shock pressure and 𝐷𝑣𝑜𝑖𝑑 is the void size. The surrogate 

model was developed from an ensemble of meso-scale simulations of reactive void collapse. Each 

simulation of reactive void collapse was performed using an Eulerian sharp-interface approach , using an 

elasto-plastic material description for HMX and Tarver’s 3-equation chemical kinetics model for heat 

release to calculate the temperature field resulting from the collapse of the void. The functions 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑)and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) were then used to close the macro-scale equations and predict 

the run-to-detonation and James curves for a pressed HMX of given microstructure (porosity and void 

sizes). However, two questions arise in such a multi-scale approach: 

• How do uncertainties in the model parameters (thermo-physical property values, reaction rates) 

impact on the predicted hot spot characteristics (temperature and size of the hot spot) and the 

calculated meso-scale rates 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ? 

• How do the resulting uncertainties in the surrogate models, i.e. the closure functions 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑), propagate to and impact the predicted macro-scale 

quantities of interest (QoIs), namely the run-to-detonation distances and the James critical energy 

for initiation? 

To date, there has been little work in the literature to provide insights into these issues. Characterizing 

parametric uncertainty and propagation of uncertainty across scales is necessary to build confidence in 

multi-scale models. In addition, if the sensitivity of the predicted QoIs to the uncertainties in parameters 

can be established, efforts can be directed (by experimentalists, material and chemistry modelers and MD 

practitioners) to focus on the most significant parameters first. Thus, uncertainty quantification and 

sensitivity analysis will provide important information to the energetic materials research community. 

1.1. Parametric uncertainty quantification and sensitivity analysis 

Uncertainty quantification (UQ) in materials modeling has been a research topic for some time. A variety 

of approaches for parametric uncertainty quantification (UQ) have been developed for last couple of 

decades e.g. asymptotic parameterization [1], polynomial chaos [4], alternative sampling methods [5], and 

Bayesian approaches [6]. Significant efforts have been made to investigate the uncertainty propagation 

across different scales, e.g. from molecular-scale to microstructures [3] especially in research on material 

science aspects [2]. However, in the context of energetic materials, there has been limited study on 

quantifying the uncertainties in material properties, micro-structures and reaction kinetics on the sensitivity 

of the material.  

For the simulation of heterogeneous energetic materials with an underlying microstructure, where the 

initiation of reactions needs to be captured, the multi-scale approach must contend with significant 

uncertainties in material parameters. For complex materials such as HEs responding to high pressure and 

temperature scenarios, the material models can be challenging to pin down [Sewell and Menikoff].  For the 

available material models, the model parameters are difficult to establish; extreme loading conditions and 

difficulty in handling energetic materials present roadblocks to establishing thermo-physical properties. 
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Therefore, available experimental parameters for properties such as specific heats, melting points, yield 

stresses, bulk moduli etc. can vary over a large range, depending on whether these parameters are obtained 

from physical experiments  or first-principles (typically MD) calculations . Later in this work we tabulate 

the available data for such parameters for the case of HMX--a relatively well-studied material-- displaying 

the rather large uncertainties in the open literature. The considerable uncertainties in properties and models 

can translate into uncertainties in computed hotspot intensities and energy localization at the meso-scale. 

Furthermore, uncertainties in the closure models constructed from meso-scale calculations can then 

propagate to macro-scale QoI calculations. In the specific context of pressed HMX, the uncertainties can 

be classified into four types: 1) variabilities in loads, 2) uncertainty in thermo-mechanical properties, 3) 

uncertainty in reactive kinetics and chemical properties and 4) variabilities due to the stochasticity of the 

microstructure itself. It is noteworthy that all these fall in the class of irreducible or aleatory uncertainties. 

In contrast to epistemic uncertainties, which are reducible and can be reduced by improving material models 

or numerical accuracy, the variabilities in the above categories are not easily mitigated. This report will 

focus solely on the uncertainty in thermo-mechanical properties. Assessing the uncertainties due to 

stochasticity in the meso-structure, for example, is a subject of ongoing work that will be reported on 

separately.  

The present work determines the uncertainties in the macro-scale quantity of interest (QoI) due to 

variabilities in the material properties of HMX. A commonly used QoI, which defines the sensitivity of the 

energetic material to applied loads and appears in the so-called Pop-plot , is the run-to-detonation distance 

(RTD) h of the material. The RTD is experimentally determined for a sample of HE by performing an 

impact experiment, for example a low-speed “gap” test  or high-speed flyer impact test . The distance into 

the sample at which the resulting stress/shock wave transitions to a detonation front is measured and plotted 

against the impact pressure to obtain the Pop-plot . Of particular interest in this work is the high-speed 

impact regime, characterized by flyer-plate experiments, i.e. the scenario of shock-to-detonation transition 

(SDT). The run-to-detonation distances are computed using a recently developed multiscale model, the 

Meso-scale Informed Ignition and Growth (MES-IG) model, for simulating SDTs in high-speed regime. 

The variabilities in the material properties of HMX are propagated from the meso-scale to the 

continuum/macro-scale in the MES-IG model, and the uncertainties in the run-to-detonation distances are 

quantified.  

The rest of the report is organized as follows. Section 2 briefly describes the MES-IG model and explains 

the procedures for quantifying the uncertainties at the meso- and the macro-scales. The propagation of the 

uncertainty from the meso- to the macro-scale and the uncertainties in the Pop-plots are shown in Section 

3. The key conclusions and directions for future work are discussed in Section 4. 

2. METHODS FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE MODELS FOR SDT IN HMX 

 

2.1 The multiscale MES-IG model for SDT in HE materials 

MES-IG is a multi-scale framework for simulating SDT in energetic materials and has the following three 

components:  

Component 1: A homogenized macro-scale model of the porous reactive material: At the macro-scale, the 

meso-structural heterogeneities in the material (voids, grain boundaries, defects etc.) are treated as subgrid-
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scale/unresolved features. The macro-scale representation of the material is a coarse-grained/ homogenized 

mixture of reactants and products. Computations of the run-to-detonation h are performed for such a 

homogenous model, as shown in Figure 1. 

Component 2: A meso-scale computational model for reactive void-collapse simulations: At the meso-

scale, the energy localization at hotspots is fully resolved by accounting for the voids and defects in the 

material. Calculations are performed to follow the reactive void-collapse and the resulting hotspot 

evolution. Ensembles of such computations are used to extract information on the ignition and growth rates 

of hotspots.  

Component 3: A surrogate model to bridge the meso- and the macro- scales : The energy localization due 

to hotspot formation at the subgrid (meso-) scale is transmitted to the macro-scale through surrogate models 

that link the meso-scale hotspot dynamics to the macro-scale response. 

The above three components are summarized next. 

2.1.1. Component 1: The macro-scale model for prediction of SDT 

At the macro-scale, all voids, defects and grain-boundaries in the microstructure of the material are treated 

as sub-grid/unresolved scale features. The macro-scale representation of the material is a homogenized 

mixture of solid HMX and gaseous reactant products, described by the system of equations of the form:  

 𝐃(𝐚|λ) = 0 (1) 

 

In the above equation, the operator D denotes the set of hyperbolic conservation laws and constitutive 

relations for the material, and the vector a denotes the thermo-mechanical flow variables such as the density, 

velocity components and internal energy of the macro-scale mixture. The transition of an imposed shock to 

a detonation wave at the macro-scale is marked by the transformation of the mixture from a cold unreacted 

solid Hugonoit to a reaction product mixture Hugonoit, following the mixture Rayleigh line. The state of 

the mixture on the Rayleigh line is defined by the reaction-progress variable λ, which is the mass fraction 

of the reaction products in a macro-scale control volume. When 𝜆 = 0, the material is an unreacted 

explosive; when 𝜆 = 1, the reaction is complete and the macro-scale material is in the CJ state. To close 

the macro-scale system of equations, an evolution equation for λ is necessary.   In the MES-IG model, the 

evolution equation for λ follows the Ignition and Growth model :     

 𝑑𝜆

𝑑𝑡
= 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝐻(𝜆𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,𝑚𝑎𝑥 − 𝜆) + 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ𝐻(𝜆 − 𝜆𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,𝑚𝑎𝑥) (2) 

  where H is the Heaviside function : 

 𝐻(Δ𝜆) =
0, for Δ𝜆 < 0
1, for Δ𝜆 ≥ 0

 (3) 

 

Thus, Eqn. (2) relies on an initial ignition phase (the first term on the RHS of Eq. (2)), a later growth phase 

(the second term on RHS of Eq. (2)), and  a switching constant, 𝜆𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,𝑚𝑎𝑥 (selected to be 0.02 in this 

report) that marks the transition from the ignition to the growth phase. In the MES-IG model, instead of 

phenomenological closure laws, 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ are machine-learned  from high-fidelity meso-scale 
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computations of reactive void collapse. As shown in Sen et al. , 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ are connected to the 

corresponding meso-scale product formation rates,  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ via the following equation   

 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 = ɸ𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛;  𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ = ɸ𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ (4) 

 

where ɸ is the porosity of the material. The quantities  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ track the mass fraction of 

reaction products accumulated at different stages of void-collapse in the meso-scale computations. The 

meso-scale computational model and the procedure for obtaining  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are described in 

details in Sen et al.  and are summarized briefly in the next section. 

2.1.2. Component 2: The meso-scale model for reactive void-collapse 

At the meso-scale, the energy localization at hot-spots is fully resolved by accounting for the voids and 

defects in the energetic material. Calculations are performed to follow the reactive void collapse and the 

resulting hot-spot evolution. The meso-scale computational model is represented by the following system:  

 𝐟(𝐛|𝛑(𝑁)) = 𝟎 (5) 

where the operator f describes the conservation laws, constitutive equations and the chemical kinetic 

equations of the meso-scale computational model, and b denotes the meso-scale flow variables such as 

density, velocity components, deviatoric stresses, pressure, internal energy etc.  𝛑(𝑁) is an N-dimensional 

vector, consisting of the material properties of solid HMX at the meso-scale, such as the reference density, 

yield strength, specific heat, bulk modulus etc.  Chemical decomposition of HMX is modeled by the Tarver 

3-equation model [16] via four different species, 𝑌1 through 𝑌4, as explained in Sen et al. . The meso-scale 

computations track the mass of the final reaction product 𝑌4 at different stages of void-collapse.  The meso-

scale product formation rates,  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ, are computed from simulations of void collapse, 

hotspot formation and subsequent growth. 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 is obtained from the mass of the species 𝑌4  during the 

initial stages of void-collapse, while 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ is obtained from the mass of 𝑌4 during the later stages, i.e. 

after the void fully collapses and the hot-spot grows, as explained in the works of Sen et al  and Nassar et 

al. .  

2.1.3. Component 3: Surrogate models to bridge scales 

The quantities  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ, obtained from the meso-scale computations, are used to compute the 

macro-scale reaction progress variables 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ using the following procedure:  

1. First, ensembles of meso-scale computations of reactive void-collapse are performed to compute 

 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ for different input pressures, 𝑃𝑠, and different void diameters, 𝐷𝑣𝑜𝑖𝑑.  

2. The computed  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are used as inputs for training surrogate models of the form 

 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑).  

3.  The macro-scale reaction progress variables, 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ, are obtained from the surrogates 

 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) using Eqn. (4). In silico flyer plate impact tests  are 

performed on the macro-scale system. The macro-scale computations probe the surrogates for  

𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ on the fly for calculating the product mass fraction based on the local pressure 

𝑝 = 𝑃𝑠 and the void-diameter 𝐷𝑣𝑜𝑖𝑑 in the macroscale control volume. Once 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ 
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are obtained, Eqns. (1)-(2) are solved for computing run-to-detonation distances, h, which are taken 

to be distances at which the incident shock wave reaches the Von-Neumann pressure  in the material.  

 

In this report, the computed run-to-detonation distances and the uncertainties therein are compared against 

the pop-plots of the experiments reported by Massoni et al [17]. The void sizes are assumed to lie in the 

range identified by Massoni et al.[17] and the surrogates are constructed for  𝐷𝑣𝑜𝑖𝑑 = 0.5 µm; i.e. the 

uncertainties due to void-size distributions are neglected and  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are assumed to be 

functions of pressure alone. Furthermore, the pressed HMX in the experiments [18] has a TMD of 96%. 

Because of such low porosity, only isolated voids are considered at the meso-scale for computing  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. The porosity of the material is fixed at ɸ = 3% and surrogates for  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are 

constructed by assuming single cylindrical voids of diameter 𝐷𝑣𝑜𝑖𝑑 = 0.5 µm at the meso-scale.  Methods 

for constructing more general surrogates such as those for non-cylindrical voids as well as for a field of 

voids are discussed in details in previous works.     

2.2. Methods for quantifying the uncertainties in h  

To quantify the uncertainties in h, first the uncertainties in  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ due to variabilities in 𝛑(𝑁) 

are studied. These are then propagated to the macro-scale to quantify the uncertainties in h due to 

variabilities in 𝛑(𝑁). 

The vector 𝛑(𝑁) comprises several material properties of solid HMX, such as reference density, yield 

strength, specific heat, Gruneisen parameter, melting temperature, among others. Performing an uncertainty 

quantification on such a high dimensional input parameter space is computationally formidable. Therefore, 

in this work, variabilities in 𝛑(𝑁) are assumed to arise due to variabilities in only six material properties. 

The material properties used in the present work are the following. 

1. Specific heat, Cp: Variabilities in Cp affect the meso-scale computational model in two ways. First,  Cp 

is used to compute the isochoric specific heat 𝐶𝑣 (Eq. (A9), which is used in the equation of state (A5) 

of the material. Therefore, variability in Cp affects the volumetric work term in the conservation law 

for the internal energy of the material (Eqn. A3). Second, Cp is used in Eq. ((A10) to compute the 

increase in enthalpy due to the heat released from the chemical reactions at the meso-scale. Because 

this formation enthalpy is used to compute the source term, ℰ̇, in the energy equation (Eqn. A3), 

variabilities in Cp affect the energy deposited in the material due to chemical reactions at hot-spots.   

In the past, experimental techniques as well as molecular dynamic simulations have been performed to 

obtain the values of Cp for HMX [16, 20-23], as summarized in Figure 2(a).  Most of the specific heat 

data in the references are dependent on temperatures while the Molecular Dynamics (MD) data by Long 

et al. [21] is a constant. In the MES-IG model, hot-spots in the material are defined as regions where 

the local temperature is above 900 K; it is noted in the figure that above 900K, the variation of Cp  with 

temperature is modest. Therefore, as a simplified approximation, 𝐶𝑃 is assumed to be independent of 

the temperature.  

2. Bulk Modulus, 𝐾𝑇 : The bulk modulus is used in Eqn. (A9) to compute 𝐶𝑣 from 𝐶𝑝; therefore, an 

uncertainty in 𝐾𝑇 results in variability in 𝐶𝑣. Because 𝐶𝑣 appears in the caloric equation of state (Eq. 

(A8)) in the meso-scale computational model, variabilities in 𝐾𝑇 result in uncertainties in the volumetric 

deformation of solid HMX under shock loading. Furthermore, as described in the appendix, 𝐶𝑣 is used 
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to compute the increase in internal energy of the material due to chemical reactions in HMX. Thus, 

variabilities in 𝐾𝑇 also result in uncertainties in the source term, ℰ̇, in the energy equation at the meso-

scale (Eq. (A3)).  In this work, values of  𝐾𝑇 for HMX are obtained from experimental and MD 

estimates, as reported in the literature [21, 24-31] and are summarized in Figure 2(b). 

 

3. Yeild Strength, 𝜎𝑌 :  Variabilities in the yield strength of HMX affect the plastic deformation and the 

deviatoric work terms in the conservation laws for  momentum and energy at the meso-scale (Eqns. 

A2- A3) respectively. Unlike 𝐾𝑇 and Cp, variability in 𝜎𝑌 only affects the inert collapse profiles of the 

voids at the meso-scale and does not play a role in the meso-scale chemical reaction dynamics. In the 

present work, values for 𝜎𝑌 are obtained from fits to experimental data [20],  VISAR measurements 

[35], drop-weight experiments [36], MD simulations [37], and from those used in the computational 

work by Gilbert et al [38]. A summary of the yield strength values is shown in Figure 2c. 

 

4. Coefficient of thermal expansion, α: Similar to 𝐾𝑇, the thermal expansion coefficient α is used in Eqn. 

(A9) to compute 𝐶𝑣 from 𝐶𝑝.  Therefore, variabilities in α result in uncertainties in the volumetric 

deformation of HMX, as well as in the source term, ℰ̇, in the energy equation (Eq. (A3)). The values of 

α  used in the current work are summarized in Figure 2d and are obtained from measurements of α 

using X-ray diffraction techniques [43, 44] and MD simulations [21].  

 

5. Gruneisen Paratemeter, 𝛤: The Grüneisen parameter appears in the meso-scale equation of state (A5) 

of HMX and is typically obtained by empirical fits to the isotherm of the material [32]. In this work,  

the 𝛤 is assumed to vary between 0.7 [33] and 1.1 [20]. 

 

6. Thermal Conductivity, k:  Similar to Cp, the thermal conductivity k is used to compute the increase in 

enthalpy in the material due to the heat released from chemical reactions at the meso-scale (Eqn. A11). 

Therefore, uncertainties in k affect the source term ℰ̇, in the energy equation (Eqn. A3). In this work,  

values of k are obtained from experimental data [16, 23, 39, 40] as well as from MD simulations [41, 

42], as summarized in Figure 2e.  

In summary, six material properties defining the set 𝛑(6) = [𝐶𝑝, 𝐾𝑇 , 𝜎𝑌, α, 𝛤, 𝑘, ] are selected to quantify the 

uncertainties in the QoI (h) obtained from the MES-IG model. Table 1 summarizes the maximum and 

minimum values of 𝛑(6) used for uncertainty quantification in this work. Before performing a global 

uncertainty quantification in the six-dimensional parameter space, a preliminary sensitivity analysis of 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ with respect to the variabilities in the individual components of 𝛑(6) is conducted. 

The sensitivity analysis is performed using a variable pre-screening algorithm, as discussed next. 

2.2.1. Procedure for preliminary variable screening 

The objective of the variable screening is to rank the six variables in 𝛑(6) according to the sensitivity of 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ to those variables. The screening is performed using the Morris variable screening 

procedure .   The screening process calculates the sensitivity of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ to variations in 

𝐶𝑝, 𝐾𝑇 , 𝜎𝑌, α, 𝛤, and 𝑘  at random locations in the parameter space. The key concept underlying this 

procedure is the elementary effect, which is a measure of the change in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ when a 

single variable is perturbed.  For a function 𝑦 = 𝑓(𝑥𝑖) with  k independent variables 𝑥𝑖, 𝑖 = 1,2, … 𝑘, , an 

elementary effect 𝑑𝑖 on y due to a perturbation in the basis 𝑥𝑖 is defined by 
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𝑑𝑖(𝒙) =  

𝑦(𝑥1, 𝑥2, ⋯ , 𝑥𝑖−1, 𝑥𝑖 + ∆, 𝑥𝑖+1, ⋯ , 𝑥𝑘) − 𝑦(𝒙)

∆
   (6) 

 

where 𝑥1, 𝑥2, ⋯ , 𝑥𝑘 is a baseline set of independent variables, and Δ is the change in the variable 𝑥𝑖. 

Following the guideline in previous work [19],  ∆ is set to 
1

4
(𝑥

𝑖,𝑚𝑎𝑥
− 𝑥𝑖,𝑚𝑖𝑛) in this report, where 𝑥𝑖,𝑚𝑎𝑥 

and  𝑥𝑖,𝑚𝑖𝑛 are the upper and the lower limits of the variable 𝑥𝑖 in the parameter space. The limits 

for the variables in 𝛑(6) are summarized in Table 1. 

The elementary effect for k independent variables is calculated by performing k + 1 computations. To do 

this, a (k + 1) ×  k matrix B is created, where each row of B provides a set of input variables for a single 

simulation. The first row is a randomly generated set of input variables 𝑥𝑖; each subsequent row varies one 

input at a time by ∆. Running all the k + 1 simulations produces a randomized elementary effect for each 

of the n input variables. If r elementary effects are desired for each input variable, the entire set of 

prescreening test cases X is defined by producing multiple versions of B : 

 

 𝐗 = ⌊𝐁1 𝐁2 ⋯ 𝐁𝑟⌋𝑇    (7) 

where the individual matrices 𝐁𝑖 are initialized at different locations in the parameter space. In the present 

work, 𝛑(6) comprises 6 independent variables (i.e.  k=6), and the screening process is initiated at 4 random 

locations in the 𝛑(6) parameter space (i.e. r =4), thereby leading to (6 + 1) × 4 = 28 simulations. The mean 

and standard deviations of the elementary effects at the 4 random locations are computed. A large absolute 

value of the mean or a high standard deviation of the elementary effects of a variable 𝑥𝑖 implies that y is 

sensitive to variabilities in 𝑥𝑖. Thus, y is more sensitive to 𝑥𝑖 than 𝑥𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘; 𝑖 ≠ 𝑗, if the mean of 

the elementary effect of 𝑥𝑖 is greater than that of 𝑥𝑗. If the means of the elementary effects of  𝑥𝑖 and 𝑥𝑗  are 

comparable, then y is more sensitive to 𝑥𝑖 than 𝑥𝑗 if the standard deviation of the elementary effects of 𝑥𝑖 

is greater than that of 𝑥𝑗.  

It is noted that unlike sensitivity measurement methods such as Variance Partitioning using Sobol indices  

or feature selection methods such as LASSO regularization , the Morris method does not sweep the input 

space 𝒙 globally for variable screening. Instead, the method determines the sensitivity of 𝑦 only at discreet 

windows defined by the matrices 𝐁𝑖, 𝑖 = 1,2, … , 𝑟,  in the parameter space. However, the method is 

computationally inexpensive compared to the aforementioned global sensitivity measurement techniques 

or feature selection methods, and has been reported to reliably rank the variables 𝑥𝑖 in order of their 

sensitivity of y for a wide variety of applications . Therefore, in this work, the Morris method is chosen to 

perform a preliminary variable screening to rank the parameters of 𝛑(6), according to their sensitivity on 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ.  

Figure 3 shows the elementary effects of the six independent variables, 𝛑(6) = [𝐶𝑝, 𝐾𝑇 , 𝜎𝑌, α, 𝛤, 𝑘] on 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ at Ps = 22 GPa. As shown in the figure, the mean and the standard deviations of the 

elementary effects of 𝐶𝑝 are the highest for both  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ, i.e. 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are 

most sensitive to variabilities in  𝐶𝑝. Furthermore, in Figure 3b, it is observed that for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  the means 
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of the elementary effects of  𝐾𝑇 and α are higher compared to those for Γ, 𝜎𝑌 and k. On the other hand, for 

𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ, the means of the elementary effects of  𝜎𝑌 and α are higher than those of γ, 𝐾𝑇 and k. Because the 

elementary effects of the Gruneisen coefficient Γ and the thermal conductivity k are relatively small (Figure 

3),  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are least sensitive to Γ and k compared to the other components of 𝛑(6). The 

relative insensitivity with respect to the Gruniesen parameter has been remarked on by Menikoff ; the 

insensitivity to thermal conductivity k is perhaps due to the fact that in the void collapse-generated hotspot 

phenomena, the diffusion time-scale is larger than the inertial and reaction time scales, i.e. inertia and 

chemical reaction heat release are the dominant physical processes. Therefore, in the remaining parts of the 

report, the inferences from the Morris screening algorithm will be used to discard the variables, Γ and k, for 

the UQ and the uncertainties of  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ will be quantified only for the four-dimensional 

parameter space given by 𝛑(4) = [Cp, 𝐾𝑇 , 𝜎𝑌, α]. 

2.2.2.  Surrogate-based Monte-Carlo method for quantification of uncertainty in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ 

To quantify the uncertainties in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ, the material parameters, 𝛑(4) = [Cp, 𝐾𝑇 , 𝜎𝑌, α]  are 

treated as random variables, 𝛑̃(4) =  [𝐶̃𝑃 𝐾̃𝑇 𝜎̃𝑌 𝛼̃] where the tilde is used to distinguish random 

variables from their deterministic counterparts. It is assumed that 𝛑̃(4) follows a normal distribution with 

mean 𝝁𝝅 and variance 𝝈𝝅
2 , i.e.  

 𝛑̃(4) ~ 𝑁(𝝁𝝅, 𝝈𝝅
2 ) (8) 

where 𝝁𝝅 = [𝜇𝐶𝑝
𝜇𝐾𝑇 𝜇𝜎𝑌

𝜇𝛼] and 𝝈𝝅 = [𝜎𝐶𝑃
𝜎𝐾𝑇

𝜎𝜎𝑌
𝜎𝛼] are respectively the vectors of the 

mean values and the standard deviations of  𝛑(4). Because the parameters Cp, 𝐾𝑇 , 𝜎𝑌, and 𝛼, are independent 

thermomechanical properties of the HE material, these are treated as uncorrelated random variables, with 

zero covariances. The means [𝜇𝐶𝑝
𝜇𝐾𝑇 𝜇𝑌 𝜇𝛼], and the standard deviations [𝜎𝐶𝑃

𝜎𝐾𝑇 𝜎𝑌 𝜎𝛼] are 

estimated as the averages and the standard deviations of the values of the material parameters obtained from 

literature (Figures 3-7). For example, 𝜇𝐶𝑃
  and 𝜎𝐶𝑃

 are the average and the standard deviation of the 𝐶𝑝 

values shown in Figure 3. Once 𝝁𝝅 and 𝝈𝝅
2  are determined, probability density functions (pdfs) for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  

and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are constructed using a surrogate-based Monte-Carlo method. The procedure for constructing 

the pdfs is as follows: 

1. First, the pdfs, 𝛑̃(4), are sampled at k = 106 random points to generate the Monte Carlo (MC) points 

for uncertainty quantification. The MC points are chosen to lie in the range, 𝝁𝝅 − 3𝝈𝝅 < 𝛑̃(4) <

𝝁𝝅 + 3𝝈𝝅, and are sampled using the code RAMDO .   

2. Next, ensembles of meso-scale void-collapse simulations are performed for m1 different values of 

𝛑̃(4) lying in the range 𝝁𝝅 − 3𝝈𝝅 < 𝛑̃(4) < 𝝁𝝅 + 3𝝈𝝅. These locations for the initial computations 

are chosen randomly by a Latin hypercube sampling technique. The simulations are performed at 

𝑃𝑠 = 𝑃̂ = 22 𝐺𝑃𝑎  to compute the values of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ at these 𝑚1 locations in the 

parameter space.  

3. The 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ computed from Step 1 are used as inputs to a Dynamic Kriging 

algorithm (DKG)  to construct initial surrogates for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ as functions of 𝛑̃(4). 

The DKG method also identifies m2 new locations in the parameter space 𝝁𝝅 − 3𝝈𝝅 < 𝛑̃(4) <

𝝁𝝅 + 3𝝈𝝅 for performing further meso-scale simulations. These new locations are based on an in-

built adaptive sampling technique of the DKG algorithm, described in detail in Zhao et al. . 
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4. Additional meso-scale computations are performed at the m2 locations identified by the DKG 

method in step 2. The process for step 2 is repeated to construct improved surrogates for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  

and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ using the 𝑚1 + 𝑚2 simulation results. Similar to step 2, the DKG method further 

identifies m3 new locations in the parameter space for additional meso-scale computation. 

5.  The procedure is repeated to compute 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ at 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛 points in the 

parameter space until the mean square error of the predicted variance of the DKG method falls 

below 1% , where the surrogates of  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 are assumed to have converged. In the 

present work, the surrogates converged for 𝑚1 + 𝑚2 + ⋯ + 𝑚5 = 125 meso-scale (reactive void 

collapse) computations. 

6. The converged surrogates obtained in the previous step are then probed at the k = 106 MC points 

obtained in Step 1 to construct the pdfs of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. The pdfs, hereafter denoted by 

𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂), are joint probability distributions due to simultaneous variabilities 

in all the four material parameters of 𝛑̃(4) at 𝑃𝑠 = 𝑃̂ = 22 𝐺𝑃𝑎. In addition to the joint distributions, 

conditional pdfs for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are also computed to study the effect of variabilities of 

the individual components of  𝛑̃(4). For example, the conditional pdf 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) is 

computed by probing the surrogate for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  of step 4 at k = 106  points lying in the range 

[𝜇𝐶𝑝
− 3𝜎𝐶𝑃

𝜇𝐾𝑇
𝜇𝜎𝑌

𝜇𝛼] < 𝛑̃(4) < [𝜇𝐶𝑝
+ 3𝜎𝐶𝑃

𝜇𝐾𝑇
𝜇𝜎𝑌

𝜇𝛼]. This conditional pdf 

shows the variabilities in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 due to variations in 𝐶𝑝 alone, while 𝐾𝑇 , α and 𝜎𝑌 are held 

constant.  Similar conditional pdfs are also constructed for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝛼̃|𝜇𝐶𝑃
, 𝜇𝜎𝑌

, 𝜇𝐾𝑇
), 

𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝜎̃𝑌|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝐾𝑇

), 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝐾̃𝑇|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝜎𝑌

) as well as for 

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

), 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝛼̃|𝜇𝐶𝑃
, 𝜇𝜎𝑌

, 𝜇𝐾𝑇
),𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝜎̃𝑌|𝜇𝐶𝑃

, 𝜇𝛼 , 𝜇𝐾𝑇
) and 

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝐾̃𝑇|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝜎𝑌

).  

 

The above procedure is used to quantify the uncertainties in the meso-scale quantities of interest, viz  

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ due to variabilities in 𝛑(4). These uncertainties are propagated to the macro-scale 

reaction progress variables, 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ, using the following procedure. 

2.2.3. Procedure for estimating the uncertainties in 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ 

The pdfs, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂), are constructed only for 𝑃𝑠 = 𝑃̂; but macro-scale computations 

require pdfs for  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ at different values of 𝑃𝑠 to compute uncertainties in run-to-detonation 

distances.  However, obtaining pdfs for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ over a wide range of 𝑃𝑠 is computationally 

expensive, since it requires mesoscale simulations not only at different values of  𝛑(4) (Section 2.2.3), but 

also at different values of 𝑃𝑠. To reduce the computational burden, this work assumes that the uncertainties 

in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are independent of 𝑃𝑠. In other words, while the mean value of the surrogates for 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ depend on 𝑃𝑠, the variability in the surrogates due to uncertainties in material 

parameters are assumed to remain the same at all values of  𝑃𝑠. Under this assumption, the pdfs 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) 

and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂), can be used to propagate the uncertainties in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ at  different 𝑃𝑠 values, 

i.e. for  𝑃𝑠 ≠ 22 𝐺𝑃𝑎, using the steps described below.   

1. First, deterministic surrogates for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are constructed as functions of 𝑃𝑠 for fixed  

𝛑(4)i.e. by fixing 𝛑(4) = 𝝁𝝅. The surrogates are constructed by performing ensembles of meso-
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scale reactive void-collapse computations at different values of 𝑃𝑠 ranging from 5 through 60 GPa, 

at 5 GPa intervals. The computations are performed for 𝐷𝑣𝑜𝑖𝑑 = 0.5𝜇𝑚 to obtain   the deterministic 

surrogates, denoted by   𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅).  

2. The deterministic surrogates are evaluated at 𝑃̂ and are combined with the pdfs  𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) (Section 2.2.3) to define two non-dimensional random variables, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ : 

 
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ =
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂)

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠 = 𝑃̂; 𝝁𝝅)
  (9a) 

and 

 
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ =
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂)

𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂; 𝝁𝝅)
  (9b) 

The numerators in the above equations are random variables, while the denominators are 

deterministic scalars, obtained by probing the surrogates 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ of Step 1 at  𝑃𝑠 =

𝑃̂. Thus, in Eqn.(9), the random variables, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ , have an order of magnitude of 1 

and measure the spread of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂), arising due to perturbations in 𝛑(4).      

3. In the next step, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗  are superposed on the deterministic surrogates 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅) to obtain the stochastic surrogates 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) using the following equations. 

 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) = 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) ∗ 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  (10a) 

and  

  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) = 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅) ∗ 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  (10b) 

In Eqn. (10), the first terms on the RHS are deterministic surrogates, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) and 

𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅) depending only on 𝑃𝑠, while  the second terms, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  are random 

variables, with the randomness resulting from uncertainties in 𝛑(4).  Thus, Eqn. (10) decomposes 

the random surrogate models 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) into two independent components – a 

deterministic pressure dependent term, accounting for the variation of the meso-scale product 

formation rates due to pressure, and a stochastic modifier, with an order of magnitude of 1, 

accounting for the perturbation of the surrogate due to variations in material properties at the 

mesoscale.  

4. The 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) computed using Eqn. (10) are combined with Eqn. (4) to obtain 

the random macro-scale reaction progress variables,  𝜆̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝜆̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠), using the 

following equation. 

 𝜆̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) = ɸ𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠); 𝜆̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) = ɸ𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) (11) 

The macro-scale reaction progress variables 𝜆̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝜆̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) are used by the macro-scale 

computational model described in Section 2.1.1 to compute the uncertainties in run-to-detonation distances, 

h, as discussed next. 
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2.2.4. Surrogate-based Monte-Carlo method for quantification of uncertainty in h 

The stochastic surrogates, 𝜆̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝜆̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) in Eqn. (11) are used to compute the uncertainties 

in h at the macro-scale. Similar to Section 2.2.2, a Kriging based Monte Carlo method is used to construct 

pdfs for h using the following procedure:  

1. To construct the pdf at a given 𝑃𝑠, first macro-scale computations are performed at different values 

of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ , lying in the range  [𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ − 3𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ − 3𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ] < 

[𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ] < [𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ + 3𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ + 3𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ].  

2. The simulations are used to construct a surrogate of h as functions of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ . Similar 

to Section 2.2.2, the surrogates are constructed using the DKG method ; the locations for the 

macroscale computations are chosen using the sequential algorithm of the DKG method .  64 such 

macro-scale simulations are performed to obtain a converged surrogate of h as functions of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  

and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ .  

3. Similar surrogates for h are constructed at different pressures, viz. for 𝑃𝑠 = 10, 12, 15 and 20 𝐺𝑃𝑎. 

Each of these surrogates are then probed for values of h at k = 106 points in the range 

[𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ − 3𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ − 3𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ]<[𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ] <

[𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ + 3𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ + 3𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ]. The probe points are the same as those used for 

constructing the pdfs, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗  in Section 2.2.2; the values of these probe points are 

used to construct the pdfs ℎ̃ at  𝑃𝑠 = 10, 12, 15 and 20 𝐺𝑃𝑎. In addition to the joint pdf, conditional 

pdfs for the run-to-detonation distances are also constructed to delineate the effects of the individual 

uncertainties in   𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ on h. For example, the conditional pdf ℎ̃(𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛|𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ) 

is computed by probing the surrogate for h at k = 106 random points in the interval 

[𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ − 3𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ]<[𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ] < [𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ + 3𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ]. 

The conditional pdf, ℎ̃(𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ|𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ ) is also constructed similarly.  

4. The joint pdfs of  ℎ̃ at each of the aforementioned pressures are used to compute the equal tail-set 

90% confidence interval (CI) of ℎ̃ at 𝑃𝑠 = 10, 12, 15 and 20 𝐺𝑃𝑎. These are then compared against 

the experimental pop-plot of Vanpoperynghe et al. [18], as reported by Massoni et al. .    

 

Through the above procedures, the pdfs of ℎ̃ reflect the uncertainties in the run-to-detonation distances due 

to variabilities in the material properties 𝛑(4) of pressed HMX. Figure 1 shows a summary of the overall 

procedure for propagating uncertainties from the meso- to the macro-scale. As noted in the figure, the 

uncertainties in 𝛑(4) are first used to construct the pdfs of the meso-scale quantities of interest,  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

and  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ  using the methods described in Section 2.2. These are then used to construct stochastic 

surrogate models for  𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠), as described in Section 2.3. Finally, the stochastic 

surrogates are used to compute confidence intervals for h (Section 2.4) to determine the uncertainties in the 

pop-plot for pressed HMX.   

3. RESULTS AND DISCUSSION 

The methods described in the previous section are used to quantify the uncertainties in h due to variations 

in 𝛑(4). The meso-scale computational set-up is shown next and grid convergence results are discussed. 
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Following this, the pdfs for the meso-scale QoIs, viz.  𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) are discussed. Finally, 

the uncertainties in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂)  are propagated to the macro-scale, and the pdfs for ℎ̃ are 

shown.  

3.1. Meso-scale computations and grid convergence studies 

The meso-scale computational set-up for reactive void-collapse is shown in Figure 6a. In the simulations, 

a void of diameter 𝐷𝑣𝑜𝑖𝑑 is embedded in a matrix of solid HMX, with dimensions 5𝐷𝑣𝑜𝑖𝑑 × 5𝐷𝑣𝑜𝑖𝑑. The 

material is loaded with a rectangular pressure pulse of magnitude 𝑃𝑠 and duration τ. Computations are 

performed to track the evolution of the hot-spots due to void-collapse. The meso-scale product formation 

rates, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ, are computed from the simulations using the procedure described in Nassar 

et al .  

Figure 6b and c show the rate of convergence of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ for 𝑃𝑠 = 22 𝐺𝑃𝑎 and 𝐷𝑣𝑜𝑖𝑑 =

0.5𝜇𝑚 with respect to the grid size, 𝛥𝑥, of the meso-scale computations. As shown in the figure, the 

variation of  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ  is modest for 𝐷𝑣𝑜𝑖𝑑/𝛥𝑥 >  600, i.e. 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ  converge 

to approximately 108𝑠−1 and 109𝑠−1 for  𝐷𝑣𝑜𝑖𝑑/𝛥𝑥 >  600. Therefore, in the remaining sections of the 

report, meso-scale computations are performed for 𝛥𝑥 = 𝐷𝑣𝑜𝑖𝑑/600 to quantify the uncertainties in 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ due to variations in 𝛑(4). 

3.2. Quantification of uncertainties in 𝑭̇𝒊𝒈𝒏𝒊𝒕𝒊𝒐𝒏 and 𝑭̇𝒈𝒓𝒐𝒘𝒕𝒉  

3.2.1. Surrogate models for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ as functions of 𝐶𝑃, 𝜎𝑌, 𝛼 and BM 

As discussed in Section 2.2.2, the uncertainties in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are quantified by constructing pdfs 

for these functions using a surrogate-based Monte-Carlo method. The surrogates for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ  

in the 𝛑(4) parameter space are shown in Figure 4. Because 𝛑(4) is a four-dimensional vector, the surrogates 

in Figure 4 are shown as three-dimensional “slices” in the 𝛑(4) parameter space. Thus, Figure 4a, and b are 

the surrogates obtained by fixing 𝐶𝑃 at 1300 J/KgK (Figure 4a,b). Similarly, surrogates for 𝐶𝑃 =  1800 

J/KgK and 2300 J/KgK are shown in Figure 4c-d and Figure 4e-f respectively.  

Figure 4 shows that when 𝐶𝑃 is held constant, the variations in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ in the 𝜎𝑌 − 𝛼 − 𝐾𝑇 

parameter space are modest. As seen in Figure 4a, for 𝐶𝑃= 1300 J/KgK, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 varies from 2.1 × 108𝑠−1 

to 3.0 × 108𝑠−1, i.e. 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  varies by 30% in the 𝜎𝑌 − 𝛼 − 𝐾𝑇 space. Similarly, in Figure 4c, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

varies by 26% for 𝐶𝑃= 1800 J/KgK. For higher 𝐶𝑃, such as for 𝐶𝑃= 2300 J/KgK in Figure 4e, the percentage 

is slightly higher, i.e. 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 varies by 63% in the 𝜎𝑌 − 𝛼 − 𝐾𝑇 parameter space. Nevertheless, in the 

surrogates with constant 𝐶𝑃, the orders of magnitude of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 remain the same in Figure 4a,c, and e. The 

same conclusion applies to 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ;  i.e. if 𝐶𝑃 is held constant and all the other three parameters,  𝜎𝑌, 𝛼 and 

𝐾𝑇, are varied, the orders of magnitude of 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ remain the same. Therefore, for a constant 𝐶𝑃,  the orders 

of magnitude of both 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are not affected by variations in 𝜎𝑌, 𝛼 and 𝐾𝑇. 

On the other hand, when 𝐶𝑃 is varied, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ change by an order of magnitude. A comparison 

of Figure 4a, c and e shows that 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 changes from an order of 108 to 106𝑠−1 when 𝐶𝑃 is increased 
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from 1300 J/KgK to 2300 J/KgK. Similarly, Figure 4b, d and f show that 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ changes from an order of 

109 to 107𝑠−1 when 𝐶𝑃 is increased from 1300 J/KgK to 2300 J/KgK. Therefore, contrary to 𝜎𝑌, 𝛼 or 𝐾𝑇,   

variations in 𝐶𝑃 lead to orders of magnitude variability in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ.  

The relative importance of 𝐶𝑃, 𝜎𝑌, 𝛼 and 𝐾𝑇 on  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ is further elucidated in the line plots 

shown in Figure 5. In the figure, three out of the four variables in 𝛑4 are kept constant at a time and are set 

to their mean values. For example, for the black line in Figure 5, 𝐶𝑃 is allowed to vary, while α, 𝜎𝑌 and 𝐾𝑇 

are fixed at 𝜇𝛼, 𝜇𝜎𝑌
 and 𝜇𝐾𝑇

. The process is repeated by varying the other three variables in 𝛑4 one at a 

time, while fixing the remaining parameters to their mean values. The variations of  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ 

due to individual variations in 𝐶𝑃, 𝜎𝑌, 𝛼 and 𝐾𝑇 are plotted in Figure 5a and b respectively. Figure 5 shows 

that there is an order of magnitude variation in both  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ when 𝐶𝑃 is varied, whereas the 

variations in  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ due to variations in  𝐾𝑇 , 𝜎𝑌 or α is modest.  

3.2.2. Probability density functions for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ  

The surrogates in Figure 4 are sampled at the k = 106 MC points to construct the pdfs,  𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂), which are shown in Figure 7. The figure shows that both 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) follow 

log-normal distributions, i.e.  

 ln (𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂)  )~ 𝑁 (𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

, 𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

2 ) (12a) 

and  

 ln (𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂))~ 𝑁 (𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

, 𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

2 ) (11b) 

 

with mean 𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

= 17.8,  𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

= 19.97 and the standard deviations 𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

= 0.34 and 

𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

= 0.3 , i.e. the most probable values of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) are 𝑒17.8 ≈ 5 × 107𝑠−1 and 

𝑒19.97 ≈ 4.7 × 108𝑠−1 .  

It is noted that in Section 2.2.2,  𝛑̃(4)  was assumed to follow a Normal distribution (Eqn. (8)), i.e. 𝛑̃(4) was 

described by a linear pdf. In contrast, in Figure 7, the pdfs for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂)  are shown to 

be logarithmic (Eqn. (10)). Thus, an input uncertainty is exponentially amplified in the meso-scale 

simulations, resulting in log-normal probability distributions of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) .  

In addition to the joint pdfs, conditional pdfs for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂)  are also constructed using 

the procedures described in Section 2.2.2; the conditional pdfs are shown in Figure 8.  

Figure 8a and b show that the conditional pdfs, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(C̃P|𝜇𝛼, 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼, 𝜇𝜎𝑌
, 𝜇𝐾𝑇

), 

follow log-normal distributions. The means and standard deviations of the log-normal distributions are 

17.82 and 0.34 for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(C̃P|𝜇𝛼, 𝜇𝜎𝑌
, 𝜇𝐾𝑇

), while these are 19.96 and 0.3  for 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼, 𝜇𝜎𝑌
, 𝜇𝐾𝑇

). 

Figure 8a and b illustrate two interesting aspects. First, an uncertainty in C̃P amplifies exponentially in the 
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meso-scale model ⸺ C̃P follows a linear pdf (normal distribution), whereas 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) and 

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) follow log-normal distributions, as shown in Figure 8a and b. Second, a 

comparison of Figure 8a and b with Figure 7 shows that the means and the standard deviations of the 

conditionals 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) are nearly equal to the means and 

the standard deviations of the joint pdfs for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂). For example, the means and 

standard deviations are 19.96 and 0.3 for the conditional pdf 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

), while these are 

19.97 and 0.3 for 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ. Thus, the joint pdfs 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂)  almost overlap with the 

conditional pdfs 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(C̃P|𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

) and the uncertainties in the joint 

pdfs result primarily from variations in 𝐶𝑃. 

In contrast to 𝐶𝑃, Figure 8c and d show that 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ are only modestly affected by variabilities 

in α. 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝛼̃|𝜇𝐶𝑃
, 𝜇𝜎𝑌

, 𝜇𝐾𝑇
) follows a multi-modal distribution, and the spread of the pdf is an order of 

magnitude lower than the mean value of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛. Similarly, the means and standard deviations of the 

conditional pdf, 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝛼̃|𝜇𝐶𝑃
, 𝜇𝜎𝑌

, 𝜇𝐾𝑇
) are respectively 4.8× 108/𝑠 and 2.8× 106/𝑠, i.e. the spread in 

the pdf is two orders of magnitude lower than the mean. Similar conclusions also apply to the remaining 

pdfs,  𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝜎̃𝑌|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝐾𝑇

), 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝐾̃𝑇|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝜎𝑌

), 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝜎̃𝑌|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝐾𝑇

) and 

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝐾̃𝑇|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝜎𝑌

),  as observed in Figure 8e-h; in each of these cases, the spreads of the pdfs are at 

least an order of magnitude lesser than the modal values. Therefore, Figure 8 shows that 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ are relatively insensitive to variabilities in 𝜎𝑌, 𝛼 and 𝐾𝑇,  and the uncertainties in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and  

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ result primarily from the uncertainties in 𝐶𝑃. The underlying physics behind these observations is 

discussed in the following section. 

3.2.3. Meso-scale computations for studying the sensitivity of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ with respect to 

variations in 𝛑(4) 

To understand the relative sensitivity of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ to individual variations in 𝐶𝑃, 𝜎𝑌, 𝛼 and 𝐾𝑇, 

meso-scale simulations of reactive void-collapse are performed, using the set-up described in Section 3.1. 

A total of 5 simulations are performed. The first simulation, hereafter referred to as Case A, is performed 

by setting 𝛑(4) = 𝝁
𝝅

. In the second case (Case B), 𝜎𝑌, 𝛼 and 𝐾𝑇 are maintained at 𝜇𝛼 , 𝜇𝜎𝑌
, 𝜇𝐾𝑇

, while 𝐶𝑃 

is set to 𝐶𝑃,𝑚𝑎𝑥 = 2300 𝐽/𝐾𝑔𝐾, which is the maximum value of  𝐶𝑃 in Table 1. Similarly, in Cases C, D 

and E only  𝜎𝑌, 𝛼 or 𝐾𝑇 are perturbed from their value in 𝝁𝝅 and are set to 𝜎𝑌,𝑚𝑎𝑥 = 370𝑀𝑃𝑎 (Case C), 

𝛼𝑚𝑎𝑥 = 27 × 10−5/𝐾 (Case D) and 𝐾𝑇,𝑚𝑎𝑥 = 16.4𝐺𝑃𝑎 (Case E), while the remaining variables in 𝛑(4) 

are maintained at their respective mean values. 

Figure 9 shows the temperature contours at 4 stages of void-collapse. As explained in Sen et al.  and Nassar 

et al. ,  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 is the slope of the 𝐹 vs t plot between stages 1 and 2, while  𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ is the slope of the plot 

between stages 3 and 4. The plots of the evolution of  F, the hot-spot temperature (𝑇ℎ𝑠) and area (𝐴ℎ𝑠) of 

the hot-spot with time are shown in Figure 10. These figures are used to study the physics behind the relative 

sensitivity of 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ with respect to 𝐶𝑃, 𝜎𝑌, 𝛼 and 𝐾𝑇. 
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Effect of 𝐶𝑃:  Figure 9a and b show that when 𝐶𝑃 is increased from 𝜇𝐶𝑃
 to 𝐶𝑃,𝑚𝑎𝑥, the hot-spot area is 

larger but the hot-spot temperature is lower. Thus, increasing 𝐶𝑃 results in a larger, but less concentrated 

hot-spot. Because the hot-spot area is larger, chemical reactions start at a larger fraction of the 

computational domain for Case B (Figure 9b), compared to Case A (Figure 9a). The reaction adds energy 

to the system via the source term, ℰ̇, in Eqn. (A3). The larger reaction zone in Case B leads to higher 

product-mass fraction compared to Case A. Additionally, the source term, ℰ̇, is also proportional to 𝐶𝑃; 

therefore a higher 𝐶𝑃 further aids the process of forming higher product-mass fractions in Case B. 

Therefore, both 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ increase when 𝐶𝑃 is increased, as observed in Figure 10a and b.  

Effect of 𝜎𝑌: A comparison of Figure 9a and c show that the effect of 𝜎𝑌 is negligible on the evolution of 

the hot-spot. This is because, for 𝑃𝑠 = 22𝐺𝑃𝑎 , the melt temperature of HMX ( ~ 552K) is exceeded even 

before the collapse of the void is complete, as seen from FigureFigure 9. Once the melt-temperature is 

exceeded, the deviatoric stresses in the computational terms are set to zero. Thus, the effect of 𝜎𝑌 on 𝑇ℎ𝑠, 

𝐴ℎ𝑠 and F is negligible, as also seen in Figure 10a and c.   

Effect of 𝛼 and 𝐾𝑇 : Both 𝛼 and 𝐾𝑇 are used to compute 𝐶𝑣 from 𝐶𝑃. Similar to 𝜎𝑌, the effect of 𝛼 as well 

as 𝐾𝑇 on 𝑇ℎ𝑠, 𝐴ℎ𝑠 and F is modest; the contour and the line plots are identical to Figure 9a and are not 

repeated in the report. The insensitivity of 𝑇ℎ𝑠, 𝐴ℎ𝑠 and F  towards 𝛼 and 𝐾𝑇 is because of the fact that in 

(A9), the second term of the right-hand side is capped off at a maximum value of 200J/KgK. In other words, 

even when 𝛼 or 𝐾𝑇 are varied by 30% (such as in Cases D and E), their effects are not considered beyond 

a maximum of 200J/KgK. Therefore, large variations in 𝛼 or 𝐾𝑇 do not affect the meso-scale computations 

and F is rendered insensitive to variations in 𝛼 or 𝐾𝑇. 

To summarize, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ are only modestly sensitive to 𝜎𝑌, 𝛼 and 𝐾𝑇, whereas the uncertainties 

in 𝐶𝑃 amplify exponentially in the meso-scale computations, resulting in logarithmic pdfs of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ. These pdfs are used to propagate the uncertainties in 𝛑(4) to the macro-scale, as discussed next. 

 

3.3. Uncertainty in the run-to-detonation distance, h  

3.3.1. Uncertainty in the surrogate models for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ 

The pdfs for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) shown in the previous section are used to construct the stochastic 

surrogate models, 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠), using the methods discussed in 2.2.3. For this, pdfs of the 

non-dimensional random variables 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗   are constructed using Eqn. (9). The pdfs are 

shown in Figure 11a and b respectively and are found to follow log-normal distributions:  

 ln (𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ )~ 𝑁 (𝜇

𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ , 𝜎

𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗

2 ) (13a) 

and  

 ln (𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ )~ 𝑁 (𝜇

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ , 𝜎

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗

2 ) (12b) 

 

with  𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ = 0.2 , 𝜎
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ = 0.33, 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ = 0.15, and  𝜎
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ = 0.3. The pdfs are the same as 

those for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂), except that the  order of magnitudes of  𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗   are 

DISTRIBUTION A: Distribution approved for public release.



both  1. It is interesting to note in Figure 11a and b that neither 𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  nor 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗   = 0, i.e. the means of 

𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗   are not 1. This implies that the mean-values of the pdfs 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) 

do not coincide with the values of the deterministic surrogates 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃 = 𝑃̂; 𝝁𝝅) and 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃 =

𝑃̂; 𝝁𝝅), which are evaluated at the mean values of 𝝅̃(4).  Furthermore,  𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  and 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗   are both 

positive. Thus, the mean values of the pdfs  𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃̂) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃̂) are underestimated by the 

deterministic surrogates 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅) evaluated at 𝑃𝑠 = 𝑃̂. 

Comparisons of the deterministic surrogates, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅), with the stochastic 

surrogates 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) are shown in Figure 11c and d. The figures further illustrates the 

fact that the deterministic surrogates underestimate the mean of the stochastic surrogates. As seen in the 

figures, the deterministic surrogates lie in the negative 90% confidence interval of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and  

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠), i.e. they underestimate the stochastic surrogates. The quantities 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

measure the energy deposition rate at the meso-scale due to void collapse and hot-spot growth; therefore, 

Figure 11c and d  imply that the deterministic surrogates, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝝁𝝅) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝝁𝝅), 

underestimate the energy deposition rate at the meso-scale, compared to their stochastic counterparts, 

𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠).     

3.3.2. Probability density functions for h and uncertainties in the Pop-plot 

To determine the uncertainties in the run-to-detonation distances, pdfs for ℎ̃ are constructed at discrete 

pressure values of 𝑃𝑠 = 10,12, 15 and 20 GPa. The necessary statistics for constructing the pdfs is obtained 

by sampling surrogate models for h at k Monte-Carlo points (as explained in Section 2.2.4). The surrogates 

for h are constructed as functions of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗  and are shown in Figure 12(a) through (d) for 

𝑃𝑠 = 10,12, 15 and 20 GPa respectively. The surrogates show that irrespective of the value of 𝑃𝑠, h is 

primarily a function of  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ , and is insensitive to variations in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ . For example, h varies 

exponentially along the 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  axis, but is almost constant along the 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  axis in Figure 12(a).  Similar 

observations can also be made in Figure 12(c)-(d), thereby implying that h is insensitive to 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ . 

To understand the physics behind the insensitivity of h with respect to 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ , three sets of macro-scale 

computations are performed; in these computations, a 1D coupon of the material is loaded with a sustained 

shock of 𝑃𝑠 = 15GPa. In the base case ⸺ hereafter referred to as Case A ⸺ 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗  are set to 

1, while in Cases B and C, the values of [𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ , 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ] are set to [1.5,1] and [1.0, 1.5] respectively. In 

other words, only 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  is perturbed from the base case in Case B, while only 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗  is perturbed from 

Case A in Case C.  

The evolution of the pressure and the reaction progress variable, λ, for all three cases is shown in Figure 

13. A comparison of Figure 13 a and b show that h is insensitive to variabilities in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ . The pressures 

and λ evolve identically for Cases A and B and h is estimated to be 1.8 mm from the x-t plots in both cases. 

In contrast, Figure 13c shows that the shock transitions to a detonation faster in Case C, in comparison to 

Cases A and B. The maximum pressure in the material is attained approximately at 1.5mm, which is also 

estimated to be the value of h in the x-t plot in the figure. Thus, the simulations confirm that h is primarily 
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a function of  𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ . This is because, in the MES-IG model, the ignition phase drives the evolution of the 

reaction-progress variable only initially (until λ = 0.02), as noted in while Eqn. (2). The majority of the 

SDT process is governed by the term 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ, which is a function of 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠). Therefore, the surrogates 

of h are insensitive to variabilities in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and is primarily a function of 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ . 

The insensitivity of h with respect to 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) can also be observed in Figure 14(a) from the conditional 

pdf, ℎ̃(𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛|𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ). Figure 14(a) shows that the variations in ℎ̃ in the pdf is always below 0.2 mm 

for all values of 𝑃𝑠. This implies that the uncertainties in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 do not affect the run-to-detonation 

distances of the material.  

Contrary to 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛, variabilities in 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  significantly affect h. In Figure 14(c), h is found to vary across 

orders of magnitude when 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  is treated as the random variable and 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  is fixed to 𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ . In 

the figure, the conditional pdf ℎ̃(𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ|𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ ) is found to follow log-normal distributions. In other 

words, h varies by orders of magnitude when 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  is perturbed.  

The stochastic pop-plots, ℎ̃ vs 𝑃𝑠, are shown in Figure 14b and d. In Figure 14b, 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ is fixed to a 

constant value of 𝜇
𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ , while in Figure 14d, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 is fixed to a constant value of 𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ . The 

figures also compare the stochastic pop-plots with the deterministic pop-plots obtained using the MES-IG 

model. Both the stochastic and the deterministic predictions are also compared with experimental results.  

Three primary observations are made from the pop-plots in Figure 14b and d. First, it is noted that the error 

bars representing the 90% confidence intervals is negligibly small in Figure 14b, when 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  is held 

constant. This follows from the fact that the uncertainties in 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 are not propagated to the macro-scale, 

as discussed earlier.  In contrast, the confidence interval in Figure 14d is approximately 90% of the mean 

value; thus, the variabilities in 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  result are propagated to the macro-scale and result in a significant 

variation in the run-to-detonation distances.  

Second, Figure 14b shows that the deterministic h is greater than the mean value of ℎ̃; i.e. deterministic 

computations predict larger run-to-detonation distances than stochastic computations.   This is because the 

stochastic surrogate model for 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ is underestimated by the deterministic model, as discussed in Section 

3.3.1. Because 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ ⸺ the meso-scale energy deposition rate due to void-collapse ⸺  is underestimated 

by the deterministic model, the deterministic h lies in the +90% CI of ℎ̃ , as shown in Figure 14d.  

Finally, from Figure 14d, it is seen that the experimental observations are in the +90% CI of ℎ̃. Thus, despite 

the uncertainties in the material properties, the run-to-detonation distances predicted by the MES-IG model 

are in good agreement with the experimental observations. It is expected that with higher fidelity or 

improved models of the material properties, 𝛑(𝟒), the agreement between the computational and the 

experimental h can be improved even further.  

4. CONCLUSIONS 

This report quantifies the uncertainty in prediction of the macro-scale QoIs of shock loaded heterogeneous 

energetic material due to uncertainties in its material properties. The macro-scale QoI, the run-to-detonation 

distance, is computed using the MES-IG model, which is a multiscale framework for simulating shock to 
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detonation transitions in energetic materials. The input uncertainties are first used to compute the 

uncertainties in the meso-scale reaction-product formation rates, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. To this end, 

ensembles of reactive void-collapse computations are performed at the meso-scale and pdfs of  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ are constructed. These pdfs are propagated to the macro-scale via surrogate models for  

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. These stochastic surrogates are used as inputs to a homogenized macro-scale 

computational model to determine uncertainties in the macro-scale QoI. 

The current work shows that among the six properties considered in this study, viz. 𝐶𝑝, 𝐾𝑇 , 𝜎𝑌, α, 𝛤, 𝑘, it is 

the uncertainties in 𝐶𝑝 that amplify exponentially across scales, resulting in logarithmic pdfs for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. However, the uncertainties in 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 are not propagated to the macro-scale QoI, h. In fact, 

it is only the uncertainties in 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ that result in orders of magnitude variations in h. It is further shown 

that inspite of the uncertainties in the material properties, the experimental h lies in the 90% CI range of the 

run-to-detonation distances predicted by the MES-IG model. The agreement is expected to increase further 

with improved estimates of 𝐶𝑝.  

Several extensions of the current work are being pursued. First, at low pressures, the yield strength, 𝜎𝑌, 

plays an important role in the formation of hot-spots [Rai and Udaykumar, Austin], and is expected to have 

significant effects on h. The effects of uncertainties of 𝜎𝑌 on h at lower pressures is being investigated. 

Second, the effects of uncertainties due to the microstructural features and the reaction models are also 

being investigated. In conclusion, the UQ framework presented in this report not only propagates 

uncertainties across scales is multiscale models of SDT, but also allows to rank the properties with respect 

to the sensitivity of the SDT response of HE materials on the uncertainty of each property.   
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APPENDIX : THE MES-IG MODEL FOR MULTISCALE MODELING OF SDT IN ENERGETIC MATERIALS 

The conservation laws for mass, momentum and energy that apply at both meso- and the macro-scales in 

the MES-IG model are cast in Eulerian form, viz.: 

 𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 

(A1) 

 𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗 − 𝜎𝑖𝑗)

𝜕𝑥𝑗
= 0 (A2) 

and 

 𝜕(𝜌𝐸)

𝜕𝑡
+

𝜕(𝜌𝐸𝑢𝑗 + 𝜎𝑖𝑗𝑢𝑖)

𝜕𝑥𝑗
= ℰ̇ (A3) 

where ρ, and 𝑢𝑖, respectively denote the density, and the velocity components, 𝐸 = 𝑒 +
1

2
𝑢𝑖𝑢𝑖 is the specific 

total energy, and e is the specific internal energy. The source term ℰ̇ in Eqn. (A3) is the rise in specific 

internal energy of the system due to heat released in the decomposition of solid HMX into gaseous reaction 

products. The Cauchy stress tensor, 𝜎𝑖𝑗 is of the form: 

 𝜎𝑖𝑗 = 𝑆𝑖𝑗 − 𝑝𝛿𝑖𝑗 (A4) 

where 𝑆𝑖𝑗 is the deviatoric stress tensor and p is the pressure. 

At the meso-scale, in the high-resolution reactive void collapse calculations performed in the setup shown 

in Figure 1, the HMX and void spaces are delineated using a sharp-interface Eulerian framework presented 

in previous work [45-50]. The collapse of voids due to shock loading and the formation of hot spots are 

modeled with the solid HMX modeled as an elasto-plastic material of constantyield strength, 𝜎𝑦. Shock 

heating can lead to the melting of HMX; therefore, thermal softening of HMX is modeled using the Kraut-

Kennedy relation [20]. The pressure at the meso-scale is obtained from a Birch-Murnaghan equation of 

state [20, 56]: 

 𝑝(𝜌, 𝑒) = 𝑝𝑘(𝜌) + 𝜌𝛤[𝑒 − 𝑒𝑘(𝜌)] (A5) 

where 

 𝑝𝑘(𝜌) =
3

2
𝐾𝑇0 [(

𝜌

𝜌0
)

7/3

− (
𝜌

𝜌0
)

5/3

] [1 +
3

4
(𝐾𝑇0

′ − 4) [(
𝜌

𝜌0
)

2/3

] − 1] (A6) 

  

𝑒𝑘(𝜌) = 𝑒0 −  ∫ 𝑝𝑘(𝜌)
1/𝜌

1/𝜌0

𝑑 (
1

𝜌
) 

 

 

(A7) 

and  

 𝑒 = 𝑒𝑘(𝜌) +  𝐶𝑣𝑇 
(A8) 

 

where 𝛤 is the Gruneisen co-efficient, and T is the temperature. The isochoric specific heat 𝐶𝑣  is computed 

from the isobaric specific heat 𝐶𝑝 using the following equation: 
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 𝐶𝑣 = 𝐶𝑝 − max (𝛼2𝑇𝑉𝐾𝑇 , 200𝐽/𝐾𝑔𝐾) (A9) 

 

where α is the thermal expansion co-efficient, and 𝐾𝑇 is the bulk modulus.  

Chemical decomposition of HMX is modeled in the Tarver 3-equation model [16] via four different species, 

𝑌1 through 𝑌4. The change in temperature due to chemical decomposition of HMX is calculated by solving 

the evolution equation, 

 𝜌𝐶𝑝𝑇̇ = 𝑄̇𝑅 + 𝑘∇2𝑇 (A10) 

where k is the thermal conductivity of HMX and 𝑄̇𝑅 is the total heat release rate because of the chemical 

reaction. The source term in Eqn. (A3) is computed by setting ℰ̇ = 𝐶𝑣𝑇̇.  

At the macro-scale, the material is considered to be a homogenized mixture of solid HMX and gaseous 

reaction products. The mixture is assumed to behave hydro-dynamically [59, 60], i.e. 𝑆𝑖𝑗 is neglected in 

comparison to 𝑝𝛿𝑖𝑗  in Eqn. (A4). The chemical heat release due to the decomposition of HMX into gaseous 

products is accounted for by transitioning the mixture from a cold, unreacted solid Hugoniot to a product 

Hugoniot. The equations of state for the reactants and the products are given by a Cochran-Chan and a JWL 

equation of state, as described in Sen et al.  

TABLES 

 

Table 1 Summary of the maximum and minimum values of the material parameters 𝜋𝑖 of solid HMX 

Parameter, 𝜋𝑖 Minimum Maximum 

Specific Heat (𝐶𝑝) 1300 J/KgK 2300 J/KgK 

Bulk Modulus (𝐾𝑇) 5.31 GPa [30] 16.4 GPa [24] 

Grüneisen Coefficient (γ) 0.7 [33] 1.1 [20] 

Yield Strength (𝑌) 0.13 𝐺𝑃𝑎 [36] 0.37 𝐺𝑃𝑎 [38] 

Thermal Conductivity (𝐾𝑇𝐻) 0.29 𝑊/𝑚𝐾 [39] 0.65 𝑊/𝑚𝐾 [41] 

Thermal Expansion (𝛼𝑇𝐻) 13.1 × 10−5/𝐾 [20] 27.0 × 10−5/𝐾 [43] 

 

 

Table 2. The mean 𝜇𝜋 and the standard deviation 𝜎𝜋 in the probability density function for 𝜋̃ 

 𝛼 (× 10−5/𝐾)  𝑌 (𝐺𝑃𝑎) 𝐾𝑇 (𝐺𝑃𝑎) 𝐶𝑝 (𝐽 𝑘𝑔−1𝐾−1) 

Mean 20.05 0.249 10.8545 1800 

Standard Deviation 1.39 0.0242 1.1091 100 
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FIGURES 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of  uncertainty propagation across scales in the MES-IG model. The MES-IG 

model performs ensembles of high-fidelity meso-scale reactive void-collapse computations to compute two meso-

scale product formations rates, 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. These are then used as inputs to a Kriging method to 

constructs surrogates of the form 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠 , 𝐷𝑣𝑜𝑖𝑑) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑). The surrogates are used to compute 

the  macro-scale reaction progress variables, 𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛and 𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ, which are used close a homogenized macro-

scale computational model. Macro-scale computations are used to simulate SDT and compute the run-to-

detonation distances (RTD) for different shock pressures. The uncertainties (symbolically denoted by δ) in material 

properties are propagated through the meso-scale computations, resulting in stochastic surrogate models, 

𝛿𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑) and 𝛿𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠, 𝐷𝑣𝑜𝑖𝑑). These result in stochastic closure models, 𝛿𝜆̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛and 𝛿𝜆̇𝑔𝑟𝑜𝑤𝑡ℎ 

for the reaction progress variables, which are fed as inputs to the macro-scale computations. Subsequently, this 

results in uncertainties in the run-to-detonation distances for the energetic material and are shown as error-bars in 

the pop-plots.   
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Figure 2 (a) Distribution of 𝐶𝑃 for HMX based on the references [9, 12, 16, 19, 22]. (b) 𝐾𝑇 distribution for HMX 

based on the references [1-9]. MD denotes data estimated by  Molecular Dynamics computations while EXP 

denotes data estimated from experiments. (c) 𝜎𝑌 distribution for HMX based on the references [10-13]. (d) k 

distribution of HMX based on the references [16-21]. MD denotes data estimated by Molecular Dynamics 

computations while EXP denotes data estimated from experiments. (e) 𝛼 distribution for HMX based on the 

references [9, 12, 14, 15]. 
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Figure 3 : Elementary screening effects of π6 on (a)-(b) 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and (c) 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ . A high absolute value of the mean 

of the elementary effects of a variable in π6  implies that  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and/or 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ  is most sensitive to that variable. 

The mean and the standard deviations of the elementary effects are computed from 4 random orienations. 
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Figure 4. Surrogate models for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ constructed using the DKG method, as functions of 𝐶𝑃, 𝑌0, 

BM and α. Each plot shows the ignition (a,c,e) and growth (b,d,f) rates in color map bar as seen to the right. X,Y,Z 

axes denote thermal expansion, yield strength, and bulk modulus respectively while the specific heat are selected 

with minimum (a)(b), mean (c)(d), and maximum values (e),(f). All the points are uniformly distributed to observe 

the values.  

(a) (b) 

(d) (c) 

(e) (f) 
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Figure 5. The sensitivity distributions for the (a) ignition and (b) growth rates depending on the parameters of 

interest in the surrogate models. Other than Fig. 12., the plots show the effects of each parameter of interest. As 

one parameter is solely considered for the sensitivity analysis, other parameters are all set to their mean values 

with the boundaries. All the sampling boundaries for each parameter are normalized to compare all in a figure. As 

seen in the both plots, the ignition and growth rates decrease as specific heat values increase. Compared to the 

effects of specific heat, other three variables have small variances to the rates so that they even seem close to 

constant values.  

(b) 

(a) 
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Figure 6 (a) The meso-scale computational set-up for performing reactive void-collapse simulations. A void of 

diameter 𝐷𝑣𝑜𝑖𝑑 = 0.5𝜇𝑚 embedded in solid HMX. The dimensions of the computational domain is 5*𝐷𝑣𝑜𝑖𝑑 x 

5*𝐷𝑣𝑜𝑖𝑑. The material is loaded with a pressure pulse of strength Ps  and duration τ from the west boundary. 

Computations are performed to obtain 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ from the meso-scale simulations. Figures (b) and (c) 

show the results of the mesh-refinement study for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ respectively. The x-axis of the plots 

represent 𝐷𝑣𝑜𝑖𝑑/𝛥𝑥, where 𝛥𝑥 is the size of the mesh used in the meso-scale computations.   
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Figure 7. Probability density functions for (a) 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and (b) 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ computed at 𝑃𝑠 = 22 𝐺𝑃𝑎 for the collapse 

of a single isolated cylindrical void of diameter 𝐷𝑣𝑜𝑖𝑑= 0.5𝜇𝑚. The pdfs are constructed by sampling the surrogate 

for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ at 1 million sampling points. The pdfs follow a log-normal distribution with mean and 

variances 𝜇𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
, 𝜎𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

2  for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛  and 𝜇𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ
, 𝜎𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ

2  for 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ. 
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Figure 8 : Conditional pdfs for  𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 ((a),(c), (e), (g)) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ((b),(d), (f), (h)) computed at 𝑃𝑠 = 22 𝐺𝑃𝑎 for the 

collapse of a single isolated cylindrical void of diameter 𝐷𝑣𝑜𝑖𝑑= 0.5𝜇𝑚. Figures (a), (c), (e) and (g) show the 

pdfs for 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝐶̃𝑃|𝜇𝛼 , 𝜇𝑌, 𝜇𝐵𝑀), 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝛼̃|𝜇𝐶𝑃
, 𝜇𝑌, 𝜇𝐵𝑀), 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑌̃|𝜇𝐶𝑃

, 𝜇𝛼 , 𝜇𝐵𝑀) and 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝐵𝑀෪ |𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝑌)  

respectively, while Figures (b),(d),(f) and (h) show the pdfs for 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝐶̃𝑃|𝜇𝛼 , 𝜇𝑌, 𝜇𝐵𝑀), 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝛼̃|𝜇𝐶𝑃
, 𝜇𝑌, 𝜇𝐵𝑀), 

𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑌̃|𝜇𝐶𝑃
, 𝜇𝛼 , 𝜇𝐵𝑀) and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝐵𝑀෪ |𝜇𝐶𝑃

, 𝜇𝛼 , 𝜇𝑌)  respectively. 
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(a1) : t= 0.115 ns (a2) :  t=0.253 ns (a3) :  t=0.264 ns (a4) :  t=0.267 ns 

(b1) : t=0.115 ns (b2) :  t=0.254 ns (b3) :  t=0.275 ns (b4) : t=0.308 ns 

(c1) :  t=0.115 ns (c2) : t=0.254 ns (c3) : t= 0.264 ns (c4) : t=0.267 ns 

(d1) : t= 0.114 ns (d2) :  t=0.253 ns (d3) :  t=0.263 ns (d4) : t= 0.266 ns 

(e1) :  0.115 ns (e2) :  0.254 ns (e3) :  0.264 ns (e4) :  0.267 ns 

Figure 9 : Temperature contours in K at different stages of the collapse of a void of diameter 𝐷𝑣𝑜𝑖𝑑 = 0.5𝜇𝑚 when impacted 

by a shock of 𝑃𝑠 = 22𝐺𝑃𝑎. The contours are shown for [𝐶𝑝, 𝐾𝑇 , 𝜎𝑌, 𝛼] = [1800 𝐽/𝐾𝑔𝐾, 10.8545 𝐺𝑃𝑎, 0.249 𝐺𝑃𝑎, 20.05 ×

10−5 /𝐾], [2300𝐽/𝐾𝑔𝐾, 10.8545 𝐺𝑃𝑎, 0.249 𝐺𝑃𝑎, 20.05 × 10−5 /𝐾], [1800𝐽𝐾𝑔𝐾, 16.4 𝐺𝑃𝑎, 0.249 𝐺𝑃𝑎, 20.05 × 10−5 /
𝐾],[ 1800𝐽/𝐾𝑔𝐾, 10.8545 𝐺𝑃𝑎, 0.37 𝐺𝑃𝑎, 20.05 × 10−5 /𝐾] and [1800𝐽/𝐾𝑔𝐾, 10.8545 𝐺𝑃𝑎, 0.249 𝐺𝑃𝑎, 27 × 10−5 /𝐾]  
in (a) through (e). The instances 1 and 2 denote the start and end of the ignition phase, while the instances (3) and (4) denote 

the start and end of the growth phase in cases (a) through (e). 
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Figure 10: Evolution of the hot-spot temperature (𝑇ℎ𝑠) and area (𝐴ℎ𝑠), and the meso-scale product formation rate, F at different 

stages of the collapse of a void of diameter  𝐷𝑣𝑜𝑖𝑑 = 0.5𝜇𝑚 for 𝑃𝑠 = 22𝐺𝑃𝑎. The plots are for [𝐶𝑝, 𝐾𝑇 , 𝜎𝑌, 𝛼] = 

[1800 𝐽/𝐾𝑔𝐾,  10.8545 𝐺𝑃𝑎,  0.249 𝐺𝑃𝑎,  20.05 × 10−5 /𝐾], [2300𝐽/𝐾𝑔𝐾,  10.8545 𝐺𝑃𝑎,  0.249 𝐺𝑃𝑎,  20.05 × 10−5 /
𝐾], [1800𝐽𝐾𝑔𝐾,  16.4 𝐺𝑃𝑎,  0.249 𝐺𝑃𝑎,  20.05 × 10−5 /𝐾],[ 1800𝐽/𝐾𝑔𝐾,  10.8545 𝐺𝑃𝑎,  0.37 𝐺𝑃𝑎,  20.05 × 10−5 /𝐾] & 

[1800𝐽/𝐾𝑔𝐾,  10.8545 𝐺𝑃𝑎,  0.249 𝐺𝑃𝑎,  27 × 10−5 /𝐾]  in (a) through (e). Instances 1 and 2 denote the start and end of the 

ignition phase, while instances (3) and (4) denote the start and end of the growth phase in cases (a) through (e). 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 11. Probability density functions (a) 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  and (b) 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗  computed using Eqn. (9). Figure (c) shows the surrogates 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠; 𝜇𝜋) (in dotted lines) and 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) (in solid lines). Figure (d) shows the surrogates 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠; 𝜇𝜋) (in dotted 

lines) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠) (in solid lines). The error bars in (c) and (d) represent the 90% confidence intervals with equal tail sets 

for 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑃𝑠) and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ(𝑃𝑠).  
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Figure 12 Surrogates for run-to-detonation distances h computed at 𝑃𝑠 = (a) 10𝐺𝑃𝑎, (b) 12𝐺𝑃𝑎, (c) 15𝐺𝑃𝑎 and (d) 20𝐺𝑃𝑎 

as functions of 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ . 
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Figure 13 : 
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Figure 14. The conditional probability density functions (a) ℎ̃ ቀ𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ |𝜇𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ ቁ and (c) ℎ̃ ቀ𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ |𝜇𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ ቁ constructed at 

𝑃𝑠 = 10,12, 15 & 20 𝐺𝑃𝑎. The solid black dots in Figures (b)-(d) show the pop-plots obtained from the MES-IG model using 

the pdfs ℎ̃ ቀ𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ |𝜇

𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ ቁ and ℎ̃ ቀ𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ |𝜇
𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗ ቁ respectively. The error bars denote the 90% confidence intervals 

with equal tail-sets. The red-dots show the pop-plots obtained from the deterministic MES-IG model, i.e. by performing RTD 

computations at 𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
∗ = 𝜇𝐹̃̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

∗  and 𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ
∗ = 𝜇𝐹̃̇𝑔𝑟𝑜𝑤𝑡ℎ

∗ . The solid line are the run-to-detonation distances observed in 

the experiments of , as reported by Massoni et al .  
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Figure 15: Temperature contours (in K) from a representative meso-scale computation of the collapse of a 0.5 

μm void. The simulation performed by loading the solid HMX material with a pressure of 22.1 GPa. (a), (b), 

(c) and (d) are the contours at 0.06 ns, 0.18 ns, 2.05 ns and 2.15 ns respectively.  
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Figure 16. Illustration of the procedure for obtaining 𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑠𝑐𝑣  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ

𝑠𝑐𝑣  from the mesoscale numerical 

experiments. The illustration is shown for  𝐷𝑣𝑜𝑖𝑑 = 0.5 µm, subjected to a shock pressure of 𝑃𝑠 = 22.1 GPa. 

The figures show the variation of (a) void area, (b) hotspot average temperature, (c) hotspot area, and (d) the 

products mass fraction 𝐹 with time. The numbers 1 through 4 in (a)-(d) indicate different instances of void 

and hot-spot formation/growth. In Figure (d), the time instances selected for computing the slopes to obtain 

𝐹̇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑠𝑐𝑣  and 𝐹̇𝑔𝑟𝑜𝑤𝑡ℎ

𝑠𝑐𝑣  are shown.  

1 2 3 4 

DISTRIBUTION A: Distribution approved for public release.



 

 

 

 

 

 

 

DISTRIBUTION A: Distribution approved for public release.


	DTIC Title Page -  (1)
	FA9550-15-1-0332 SF298
	FA9550-15-1-0332_FINAL_RPT
	amazonaws.com
	https://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/250-3707f120555196c57862e3d7a43e73af_ParametricUQ-converted.pdf





