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Executive Summary

This report summarizes our efforts to develop an optimization framework
that can use imperfect (i.e. inaccurate) data to support the design of com-
plex, high-dimensional aerospace systems. We are primarily interested in the
optimization of systems governed by chaotic dynamics, such as gas-turbine
combustors and aircraft during stall; however, the framework is also suitable
for inaccurate data that may arise during design under uncertainty.

Chapters 1 and 2 describe our work to develop gradient-based optimiza-
tion algorithms that are suitable for large-scale, high-dimensional problems
with inaccurate data. Our preliminary investigations into Anderson Accel-
eration, summarized in Chapter 1, demonstrate that this root-finding algo-
rithm is well-suited for unconstrained optimization in the context of inaccu-
rate and noisy data. When considering constrained optimization problems,
we broadened our investigation to the more general class of multi-secant
methods. This is the subject of Chapter 2. In that chapter we show that,
when a suitable preconditioner is available, multi-secant methods are highly
effective for constrained optimization with inaccurate derivative data. Fur-
thermore, when accurate derivatives are available, our proposed algorithm
outperforms a state-of-the-art inexact-Newton-Krylov method.

In addition to an error-tolerant algorithm, the optimization of chaotic
systems requires a scalable sensitivity analysis method. To this end, Chap-
ters 3 and 4 describe our efforts to develop a suitable sensitivity analy-
sis method. The initial investigation, presented in Chapter 3, considers a
reduced-order approximation to the least-squares shadowing (LSS) adjoint.
The idea is to approximate the LSS adjoint using a modal (Fourier) ex-
pansion to reduce the size of the LSS space-time boundary-value problem.
The expansion succeeds in reducing the size of the problem, while maintain-
ing accuracy, but it produces a fully-coupled dense-in-time system. More
recently, we have investigated a straightforward approach that finds the min-
imal perturbation that stabilizes the adjoint or direct sensitivity equation.
This promising stabilization approach is described in Chapter 4.

vi



Chapter 1

Adapting Anderson
acceleration to optimization
with inaccurate gradients

1.1 Introduction

Gradient-based optimization can be a valuable tool in the engineering de-
sign process. This is especially true when the target design is governed by
complex (nonlinear) physics and there are many design parameters. In such
circumstances, even a seasoned engineer will be challenged to choose the pa-
rameters using intuition alone. Exemplar applications of gradient-based op-
timization include aerodynamic shape optimization [41, 64, 65, 61, 6, 58, 59],
aerostructural design [54, 52, 55, 44, 43], structural topology optimiza-
tion [12, 80, 70, 73], and satellite design [40], to name a few.

A practical challenge in applying gradient-based optimization is the ef-
ficient and accurate evaluation of derivatives. Conventional optimization
methods rely on accurate derivative information for computing search di-
rections and for globalization strategies, e.g. line-search and trust-region
methods. Inaccurate gradients and/or objectives produce inconsistencies
during the globalization that ultimately lead to failure of the optimization
algorithm. The failure can occur well before the optimization has made sig-
nificant progress toward improving the design or satisfying the constraints.

Given the importance of accurate and efficient gradients, it is hardly
surprising that considerable work has been devoted to methods for differen-
tiating engineering analysis codes. For example, analytic sensitivity meth-
ods like the direct and adjoint sensitivity methods [62, 35, 41] are now used

1



CHAPTER 1. ANDERSON ACCELERATION FOR OPTIMIZATION 2

routinely in partial-differential equation (PDE) solvers, including some com-
mercial codes1. In addition, algorithmic differentiation [34] has matured to
the point that it can be applied to a large, complex PDE solver library [3].

Nevertheless, despite the progress in computing derivatives, there remain
industrially relevant applications for which inaccuracies in the gradient are
theoretically or practically unavoidable:

• Problems governed by chaotic dynamics, in which the objective is a
time-averaged quantity, cannot be treated using conventional sensi-
tivity analysis methods [48]. Instead, methods like the least-square-
shadowing (LSS) adjoint are needed [78]; however, even the LSS ad-
joint produces gradients with errors that cannot be eliminated.

• Difficult nonlinear analyses often suffer from incomplete convergence
of their algebraic solvers. An example is the solution of the Reynolds-
averaged Navier-Stokes equations for configurations at high lift con-
ditions, where two to three orders reduction in the nonlinear residual
may be acceptable. Incomplete convergence leads to errors in both the
objective function and the gradient.

• When the continuous-adjoint method [62, 41] is used, the resulting
gradient is inconsistent with the objective function in that it differs
from the true gradient by errors on the order of the discretization [20].

• If the analysis mesh is regenerated during a line search, the gradient
based on the previous mesh and the objective based on the new mesh
will be inconsistent; this can occur when using a Cartesian adaptive
flow solver [1, 2] for aerodynamic shape optimization [57].

• In a multifidelity analysis [10], the objective may be evaluated using
a high-fidelity model and the gradient may be evaluated using a low-
fidelity model, again leading to inconsistencies.

While some of the above problems can be ameliorated in theory, e.g. mesh
refinement in the case of the continuous adjoint or mesh regeneration, the
computational cost may not be acceptable in practice.

In this chapter, we describe our first efforts to devise an optimization
algorithm that is tolerant of inaccuracies in the objective and gradient in
the context of high-dimensional, computationally expensive simulations. In
Section 1.2 we review Anderson Acceleration (AA), a root-finding multise-
cant method, and adapt it to optimization. Using a synthetic quadratic,

1For example, ANSYS CFD now provides adjoint capabilities
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Figure 1.1: Relative accuracy in the inverse of the eigenvalues approximated
using Arnoldi sampling with a noise magnitude of 2.5% for three different
eigenvalue distributions.

we demonstrate that AA is robust to inaccuracies in the gradient. To han-
dle nonconvex objective functions, we propose a homotopy path-following
globalization in Section 1.3. We apply the globalized AA optimization al-
gorithm to a chaotic-differential-equation constrained optimization problem
in Section 1.4.

1.2 Anderson Acceleration

In the months leading to the start of this award, the PI and A. Ashley had
been investigating Arnoldi’s method in the context of optimization with
inaccurate gradients. A summary of this investigation can be found in
Reference[37]. In brief, our strategy was to replace Hessian-vector prod-
ucts in Arnoldi’s method with relatively large perturbations in the gradient,
and then take the symmetric part of the upper Hessenberg matrix to form a
quadratic model for the objective in the “Krylov” subspace. We showed that
this Stochastic Arnoldi’s Method (SAM) was able to estimate the dominant
eigenvalues of the Hessian with surprising accuracy, even in the presence of
error; see Figure 1.1.

Despite the accuracy of its eigenvalue estimates, SAM was found to
be unreliable for noisy optimization problems with ill-conditioned Hessians:
any errors in the gradient were significantly amplified by the approximate in-
verse, thus leading to poor steps. Another issue with SAM was the selection
of the step size for the gradient perturbation. We developed an effective
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Algorithm 1: Anderson Acceleration.

Data: Given the initial design, x0 ∈ Rn, and m ≥ 1.

1 Set g0 = g(x0), x1 = x0 − g0, and g1 = g(x1)
2 for k = 1, 2, . . . do
3 Set mk = min(m, k)
4 Set Xk = [∆xk−mk , . . . ,∆xk−1]
5 Set Gk = [∆gk−mk , . . . ,∆gk−1]
6 Solve γk = argminγ‖gk + Gkγ‖
7 Set xk+1 = xk − gk + (Xk − Gk)γ

8 end

error estimate to select the optimal step size, but it was computationally
expensive.

The issues with SAM lead us to focus on a different, albeit related, set of
algorithms: multi-secant methods. Multi-secant methods are used in several
fields that must contend with data that is noisy, computationally expensive,
and high dimensional. In particular, Anderson acceleration (AA) [5], also
known as Anderson mixing, is a popular multi-secant method for electronic
structure calculations [19]. AA has also found uses in complex transporta-
tion system studies [13]. The overlap in problem characteristics — noisy,
high-dimensional, and expensive — suggests that AA and other multi-secant
methods would be good candidates for the current work.

Algorithm 1 lists the AA method adapted to the unconstrained opti-
mization problem

min
x

f(x),

where x ∈ Rn denotes the design or control variable. We assume that f(x)
has continuous first-order derivatives and denote its gradient by g : Rn →
Rn, i.e. g = ∇f . The algorithm introduces the matrices Xk,Gk ∈ Rn×mk ,
which are constructed from the differences

∆xi = xi+1 − xi, and ∆gi = gi+1 − gi,

for each i ∈ {k−mk, k−mk + 1, . . . , k− 1}. Since we are using AA to solve
g(x) = 0, there is some ambiguity regarding the sign of g(x) (we could also
solve −g(x) = 0). In Algorithm 1, we have adopted the sign that leads to a
steepest descent direction in the first iterate.

To explore the potential of AA on noisy, high-dimensional optimization
problems, we compared both AA and SAM [37] on the optimization of a set
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of quadratic objectives with different eigenvalue distributions. In particular,
the objective was defined by

F (x) = xTEΣETx, (1.1)

where E denotes the 2p × 2p orthonormalized Hadamard matrix, whose
columns are the synthetic eigenvectors. The diagonal matrix Σ ∈ R2p×2p

holds the prescribed eigenvalues, given by

Σi,i =
1

iq
,

where q = 1
2 , 1, or 2.

For this investigation, we considered n = 256 variables. The initial
guess was set to x0 = 2

nEΣ−11, which ensures that f(x0) = 1. Noise with
a Gaussian distribution was added to each component of the gradient. The
noise had zero mean and its standard deviation was either 0.05%, 0.5% or
5%, relative to the norm of the initial gradient, ‖g0‖.

Figure 1.2 shows the objective-function reduction statistics for SAM and
AA. Both algorithms used m = 40 iterations, so their computational cost is
roughly the same in terms of gradient evaluations. For low-noise cases, SAM
outperforms AA, which is not surprising because it can exhibit its underlying
Newton-Krylov behavior. However, for the high-noise cases of interest here,
AA performs much better: unlike SAM it reduces or at least maintains the
objective value, whereas SAM can diverge due to the ill-conditioning of the
Hessian.

1.3 Globalization of Anderson Acceleration

The encouraging results in Figure 1.2 motivated us to continue work with
AA. Indeed, given these results, a natural question arises: “why has An-
derson Acceleration not found broader use within the optimization commu-
nity?” We believe one answer to this question is globalization. AA is a
method for solving fixed-point or nonlinear equations. In the case of opti-
mization, it solves g(x) = 0 and does not distinguish between local maxi-
mizers and minimizers. Moreover, standard methods of globalizing AA for
optimization problems, namely line-search and trust-region methods, cannot
be applied directly to AA, because i) it does not guarantee descent direc-
tions (required for line-searches) and ii) it does not produce a symmetric
Hessian approximation (required for trust-region models).

In the following sections, we describe an approach we have been devel-
oping to globalize AA for optimization problems.
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(a) 0.05% noise

(b) 0.5% noise

(c) 5% noise

Figure 1.2: Mean and 95% confidence intervals in the reduction of the ob-
jective, F/F0, using the Stochastic Arnoldi Method (FOM) and Anderson
Acceleration (AA). Note the different scales for F/F0 used in (a), (b), and
(c). The FOM results do not appear in the λi = 1/i2 case of Figure 1.2(c)
because its 95% confidence interval is [165, 126970].
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1.3.1 Homotopy path-following continuation

Homotopy-based globalization methods introduce a nonlinear mapping
whose solution traces a path from an “easy” problem to the nonlinear prob-
lem of interest [4]. In the context of optimization, we can consider the
parameterized problem

min
x
νf(x) + (1− ν)

1

2
(x− x0)T (x− x0), (1.2)

where ν ∈ [0, 1]. Let xν denote the solution to (1.2). When ν = 0, the
solution is clearly xν = x0, while for ν = 1 the solution is the desired x.
The idea is to move along the path defined by xν from the easy problem
defined by ν = 0 to the (possibly) hard problem ν = 1; hence the name path-
following. See [79] for a review of the theory of homotopies for nonlinear
optimization.

Homotopy path-following methods are attractive for AA, and noisy opti-
mization more generally, because they only require a sequence of stationary
points be found. For convex problems, this sequence of stationary points
leads from one local minimizer (x0) to the desired solution. Moreover, there
is no need for line-search or trust-region methods.

There are several possible strategies for following the path defined by
xν . In this work we have implemented a predictor-corrector algorithm [4],
in which we use AA to approximately solve an Euler-based predictor and
then use AA again for the corrector phase.

To illustrate this globalization method, we consider the following opti-
mization problem:

min
x

f(x) =
1

2
x2 − 1

3
x3.

We assume that the variable is restricted to [−1, 1]. In this domain there
is a local minimizer at x = 0 and a local maximizer at x = 1. Figure 1.3
show several paths beginning at different initial guesses along ν = 0. This
example includes initial guesses within 0.001 of the local maximizer. In each
case, the globalization is able to converge to the local minimizer.

1.3.2 Resilience to Noise

The globalization strategy must be resilient to noise; that is, it should con-
verge to a local minimizer with high probability when noise is present. To
investigate the resilience of the path-following globalization, we solved the
problem

min
x,y

f(x, y) =
1

2
x2 − 1

3
x3 +

1

2
y2
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Figure 1.3: Example homotopy paths for the problem minx f(x) = 1
2x

2 −
1
3x

3 beginning at different x0.

with Gaussian noise added to the gradient. For each initial value x0 ∈
{i/100}100

i=0, one hundred random values of y were selected with uniform
probability from the interval [−1, 1], and the noise standard deviation was
set to 0.5‖g0‖. The path-following algorithm was then applied to find the
local minimizer using relative tolerances of 0.5 for the corrector stages.

Figure 1.3.2 plots the median of the solution determined by AA versus x0.
The 50% and 95% confidence intervals are also plotted. The local minimizer
has a value of f(x, y) = 0, so values close to this indicate success. The figure
shows that the path-following algorithm determines the local minimizer with
95% probability up to x0 ≈ 0.75. It determines the minimizer with greater
than 50% probability up to x0 ≈ 0.97.

1.4 Anderson Acceleration applied to a chaotic
problem

In this section, we present the results of applying our globalized AA al-
gorithm to an objective function based on the Lorenz dynamical system.
The Lorenz system is described in more detail in Chapter 3. The objective
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Figure 1.4: Median, 50% and 95% confidence intervals of the optimal ob-
jective value as determined by AA globalized with homotopy continuation.
There is a 0.5% noise added to the gradient based on the initial gradient
norm.
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Figure 1.5: J versus ρ for constant β = 8/3. The red line segments show
the LSS-based linearization.

function we consider is

J (ρ, β) =
1

T

∫ T

0
(z − ztarg)2 dt+

40

β
,

where the design variables, ρ and β, are parameters in the Lorenz ODE;
see (3.1) and (3.3). The time period is T = 16 units, and we use a “spin-up”
time of Tspin = 10 units. The Lorenz ODE is discretized using Crank-
Nicolson with a step size of ∆t = 0.0064.

Derivatives of J are estimated using the LSS method [78] with a time-
dilation parameter of α = 100. Figure 1.4 plots the objective J and its
linearization based on the LSS gradient for a range of ρ values and β = 8/3.
The LSS gradients are remarkably accurate, despite the large fluctuations in
the objective function. The fluctuations in J illustrate why line-search and
trust-region methods are difficult to use in the context of noisy optimization.

We applied AA to the Lorenz problem starting from 100 randomly se-
lected initial guesses from ρ ∈ [30, 50] and β ∈ [0.25, 4]. These bound con-
straints were enforced explicitly in AA. Each run used a maximum of m = 5
saved vectors in AA, and at most 3 corrector iterations. The ν parameter
was increased by 0.1 from one homotopy iteration to the next.
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Figure 1.6: Initial guesses (yellow squares) and approximate solutions (red
circles) for 100 runs of AA applied to the Lorenz problem.

Figure 1.6 plots the 100 x0 values (yellow squares) and the x∗ solutions
from AA (red circles) on top of the contours of J (ρ, β). This figure demon-
strates, at least qualitatively, that the globalized AA algorithm is effective
on a simple chaotic optimization problem. Note the apparent clustering in
the β direction is an artifact of the plotting scale used in the figure.

We point out that not every run of AA was acceptable. For example,
at least one red circle lies along the upper boundary, β = 4. Therefore,
for a more quantitative assessment of the algorithm, we have plotted the
convergence statistics of the 100 runs in Figure 1.7. This figure shows, for
each iteration, the median value and 50% and 95% confidence intervals for
the objective. More than half the runs terminate within 20 units of the
optimal value, and 95% of the time the final value is half the worst-case
value on the design domain.
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Figure 1.7: Median value, and 50% and 95% confidence intervals, at each
AA iteration for Lorenz problem.



Chapter 2

Error-tolerant Multisecant
Method for Nonlinearly
Constrained Optimization

2.1 Introduction

This chapter builds on our preliminary investigations of Anderson Accel-
eration for unconstrained optimization with inaccurate data. In particu-
lar, we present a multisecant quasi-Newton algorithm designed to address
derivative-based optimization in the presence of inaccurate data. Multise-
cant methods [74, 28] are a generalization of Broyden’s method for nonlin-
ear equations [16], and they have been shown to be particularly effective for
solving nonlinear equations that are high dimensional, expensive to evaluate,
and potentially noisy [13, 19, 30].

To solve constrained optimization problems using multisecant methods,
we formulate the first-order necessary optimality conditions as an equivalent
set of nonlinear equations and apply the multisecant update directly to these
equations. An advantage of this approach is that it is matrix-free in the sense
that it does not require the constraint Jacobian or Hessian of the Lagrangian.
This should be contrasted with conventional algorithms that require, at the
least, the explicit constraint Jacobian. The constraint Jacobian is especially
problematic in PDE-constrained optimization problems with many state-
dependent constraints, because each such constraint requires the solution of
an adjoint equation.

The rest of the chapter is organized as follows. Section 2.2 formally
defines the optimization problem and shows how the first-order necessary

13
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conditions can be recast as an equivalent set of semi-smooth nonlinear equa-
tions. Section 2.3 begins with a general review of multisecant methods, and
then describes the particulars of our implementation, including how we in-
corporate preconditioning and how we handle nonconvexity. Some numerical
experiments are provided in Section 2.4 to verify the method and demon-
strate its effectiveness. Finally, Section 2.5 summarizes our findings and
discusses future work.

2.2 Preliminaries

2.2.1 Problem Definition

We consider nonlinear optimization problems of the form

min
x

f(x),

s.t. h(x) = 0,

g(x) ≥ 0,

(P)

where x ∈ Rn denotes the optimization variables, f : Rn → R is the objec-
tive, h : Rn → Rmh are the equality constraints, and g : Rn → Rmg are the
inequality constraints. We will assume that the objective and constraints
are continuously differentiable.

Our strategy for solving (P) is based on Newton’s method, which requires
that we recast the problem as a system of nonlinear equations. To that
end, we recall that a solution to (P) must satisfy the first-order optimality
conditions, also known as the Karush-Kuhn-Tucker (KKT) conditions.

Theorem 1 (Karush-Kuhn-Tucker (KKT) conditions). Let x∗ denote a local
solution of (P). If the set of active constraint gradients, namely

{∇hi(x∗) | i = 1, . . . ,mh}
⋃
{∇gi(x∗) | gi(x∗) = 0, i = 1, . . . ,mg} ,

is linearly independent, then there are multiplier values λ∗ and µ∗ such that

∇L(x∗, λ∗, µ∗) = 0, (2.1a)

h(x∗) = 0, (2.1b)

gi(x
∗)µ∗i = 0, ∀i = 1, . . . ,mg, (2.1c)

gi(x
∗) ≥ 0, ∀i = 1, . . . ,mg, (2.1d)

µ∗i ≥ 0, ∀i = 1, . . . ,mg, (2.1e)

where L(x, λ, µ) ≡ f(x)− h(x)Tλ− g(x)Tµ is the Lagrangian.
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Newton’s method cannot be applied directly to the KKT conditions, be-
cause it cannot enforce the bounds (2.1d) and (2.1e). That said, Newton’s
method can be applied indirectly. For example, interior-point methods deal
with the bounds (2.1d) and (2.1e) by introducing a homotopy map with a
barrier term and using a sequence of Newton solves, while active-set meth-
ods attempt to predict the active inequality constraints and treat them as
equality constraints during a Newton-like iteration.

Our approach for dealing with inequality constraints is related to the
active-set approach and is based on the following theorem due to Man-
gasarin [51].

Theorem 2. Let G : R → R be any strictly increasing function, that is
a > b ⇔ G(a) > G(b), and let G(0) = 0. Then gi(x

∗) and µ∗i satisfy the
complementarity conditions (2.1c), (2.1d), and (2.1e) if and only if

G(|gi(x∗)− µ∗i |)−G(gi(x
∗))−G(µ∗i ) = 0.

Proof. The original proof given in [51] holds with gi(x
∗) taking the role of

Fi(z) and µi taking the role of zi.

Theorem 2 is significant, because it shows that we can replace the prob-
lematic complementarity conditions with an equivalent set of nonlinear equa-
tions. Furthermore, these nonlinear equations will be amenable to Newton-
like solution methods if we make an appropriate choice for the function G
appearing in the theorem. Here we adopt the simple choice G(z) = 1

2z. This
choice leads to a nonlinear system that is differentiable almost everywhere
and, therefore, is suitable for Newton-like methods.

Remark 1. The factor of 1
2 in G(z) = 1

2z is not strictly necessary; it merely
avoids the factor of 2 in the nonlinear equation |gi(x)−µi|−gi(x)−µi, which
evaluates to 2gi(x) or 2µi, depending on the sign of gi(x)− µi.

Remark 2. With G(z) = 1
2z, the nonlinear function 1

2 (|gi(x)− µi|−
gi(x)− µi) is not differentiable along gi(x) = µi. However, if we have strict
complementarity at the solution, i.e. gi(x

∗)−µ∗ 6= 0, the function is locally
differentiable as required by Newton’s method. Thus, our approach is in the
class of semi-smooth Newton methods [63].

We conclude this section by summarizing the above results and intro-
ducing some notation and definitions to make the subsequent presentation
more concise. Let y ∈ RN , with N ≡ n+mh +mg, be the compound vector
composed of the primal variables and multipliers:

y ≡
[
xT λT µT

]T
.
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In addition, let the nonlinear residual function r : RN → RN be defined by

r(y) ≡

 ∇L(x, λ, µ)
−h(x)

1
2 (|g(x)− µ| − g(x)− µ)

 , (2.2)

where the Lagrangian, L(x, λ, µ) was defined in Theorem 1, and the absolute
value in the last block is to be interpreted componentwise. Using these
definitions, Theorems 1 and 2 imply the following result.

Corollary 1. Let x∗ be a local solution of (P), and assume that active
constraint gradients are linearly independent. Then there exists multipliers

λ∗ and µ∗ such that y∗ =
[
x∗T λ∗T µ∗T

]T
satisfies

r(y∗) = 0.

Our basic approach to finding a local solution to the optimization prob-
lem (P) is to solve r(y) = 0. The following section describes the multisecant
algorithm that we use for this purpose.

2.3 Algorithm Description

2.3.1 Newton’s Method and Mutisecant Methods

Before describing our particular algorithm, we briefly review the class of
multisecant methods upon which it is based. For a more complete review of
multisecant methods see [30].

In this subsection, we consider the generic problem of solving r(y) = 0,
where r : RN → RN is continuously differentiable almost everywhere. In
particular, we will not be concerned with avoiding stationary points that
are not local minimizers of (P); we will address nonconvexity in 2.3.3.

Multisecant methods are approximations to Newton’s method. Newton’s
method itself is based on the linear approximation1

r(yk + ∆yk) ≈ r(yk) + J(yk)∆yk, (2.3)

where yk is the estimated solution at iteration k, and J : RN → RN×N is
the Jacobian of r(y). The Newton step is found by setting the right-hand
side above to zero and solving for ∆yk:

∆yk = −J(yk)
−1rk, (2.4)

1Subscripts in this section refer to iteration number, not the component of the vector
as they did in the previous section.
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where rk ≡ r(yk). The next iterate of Newton’s method is then obtained
as yk+1 = yk + ∆yk, usually with some safe-guards on the step to ensure
globalization.

A potential disadvantage of Newton’s method is that forming and/or
inverting the Jacobian can be expensive. There are several strategies for
reducing or avoiding these costs, one being the inexact-Newton-Krylov class
of methods [46]; Newton-Krylov methods require only Jacobian-vector prod-
ucts, and therefore avoid the need to form the Jacobian explicitly. Quasi-
Newton methods offer an alternative strategy that avoids the need to form
the exact Jacobian; they store an approximation to the Jacobian (or its in-
verse), Jk ≈ J(yk), and update this approximation at each iteration using
low-rank matrices. Multisecant methods belong to the class of quasi-Newton
methods.

Multisecant methods get their name from the secant condition, which is
obtained by replacing the approximation in (2.3) with an equality:

Jk+1∆yk = ∆rk, (2.5)

where ∆rk ≡ rk+1 − rk. Alternatively, when approximating the inverse
Jacobian with Gk+1 ≈ J(yk+1)−1, the secant condition becomes

Gk+1∆rk = ∆yk. (2.6)

The secant condition is the basis for Broyden’s method for nonlinear equa-
tions [16], as well as several popular quasi-Newton methods for optimization,
namely DFP [24], BFGS [17, 31, 33, 71], and SR1 [21].

Rather than a single secant condition, Vanderbilt and Louie [74] and
Eyert [28] proposed generalizations of Broyden’s method that require Gk (or
Jk) to satisfy a set of q secant equations. If we define

Yk =
[
∆yk−q ∆yk−q+1 · · · ∆yk−1

]
and Rk =

[
∆rk−q ∆rk−q+1 · · · ∆rk−1

]
,

then the q previous secant conditions can be written succinctly as

GkRk = Yk. (2.7)

In general q < N , so the q conditions in (2.7) are insufficient to define Gk,
and additional conditions are necessary.

In the context of optimization, the Jacobian of the KKT conditions is
symmetric, so symmetry provides another condition we might consider im-
posing on Gk. Indeed, most quasi-Newton methods for optimization that
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are based on the single secant condition, (2.5) or (2.6), do impose symmetry
on the approximation of the Hessian, KKT matrix, or their inverses. There-
fore, it is interesting to consider whether symmetry can be imposed on a
multisecant quasi-Newton approximation. Unfortunately, it is easy to show
that the answer is negative.

Proposition 1. A quasi-Newton approximation Gk that satisfies the multi-
secant condition (2.7) cannot be symmetric, in general, if q > 1.

Proof. Assume that Gk = GTk . Then, left multiplying (2.7) by RTk , we have

RTk Yk = RTk GkRk = RTk GTk Rk = YTk Rk.

This implies that RTk Yk is symmetric, which is only true, in general, if this
product is a scalar, i.e., q = 1. Therefore, our assumption on the possible
symmetry of Gk must be false.

While we cannot impose symmetry on Gk, we can follow the approach
used in the generalized Broyden’s method [28]; specifically, Gk is required
to be as close as possible, in the Frobenious norm, to some estimate of the
inverse Jacobian, which we will denote by G̃k. For example, [28] proposes
using the previous estimate for the inverse Jacobian, that is G̃k = Gk−q. We
will discuss other possible choices for G̃k in the next subsection.

The requirement that Gk be as close as possible to G̃k, together with the
secant conditions (2.7), produces the closed-form expression for Gk provided
in the following theorem.

Theorem 3. The approximate inverse of the Jacobian at iteration k of the
generalized Broyden’s method is

Gk = G̃k + (Yk − G̃kRk)(RTk Rk)
−1RTk , (2.8)

which is the solution of

min
G∈RN×N

‖G− G̃k‖F , s.t GRk = Yk,

where ‖ · ‖F denotes the Frobenious norm.

Proof. The proof of this result can be found in [28] and [30].

To summarize, a multisecant method makes the approximation Gk ≈
J(yk)

−1 in the Newton update (2.4), where Gk is defined by (2.8). Thus, the
next iterate in a multisecant method is given by

yk+1 = yk −
[
G̃k + (Yk − G̃kRk)(RTk Rk)

−1RTk

]
r(yk). (2.9)
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2.3.2 Choosing G̃k

In order to complete the definition of the multisecant update we must specify
a choice for G̃k. The simplest choice for G̃k is the scaled identity:

G̃k = αI, (2.10)

where α > 0. This choice makes the update (2.9) equivalent to Anderson-
mixing [28]. Furthermore, in the case of unconstrained optimization with
no secant conditions on Gk (i.e. q = 0), the multisecant update reduces
to steepest descent, and the parameter α determines the step length via
‖∆yk‖ = α‖r(yk)‖.

Even when secant conditions are imposed on Gk (q > 0), α can (and
should) be chosen to influence the step lengths, preventing overly conser-
vative or aggressive updates; however, when q > 0, there is no guarantee
that the step at iteration k will have length α‖r(yk)‖. This is because Gk
must respect the secant conditions, whereas ‖Gk − αI‖ is only minimized;
see Theorem 3. This is potentially beneficially, because it is possible for the
algorithm to overcome a poor choice for α if q is sufficiently large.

We have found that using the scaled identity for G̃k is adequate for rea-
sonably well-scaled unconstrained problems, as well as constrained problems
with modest numbers of active constraints (fewer than 10); however, for ill-
conditioned problems, a more sophisticated choice is necessary. Ideally, we
would use G̃k = J(yk)

−1. While this choice is not practical, it does suggest
a class of options for G̃k: preconditioners.

Consider the iterative solution of the Newton update (2.4) using a Krylov
method. For Krylov methods, the number of iterations is related to the
condition number of the linear system [68], so preconditioners are employed
to cluster the eigenvalues and/or reduce the conditioning of the system.
Preconditioners are usually based on approximations to J(yk)

−1, which is
precisely what we want for G̃k. Thus, any suitable preconditioner designed
for the Krylov-iterative solution of (2.4) can be adopted for G̃k. We will
explore this possibility in the numerical results.

Remark 3. The connection between Krylov and multisecant methods goes
beyond their mutual need for preconditioning. For instance, Walker and
Ni [76] have shown that the iterates of Anderson acceleration can be obtained
from those of GMRES [69], and vice versa, when Anderson acceleration is
used to solve linear systems.

Remark 4. G̃k does not need to be the same matrix at every iteration of the
multisecant method, that is, nonstationary preconditioners are permitted. In
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this regard, multisecant methods are similar to flexible Krylov iterate methods
like FGMRES [67].

As in the simple case G̃k = αI, scaling the chosen preconditioner by α
can help control the step size in the early stages of the multisecant method.
If we let P−1

k denote a generic preconditioner, then the choice

G̃k = αP−1
k ,

with α > 0, encapsulates both the scaled diagonal (P−1
k = I) as well as more

elaborate preconditioners. This is the form for G̃k we will use throughout
the remaining chapter.

2.3.3 Handling Nonconvex Problems

Recall that the KKT conditions (2.1), as well as the equivalent conditions
r(y) = 0, are necessary, but not sufficient, conditions for a solution to (P).
Other stationary points, including local maximizers and saddle points, also
satisfy r(y) = 0. Newton’s method has no way to distinguish between these
different types of stationary points, and it can easily converge to the wrong
type. A multisecant method, being based on Newton’s method, will suffer
the same fate if it is not safe-guarded.

Before we describe how we handle nonconvexity, we first review common
strategies used by existing algorithms, and explain why these are not suitable
for a multisecant method.

• Quasi-Newton methods like BFGS are updated in such a way that
the approximate inverse of the Lagrangian Hessian remains positive
definite. Consequently, they are guaranteed to produce a descent di-
rection. Unfortunately, multisecant methods cannot produce a sym-
metric Hessian, in general, let alone one that is positive definite; see
Theorem 1.

• For unconstrained problems, a step direction can easily be checked to
see if it is a descent direction. If the step is not a descent direction,
it can be discarded and we can resort to a steepest-descent step, for
example. This approach is viable for our algorithm, but it is limited
to unconstrained problems.

• Many optimization algorithms for constrained problems require the
user to provide the constraint Jacobian, which can then be factored to
determine a basis for its null-space. Using this basis, an algorithm can
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project the problem onto a reduced-space, effectively turning it into a
unconstrained problem. In this reduced space, a step can be checked
to see if it is a descent direction, analogous to the unconstrained case.
This approach is not possible for multisecant methods, because the
Jacobian is not explicitly available.

Instead of the above methods, we use a simple Hessian-regularization
approach to address nonconvexity. In the context of the Newton update
(2.4), undesirable steps caused by indefinite Hessians2 can be prevented by
adding a scaled identity, βI, to the Hessian of the Lagrangian, provided
β > 0 is larger than the most negative eigenvalue of the projected Hessian.

While we do not have direct access to the Hessian of the Lagrangian
in the multisecant update, the effect of adding βI to the Hessian can be
mimicked by modifying the difference vectors ∆rk as follows:

∆rk ≡ r(yk+1)− r(yk) +

β(xk+1 − xk)
0
0

 .
There are two drawbacks to Hessian regularization. First, it will limit

the asymptotic rate of convergence to linear, and, second, the ideal value for
β requires an estimate of the negative eigenvalue of greatest magnitude. In
our experience, the impact on the asymptotic rate of convergence is of minor
practical concern: superlinear convergence of the unregularized method is
typically limited to the last two or three iterates.

The estimate of β is a more serious concern. In this work we have used
trial and error to determine a suitable value for β. A more methodical ap-
proach would be to use a few iterates of the Lanzcos method [47] applied
to the Hessian of L after convergence, in order to estimate the negative
eigenvalues of largest magnitude, if any. The Lanzcos method is attractive
here, because it requires only Hessian-vector products, which can be ap-
proximated in a matrix-free manner using a forward difference applied to
the Lagrangian gradient (∇L is already required by our algorithm). If neg-
ative eigenvalues are found, the algorithm can be restarted with the value
of β set appropriately. However, this posterior Lanzcos approach may be
overly conservative, since the only negative eigenvalues of significance are
those in the null-space of the constraint Jacobian.

2Specifically, Hessians that are not positive-definite in the null-space of the linearized
constraints.
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2.3.4 The Multisecant Accelerated Descent (MAD) Algo-
rithm

Our proposed optimization method, Multisecant Accelerated Descent
(MAD), is summarized in Algorithm 2. There are several implementation
details that are important to highlight.

• We assume that the initial multiplier values are zero; see Line 1.

• There are different criteria that can be used to assess convergence of
the first-order optimality conditions in Line 3. In our implementation,
we accept the solution if relative and absolute tolerances on primal
optimality and feasibility are met, specifically

‖∇f(xk)− (∇h(xk)
T )λk − (∇g(xk)

T )µk‖ ≤ εr‖∇f(x0)‖+ εa∥∥∥∥ h(xk)
1
2(|g(xk)− λk| − g(xk)− λk

∥∥∥∥ ≤ εr ∥∥∥∥ h(x0)
1
2(|g(x0)− λ0| − g(x0)− λ0

∥∥∥∥+ εa,

(2.11)
where εr ∈ (0, 1) and εa > 0 are relative and absolute tolerances,
respectively. We use the same tolerances for both primal optimality
and feasibility in this work, because our problems are relatively well
scaled; in general, different tolerances may be necessary for the two
criteria.

• For problems with noisy/inaccurate data, the computational budget
defined by the maximum number of iterations, Kmax, may be exceeded
before the convergence criteria in Line 3 are met.

• The least-squares subproblem on Line 10 corresponds to the vector

(RTk Rk)
−1RTk rk = γ,

seen in the multisecant update (2.9). The above expression is the
normal-equation solution to the overdetermined problem Rkγ = rk.
While the normal-equation solution is convenient theoretically, it is
not advisable in practice [30]. This is because the columns of Rk
can become close to linearly dependent, leading to ill-conditioning in
RTk Rk. A common solution to this possible ill-conditioning, and the
one adopted here, is to use a truncated singular-value decomposition.
In particular, we truncate singular values that are smaller than 10−6

relative to the largest singular value.
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• After evaluating the full multisecant step in Line 11, we check its
magnitude in Line 12 and limit the step to a maximum length of
∆max, if necessary.

Algorithm 2: Multisecant Accelerated Descent.

Data: x0, α > 0, β > 0, ∆max, q ≥ 0, Kmax ≥ 0, and operator P−1
k

Result: y, a approximate solution to r(y) = 0

1 set y0 =
[
xT0 0T 0T

]T
and compute and store r0 = r(y0)

2 for k = 0, 1, 2, . . . ,Kmax do
3 if ‖rk‖ is sufficiently small then
4 return yk
5 end
6 for j = 1, 2, . . . ,min(k, q) do
7 ∆yk−j ← yk−j+1 − yk−j

8 ∆rk−j ← rk−j+1 − rk−j + β

∆xk−j
0
0


9 end

10 solve argminγ ‖rk − Rkγ‖
11 ∆yk = −αP−1

k rk − (Yk − αP−1
k Rk)γ

12 if ‖∆yk‖ > ∆max then

13 ∆yk ← ∆max
‖∆yk‖∆yk

14 end
15 yk+1 = yk + ∆yk
16 rk+1 = r(yk+1)

17 end

Other than the rudimentary step-length safeguard in Line 12, our al-
gorithm has no globalization strategies, such as line-search or trust-region
methods. This is unusual and demands some justification.

When the application has noisy or inaccurate data3, it is difficult to
distinguish a good step from a poor step. Consider an unconstrained opti-
mization algorithm in which a sufficient-decrease line search is implemented,
and suppose a step causes the objective function to violate the sufficient-
decrease condition. Did this violation happen because the step was poor and
the “true” value of f increased, or did this happen because of inaccurate

3Data here refers to r(y) and f(x).
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data? If we know enough about the nature of the error in the data, we may
be able to answer this question; however, in general, the behavior of the
error will be unknown and globalization methods will be unreliable.

When the data is accurate, our justification is more pragmatic: the
method seems to more efficient without globalization. One possible explana-
tion is that multisecant methods may, sometimes, benefit from “bad” steps,
since these steps provide information about the curvature of the problem.
Furthermore, recall that α does provide some control over the step-length
size, so it acts as a kind of implicit globalization. That said, a more rigor-
ous and efficient globalization for error-free problems may be possible with
further analysis and investigation.

Remark 5. We are not the first to forego standard globalization techniques
when using a multisecant method. Fang and Saad [30] also avoid explicit
globalization when using multisecant methods to solve electronic structure
calculations. Their motivation is to minimize unnecessary evaluations of
the self-consistent field iteration, which is expensive. Our target application,
PDE-constrained optimization, also leads to expensive function evaluations,
so we are also sensitive to the additional evaluations required by globalization
methods.

2.4 Numerical Experiments

2.4.1 Multidisciplinary Design Optimization Problem

In the following sets of experiments, we consider a model multidisciplinary
design optimization (MDO) problem. The problem consists of finding a noz-
zle geometry such that the quasi-one-dimensional Euler equations produce
a pressure that is as close as possible to a target pressure. The nozzle itself
can (statically) deform under the pressure loading, and this deformation is
modeled using a one-dimensional finite-element beam. The aerostructural
optimization problem is described in detail in Reference [25]; below we pro-
vide a brief description as needed for the present study.

The MDO problem is posed using the individual-discipline feasible (IDF)
formulation [36, 22]. The IDF formulation introduces additional optimiza-
tion variables, called coupling variables, that allow the disciplinary state
equations to be solved independently at each optimization iteration. This
helps maintain modularity and also avoids coupled multidisciplinary anal-
yses and coupled adjoints; however, the IDF formulation makes the opti-
mization problem more difficult, because there are many more variables,
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and it introduces state-based constraints whose Jacobian is expensive to
evaluate. This makes matrix-free optimization methods attractive for this
type of problem.

For the elastic-nozzle problem, the IDF optimization statement is

minimize
b,p̄,ūy

f(b, p̄, ūy),

s.t. p(b, ūy)− p̄ = 0,

uy(b, p̄)− ūy = 0.

(IDF)

The objective function is a discretization of
∫

(p − pt)2 dx, where p is the
pressure and pt is the target pressure; again, see [25] for the details. The
optimization variables consist of 1) the b-spline control points, b, that define
the unloaded shape of the nozzle, 2) the pressure coupling variables, p̄, that
are used by the structural model to define the loading, and 3) the nozzle
vertical-displacement coupling variables, ūy, that are used by the flow model
to define the nozzle shape (static + displacement). For a valid solution
to (IDF), the coupling variables p̄ and ūy must agree with the values of
pressure and vertical displacement, respectively, predicted by the analyses.
This requirement is expressed by the (vector) equality constraints in (IDF).

In order to evaluate the objective and constraints in (IDF) at the kth
optimization iteration, we must first solve the disciplinary state equations
based on the given values of bk, p̄k, and (ūy)k. Furthermore, gradients of the
objective and constraints require the solution of adjoint equations. In this
work, both the state and adjoint equations are solved iteratively, the former
with a Newton solver and the latter with a preconditioned Krylov method.
We will use the iterative solvers’ tolerances to control the accuracy of the
state and adjoint solutions when we study the impact of inaccurate data on
our algorithm.

We benchmark the MAD solution of (IDF) against a previously devel-
oped inexact-Newton-Krylov algorithm [38, 27]. Dener and Hicken [26, 25]
recently developed a specialized preconditioner that takes advantage of the
structure in the IDF formulation. This preconditioner is used in Algorithm 2
for all solutions of (IDF), unless stated otherwise.

We use 5 b-spline control points and the mesh has 31 nodes, so p̄, ūy ∈
R31 and mh = 2 × 31 = 62; including the multipliers, this gives a problem
with N = 5 + 4× 31 = 129 variables. For all experiments below, the initial
guess for x0 is the same used in [25]. The relative and absolute tolerances
are εr = 10−4 and εa = 10−6, respectively. The maximum allowable primal
step is ∆max = 1.0, and the maximum number of iterations is Kmax = 2000.
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Table 2.1: Number of iterations required by MAD on problem (IDF) with
accurate data, for different combinations of q and α. The Hessian regu-
larization parameter is fixed at β = 0.5. An “∞” denotes a run that did
not converge in fewer than Kmax iterations, and “nan” denotes a run that
diverged.

q

α 5 10 15 20 25

0.01 1773 ∞ 432 156 73
0.05 600 562 254 231 263
0.1 277 78 42 35 35
1.0 nan nan nan nan nan

Parameter Study We begin by investigating, in the context of (IDF),
the effect of varying the primary parameters in Algorithm 2. These param-
eters are 1) the number of saved vectors4, q, 2) the preconditioner scaling
parameter, α, and 3) the Hessian regularization parameter β.

Table 2.1 lists the number of iterations used by MAD for a range of q and
α values, with β = 0.5. As q increases for fixed α, the number of iterations
generally decreases; the only exception to this is q = 10 and α = 0.01,
which did not converge in Kmax = 2000 iterations. Intuitively, increasing the
number of secant conditions that are satisfied should increase the accuracy of
the approximate inverse Gk and, therefore, reduce the number of iterations,
at least when sufficiently close to the solution that the linear approximation
to r(y) is accurate.

Increasing α also improves performance, up to a point, although the
trends are less consistent. Recall that α influences the step length, partic-
ularly during the first few iterations. Consequently, relatively large α may
lead to aggressive steps; indeed, increasing α beyond α = 0.1 leads MAD to
diverge on problem (IDF). Conversely, small values of α can lead to conser-
vative steps and many iterations. These general trends are reflected in the
data.

The results of varying β and q are listed in Table 2.2. For all runs in the
table, α was held fixed at 0.1. As before, we see improved performance as q
increases. However, the result of increasing β is not as expected. Increasing
the Hessian regularization should reduce the effective step size, increasing
the number of iterations and improving robustness. Instead, the method

4Alternatively, q − 1 is the number of columns in Rk and Yk, once k ≥ q.
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Table 2.2: Number of iterations required by MAD on problem (IDF) with
accurate data, for different combinations of q and β. The scaling parameter
is fixed at α = 0.1. The symbol “nan” denotes a run that diverged.

q

β 5 10 15 20 25

0.0 224 571 111 45 50
0.1 329 254 156 80 138
0.5 277 78 42 35 35
1.0 354 414 179 114 70
5.0 nan nan nan nan nan

becomes unstable and diverges as β is increased beyond a value of one. For
the values considered, β = 0.5 appears to be optimal, but it is not clear why.
Further investigation into the role of β is necessary.

Performance Using Accurate Data Figure 2.1 shows the convergence
histories of the MAD algorithm applied to the multidisciplinary design prob-
lem (IDF). Specifically, the plots show the optimality and feasibility norms
on the left side of (2.11), normalized by their initial values. Histories are
plotted for a range of q values from 5 to 25, with fixed values of α = 0.1 and
β = 0.5. The convergence history produced by the Newton-Krylov (NK)
algorithm [25] is included for comparison. The abcissa is the computational
cost normalized by the cost of the NK method.

The results in Figure 2.1 are based on tightly converged state and ad-
joint residuals with relative tolerances of 10−10 and 10−6, respectively. Con-
sequently, the data in this case is sufficiently accurate that conventional
optimization methods, like the NK algorithm, will not experience issues
with globalization.

The results show that, for this particular case with accurate data, the
MAD algorithm is competitive with the NK algorithm, especially for values
of q larger than 15. Indeed, for q ≥ 15 the asymptotic convergence rate
appears similar to that of the inexact-Newton method, i.e. superlinear.

Performance Using Inaccurate Data Next, we repeat the experiments
described above, but we loosen the tolerances on the state and adjoint resid-
uals to 10−3 and 10−2, respectively. The convergence histories in this case
are plotted in Figure 2.2.
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(a) relative optimality (b) relative feasibility

Figure 2.1: Convergence histories of MAD, for a range of q values, applied
to (IDF) with accurate data. All variants use α = 0.1 and β = 0.5. Results
from a Newton-Krylov algorithm are included for reference, and the cost is
normalized using the cost of the Newton-Krylov optimization.

With the loose tolerances on the state and adjoint residuals, the ob-
jective, constraints, and gradients have sufficiently large errors that con-
ventional globalization methods have difficulties. This is reflected in the
convergence history of the NK algorithm, which shows that the filter-based
globalization stalls. In contrast, the MAD algorithm proceeds without dif-
ficulty in the presence of the inaccurate data.

The cost in Figure 2.2 is normalized by the computational cost of the NK
algorithm using accurate data. Thus, it is possible to compare the accurate-
data results in Figure 2.1 with the inaccurate-data results in Figure 2.2.
Comparing the figures, we see that the MAD algorithm is significantly faster
when using inaccurate data. This is because the MAD runs with and without
accurate data use approximately the same number of iterations (for this
problem); consequently, the optimization cost is directly proportional to the
cost of the state and adjoint solves. Since the state and adjoint solves with
loose tolerances are more than twice as fast as those with tight tolerances,
this reduction in state/adjoint cost is translated directly into a reduction in
MAD optimization cost.
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(a) relative optimality (b) relative feasibility

Figure 2.2: Convergence histories of MAD, for a range of q values, applied to
(IDF) with inaccurate data. All variants use α = 0.1 and β = 0.5. Results
from a Newton-Krylov algorithm are included for reference, and the cost is
normalized using the cost of the Newton-Krylov optimization with accurate
data.
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2.5 Summary and Future Work

Many design optimization problems involve computationally expensive sim-
ulations, and while the objective and constraint derivatives may be avail-
able, they may be inaccurate or inconsistent. These errors in the data can
cause conventional optimization algorithms to fail. To enable the use of
inaccurate/noisy data in optimization, we have proposed an error-tolerant
optimization algorithm based on a multisecant quasi-Newton framework.

The algorithm solves a set of semi-smooth nonlinear equations that are
equivalent to the KKT first-order necessary conditions. By recasting the
KKT conditions as nonlinear equations, it is possible to apply multisecant
methods directly to the entire set of equations, in contrast to conventional
quasi-Newton optimization algorithms that apply the approximation to the
Hessian of the Lagrangian only. The algorithm was enhanced by incorpo-
rating preconditioning into the multisecant update equation, and a regular-
ization was introduced to handle nonconvex problems.

To demonstrate the method, it was applied to a multidisciplinary design
optimization problem that has state-dependent constraints and over a hun-
dred variables. Using optimal parameter values, the multisecant method was
found to be competitive with an inexact-Newton-Krylov algorithm when ac-
curate data was provided. When inaccurate data was used, the performance
of the multisecant method was virtually unchanged, whereas the Newton-
Krylov algorithm stalled.

The numerical experiments suggest that the proposed multisecant al-
gorithm is a promising method for nonlinearly constrained optimization
problems, both with and without errors in the data. Nevertheless, some
important issues for future research remain. The parameters α and β were
found to have a significant impact on the success and performance of the al-
gorithm, yet we do not have an automated means of selecting optimal values
for these parameters. Furthermore, the influence of β on regularization is
counter-intuitive and demands further investigation. Finally, the algorithm
benefits from preconditioning, but there are few effective, general-purpose
preconditioners for constrained optimization problems.



Chapter 3

Sensitivity Analysis of
Chaotic Problems using a
Fourier Approximation of
the Least-Squares Adjoint

3.1 Introduction

In this chapter, we describe our efforts to reduce the cost of the Least-
Squares Shadowing (LSS) adjoint. Our original, proposed plan was to use
the LSS method, or some variant, to estimate the gradients for turbulent
channel-flow and airfoil optimization. However, the computational cost of
LSS is high, as it requires the solution of a second-order boundary-value
problem in time. Liao [49] partially addressed cost by developing a block-
based lower-upper factorization of the LSS system. Here, we present a
method in which we allow the primal and dual solutions to be of differ-
ent dimensions. Specifically, we represent the adjoint solution for our model
problem using a Fourier sine series, although other choices are possible.

We begin by introducing the model problem for sensitivity analysis and
reviewing the conventional adjoint in Section 3.2. The LSS adjoint and our
proposed Fourier approximation to it are presented in Section 3.3. Numerical
results are presented in Section 3.4.

31
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3.2 Model problem and review of the conventional
adjoint

3.2.1 The generic and model problems

Our intent is to find the sensitivity of some objective function, J , to a
design variable. The objective function of interest will be governed by a
system of equations that exhibits chaotic behavior. We represent the chaotic
dynamical system with the generic initial-value problem (IVP)

R(u, ν, t) ≡ du

dt
−F(u, ν, t) = 0, ∀t ∈ [0, T ],

u(0) = uIC,
(3.1)

where R is the nonlinear residual, and the symbol ν ∈ Rn appearing in F
denotes a control/design variable. One can consider the solution to (3.1) to
be a function of both time and the parameter ν, i.e. u = u(t, ν).

Suppose we are interested in minimizing some functional that depends
on the solution u(t, ν). Specifically, consider the time-integrated quantity

J (u, ν) =

∫ T

0
G(u, ν, t) dt, (3.2)

where G is a nonlinear function. In the fluid mechanics applications we are
interested in, J (u, ν) may be a time-averaged force or moment.

In order to both demonstrate chaotic behavior and validate our method,
we select the Lorenz system for investigation, which is defined by

F =

 σ(y − x)
x(ρ− z)− y
xy − βz

 ; (3.3)

the state variables of (3.3) are u = [x, y, z]T , and the parameters are ν =
[σ, ρ, β]T . The system has initial conditions x(0) = x0.

The objective function selected for the Lorenz model problem is

J =
1

T

∫ T

0
z dt, (3.4)

as it is well studied and behaves in a consistent manner — the gradient
∂J /∂ρ remains relatively constant at a value of 0.96 for ρ ∈ [0, 100] [48].
Note that (3.4) is in the form (3.2) with G(u, ν, t) = z/T .
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Figure 3.1: A demonstration of the characteristics of the Lorenz system.
Two solutions of the Lorenz system are shown, with the x state variable
plotted against time t. Despite being solved with almost identical values of
the design variable ρ, the trajectories rapidly diverge. β and σ were set to
their typical values of 8/3 and 10, respectively.
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The sensitive dependence of chaotic systems to initial conditions is fairly
well known. What is less widely known is that these systems can be sensitive
to changes in other parameters. Figure 3.1 illustrates this sensitivity. In
both runs displayed, the initial conditions and the parameters β and σ were
fixed, while the ρ parameters differ by 10−10. After only 15 units of time,
the trajectories are significantly different.

3.2.2 The conventional adjoint

When there are many inputs and few outputs, the de facto sensitivity anal-
ysis method in PDE-governed gradient-based optimization is the standard
adjoint method. We are interested in such a scenario — although our model
problem only has three inputs (ρ, σ, and β) — as we seek a method that
will work in aerospace applications that have hundreds or even thousands of
design variables. We now review the conventional adjoint for completeness
and demonstrate it on the Lorenz problem.

In order to minimize J (u, ν) with respect to ν using efficient gradient-
based methods, we need the gradient ∇νJ , which is a total derivative. In
the case of the functional defined above, J may depend directly on ν, via
its appearance in G(·, ν, ·), or indirectly through u(t, ν). In order to account
for the indirect dependence, we introduce the Lagrangian

L(u, ψ, ν) = J (u, ν) +

∫ T

0
ψTR(u, ν, t) dt+

[
ψT (u− uIC)

]
t=0

, (3.5)

where ψ denotes the adjoint. As long as R(u, ν, t) = 0 and u(0) = uIC,
we have that L = J ; however, their partial derivatives are not necessarily
equal.

The gradient we want is given by

∇νJ ≡
∂L
∂ν

=

∫ T

0

∂G
∂ν

dt+

∫ T

0
ψT

∂R
∂ν

dt. (3.6)

However, we cannot compute this without first solving for ψ. To find an
equation for ψ, we take the first variation of L with respect to u and set the
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result to zero:

δL =

∫ T

0
G(δu, ν) dt+

∫ T

0
ψTR(δu, t; ν) dt+

[
ψT δu

]
t=0

=

∫ T

0

∂G
∂u

δu dt+

∫ T

0
ψT

∂R
∂u

δu dt+
[
ψT δu

]
t=0

=

∫ T

0

[
∂G
∂u

T

− dψ

dt
− ∂F
∂u

T

ψ

]T
δu dt+

[
ψT δu

]
t=T

= 0,

where (3.1) and integration by parts (in time) were used to arrive at the
second last line. Since δL = 0 must be true for all variations δu, we conclude
that

−dψ
dt
− ∂F
∂u

T

ψ +
∂G

∂u

T

= 0, ∀t ∈ [0, T ],

ψ(T ) = 0.

(3.7)

The differential equation (3.7) is the conventional adjoint equation for the
objective (3.2) and the forward IVP (3.1).

In a chaotic problem, however, the conventional adjoint grows
unbounded (backward) in time, making the derivative information unus-
able. This unbounded growth is related to the sensitive dependence of the
state on the initial condition. Or, stated another way, the time-integrated
objective function J looks noisy for finite T , and the adjoint-based gradient
accurately reflects this noise, since the derivative (and the adjoint) of a noisy
function is large.

Returning to our model problem of the Lorenz system (3.3) and our
selected objective function (3.4), we can apply the conventional adjoint ap-
proach in an attempt to obtain gradient information. Plotted in Figure 3.2
are discrete solutions of the objective function for a range of ρ, along with its
gradient with respect to ρ, calculated using the conventional adjoint method.
Clearly the adjoint-based derivative does not capture the large-scale trend
in the objective function and instead reflects the noise.

3.3 Least-squares shadowing and its Fourier ap-
proximation

3.3.1 Least-squares shadowing adjoint

To overcome the instability of the conventional adjoint, the least-squares
shadowing (LSS) adjoint method modifies the Lagrangian (3.5) in a cou-
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Figure 3.2: A plot of the objective function J = 1/T
∫ T

0 z versus ρ. The left
plot shows J over a range of ρ ∈ [0, 100], while the right plot shows J over
a range of ρ ∈ [37.9, 38.1]. Overlaid in red is a representative example of
the gradient calculated with the conventional adjoint. Immediately visible
is the problematic nature of these gradients.
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ple ways. In order to describe the LSS adjoint, it is helpful to show how
the conventional adjoint is related to a fully-constrained optimization prob-
lem and associated saddle-point problem. Taking the Lagrangian (3.5) and
linearizing about ū using perturbations u′, we obtain

L(ū, u′, ψ, ν) = J ′(u′) +

∫ T

0
ψTR′(u′, t) dt+ ψTu′, (3.8)

where R′ is given by

R′(u′, t) ≡
[
d

dt
− ∂F

∂u

∣∣∣∣
ū

]
u′ = 0, (3.9)

and J ′ is defined as

J ′(u′) =

∫ T

0
G(ū) dt+

∫ T

0

∂G
∂u

u′ dt.

If we take the derivative of L in (3.8) with respect to u′, we obtain the
standard adjoint.

In the above definition, ū is the frozen, or reference, state: it is the state
about which we want to evaluate the gradient. The perturbation to the
state is the function u′(t). To simplify notation, the dependence of various
quantities on ν is not shown in the following derivation.

The issue with the conventional adjoint is that the differential equa-
tion (DE) associated with R′(u′, t), (3.9), is linearly unstable. To regularize
this differential equation, the LSS formulation requires the perturbation,
u′, to satisfy the linearized differential equation without the initial condi-
tion. However, with the initial condition removed, the linearized differential
equation is also ill-posed; this necessitates the addition of regularization.

The regularization ensures that, of all possible perturbations to the state,
u′ is the one that i) satisfies the linearized differential equation and ii) mini-
mizes the composite objective consisting of the linearized objective and the
L2 norm of u′. Thus, u′ is the solution to the DE-constrained optimization
problem

min
u′
J ′(u′) +

1

2
‖u′‖2

s.t. R′(u′, t) ≡
[
d

dt
− ∂F

∂u

∣∣∣∣
ū

]
u′ = 0, ∀t ∈ [0, T ],

(3.10)

where ‖u′‖2 =
∫ T

0 (u′)2 dt. Based on the optimization problem (3.10), we
can construct the associated Lagrangian:

L′(u′, ψ) = J ′(u′) +
1

2
‖u′‖2 +

∫ T

0
ψTR′(u′, t) dt. (3.11)
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The LSS adjoint equation can be found by taking the first-variation of L′
with respect to u′, which produces the LSS problem

−dψ
dt
− ∂F
∂u

T

ψ +
∂G

∂u

T

+ u′ = 0, ∀t ∈ [0, T ],

ψ(0) = 0, and ψ(T ) = 0.

(3.12)

This DE is almost identical to the ill-posed one we found earlier, i.e. (3.7),
except for the presence of u′. We can eliminate u′ from the adjoint DE by
recalling that R′(u′, t) = 0, that is, the perturbation is in the null space of
the linearized forward problem. Thus, applying the linear operator corre-
sponding to R′ to the above equation, we get the differential equation[

d

dt
− ∂F
∂u

] [
−dψ
dt
− ∂F
∂u

T

ψ +
∂G

∂u

T]
= 0, ∀t ∈ [0, T ],

ψ(0) = 0, and ψ(T ) = 0.

(3.13)

Equation (3.13) is a linear boundary-value problem (BVP) in time; therefore,
two boundary conditions (in time) are necessary, and the conditions at t = 0
and t = T are consistent with this requirement.

For completeness, we expand the BVP fully to obtain

−d
2ψ

dt2
− d

dt

[
∂F
∂u

T

ψ

]
+
∂F
∂u

dψ

dt
+
∂F
∂u

∂F
∂u

T

ψ = − ∂2G
∂t∂u

+
∂F
∂u

∂G
∂u

T

.

Thus, we are dealing with a second-order in time linear BVP problem.
It should also be noted that, in this part of the report, we are considering

a specific form of the LSS sensitivity method without time dilation and its
associated weighting parameters1. Although this may have an effect on the
accuracy of the LSS adjoint, our proposed methods remain applicable to the
LSS method with the time dilation term included.

3.3.2 Discretization of the LSS adjoint

Primal-Problem Discretization The LSS method does not require a
particular discretization method, but in order to make our explanation more
concrete, we choose to demonstrate the LSS method using a Crank-Nicolson
discretization. We discretize the IVP (3.1) using N uniform time steps; thus

1The time-dilation term is included in the results of Part I
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∆t = T/N and ti = (i−1)∆t, where i = 1, 2, . . . , N+1. Including the initial
condition, we have to solve

u1 = uIC,

Ri(u, ν, t) =
ui+1 − ui

∆t
− 1

2
[F(ui, ν, ti) + F(ui+1, ν, ti+1)] = 0,

(3.14)

∀i = 1, 2, . . . , N . In addition, we discretize the functional J using the
midpoint rule2:

J(u) =

N∑
i=1

1

2
[G(ui, ν, ti) + G(ui+1, ν, ti+1)] ∆t, (3.15)

where u = [u1, u2, . . . , uN+1]T is the discrete solution.

Standard Adjoint Discretization We can also use the midpoint rule for
the term

∫ T
0 ψTR dt in the Lagrangian, see (3.5). Thus, the discretization

of the Lagrangian becomes

L(u, ψ, ν) =
N∑
i=1

1

2
[G(ui, ν, ti) + G(ui+1, ν, ti+1)] ∆t

+

N∑
i=1

ψTi+1

{
ui+1 − ui

∆t
− 1

2
[F(ui, ν, ti) + F(ui+1, ν, ti+1)]

}
∆t

+ ψT1 (u1 − uIC).

We obtain the discrete adjoint equation by differentiating L with respect
to the ui and setting each partial derivative to zero. For i = 1 we get

∆t

2

∂G
∂u

∣∣∣∣
1

− (ψT2 − ψT1 )− ψT2
[

∆t

2

∂F
∂u

∣∣∣∣
1

]
= 0.

Transposing and rearranging we have

ψ1 = ψ2 + O(∆t),

which is a first-order accurate extrapolation of ψ1 based on ψ2.
Next, differentiating L with respect to uN+1 we get

∆t

2

∂G
∂u

∣∣∣∣
N+1

+ ψTN+1 − ψTN+1

[
∆t

2

∂F
∂u

∣∣∣∣
N+1

]
= 0.

2It should be noted that when fully expanded, Equation (3.15) becomes the trapezoid
rule.
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Transposing and rearranging gives

ψN+1 =
∆t

2

[
ψTN+1

∂F
∂u

∣∣∣∣
N+1

− ∂G
∂u

∣∣∣∣
N+1

]
.

As ∆t→ 0, we recover ψN+1 = 0. Thus, the above is a first-order approxi-
mation to the terminal condition in (3.7).

Finally, differentiating L with respect to ui, where i 6= 1 and i 6= N + 1,
we get

∆t
∂G
∂u

∣∣∣∣
i

−
(
ψTi+1 − ψTi

)
−

∆t(ψTi+1 + ψTi )

2

∂F
∂u

∣∣∣∣
i

= 0.

Transposing, dividing by ∆t, and rearranging this equation, we get

−ψi+1 − ψi
∆t

−
[
∂F
∂u

]T
1

(ψi+1 + ψi)

2
+

[
∂G
∂u

]
i

= 0,

which is the Crank-Nicholson discretization of the DE in (3.7).
Later, when discussing the discretization of the LSS adjoint, it will be

helpful to have a compact representation of the discretization of the conven-
tional discrete adjoint. To this end we write

ATψ + b = 0,

where

b =

[
∆t

2

[
∂G
∂u

]
1

,∆t

[
∂G
∂u

]
2

, . . . ,∆t

[
∂G
∂u

]
N

,
∆t

2

[
∂G
∂u

]
N+1

]T
,

and for the Jacobian we have

A =



I[
−I− ∆t

2

∂F
∂u

∣∣∣∣
1

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
2

]
[
−I− ∆t

2

∂F
∂u

∣∣∣∣
2

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
3

]
. . .

. . .[
−I− ∆t

2

∂F
∂u

∣∣∣∣
N

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
N+1

]



.

Once the adjoint ψ is obtained, a discrete version of (3.6) is used to
obtain the gradient:

N∑
i=1

1

2

(
∂G
∂ν

∣∣∣∣
i

+
∂G
∂ν

∣∣∣∣
i+1

)
∆t+

N∑
i=1

ψi+1
∂Ri
∂ν

∣∣∣∣T
i

, (3.16)

where Ri is defined in (3.14).



CHAPTER 3. FOURIER APPROXIMATION OF LSS 41

Discretization of the LSS Adjoint Referring to (3.10), the optimiza-
tion problem associated with the discretized LSS adjoint method is

min
u′

J(ū) + bTu′ +
1

2

(
u′
)T

Hu′

s.t. A′u′ = 0.
(3.17)

In Equation (3.17), J(ū) + bTu′ is the discrete version of the linearized
objective function; here, ū is the discretized reference state and u′ is the
discretized perturbation. The term 1

2 (u′)T Hu′ is the discretized regular-
ization term, where H = ∆t diag (1/2, 1, 1, . . . , 1, 1/2) holds the quadrature
weights corresponding to the trapezoid rule. Again, since the LSS method
removes the initial condition from the linearized problem, we remove the
first block row from A to give A′ in (3.17). To be explicit, A′ is defined as

A′ =



[
−I− ∆t

2

∂F
∂u

∣∣∣∣
1

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
2

]
[
−I− ∆t

2

∂F
∂u

∣∣∣∣
2

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
3

]
. . .

. . .[
−I− ∆t

2

∂F
∂u

∣∣∣∣
N

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
N+1

]


The optimization problem (3.17) is a quadratic optimization problem

with a convex objective. The solution to such an optimization problem is
given by the solution of the following saddle-point linear system:[

H (A′)T

A′ 0

] [
u′

ψ

]
=

[
−b
0

]
However, since A′u′ = 0 (the second row of the above), we can multiply the
first block row by A′H−1 to get a single equation for the discrete LSS:

A′H−1
(
A′
)T
ψ = −A′H−1b. (3.18)

This is effectively forming the Schur complement of the block system. With
the LSS adjoint found, (3.16) is used in the same way as the conventional
adjoint to obtain the desired derivative.

3.3.3 A Petrov-Galerkin approach to the LSS method:
Fourier approximation of the adjoint

Our general approach is to use a Petrov-Galerkin projection of the linearized
state equation in (3.10). That is, we select different solution spaces for the
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state and LSS adjoint. In particular, and unlike typical finite-element dis-
cretizations, the dimension of the state and adjoint spaces can be different.

To illustrate the more general idea, we approximate the LSS adjoint in
the Lorenz system using a truncated Fourier sine series. In the discrete case,
this is done by projecting the LSS Jacobian A′ (which, again, is A with the
first block row removed) onto a series of sine terms. In matrix form, this
projection is defined by:

Asin = FTA′, (3.19)

where

FT =


sin
(
π t1T
)

sin
(
π t2T
)

. . . sin
(
π tNT

)
sin
(
2π t1T

)
sin
(
2π t2T

)
. . . sin

(
2π tNT

)
...

...
...

sin
(
Mπ t1T

)
sin
(
Mπ t2T

)
. . . sin

(
Mπ tNT

)
 , (3.20)

where M is the number of Fourier modes. The approximated Jacobian is
then used to compute the adjoint vector in a similar manner to the original
LSS method; see (3.18):(

FTA′
)

H−1
(
FTA′

)T
ψsin = −

(
FTA′

)
H−1b, (3.21)

which can then be used to obtain values for the gradient.
The process of computing the gradient from the adjoint is similar to that

in (3.16), but involves the basis function values to reconstitute the adjoint
using

ψi =
M∑
m=1

ψsin sin (mπti) . (3.22)

Solving Equation (3.18) for the adjoint is the most computationally in-
tensive aspect of the LSS method, as it requires a matrix solve on the typ-
ically quite large A. It is our hypothesis that the Fourier system will be at
least an order of magnitude smaller than the standard system, and thus the
computation of the adjoint using the Fourier-approximated method (3.21)
has the potential to offer significant computational advantages.

3.4 Numerical results

In order to compare the Fourier LSS method with the standard LSS method,
both adjoints were computed and compared for simulations of the Lorenz
model problem. In all simulations, the integration period was T = 16 and
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the time step was ∆t = 0.004. Additionally, the solution of the Lorenz
system was allowed to undergo a spin-up period of T = 10, to ensure that
the gathered statistics better reflect the long-time behavior of the system.
Typical values for the Lorenz system parameters were used: σ = 10, β = 8/3,
and ρ = 28 (except where stated otherwise).

3.4.1 The standard LSS applied to the Lorenz problem

For future reference, Figure 3.3 shows a sample of LSS-based gradients for
the objective function with respect to ρ, over a range of [0, 100]. At each
value of ρ, a Lorenz simulation was started with an initial condition of
[x, y, z] = [∆x,∆y, ρ+∆z], where ∆x, ∆y, and ∆z are normally distributed
random variables with a mean of zero and a standard deviation of 0.05. After
setting the initial condition and solving the primal problem, the LSS adjoint
was computed and used to obtain gradient information. An ensemble of
twenty simulations was conducted at each value of ρ. While the sensitivity
to changes in initial conditions can be seen, the figure clearly shows the
clustering of gradient values around dJ /dρ = 0.96, which is the approximate
value of the gradient for the chosen objective [48]. Recall that our LSS
implementation does not include the time-dilation term, and we believe this
explains the increased spread in the gradient values relative to the literature.

3.4.2 Fourier-approximated LSS

With the implementation of the standard LSS adjoint verified, we can begin
investigating the quality of our Fourier approximation method. In all of the
following results, the number of Fourier modes was selected as M = 460
as a tradeoff between minimizing the relative gradient error and keeping
the dimensions of the dense matrix suitably small. A qualitative compar-
ison can be seen in Figure 3.4, in which the LSS-based adjoint and the
Fourier-approximated adjoint are plotted in phase space. It is evident from
Figure 3.4 that the approximation mirrors the standard LSS quite well; this
is also observed by the more quantitative comparison of Figure 3.5, in which
the difference in the x-coordinate of the adjoints over time is shown.

The same aggregate analysis shown in Figure 3.3 was conducted for
the Fourier-approximated LSS, and these results can be seen in Figure 3.6.
Again, the clustering of gradient values about dJ /dρ = 0.96 is seen. The
dip in the mean gradient at high values of ρ, compared to the standard LSS
gradient sampling, is due to an insufficient number of modes to approxi-
mate the dominant dynamics of the problem. It should be noted that as ρ
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Figure 3.3: A statistical gathering of the gradient of the objective function
with respect to ρ, calculated using the standard LSS adjoint. Each dot
represents one simulation of the Lorenz system with T = 16; there are 20
simulations performed at each value of ρ, with slight randomness given to
the initial conditions. Error bars, centered about the mean and with half-
length one standard deviation, are shown. The locations in which the error
bars appear longer than the dataset contain negative gradients which affect
the calculation of the standard deviation.



CHAPTER 3. FOURIER APPROXIMATION OF LSS 45

Figure 3.4: The standard LSS adjoint plotted in state space, alongside its
Fourier approximation using 460 modes and a solution time of T = 16.
Qualitatively, the closeness of the approximation can be seen.

increases, the number of modes required to drive the relative gradient error
down tends to increase.

A separate numerical experiment, using 800 modes instead of the 460
modes in Figure 3.6, confirmed that high values of ρ require more modes
to approximate the LSS adjoint. Additional work is necessary to determine
an automated way of selecting the appropriate number of modes in the
approximation.

Another verification of the Fourier approximation was conducted by ana-
lyzing the relative gradient error between the standard LSS and the Fourier-
approximated LSS, defined in Equation (3.23), as a function of the number
of sine modes.

εdJ/dρ =

∣∣∣(dJdρ)LSS
−
(
dJ
dρ

)
Fourier

∣∣∣∣∣∣(dJdρ)LSS

∣∣∣ . (3.23)

As can be seen in Figure 3.7, the relative gradient error decreases signif-
icantly once a sufficient number of modes are used, eventually plateauing
on the order of 10−3. This particular study was conducted at a parameter
value of ρ = 28.
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Figure 3.5: The error between the LSS adjoint and the Fourier-approximated
LSS adjoint for the component of ψx corresponding to the x state variable
plotted versus time.

One disadvantage of the Fourier approximation is the condition number
of the Schur complement matrix in (3.21). The condition number of the
Schur complement is plotted against the number of modes in Figure 3.8 for
ρ = 28. The condition number becomes high (≈ 107) as the number of modes
is increased, which has a negative effect on accuracy and preconditioning for
iterative methods.

A brief discussion of the “plateau” in Figures 3.7 and 3.8 is warranted.
At around 460 modes for this selection of ρ, the relative gradient error of
the Fourier approximation stops decreasing. The main reason for this is
that there will be some error inherent to the standard LSS method, due to
the choice in discretization, and that the Fourier approximation is simply
trying to capture high-frequency, broadband discretization error. This is
supported by the fact that smaller time step values in the discretization
drives downward the resting value of the plateau that the relative gradient
error reaches, visible in Figure 3.7.

Although this approximation method displays promise when compared
to the standard LSS approach, it must be stated that the Fourier system
matrix is dense. This could be a significant drawback, and additional work
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Figure 3.6: A statistical gathering of the gradient of the objective func-
tion with respect to ρ, calculated using the Fourier approximation to the
LSS adjoint. Each dot represents one simulation of the Lorenz system with
T = 16; there are 20 simulations performed at each value of ρ, with slight
randomness given to the initial conditions. Error bars, centered about the
mean and with half-length one standard deviation, are shown.
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Figure 3.7: Relative error in gradient in the Fourier approximation of the
least-squares shadowing adjoint matrix as the number of Fourier modes is
varied, for differing values of ∆t. Simulation time remains T = 16.

is needed to investigate strategies to solve this system in the context of
large-scale simulations.
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Figure 3.8: Relative error in gradient (blue) and condition number of the
approximation of the least-squares shadowing adjoint matrix (red) as the
number of Fourier modes is varied. Simulation time T = 16, and ρ = 28.



Chapter 4

Energy-stable sensitivities
for chaotic systems

4.1 Introduction

The potential for simulation-based optimization has been demonstrated on
a range of aircraft design problems, from structural optimization [11, 75, 42],
to aerodynamic [61, 7, 56, 59, 39] and aerostructural optimization [53, 55, 45,
43]. However, there is an important class of problems that simulation-based
optimization has failed to adequately address: problems exhibiting chaotic
dynamics. This class of problem cannot be ignored, because it arises in many
applications; examples relevant to aircraft design include the flow control of
boundary layers, flow-separation on high-lift devices, broad-band noise due
to turbulence, and dynamic aeroelasticity.

The challenge posed by chaotic dynamics for simulation-based optimiza-
tion is not merely one of insufficient computational resources or human ef-
fort. Instead, there is a fundamental breakdown of the sensitivity analysis
typically used in simulation-based optimization. We elaborate on this break-
down in the following subsection; readers familiar with the challenges posed
by sensitivity analysis of chaotic systems can proceed to Subsection 4.1.2.

4.1.1 The breakdown of conventional sensitivity analysis

Simulation-based optimization of aircraft hinges on two key requirements.
First, the simulation must be sufficiently accurate with respect to the out-
puts of interest (e.g., drag, stresses). Second, the simulation must be able
to efficiently evaluate sensitivity derivatives of these same outputs. Sensitiv-

50
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Figure 4.1: Effect of small parameter perturbation on Lorenz state variable
x(t).

ity derivatives are needed for gradient-based optimization algorithms, which
are the most efficient algorithms for optimizing complex systems involving
many (> 100) parameters.

These two requirements — accurate outputs and derivatives — conflict
with each other in the case of chaotic dynamical systems and time-averaged
outputs. To explain the origins of this conflict, we will use the Lorenz
dynamical system, which is a canonical example of a chaotic system. The
Lorenz system [50] consists of three state variables, x(t), y(t), and z(t),
governed by

ẋ = σ(y − x), x(0) = x0,

ẏ = x(ρ− z)− y, y(0) = y0,

ż = xy − βz, z(0) = z0,

where ẋ denotes the time derivative of x, for example, and (σ, ρ, β) are
parameters.

Chaotic dynamical systems, like Lorenz’s, are partially characterized by
a sensitive dependence on parameters. This sensitive dependence is illus-
trated in Figure 4.1, which plots the Lorenz state x(t) for two values of the
parameter ρ that differ by 10−10; all other parameters and initial conditions
are identical. While the two trajectories track each other up to t ≈ 21, they
subsequently diverge from one another and become distinct.

This high sensitivity to parameter changes is disastrous for obtaining use-
ful derivative information of time-averaged outputs of interest, e.g., deriva-
tives of lift, drag, and moment. To observe this in the case of the Lorenz
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Figure 4.2: Model objective function JT for the Lorenz system using three
different integration periods T . The zoom on the right shows the adjoint-
based derivative and the desired derivative.

system, consider the time averaged output

JT (ρ) =
1

T

∫ T

0

1

2
(z(t; ρ)− 35)2 dt.

This output acts similar to time-averaged drag in unsteady computational
fluid dynamics simulations. For this example, we consider the state z(t; ρ)
and, therefore, JT (ρ) to be implicit functions of the parameter ρ.

Figure 4.2 plots JT versus ρ. Each data point corresponds to solving
the Lorenz system over some period1 of time T . We can see a minimizer
in the data, a value ρ ≈ 38 that produces the smallest JT on average. The
figure also illustrates that, as one would expect, a longer integration time T
reduces the deterministic “noise” in the simulation.

Unfortunately, increasing T does not improve the situation for deriva-
tives. As the zoomed figure on the right demonstrates, increasing T actually
increases the frequency of the oscillations. A conventional sensitivity anal-
ysis produces a derivative that accurately reflects this noise (red line in
zoomed figure), but this derivative is not useful for design. What is needed
is a methodology that produces the white line in the figure.

1We precede each integration period with a spin-up period to approach the Lorenz
attractor and eliminate bias due to the initial conditions.
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4.1.2 State-of-Knowledge

There have been several efforts to compute useful sensitivity derivatives for
chaotic systems, and these are summarized below. However, the solutions
presented so far have either been inaccurate or computationally impractical.
Our goal is to address this trade-off between accuracy and cost.

The earliest paper on the subject of sensitivity analysis of chaotic systems
was by Lea et al. [48]. They proposed the ensemble adjoint, in which the
integration period T is partitioned into P smaller periods. On each smaller
time domain, independent adjoints are solved and then used to compute
sensitivities that are averaged. While the ensemble adjoint helps avoid un-
bounded growth in the adjoint, the method converges at a rate slower than
1/
√
P , which is even slower than Monte–Carlo methods [29]. Second-order

ensemble adjoints were investigated by Ashley and Hicken [8] in a Newton–
Krylov trust-region optimization.

A more recent development is the least-squares shadowing (LSS) method
of Wang et al. [78]. The LSS method addresses the issue of sensitive depen-
dence by essentially eliminating the initial condition from the perturbed
state. This technique is justified by the Shadowing Lemma [66], which
states that for a given parameter perturbation, e.g., ρ+ δρ, one can find a
perturbed state that is “nearby” the baseline state. Blonigan et al. [15] suc-
cessfully applied the LSS method to a computational fluid dynamics (CFD)
simulation around an airfoil. While the original LSS method requires the
determination of a time-dilation term, Chater et al. [18] have shown that
windowing can be used instead.

The primary drawback of the LSS approach is computational cost. For
the CFD applications of interest to the aerospace industry, the LSS formula-
tion produces impractically large space-time boundary-value problems. For
example, a modest turbulent-flow simulation consisting of 106 state variables
and 104 time steps leads to an LSS problem with approximately 1011 degrees
of freedom2. Assuming 104 degrees of freedom per processor, this would re-
quire 107 processors; for reference, the corresponding forward simulation
would typically be run with O(100) processors.

To help reduce the cost of the LSS sensitivity method, Ashley and
Hicken [9] used a Fourier approximation of the least-squares adjoint, which
is described in Chapter 3. In the case of the Lorenz system, they showed
that the number of degrees of freedom could be reduced by an order of
magnitude at the cost of coupling the time steps.

2Assuming 5 state variables per node, we have 10 DOF per mesh node including the
adjoint and the LSS multipliers.
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The cost of the LSS approach can also be ameliorated, at least in part,
by using the non-intrusive LSS (NILSS) method [60, 14]. The NILSS ap-
proach tries to identify the unstable modes of the direct or adjoint sensitivity
and remove them from the solution. This approach works well if there are
only a few unstable modes, that is, only a few positive Lyapunov exponents.
However, because the NILSS must track and solve all unstable modes, the
method becomes computational expensive on practical problems. Bloni-
gan [14] showed that even a simple turbulent channel flow at Reτ = 140 can
have more than 150 modes, which would make the NILSS approximately
two orders more expensive than the conventional adjoint.

Finally, Talnikar et al. [72] introduced numerical dissipation into the un-
steady adjoint equation in order to stabilize the conventional adjoint. They
used an energy-stability analysis to determine where and when to introduce
dissipation; however, a parameter was necessary to control the magnitude of
the dissipation, and the choice of this parameter has a significant influence
on the accuracy of the resulting derivatives.

4.2 A method to stabilize the adjoint

The conventional adjoint fails to provide useful sensitivity derivatives be-
cause the adjoint equation is linearly unstable. The key insight of this work
is that applying a small perturbation to the adjoint equation is sufficient to
stabilize the adjoint and obtain useful derivatives. This small perturbation
is practical to evaluate because, in the case of the Euler and Navier–Stokes
equations, the instability is caused by a spatially localized source term.

Our approach is explained in greater detail in the following sections.
Subsection 4.2.1 uses the Lorenz system to explain the linear instability
present in the adjoint equations. We then present our proposed stabiliza-
tion idea in Subsection 4.2.2, and explain its generalization to fluid flows in
Subsection 4.3.

4.2.1 A Deeper Look at the Source of the Problem

The problem with conventional sensitivity analysis methods in the context
of chaotic dynamics is that the governing linear equations are unstable.
Understanding and managing this instability is at the heart of the proposed
method, so we will briefly elaborate on this phenomena using the Lorenz
problem.

In order to relate our discussion to the Euler equations later, we express
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the Lorenz system in the following abstract form:

R(u, ρ) ≡ du

dt
− F (u; ρ) = 0, u(0) = u0,

where u = [x, y, z]T and F (u; ρ) ≡
[
σ(y − x), x(ρ− z)− y, xy − βz

]T
in

the case of the Lorenz system. Using this abstract formulation, we can write
the (total) derivative of JT (ρ) from Sec. 4.1.1 as [32]

dJT
dρ

=
∂JT
∂ρ
−
∫ T

0
ψT

∂F

∂ρ
dt︸ ︷︷ ︸

General

= −
∫ T

0
ψyx dt︸ ︷︷ ︸

Lorenz

,

where ψ denotes the adjoint. The adjoint is governed by the linear ordinary
differential equation (ODE)

− dψ

dt
−
(
∂F

∂u

)T
ψ = −∂JT

∂u
, ψ(T ) = 0. (4.1)

Note that the adjoint ODE must be solved backward in time, and that the
terminal condition ψ(T ) = 0 is due to the particular form of JT .

The adjoint ODE (4.1) is unstable for chaotic dynamical systems. To
elucidate the nature of the instability, we multiply the homogeneous adjoint
ODE from the left by ψT to obtain an equation for the adjoint “energy,”
that is, an equation for the L2 norm of the adjoint:

− d

dt

(
1

2
‖ψ‖2

)
︸ ︷︷ ︸

adjoint “energy”

−1

2
ψT

[(
∂F

∂u

)
+

(
∂F

∂u

)T]
︸ ︷︷ ︸
symmetric part of Jacobian

ψ = 0.

The skew-symmetric part of the Jacobian does not contribute to the adjoint
“energy” because ψTAψ = −ψTAψ = 0 for any skew-symmetric matrix A.

Remark 6. We consider the homogeneous adjoint ODE, because it is suf-
ficient to explain the exponential growth in ‖ψ‖. The inhomogenous term,
∂JT /∂u, while vital for the accuracy of the adjoint, does not lead to expo-
nential growth; thus, it is excluded from the present analysis.

All symmetric matrices are orthogonally diagonalizable, so we can
rewrite the ODE for adjoint energy as

− d

dt

(
1

2
‖ψ‖2

)
= ψT (VΛVT )ψ =

3∑
i=1

(VTψ)2
iλi,



CHAPTER 4. ENERGY-STABLE SENSITIVITIES 56

Figure 4.3: Conventional adjoint
(red) and proposed, stabilized ad-
joint (black). Note the y-axis scale.

Figure 4.4: Objective and deriva-
tives based on the stabilized ad-
joint.

where VΛV is the eigenvalue decomposition of the symmetric part of ∂F/∂u,
with eigenvectors in the columns of V and eigenvalues, λi, along the diagonal
of Λ. Since (V Tψ)2

i ≥ 0, the adjoint energy will decrease backward in time
if all the eigenvalues are negative; however, if some eigenvalues are positive,
the boundedness of the adjoint is less clear, and it may grow exponentially
backward in time.

Chaotic dynamical systems have positive eigenvalues that, on balance,
overwhelm the negative eigenvalues. More precisely, chaotic dynamical sys-
tems have positive Lyapunov exponents [66]. Consequently, for long-time
averaged outputs, the adjoint of chaotic dynamical systems grows exponen-
tially as it is evolved backward in time. The red curve in Figure 4.3 demon-
strates this exponential growth for the adjoint ψy in the Lorenz problem;
recall that ψy is the adjoint variable used to evaluate the derivative dJT /dρ.
If this adjoint is used to compute dJT /dρ, we obtain the (unusable) vertical
derivative seen earlier in Figure 4.2.

4.2.2 Idea: minimal stabilization of the adjoint

Based on the eigenvalue analysis of the Lorenz adjoint, we propose a simple
but effective solution to the instability: add a small perturbation to the
Jacobian such that the adjoint energy does not grow. There are several
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possible ways to apply such a perturbation. Here, we determine the minimal
symmetric matrix that, when added to the Jacobian, produces a stable
system.

To illustrate the idea, we once again consider the Lorenz system. If
S(t) ∈ R3×3 denotes the symmetric perturbation matrix, then the stabilized
version of the adjoint equation (4.1) becomes

−dψ
dt
−
(
∂F

∂u
+ S

)T
ψ = −∂JT

∂u
, ψ(T ) = 0.

If we repeat the energy analysis on the homogeneous version of the above
equation, we arrive at the following:

− d

dt

(
1

2
‖ψ‖2

)
− 1

2
ψT

[(
∂F

∂u

)
+

(
∂F

∂u

)T
+ S

]
ψ︸ ︷︷ ︸

must be negative for stability

= 0.

To ensure that the adjoint energy does not grow exponentially backward in
time, we need to ensure that the product of ψ with the sum of S and the
symmetric part of the Jacobian is negative. On the other hand, we want to
avoid large S that would negatively impact the accuracy of the sensitivities.
This leads us to the following quadratic optimization problem for the entries
in S:

min
Sij

1

2

3∑
i=1

i∑
j=1

S2
ij ,

s.t. ψT (Jsym + S)ψ < 0,

(4.2)

where Jsym denotes the symmetric part of the Jacobian.
Since the problem (4.2) is a quadratic program with a convex objective,

it has a unique closed form solution. If ψT Jsymψ < 0, the solution is simply
S = 0. Otherwise, the constraint is active and we need to solve an equality
constrained quadratic program. Let s ∈ R6 denote the vector of unknown
entries in the symmetric matrix S, ordered as follows:

Sij = si(i−1)/2+j , i = 1, . . . , 3, j = 1, . . . , i.

Then, the solution to the equality-constrained quadratic program corre-
sponds to the solution of the saddle-point problem[

I AT

A 0

] [
s
λ

]
=

[
0

−ψT Jsymψ

]
,
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where the constraint Jacobian is a row matrix whose entries are given by

Ai(i−1)/2+j =

{
ψ2
i , if i = j

2ψiψj , if i 6= j.

Thus, the solution to (4.2) is (in terms of the entries s)

s =


0, if ψT Jsymψ < 0,

−
(
ψT Jsymψ

AAT

)
AT , otherwise.

Remark 7. The stabilization matrix S depends on the adjoint, consequently,
the stabilized adjoint equation is nonlinear.

Figure 4.3 includes the evolution of the stabilized adjoint obtained with
the proposed method. The exponential growth of the conventional adjoint
has been eliminated. Such a stabilized adjoint can also be obtained using
the LSS method described in Sec. 4.1.2. However, there is a significant
difference in cost between the LSS adjoint and the solution proposed here.
Indeed, the stabilized adjoint shown in Figure 4.3 is only a small fraction
more expensive than the conventional adjoint, and it is orders of magnitude
less expensive than the LSS adjoint.

Although we can stabilize the adjoint, this does not necessarily imply
that it will produce accurate, useful sensitivity derivatives. However, the
proposed mechanism is such that the perturbation is minimized. The mag-
nitude of the perturbation to the adjoint equation is controlled by the entries
in S, which are, by definition, the smallest possible perturbations that that
ensure non-positive growth in ψ.

The potential of this approach is demonstrated in Figure 4.4, which
shows the objective JT for T = 40 and the sensitivity derivatives com-
puted using the proposed stabilized adjoint. The derivatives are plotted as
“linearizations” about several values of ρ. Qualitatively we observe good
agreement with the slope of the objective. Note that the linearizations are
shifted up or down depending on the value of JT at the corresponding ρ.

4.3 Generalizing to Fluid Dynamics

The proposed method is promising, but it is not immediately clear that it
will generalize to the Euler or Navier-Stokes equations. In particular, the
perturbation to the Jacobian used in the Lorenz example relied on solving a
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quadratic optimization with as many variables as the (symmetric part of the)
Jacobian. In the case of an Euler or Navier–Stokes simulation, the Jacobian
will have potentially billions (or more) of rows and columns, making such
an optimization impractical.

In the following section, we explain why this issue is mitigated by the
nature of the instability in fluid flows. Subsequently, we describe a prac-
tical implementation of the stabilization method in the case of the Euler
equations.

4.3.1 A localized instability

As described in the introduction to this section, the proposed stabilization
method appears to be impractical for the Euler or Navier-Stokes equations,
because the size of the Jacobian matrix precludes the necessary optimiza-
tion. Fortunately, the terms responsible for destabilizing the Euler and
Navier-Stokes adjoints are spatially-local source terms. To see this, consider
the (homogeneous) adjoint equation for the incompressible Navier–Stokes
equations (with the summation-convention on repeated indices):

ρ
∂ψi
∂t

+ ρuj
∂ψi
∂xj
− ρ∂uj

∂xi
ψj︸ ︷︷ ︸

unstable

+
∂π

∂xi
= ν

∂2ψi
∂xj∂xj

,
∂ψj
∂xj

= 0, (4.3)

where ψ = [ψ1, ψ2, ψ3]T is the adjoint corresponding to velocity and π is the
adjoint corresponding to pressure. Using an energy-stability analysis, Wang
and Gao [77] showed that the third term in this equation is responsible
for the adjoint’s exponential growth. The symmetric part of the tensor
multiplying ψ in the unstable term is

ρ

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

which is the density times the strain-rate tensor. While this tensor depends
on derivatives of the velocity field, it is entirely local from the perspective of
the adjoint. Therefore, we can perturb this small, 3× 3 tensor at each node
in exactly the same way that we did to stabilize the adjoint of the Lorenz
system.

Talnikar et al. [72] performed an energy-stability analysis of the com-
pressible Navier–Stokes adjoint and showed that its destabilizing term is
also a spatially localized source term. Consequently, the proposed approach
is equally valid for stabilizing the types of flow problems of interest to the
aerospace industry.
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At this point, it is worth highlighting the differences between the pro-
posed stabilization and the dissipation-based stabilization used in [72]. In-
troducing dissipation into the adjoint requires a subtle balance between sta-
bilizing the equation and obtaining accurate sensitivities: too little dissipa-
tion and the adjoint will grow exponentially, too much dissipation and the
sensitivities will be inaccurate. The difficulty in achieving this balance was
documented in [72].

In contrast, the proposed stabilization is, by definition, the minimum
perturbation necessary to avoid exponential growth in the adjoint. Our
hypothesis is that this will lead to accurate sensitivities, as it does for
the Lorenz problem. Furthermore, the proposed method is parameter-free,
which is a significant advantage in practice.

4.3.2 Implementation case-study: SBP discretization of the
Euler equations

The proposed stabilization can be applied to a wide range of discretiza-
tions, but the details will vary depending on the choice of discretization.
For concreteness, we will focus on an entropy-stable summation-by-parts
(SBP) discretization. Furthermore, the destabilizing term in the sensitiv-
ity equations, for both incompressible and compressible flows, is due to the
inviscid terms. Therefore, to describe our implementation it is sufficient to
consider the Euler equations. Finally, since the destabilization mechanism
is the same for both the tangent and adjoint sensitivity, we will consider the
tangent sensitivity for simplicity.

The entropy-stable SBP discretization of the Euler equations [23] pro-
duces a semi-discretization of the form

H
duh
dt
−
∑
κ∈T

PTκFκ(Pκuh)−B(uh, α) = 0, (4.4)

where uh(t) ∈ Rn is the discrete solution evaluated at the collocation points,
and α ∈ R is a parameter, e.g. the Mach number. Here we consider a
continuous SBP solution space over the tesselation of the domain T , which is
analogous to a continuous Galerkin finite-element method (in contrast with
the discontinuous SBP space considered in [23]). The matrix H ∈ Rn×n is the
diagonal mass matrix, the matrix Pκ ∈ Rnκ×n restricts the global solution
to the nκ degrees of freedom on element κ, and Fκ : Rnκ → Rnκ denotes the
element-local residual vector that discretizes the spatial derivatives. Finally,
B : Rn×R→ Rn denotes the boundary terms; the boundary conditions are
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imposed weakly using penalty terms and we assume they depend on the
parameter α.

The tangent-sensitivity equation is obtained by (total) differentiation of
the discretization (4.4) with respect to α. Thus, if vh(t) ∈ Rn denotes the
sensitivity, the tangent-sensitivity equation is given by

H
dvh
dt
−
∑
κ∈T

PTκ JκPκvh −
∂B

∂uh
vh −

∂B

∂α
= 0, (4.5)

where Jκ ≡ ∂Fκ/∂uκ is the element-local Jacobian, with uκ = Pκuκ. In the
following analysis, we will focus on stabilizing the terms involving Jκ, since
they contain the localized instability described earlier. We will not stabilize
the derivatives of the boundary terms, which are responsible for driving the
tangent (and adjoint) sensitivities.

Next, we perform an energy-stability analysis of (4.5). Ignoring the
boundary-term derivatives and left-multiplying by vTh , we find

vTh H
dvh
dt
−
∑
κ∈T

vTh PTκ JκPκvh = 0

⇒ d

dt

(
1

2
‖vh‖2H

)
=
∑
κ∈T

vTκ Jκvκ,

where ‖vh‖H is the SBP approximation of the L2 norm of vh, and vκ ≡ Pκvh
is the tangent sensitivity projected onto the degrees of freedom of element
κ. In general, vTκ Jκvκ may be positive, leading to growth in the sensitivity.
To combat this, following the Lorenz-problem example, we add a symmetric
matrix Sκ ∈ Rnκ×nκ to each Jκ such that vTκ (Jκ + Sκ)vκ ≤ 0. It then follows
that

d

dt

(
1

2
‖vh‖2H

)
=
∑
κ∈T

vTκ (Jκ + Sκ)vκ ≤ 0,

which implies the tangent sensitivity remains bounded. The Sκ are found
by solving a quadratic optimization analogous to (4.2), with Jsym replaced
with (Jκ + JTκ )/2 and ψ replaced with vκ.

Notice that, rather than stabilizing the global Jacobian,
∑

κ∈T PTκ JκPκ,
we instead stabilize |T | element Jacobians, Jκ. This represents a significant
reduction in cost, since the former requires solving an optimization prob-
lem with O(n2) variables, while the latter requires only O(nnκ) variables.
Furthermore, the element stabilization is easily parallelized.
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4.4 Current and Future Work

The analysis presented above proves that the proposed method will prevent
unbounded growth in the direct and adjoint sensitivities. Therefore, the
only unanswered question is whether or not the stabilized sensitivities yield
accurate derivatives. While the Lorenz-problem results are promising in this
regard, the full potential of the method will not be clear until it has been
applied to a flow simulation.

In light of this, Mr. Ashley is currently implementing the stabilized
sensitivity-analysis method for the Euler equations as part of his thesis. We
will apply the proposed method to the chaotic NACA0012 flow studied by
Blonigan et al. [15]. Since they used the LSS method, this problem will
provide a benchmark against which we can compare the accuracy and cost
of the stabilized sensitivity method.
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