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Abstract

Due to the renewed interest in sustained high-speed atmospheric flight, Shock Boundary Layer Interactions
(SBLIs) are again receiving considerable attention. The incomplete understanding of the underlying physical
mechanisms for both 2D and 3D SBLIs poses a roadblock for the reliable and efficient operation of high-speed flight
vehicles. A combined research approach, encompassing spatially and temporally resolved measurements, highly
accurate numerical simulations as well as local and global stability analyses, has been executed for investigating
three-dimensional SBLIs. The 3D SBLIs are generated by an impinging oblique shock wave that is swept back
with respect to the mean flow primarily at Mach 2.3. A specific area of focus is on SBLI-generated low-frequency
unsteadiness due to its potential coupling with structural modes, influence on wall heat transfer and importance as
an unresolved problem in high-speed aerodynamics research in general. Swept SBLIs generated purely by a shock-
induced pressure rise have received surprisingly little attention in the literature despite their practical occurrence
in scramjet inlets and isolators. Even a basic understanding of this SBLI was lacking at the award onset and (to
our knowledge) we are the only research group examining this important flow. This report summarizes some of
our contributions related to the understanding of swept impinging oblique SBLIs over the last three years. The
findings are placed in the context of other more conventional 3D SBLIs (e.g. ramps and fins) wherever possible
including those studied by other groups performing research in parallel to our own. For additional information,
the reader is referred to our numerous publications on this topic that are listed herein.
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√
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1. Introduction

1.1 SBLI Overview

After years of neglect, high-speed aerodynamics has once again become a focal point of intense research. In
particular, interest in boundary layer transition and Shock Boundary Layer Interactions (SBLIs) is seeing a
resurgence. For many technical applications, including engine inlets, body flaps, and missile fins, SBLI problems
arise such as local heat peaks, unsteady aerodynamic loads, increase of drag, jet intake performance loss and
flutter or intake buzz, to name only a few. The fundamentals of SBLI problems are discussed in text books
such as Smits and Dussauge [1] and Babinsky and Harvey [2]. Recent progress on swept SBLIs is summarized
in review papers such as Clemens and Narayanaswamy [3]. The introduction of a shock-wave causes a sharp
pressure increase which can lead to boundary layer separation and the formation of a separation bubble. Such
interactions were found to feature a low-frequency unsteadiness at separation and a high-frequency unsteadiness
at reattachment [3]. The associated aerodynamic loads can be quite high and potentially destructive. This is
especially the case for low-frequency unsteadiness which can possibly excite structural modes. According to
Dolling [4] important quantities like peak heating in strong interactions and unsteady pressure peaks still cannot
be predicted very accurately or even not at all, especially for complex geometries and flow fields.

Fundamental research into SBLI has sought to simplify the flow geometries into canonical non-dimensional
forms. Three classical unswept examples are i) normal SBLIs [5, 6, 7], ii) compression ramp SBLIs [8, 9, 10, 11],
and iii) shock reflection SBLIs [12, 13, 14, 15, 16] (see Figure 1.2 and Figure 1.1). Each of these relies on model
geometry defined only in terms of angles, meaning the characteristic length scale of the incoming boundary layer
is the only length to influence the interaction [17].

Figure 1.1: Unswept oblique impinging SBLI [18].

The focus of this work is primarily turbulent SBLIs, but laminar interactions can provide insight into the
more complicated fully turbulent case. For a shock–induced separation bubble, Robinet [19] found a bifurcation
of an initially 2D steady flow that, for increasing shock intensity, evolved into a 3D, stationary asymptotic
state and eventually into a 3D unsteady state. A secondary recirculation within the primary separation bubble
characterized the three–dimensionality of the interaction region along with a spanwise velocity component. A
global analysis was performed to explain the physical origin of the three–dimensionality and 3D unstable global
mode was found. Rist and co–workers [20, 21] examined the stability of hypersonic boundary layers over a
compression ramp and a flat–plate with an impinging shock–wave. By comparing numerical simulations and
experiments, they clearly showed that non–parallel effects led to increased growth rates of the disturbances. In
laminar and turbulent interactions particular attention is focused on the unsteadiness of the shock motion at
relatively low frequencies with respect to the characteristic frequency of the boundary layer. The characteristics
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Figure 1.2: Schematic representation of an oblique shock wave impinging on a laminar boundary layer. Repro-
duced from Sansica et al. [29]

of unsteadiness related to the separation shock and separation bubble have been widely reported in the literature
and strong similarities are seen between various configurations commonly studied in SBLI, such as compression
ramps, blunt fins, and impinging shocks. Reasonable agreement has been reported between numerical simulations
and experiments but the mechanisms that drive this unsteadiness remain unclear.

Some of the first, systematic experimental studies on laminar and turbulent boundary layers interacting with
shock–waves were conducted by Ackeret et al. [22] and Liepmann [23]. Recent work in SBLI has mainly focused
on interactions that are two–dimensional in the mean (2D SBLI) and typically generated in the laboratory
by an impinging oblique shock–wave or compression corner. The SBLI generated in this manner share common
features and generally exhibit both low– and high–frequency unsteadiness. In the recent work particular focus has
been placed on identifying the source of the low–frequency unsteadiness. The frequency associated with the low–
frequency unsteadiness is about one to three orders of magnitude lower than the dominant characteristic frequency
of the incoming turbulent boundary layer. In several practical applications the low–frequency unsteadiness can
couple with the structural dynamics of control surfaces and fins or affect the performance of air–breathing
propulsion systems. In such instances, in–flight structural fatigue and catastrophic loss of the vehicle may occur.

1.2 SBLI Unsteadiness

A variety of reasons for the mechanisms causing the low–frequency behavior have been proposed in the literature
for unswept SBLIs. Recent experimental studies have suggested that the low–frequency unsteadiness may be
correlated to longitudinal coherent structures (streaks) in the incoming turbulent boundary layer (see Ganap-
athisubramani et al. [10, 24] and Humble et al. [25, 26]). Some other studies have suggested that the unsteadiness
arises from the dynamics of the separation bubble itself [27]. Large–eddy simulations (LES) performed by Tou-
ber & Sandham [28] showed that the coherent structures in the incoming boundary layer are not a prerequisite
for low–frequency unsteadiness. However, they suggest that the streaks could excite intrinsic SBLI dynamics
resulting in the behavior observed by Ganapathisubramani et al. [10, 24] and Humble et al. [25, 26].

Although some of the earlier research points to the relevance of underlying hydrodynamic instabilities, the
research findings are contradictory and therefore inconclusive. Thus, there is a clear need for a fundamental
and unequivocal understanding of the hydrodynamic instability mechanisms that are relevant for SBLI. The
incomplete understanding of the underlying physical mechanisms for SBLI (in particular with regard to the
low–frequency oscillations) poses a roadblock for the reliable and efficient operation of high–speed atmospheric
flight vehicles. This lack of understanding is also the reason why effective and efficient active flow control (AFC)
techniques are so difficult to realize for SBLI.
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Piponniau et al. [14] related the low-frequency unsteadiness to a breathing motion of the separation bubble
which can be associated with a flapping of the mixing layer that develops downstream of the reflected shock.
Souverein et al. [15] varied the shock angle and the Reynolds number. When the reverse flow in the interaction was
similar, the unsteadiness did not depend on the Reynolds number. Instantaneous flow visualizations revealed
the shedding of spanwise coherent structures. Ganapathisubramani et al. [10, 24] observed elongated regions
(superstructures that are eight or more boundary layer thicknesses long) of low-velocity fluid in the log region
upstream of a Mach 2 compression ramp that led to spanwise deformations of the separation line. They concluded
that the temporal behavior of the separation line resulted from the superstructures as well as very-low-frequency
oscillations of the boundary layer and downstream separation bubble effects. Similar findings were made by
Humble et al. [25] who referred to the spanwise deformations as “rippling patterns”. Experiments by Dussauge
et al. [27] suggest that the three-dimensional (3-D) structures of the separation bubble may be at the origin
of the low-frequency unsteadiness. Morgan et al. [30] performed a large-eddy simulation (LES) of a Mach
2.05 unswept interaction. Flow visualizations revealed a spanwise “undulation” of the reflected shock near
the top of the separation bubble which appeared to correlate with large turbulent structures in the approach
boundary layer. Blinde et al. [31] employed micro vortex generators for introducing spanwise perturbations into
the boundary layer which lead to a spanwise deformation of the separation line. Interestingly, this stabilized the
shock motion for a straight interaction. Similar observations were made by Babinsky et al. [32] and Giepman
et al. [33] which may suggest that the low-frequency unsteadiness is related to the spanwise deformations or
ripples. Priebe and Martin [11] investigated a Mach 2.9 compression ramp flow. The low-frequency shock
motion was found to be well correlated with a breathing motion of the bubble and an associated flapping of the
separated boundary layer but less so with upstream boundary layer events. The conjecture was made that an
inherent instability of the downstream separated flow, similar to the global mode obtained by linear stability
theory by Touber and Sandham [28], was responsible for the low-frequency unsteadiness. These findings are
in contrast to Ganapathisubramani et al. [10, 24] and Humble et al. [25] who considered weak separations.
Priebe and Martin [11] argue that both upstream and downstream effects are always present and that upstream
perturbations become more important for weakly or incipiently separated interactions.

1.3 3D SBLI Overview

Highly three-dimensional geometries associated with supersonic engine intakes and control surfaces can induce
complex shock systems which promote SBLIs and potentially undesirable effects. These often swept interactions
can significantly influence efficiency, unsteady loading and surface heating [4]. It is therefore of paramount
importance to understand 3D SBLIs so that designs may be improved in future vehicles. Fundamental studies of
various SBLIs have often sought to retain a non-dimensional form, whereby the only length scale is the boundary
layer which offers a more generalized flow-field [17]. The introduction of sweep retains this form, enabling further
analysis of fundamental SBLI physics. Investigation of swept SBLIs have been relatively limited compared to
unswept research efforts. Non-dimensional means of inducing a swept shock have been restricted to sharp fins
(straight [34, 35, 36, 37, 38, 39] and swept [40]), and swept compression ramps [41, 42, 43, 44, 45, 46, 47, 48, 49].

A new form of canonical interaction has been studied at University of Arizona (UA) and New Mexico State
University (NMSU) featuring a swept impinging oblique shock [50, 51, 52, 53]. Until recently, only one study has
been reported in literature and is limited to hypersonic flow [54]. Like it’s unswept counterpart, this configuration
offers a fundamental flow which may be experienced on a variety of high-speed vehicles and often related to inlets.
Figure 1.3 shows a schematic of the expected quasi-infinite span inviscid shock structure [55]. Much like unswept
flows, the impinging shock reflects off the floor to form a secondary reflected shock. The pressure rise across both
shocks therefore contributes to the adverse pressure gradient and may induce flow separation. The inviscid shock
structure does not directly correspond to a swept form of the unswept configuration, but can be analytically
determined using thin-shock theory [55]. In this case, the addition of sweep acts to increase the strength of the
shocks, causing them to steepen, moving the floor impingement location further upstream.

While a large body of research is concerned with unswept SBLI problems, swept interactions which are
certainly not a rarity, have not been investigated in great detail. Different from unswept interactions, which can be
thought of as infinite in the spanwise direction, swept interactions can have a virtual origin. For example, a shock-
wave originating from a conical shock generator will have an origin that is related to the tip of the shock generator.
Settles and Kimmel [36] proposed that depending on the boundary layer and shock generator properties, the
separation can either exhibit cylindrical or conical similarity. Conical similarity implies that the separation
opens up in the spanwise direction while cylindrical similarity implies that the streamwise extent of the separation
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(a) Shock generator. (b) Delta wing.

Figure 1.3: Equivalent swept shock-inducing model geometries [55]. The red plane indicates impinging shock,
while the blue plane indicates reflected shock. This thick black line indicates the model leading edge that coincides
with the incident shock plane (note, not necessarily with x-z plane).

remains constant away from the similarity plane. It may be argued that far enough downstream of the origin, the
separation will always asymptotically approach cylindrical similarity. Experiments by Erengil and Dolling [49]
and Reynolds-Averaged Navier-Stokes (RANS) calculations by Holst and Schmisseur [56] of swept compression
ramps revealed conical similarity of the separated region for sweep angles between 10◦ and 50◦. This agrees with
highly-swept glancing interactions associated with sharp-fins that retain conical similarities and demonstrate
a growth of length scales as the interaction develops in the direction of sweep [41, 40, 38]. The situation for
lesser-swept interactions induced by compression ramps is more ambiguous. Early studies reported a cylindrical
similarity [41]; however, it is not yet clear if this observation is influenced by the limited domain size associated
with most supersonic wind tunnel tests [43]. Regardless, two isolated regimes of interaction development have
been observed (cylindrical/conical). The mechanisms driving the appearance of conical similarity for swept SBLIs
remain unclear, but have been associated with inviscid flow detachment [41].

The effect of sweep on SBLI unsteadiness remains under investigation [42, 52, 49, 57, 58]. Experimental
results show that as sweep is increased, the low-frequency motion of the separation shock reduces in strength
and translates to higher frequencies [39] but the mechanism behind this observation is not established [59, 49].
Erengil and Dolling [49] found large-amplitude, low-frequency oscillations for cases with cylindrical similarity and
more benign low-amplitude, high-frequency oscillations for cases with conical similarity. Holst and Schmisseur [56]
argue that large portions of the recirculating separated flow are supersonic for cases with high sweep angles which
prevents disturbances from traveling upstream. Adler and Gaitonde [42] simulated Mach 2 turbulent compression
corner flows with 22.5◦ and 37.5◦ sweep angle and found no indications of a low-frequency unsteadiness. They
argue that compared to unswept interactions (which they refer to as “closed” separations), for swept interactions
(which they refer to as “open” separations) the reverse flow intensity is not a good indicator for the onset of
instability since disturbances are convected outward in the spanwise direction.

The following sections summarize our combined approach for studying swept impinging oblique SBLIs over the
last three years. The dearth of knowledge on this fundamental and practically relevant flow required us to start
from the very basics. We have made contributions to the understanding of the inviscid behavior progressing all
the way through highly resolved studies of the instantaneous flow structure in both experiments and simulations.
From a practical perspective, our findings can be used to improve the design of scramjet inlets and isolators
through better prediction of the mean flow topology as well as the low-frequency unsteadiness, wall heat transfer
and their potential minimization.



2. Inviscid Analysis of Swept Oblique Shock Reflections

An inviscid flow model is presented to gain a basic understanding of the reflection of a swept oblique shock
from a planar wall. The analytical model is constructed to describe the fundamental influence of sweep on this
shock configuration which has been commonly studied as an unswept non-dimensional SBLI. Transformation of
model parameters into a plane perpendicular to the sweep angle reduces the resultant flow to a two-parameter
system. An equivalency between this configuration and others commonly assessed is presented with advisory
notes on the definition of effective coordinate systems. Inviscid shock detachment has been associated with the
onset of quasi-conical SBLI spanwise development [41]. Its occurrence for this SBLI configuration is determined
for a range of conditions and compared to experimental observations of swept SBLIs claiming cylindrical/conical
similarity scalings. Finally, influence of a zero-mass flux plane associated with typical experimental and numerical
analyses is presented with an accompanying model for the shock structure. This serves as useful resource when
designing swept impinging oblique SBLI studies, it also provides a vital benchmark for this complex configuration
and helps to unify various SBLI configurations that are often analyzed in isolation.

2.1 Background

Before details of the SBLIs are assessed with regards to sweep, it is important to note that there appears to
be a broad oversimplification in literature on the influence of sweep on the incident shock itself. A common
misconception is that sweep simply adds an additional component of velocity running parallel to the shock which
can be disregarded as it will not change across the shock. While it is true that this velocity component is
present, it does not fully evaluate changes to the shock due to sweep. A feature often overlooked is that as sweep
increases, the deflection angle normal to the sweep also increases, affecting shock strength. It is well-known
that two-dimensional turbulent SBLIs scale with the inviscid pressure rise across an interaction [60, 61]. It is
reasonable to assume that 3D SBLIs will follow suit particularly for moderate sweep. Subtle changes in the
inviscid pressure rise due to sweep are expected to be important especially in laminar and transitional SBLIs.
Thus, accurate understanding/prediction of the inviscid behavior is essential for the study 3D SBLIs.
For inviscid swept compression ramp flows, the shock is anchored to the ramp corner (when inducing an attached
oblique shock). Variations of the shock (in terms of strength and angle) caused by moderate changes in sweep
for a given x-y plane ramp deflection are often overlooked since the influence can be small. While such variance
has been observed in inviscid flows [62, 51], their influence in viscous interactions has not been factored into
characterization studies.
Infinite-span swept oblique inviscid shock structures have been modeled in an important contribution by [62],
who extend the standard two-dimensional θ-β-M relations to a three-dimensional θ-β-M -ψ form to include the
influence of sweep on oblique shocks. The model is formulated in terms of a cubic expression that can be solved
to determine shock characteristics. However, the specific formulation is primarily applicable to single-shock
structures (such as those from swept sharp-fin or compression ramps). Without significant manipulation, it is
therefore of limited application to multiple-shock configurations with exception of validating the initial shock
[51]. In addition, the implications of limited span oblique shocks that can be critical in moderate aspect ratio
flows associated with engine inlets and highly-swept delta-wings are not modeled.

For interactions limited in the spanwise direction by a zero spanwise mass flux criteria (either through an
experimental symmetry plane [40], simulation slip plane [42, 53], or an endplate/fence [51, 63]) the shock angle
also changes at this location [40]. This effect is small for inviscid swept compression ramp flows since the shock
foot is anchored to the ramp corner. However, it cannot be overlooked in swept impinging oblique SBLIs since
changes in the shock angle alters the wall-impingement location, meaning the interaction is no longer anchored
at a region on the wall that runs parallel to the imposed sweep. Such an influence is not encountered in unswept
sharp-fin flows since the inviscid flow remains two-dimensional. However, it has a significant effect on swept
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Figure 2.1: Inviscid shock schematic diagram. The incident shock is shown in magenta, the reflected shock is
shown in blue. The incident shock-wall impingement line is shown in red.

sharp-fins since the inviscid shock location at the wall does not agree with simple 2D shock theory [40].
Since the incident swept oblique shock is inclined from normal in both the x-y and x-z planes, one would expect

an element of spanwise crossflow in addition to the downward flow deflection induced by the shock generator.
After encountering the reflected shock this effect would be amplified, creating a component of spanwise flow that
would be experienced downstream of the interaction. Restriction of this crossflow through the use of a fence [43]
or symmetry plane [40] would stifle this injection of mass into the swept SBLI, causing the shocks to decrease in
strength to account for the downstream divergence (analogous to two-dimensional vs. axi-symmetric compression
ramps). This will result in a spanwise pressure gradient within the interaction near the root plane, and potentially
a curved shock-wall impingement line in the case of a swept oblique impinging SBLI. Such influences will distort
the flow beyond 2D features present in a quasi-infinite span configuration.

2.2 Model description

The model geometry employed herein is defined in figure 2.1. The x-y-z reference frame is set by: x) the
incoming flow vector, y) the wall-normal vector, and z) the resultant spanwise vector. Three-dimensional velocity
components u-v-w are defined relative to the x-y-z reference frame, respectively. A swept shock generator is
located above the wall and is defined according to the xyz-reference frame to retain a fundamental approach.
The leading edge is located in the x-z plane and runs parallel to the wall. Sweep ψ is defined in the x-z plane
as the rotation of the leading edge vector around the y axis, relative to the z axis. The angle of the shock
generator surface relative to the incoming flow is defined in the x-y plane relative to the x axis. The downward
flow deflection beneath the shock generator produces a swept oblique shock which impinges upon the wall. By
imposing a slip-plane condition on the wall the incident shock is reflected and forms a second swept oblique
shock. Spanwise influences are disregarded, resulting a quasi-2D flow field. Where dimensional values have been
quoted, the gas medium is assumed to be an inviscid perfect gas, with γ = 1.4 and R = 287.1 J/kg/K to reflect
dry air. Flow across shocks is considered to be adiabatic, as are conditions at the wall.

The application of continuity across an oblique shock mandates that the components of velocity running
parallel to the shock are conserved. For convenience, the reference frame is transformed via rotation about the
y axis using transformation matrix Ω to be aligned with the incident shock-wall impingement line, such that the
transformed zn axis runs parallel to this line [64] (see figure 2.2 and equation 2.1). un

v
wn

 = Ω

 u
v
w

 =

 u cosψ − w sinψ
v
u sinψ + w cosψ

 (2.1)
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(a) Top view (x-z or xn-zn plane). (b) Side view (xn-y plane).

Figure 2.2: Inviscid shock schematic diagram, rotated around the y-axis such that the side view in the xn-y plane
is aligned with the shock.

where: Ω =

 cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ


Since the zn-axis runs parallel to the wall-impingement line, it also runs parallel to both shocks. Therefore,

the wn velocity component is considered constant across the entire shock reflection. Equation (2.2) is used to
determine velocity magnitude as a function of total temperature T0, with the sweep-aligned velocity component
established using equation (2.3). By disregarding this velocity component, the equivalent incoming Mach number
for a two-dimensional shock reflection in the xn-yn plane is identified using equation (2.4).

U2 =
2γRT0M

2

2 + (γ − 1)M2
(2.2)

wn = U∞ sinψ (2.3)

M∞n = M∞ cosψ (2.4)

The flow deflection angle in the xn-y plane will be steeper than that measured on the shock generator in
the x-y plane due to the addition of sweep. This angle is calculated using equation (2.5). Determination of the
remaining flow structure in the xn-y plane follows a standard two-dimensional approach with well-established
relations. Shock angle βn and incoming flow angle αn are defined relative to the xn-zn plane (all angles are
defined with same rotation direction around the zn axis for a given shock, such that βn and θn are positive).
Equation (2.6) is used to find the shock angle in the xn-y plane, with the downstream xn-y plane Mach number
given by equation (2.7) (subscripts a and b indicate conditions upstream or downstream of the shock being
analyzed, respectively).

tan θn =
tan θsg
cosψ

(2.5)

tan θn =
2

tan (βn − αn)

{
Ma

2
n sin2 (βn − α)− 1

Ma
2
n

[
γ + cos (2βn − 2αn)

]
+ 2

}
(2.6)

Mb
2
n sin2 (βn − αn − θn) =

2 + (γ − 1)Ma
2
n sin2 (βn − αn)

2γMa
2
n sin2 (βn − αn)− 2 (γ − 1)

(2.7)

The inclination of the shock and the downstream flow vector are first found in the xn-y plane, before applying
the inverse transformation matrix from equation (2.1). The shock inclination is defined using a unit vector normal
to the shock plane given by equation (2.8), where αn is the angle of the incoming flow relative to the xn-zn plane.

~Nn =

 sinβn
cosβn

0

 (2.8)
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The downstream flow is similarly defined using a unit vector, which requires recombining velocity components
downstream of the shock. While the wn component is already known from equation (2.3), definition of un
and v components necessitates finding the downstream Mach number M2 using equation (2.9), which is then
converted back to flow speed U using equation (2.2). The velocity magnitude in the xn-y plane is then given by
equation (2.10), with the flow unit vector given by equation (2.11).

M2 =
M2
n +

w2
n

γRT0

1− (γ − 1)
w2

n

2γRT0

=
M2
n

[
2 +M2

∞ (γ − 1)
]

+ 2M2
∞ sin2 ψ

2 +M2
∞(γ − 1)

(
1− sin2 ψ

) (2.9)

U2
n = U2 − w2

n (2.10)

~an =

 un
v
wn

 =
1

U

 Un cosαn
Un sinαn
U∞ sinψ

 =
M∞
M

√
T∞
T

 Λ cosαn
−Λ sinαn

sinψ

 (2.11)

where: Λ =
√

M2T
M2
∞T∞

− sin2 ψ

Unit vectors describing shock inclination and flow direction in the xn-y plane are then transformed, using the
Ω′ transformation matrix in equation (2.1), to return components in the xyz reference frame (see equation 2.12
and equation 2.13). The ratio T∞/T is calculated using adiabatic relations (see equation 2.14).

~N = Ω′ ~Nn = sinβn

 cosψ
1/ tanβn
− sinψ

 (2.12)

~a = Ω′~an =

 sin2 ψ + Λ cosαn cosψ
−Λ sinαn

sinψ (cosψ − Λ cosαn)

M∞
M

√
T∞
T

(2.13)

T∞
T

=
2 + (γ − 1)M2

2 + (γ − 1)M2
∞

(2.14)

Pertinent angles of the flow structure are determined from these vectors. The x-y plane shock angle is given by
equation (2.15), the x-y plane flow deflection angle is given by equation (2.16), the x-z plane spanwise deflection
angle is given by equation (2.17), and the y-z plane flow rotation angle, which defines the effective two-dimensional
oblique shock plane [62], is given by equation (2.18).

tanβ = Nx/Ny = cosψ · tanβn (2.15)

tan θ = ay/ax =
−Λ sinαn

sin2 ψ + Λ cosαn cosψ
(2.16)

tan η = az/ax =
cosψ − Λ cosαn
sinψ + Λ cosαn

tanψ

(2.17)

tanφ = az/ay = sinψ

(
1

tanαn
− cosψ

Λ sinαn

)
(2.18)

Finally, angles of flow deflection and shocks defined on the effective 2D plane are given by equation (2.19)
and equation (2.20), respectively.

tan θe =
tan θsg cos ξ

cos (φ− ξ)
(2.19)

tanβe = tanβ cosφ (2.20)

where: tan ξ = tan θsg tanψ
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2.3 Results

2.3.1 Summary of results

Implementation of the inviscid model above is shown in figure 2.3 for two example flows with upstream Mach
numbers of 2.3 and 3.0, each encountering a moderately swept shock generator (ψ = 22.5◦ and θ = 12.5◦) mounted
parallel to a slip-wall floor below. Incoming flow encounters the incident shock and is deflected downwards and
towards the angle of sweep. Since the inviscid flow downstream of the shock must remain parallel to the shock
generator face, the resultant deflection may be considered as a combination of two components: i) x-y plane
deflection that is below that of the shock generator (as flow passes the face towards the tip), and ii) the additional
x-z plane deflection induced by the oblique sweep angle.

Both flows clearly demonstrate the key features of inviscid shock reflections, namely that flow downstream of
the reflection is: i) parallel to the wall, ii) deflected towards the sweep angle, iii) negatively skewed in the x-y
plane, and iv) positively skewed in the x-z plane. In addition, shock inclination changes with sweep leading to
variable strength shocks affecting downstream pressure rise.

Figure 2.4 shows a corresponding shock structure plot extracted in an x-y plane, equivalent to commonly
reported PIV domains. The effect of a sweep is clearly evident, increasing steepness of shocks and moving the
wall-impingement location further upstream.
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(a) Mach 2.3.

(b) Mach 3.0.

Figure 2.3: Inviscid flowfields with ψ = 22.5◦ and θsg = 12.5◦. The shock generator is shown in grey. The
incident shock is shown in magenta, the reflected shock is shown in blue. The incident shock-wall impingement
line is shown in red. Streamlines are shown by thin green lines, and timelines are shown by broad green regions.
The dashed black line indicates a cross section of the shock system in the x-y plane. Geometries are shown to
scale.
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Figure 2.4: x-y plane shock structure normalized by shock generator height h, demonstrating effect of sweep for
various incoming Mach numbers. Shock generator with deflection θsg = 12.5◦ is shown in grey. Swept shocks at
ψ = 22.5◦ are shown with solid lines, unswept shocks are shown with dashed lines.
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2.3.2 Model limitations

The model above relies on analytical inviscid flow relations. It is therefore not applicable when inviscid shock
detachment occurs as flow is deflected beyond the maximum turning angle for a given local upstream Mach
number. In such situations, the shock will translate upstream and curve towards the wall to form a local subsonic
region (in a plane normal to the sweep angle) that enables flow to achieve the required deflection. The structure
of this region is not analytically solvable [40] and is therefore beyond the scope of this model. Regardless, the
onset of this regime is clearly defined such that at conditions below the detachment onset boundary the present
model is valid. Prediction of the onset of shock detachment is particularly relevant in swept SBLI studies as
this has been proposed to act as a mechanism that changes the interaction from cylindrical (i.e. parallel lines of
separation and reattachment) to conical (i.e. divergent separation and reattachment lines) [41].

As with unswept oblique shocks, there are two potential inviscid shock solutions for a given sweep-Mach
number combination: a steep strong shock with subsonic downstream flow (when observed in the sweep-aligned
xn-y plane), or a shallower weak shock which typically exhibits local supersonic downstream flow (except at
conditions close to the maximum turning angle where it too may return subsonic flow). While it is weak shock
solutions that would usually form in nature, strong oblique shocks may be induced in situations of high imposed
back-pressure [65]. Full implementation of the above model requires that flow must be supersonic downstream of
the incident shock (when viewed in the xn-y plane), thus limiting the incident shock solution to the supersonic
weak case only. The reflected shock may exhibit either solution through selection of the appropriate βn. If the
required deflection to redirect flow parallel to the floor is greater than the maximum turning angle then the
reflected shock will detach to form a Mach Reflection [66] (as opposed to the Regular Reflection studied herein)
and the model becomes invalid.

Figure 2.5 demonstrates the onset of the maximum turning angle limitations with respect to shock generator
x-y deflection and sweep, which is of importance when considering the proposed onset of conical/cylindrical SBLI
development [41]. Increasing the upstream Mach number expands the available envelope for both sweep and shock
generator deflection angles. Sweep at low angles of shock generator deflection is limited by the local upstream
Mach wave angle such that ψ ≤ 90◦ − µ. Above this limit at θ = 0◦, the local upstream Mach number component
normal to the sweep is subsonic and does not induce a shock. However, below this upper limit in sweep excessive
flow deflection beyond the maximum turning angle will result in shock detachment. At the zero-sweep limit this
aligns with unswept 2D shock detachment. The behavior across the reflected shock is similar in nature to the
incident shock, albeit shifted towards lower shock generator deflection angles. This is due to the reduction in
Mach number across the incident shock, an effect which diminishes at low deflection angles, and is evident by
maintaining the same zero-deflection sweep limit as for the incident shock case.

(a) Incident shock. (b) Reflected shock.

Figure 2.5: Onset of shock detachment in the oblique shock reflection configuration. Geometries that fall below
or to the left of the contours represent flows that would induce an attached shock.
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2.4 Discussion

2.4.1 Collapse of sweep influence

Initial observation of the results would suggest that flow configuration is subject to three input terms: i) upstream
Mach number M∞, ii) x-z plane sweep ψ, and iii) x-y plane deflection angle θsg. This results in a reasonably
complex model imposing difficulties in extracting certain behaviors, as demonstrated by shock detachment pre-
dictions given in figure 2.5. However, certain observations can be made in construction of the model to simplify
results.

Determination of the shock strength and associated parameters (M2n, p2/p1, T2/T1, etc.) are all either
defined in the swept xn-y plane or defined as a scalar. Therefore, the three-variable problem stated above can be
rephrased in this coordinate system to constrain the influence of sweep only in its effect on the Mach number and
deflection angle. The upstream Mach number and shock generator deflection angle should therefore be expressed
as the respective component experienced in the plane normal to the sweep (xn-y plane) as given by equation (2.4)
and equation (2.5), respectively. This manipulation results in the collapse of the three-parameter model into two
parameters only, simplifying the parametric approach required.

This approach has been followed in unswept sharp fin studies which have typically resolved Mach number
normal to the swept shock as the relevant scaling term [34]. Since the shock induced by an unswept sharp fin is
not inclined in the x-y plane and occurs on a flat plate, it follows that the inviscid flow deflection normal to the
sweep is zero and the shock acts as a normal shock with a cross flow component.

Addition of sweep to the sharp fin leading edge (or shock generator leading edge) therefore necessitates
inclusion of this effect when considering flow parameters across the inviscid shock. The effectiveness of this
approach is demonstrated below through a revised prediction of shock detachment, as has been discussed prior
in the three-parameter form.

2.4.2 Detachment phenomena

Shock detachment is particularly relevant in swept SBLI research as it has been postulated as a mechanism that
brings about a substantial change in interaction behavior [41]. Moderately swept SBLIs with low deflection angles
have been observed to develop in the spanwise direction towards a quasi-infinite interaction with length scale Lint,
presenting cylindrical geometric similarities when scaled [41] (figure 2.6a). Conversely, highly swept SBLIs with
more significant deflection angles demonstrate a continual linear geometric growth of the interaction structure
in the spanwise direction described by conical similarities [41, 36] (figure 2.6b). The mechanism responsible for
this change in behavior is not well understood. However, it has been associated with the following concepts: i) a
fundamental change in 3D separated flow mass entrainment/ventilation [41], ii) the onset of shock detachment
[41], iii) sustained influence of the inception region in finite span domains [43], or iv) effect of non-planar shock
distortion at the root [40, 36].

Determination of the detachment onset boundary has been presented in figure 2.5 in terms of typical param-
eters used in experiments and simulations (M∞, θsg, and ψ). By instead considering the incoming Mach number
and flow deflection components in the xn-y plane, this can be plotted as shown in figure 2.7. The resultant curves
now collapse to form unique detachment onset boundaries when solved in a two-parameter domain.

Inviscid model results for both one-shock solutions (i.e. compression ramp or sharp fin) and two-shock
solutions (i.e. shock reflection) are shown in figure 2.7a. As observed prior, the qualitative nature of the two
boundaries appear similar, albeit shifted to higher incoming Mach numbers for detachment of the reflected shock
due to the reduction in local upstream Mach number caused by the incident shock.

Experimental data from swept compression ramps [41], and unswept/swept sharp fins [40, 34] in Mach 2.95
and 3.95 flows are included in figure 2.7b for reference. The Mach number in the ordinate axis is instead defined
here using Mslip rather than freestream Mach number M∞, as proposed by Settles and Teng [41]. They argue
that onset of shock detachment is dictated by lower-speed fluid within the boundary layer, at an effective height
where the flow can be considered inviscid when simplified into a two-layer model [67]. A value of Mslip = 0.75M∞
is found to result in a good collapse of data between experimental observations and the inviscid model presented
here. Similar behaviour is not witnessed in sharp fin interactions, suggesting another mechanism is responsible
for promoting conical behavior in that instance (e.g. forced reattachment due to presence of sharp fin surface
[68]).

The similarity between experimental compression ramp data using Mslip and results of the inviscid model
is encouraging. While some level of uncertainty is to be expected when estimating the similarity state of an
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(a) Cylindrical SBLI development. (b) Conical SBLI development.

Figure 2.6: Schematic diagram of simplified SBLI spanwise development behaviours (adapted from [41]). Wall
topology shows: U - limit of upstream influence, S - separation line, I - inviscid shock location, R - reattachment
line, Li – SBLI inception length, and zV CO – spanwise location of virtual conical origin. Shaded region indicates
quasi-infinite development of separated flow.

interaction, only one data point for the experimental compression ramp results does not observe the apparent
trend (M∞ = 2.95, θramp = 24◦, ψ = 20◦) and reports cylindrical similarities when conical is predicted.

(a) Inviscid model results for single shock (black) and shock
reflection solutions (grey), for freestream Mach number M∞.

(b) Experimental comparison of single shock solution, using
slip Mach number Mslip = 0.75M∞ when shock located in a
viscous environment (Mslip = M∞ for freestream shocks or
inviscid model results).

Figure 2.7: Normalised shock detachment conditions. The solid black line indicates detachment onset for incident
shock, the solid grey like indicates detachment onset for reflected shock. Square markers represent data for swept
compression ramps in Mach 2.95 flow [41]. Triangular markers represent data for unswept and swept sharp fin
interactions in Mach 2.95 and 3.95 flows [40, 34] (4 corresponds to shock generated at the sharp fin itself, whereas
O corresponds to shock at the flat plate, where cosψ′ = sinβ′0). Interactions reported with conical similarities
are shown filled in black (shocks at sharp fin are determined whether detached using present model and are filled
in grey).
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(a) Weak incident shock. (b) Weak -weak shock reflection.

(c) Strong incident shock (d) Weak -strong shock reflection.

Figure 2.8: Normalised pressure rise coefficient across various shock systems. The left column (a and c) represents
conditions across a single shock, the right column (b and d) represents conditions across a shock reflection where
the first shock is a weak shock. The top row (a and b) features systems with a weak final shock, the bottom row
(c and d) features systems with a strong final shock. The shock detachment boundary is shown by a solid black
line. Note, the color scale differs between each column.

2.4.3 Interaction strength characterization

A suitable strength parameter for scaling interactions has been demonstrated in two-dimensional flows as the
pressure rise coefficient [61, 60]. In addition to affecting the scale of interactions, this parameter can also
significantly influence the onset of unsteadiness within transitional SBLIs [69, 70]. The pressure rise coefficient
equates to the interaction pressure rise normalized by the incoming flow dynamic pressure. Once extended to
the xn-y plane (as discussed prior) this returns equation (2.21).

Cpn =
ppost − ppre
q∞ cos2 ψ

=
2

γM2
∞ cos2 ψ

(
ppost
ppre

− 1

)
(2.21)

The pressure rise coefficients for a range of shock systems are shown in figure 2.8. Single shock systems
representing weak and strong solutions are shown in figure 2.8a and figure 2.8c, respectively. Dual shock systems
representing weak -weak and weak -strong are shown in figure 2.8b and figure 2.8d, respectively.

Typical swept compression ramp conditions are given directly by the weak solution (see figure 2.8a) where the
interaction strength increases as: i) Mach number (M∞) is decreased, ii) x-y plane ramp deflection angle (θsg)
is increased, or iii) sweep angle (ψ) is increased. The freestream strength of swept sharp fin shocks can also be
determined using this figure, providing the reference frame is considered such that the x-y plane shock generator
angle θ is defined in a plane perpendicular to the swept plane.

Alternatively, one can also refer to the strong solution data in figure 2.8c by considering the equivalences
between shock geometries [62]. For example, an unswept sharp fin shock could be defined with the weak solution
data using a sweep angle of ψ and x-y plane shock generator angle θ. It could also be defined in a reference frame
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perpendicular to this such that sweep is given by ψ = 90◦ − β and the new x-y plane shock generator angle is
0◦. In this new reference frame the two solutions correspond to a Mach wave (weak solution) or an oblique shock
(strong solution). The strong shock produces an inverse trend compared to the weak case. Namely, the strength
now decreases as: i) Mach number (M∞) is decreased, ii) x-y plane ramp deflection angle (θsg) is increased, or
iii) sweep angle (ψ) is increased.

Figure 2.8b describes the pressure rise across two weak reflected shocks, which forms the main focus of this
study. As found previously, shock generator angles are more limited in the two-shock system resulting in a
smaller envelope of permissible conditions that will result in attached shocks. At high Mach numbers and/or
low sweep angles, the interaction becomes largely insensitive to both Mach number and sweep (owing to small
angle approximations) and is therefore primarily governed by the x-y plane shock generator deflection angle.
This implies that in these conditions there is minimal spanwise deflection of the flow and it therefore behaves in
a quasi-2D manner. However, at low Mach numbers and/or moderate to high sweep angle, such a simplification
is not viable. Qualitatively, the response agrees with that of a single weak shock (see figure 2.8a) where the
interaction increases in strength for: i) decreased freestream Mach number, ii) increased sweep, or iii) increased
x-y plane shock generator deflection angle. Disregarding any of these effects when scaling the strength of an
SBLI may result in misinterpretation of fundamental mechanisms present. The weak -strong two-shock system is
shown in figure 2.8d for completeness.

The pressure rise coefficient has been used in unswept turbulent SBLIs to characterize the onset of flow separa-
tion. By establishing an empirical database of such experiments Souverein, Bakker and Dupont [60] demonstrated
that the onset of fully separated flow existed when Cpn > 0.33 (for low Reynolds number flows, where Reθ < 104),
or Cpn > 0.40 (for high Reynolds number flows, where Reθ > 104). A similar normalized approach may be taken
to assess Mach number variation across the shock structure by proposing an equivalent temperature rise coef-
ficient. Equation (2.22) normalizes the dimensional temperature rise across a shock structure by the difference
between stagnation and the local static temperature measured normal to the sweep (i.e. local dynamic temper-
ature). When used in conjunction with equation (2.14), this returns an assessment of Mach number throughout
the shock reflection, reduced into the two-parameter domain as discussed prior (see equation (2.23)).

CT n =
Tpost − Tpre

(T0 − T∞) cos2 ψ
=

2

(γ − 1)M2
∞ cos2 ψ

(
Tpost
Tpre

− 1

)
(2.22)

M2 =
2M2
∞
(
1− CT cos2 ψ

)
2 + (γ − 1)CTM2

∞ cos2 ψ
(2.23)

Demonstration of this temperature rise coefficient is shown in figure 2.9. Results are dominated by the strength
of the final shock, such that a strong final shock produces high temperature coefficients (indicating slower flow)
which increase with incoming Mach number and induced flow deflection (in xn-y plane). Weak -only shock systems
produces notably smaller temperature coefficients, although qualitatively retain a similar behaviorr.

Finally, one can use equation (2.14) again to return an alternative formulation for the downstream sideslip
angle η. The temperature ratio T/T∞ is constant regardless of the reference frame in which Mach number is
determined. One can use this feature to rewrite this expression as equation (2.24).

T

T∞
=

2 + (γ − 1)M2
∞ cos2 ψ

2 + (γ − 1)M2
n

(2.24)

Equation (2.25) defines the relationship between the Mach number measured normal to the sweep and the
absolute local Mach number for a given flow deflection. Using equation (2.24) to return Mn and equation (2.22)
to substitute CT n, this may be written as equation (2.26) and then employed to calculate the downstream sideslip
angle η. This presents as an alternate formulation of equation (2.17). Since the terms for temperature coefficient
CT n and xn-y plane deflection angle αn both collapse in the two-variable domain, one can use this equation to
determine the slideslip angle η for a given shock solution with a defined swept angle ψ.

M2

M2
n

= sin2 αn +
cos2 αn

cos2 (ψ + η)
(2.25)

tan (ψ + η)

tanψ
=

1

cosαn
√

1− CT
(2.26)
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(a) Weak incident shock. (b) Weak-weak shock reflection.

(c) Strong incident shock (d) Weak-strong shock reflection.

Figure 2.9: Normalised temperature rise coefficient across various shock systems. The left column (a and c)
represents conditions across a single shock, the right column (b and d) represents conditions across a shock
reflection where the first shock is a weak shock (required to induce a second shock). The top row (a and b)
features systems with a weak final shock, the bottom row (c and d) features systems with a strong final shock.
The shock detachment boundary is shown by a solid black line.

The relation tan (ψ + η) / tanψ can therefore be considered as the appropriate term for the normalized span-
wise flow deflection, as shown in figure 2.10. For a given shock generator sweep, the sideslip deflection is observed
to be greater for the weak -weak shock reflection when compared to the single weak shock. Both cases experi-
ence increased sideslip for increased shock generator deflection angles and decreased freestream Mach numbers.
Strong shocks significantly increase sideslip deflection over the weak shock counterparts. In this case, trends with
shock generator deflection angle and Mach number invert. Also, sideslip is reduced for increased shock generator
deflection angles and decreased freestream Mach numbers.

Attention is now returned to the three-parameter domain to demonstrate the effect of modifications to a
given shock reflection environment. A nominal flow field is defined using a shock generator with ψ = 22.5◦ and
θsg = 12.5◦ in Mach 3.0 flow. Figure 2.11 demonstrates the influence of these parameters with respect to the
pressure rise coefficient Cpn (as defined by equation (2.21)). Inspection of the data suggests that the normalized
pressure rise is most sensitive to changes in shock generator deflection angle. The effect of sweep and Mach
number appear to be less significant, a feature clearly evident on the broad bands in figure 2.11c. By considering
each parameter independently, one can establish the following partial derivatives at the nominal condition defined
above (ψ = 22.5◦, θsg = 12.5◦, M∞ = 3.0). This determines the relative influence on the interaction pressure
rise: ∂Cp/∂ψ = 0.0121 deg-1, ∂Cp/∂θsg = 0.102 deg-1, and ∂Cp/∂M∞ = −0.146. This approach can be followed
for any arbitrary configurations.
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(a) Weak incident shock. (b) Weak -weak shock reflection.

(c) Strong incident shock. (d) Weak -Strong shock reflection.

Figure 2.10: Normalised sideslip across various shock systems. The left column (a and c) represent conditions
across single shock, the right column (b and d) represent conditions across dual-shock reflection systems where
the first shock is a weak shock. The top row (a and b) features systems with a weak final shock, the bottom row
(c and d) features systems with a strong final shock. The shock detachment boundary is shown by a solid black
line. Note, the color scale differs between each row.

(a) Constant Mach number (M∞ = 3.0). (b) Constant x-z plane sweep angle
(ψ = 22.5◦).

(c) Constant x-y plane deflection angle
(θsg = 12.5◦).

Figure 2.11: Influence of sweep angle, deflection angle, and Mach number on the pressure rise across a weak-weak shock
reflection. Nominal case is for a ψ = 22.5◦ θsg = 12.5◦ shock generator in Mach 3.0 flow (indicated by the circle marker).
Each figure demonstrates the effect of varying two parameters while keeping the third constant. Filled contours represent
Cpn increments of 0.1.
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Figure 2.12: Schematic diagram of shock structure in inviscid flow past a swept sharp fin (adapted from [40]). L
represents an inviscid inception length, characterizing the spanwise extent of the curved root shock.

2.4.4 Comparisons to other interaction types

Flow under swept shock generators can be considered identical to that over an inverted inviscid swept compression
ramp. Both configurations experience flow deflection routinely defined in the x-y plane normal to the swept plane,
and therefore can be contrasted directly. As such, results from the model measured across the incident shock
agree with prior compression ramp-specific models that have been presented [41, 62]. The present model expands
upon this knowledge and characterizes the shock reflection against a wall parallel to the shock generator.

Comparisons with other supersonic deflected flow configurations can also be made, but consideration of the
reference frame is vital. To illustrate this one may consider the swept sharp fin configuration, as shown in
figure 2.12, which is similar to the shock structure at the root plane of a swept impinging oblique SBLI. Prior
research has characterized the shock structure and surface topology beneath the fin [40]. Away from the wall, the
shock develops at a consistent angle; however, near to the wall, the shock is shallower. This near-wall behavior
matches similar observations at the root of a swept impinging oblique SBLIs [51], and in analogous delta wing
flows [71, 72]. A state of equivalence between these flows can be made since each configuration demonstrates
highly swept oblique shocks interacting with non-porous plane. However, a crucial difference between these
configurations is in the definition of the shock generator geometries which needs to be understood to enable
comparison.

The swept sharp fin in figure 2.12 is essentially a flat plate with a swept sharp leading edge mounted normal
to the wall at an incidence to the incoming flow [40]. By this definition, the leading edge is not in the x-y′ plane,
but at a plane rotated around the y′ axis by an angle θ′. Figure 2.13 demonstrates the implication of this when
compared to the swept shock generator and compression ramp definitions discussed previously. The leading edge
is held constant between the two configurations, producing a difference in the wall location at the base of the
shock due to rotation around the z-axis of ξ, characterised by equation (2.27).

Since inviscid conditions collapse well in the shock generator xyz reference frame, it is desirable to transform
the swept sharp fin geometry into a swept impinging oblique shock generator such that a similar analysis can be
followed. The effect of this reference frame transformation is that the sharp fin sweep and deflection angles are
no longer equal to that defined for the effective 2D shock generator. Instead, equation (2.28) and equation (2.29)
are used to redefine these variables, respectively.

tan ξ = tanψ′ sin θ′ (2.27)

tanψ = tanψ′ cos θ′ cos ξ (2.28)

tan θsg = tan ξ/ tanψ (2.29)

Understanding the differences between these geometries is vital when comparing data from swept SBLIs
induced by various geometries. A focus of this article is the collapse of data with appropriate consideration of
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Figure 2.13: y-z plane comparison between swept sharp fin and shock reflections. The reference frame for the
swept sharp fin flow is given by the x, y′, and z′ vectors.

Figure 2.14: Shock equivalency for a range of shock generator geometries showing data associated with the
incident shock. Solutions along black contour lines indicate identical equivalent shocks, plotted with increments
of ∆M∞ cosψ = 0.2 at tan θsg/ cosψ = 0. Color contour levels reflect pressure ratio across shock, plotted with
increments of ∆p/p∞ = 1. Solution data is symmetrical around tan θsg/ cosψ = 0. For convenience, strong
solution is plotted on left side of figure, and weak solution plotted on the right.

the sweep. A similar collapse of inviscid swept sharp fin data requires substitution of appropriate terms into
the abscissa and ordinate definitions from figure 2.8. Equation (2.30) and equation (2.31) give the appropriate
relations, written in terms of the sharp fin geometry definition.

cosψ = cosψ′
√

tan2 ψ′ sin2 θ′ + 1 (2.30)

tan θsg = tan θ′
√

tan2 ψ′ sin2 θ′ + 1 (2.31)

It is clear that terms cancel when defining the abscissa variable, such that tan θ′/ cosψ′ = tan θsg/ cosψ.
However, the ordinate variable must now included the effect of deflection angle in addition to sweep, such that

it is defined as M∞ cosψ′
√

tan2 ψ′ sin2 θ′ + 1, which equates to M∞ cosψ′/ cos ξ, if equation (2.27) is utilized.

2.4.5 Equivalent Rotation

Providing the leading edge of a shock generator is located parallel to a shock defined in an equivalent 2D plane
with incidence βe, and that the shock generator surface induces a deflection in the same plane of θe then the
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resultant shock and downstream flow is identical, albeit transformed to an alternate reference frame. This means
infinite combinations of shock generator geometries can be used to induce a matching shock, providing a certain
relationship between sweep and deflection angle is followed. To maintain an identical shock, one can relate such
shock generator geometries to those of the equivalent plane flow, with the knowledge that these must remain
constant, as shown by equation (2.19) and equation (2.32). In the instance that tanψ = 0◦ and sinφ = 0◦

(true for any unswept configuration), the equivalent shock angle remains undefined using equation (2.32) alone,
equation (2.20) should therefore be used instead.

tanβe =
sinφ

tanψ
(2.32)

The fin inclusion angle ξ is defined previously using equation (2.27), meaning the relation for θe given by
equation (2.29) can be rewritten as equation (2.33). For any given rotation φ, a suitable combination of ψ and
θsg can therefore be defined which would result in an identical shock.

1

tan θe
= sinφ tanψ +

cosφ

tan θsg
(2.33)

This observation has significance because it separates the shock (typically the focus of most studies) from
the body used to induce it. As a result, a wide range of bodies can thus be designed to promote the same
shock, providing flexibility in the experimental design process. In addition, it highlights the continuum of shock
configurations avoiding common over-classification between SBLI configurations.

A simple example of this occurrence is the equivalency between an unswept sharp-fin induced shock and a
swept normal shock. Given a certain shock generator deflection angle θsg and freestream Mach number M∞, an
oblique shock will be induced with angle β (sweep is ψ = 0◦ by definition of the unswept fin). Since the lack of
sweep precludes any sideslip downstream of the shock, the angle of the equivalent plane is coincident with the
x-y plane, such that φ = 0◦. If one now considers a reference frame taken perpendicular to this (where φ̃ = 90◦),
then it follows that θ̃sg = 0◦ and ψ̃ = 90◦ − β. Using equation (2.20), the newly defined shock angle in the

x-y plane is given as β̃ = 90◦. The transformed configuration is thus equivalent to a normal shock, swept with
angle ψ̃.

Figure 2.14 demonstrates these relations by comparing various shock generator geometries to the pressure
ratio across the shock. The pressure ratio is dependent on only the 2D equivalent shock, therefore is constant for
any combination of shock generator geometries that would result in an identical shock. Figure 2.14 indicates this
behavior is true for both weak and strong shock solutions. Returning to the example above, if the shock induced
by the sharp fin were weak, then the contours reflecting the weak shock solution in figure 2.14 would be followed.
Likewise, if the shock were induced as a strong solution, the strong contours would be followed. Both solutions
result in a normal shock when transformed, only with different values of sweep to reflect the differences in shock
strength between the weak and strong solution. The resultant shock is effectively the swept shock experienced at
the floor at the root of the sharp fin. Since it is a normal shock, its strength scales with incident Mach number
M∞ cos ψ̃ (or M∞ sin β̃) alone, as widely reported in literature [36, 34].

To extend this example, consider that the shock experienced at the wall is no-longer normal but inclined
such that it impinges upon the wall (i.e. to impose a shock reflection). Now both β̃ 6= 90◦ and θ̃sg 6= 90◦.

The x-y shock angle β̃ can now be set such that a strong or weak shock solution is possible. Following the
contours in figure 2.14, it is clear a wide range of solutions are possible that satisfy the criteria of generating
an identical shock. The shock generator may be located with leading edge parallel to the floor to maintain the
present reference frame, or it may be rotated by varying φ to any prescribed angle. Indeed, the shock may be
equally induced by a forward swept sharp fin mounted perpendicular to the floor. This approach may prove
appealing as it forcefully prevents viscous contamination at the root of a swept impinging SBLI as has been
reported in associated studies [51, 52]. The x-z deflection angle of such a fin η′ is defined using equation (2.34),
where φ̃ reflects the equivalent 2D plane rotation associated with a horizontal shock generator with leading edge
at constant y.

tan η′ =
tan θsg cos ξ

cos
(
φ− φ̃− ξ

) (2.34)
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(a) Horizontal shock generator; ψ = 22.5◦, θsg = 12.5◦,
∆φ = 0.0◦, ξ = 5.2◦, θn = 13.5◦.
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(b) Delta wing shock generator: ψ = 29.4◦, θsg = 12.2◦,
∆φ = −7.0◦, θ′ = 12.1◦, ξ = 7.0◦, θn = 14.0◦.
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(c) Swept vertical sharp fin: ψ = −51.4◦, θsg = 5.6◦,
∆φ = 90.0◦, η′ = 5.6◦, ξ = 7.0◦, θn = 8.9◦.
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(d) Skewed & swept sharp fin: ψ = −46.8◦, θsg = 9.4◦,
∆φ = 72.1◦, η′ = 10.5◦, ξ = 10.0◦, θn = 13.6◦.

Figure 2.15: Examples of equivalent shock generators with Mach 2.3 freestream flow, plotted with normalized
domain width 1.5h. Impinging shock is shaded in red, and the reflected shock shaded in blue. The black dotted
line indicates the equivalent 2D plane for the impinging shock. Black dashed lines indicate streamlines emanating
from [x, y, z]/h = [−∞, 1, 0] and [x, y, z]/h = [−∞, 0, 0]. Dashed-dotted lines in (a) and (b) indicate the impinging
shock end-effect influence region as determined by the intersection of the impinging shock and the downstream
Mach wave cone (assuming flow expansion at spanwise edges of shock generators). Similar features in (c) and (d)
have been omitted as they span the entire shock.

Figure 2.15 demonstrates four shock generators that would produce an identical shock. The horizontal shock
generator in figure 2.15a retains the reference frame of the reflection and should therefore be used when quantifying
flow in this region. Using a simple transformation procedure the remaining shock generator geometries can be
defined such that an identical shock is induced. Delta wing generators (see figure 2.15b) are attractive options
for experimentation due to the relative ease of construction, and the reduction of inviscid relief effects at the root
as opposed to the horizontal generator.

A forward swept sharp fin can similarly be defined to create the shock, see figure 2.15c. The inviscid relief
effects at root across the impinging shock are now mitigated as the angle of the fin surface runs parallel to the
induced flow deflection by definition. However, downstream of the reflected shock this no-longer remains true as
the spanwise deflection acts to induce a similar relief effect and will result in a localized weaker shock (η′ 6= ηr).
Finally, figure 2.15d demonstrates a skewed and swept shock generator that induces the desired impinging shock,
but also runs parallel to the flow downstream of the reflected shock such that (η′ = ηr), thus mitigating localized
weakening of the reflected shock.
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Figure 2.16: Attached two-shock configuration domain for Mach 3.0 flow defined normal to sweep. The two shock
angles are prescribed relative to the incoming flow, normal to the sweep (with positive local deflection downwards
and upwards for the first and second shock, respectively, see figure 2.2 and inset subfigure for reference). Colored
contours of pressure coefficient are plotted in increments of 0.1. Black contours show downstream deflection α2n

in 5◦ increments, where thin dashed lines are negative, thin solid lines are positive, and the thick solid line shows
zero deflection (i.e. a flat wall). The magenta line denotes when the second shock is locally normal. The red line
identifies the weak/strong solution. The blue line outlines the region of supersonic downstream flow (M3n

> 1).

A further point of concern is the influence region by which edge-effects of the generator can influence the
impinging shock and thus the shock reflection. By identifying the intersection of the downstream Mach wave
cone and the shock itself, one can establish the affected region [73, 74]. This approach assumes that flow expansion
occurs in these regions such that the affected Mach wave cone decreases in size thereby also reducing its region of
influence. Should compression occur, the influence zone would increase in size and may induce additional shocks.

The highly forward-swept fins of figure 2.15c and figure 2.15d are particularly susceptible to end effects since
the influence of the upper edge of the fin spans the entire induced shock. In addition, this shock represents
the strong local shock solution at the fin and therefore would likely not be induced in typical flow without
augmentation of back pressure. This shows that, while the fins reduce the localized weakening of the shock
system at the root, these generators cannot be used in isolation. They should therefore be combined with
a rearward-sweep shock generator (such as those in figure 2.15a and figure 2.15b) to form a hook-like model
to move the edge influence region away from the root. This induces a back pressure requirement that will
promote the strong fin shock along with the matching weak generator shock. Providing the equivalent shock
generator relations are followed when defining any transitions between geometries, the change may be gradual or
discontinuous.

The equivalence between the interactions outline above suggests that the means by which shocks are induced
has no relevance on the shock reflection itself (in an inviscid sense only). Instead, one can consider the reflection
behavior as a function of the shock angles alone. It has been shown previously that resolving flow normal to the
imposed sweep removes dependency of the shock system on sweep. Figure 2.16 demonstrates this approach for an
incoming Mach number normal to the sweep of 3.0. The resulting two-parameter domain shows the full range of
attached one- and two-shock systems. Commonly studied SBLI configurations can be overlaid to understand the
variety across the domain, and to highlight the continuous nature that describes any differences between these
configurations. Single shock flows associated with compression ramps and normal shocks are found assuming
an infinitely weak impinging shock, such that β1n

= µ1n
(where µ1n

= 19.47◦ for M1n
= 3.0). Similarly, shock

reflections with a flat wall are found by following the zero deflection contour where α2n = 0◦.
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Figure 2.17: Schematic showing curved shock region near the root plane (from Roe [75], adapted from Babaev
[76]).

2.4.6 Shock Structure at the Root

Typical impinging shocks experienced outside of fundamental research environments are unlikely to be induced
via the unique condition shown in figure 2.15d, where the domain spanwise boundary planes (in this case the
shock generator) are aligned with downstream sideslip angles so as to prevent influencing the inviscid shock. It is
therefore important to gain an understanding of the broader environment in which such an effect is experienced.

Impinging oblique SBLIs are commonly induced by a shock generating surface located away from the wall.
When swept, a spanwise component of velocity is induced. If a slip plane is introduced to the fluid that restricts
such flow (i.e. sidewalls of a engine inlet, or symmetry plane beneath delta wing) this could induce either a
secondary compression (forming a shock reflection) or a local expansion region, depending on the inclination of
the fluid to the plane [72]. In the former case, the reflected shock can be solved directly using the inviscid model
presented above, providing the appropriate reference frame is considered and the shock is attached. However,
determination of latter case that exhibits local expansion and acceleration of the fluid is significantly more
challenging and is addressed below.

A commonly studied configuration which exhibits this behavior is flow near the centerline beneath a delta
wing model. The local expansion acts to relieve the downstream flow deflection requirements, weakening the
shock, and moving the shock-wall impingement location further downstream. This is shown schematically in
figure 2.12 for an inviscid swept sharp fin configuration which is identical to the delta wing flow (albeit split at
the centerline symmetry plane). Figure 2.17 shows how the outboard region of the flow is conically supersonic,
equal to the uniform flow predicted by the present inviscid model. The central region is conically subsonic and
bound by the Mach wave emanating from flow at the apex.

The solution for the shock shape and downstream flow conditions in this region is not directly solvable
[40]. Various numerical solutions have been proposed [76, 77, 72]. In addition, several simplified models of this
region have been created [78, 73, 75]. However, their suitability in modeling shock shape at moderate Mach
numbers is generally poor as they rely on assumptions proposed to address hypersonic flows [79]. Messiter [79]
scales the dimensional variables using ε, defined as the inverse density ratio across an equivalent unswept shock
(i.e. ε = ρ1/ρ2, see equation (2.35)). As the shock attitude is not known a priori it is assumed to be parallel to
the unswept shock generator surface (β′ = θ′) inclined to the flow running parallel to the shock generator surface,
a reasonable assumption in hypersonic flows with significant flow deflection.

ε =
ρ∞
ρ

=
γ − 1

γ + 1
+

2

(γ + 1)M2
∞ sin2 θ′

(2.35)

Dimensional terms are normalised using ε in equation (2.36), equation (2.37), equation (2.38), and equa-
tion (2.39). The terms noted with a bar accent (e.g. x̄) are dimensional and defined in a reference frame rotated
around the y axis, such that the x̄ axis runs parallel to the shock generator surface with the origin at the gener-
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ator apex. The spanwise extent of the shock generator is normalized using equation (2.37) to define ž = Ω when
z/x̄ = b, such that ž varies between 0 at the central plane to Ω at the tip.

y̌ =
ȳ/x̄

ε tan θ′
(2.36)

ž =
z/x̄

ε
1
2 tan θ′

(2.37)

w̌ =
w

ε
1
2U∞ sin θ′

(2.38)

p̌ =
1

ε

[
p− p∞

ρ∞U2
∞ sin2 θ′

− 1

]
=

1

ε

[
Cp

sin2 θ′
− 1

]
(2.39)

At high-Mach numbers and significant flow deflections, ε tends towards (γ − 1) / (γ + 1) and closely resembles
conditions downstream of a real shock over a matching wedge. However, at low-Mach numbers and small flow
deflections the disparity between this estimation and the real flow can be striking, resulting in significant errors
when estimating shock shape and strength [72, 75].

Roe’s delta wing induced shock estimation[75] is attractive as the solution is continuous, derived from the
equations of motion, and relies on simple formulation. A summary of the approach is provided below, but
the reader is directed to the source papers for full details of derivation [79, 75]. Employing Messiter’s non-
dimensionalization approach[79] with ε (returning y̌ and ž, etc.), Roe reduces the shock structure to three zones:
i) uniform outer flow with gradient dy̌/dž = w0, ii) intermediate parabolic blending region, and iii) parabolic
central region with zero gradient at ž = 0.

i) y̌s = −w̌0 (ž − Ω) 1 + w̌0 ≤ž ≤ Ω

ii) y̌s = 1− w̌0 +
w̌2

0

2
− (ž − 1)

2

2
1 + w̌1 ≤ž < 1 + w̌0

iii) y̌s = 1− w̌0 +
w̌2

0

2
+
w̌1

2
− w̌1

1 + w̌1

ž2

2
0 ≤ž < 1 + w̌1 (2.40)

The terms w̌0 and w̌1 represent non-dimensionalized spanwise velocities and are determined using equa-
tion (2.41) and equation (2.42). They also act to define the matching points between the three curves listed
above defining the shock shape, such that the central curved shock region is bound by ž = 1 + w̌1 and the outer
uniform shock region is bound by ž = 1 + w̌0. Solving equation (2.41) for w̌0 also reveals further significance of
the spanwise term Ω, where if it has a value less than 2 there is no solution and the shock is fully detached across
the entire span.

Ω =
w̌2

0 + 1

w0
(2.41)

(1 + w1)
2

= 1 + 3w̌2
0 − 2w̌3

0 (2.42)

Finally, the shock structure is transformed back to the upstream-aligned reference frame using equation (2.43)
and equation (2.44).

y′s
x

=
tanψ′ + ȳ/x̄

1 +
(
ȳ/x̄

)
tanψ′

(2.43)

z′

x
=

z̄/x̄

cos θ′ −
(
ȳ/x̄

)
sin θ′

(2.44)

In a similar manner, the model also returns estimation of the non-dimensionalized pressure downstream of
the shock using equation (2.45).
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Figure 2.18: Shock angles for Mach 2.95 delta wing experiment [40]. Markers indicate experimental data for the
root shock angle, from Settles and Lu (1985). Solid and dashed bold lines indicate the inviscid quasi-infinite span
shock angle and root shock angle (using ε∗), respectively, defined in a matching reference frame away from the
wall using the present inviscid model. Similarly, the corresponding faded solid and dashed lines indicate inviscid
shock angles and root shock angles, respectively, with results extracted from Roe’s uncorrected model for the
shock structure (using ε).

i) p̌ = 1 +
w̌2

0

2
1 + w̌0 ≤ž ≤ Ω

ii) p̌ = 1 +
w̌2

0

2
+ 2 (ž − 1− w̌0) 1 + w̌1 ≤ž < 1 + w̌0

iii) p̌ = A+By̌2 0 ≤ž < 1 + w̌1 (2.45)

where the terms A and B are given by equation (2.46) and equation (2.47), respectively.

A =
(

1− w2
0

)
+
w1

2

(
6w2

1 + 9w1 + 4
)

+ 3w2
1 (1 + w1)

2
log

(
w1

1 + w1

)
(2.46)

B = −3w1

[
1

(1 + w1)
+

1

2 (1 + w1)
2 + log

(
w1

1 + w1

)]
(2.47)

While the model offers useful estimation of the induced shock shape and strength, there are notable discrep-
ancies at low Mach numbers and strong flow deflections [75]. Comparison to such experimental data is shown in
figure 2.18 for various delta wing geometries in M∞ = 2.95 flow [40]. The experimental centerline shock angle
is derived from Schlieren imaging and compared to the theoretical value determined from Roe’s model using
tanβ′0 = y′s/x (at z′ = 0). Significant differences are observed between the data which appear to become worse
as the deflection angle is reduced (consistent with strengthening invalidity of assumptions when defining ε as a
scaling variable).

As the uniform outer flow is now directly determined using the inviscid infinite-span model presented in
this paper, one can use the resultant shock geometries to define the non-dimensionalised shock gradient w̌0

and, in turn, estimate a revised scaling parameter, termed ε∗ for clarity. After some manipulation, this returns
equation (2.48), which replaces the previous definition of ε given in equation (2.35).
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Figure 2.19: Schematic diagram demonstrating quasi-infinite physical geometries used to define normalization
variable ε∗ (to scale for M∞ = 2.95, ψ′ = 40◦, θ′ = 15◦).

ε∗ =
tan

(
β′ − θ′

)
tan θ′

− tan2
(
β′ − θ′

)
tan2 ψ′ (2.48)

This new term is thus used to normalise dimensional variables following Messiter’s approach [79]. Visualized

in figure 2.19, this parameter physically represents ε∗ = (| ~B|/|~C|)− (| ~B|/| ~D|)2 (where each vector is defined
relative to vertex A).

The revised estimation of root shock shapes for the delta wing experiments presented in figure 2.18 shows
significant improvement when using ε∗ over the previous scaling term ε. The modeled root shock structures
become shallower in all cases, closely matching experimental observations at moderate and low angles of sweep. At
higher sweep angles (within approximately 5◦ of shock detachment), some divergence is seen between experimental
and modeled root shocks. This divergence is associated with invalid assumptions that guide formation of Roe’s
model. As conditions for a detached shock are approached, the curved root shock structure extends over a greater
extent of the shock generator span and errors due to imposed assumptions are exacerbated. The quasi-infinite
shock model is an analytical solution to the shock relations, but predictions of the root structure remain a
simplified model. Thus, errors grow since this model is required to predict a greater extent of the shock shape.
Regardless, the error at high sweep is still less than that of the previous uncorrected model in most cases.

In addition, since the present motivation of modeling the root shock structure is to understand the im-
pingement pattern for an attached reflected shock, it follows that the deflection at the shock generator will be
significantly below conditions required for a detached impingement shock (see figure 2.7). Therefore, use of the
model correction is justified providing the impinging shock is not close to detachment.

Sample shock structures and downstream pressure profiles are shown in figure 2.20 compared to various
validation datasets. Implementation of the revised scaling approach demonstrates a significant improvement
against all other models when predicting the shock structure. Experimental data for the Mach 2.95 shock shape
in figure 2.20a was determined by observing Mach waves emanating from a delta wing model with a notched
leading edge [40]. Excellent agreement is observed between the experimental data and the revised Roe model in the
root region. However, the model predicts a shallower shock in the outer region of the flow. This discrepancy is an
experimental artifact due to an oversight when interpreting the schlieren observations of the notch-induced shock
ripples. It is assumed that the shock ripples propagate along the shock in a strictly 2D sense (i.e. z = constant);
however, an infinitesimal notch will produce a Mach wave cone that intersects with the shock in two locations,
which are dependent on the shock attitude and the direction and speed of the downstream flow. In this case,
the upstream shock ripple extends from the notch towards the root as it is observed further downstream. By
assuming this to be within the same spanwise plane as the notch, the shock angle is over-predicted resulting in
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(a) Experimental validation: M = 2.95, ψ′ = 40.0◦, and
θ′ = 15.0◦.

(b) Numerical validation: M = 4.0, ψ′ = 50.0◦, and θ′ = 15.0◦.

Figure 2.20: Application of revised scaling approach for root-limited swept shocks using: (a) experimental [40],
and (b) numerical [77, 80] reference data. Other shock models are shown for comparison [72, 75].

the over-estimate observed in figure 2.20a. The reduction of shock sweep near the root decreases this disparity to
zero as the centerline of the delta wing is approached, thus giving more accurate shock estimation in this region.

The shock location is established directly in numerically derived results [77] shown in figure 2.20b, and return
an excellent matches across the entire shock when compared to the revised model using ε∗. Surface pressure
coefficients derived from the model agree well with the numerical data [77, 80], but fail to fully characterise
the smoothing of the spanwise pressure rise as is the case for all proposed models in literature. Regardless, the
revised model offers an excellent prediction of the centerline pressure and agrees with the infinite span results
(by definition by using ε∗). Other proposed models [75, 72] tend to over-predict the steepness of the shock and
the associated shock-induced pressure rise.

2.4.7 Swept shock impingement

The above estimation of the shock shape at a delta-wing root enables prediction of the shape of the impingement
line exhibited by a swept impinging oblique shock induced by any given shock generator (providing the resultant
shocks remain attached). The procedure is as follows:

1. The shock generator geometry is transformed into a reference frame such that the generator leading edge
is perpendicular to the no-penetration plane delimiting the generator root (θsg, ψ, M∞).

2. The quasi-infinite swept shock solution is determined using the prescribed model (to return φ, section 2.2).

3. An equivalent shock generator is found that satisfies ξ = ∆φ, such that the leading edge matches a corre-
sponding delta-wing model, and that the root plane is oriented to be coincident with root plane (θ′ and ψ′,
section 2.3.2.4.4 and section 2.3.2.4.5).

4. The root shock structure is modeled using Roe’s method, corrected using knowledge of the quasi-infinite
shock solution (ε∗, section 2.3.2.4.6).

5. The resultant shock shape is transformed for a given wall position, to return the impingement line (ximp.,
zimp.).

This approach is demonstrated in Mach 2.3 flow in figure 2.21 for θsg = 12.5◦ shock generators installed
parallel to the floor plane, with a range of sweep angles. Away from the root, the shock reaches its quasi-infinite
span orientation. However, the floor impingement line at the root noticeably demonstrates a shallower sweep
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(a) Inviscid swept oblique shock impingement line, cal-
culated from Roe’s model[75] using ε∗ correction.

(b) Gross’ interaction footprint [53] (ψ = 40◦) with contours of pressure.
Box shows domain from (a).

Figure 2.21: Mach 2.3 oblique shock floor impingement footprint (θsg = 12.5◦).

angle, reducing to zero sweep at the root plane thus satisfying the zero-crossflow condition mandated by the
no-penetration root plane. The location of the transition zone between these regions is associated with the Mach
cone downstream of the shock at the root apex. Thus, in the zero sweep limit, the corner location for figure 2.21a
is at z/H = 0.731 (see equation (2.49)). As sweep is increased, the conditions for the shock to become detached
are approached and a greater extent of the shock is curved. Thus, the corner location tends to z = ∞ for
a semi-infinite span shock generator. In addition, the transition region becomes more smoothed as sweep is
increased.

zc,ψ=0◦

H
=

1

sinβ

√
cos2 (β − θ)

1− 1
M2

2

− 1 (2.49)

This development at the root is reminiscent of the inception length observed near the root of other swept
SBLIs such as sharp fins and swept compression ramps [41, 35, 43]. However, in those cases, such an inception
length is solely due to the viscous flow describing the development of the separation bubble as z = 0 at the wall.
In the present configuration, this feature is partly due to inviscid effects, motivating the used of the term ‘inviscid
inception region’. This length is imposed by curvature of the shock near the root since the shock responds to the
no-penetration condition here. Once viscous features are included, the actual inception length will be affected
by viscous and inviscid factors, thus affecting the spanwise development of the interaction (see figure 2.21b).

These observations indicate that the swept impinging oblique shock interaction can be considered a dimen-
sional interaction when root shock curvature is present. Its features are scaled by these length scales in addition
to the boundary layer encountered by the interaction [17]. However, a non-dimensional form of the configuration
can be induced providing effective design of the shock generator is undertaken thus, enabling a fundamental
breakdown of features (see section 2.4.5).

2.5 Summary

This section presents an overview of the formulation and results obtained from an inviscid model used to predict
the baseline shock structure and effects of sweep for an impinging SBLI. A fundamental consideration of features
pertinent to an inviscid shock reflection system has been conducted. Using an analytical model, this flow has been
parameterized and considered for a variety of Mach numbers, sweep angles, and flow deflection angles. A collapse
of resultant flows into a two-parameter domain has been demonstrated, namely the shock generator deflection
angle and incoming Mach number, both measured normal to the swept leading edge. Application of the model
to other configurations has been demonstrated including posing the relevant transformation terms required to
extend this two-parameter domain to swept sharp fin/delta wing flows.
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The onset of shock detachment, which has been associated with conical development of swept SBLIs, collapses
into the simplified two-variable domain. Experimental observations of cylindrical/conical SBLI similarities in
swept compression ramp configurations appear to agree with the hypothesis of Settles and Teng [41] in that a
reduced Mach number Mslip within the boundary layer dictates the onset of shock detachment and ultimately
the transition between cylindrical and conical SBLI development. However, explanation of this collapse still lacks
an established physical mechanism. Shock detachment does not appear to be the dominant mechanism when
sharp-fins are assessed.

The effect of Mach number and shock generator geometry on shock-induced pressure rise is demonstrated for a
variety of one and two shock configurations featuring weak and/or strong shock solutions. At low Mach numbers
(below approximately 3.5), the strength of weak -weak shock reflections is observed to rise with increased sweep,
increased shock generator deflection angle, and decreased incoming Mach number. At higher-Mach numbers,
the relation between incoming Mach number and interaction strength inverts. Such observations are especially
critical when assessing transitional SBLIs as subtle variations in strength can correspond to significant changes
in flow structure and unsteady behavior.

Using the prescribed model, the equivalence between various one- and two-shock systems is established. It is
shown that a given shock can be induced through a continuous range of shock generator geometries that satisfy
given relations. Using this observation, a wealth of information on delta-wing and swept sharp fins is utilized to
further develop understanding of the inviscid swept impinging shock interaction. A model for shock curvature
at the root of a delta wing flow is revised using information of the quasi-infinite span oblique shock, and applied
to the root of a swept impinging shock. The resultant estimation of shock shape is demonstrated to accurately
predict experimental and simulation validation cases.

Finally, a method to estimate the shape of the wall impingement line for an arbitrary shock generator geometry
is defined. The presence of an inviscid inception length is demonstrated when the shock generator root plane
restricts spanwise flow, resulting in curvature of the shock. Thus, a length scale associated with the height of the
shock generator apex is imposed on the resultant interaction, acting in addition to the viscous inception length
reported in literature for a range of other swept SBLIs. Information is also provided to develop a shock generator
that eliminates the inviscid inception length, enabling fundamental investigations in which data can be directly
compared to other SBLI configurations that have been presented in literature.



3. DNS Investigation of SBLIs in Supersonic Flows

The interaction between an impinging oblique shock–wave and a laminar boundary layer on a flat plate is
investigated using direct numerical simulations. The two–dimensional separation bubble resulting from the SBLI
at freestream Mach number of 2.3 for the approach flow is investigated in detail. The flow parameters used for the
present investigation match the laboratory conditions in the experiments conducted at the UA. In addition to the
steady flow field calculations, in order to study the linear stability behavior of the separation bubble, the response
to low–amplitude disturbances is investigated using linearized Navier Stokes calculations. For comparison, both
the development of two–dimensional and three–dimensional (oblique) disturbances are studied with and without
the impinging oblique shock. Furthermore, the effects of the shock incidence angle and Reynolds number are also
investigated. Finally, three–dimensional direct numerical simulations are performed in order to investigate the
laminar-turbulent transition process in the presence of a laminar separation bubble generated by an impinging
shock–wave.

3.1 Physical Problem and Computational Setup

The flow parameters in our present investigation of the interaction between an oblique shock–wave and a laminar
boundary layer on a flat plate match the conditions in the experiments by Little and co-workers [81] at the
UA. A schematic of the computational setup for the direct numerical simulations is presented in figure 3.1. The
approach flow in the UA experiments has a Mach number of 2.3. A shock generator plate is used to create an
oblique shock that impinges on the boundary layer, causing separation. A number of different shock inclinations
and configurations were studied by Little and co-workers, but in this paper we focus on a 2D configuration.
The variation of viscosity with the temperature is assumed to obey the Sutherland’s law, for which the value of
the Sutherland constant temperature is T ∗2 = 110.4 K and the free-stream temperature is T ∗∞ = 144.80 K. The
relevant simulation parameters used for the results presented in this paper are provided in table 3.1.

Note that in the UA experiments the approach boundary layer is completely turbulent. In the present work,
however, we are considering the interaction of a shock–wave and a laminar boundary layer in order to provide
possible insights into the instability mechanisms of the more complicated turbulent SBLI. In future research, we
will also investigate SBLI with a completely turbulent approach boundary layer as in the experiements.

Flow Parameters :

Re/m [-] 5.0 · 106

M [-] 2.3
T ∗∞ [K] 144.80
Pr [-] 0.72
γ [-] 1.40
θ [deg.] 3.0
σ [deg.] 28.10

Table 3.1: Flow parameters used in the simulations presented in this paper (based on the conditions in the
experiments conducted by Little and co-workers [81] at the University of Arizona). “CASE A”.

45
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(a) SBLI test section of the supersonic wind tunnel at the University
of Arizona.

 COMPUTATIONAL
   DOMAIN

INCIDENT
SHOCK

REFLECTED
SHOCK

WEDGE

(b) Schematic of the computational setup used for the direct numerical simulations.

Figure 3.1: Comparison of experimental and numerical simulation schematic.

3.2 Governing Equations and Numerical Methods

3.2.1 Governing Equations

The physical problem under consideration is governed by the compressible Navier–Stokes equations, consisting of
conservation of mass, momentum and total energy. The fluid is assumed to be an ideal gas with constant specific
heat coefficients. For simplicity, all equations in this section are presented in tensor notation.

The non-dimensional continuity, momentum and the energy equations are:

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (3.1)

∂

∂t
(ρui) +

∂

∂xk
[ρuiuk + pδik − τik] = 0, (3.2)

∂

∂t
(ρE) +

∂

∂xk

[
ρuk

(
E +

p

ρ

)
+ qk − uiτik

]
= 0. (3.3)
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The stress tensor and the heat-flux vector are computed as

τik =
µ

Re

(
∂ui
∂xk

+
∂uk
∂xi
− 2

3

∂uj
∂xj

δik

)
, (3.4)

qk =
−µ

(γ − 1)M2PrRe

∂T

∂xk
, (3.5)

respectively, where γ = 1.4, and Pr = 0.72. To close the system of equations, the pressure is obtained from the
non-dimensional equation of state for ideal gas

p =
1

γM2
ρT, (3.6)

and the viscosity is calculated using Sutherland’s law as follows:

µ = T
3
2

1 +
T∗2
T∗∞

T +
T∗2
T∗∞

, (3.7)

with
T ∗2 = 110.4 K (3.8)

Furthermore, the nondimensional parameters in the above equations are defined as

Re =
ρ∗∞U

∗
∞L
∗

µ∗∞
, P r =

µ∗∞c
∗
p∞

k∗
and M =

U∗∞
c∗∞

=
U∗∞√
γp∗∞/ρ

∗
∞
, (3.9)

with c, k, cp being the speed of sound, the thermal conductivity and the specific heat at constant pressure,
respectively. The subscript ∞ denotes free-stream values and the superscript ∗ denotes dimensional quantities.

3.2.2 Numerical Scheme

The Navier–Stokes equations are integrated in time with a standard 4th-order accurate Runge–Kutta scheme.
The spatial discretization is based on high-order accurate finite differences. In particular, the derivatives of
the viscous terms and the source term are calculated by 6th-order non-compact central finite differences in the
streamwise direction and by 4th-order central finite differences in the wall-normal direction. The inviscid fluxes
are divided into an upwind flux and a downwind flux using van Leer’s splitting. ] [82] Then, grid centered
upwind differences [83] with 9th-order accuracy are applied to evaluate the derivatives for these fluxes. These
grid centered upwind differences are derived using the factor α, which prescribes the degree of upwinding,

∂φi
∂x

=
i+N∑

k=i−N

ckφk − α∆x
∂2N−1φi
∂x2N−1

. (3.10)

Hereby φi denotes the flow variable at the grid point i, the ck’s are the stencil coefficients and ∆x is the averaged
grid spacing over the stencil interval. The parameter N determines the number of grid points in the stencil. For
example the 9th-order upwind scheme is derived by setting N = 5 and α = −1500. Note that for α = 0 the
upwind scheme reduces to a central difference scheme. All stencil coefficients are derived on a stretched grid. To
capture shock waves, high order WENO schemes are employed.

This high–order accurate finite difference code was developed in our CFD Laboratory to perform super-
sonic/hypersonic transition research for flat–plate and conical geometries. For a more detailed description of the
code see Laible et al. [84, 85]

3.2.3 Boundary Conditions

The inflow for supersonic boundary layer simulations is split into two regions: a subsonic region (M < 1) close to
the wall and a supersonic region (M > 1). In the supersonic region, Dirichlet conditions for u, v, w, T, p and ρ are
specified (obtained from similarity solution). For the subsonic region in the boundary layer, the non-reflecting
boundary condition suggested by Poinsot & Lele [86] is adopted.
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Flow Parameters :

Re [-] 2.96× 105

M [-] 2.00
T ∗∞ [K] 288.00
Pr [-] 0.72
γ [-] 1.40
θ [deg.] 3.40
σ [deg.] 32.58

Table 3.2: Flow parameters in the experiments conducted by Hakkinen et al. [88].

On the flat–plate, the no-penetration (v = 0) and the no-slip (u = 0, w = 0) conditions are enforced. The
wall is set to be isothermal with temperature equal to the laminar adiabatic wall temperature. The value of the
pressure at the wall boundary is obtained from the y-momentum equation. Finally, density is computed using
the equation of state (equation 3.6).

At the outflow, the second derivatives of the primitive variables are set to zero: ∂2u/∂x2 = 0, ∂2v/∂x2 = 0,
∂2w/∂x2 = 0, ∂2T/∂x2 = 0, ∂2p/∂x2 = 0. Density is then determined from temperature and pressure by using
the equation of state (equation 3.6). For the pulse disturbance simulations and the three–dimensional (transitional
SBLI) simulations, a buffer domain technique is applied, where finite amplitude disturbances are ramped down
to zero at the outflow.

The boundary conditions at the freestream boundary are applied in a different manner for the simulations
with no shock and the SBLI. To calculate the steady flat–plate solution with no shock a characteristic boundary
condition [87] is used. At the beginning of the SBLI simulations, the steady solution with no shock is specified
within the whole integration domain as initial condition. Also at the beginning of the simulation, the shock is
introduced into the freestream boundary. For several grid points upstream and downstream of the shock location
the relevant flow variables are held constant. Elsewhere, the characteristic boundary condition is used. The
variables downstream of the shock location at the freestream boundary are calculated by the Rankine–Hugoniot
relations.

3.3 Validation

3.3.1 Shock Induced Laminar Separation bubble in a Mach 2 Boundary Layer

For validating the computational setup used in the present investigation of laminar SBLI, the experiments of
Hakkinen et al. [88] were considered first. The approach flow in the Hakkinen experiments has a Mach number of
2.0 and a Reynolds number of 2.96× 105 (based on the impingement location in an inviscid case). Several shock
inclinations were studied by Hakkinen et al., but for validation purposes we chose a 2D configuration with a
wedge angle of θ = 3◦, corresponding to a shock angle σ = 32.58◦ and an overall pressure ratio between pressure
after the reflected shock and the upstream pressure equal to 1.4.

Skin friction and wall pressure along the plate are presented in figure 3.2 and are compared with results from
Hakkinen et al. [88], Katzer [89] and Sandham et al. [29, 90]. As expected, the results show rapid changes near the
separation and reattachment and a pressure plateau in the bubble region. The pressure ratio reaches the value
of 1.4 downstream of the reflected shock in accordance with the Rankine-Hugoniot relations. Both upstream and
downstream of the separated flow region, the skin friction curve follows the laminar solution (Eckert [29]).

The calculation results (both ours and others) are qualitatively similar to the experimental measurements.
However, the calculated skin friction and wall pressure differ quantitatively from the benchmark experiment.
The calculated separation bubble is longer in the present study and the computations by others. Possibly,
three–dimensional effects present in Hakkinen’s experiment, and/or the effects of freestream turbulence may
reduce the bubble length when compared to our two–dimensional numerical calculations and those published in
the literature [89, ?]. Katzer [89] also obtained a longer bubble than in the experiments, however it is shorter
than ours and those from other recent two–dimensional numerical calculation. The reasons for these differences
have been investigated recently by Sansica et al. [29]. They also studied the effect of using different models for
calculating the viscosity as a function of temperature on the bubble length. They concluded that the different
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methods used to calculate the viscosity does not affect the bubble length. Our results closely match those by
Sandham and co-workers [29].

Contours of streamwise velocity, wall–normal velocity, pressure, temperature, density and Mach number are
shown in figures 3.3 and 3.4. In can be observed that, as the shock wave impinges on the laminar boundary layer,
it causes separation of the flow. Oblique shocks, compression waves in the separation and reattachment regions
and an expansion fan emanating from the top of the bubble are visible in the pressure plot. The domain size is
chosen such that the reflected waves of the impinging shock leave the domain at the outflow boundary. Contours
of density together with the sonic line and streamlines and the wall–normal density gradient (“Schlieren”) are
plotted in figure 3.5. The complex shock system is visible in the density contours and the impinging oblique shock
wave and the reflected wave is clearly visible in the contours of wall–normal density gradient. The asymmetric
structure of the bubble can be seen in figure 3.6, where streamlines are plotted (see also in figure 3.5b). This
asymmetric behavior of the flow within the separation bubble is confirmed by the asymmetrical distribution of
the skin friction in figure 3.2, with a lower minimum at the back of the bubble due to the center of recirculation
being shifted downstream.

3.3.2 Linearized Navier–Stokes Calculations of Spatial Stability for a Mach 2 Bound-
ary Layer

In the present work we are employing a LNS solver [91] developed in our CFD laboratory to study the stability
of the flow in the presence of a laminar separation bubble that is generated by the SBLI. The linearized Navier–
Stokes solver was first validated by performing stability calculations for a Mach 2 flat–plate boundary layer
without SBLI and comparing the results with DNS and LST. We performed stability calculations by introducing
a short duration (localized) pulse disturbance of sufficiently small amplitude with a broad frequency spectrum.
The pulse disturbance develops into a wave packet that propagates downstream. The wave packets will have
a broad spectrum in frequency and wavenumber (see for example Sivasubramanian & Fasel [92]). The flow
parameters used are the same as in the experiments of Hakkinen et al. [88] (see table 3.2).

According to linear stability theory (see figure 3.7), in supersonic boundary layers, the dominant distur-
bances (most strongly amplified) are three–dimensional (oblique disturbance waves). Therefore, we calculated
the development of a three–dimensional pulse disturbance for spanwise wave number 0.9/mm (the most ampli-
fied spanwise wave number at the impingement location in the experiment of Hakkinen (see Sivasubramanian &
Fasel [93])). The streamwise development of the amplitude of the waves within the wave packet generated by
the three–dimensional pulse disturbance are extracted and compared in figure 3.8. In particular, the streamwise
development of the maximum u-velocity disturbance amplitude and wall pressure disturbance amplitude obtained
from LNS and DNS are compared for several three–dimensional waves with spanwise wave number, β = 0.9/mm.
There is an excellent agreement between the amplitudes obtained from LNS and DNS.
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Figure 3.2: Comparison of various streamwise distributions. M = 2.0, T ∗∞ = 288.0 K, θ = 3◦, Re = 296,000.



CHAPTER 3. DNS INVESTIGATION OF SBLIs IN SUPERSONIC FLOWS 51

(a)

(b)

(c)

Figure 3.3: Flow visualization: contours of (a) streamwise velocity, (b) wall–normal velocity and (c) pressure.
M = 2.0, T ∗∞ = 288.0 K, θ = 3◦, Re = 296,000.
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(a)
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Figure 3.4: Flow visualization: contours of (a) temperature, (b) density and (c) Mach number. M = 2.0,
T ∗∞ = 288.0 K, θ = 3◦, Re = 296,000.
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(a)
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Figure 3.5: Flow visualization: contours of (a) density with sonic line, (b) density with streamlines and (c)
wall–normal density gradient (“Schlieren image”). M = 2.0, T ∗∞ = 288.0 K, θ = 3◦, Re = 296,000.
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(a)
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Figure 3.6: Flow visualization: (a) contours of the streamwise velocity, (b) contours of the wall-normal velocity
and (b) streamlines. M = 2.0, T ∗∞ = 288.0 K, θ = 3◦, Re = 296,000.
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Note that a linear (low–amplitude) wave packet can be considered to be composed of a sum of independent
normal modes, each of which behaving exactly according to linear stability theory. Therefore, for the low–
amplitude wave packet considered here, all individual wave components of the packet can be tracked independently
from each other all the way from the disturbance hole to the outflow boundary of the domain. Then the
amplitudes (see figure 3.8) and growth rates of all individual wave components were extracted. In particular,
wall-normal disturbance amplitude profiles (“eigenfunctions”) and phases were obtained by performing Fourier
transformations of the time signals for the various flow variables. In numerical simulations based on the complete
Navier–Stokes equations, the non–parallel effects are included and therefore, the spatial growth rate, “−αi”
depends on the criterion used [96]. The specific criterion or quantity used for obtaining the disturbance amplitude
affects not only the growth rates, but also the neutral curve [96]. For our Mach 2 validation case, a comparison
of the streamwise wavelength, αr and spatial growth rates, αi for three oblique disturbance waves (with spanwise
wave number, β = 0.9/mm) with different frequencies with linear stability theory results is shown in figure 3.9.
The spatial growth rate and the streamwise wavenumbers were calculated based on the wall pressure disturbance
as follows:

αi = − d

dx

[
ln
(
A (x) |p′wall

)]
, αr =

d

dx

[
θ (x) |p′wall

]
. (3.11)

In general, the streamwise wave number αr is less sensitive to the non-parallel effects and therefore less
sensitive to the criterion used. Hence the agreement between streamwise wave number from LNS and LST is very
good for the three frequencies shown in figures 3.9. Close to the forcing location the streamwise wave number
αr and the spatial growth rate αi calculated from the LNS data are modulated by the superposition of damped
waves. This modulation is more pronounced for the spatial amplification rate αi than for the streamwise wave
number αr. The reason for the small differences in spatial growth rate αi is most likely due to non–parallel
effects.

The wall–normal amplitude and phase distributions for the streamwise velocity disturbance, density distur-
bance and pressure disturbance from LNS are compared to LST results in figure 3.10. The amplitude and phase
distributions are taken at the downstream location x∗ = 0.061m (Rx = 600) for an oblique disturbance wave with
frequency F = 8.5116E− 05. The amplitude distributions from LNS and LST are normalized by their respective
maximum values. The excellent agreement between LNS and LST results in figure 3.10 is an indication that
the numerical simulations and post–processing tools can accurately capture the linear disturbance development
resulting from a localized pulse disturbance.
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(a)
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(c) (d)

Figure 3.7: Contours of constant amplification rate αi in the Rx−F plane for (a) two–dimensional disturbances
and (b) three–dimensional (oblique) disturbances with spanwise wave number 0.9/mm (most amplified spanwise
wavenumber at the shock impingement location) and in the β−F plane for (c) Rx = 544 (corresponds to the shock
impingement location, see section 3.33.3.1) and (d) Rx = 700. Amplification (growth) rates were computed using
Mack’s solver [94, 95]. The vertical dashed lines in red indicate the beginning and the end of the computational
domain used in the LNS and DNS. Furthermore, the dashed lines in black indicate the streamwise extend of the
laminar separation bubble in section 3.33.3.1. M = 2.0, T ∗∞ = 288.0 K, Re = 296,000.
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Figure 3.8: Detailed comparison of the streamwise development of the maximum u-velocity disturbance amplitude
and wall pressure disturbance amplitude for 3D disturbances (spanwise wave number, β = 0.9/mm) between LNS
and DNS. M = 2.0, T ∗∞ = 288.0 K, Re = 296,000.
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Figure 3.9: Comparison of streamwise wavelength (αr) and spatial growth rates (αi) for three 3D disturbance
waves (with spanwise wave number, β = 0.9/mm) with different frequencies. Lines are from LNS and symbols
are from LST. LST results were computed using Mack’s solver [94, 95]. M = 2.0, T ∗∞ = 288.0 K, Re = 296,000.
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Figure 3.10: Comparison of wall–normal amplitude (a,b,c) and phase distribution (d,e,f) of the streamwise
velocity, density and pressure disturbance to theoretical predictions from LST for frequency F = 8.5116E − 05
and spanwise wave number, β = 0.9/mm at Rx = 600. LST results were computed using Mack’s solver [94, 95].
M = 2.0, T ∗∞ = 288.0 K, Re = 296,000.
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3.4 Results and Discussion

In the present investigation of the interaction of an oblique shock–wave and a laminar boundary layer, the flow
parameters match those of the experiments conducted at the University of Arizona [81]. In the experiments a
shock generator plate is used to create an oblique shock that impinges on the boundary layer and eventually
causes separation (see section 3.1). In the present work we focus on 2D configurations with several different
wedge angles and Reynolds numbers. We started with a lower Reynolds number of Re = 360,000 (based on the
impingement location in an inviscid case) and a wedge angle of θ = 3◦ (see table 3.1), which gave a shock angle
equal to σ = 28.10◦ (CASE A).

Figures 3.11 and 3.12 show contours of streamwise velocity, wall–normal velocity, pressure, temperature,
density and Mach number from CASE A. As observed before for the validation case (in section 3.33.3.1), as the
oblique shock–wave impinges on the laminar boundary layer, it causes the flow to separate and form a laminar
separation bubble. In the pressure plot in figure 3.11c the oblique shocks and compression waves in the separation
and reattachment regions are clearly visible. Also visible are the expansion fan emanating from the top of the
separation bubble. Note that the height of the computational domain is chosen such that the reflected waves of
the impinging shock leave the domain at the outflow boundary (see figures 3.11 and 3.12). Streamlines plotted
in figure 3.13 shows the asymmetric structure of the bubble. This asymmetric behavior of the flow within the
separation bubble is similar to the validation case discussed in section 3.33.3.1.

Skin friction and wall pressure distributions along the plate from CASE A are presented in figure 3.14. The
results look qualitatively similar to the results obtained for the conditions of Hakkinen et al. [88]. Furthermore,
the asymmetrical distribution of the skin friction confirm the asymmetric behavior of the separation bubble.
It has a lower minimum at the back of the bubble due to the center of the recirculation region being shifted
downstream.

3.4.1 Linear Stability Investigations

We also computed the development of low–amplitude disturbances in order to investigate the stability of the flow
in the presence of a laminar separation bubble that is generated by the SBLI. Towards this end, two–dimensional
and three–dimensional pulse disturbances with a broad spectrum in frequency (see for example Sivasubramanian
& Fasel [92]) were introduced into the boundary–layer for both cases, with and without SBLI. The pulse
disturbance develops into a wave packet with a broad spectrum in frequency and wavenumber that propagates
downstream. This allows to investigate the response of the shock–induced separation bubble to both low– and
high–frequency disturbances. For these computations we employ a linearized compressible Navier–Stokes solver
developed in our CFD laboratory [91] (see section 3.33.3.2).

In figure 3.16 the development of two–dimensional disturbances in a boundary–layer without SBLI is presented.
Shown are contours of the streamwise velocity disturbance amplitude for four different time instances. These
snapshots illustrate the development of the pulse disturbance into a wave packet that propagates downstream.
It can be observed that the wave packet spreads in downstream direction and its amplitude levels increase as
it propagates downstream. Figure 3.17 shows the corresponding results for the boundary–layer with SBLI. As
before, in the case of the boundary layer without SBLI, the pulse disturbance develops into a wave packet
that propagates downstream. However the downstream development is strongly affected by the presence of the
impinging shock wave, the associated adverse pressure gradient and the resulting laminar separation bubble. The
disturbance waves within the wave packet are now much more strongly amplified in the case of the boundary–layer
with SBLI (as can be observed in figure 3.17).

According to the stability diagrams in figure 3.15, the dominant (most strongly amplified) disturbance waves
in a Mach 2.3 boundary layer are three–dimensional (oblique disturbance waves). Therefore, we also investigated
the development of three–dimensional disturbance using a pulse for spanwise wave number 0.67/mm (the most
amplified spanwise wave number at the impingement location). The results are presented in figures 3.18 and
3.19 for the boundary–layer without and with SBLI, respectively. Similar to the two–dimensional disturbance
behaviors, the three–dimensional (oblique) disturbances are also amplified in the downstream direction. However,
as expected, it can also be observed that the three–dimensional disturbances are more strongly amplified com-
pared to the two–dimensional ones. As observed before for two–dimensional disturbances, the three–dimensional
(oblique) distutbances with spanwise wave number 0.67/mm are more strongly amplified for the case with SBLI
present.

The amplitude of the waves within the wave packet are extracted and compared in figures 3.20 and 3.21 for the
two–dimensional and three–dimensional disturbances respectively. In figures 3.22 and 3.23, the amplitudes of four
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different two–dimensional and three–dimensional disturbance waves from the boundary layer with an impinging
shock wave is compared to the boundary layer with no impinging shock. Once again these results confirm the
observations made above. That is, both, two–dimensional and three–dimensional (oblique) disturbances are more
strongly amplified with the SBLI.

3.4.2 Effect of Shock Angle and Reynolds Number

In order to investigate the effect of the incident shock angle the shock generator angle (θ) was increased to 6
degrees (CASE B). This produced a stronger pressure jump and consequently a larger separated flow region (see
figure 3.24). The larger separation results in a longer pressure plateau and leads to secondary separation with
in the separated flow region (see figure 3.24a). In addition, the separated flow region becomes unsteady and
starts to shed vortices (see figure 3.24b). The time history of the wall pressure and the corresponding frequency
spectra obtained using Fourier transformation are presented in figure 3.25. The frequency spectra show distinct
peaks at higher frequencies that correspond to the vortex shedding. The high frequency peaks are due to a
Kelvin-Helmholtz type instability mechanism arising from the inflectional velocity profile in the shear layer that
forms between the flow inside the separation bubble and the flow outside the bubble.

Subsequently, to investigate the effect of increased Reynolds number, the Reynolds number was increased
to Re = 720, 000 (CASE C) and Re = 1, 080, 000 (CASE D). The results from CASE C are presented in
figures 3.26 and 3.27 and the results from CASE D are presented in figures 3.28 and 3.29. Compared to the
lower Reynolds number case (CASE B), the bubble is now shedding vortices even more strongly in CASE C and
D (see figures 3.26b and 3.28b). With the increased Reynolds number, the boundary layer thickness near the
separation is now reduced. Therefore, the length of the separation bubble is also reduced. The stronger shedding
may also be responsible for the reduction in length.

The time history of the wall pressure and the corresponding frequency spectra for the high Reynolds number
cases are plotted in figures 3.27 and 3.29. The time history of the wall pressure for the high Reynolds number
cases (CASE C and D) look very different from the time history for the low Reynolds number case (CASE B). The
stronger shedding of vortices could be clearly seen in the time history in figures 3.27a and 3.29a. The shedding
manifests itself as distinct peaks in the frequency spectra in figures 3.27b and 3.29b. It can also be observed
that as the Reynolds number increases the spectrum broadens over higher frequencies and the amplitude of the
peaks in the frequency spectra increases.

3.4.3 Three-dimensional Simulations

We also performed three–dimensional simulations for the high Reynolds number case to investigate the laminar–
turbulent transition process in the presence of SBLI (CASE E). Results from the three–dimensional direct nu-
merical simulation are presented in figures 3.30 and 3.31. Contours of instantaneous streamwise velocity, wall
normal velocity, temperature and density are shown in figure 3.30 in the x− y plane for a fixed spanwise location
(z∗ = 0.0). The vortex shedding that results from the shear layer instability (Kelvin-Helmholtz) is clearly visible
and downstream of the re-attachment location the flow seems to transition to turbulence.

Figure 3.31 shows contours of streamwise velocity in the x − z plane (parallel to the wall) for several wall
normal positions starting from close to the wall to away from the wall. This figure illustrates various flow
features in the early turbulent region close to the wall and farther away from the wall. Remarkable streamwise
structures seem to appear in figure 3.31 for all wall normal positions before the flow breaks down into small–scale
structures. These streamwise structures may be a consequence of a dominant physical mechanism playing a
role in the natural transition process in laminar SBLI. We plan to investigate these mechanisms in detail in
future research. Note that such streamwise structures have also been observed in the numerical simulations of
transitional shock/boundary–layer interactions in hypersonic flows by Sandham et al. [97].

3.5 Summary

The interaction between an impinging oblique shock–wave and a laminar boundary layer on a flat plate was
investigated using direct numerical simulations. First, for validating the computational setup used in the present
investigation, the experiments of Hakkinen et al. [88] were considered. The skin friction and pressure distributions
from the direct numerical simulation were compared to the experimental measurements and other numerical re-
sults published in the literature. Our results confirmed the asymmetric nature of the separation bubble previously
reported in the literature.
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In the present investigation of the interaction of an oblique shock–wave and a laminar boundary layer, the
flow parameters closely match the experiments conducted at the UA [81]. In this section we focused on 2D
configurations with several different wedge angles and Reynolds numbers. We started with a lower Reynolds
number of Re = 360,000 (based on the impingement location in an inviscid case) and a wedge angle of θ = 3◦

(CASE A). The impinging shock wave causes the boundary layer to separate and as a result a laminar separation
bubble is formed. The separation bubble looked qualitatively similar to the bubble in the validation case.

We investigated the development of low–amplitude disturbances generated by a short duration pulse in order
to shed light on the linear stability behavior of the flow in the presence of SBLI. For these computations we
employed a linearized compressible Navier-Stokes solver developed in our Computational Fluid Mechanics (CFD)
laboratory [91]. For comparison, both the development of two–dimensional and three–dimensional (oblique)
disturbances was investigated for two cases, with and without the SBLI. Not surprisingly, it was found that both
the two–dimensional and three–dimensional disturbances were more strongly amplified for the cases with SBLI
present, due to the increased instability effects of the adverse pressure gradient and boundary layer separation
caused by the impinging shock wave.

The effect of the shock incidence angle was investigated by increasing the shock angle to 6◦ (CASE B). The
larger shock angle produces a stronger pressure jump and thus a larger and stronger separated flow region. As a
consequence, the flow became unsteady and the bubble started to shed vortices likely due to a Kelvin-Helmholtz
instability. The time history and frequency spectra of the wall pressure indicated the presence of distinct high–
frequency disturbances. These higher frequencies corresponded to the vortex shedding. We also investigated the
effect of Reynolds number by increasing the Reynolds number to Re = 720,000 (CASE C) and Re = 1,080000
(CASE D). With the increase in the Reynolds number the thickness of the boundary layer decreased and the
streamwise extent of the separated flow region was reduced. Also, the bubble started shedding more strongly
with the increase in the Reynolds number. The time history of the wall pressure for the higher Reynolds number
cases clearly showed the stronger vortex shedding activities. And from the corresponding frequency spectra it
was observed that, as the Reynolds number increased the frequency spectrum broadened and the amplitude of
the peaks with in the spectrum increased.

In addition, three–dimensional direct numerical simulations were performed for the higher Reynolds number
case to investigate the laminar–turbulent transition process in the presence of SBLI (CASE E). Flow visualization
from the three–dimensional simulation revealed a Kelvin-Helmholtz instability mechanism that lead to the devel-
opment of spanwise rollers in the early stage of transition. Further downstream, the contours of the streamwise
velocity component revealed streamwise structures (“streaks”) before the flow breaks down to small scales as it
transitions to turbulence. These streamwise structures could be due to a secondary instability mechanism that
may be relevant in a “natural” transition process.
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(a)

(b)

(c)

Figure 3.11: Flow visualization: contours of (a) streamwise velocity, (b) wall–normal velocity and (c) pressure.
M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.
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(a)

(b)

(c)

Figure 3.12: Flow visualization: contours of (a) temperature, (b) density and (c) Mach number. M = 2.3,
T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.
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(b)

(c)

Figure 3.13: Flow visualization: (a) contours of the streamwise velocity, (b) contours of the wall-normal velocity
and (b) streamlines. M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.
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Figure 3.14: Streamwise distribution of (a) skin friction and (b) wall pressure. M = 2.3, T ∗∞ = 144.8 K, θ = 3◦,
Re = 360,000.
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(a)
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Figure 3.15: Contours of constant amplification rate αi in the Rx−F plane for (a) two–dimensional disturbances
and (b) three–dimensional (oblique) disturbances with spanwise wave number 0.67/mm (most amplified spanwise
wavenumber at the shock impingement location) and in the β − F plane for (c) Rx = 600 (corresponds to the
shock impingement location) and (d) Rx = 1000. Amplification (growth) rates were computed using Mack’s
solver [94, 95]. The vertical dashed lines in red indicate the beginning and the end of the computational domain
used in the LNS and DNS. Furthermore, the dashed line in black indicate the shock impingement location in an
inviscid case. M = 2.3, T ∗∞ = 144.8 K, Re = 360,000.
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Figure 3.16: Development of two–dimensional disturbances in a boundary layer without SBLI. Shown are contours
of streamwise velocity disturbance amplitude. M = 2.3, T ∗∞ = 144.8 K, Re = 360,000.
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Figure 3.17: Development of two–dimensional disturbances in a boundary layer with SBLI. Shown are condours
of streamwise velocity disturbance amplitude. M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.
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Figure 3.18: Development of three–dimensional (spanwise wave number, β = 0.67/mm) disturbances in a
boundary layer without SBLI. Shown are condours of streamwise velocity disturbance amplitude. M = 2.3,
T ∗∞ = 144.8 K, Re = 360,000.
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Figure 3.19: Development of three–dimensional (spanwise wave number, β = 0.67/mm) disturbances in a bound-
ary layer with SBLI. Shown are condours of streamwise velocity disturbance amplitude. M = 2.3, T ∗∞ = 144.8 K,
θ = 3◦, Re = 360,000.
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Figure 3.20: Detailed presentation of the streamwise development of the wall pressure disturbance amplitude for
2D disturbances. (a) Without SBLI (top) and (b) with SBLI (bottom). M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re =
360,000.
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Figure 3.21: Detailed presentation of the streamwise development of the wall pressure disturbance amplitude for
3D disturbances (spanwise wave number, β = 0.67/mm). (a) Without SBLI (top) and (b) with SBLI (bottom).
M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.



CHAPTER 3. DNS INVESTIGATION OF SBLIs IN SUPERSONIC FLOWS 74

(a)

200 300 400 500 600 700
1e-11

1e-10

1e-09

|p
’| w

al
l

Without SBLI
With SBLI

(b)

200 300 400 500 600 700
1e-11

1e-10

1e-09

|p
’| w

al
l

(c)

200 300 400 500 600 700
1e-11

1e-10

1e-09

|p
’| w

al
l

(d)

200 300 400 500 600 700
R

x

1e-11

1e-10

1e-09

|p
’| w

al
l

Figure 3.22: Comparison of development of wall pressure disturbance amplitude for 2D disturbances in a boundary
layer without SBLI and with SBLI. (a) F = 5.3197E − 5, (b) F = 6.3837E − 5, (c) F = 7.4476E − 5 and (d)
F = 8.5116E − 5. M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.
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Figure 3.23: Comparison of development of wall pressure disturbance amplitude for 3D disturbances (spanwise
wave number, β = 0.67/mm) in a boundary layer without SBLI and with SBLI. (a) F = 4.2558E − 5, (b)
F = 5.3197E− 5, (c) F = 6.3837E− 5 and (d) F = 7.4476E− 5. M = 2.3, T ∗∞ = 144.8 K, θ = 3◦, Re = 360,000.
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Figure 3.24: Flow visualization: contours of (a) streamwise velocity, (b) wall–normal velocity, (c) temperature
and (d) density in a x− y plane. M = 2.3, T ∗∞ = 144.8 K, θ = 6◦, Re = 360,000.
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(a)

(b)

Figure 3.25: (a) Time history of wall pressure and (b) frequency spectra obtained from wall pressure. M = 2.3,
T ∗∞ = 144.8 K, θ = 6◦, Re = 360,000.
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Figure 3.26: Flow visualization: contours of (a) streamwise velocity, (b) wall–normal velocity, (c) temperature
and (d) density in a x− y plane. M = 2.3, T ∗∞ = 144.8 K, θ = 6◦, Re = 720,000.
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Figure 3.27: (a) Time history of wall pressure and (b) frequency spectra obtained from wall pressure. M = 2.3,
T ∗∞ = 144.8 K, θ = 6◦, Re = 720,000.
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Figure 3.28: Flow visualization: contours of (a) streamwise velocity, (b) wall–normal velocity, (c) temperature
and (d) density in a x− y plane. M = 2.3, T ∗∞ = 144.8 K, θ = 6◦, Re = 1,080,000.
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Figure 3.29: (a) Time history of wall pressure and (b) frequency spectra obtained from wall pressure. M = 2.3,
T ∗∞ = 144.8 K, θ = 6◦, Re = 1,080,000.
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Figure 3.30: Flow visualization: contours of (a) streamwise velocity, (b) wall–normal velocity, (c) temperature
and (d) density in a x−y plane obtained from the three dimensional simulation. M = 2.3, T ∗∞ = 144.8 K, θ = 6◦,
Re = 1,080,000.
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Figure 3.31: Contours of the instantaneous streamwise velocity in the x−z plane for four wall-normal positions (a
- b: from close to the wall to away from the wall) from the three dimensional simulation. M = 2.3, T ∗∞ = 144.8 K,
θ = 6◦, Re = 1,080,000.



4. Numerical Analysis of Turbulent Shock-Wave Bound-

ary Layer Interactions

Hybrid turbulence model and large-eddy simulations of turbulent interactions at a freestream Mach number
of 2.3 were carried out for sweep angles of 0◦ and 40◦. The simulations for the unswept interaction reveal the
shedding of spanwise coherent structures as well as intermittent spanwise deformations of the separation line
that are referred to as ripples in the literature. The frequency associated with the ripples is similar to the
reported low-frequency content of turbulent interactions. By adding an approach flow cross-flow component, a
comparable turbulent interaction with 40◦ sweep is obtained. For the swept interaction, the overall level of the
pressure fluctuations is higher than for the unswept case but the ripples are absent. In addition to spanwise
coherent structures, traveling oblique structures were observed downstream of the interaction.

4.1 Methodology

4.1.1 Governing Equations and Discretization

A research computational fluid dynamics code by Gross and Fasel [98, 99] was employed for the present investi-
gations. The code solves the compressible Navier-Stokes equations in curvilinear coordinates. Sutherland’s law
was invoked for computing the laminar dynamic viscosity, µ. The Subgrid Stress (SGS) tensor was modeled as

τij = −2µT

(
Sij −

1

3
Skkδij

)
+

1

3
τkkδij , (4.1)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.2)

is the strain rate tensor of the resolved scales. The deviatoric part is proportional to a SGS (unresolved) eddy-
viscosity, µT , which is obtained either from the Renormalization Group (RG) hybrid model by De Langhe et
al. [100, 101] or from the Wall-Adapting Local Eddy-Viscosity (WALE) LES model by Nicoud and Ducros [102].
According to Erlebacher et al. [103], the isotropic part, τkk, is small compared to the thermodynamic pressure
and hence neglected. The heat flux is computed as

qi = −cp
(
µ

Pr
+

µT
PrT

)
∂T

∂xi
, (4.3)

with specific heat, cp, and laminar and turbulent Prandtl numbers, Pr = 0.72 and PrT = 0.9. For the one-equation
RG model [100, 101], a transport equation for the turbulent dissipation rate,

∂ρε

∂t
+
∂ρuiε

∂xi
=

∂

∂xi

[
(µ+ αµT )

∂ε

∂xi

]
+
µ+ µT
ρ

[
min (Λc,Λ0)

]2
(Cε1Pk − Cε2ρε) , (4.4)

with α = 1.39, Cε1 = 4/3, and Cε2 = 2 is solved. The filter-width wave-number is Λc = max
[
π/∆, π/(2.2y)

]
,

with cell diagonal, ∆, and wall distance, y. The dissipation wave-number is taken as, Λ0 = 0.215
(
ρ3ε/µ3

)0.25
,

and the unresolved eddy-viscosity is obtained from

µT = µ


[

1 +
cµρ

3ε

µ3
max

(
0,Λ−4

c − Λ−4
0

)] 1
3

− 1

 . (4.5)
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with cµ=0.1. For the WALE model [102], the subgrid (unresolved) eddy-viscosity is modeled as

µT = ρ̄∆2C2
w

(S∗ijS
∗
ij)

3/2

(SijSij)5/2 + (S∗ijS
∗
ij)

5/4
(4.6)

with S∗ij =
(
g2
ij + g2

ji

)
/2 − g2

kkδij/3, g2
ij = gikgkj , gij = ∂ui/∂xj , and model constant Cw=0.5. The grid

length-scale, ∆, was computed as the geometric average of the cell dimensions.
The convective terms of the Navier-Stokes equations were discretized with a ninth-order-accurate weighted

essentially non-oscillatory method based on the van Leer [82] flux vector splitting scheme. The discretization
of the viscous terms was fourth-order-accurate. A second-order-accurate discretization was employed for the
convective and diffusive terms of the RG model. The implicit trapezoid rule was employed for integrating the
governing equations in time.

4.1.2 Non-Dimensionalization

Velocity and density were made dimensionless with the respective approach flow values, u∗1 and ρ∗1. The reference
length scale, L∗ref , and Reynolds number, Re, were 0.1 m and 1 million. Temperature was non-dimensionalized
with the approach flow temperature, T ∗1 = 145.77 K. The approach flow pressure was p∗1 = 7, 397.5 Pa. Pressure
was made dimensionless with ρ∗1u

∗
1

2, time was normalized by L∗ref/u
∗
1, and the eddy-viscosity was made dimen-

sionless with the freestream dynamic viscosity, µ∗1 = 1.0017 × 10−5 kg/(ms). The reference Mach number, M1,
was 2.3.

4.1.3 Computational Grids

Table 4.1 provides the block dimensions and number of cells for the hybrid (RG) simulation and the LES. The
streamwise and spanwise grid resolution for the LES is considerably better than for the hybrid simulation. The
computational domains for both approaches were split up into two blocks: Block 1 was employed for temporal
boundary layer simulations that provided turbulent inflow data. Block 2 was used for the spatial simulations of
the turbulent interactions. Figure 4.1 provides the near-wall grid resolution in wall units. Georgiadis et al. [104]

Case Block 1 Block 2
Dimensions Cells Dimensions Cells

RG, unswept 1.2×0.8×0.6 156×128×192 3.381×0.8×0.6 416×128×192
LES, unswept and swept 1.2×0.8×0.6 468×138×576 3.381×0.8×0.6 1248×138×576

Table 4.1: Grid block dimensions and number of cells (streamwise × wall-normal × spanwise direction).

recommend grid resolutions of 10 ≤ ∆x+ ≤ 20, ∆y+ ≤ 1, 5 ≤ ∆z+ ≤ 10 for direct numerical simulations and
50 ≤ ∆x+ ≤ 150, ∆y+ ≤ 1, 15 ≤ ∆z+ ≤ 40 for LES. Accordingly, the grid resolution of the present simulations
is sufficient for LES. Since the present LES are wall-resolved, the near-wall grid resolution had to be increased
considerably compared to the hybrid simulation to capture the log-layer.

4.1.4 Temporal Boundary Layer Simulations

Temporal boundary layer simulations were run in parallel with the spatial simulations to provide turbulent inflow
data. For the temporal simulations, periodic boundary conditions were employed in the streamwise and spanwise
directions. The inflow and outflow data were shifted with respect to each other in the spanwise direction by
a predefined distance, ds, to prevent the spanwise locking of large-scale structures. According to Munters at
al. [105] for ds = 0.5δ, which is roughly equal to the spanwise length-scale of the largest turbulent structures, the
approach is most effective. For the present simulations, the boundary layer thickness was δ99≈0.05 and the shift
was ds=0.025.

The following approach was taken to prevent the boundary layer from growing: After each timestep, the
streamwise and spanwise average of the primitive variables, q̄(y), was computed. The average was then sub-
tracted from the instantaneous data to obtain the fluctuations, q(x, y, z)′ = q(x, y, z)− q̄(y). The flow field was
then overwritten with the sum of a turbulent profile from a precursor RANS simulation and the fluctuations,
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Figure 4.1: Near-wall grid resolution in wall units.

q(x, y, z) ⇐ q̄RANS(y) + q(x, y, z)′. With this approach, a temporal turbulent boundary layer could be main-
tained. To prevent an accumulation of disturbances in the freestream, the conservative variables, Q, were forced
to the RANS profile in the freestream via, ∂Q/∂t = (Q−QRANS)× f where

f =


0 y < 0.2
y−0.2

0.4−0.2 0.2 ≤ y ≤ 0.4

1 0.4 < y

. (4.7)

4.1.5 Freestream and Boundary Conditions

λ [deg] 0 40
M1 2.3 3.0024
u1 1
v1 0
w1 0 0.83910
p1 0.13503
T1 1
ϑ [deg] 12.5
σ [deg] 36.880
M2 1.8124 2.5068
u2/u1 0.85739
v2/u1 -0.19008
w2/u1 0 0.83910
p2/p1 2.0562
T2/T1 1.2420

Table 4.2: Inviscid flow states.

The shock generator angle for the simulations was ϑ = 12.5◦ and the sweep angle was λ = 0◦ and 40◦. Using
the oblique shock relationships, the shock angle in a z=const. plane, σ, and the pressure, temperature, and
velocity ratios across the shock were computed (Tab. 4.2). For the swept interaction, instead of sweeping the
impinging shock-wave, a spanwise velocity component, w1 = tanλ, was added to the approach flow which raises
the approach flow Mach number to M1 = 2.3/ cosλ = 3. For the unswept case, the reflected shock-wave angle
is σ = 47.003◦ and the conditions downstream of the reflected shock-wave are M3 = 1.3651, u3/u1 = 0.72673,
v3/u1 = w3/u1 = 0, p3/p1 = 3.8726, and T3/T1 = 1.4992.

The flow states upstream and downstream of the impinging oblique shock-wave were prescribed at the
freestream boundary. Dirichlet boundary conditions were employed at the inflow boundary of the spatial simu-
lations for feeding in the unsteady data from the separate temporal turbulent boundary layer simulations. All
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flow quantities were extrapolated at the outflow boundary. Periodic boundary conditions were employed in the
spanwise direction. No-slip and no-penetration boundary conditions were employed on the flat plate. The flat
plate was assumed to be adiabatic. For the RG model, the turbulent dissipation rate at the wall was computed

from ε = 0.22ν
(
∂u/∂y

)2
.

4.1.6 Startup of Simulations

Both simulations of the unswept interaction were continued from earlier simulations. For the LES, the order-
of-accuracy of the discretization of the convective terms was increased from seven (earlier simulation) to nine
and the simulation was advanced over a dimensionless time interval of six (to let the flow adjust to this change)
before flow data was analyzed. The LES of the infinite swept interaction was started from an instantaneous flow
field of the unswept interaction. The w-velocity component was initialized according to

w ⇐ w + min(max(u, 0), 1) tanλ , (4.8)

with λ = 40◦ at t = 0 and flow data was analyzed for t > 5.5.

4.1.7 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) by Lumley [106] was developed for extracting coherent structures
from turbulent flows. When temporal data are available in discrete form, the computationally more efficient
“snapshot” method by Sirovich [107] can be employed. Typically, the POD kernel is computed from the square
of the velocity vector. The magnitude of the POD eigenvalues, λi, does then correspond to two times the kinetic
energy contents of the respective modes. The POD captures traveling waves with mode pairs where the respective
time-coefficients, ai, and modes are nearly identical except for a phase shift of 90◦. It was decided to employ the
POD for analyzing the wall pressure, cp, and streamwise skin-friction coefficient, cf . The wall pressure is more
representative of flow structures away from the wall while the skin-friction is more representative of boundary
layer structures. For the analysis of the wall pressure coefficient, the POD kernel was computed from the square
root of the wall pressure, p = cp/2 + 1/(γM2). The POD eigenvalues are then proportional to the magnitude of
the static pressure fluctuations associated with the modes. For the analysis of the skin-friction coefficient, the
POD kernel was computed from cf and the eigenvalues are proportional to c2f . The modes were sorted according
to their eigenvalue magnitude.

4.2 Results

4.2.1 Approach Flow Boundary Layer

Temporal and spanwise averages of the approach flow were computed over time-intervals of 100 (0 < t < 100,
hybrid simulation of unswept interaction), 26 (6 < t < 32, LES of unswept interaction), and 29 (5.5 < t < 34.5,
LES of swept interaction). For the computation of the boundary layer displacement and momentum thickness,
the boundary layer edge was taken as the wall-normal distance where the dimensionless spanwise vorticity, ωz,
dropped below 0.2. This is illustrated in Figure 4.2. In Figure 4.3a, the displacement, δ∗, and momentum
thickness, ϑ, as well as the shape factor, H, are plotted versus the x-coordinate. For the LES of the swept
interaction, the boundary layer is growing slightly faster in x which can be attributed to the swept freestream.
The incompressible shape factor upstream of the interaction is roughly 1.4 for the hybrid simulation and 1.3
for the LES (Figure 4.3b) and thus in the range that is typical for turbulent boundary layers. Upstream of the
interaction, the momentum thickness Reynolds number reaches roughly 4,000 (Figure 4.4a) and the skin-friction
coefficient is slightly lower than the van Driest transformed [108] incompressible skin-friction coefficient (Figure
4.4b). In Figure 4.5 velocity profiles in wall units [109]

y+ =
yuτ
νw

(4.9)

u∗ =
1
√
τw

∫
√
ρdu (4.10)

are compared with the law of the wall, u∗ = 5+ln y+/0.41 , and the relationship for the laminar sublayer u∗ = y+.
The friction velocity is obtained from the wall shear stress, uτ =

√
τw/ρw. The profile for the hybrid simulation
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a)

b)

Figure 4.2: Iso-contours of spanwise vorticity, ωz, (left) and u-velocity (right) with estimated boundary layer
edge (solid lines) for a) hybrid simulation and b) LES of unswept interaction.

a) b)

Figure 4.3: a) Displacement thickness, momentum thickness, and shape factor. b) Incompressible shape factor.

a) b)

Figure 4.4: a) Momentum thickness Reynolds number. b) Skin-friction coefficient.

follows the reference profile near the wall (where the model is in RANS mode) and then deviates from it for
y+ > 100 (LES mode). This “log-layer mismatch” is known to reduce the skin-friction (also see Figure 4.4b).
The LES profiles in Figure 4.5 lie slightly above the reference profile which is an indication of insufficient grid
resolution. Simulations by Morgan et al. [30] using a coarse mesh with ∆x+ = 42 and ∆z+ = 21 exhibited a
similar behavior. When the near-wall grid resolution was increased to ∆x+ = 30 and ∆z+ = 16, a closer match
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Figure 4.5: Velocity profiles in wall units at x=-0.8.

with the law of the wall was obtained.

4.2.2 Analysis of Separated Region for Unswept Interactions

According to free interaction theory (Chapman et al. [110]), the pressure rise across the separation shock can be
linked to the skin-friction coefficient,

p− pi
qi

=

√
2cf,i√
M2
i − 1

F , (4.11)

where the subscript “i” refers to incipient separation. The function F is 4.22 at the onset of separation and 6
when a significant change of the flow field from the attached boundary layer state can be observed. Assuming
that the flow state at “i” is equivalent to the freestream state, Eq. 4.11 becomes

cp = F

√
2cf,i√
M2

1 − 1
. (4.12)

The pressure rise across the separation shock is

p2

p1
= 1 +

2γ

γ + 1

[
(M1 sinσ)2 − 1

]
. (4.13)

With dynamic pressure q1 = 1/2γM2
1 p1, from this a second expression for the wall pressure coefficient can be

obtained,

cp =
4
[
(M1 sinσ)2 − 1

]
(γ + 1)M2

1

. (4.14)

For the RG model simulation, the mean separation and reattachment are at x = −0.61040 and x = 0.10640
(Figure 4.6a). A curve fit provides an estimate of the skin-friction coefficient at separation, cf,fit = 0.0018206,
which according to Eq. 4.12 is equivalent to cp = 0.17694 for F = 4.22 and cp = 0.25157 for F = 6. According to
Figure 4.6a, the Chapman criterion approximately captures the pressure plateau associated with the boundary
layer separation. From Eq. 4.14 separation shock angles of σ = 32.910◦ (F = 4.22) and σ = 35.667◦ (F = 6) can
be computed. The exact reflected shock angle is σ − ϑ = 47.003− 12.5 = 34.503◦. In Figure 4.6b iso-contours of
the magnitude of the density gradient (“numerical Schlieren”) are superimposed with streamlines and lines that
indicate the inviscid impinging and reflected shock-waves as well as the angles corresponding with the Chapman
pressure rise. Although the separation in the present hybrid simulation is substantial, the best agreement with
the fit for the reflected shock-wave is obtained for F = 4.22. According to Chapman et al. [110] this value is to
be used for barely separated flows (onset of separation).

The displacement and momentum thickness are δ∗1 = 0.020886 and ϑ1 = 0.010490 at separation and δ∗3 =
0.072916 and ϑ3 = 0.018365 at reattachment (Figure 4.7). The length of the separated region is Ls = 0.7168
and the interaction length, which is the difference between the inviscid shock impingement location and the
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a) b)

Figure 4.6: a) Skin-friction and wall pressure coefficient (vertical dashed lines indicate mean separation and
reattachment locations) and b) iso-contours of density gradient from hybrid simulation.

Figure 4.7: Displacement and momentum thickness from hybrid simulation.

approximate foot of the reflected shock-wave (when extended to the wall; fit in Figure 4.6b), is Lint = 0.73
(corresponding to Lint/δ

∗
1 = 35.0). Based on a control volume analysis for the continuity and momentum

equations, Souverein et al. [60] proposed two estimates for the interaction length,

Lint,1 =

ρ3
ρ1
u3

u1
δ∗3 − δ∗1
−ρ2ρ1

v2
u1

= 0.3686 , (4.15)

Lint,2 =

ρ3
ρ1

(
u3

u1

)2

(ϑ3 + δ∗3)− (ϑ1 + δ∗1)

−ρ2ρ1
u2

u1

v2
u1

= 0.3453 . (4.16)

For the estimates, δ∗3 and ϑ3 were taken directly at reattachment which implies larger estimated length scales
than when δ∗3 and ϑ3 were taken downstream of the interaction where the reattached boundary layer recovers its
equilibrium state. Both numbers fall short of the observed interaction length, Lint = 0.73, which suggests that
the extent of the separated region is overpredicted in the hybrid simulation.

For the LES, the flow separates at x = −0.35878 and reattaches at x = 0.069844 (Figure 4.8a). The fitted skin-
friction coefficient at separation is cf,fit = 0.0018845. According to Chapman, this corresponds to cp = 0.18002
for F = 4.22 and cp = 0.25595 for F = 6. The associated separation shock angles are σ = 33.026◦ and
σ = 35.826◦ (Eq. 4.14) and close to both the fitted (at the shock foot) and theoretical (inviscid) reflected shock-
wave angles (Figure 4.8a). According to Figure 4.9a the displacement and momentum thickness are δ∗1 = 0.015692
and ϑ1 = 0.0053461 at separation and δ∗3 = 0.057020 and ϑ3 = 0.012807 at reattachment. The length of the
separated region is Ls = 0.4286 and the interaction length is Lint = 0.4 (Lint/δ

∗
1 = 25.5). The estimates by
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a) b)

Figure 4.8: a) Skin-friction and wall pressure coefficient (vertical dashed lines indicate mean separation and
reattachment locations) and b) iso-contours of density gradient from LES.

a) b)

Figure 4.9: a) Displacement and momentum thickness and b) skin-friction and wall pressure coefficient from
LES.

Souverein et al. [60] are Lint,1 = 0.2903 and Lint,2 = 0.2751. The proposed scaling for the height of the separated
flow region [60] is δ∗1Lint = 0.00628 (compare to Figure 4.8b). Souverein et al. [60] also proposed an inviscid
separation criterion,

S∗e = k
∆p

qe
, (4.17)

where ∆p is the pressure increase across the separation shock and qe is the boundary layer edge dynamic pressure.
A constant k of 3 is recommended for Reϑ ≤ 104 (this is the case here) and 2.5 otherwise. Separation occurs for
S∗e ≥ 1 which implies cp ≥ 1/3. Based on Figure 4.9b this suggests that the flow would separate at x = −0.24393
which constitutes a less accurate estimate than the prediction based on the Chapman criterion.

Based on the comparison with the existing correlations from the literature it was decided that the LES did
likely provide a more truthful representation of the flow. In the following, data from both simulations are analyzed
with respect to the unsteady fluid dynamics.

4.2.3 Analysis of Unsteady Flow

Unswept Interaction

Instantaneous visualizations of the Q vortex identification criterion [111] obtained from the simulations for the
unswept interaction in Figure 4.10 illustrate the turbulent approach flow boundary layer, the interaction region,
and the thick reattached turbulent boundary layer. Compared to the hybrid simulation, for the LES considerably
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finer unsteady flow structures are resolved and the separated region is smaller. Also shown in Figure 4.10 are
instantaneous visualizations of the streamwise skin-friction coefficient, cf = 2ωz/Re, that reveal streaky structures
upstream of the interaction. Such structures are typical for turbulent boundary layers. For the particular time
instances shown in Figure 4.10, neither the separation nor the reattachment lines are straight. Instantaneous iso-

a) b)

Figure 4.10: Unswept interaction. Iso-surfaces of Q=10 flooded by streamwise velocity and iso-contours of
skin-friction coefficient, −0.005 < cf,x < 0.005, for a) hybrid simulation and b) LES.

a)

b)

Figure 4.11: Unswept interaction. Iso-contours of density gradient (left) and temperature (right) in z=const.
plane obtained from a) hybrid simulation and b) LES.

contours of the density gradient magnitude (numerical Schlieren) and temperature in a constant spanwise plane
in Figure 4.11 reveal large-scale spanwise-coherent structures in the interaction region that are transporting hot
near-wall fluid into the freestream.

The wall pressure and streamwise skin-friction coefficient were recorded at constant time intervals of ∆t = 0.02
for the hybrid simulation and 0.05 for the LES (unswept and swept). The wall pressure data were then Fourier-
transformed in the spanwise direction. Figure 4.12 provides the Fourier mode amplitudes and phases for mode
k = 0 (spanwise average) and for modes k = 1 through k = 3 with wavelengths λz = 0.6/k. For the hybrid
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a)

b)

k = 0 k = 1 k = 2 k = 3

Figure 4.12: Unswept interaction. Amplitude and phase of spanwise Fourier modes of wall pressure coefficient
obtained from a) hybrid simulation and b) LES.

simulation, the mean pressure increase (mode k = 0) associated with the separation line is noticeably moving
back and forth in time. Time-periodic traces downstream of reattachment for mode k=0 (spanwise average) are
a consequence of the shedding of spanwise coherent flow structures. The k = 1 mode phase at separation varies
very slowly and intermittently the k = 1 amplitude attains large values. This behavior can be associated with
the random appearance of “bulges” or ripples of the separation shock as shown in Figure 4.13a. The ripples
resemble the “teepee” structures in separated rocket motor flows [112]. Intermittently, modes 2 & 3 attain
larger amplitudes at separation which can be associated with the appearance of multiple ripples (e.g. t = 30.78).
Downstream of reattachment the flow is highly unsteady and the mode k = 2, 3 amplitudes are noticeably
increased. A similar but less dramatic behavior can be observed for the LES (Figs. 4.12b & 4.13b).

The spanwise wavelength of the ripples in Figure 4.13 is many times larger than the wavelength of the near-
wall streaks. Ganapathisubramani et al. [10] and Humble et al. [25] found that spanwise deformations of the
separation line can be correlated to superstructures in the approach boundary layer. According to Elsinga et
al. [113] the spanwise spacing of the dominant flow structures in supersonic boundary layers is approximately
identical to the boundary layer thickness. For the present simulations, the boundary layer thickness upstream
of separation is δ99 ≈ 0.1 and thus still six times smaller than the wavelength of the observed ripples which
suggests that the structures may not be related to the upstream boundary layer but that they rather arise as a
consequence of an instability of the separated region.

To check if the spanwise wavelength of the ripples was artificially fixed by the spanwise domain extent, the
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a)

t = 9.2 t = 30.78 t = 73.8 t = 93.48

b)

t = 1.35 t = 4.95 t = 14.55 t = 23.05

Figure 4.13: Unswept interaction. Wall pressure coefficient, 0 < cp < 0.6, and skin-friction coefficient, −0.005 <
cf,x < 0.005, iso-contours obtained from a) hybrid simulation and b) LES.

t=0.78 t=2.74 t=6.4 t=9.08 t=14

t=25.2 t=28.4 t=36.1 t=40.56 t=47

Figure 4.14: Wall pressure coefficient iso-contours (0 < cp < 0.6) obtained from hybrid simulation of unswept
interaction with wider domain.

spanwise domain extent for the hybrid simulation was doubled. Visualizations of the wall-pressure coefficient
again reveal structures of varying intensity and wavelength at random spanwise locations (Figure 4.14). The
wedge angle of the ripples in Figs. 4.13a and 4.14 is identical which suggests an underlying inviscid compressible
mechanism.

Instantaneous visualizations for one ripple at t=49 are shown in Figure 4.15. The wall pressure coefficient
associated with the structure has a diamond shape (Figure 4.15b). Off the wall, the leading edge of the structure
becomes rounded (Figure 4.15c). For y=0.1761 a second diamond-shaped shock structure can be observed
downstream of the primary structure. The wall pressure coefficient ahead of the separation shock, cp1, inside
the first diamond structure, cp2, and immediately downstream of the structure, cp3, were extracted from the
simulation (Tab. 4.3). A triple point (TP) is assumed at the interface of the diamond-shape structure and the
unswept separation shock (Figure 4.16a). In analogy to shock-polars for two-dimensional flow, using the oblique
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a)

b)

c)

Figure 4.15: Instantaneous flow visualizations for t = 49 obtained from hybrid simulation of unswept interaction.
a) |∇ρ| = 6 iso-surfaces flooded by pressure coefficient. Pressure coefficient contours at b) wall and c) y=0.1761.

shock relationships [53], for a given Mach number, M , all possible flow deflection angles in the wall-normal (ϑ)
and spanwise (η) direction can be computed (Figure 4.16b). The associated surfaces are axissymmetric and
shaded by the sweep angle of the oblique shock with respect to the flow direction.

1 2 3
cp 0 0.028 0.066
λ [◦] 43.35 38.37
M 2.3 2.075 1.857
ϑ [◦] 4.809 9.891
η [◦] 3.206 0

Table 4.3: Flow states for diamond structure.

a) b)

Figure 4.16: a) Sketch of separation shock system in y=const. plane (x points to the right). b) Possible flow
states (shock pressure ratio, p2/p1, and deflection angles in wall-normal, ϑ, and spanwise, η, direction) flooded
by sweep angle in degrees.

The pressure coefficient after the first swept shock, cp2=0.028, corresponds to a pressure ratio of p2/p1 =
2cp2γM

2
1 + 1 = 1.415, or ln(p2/p1) = 0.3469. By cutting the M1 = 2.3 surface in Figure 4.16b at that pressure

ratio, the curves in Figure 4.17a were generated. For a sweep angle of λ2 = 43.35◦, an after-shock Mach number
of M2=2.075 and deflection angles of ϑ2 = 4.809◦ and η2 = 3.206◦ are obtained (all values are in approximate
agreement with the simulation). A second surface was added in Figure 4.16b for the after-shock Mach number
M2. Similar to the shock-polar based 2-D TP analysis, the surface was displaced by ln(p2/p1), ϑ2, as well as η2,
and flipped in the η-direction. The pressure coefficient after the second diamond shock, cp2=0.066, corresponds
to a pressure ratio of p3/p1 = 2cp3γM

2
1 + 1 = 1.978 or ln(p3/p1) = 0.6819 and an after-shock Mach number of

M3 = 1.857. Distributions of the deflection angles and Mach number for this pressure ratio are provided in Figure
4.17b. Assuming a zero spanwise deflection after the second oblique shock, η3 = 0, a wall-normal deflection angle
of ϑ3 = 9.891 is obtained for λ3 = 38.37◦. Assuming that the pressure across the slip line (Figure 4.16a) is
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a) b)

Figure 4.17: Curves of constant a) ln(p2/p1) and b) ln(p3/p1).

constant, cp2′ = cp3, an after-shock Mach number of M2′ = 1.8416 (very close to M2) and a deflection angle of
ϑ2′ = 11.8◦ (slightly more than ϑ3) are obtained for the unswept interaction. The similarity of the after-shock
conditions (3 and 2’) may explain why the ripples can form.

a) b)

Figure 4.18: Unswept interaction. POD eigenvalues for a) hybrid simulation for −0.962 < x < 0.982 and
40 < t < 100, and b) LES for −0.500 < x < 0.994 and 6 < t < 32.

The wall data for the hybrid simulation (time-interval of 40 < t < 100, frame rate ∆t = 0.02) and the LES
(0 < t < 26 and ∆t = 0.05) were analyzed with the POD. Overall, the eigenvalue magnitudes for the hybrid
simulation are higher than for the LES which implies larger wall fluctuation amplitudes (Figure 4.18). The
eigenfunctions and time-coefficients for the hybrid simulation of the unswept interaction are compared in Figure
4.19. Concerning the wall pressure data, modes 2-4 capture the shedding of spanwise coherent structures (similar
eigenvalue magnitudes as well as eigenfunctions and time-coefficients that are similar except for a phase shift).
Mode 6 and 7 capture 3D structures at separation and have a low-frequency content and may thus be related to
the ripples. The POD based on the skin-friction coefficient is more difficult to interpret. Modes 2-4 appear to
capture streamwise structures downstream of reattachment.

The POD modes and time-coefficients for the LES are quantitatively similar to the respective results for
the hybrid simulation (Figure 4.20). With respect to the wall pressure data, modes 1-3 capture low-frequency
3D structures at separation and modes 4 & 5 must be related to the shedding of spanwise coherent structures.
The skin-friction POD modes 1-3 also capture low-frequency 3D structures at separation that are related to
streamwise structures downstream of reattachment.

The time-coefficients were Fourier-transformed in time (Figure 4.21) and the frequency was normalized by
the streamwise extent of the separated region (Tab. 4.4). Concerning the wall pressure data for the hybrid
simulation, modes 2-4 (shedding of spanwise coherent structures) have a frequency of roughly 0.5 and modes 5 &
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a)

i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8 b)

c)

i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8 d)

Figure 4.19: Hybrid simulation of unswept interaction. POD modes and time-coefficients computed from a), b)√
p (−0.01 < A < 0.01) and c), d) cf (−0.0005 < A < 0.0005) for −0.962 < x < 0.982 and 40 < t < 100.

Case Ls
hybrid, unswept 0.7168
LES, unswept 0.4286
LES, swept 0.9235

Table 4.4: Streamwise extent of separated region.

6 (3D structures at separation) have a frequency of roughly 0.05. For the LES, the mode 4 & 5 (spanwise coherent
structures) frequency is roughly 0.55 and the modes 1-3 frequency is roughly 0.05. The low-frequency contents
for both the hybrid simulation and the LES is of the same order as the reported low-frequency unsteadiness of
f ×Lint ≈ 0.01 for unswept ramps and f ×Lint ≈ 0.03 for swept ramps [3]. The present results thus suggest that
the low-frequency unsteadiness may be coupled to the spanwise deformations (ripples) of the separation line.

Swept Interaction

Finally, the results for the swept interaction are discussed. Instantaneous flow visualizations in Figs. 4.22 &
4.23 for the swept interaction resemble those for the unswept interaction (Figs. 4.10 & 4.11), although the
interaction region appears longer for the swept interaction. For the hybrid turbulence model simulation of the
swept interaction, the separated flow region opened up with time (Figure 4.24). This was not the case for the
LES. Therefore, in the following only the LES data for the swept interaction are analyzed. In Figure 4.25 the
skin-friction and wall pressure coefficient for the LES of the swept and unswept interaction are compared. The
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a)

i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8 b)

c)

i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8 d)

Figure 4.20: LES of unswept interaction. POD modes and time-coefficients computed from a), b)
√
p (−0.01 <

A < 0.01) and c), d) cf (−0.0005 < A < 0.0005) for −0.500 < x < 0.994 and 6 < t < 32.

a) b)

Figure 4.21: Unswept interaction. Fourier transforms of POD time-coefficients for a) hybrid simulation for
−0.962 < x < 0.982 and 40 < t < 100 as well as b) LES for −0.500 < x < 0.994 and 6 < t < 32.

time-average for the swept interaction was computed from t = 5.5 to t = 34.5. The swept flow separates earlier
at x = −0.51824 and reattaches later at x = 0.18922 compared to the unswept flow. The separation length in the
streamwise direction is Ls = 0.7075/ cosλ = 0.9235. Similar to the hybrid simulation for the unswept interaction,
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a) b)

Figure 4.22: Swept interaction. Iso-surfaces of Q=10 flooded by x-velocity component and iso-contours of skin-
friction coefficient, −0.005 < cf,x < 0.005, for a) hybrid simulation and b) LES.

Figure 4.23: LES of swept interaction. Iso-contours of density gradient (left) and temperature (right) in z=const.
plane.

Figure 4.24: Hybrid simulation of swept interaction. Spanwise average of wall pressure coefficient.

the wall pressure distribution features a plateau.
Amplitudes and phases for the first four spanwise Fourier modes of the wall pressure coefficient are shown in

Figure 4.26. Starting from the initial condition, the size of the interaction region is seen to gradually increase
up to t ≈ 5 and then fluctuate slowly in the x-direction. As for the unswept interaction (Figure 4.12b), the
mode k = 0 mode amplitude suggests the shedding of spanwise coherent structures (Figure 4.26). However,
different from the unswept interaction, the mode k = 1 phase at separation is changing rapidly which suggests
the absence of ripples. In fact, instantaneous visualizations of the wall pressure and skin-friction coefficient
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Figure 4.25: Comparison of LES skin-friction and wall pressure coefficient.

k = 0 k = 1 k = 2 k = 3

Figure 4.26: LES of swept interaction. Amplitude and phase of spanwise Fourier modes of wall pressure coefficient.

t = 28 t = 30 t = 32 t = 34

Figure 4.27: LES of swept interaction. Wall pressure, 0 < cp < 0.6, and skin-friction coefficient, −0.005 < cf <
0.005, iso-contours.

display no pronounced rippling of the separation line (Figure 4.27).
The wall data for 5.5 < t < 34.5 (frame rate: ∆t = 0.05) were analyzed with the POD. The eigenvalues

(Figure 4.28) are slightly larger than for the unswept case (Figure 4.18b) which suggests overall larger fluctuations.
Eigenvalues 2 & 3 and 4 & 5 have similar magnitudes. Figure 4.29 provides the POD modes and time-coefficients.
Mode 1 of the wall pressure data captures an adjustment of the mean-flow for 5.5 < t < 20 that is followed by a
low-frequency expansion and contraction (“breathing”) of the separation bubble (only 1.5 periods were captured).
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Figure 4.28: LES of swept interaction. POD eigenvalues for −2.126 < x < −0.588 and 5.5 < t < 34.5.

a)

i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8 b)

c)

i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8 d)

Figure 4.29: LES of swept interaction. POD modes and time-coefficients computed from a), b)
√
p (−0.01 <

A < 0.01) and c), d) cf (−0.0005 < A < 0.0005) for −2.126 < x < −0.588 and 5.5 < t < 34.5.

Modes 2 & 3 can be associated with spanwise coherent structures. Interestingly, modes 4 & 5 capture traveling
oblique structures which are often an indication of cross-flow instability. Because periodic boundary conditions
were employed in the spanwise direction, only certain spanwise wavenumbers are possible, β = 2πn/0.6, where
n = 0, 1, . . . is a positive integer number. The width of the computational would have to be increased to get
around this limitation. Different from the POD for the unswept interaction (Figure 4.20a), no 3D structures are
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captured at separation. With respect to the skin-friction coefficient, the POD captures streamwise structures
downstream of reattachment.

Figure 4.30: LES of swept interaction. Fourier transforms of POD time-coefficients for −2.126 < x < −0.588
and 5.5 < t < 34.5.

Spectra of the POD time-coefficients are provided in Figure 4.30. Compared to the results for the unswept
interaction (Figure 4.21b), the low-frequency contents is noticeably reduced. Considering the spectra for the wall
pressure coefficient, the frequency associated with the 2-D shedding (modes 2 & 3) is roughly 1.3 and the frequency
associated with the oblique structures is around 2.6. The skin-friction coefficient unsteadiness is centered around
a frequency of roughly one which is close to the frequency of the spanwise coherent structures. Interestingly, the
frequency contents for the oblique structures is missing which suggests that the oblique structures are situated
too far from the wall to affect the skin-friction coefficient.

4.3 Summary

Simulations of an unswept and swept interaction at Mach 2.3 were carried out with a hybrid turbulence model
and a subgrid stress model. The setup of the simulations was guided by related experiments at the University
of Arizona [50, 51, 52]. Based on a comparison with available correlations from the literature, it was determined
that the hybrid simulation of the unswept interaction likely over-predicted the extent of the separation. For
both simulations, 3D structures developed intermittently at the foot of the separation shock. Such structures
are referred to as ripples in the literature [25, 63, 52]. In accordance with Doehrmann et al. [52], the ripples
were found to be correlated with the low-frequency contents of the interaction. A high-frequency unsteadiness
downstream of the interaction was attributed to the shedding of spanwise coherent structures.

A spanwise freestream velocity was added to obtain an approach flow sweep angle of 40◦ relative to the
incoming shock-wave. Because periodic boundary conditions were employed in the spanwise direction, the setup
of the simulation forces the separated region to be cylindrically symmetric, and disturbances that “leave” the
domain at one spanwise boundary are entering the domain again at the other spanwise boundary. No closed
separation could be obtained with the hybrid turbulence model. For the LES, the ripples were noticeably absent
and existing low-frequency contents could be related to a breathing motion of the bubble. In addition to spanwise
coherent structures, traveling oblique structures could be identified downstream of the swept interaction.



5. Volumetric Study of Swept Impinging Oblique SBLIs

A swept impinging oblique SBLI is investigated in Mach 2.3 flow induced by a shock generator with sweep ψ =
30.0◦ and x-y plane deflection of θ = 12.5◦. The incoming flow is a naturally turbulent boundary layer developing
over the flat wind tunnel wall with Reθ = 5.5× 103. A combination of Stereo PIV and Tomographic PIV is used
to characterize both the undisturbed incoming boundary layer and the resultant complex geometries of the swept
SBLI. Linear Stochastic Estimation is used to identify statistically significant boundary layer vortical structures
and document changes to their topology at various heights in the boundary layer. Three-dimensional velocity
snapshots throughout the swept SBLI show both large-scale growth/collapse of the interaction and prominent
streamwise streaks with a notable spanwise periodicity. Finally the mean structure for this configuration is
documented for the first time. This is an initial summary of a large PIV data set (over 3 TB) that already
provides a valuable contribution to the understanding of this complex flow.

5.1 Experimental Methodology

5.1.1 Experimental Facility

Experiments have been conducted in the new Supersonic Wind Tunnel facility at the University of Arizona.
The working section and inlet of this tunnel have recently been redeveloped, replacing the flexible nozzle of
the prior facility which had been in use since the 1960s. Solid aluminum nozzle blocks designed using the
Method of Characteristics with boundary layer corrections now define the throat of the vacuum driven in-draft
tunnel. The present tests have been conducted at a nominal Mach number of 2.3 (see Table 5.1), but Mach 4.0
nozzles are also available (Mach 3.0 nozzles are also in development). The parallel working section measures
121.9 mm × 81.3 mm × 609.6 mm (4.8” × 3.2” × 24”, W×H×L) and features a series of interchangeable panels
and liner pieces to facilitate a range of experimental setups. The naturally dry Arizona air provides excellent
stagnation conditions enabling tests at constant T0 and p0, which can be challenging in blow-down facilities.
An adjustable second throat is employed downstream to optimize run times, before air is exhaust to a 34.0 m3

(1200 ft3) vacuum chamber. Typical run times are of the order 15 s. The present tests have been conducted
using a shock generator mounted to the tunnel side-wall. Optical access for Particle Image Velocimetry (PIV) is
achieved through small windows in the shock generator side-panel (for the laser access) and then large opposing
side-panel windows which span the entire working section height (see Figure 5.1). Unless stated otherwise the
streamwise, wall normal, and spanwise dimensions are defined relative to the throat, tunnel floor and the spanwise
centerline, respectively. When presenting SBLI configurations, the spanwise dimension is defined relative to the
root plane (tunnel side wall).

5.1.2 Shock Generator

The impinging shock is induced using a shock generator with the leading edge in a plane running parallel to the
floor and geometry defined according to Figure 1.3a. The aluminum generator is 88.9 mm (3.5”) wide and has
maximum thickness below the leading edge of 8.9 mm (0.35”). The leading edge is swept at an angle of ψ = 30.0◦

M∞ [-] T0 [K] p0 [Pa] U∞ [m/s] Re∞/L [1/m]
2.28 300.5 0.933× 105 554.8 9.99× 106

± 0.02 ± 0.2 ± 0.002× 105 ± 2.6 ± 0.13× 106

Table 5.1: Working section test environment.

103
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Figure 5.1: Experimental facility (schematic diagram drawn to scale).

(defined in the x-z plane) with the downstream active surface inclined at θ = 12.5◦ (defined in the x-y plane). A
photo of the shock generator underside is shown in Figure 5.2.

Figure 5.2: Photo of shock generator (ψ = 30.0◦, θ = 12.5◦, W = 88.9 mm, t = 8.9 mm).

The shock generator is mounted to the side wall of the tunnel using a plug installed in the side panel. The
height of the locating dowel pins (and thus the aspect ratio of the SBLI) can be varied by interchanging different
plugs. The current investigation is conducted using a plug to mount the shock generator such that the leading
edge is at a height of 48.26 mm (1.90”) from the wall. It is located in the streamwise direction such that the
root apex is located at x = 462.0 mm (18.23”) from the throat. Projection of the quasi-infinite shock to the
tunnel floor (see Table 5.2) shows that the quasi-infinite impingement line root apex is located at x = 518.5 mm
(20.41”).

Flow parameters across the swept impinging shock have been determined for the quasi-infinite span case[55], as
shown in Table 5.2 where errors in shock generator angles are assumed to be ±0.1◦. While a similar array of flow
properties can often be calculated across the reflected shock also, such is not possible for the present configuration.
This is because the required deflection to realign flow with the wall would be beyond the maximum turning angle
for the flow downstream of the impinging shock. In unswept flows the reflected shock would detach, resulting in
a Mach reflection. In swept shock reflections the behaviour is less characterized. Some researchers have proposed
that it is the detachment of the swept reflected shock that is responsible for the conical spanwise growth of the
SBLI[41]. However, a full understanding of the influence of the detached shock remains unexplored.

It is prudent to note that the impinging shock may be induced through a range of shock generating model
geometries[55]. For brevity, only the standard shock generator is investigated here. Table 5.3 shows the equivalent
geometries that would be required from a delta wing generator to produce an identical swept impinging oblique
shock.
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β1 p2/p1 T2/T1 ρ2/ρ1 U2/U1 M2 θ2 η2 φ2

41.00◦ 2.116 1.254 1.687 0.869 1.770 11.77◦ 5.97◦ 26.66◦

± 0.61◦ ± 0.019 ± 0.004 ± 0.010 ± 0.003 ± 0.023 ± 0.10◦ ± 0.18◦ ± 0.58◦

Table 5.2: Flow properties across quasi-infintie span swept oblique shock[55].

Geometry Sweep Deflection angle
Shock generator ψ = 30.00◦ θ = 12.50◦

Delta-wing generator ψ′ = 37.93◦ θ′ = 11.78◦

Table 5.3: Equivalent swept shock-inducing model geometries in Mach 2.3 freestream flow (see Figure 1.3).

5.1.3 Diagnostic Tools

Two types of PIV have been used to assess velocity fields within the tunnel. SPIV returns three-component
velocities in a 2D plane (aligned with y-z plane in current investigation), while TPIV returns a full 3D domain
with three-component velocities. While TPIV has lower spatial resolution, it is able to capture the full velocity
gradient tensor so 3D vortices and complex instantaneous 3D flow structures can be visualized. The tunnel
was seeded similarly for both SPIV and TPIV tests using a Pea Soup Smoke Generator to release atomized oil
particles into the lab, which were then ingested by the tunnel as it draws upon air from the room. The desired
intensity of seed varied drastically, with TPIV needing far less. The seed particle size is estimated to be 300 nm,
with an associated Stokes number of Stk = ρpd

2
pU∞/18δ0µ∞ ≈ 0.04.

Stereo PIV

Seed particles are illuminated through a optical window using a Quantel Evergreen 200 dual cavity Nd:YAG laser
with pulse energy 200 mJ operating at 15 Hz. The time delay between laser pulses was measured using a ThorLabs
DET10A photodiode (1 ns response time) to be dt = 365 ± 2 ns. The laser beam was focused using a bespoke
optical rail system then clipped by a rectangular aperture to form the final beam measuring 15 mm in height and
approximately 1.2 mm thick. This resulted in freestream particles passing through approximately 20% of the
light sheet thickness between laser pulses. Two Lavision 2560×2160 pix sCMOS cameras are positioned on the
opposite side of the tunnel from the laser such that both utilize forward scatter. They are angled slightly towards
the tunnel floor by 15◦, then split in the streamwise direction such that the cameras view the measurement plane
with ±30◦. A scheimpflug lens adapter was used to focus on the angled measurement plane. In order to achieve
a high-magnification, each camera was fitted with a 2× teleconverter, a Nikkor 85 mm lens, and a +2 diopter
close-up lens filter. The latter component was required due to the positioning of the cameras being too close
for standard focusing of the lens. As a result, the final image magnification is 80.4 pix/mm. Data acquisition
and processing is performed using Lavision Davis 8.3. Calibration is performed using the Lavision 058-5 3D
calibration plate placed parallel to the desired y-z measurement plane. Final velocity vectors are calculated using
4:1 ellipse weighted 24×24 pix interrogation windows with 75% overlap (stretched in z axis to assist near-wall
measurement). Erroneous vectors were identified and removed, then iteratively replaced with other correlation
peaks with suited the neighboring vectors. The SPIV dataset contains 448 velocity fields. Assuming a ±0.1 pix
accuracy on seed displacement, this returns an accuracy for determining the freestream velocity of ±0.6%U∞.

Tomographic PIV

Seed particles are illuminated using a Quantel Evergreen HP 15-340-S dual cavity Nd:YAG laser with pulse energy
340 mJ operating at 10 Hz. Laser pulse delay was set as dt = 600 ns, with negligible observed timing jitter. Four
Lavision 2560×2160 pix sCMOS cameras were used to capture images of the illuminated seed particles. Mounted
to a frame, they were spread linearly to cover a range of observation angles. They were positioned on the opposite
side of the tunnel to the laser such that they all operated in forward-scatter to optimize light intensity. Cameras
were fitted with a similar lens assembly as installed for the SPIV setup, but fitted with lower strength +1 diopter
close-up lenses. The main limit on camera positioning for this configuration was the ability to focus on the
x-z plane as the scheimpflug adapter was at the maximum angle. As a result, the cameras needed to be moved
back from the tunnel slightly, reducing image magnification to 39.9 pix/mm. After alignment, the cameras are
calibrated by combining six views of the Lavision 058-5 3D calibration plate to obtain a 3D pinhole calibration
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Configuration dt [ns] Freq. [Hz] Magnification [pix/mm] Int. Window [pix] Overlap
SPIV 365 15 Hz 80.4 24× 24 75%
TPIV 600 10 Hz 39.9 32× 32× 32 75%

Table 5.4: Summary of PIV setup.

Configuration Domain size: (x× y × z) /δ0 Vector Density/δ0 Resolution/δ0
SPIV 0.2× 2.3× 4.6 87.5 0.04
TPIV 6.9× 1.2× 5.1 32.6 0.12

Table 5.5: Summary of PIV geometries.

accurate to 0.5 pix. Using the self-calibration disparity correction, the calibration accuracy was increased to
0.05 pix. The 3D volume was then reconstructed using Lavision routines. With sufficient illumination and
correct seed density, the presence of ghost particles was limited to a Signal to Noise Ratio (SNR) of > 3. Velocity
vectors are calculated with a final interrogation window size of 32 × 32 × 32 pix with an overlap of 75%. The
TPIV dataset contains 149 velocity fields. Calculation of a similar uncertainty limit as done for the SPIV system
returns ±0.8U∞. A comparison of pertinent PIV parameters for each of the setups is summarize in Table 5.4
and Table 5.5.

Figure 5.3: TPIV four-camera setup.

5.1.4 3D Signal Analysis

The presence of a vortex is visualized using the Q-criterion[111], which represents the second invariant Q of the
local velocity gradient tensor ∇V (see Equation 5.1). When greater than zero, this indicates that the rotation
rate dominates over the strain rate forming a swirling flow topology[113].

Q =
1

2

(
|Ω|2 − |S|2

)
=

1

2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]
− ∂v

∂x

∂u

∂x
− ∂w

∂x

∂u

∂z
− ∂w

∂y

∂v

∂z
(5.1)

where S = 1
2

[
∇V + (∇V )

T
]

is the strain tensor and Ω = 1
2

[
∇V − (∇V )

T
]

is the vorticity tensor

However, as the Q-criterion returns a scalar field, it does not offer further insight into the direction in which
a vortex is acting. To achieve this a swirling strength criterion is used to return a directional estimate of swirling
topology[114, 113]. This criterion is calculated as the imaginary part of the complex conjugate eigenvalues of
∇V2D (see Equation 5.2 for swirl strength criterion in the y-z plane). Since λci ≥ 0, a sign is artificially applied
to the scalar term using the sign of the local vorticity, sign (ωi). The final swirl strength criterion can thus be
expressed as a vector field by combining swirl components in each orthogonal plane.
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λci,x · sign (ωx) = Im


√

1

4
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)2

− ∂v

∂y

∂w

∂z
+
∂v

∂z

∂w

∂y

 · sign (ωx) (5.2)

LSE is used to identify statistically significant structures present within the velocity fields associated with
a point event variable E (x, y, z) (see Equation 5.3). This technique[115, 116, 113] provides a linear estimation
of the conditional average between observatory parameters V̂ ′ (defined relative to local average) and the event
variable E. ri terms indicate local distances from the event position x′i. A final conditionally averaged field based
on E would thus be constructed as V = V̄ + V̌ × E.

1
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x′ + rx, y

′ + ry, z
′ + rz

)
(5.3)

where summations are added through various fields and/or event locations; N is the number of summations; x′,
y′, and z′ represent the location of the event; rx, ry, and rz represent distances from the event which is being
observed in field V ′.

5.2 Boundary Layer Characterization

5.2.1 Instantaneous Turbulent Structures

Characterization of the naturally turbulent tunnel wall boundary layer was conducted using SPIV located at
Rex = 5.45× 106. Example instantaneous fields are shown in Figure 5.4 for three independent samples. The fields
are noticeably variable in spatial structure and unsteady in time, as would be expected for a turbulent boundary
layer. Low velocity ejection events are observed near the wall (for example at y/δ0 = 0.10, z/δ0 = −0.05, top
field) where the wall-normal velocity component is positive showing that the low-velocity region is being convected
away from the wall. Likewise, there is evidence of high-speed fluid being entrained within the boundary layer (for
example at y/δ0 = 0.35, z/δ0 = −1.90, middle field) with downward wall-normal velocity component bringing
fluid with higher than average velocity towards the wall. Large scale structures appear to have size of the order
1δ0.

The low-level of erroneous vectors is clearly evident, with minimal void regions (white). In addition, vectors
are determined very low within the boundary layer (within the lower 2% of δ0), enabling high-quality statistical
characterization of this region (see Section 5.2.5.2.3).

Visualization of the turbulent boundary layer is also performed in a three dimensional domain using TPIV. As
the full velocity tensor can now be defined, one may also visualize vortical structures within the domain in addition
to velocity components. Figure 5.5 demonstrates this visualization for a domain within the boundary layer.
Dimensions are shown normalized as a Reynolds numbers (i.e. Rey = ρ∞U∞y/µ∞) rather than by normalizing
with boundary layer height as this is variable through the streamwise length of the domain. However, as the
turbulent growth is relatively slight within such a small region of the working section, one can similarly scale
with an approximate boundary layer taken from Rex = 5.45× 106, returning Reδ0 ≈ 6.52× 104. The location of
the SPIV plane is shown to be central within the TPIV domain.

Two types of isosurface are plotted within the domain: i) low-speed flow where u/U∞ = 0.8, and ii) vortical
structures identified using normalized Q-criterion Qδ2

0/U
2
∞ = 5× 108. The vortical structure surfaces are colored

by the local proportion of swirl components. This helps to convey the nature of the vortex beyond simple
Q-criterion which just states that a vortex is present[113]. Through inclusion of the swirl components, one
can establish the local behavior of the vortex. As a result, vortices are colored with the following RGB color
components: i) streamwise swirl λci,x/|λci| (red), ii) wall-normal swirl λci,y/|λci| (green), and iii) spanwise swirl
λci,z/|λci| (blue).

Figure 5.6 presents four example views zoomed-in near low-speed streamwise streak features within the lower
boundary layer. Wall-normal swirling structures (green) are often observed along the spanwise edges of the
streaks as high-velocity surrounding fluid passes the low-velocity region (giving rise to cane-type vortices[113]).
Spanwise swirl structures (blue) are typically present above the low-speed streak, consistent with a rolling vortex
(sometimes part of a hairpin-type vortex when combined with wall-normal swirling legs). Streamwise swirl
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Figure 5.4: Example instantaneous y-z plane velocity fields (SPIV) within inner boundary layer at
Rex = 5.45× 106. Colors represent the through-plane streamwise velocity component u/U∞ (with black con-
tours at 0.1u/U∞ intervals). Regions with removed erroneous vectors shown in white. Black vectors represent
in-plane v/U∞ and w/U∞ velocity components (plotted with 1/8× magnification factor with respect to the y/δ0
and z/δ0 axes). The corresponding 24× 24 pixel PIV interrogation window size is shown in the top left (white
box) for reference. The mean streamwise boundary layer profile model fit ūmodel/U∞ (see Figure 5.12) is shown
against the left side of the axes (with magnification 1/2× with respect to the z/δ0 axes, thick solid line col-
ored according to u/U∞ colormap), with associated freestream velocity (white dashed lines). Axes are shown
normalized by local boundary layer height δ0 and also in Reynolds Number form (i.e. Rey = ρ∞U∞y/µ∞).

structures (red) appear in more variable circumstances, sometimes as a cane-type vortex being ejected into the
outer boundary layer, or as a transition region within a hairpin-vortex as the wall-normal swirling legs are skewed
along the streamwise direction.
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(a) Zoomed low-speed streak region (frame: 001). (b) Zoomed low-speed streak region (frame: 193).

(c) Zoomed low-speed streak region (frame: 200). (d) Zoomed low-speed streak region (frame: 245).

Figure 5.6: Zoomed views of instantaneous volumetric boundary layer velocity fields (TPIV) focused on vortical
structures surrounding low-speed streak regions. See caption of Figure 5.5 for full description of plot format.
Q-criterion isosurface volumes disconnected from main streamwise velocity isosurface volumes have removed for
clarity.

Three example structures from Figure 5.6 have been extracted and shown in isolation in Figure 5.7. A
classical hairpin-type vortex is shown in Figure 5.7a, with wall-normal swirling legs (green) extending from the
lower boundary layer either side of a low-speed region (direction of swirl in each leg is opposite). The legs
join above the low-speed streak to form a small spanwise swirling region (with negative sign). A region of
streamwise swirl is also observed towards the top of the structure, consistent with a streamwise skew since the
leg at Rez = −5 × 104 is rooted further upstream. The vortical structure in Figure 5.7b is similarly a hairpin-
type structure, however one leg blends into a streamwise/spanwise vortical structure that is present within the
low-speed region upstream of the main vortical structure and continues to extend further downstream than the
blending point. Finally, Figure 5.7c shows another complex 3D vortical structure. A hairpin-vortex is observed
upstream where one leg blends with a sizable wall-normal swirling structure. This seems to branch into two
cane-type vorticies that curve back over the low-velocity streak.
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(a) Frame: 245. (b) Frame: 193. (c) Frame: 200.

Figure 5.7: Example single Q-criterion isosurface structures extracted from Figure 5.6. See caption of Figure 5.5
for description of surface coloring format.

5.2.2 Visualization of Boundary Layer Structures Using LSE

Characterization of vortical structures within the boundary layer is performed using LSE on the TPIV velocity
fields. This approach is used to find statistically significant structures that result from certain events defined
at a point. For the purposes of identifying key vortical structures, three events are investigated: i) streamwise
swirl λci,x · sign (ωx), ii) wall-normal swirl λci,y · sign

(
ωy
)
, and iii) negative spanwise swirl λci,z · sign (ωz) < 0.

The selection of negative-only swirl events follows similar analysis that identified this as an effective means
to observe hairpin vortices[113]. To increase statistical convergence, the effective sample size was increased
by employing a similarity assumption that the growth of the boundary layer in the streamwise (or spanwise)
direction is sufficiently small, such that multiple x-z positions within the domain can be used as event points,
drastically increasing the sample size[113]. For the present analysis, 45 streamwise locations and 39 spanwise
location are used to increase the LSE sample size, with sampling intervals of ∆Rex = ∆Rez ≈ 0.9. However,
as large structures are somewhat coherent within a boundary layer length scale δ0, this reduces the number of
independent sample positions to approximately 6 and 5 in the streamwise and spanwise directions, respectively
(giving approximately 30 times more effective samples than if using a single event point). The excessive sampling
frequency helps to reduce experimental noise which is independent of defined event position, thus the spacial
super-sampling results in an increase to effective sample size by approximately three orders of magnitude.

After the LSE fields have been calculated, vortical structures are identified using a Q-criterion isosurface.
Since the magnitude of vectors within this field is arbitrary, there is no easily definable velocity scale with which
to define the Q-criterion isosurface level. Therefore, the isosurface was set to be at the 90th percentile of positive-
only Q-criterion values within the LSE domain. While this approach works well when statistically significant
vortices are present, it breaks down somewhat when they are not. As the Q-criterion is set according to a
percentile, structures will always be identified. However, if not statistically significant they will be fragmented
and incoherent.

Figure 5.8, Figure 5.9, and Figure 5.10 show the resultant vortical structure observed in the LSE field when
using streamwise, wall-normal, and negative spanwise swirl events, respectively, as the event variables. While
structures are plotted on an inclined line for reference, it is not the actual development path of the structure,
but rather a helpful way to visualize[117].

Wall-normal swirl events appear most coherent lower within the boundary layer at a height of y/δ0 ≈ 0.5
(see Figure 5.8). The principle structure is a vertical wall-normal vortex extending outwards from low within
the boundary layer. Correlation coefficients with streamwise velocity of ±0.4 are observed in elongated regions
situated on either side (in span) of the wall-normal vortex. Thus, the structure is consistent with cane-vortex
legs that are present along the edge of high/low velocity streaks. Secondary vortices are located at ±0.5δ0, these
appear skewed and extend downstream. Streamwise swirl events appear most coherent towards the upper half
of the boundary layer at a height of y/δ0 ≈ 0.7 (see Figure 5.9). They share much of the same structure as
the wall-normal swirl events, albeit with greater streamwise skew. Secondary structures are similarly located at
±0.5δ0 with similar skew to the principal structure. Negative spanwise swirl events appear most coherent near
the outer limit of the boundary layer at a height of y/δ0 ≈ 0.9 (see Figure 5.10). The principal structure is a
spanwise vortex with two streamwise skewed legs extending downwards into the upstream boundary layer. This
structure is consistent with hairpin vortices present in the outer boundary layer. Figure 5.11 shows the structures
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in an isometric view.
These findings support those made by Elsing et al.[113] who used the same technique to identify spanwise

vortex structure within a compressible high-speed boundary layer. As the number of processed velocity fields
increases the quality of the LSE structure will continue to improve. In addition, by acquiring data lower in the
boundary layer further small-scale structures will be observed.

5.2.3 Statistical Characterization

The state of the boundary layer is assessed from SPIV data statistics, averaged across the span. If one accepts a
estimated spanwise independence length scale of approximately 1δ0 then this increases the effective sample size
from 448 to approximately 2000, halving the corresponding confidence interval. In addition, experimental noise
associated with high wavenumber features will be significantly attenuated as the effective sample size for these
structures will be much higher.

The resultant mean boundary layer is shown in Figure 5.12a. The boundary layer is smooth and continuous,
with the lowest measurement at y/δ0 = 0.037. In order to obtain a full boundary layer profile to determine integral
statistics the experimental data was compared to two models for a turbulent boundary layer profiles with the
associated Van Driest transformation[118] to allow for compressible effects. A semi-empirical model for the outer
region of the boundary layer[119] was first fit to the experimental data (using the MATLAB function fminsearch)
to obtain values for skin friction coefficient Cf , wall height offset error ∆y0, and boundary layer height δ0. These
values were then used to inform the lower boundary layer model[120] and ensure a continuous profile. While
limited in tuning parameter, the models offered an excellent fit to the experimental data with R2 = 0.984. Once
corrected for compressibility (using Van Driest II[118]), the boundary layer could be expressed in wall-units (see
Figure 5.12b). SPIV data is thus observed to extend from the freestream, through the wake and log-law region,
into the start of the buffer layer with the lowest measurement point at y+ = 32. A 95% confidence interval on
this mean is also plotted (using dashed line), however is barely observable outside of very low in the boundary
layer, further confirming the quality of the measurement. Data from TPIV at Rex = 5.45× 106 is also included
in Figure 5.12 for verification. TPIV appears to match SPIV closely (which is treated as quasi-truth data), with
slight disparity consistent with the lower sample size and higher experimental uncertainty associated with the
technique. Finally, boundary layer profiles for Reynolds stresses were calculated from the high-resolution SPIV
data and shown in Figure 5.12c. The onset of the Ruu rise within the buffer region is observed and consistent
with other reported compressible turbulent boundary layers[121, 122].

Parameters associated with the characterized boundary layer at Rex = 5.45 × 106 are shown in Table 5.6
for reference. Results are compared to initial boundary layer estimates made using the semi-empirical model by
Tucker[123]. As expected[52], these differences were mostly within 20% and the model generally over-predicted
the size of the boundary layer. Density within the boundary layer was estimated using the Crocco-Busemann
relation[124], assuming an isothermal wall-temperature equal to stagnation conditions Tw = T0 = 300.5 K (a
reasonable assumption for short duration tunnel operations with large metal structures) and turbulent recovery

factor r = Pr1/3 = 0.896. Thus, minor heat transfer is expected to occur at the wall since the adiabatic wall
temperature for M∞ = 2.28 flow is Taw = 284.6 K.

Source δ0 [mm] δ∗ [mm] θ [mm] H [-] Cf [-] uτ/U∞ [-] Reθ [-]
SPIV 6.53 1.94 (1.02) 0.55 (0.74) 3.50 (1.39) 0.0020 0.044 5.5× 103

Model 7.78 2.37 (1.21) 0.60 (0.88) 3.96 (1.40) – – 6.0× 103

Difference +19% +22% +19% +9% +19% +13% +1% – – +9%

Table 5.6: Boundary layer statistics at Rex = 5.45×106 (incompressible values in parenthesis). Values compared
to semi-empirical model by Tucker [123].

5.3 3D SBLI Structure Characterization

5.3.1 Instantaneous Visualization

TPIV offers a unique opportunity to visualize the instantaneous structure of this complex highly three dimensional
SBLI. Prior measurements within this tunnel [51, 52] have sought to develop a three dimensional understanding
of the interaction through statistical means, oil flow visualization (mean flow near the wall), multiple plane PIV



CHAPTER 5. VOLUMETRIC STUDY OF SWEPT IMPINGING OBLIQUE SBLIs 113

(three dimensional statistics only), shadowgraph/schlieren imaging (integrates structure across span), and simul-
taneous high-frequency pressure measurements (spatial/temporal relationships between point measurements).
None of these other techniques are able to simultaneously visualize the entire interaction to gain a more complete
understanding of the physical structure. In the wider community, recent development of a plenoptic PIV system
shows promise in assessing complex SBLI[125], but is currently a technique less developed than TPIV which has
attracted much attention from TU Delft[126, 26, 113].

Four examples of such instantaneous fields are shown in Figure 5.13 and Figure 5.14. Each subfigure features
two isosurfaces which act as surrogate estimators of separation bubble shape and separation shock shape. The
separation bubble surrogate is selected as a low streamwise velocity region where u/U∞ = 0.5, this was selected
over other alternatives (i.e. u/U∞ = 0 or

∫ y
0
ρudy = 0) due to the lack of near-wall observation in this dataset.

The separation shock surrogate was selected using the wall-normal velocity component as v/U∞ = 0.1. This
was selected as the most appropriate surrogate, as many other options (i.e. Ducros shock detector[127] or
various velocity gradients) are highly susceptible to contamination with experimental noise. Sinceboth features
are dominated by the respective surrogate parameter, they are appropriate to visualize flow structures. Spanwise
locations are defined relative to the shock generator root plane (i.e. the side wall of the tunnel).

The surface of each surrogate is colored according to the local difference between the instantaneous and mean
values. For the separation surrogate (u − ū)/U∞ > 0 (colored red), this corresponds to a region where the
ensemble mean is lower than the measured instantaneous value, thus the separation bubble has shrunk from
its mean structure. Inversely, if (u − ū)/U∞ < 0 (colored blue), then the mean value is higher, indicating the
bubble has grown beyond the mean size. A similar approach was taken for the separation shock surrogate. If
(v − v̄)/U∞ > 0 (colored green), then the shock has moved forward resulting in reduction to the local mean
value v̄/U∞ → 0. Likewise, if the instantaneous shock moves downstream the new local mean would be higher,
resulting in (v − v̄)/U∞ < 0 (colored brown). Since the region of elevated v behind the shock is limited by the
shear layer and the incident shock, these features are also visualized. The shear layer surface region is generally
below the separation surrogate, but the incident shock is clearly visible. As v decreases across the incident shock,
its effect on the difference to the mean is reversed compared to the separation shock. Therefore if the incident
shock moves downstream it will be colored green, while if it moves upstream it will be brown. In addition, the
fields are surrounded by instantaneous contours of u/U∞ to aid visualization of a large/small SBLI structure.

Figure 5.13 shows two examples of instantaneous fields which exhibit a series of high/low streamwise ridges
along the bubble surrogate surface. These ridges extend from the separation foot, pass through the visualized
shock system and along the top of the separation surrogate, then clearly influence the reattaching flow. Such
examples can be seen at Rez = 36×104, Rez = 46×104, and Rez = 52×104 in Figure 5.13a, and at Rez = 40×104,
Rez = 50 × 104, and Rez = 56 × 104 in Figure 5.13b. Inverted ridges are also seen to extend throughout the
interaction, typically positioned between positive ridges. This ridge pattern appears to be correlated with the
separation shock foot such that it locally moves upstream when the separation bubble region is enlarged. There
also appears to be a spanwise periodicity to the ridge structures with wavelength close to the reference boundary
layer height (∆Rez ≈ Reδ0), this is highly reminiscent of the shock ripples that have recently been reported in
other swept SBLI studies[52, 43, 53].

Figure 5.14 shows two other fields that exhibit large scale growth/collapse of the SBLI structure. In many
ways, this is very similar to unswept SBLIs, that exhibit large-scale ‘breathing’ of the separation bubble[14], with
localized shock jitter [128], but the presence of coherent ridges along the bubble has not been identified (possibly
because such interactions are typically viewed in x-y plane). The large-scale growth of the separation region has
a strong correlation with motion of the shock structure, moving the separation shock further upstream. The
position of the incident shock does not appear to vary significantly.
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(a) Mean boundary layer profile (linear units). (b) Law of the wall (inner) scaling of the mean profile.

(c) Reynolds stresses (SPIV only).

Figure 5.12: Boundary layer mean streamwise velocity profiles at Rex = 5.45×106. Semi-empirical models fitted
to SPIV data only (upper model for y+ > 130: Sun and Childs[119], lower model: Musker[120], coefficient of
determination in (b) R2 = 0.984).



CHAPTER 5. VOLUMETRIC STUDY OF SWEPT IMPINGING OBLIQUE SBLIs 117

5.3.2 Visualization of Ensemble Statistics

Statistics from the TPIV SBLI dataset have been assessed across the 149 velocity fields. Figure 5.15 depicts the
various velocity components of the mean interaction structure. The upstream flow is consistent with a turbulent
boundary layer having minimal content in wall-normal or spanwise directions. Upon approaching the SBLI,
streamwise velocities decrease in a largely unswept manner, before the outer region of flow is deflected away
from the wall due to the separation shock. The separation bubble continues to grow with minimal spanwise
contributions until the incident shock is experienced. At this point, the flow is directed towards the wall, causing
the bubble to reduce in height, and also imparts significant cross flow velocities close to the wall (w̄/U∞ ≈ 0.3).
After flow reattaches the downward velocity component abates as flow is directed more parallel to the wall. The
spanwise velocity component also appears to reduce as the thickened boundary layer recovers downstream of
the interaction. A quasi-conical structure is observed, with growth of the SBLI region as spanwise position is
increased.

Unsteady velocity fluctuation magnitudes are similarly shown in Figure 5.16. The streamwise velocity compo-
nent (Figure 5.16a) shows significant unsteadiness around separation and along the separated shear layer, much
in a similar behavior to unswept SBLIs [18]. This is followed by a swept spanwise band of strong fluctuations
after reattachment. Close observation of the wall-normal field in Figure 5.16b shows some unsteadiness in the
separation shock (near Rex ≈ 530× 1044, however the magnitude is relatively low in comparison to fluctuations
after reattachment. Similarly in the spanwise component (Figure 5.16c), the fluctuating field is dominated by
downstream unsteadiness. This post-reattachment unsteadiness is observed in all components, but appears to
decrease in size as spanwise position is increased. This contradicts the quasi-conical structure that was apparent
in the mean statistics, and suggests that significant unsteadiness is associated with the interaction root and is
reduced somewhat as span is increased.

Characterizing separation in 3D is more complex[129] than merely identifying where u/U∞ < 0 as would
be done for 2D flows. Highly swept ‘open’ separated flows can exhibit limited flow reversal if any[43, 130].
Figure 5.17 and Figure 5.18 show y-plane streamlines (where v/U∞ = 0) to visualize the separated flow structure
at different heights. A clear separation region is observed at both heights. The line of separation appears
upstream of any reversed streamwise flow in the mean at a swept angle below that of the shock generator
(ψS � ψsg). Reattachment is significantly further downstream than any separation at a given span with an
angle of sweep slightly greater than the shock generator (ψR > ψsg). Specific values are given in Table 5.7. The
size of separated flow reduces as height from the wall is increased. An effective separation origin is defined at each
height as the spanwise location where the extrapolated linear separation line meets the linear reattachment line
(Rez0(y)). When projected the in-plane origin is projected to the floor, this returns the spanwise origin location
as Rez0(0) = 11.2 × 104 (z0/δ0 ≈ 1.72). Such an origin is typically quoted negative (being beyond the root
plane of the shock generating model)[131, 43]. This suggests that the root behavior is unique to this swept SBLI
structure and is attributed to an effect of either the root boundary layer[52], or the inviscid inception length[55].
The unsteadiness in Figure 5.17b and Figure 5.18b show that the dominant unsteadiness occurs outside of the
separated flow and translates in the spanwise with the in-plane origin.

Rey y/δ0 ψS ψR Rez0(y)
1.85× 104 0.28 4.9◦ 31.6◦ 28.7× 104

2.61× 104 0.40 9.4◦ 35.3◦ 36.2× 104

Table 5.7: Sweep angles of local flow separation and reattachment induced beneath shock generator that is swept
at ψsg = 30.0◦.
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(a) Frame: 069.

(b) Frame: 138.

Figure 5.13: Example instantaneous SBLI fields (TPIV) demonstrating streamwise streaks. Contours of u/U∞
plotted at spanwise limits of domain (black contour lines at ∆u/u∞ = 0.1, colored contours at ∆u/u∞ = 0.05,
see ticks and colors on colorbar). SBLI bubble region visualized using isosurface of streamwise velocity at
u/u∞ = 0.5, surface colored by difference to mean field (u− ū)/u∞, where blue indicates enlarged bubble and
red indicates diminished bubble. The separation shock and incident shock are visualized using isosurface of wall-
normal velocity at v/u∞ = 0.1, surface colored by difference to mean field (v − v̄)/u∞, where brown indicates
downstream shock green indicates upstream shock. The boundary layer detailed in Table 5.6 is shown at the
nearside corner of the domain for reference, boundary layer height δ0 is indicated by the dashed black line. Rez
is defined relative to the root plane (i.e. the tunnel sidewall). Background filled contour planes represent the
instantaneous velocity u/U∞. Dashed white line indicates the location of the mean bubble isosurface position
v̄/U∞ = 0.1.
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(a) Enlarged bubble, Frame: 038.

(b) Shrunken bubble, Frame: 051.

Figure 5.14: Example instantaneous SBLI fields (TPIV) demonstrating large scale bubble growth/collapse. See
Figure 5.13 for full description of remaining plot format.
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(a) Mean streamwise velocity.

(b) Mean wall normal velocity.

(c) Mean spanwise velocity.

Figure 5.15: Mean velocity fields within SBLI (TPIV data). The central and nearside spanwise contour planes
are displayed semi-transparent. Reversed streamwise velocity is indicated by the thick black contour. Rez is
defined relative to the root plane (i.e. the tunnel sidewall). See Figure 5.13 for full description of remaining plot
format.
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(a) Unsteady streamwise velocity.

(b) Unsteady wall-normal velocity.

(c) Unsteady spanwise velocity.

Figure 5.16: Unsteady velocity fields within SBLI (TPIV data). See Figure 5.13 and Figure 5.15 for full description
of remaining plot format.
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(a) Mean y-plane flow deflection. (b) Unsteady streamwise velocity.

Figure 5.17: Streamlines in y plane at height of Rey = 1.85 × 104 (y/δ0 = 0.28). Streamlines within separation
region are shown in white. Streamlines upstream of separation and downstream of reattachment are shown in
black. See Figure 5.15 for full description of remaining plot format.

(a) Mean y-plane flow deflection. (b) Unsteady streamwise velocity.

Figure 5.18: Streamlines in y plane at height of Rey = 2.61×104 (y/δ0 = 0.40). See Figure 5.17 for full description
of remaining plot format.

By extracting features observed in various ensemble velocity fields, a simple model of the interaction can
be constructed, as shown in Figure 5.19. An isosurface of v̄/U∞ = 0.060 (red) visualizes the separation shock,
growing shear layer and the incident shock. Beneath which, a ū/U∞ = 0.160 isosurface (blue) shows the conically
developing bubble region with its maximum height at the impingement location of the incident shock. The
region of high spanwise flow is visualized using a w̄/U∞ = 0.190 isosurface (green), which clearly shows this
region is associated with reattachment, but is not limited to being either upstream or downstream of the actual
reattachment line. Finally, unsteadiness within the interaction is represented by the cyan isosurface at u′/U∞ =
0.135 which highlights two key regions: i) developing shear layer over the first half of the separation bubble, and
ii) significant non-conically developing unsteadiness downstream of reattachment.

5.4 Summary

An extensive collection of volumetric data has been presented to characterize a Mach 2.3 turbulent boundary
layer and a swept impinging oblique SBLI. Stereo PIV was used for high-resolution boundary layer measurements
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Figure 5.19: Notable features within SBLI. Blue isosurface at ū/U∞ = 0.160 shows low-speed near-wall flow
within SBLI (fluid surrounding separation bubble). Red isosurface at v̄/U∞ = 0.060 shows the separation
shock, growing separated shear layer, and the incident shock. Green isosurface at w̄/U∞ = 0.190 shows flow
around reattachment with strong spanwise component. Cyan isosurface at u′/U∞ = 0.135 shows unsteadiness in
separated shear layer and after reattachment. See Figure 5.13 for full description of remaining plot format.

in the streamwise plane, and then extended to Tomographic PIV to facilitate sampling instantaneous snapshots
of the entire interaction, rather than building a statistical model through multiple independent measurements.
In addition, the 3D velocity fields were used characterize vortical structures present in the boundary layer.

Boundary layer statistics show good agreement between the two PIV techniques. Careful setup of the Stereo
PIV system enabled sampling within 0.25 mm of the wall (y+ = 32), penetrating the buffer layer. Reynolds
stresses were characterized and agree with expected behaviors. Three-dimensional vortical structures have been
identified within the boundary layer consistent with cane and hairpin vortices surrounding regions of low-velocity
flow.

3D velocity measurements using Tomographic PIV have been used to characterize the complex structure of
the swept impinging oblique SBLI. A spanwise growth of the interaction length scale is observed consistent with
conical similarities found in other swept SBLI configurations. Within the interaction is an open-separation bubble
with significant spanwise velocity components near reattachment. The bubble exhibits large-scale growth/decay in
addition to localized streamwise ridges that extend throughout the interaction and occur with periodic regularity
along the spanwise direction. Significant unsteadiness is observed in the separated shear layer, at the separation
shock foot, and near reattachment.

This is an initial summary of the data set and the analysis will be expanded significantly in future publications.
For example, Tomographic PIV data is currently being processed for the near-wall region and will eventually have
a sample size similar to that of the Stereo PIV dataset. This will enable characterization of vortical structures
close to the wall and with greater statistical confidence. In addition, the LSE approach will be applied within
the SBLI to identify coupled flow features that could identify mechanisms for the interaction structure and
unsteadiness. Other possibilities for data analysis abound including a myriad of modal decomposition techniques
(POD, OMD, DMD, etc.).



6. Surface Measurements of Swept Impinging Oblique

SBLI

An experimental investigation has been conducted on swept impinging oblique SBLIs at Mach 2.3. The
incoming boundary layer is turbulent with (Reθ = 5.5 × 103). The swept impinging oblique shock is induced
by a shock generator mounted in the freestream with x-y plane deflection angle θ = 12.5◦ and variable x-z
plane sweep angles of 15.0◦, 22.5◦, 30.0◦, and 40.0◦. Oil flow visualization, PIV, mean pressure measurements
and fast-response pressure transducers are used to provide detailed characterization of the mean and unsteady
features of the SBLIs. Large scale separation is observed in all cases with spanwise growth evident at high shock
generator sweep angles. At the onset of separation in the quasi-infinite region, mean pressures are independent of
span and scale cylindrically. However, mean pressures at reattachment display a mild dependency on the span,
suggesting the global structure of the SBLIs is conical in nature. This agrees with supporting tomographic PIV
measurements. Unsteady pressure measurements beneath the separation shock foot for the ψ = 30.0◦ SBLI shows
clear low frequency unsteadiness across the span at nearly constant frequency. Spanwise traveling ripples are
present at the shock foot with considerable coherence in the low frequency range. The spanwise convection speed
of these ripples increases with span suggesting that the wavelength also increases. Minimal upstream influence
is associated with the low frequency unsteadiness, suggesting a source mechanism within the SBLI.

6.1 Experimental Methodology

Experiments were conducted in a supersonic wind tunnel at the University of Arizona. The inlet and the
test section of the original in-draft tunnel from the 1960s have been recently modernized, with the adjustable
nozzle being replaced by solid aluminum blocks designed using the Method of Characteristics with boundary
layer corrections. This paper focuses on experiments performed at a nominal Mach number of 2.3. The test
section has dimensions 121.9 mm × 81.3 mm × 609.6 mm (4.8 × 3.2 × 24, W × H × L) and features various
interchangeable side panels to mount a variety of shock generators, windows and pressure taps. A second throat
is employed to increase the run time (to approximately 15 s) before the air is drawn into the 34.0 m3 (1200 ft3)
vacuum tank. The dry Arizona air provides excellent stagnation conditions, enabling tests to be performed at
constant stagnation temperature and pressure. Table 6.1 shows relevant test parameters.

Tests have been conducted with a shock generator mounted on the tunnel sidewall positioned over an instru-
mentation plug, enabling the acquisition of pressure measurements within the SBLI [52]. The instrumentation
plug has a diameter of 111.8 mm (4.40) and is located on the tunnel centerline, 149.2 mm (5.88) downstream of
the nozzle exit plane. Rotation of the plug is accurate up to ±0.1◦ using a vernier scale on the outside of the
tunnel. The available measurement zone is confined to the central 86.4 mm (3.40) diameter of the plug.

The boundary layer at Mach 2.3 has been characterized using Stereo PIV [132]. Relevant parameters for the
boundary layer at Rex = 5.45 × 106 (which represents a location at the middle of the plug) are shown in Table
6.2. Near wall velocity profiles from PIV agree with compressible turbulent boundary layer models until y+ = 32.

Table 6.1: Working section test environment.

M∞ T0 [K] p0 [pa] U∞ [m/s] Re/L [1/m]

2.28 300.5 0.933× 105 554.8 9.99× 106

± 0.02 ± 0.2 ± 0.002× 105 ± 2.6 ± 0.13× 106
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Table 6.2: Compressible boundary layer statistics upstream of the interaction at Rex = 5.45× 106 [132].

δ0 [mm] δ∗ [mm] θ0 [mm] H [-] Cf [-] Reθ

6.53 1.94 0.55 3.50 0.0020 5.5× 103

Table 6.3: Comparison of scaling variables for different sweep angles.

ψ [deg] ψs [deg] ψR [deg] W/z0 [-]

15.0 14.4 15.0 0.02
22.5 19.6 22.5 0.07
30.0 14.7 30.0 0.08
40.0 23.0 40.0 0.71

This investigation focuses on SBLIs produced by shock generators with an x-y plane angles of θ = 12.5◦ and
variable x-z plane sweep angles of 15.0◦, 22.5◦, 30.0◦ and 40.0◦. The shock generators are mounted on to the tunnel
sidewall 83.5 mm (3.31) downstream of the nozzle exit plane, and 38.1 mm (1.5) above the instrumentation plug.
A schematic of the inviscid shock reflection (neglecting end effects) is shown in Figure 1.3. The shock generator
is 88.9 mm (3.50) in width and has a maximum thickness below the leading edge of 8.9 mm (0.35). The aspect
ratio is defined as the width of the shock generator relative to the height from the plug to the shock generator
apex. The chosen height of 38.1 mm (1.5) yields an aspect ratio of about 2.3. Shock generators are located in the
streamwise direction such that the SBLIs occur over the instrumentation plug, enabling detailed observations.

Oil flow visualization is achieved with a TiO2, kerosene, and oleic acid mixture of 48% - 51% - 1% by weight.
The oil is thoroughly mixed and applied to near the interaction region immediately before start-up. The mixture
is distributed by the starting normal shock passing through the test section, then follows the local skin-friction
gradients to reveal surface features. Images are calibrated for perspective distortion using a calibration plate and
a bespoke MATLAB script.

Mean pressures are acquired using 35 pressure taps with a diameter of 0.5 mm (0.018). Tubes with diameter
of 1.6 mm (0.063) transfer the slow-response pressure through a distance of 1000 mm (39.4) to a Scanivalve DSA
3217 pressure scanner with a sensor range of 15 psid referenced to ambient (stagnation) pressure. Eight channels
were measured during each run with a sampling frequency of 62.5 Hz. The plug is rotated for approximately 30
tests to populate the mean pressure distribution.

Unsteady wall pressure data under the SBLI is captured using 10 holes with a diameter of 1.6 mm (0.063)
in which fast response pressure transducers (Kulite MIC-062-10A) are flush mounted. Two transducers capture
pressure data simultaneously at 262.144 kHz for 8 seconds using a National Instruments NI-9222 data acquisition
module. The signals are amplified using a Kulite KSC-2 signal conditioner with a gain of 256 and filtered using
a built-in analogue LP6F low-pass filter with a cutoff frequency of 95 kHz. Spectral analysis of the unsteady
pressures is conducted with Welchs method with a Hamming window of length 8192 and 50% overlap. Spectral
estimates are averaged across 511 windows, with a frequency resolution of 32 Hz. Tomographic PIV data is
included in this paper to provide additional context and the experiment details can be found in Threadgill and
Little [132].

6.2 Mean Results

Oil flow visualization and static pressure measurements were acquired to investigate the mean behavior of swept
impinging oblique SBLIs. Figure 6.1 shows a representative example for ψ = 30◦. The inviscid shock impingement
location is determined using the model developed by Threadgill and Little [133]. Oil flow visualization shows the
upstream flow has uniform surface streaklines indicating it is void of any significant mean disturbances. The sep-
aration line is clear where the streaklines coalesce. Corner features are visible in the oil flow visualization at both
the root and tip. The corner feature at the root is induced when the shock interacts with the side wall boundary
layer. Curved streaklines in the root indicate flow separation, but no obvious reversed flow in the streamwise
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(a) Oil flow visualization. (b) Mean Pressure distribution.

Figure 6.1: Surface flow visualization and mean pressure distribution beneath a swept impinging oblique shock.
The white dotted line representing upstream influence, The red line represents the separation region. The blue
line represents reattachment line. Also, the magenta line represents the inviscid shock impingement and the green
line is the shock generators projection along y-axis. White circles in both figures represent the diameter of the
plug and the dotted circle indicates the area where the data can be taken. In the mean pressure contour figure,
the white circle and white triangle represent the location of the Scanivalve pressure ports and Kulite pressure
transducer respectively.

direction. The separation line near the middle of the tunnel appears quasi-infinite, but is eventually distorted by
the corner separation with reversed flow at the tip. This paper focuses on the central quasi-infinite span region
which, in all cases, is straight and displays a sweep angle lower than the shock generator. At reattachment, the
surface streaklines diverge, in contrast to the behavior observed in the separation region. Reattachment features
are somewhat more challenging to identify. However, it is clear that this occurs downstream of the inviscid shock
impingement location and has an x − z plane angle similar to the shock generator sweep angle itself [51]. Like
separation, quasi-infinite span features for reattachment appear near the middle of the tunnel. Downstream of
reattachment, the flow is deflected in the direction of the freestream.

The 2D mean pressure distribution in Figure 6.1 is extracted from linear interpolation of 240 data points and
shows good agreement with the oil flow visualization. There is a steep increase in pressure immediately upstream
of separation, indicative of a separation-induced shock footprint. This is followed by a pressure plateau region
with a reduced streamwise pressure gradient. In the reattachment region, a secondary rise in pressure is observed
due to redirection of the separated fluid when it reattaches onto the wall. Downstream of the reattachment,
expansion waves from the shock generator face trailing edge impart a drop in pressure. The corner features
at the root and tip limit the quasi-infinite region of the interaction. To better isolate the quasi-infinite section,
Regions of Interest (ROI) are created for each SBLI to mask the effects from the corners. First, an initial location
for ROI is created based on the oil flow estimates of separation and reattachment lines. The collapse of pressure
on the separation line and reattachment line is assessed, and the separation and reattachment angles are varied
accordingly. This process is repeated until converged. This iterative process is outlined in detail in Doehrmann
et al. [52], and it is applied here to isolate the quasi-infinite region where separate and reattachments are linear.
The resulting separation (ψs) and reattachment (ψR) angles for the different cases are given in Table 6.3.

The mean pressure rise at separation is summarized for all cases in Figure 6.2 using data from Doehrmann
et al. [52]. ROIs were created for different sweep angles, using the procedure outlined above.The ROI for the
30◦ shock generator is shown in Figure 6.2a. When mean pressures are projected normal to separation (zS),
they collapses for all sweep angles (Figure 6.2b). This implies that the local features of separation are similar,
in agreement with the free interaction concept [134]. Mean pressures at reattachment require further scaling.
Doehrmann et al. [52] observed that conical scaling, using a virtual origin from the projection of separation and
reattachment lines, did not collapse the data. This is because the mean pressure scaling along the separation
line is locally cylindrical when aligned normal to separation. This quasi-cylindrical behavior persists downstream
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(a) Coordinate system used for analyzing data along the sep-
aration line.

(b) Collapsed mean pressure at separation line.

Figure 6.2: Mean pressure analysis for swept shock generator along the separation coordinate systems.

until the external influence of the impinging shock is encountered. Local scaling for pressures at reattachment
(analogous to separation) also does not result in data collapse for higher sweep angles (30◦ and 40◦). This implies
that pressures at reattachment in highly-swept impinging obliques SBLIs are dependent on span. As the local
interaction length increases along the span, the secondary pressure gradient will become milder. Thus, spanwise
dependency must be accounted for in the scaling. To this aim, the location along reattachment (zR) is offset
by the spanwise virtual origin point (z0), measured from the centerline of the tunnel parallel to reattachment.
The reference frame and the reattachment axis are shown in Figure 6.3. For each sweep angle, the value of z0 is
found iteratively, resulting collapse of reattachment pressure for 22.5◦, 30◦ and 40◦ sweep. However, the lowest
shock generator sweep angle (15◦) did not collapse using this method. This is attributed to the denominator
of the pressure scaling term (zR − z0) tending to infinity (i.e. cylindrical similarity) and disrupting the scaling
approach. z0 values for different shock generators are shown in Table 6.3. Note that, the origins for all shock
generators are outside the tunnel, which is similar to observations made for other swept SBLIs [63].

Recently, Threadgill and Little [132] performed TPIV on the 30◦ sweep configuration. The mean streamwise
velocity field shown in Figure 5.15 agrees with features present in the wall-pressure distribution and oil flow
visualizations (Figure 6.1). As the boundary layer approaches the separation shock, the near wall velocity
reduces and forms an open separation bubble. A quasi-conical global shock structure can be observed in the
streamwise velocity contour. This agrees with recent work on swept compression ramps that suggests streamwise
velocity components scale conically outside the inception region [44].

6.3 Unsteady Results

Unsteady wall pressure measurements were carried out using Kulite (MIC-062-10A) pressure transducers. The
locations for Kulite pressure transducers for ψ = 30◦ are shown in Figure 6.1. The coarse nature of measurement
locations when compared to mean pressure is apparent, but the overall behavior is clear. The spectral energy
content is shown as pre-multiplied power spectral density (PSD), normalized by the variance. A similar normal-
ization approach has been used to generate all PSD figures in this work. Normalizing by the variance shows the
distribution of energies at the corresponding frequencies as a proportion of the total unsteadiness. Frequency
is non-dimensionalized by defining a Strouhal number with incoming boundary layer thickness (δ0) as a length
scale. Unlike unswept interactions, which can be characterized by a single interaction length, swept interactions
often have a variable interaction length that increases with span away from the root. Therefore, the boundary
layer thickness is the only constant dimensional length scale to act upon the quasi-infinite span region.
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(a) Coordinate system used for analyzing data along the
reattachment line.

(b) Collapsed mean pressure at reattachment line.

Figure 6.3: Mean pressure analysis for swept shock generator along the reattachment coordinate systems.

Low frequency unsteadiness is observed near the separation shock foot in Figure 6.6a. This can be explained,
in part, by interpreting the SBLI as a first-order low pass filter. This is well-established for unswept SBLIs
[135, 136]. Doehrmann et al. [52] assessed these unsteady features for various sweep angles and found that as
sweep increased, the low frequency values near the separation shock also increased (from Stδ0 ≈ 0.015 − 0.045,
moving from ψ = 15.0◦ to 40.0◦ respectively) while the amplitude decreased (from Cp

′ ≈ 0.042− 0.018, moving
from ψ = 15.0◦ to 40.0◦ respectively). This is qualitatively consistent with the findings of Erengil and Dolling [49]
for swept compression ramps. Streamwise velocity fluctuations in Figure 5.16 show features that are consistent
with unsteady pressure measurements. Significant unsteadiness is observed in the separated shear layer and near
reattachment. Threadgill and Little [132] showed that, like unswept interactions, streamwise velocity fluctuations
(u′) are dominant near the separation shock foot. The streamwise velocity fluctuations decrease in the separated
shear layer, followed by another increase near the reattachment region. The velocity fluctuations near the
separation shock foot (no spanwise gradient in u′) are consistent with the quasi-cylindrical structure observed in
the mean pressure statistics. Along the separation shock foot, Doehrmann et al. [52] observed spanwise travelling
ripples propagating away from the interaction root for 30◦ sweep angle. The spanwise travelling ripples moved at
approximately 20% of the freestream velocity and increased to 25% along the span. It was also shown that the
low frequency of the ripple was coherent with the frequency of the separation shock foot and remained constant
along the span. However, Doehrmann et al. [52] studied this phenomenon at only a few discrete locations and
additional data is required to fully cement the findings. To this aim, additional locations along the span of the
separation shock foot are now surveyed.

Figure 6.5 shows the 8 locations where high bandwidth pressure measurements have been acquired. The
resulting PSD values are plotted in pre-multiplied form, normalized by variance in Figure 6.6b. It is now clear
that the low frequency content (peak at Stδ0 ≈ 0.023) dominates the unsteadiness along the span. As expected,
there is excellent agreement between this data and the low frequency content in Figure 6.6a near separation shock
foot. There is also evidence of high frequency content from the incoming boundary layer near Stδ0 = 0.6, although
the true upper limit of the high-frequency content is likely attenuated above 20kHz by the frequency response of
the pressure sensors. It is interesting to note that the frequencies in Figure 6.6b are relatively constant along the
span, especially in the quasi-infinite region, despite the increase in separation length. There are variable peak
levels in the PSD near the separation shock foot. Near the root (z/δ0 = 5), the frequency peak is quite broad
and becomes sharper moving along the span in the direction of sweep. This behavior peaks near the tip of the
interaction before encountering the corner region (z/δ0 = −6).

To focus on the low frequency content of the shock foot alone, a bandpass filter with a range of (0.0064 <
Stδ0 < 0.090) is applied when computing the variance (see Figure 6.7a). This range of Stδ0 is chosen because it
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(a) Mean streamwise velocity (u).

(b) Streamwise velocity fluctuations (u′).

Figure 6.4: Mean and fluctuating streamwise velocity contours from TPIV. Reversed streamwise velocity is
indicated by the thick black contour.

is symmetrical (in log) around the peak frequency Stδ0 ≈ 0.023. This further isolates the low frequency energy
content from the turbulent boundary/shear layer and emphasizes the appearance of first order low-pass filter
behavior. To further assess the amplitude of the unsteadiness in quasi-infinite region, the band-passed pressure
coefficient standard deviation (C ′p) is also estimated. The value of (Cp

′) in Figure 6.7b at each spanwise location
clearly shows that the amplitude of the unsteadiness increases with the span. The increase in low frequency
unsteadiness amplitude in the quasi-infinite region appears linear, which suggests that it is minimally affected by
the corner features.

Correlations between sensor pairs are investigated to assess spanwise traveling waves. Cross-covariance be-
tween sensors pairs is shown in Figure 6.8a to present the lag between sensors and estimate the shock rippling
speed (Uτs). The distance between the sensors (∆xs) is divided by the signal lag (τ) that corresponds to the
peak in Figure 6.8a to yield shock rippling speed (Uτs). Since the sensor is positioned parallel to the separation
and located in the shock intermittency region, structures other than those exhibited in separation shock foot will
yield a spurious signal. For example, the cross correlation between pairs 1-2 is estimated by lagging 1 with respect
to 2. The cross correlation computed between 1 and 2 shows a positive lag which indicates the structure passes
from 1 towards 2. The correlation pairs are always situated such that the root-most sensor is lagged relative to
tip sensor.
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Figure 6.5: Mean pressure contour showing the location of high bandwidth pressure sensors beneath the shock
foot.

(a) PSD normal to separation. (b) PSD beneath the shock foot.

Figure 6.6: Power spectral density measurements done normal to separation and beneath the shock foot for
ψ = 30.0◦.

The strongest correlation coefficient (0.57) is observed between sensor pairs 5−6 resulting in a shock rippling
speed of 0.23 U∞. Correlation coefficients are high when the sensors are near each other and decrease when farther
apart due to natural dispersion effects. For example, sensor pairs 3 − 4 are separated by twice the distance as
sensor pairs 5− 6 and the correlation drops to 0.32. Sensor pairs 1− 2, located in the root section, have weaker
correlation and the distance between the sensors is the same as sensor pairs 3− 4. Also, the structures observed
along the span are much slower than the freestream (Uτs ≈ 20% of freestream velocity) and may be related to
those observed in the separated region by Vanstone et al. [63]. Doehrmann et al. [52] reported that the shock
rippling speed increases along span and this is observed in more detail in Figure 6.8b. The shock rippling speed
in Figure 6.8b is slower at the root (≈ 15% of U∞) and accelerates towards the tip (≈ 25% of U∞).

Figure 6.9 assesses the possible influence of upstream turbulent boundary layer superstructures as reported by
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(a) Bandpass filtered PSD beneath the shock foot. (b) Bandpass filtered Cp′ beneath the shock foot.

Figure 6.7: Power spectral density beneath the shock foot with bandpass filter for the range of (0.0064 < Stδ0 <
0.090) to study the low frequency region.

(a) Correlation between the pressure sensors. (b) Velocity of shock rippling speed (Uτs ).

Figure 6.8: a) Correlation of the sensor pairs located at the separation shock foot plotted against ratio of
freestream velocity and shock rippling speed. b) Variation of shock rippling speed along the span and a linear fit
drawn for shock rippling speeds at each end of sensor pair.

Ganapathisubramani et al. [10]. Two sensors are located in the upstream boundary layer and the others are near
the shock foot (see Figure 6.9a ). Sensor pair C-D is along the same z coordinate and there is some correlation
(just above 0.1 see Fig 6.9b). This is because sensor D has a subtle peak in high frequency region due to its location
just downstream of the separation shock foot, near the shear layer region (see PSD in Figure 6.9c). Sensor pair A
- B shows no apparent correlation between the upstream boundary layer and the shock foot unsteadiness. Note
that PSD for the individual sensor (B) is shown in Figure 6.9c and dominated by low frequency energy content.
Conversely, sensor A is in the turbulent boundary layer with significant high frequency content (Figure 6.9c).
The propagation of disturbances along the span (seen in e.g. Figure 6.8) coupled with the lack of correlation
observed here suggest that super structures from incoming turbulent boundary layer do not influence the spanwise
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(a) Location of pressure sensors. (b) Correlation coefficient for pressure
sensor pairs.

(c) PSD for individual pressure sensors.

Figure 6.9: Influence of the upstream boundary layer on the unsteady behavior behind the shock foot.

Figure 6.10: Coherence between the pressure sensor pairs located near the separation shock foot.

separation behavior observed here.
The relation between spanwise traveling waves and low frequency unsteadiness is evaluated using the coherence

between sensors shown in Figure 6.10. The sensor pairs in the quasi-infinite region show a high level of coherence at
lower frequencies below Stδ0 < 0.05, which corresponds to the range of low frequency peaks exhibited beneath the
shock foot shown in streamwise and spanwise PSD (see Figure 6.6). PSD and coherence show similar distributions
suggesting that the spanwise ripple occurs at low frequencies consistent with motion of the separation shock foot.
This is in agreement with the preliminary observations from Doehrmann et al [52].

Instantaneous 3D structures from TPIV show some indication of the dynamics associated with this behavior.
Two instantaneous snapshots of the entire SBLI region are shown in Figure 6.11. The wall normal velocity ratio
(v−v̄U∞

= 0.1) is considered as the separation shock surrogate and (u−ūU∞
= 0.5) is considered as the separation bubble

surrogate. All the velocity isosurfaces are subtracted from the mean to highlight deviations. The instantaneous
velocity fields display some dynamics that are similar to unswept interactions. There is large scale collapse and
growth of the separated region which is likely associated with low frequency unsteadiness. Threadgill and Little
[132] also identified a ripple pattern (i.e. spanwise undulations) in the separation shock foot. The unsteady
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Figure 6.11: 3D Instantaneous structure using TPIV a) Bubble collapse b) Bubble growth. See Threadgill and
Little [132] for detailed description of plot format.

pressure measurements (see Figures 6.8-6.10) suggest that the ripple pattern is related to unsteadiness in the
separation shock region. The growing unsteadiness amplitude in span (extending from the root) is obviously not
seen in unswept SBLIs. This suggests that it could be related to inception length behavior near the root which
stems from both viscous and inviscid effects [133].

6.4 Summary

Swept impinging oblique SBLIs have been investigated at Mach 2.3 with θ = 12.5◦ deflection angle and sweep
angles of ψ = 15.0◦, 22.5◦, 30.0◦ and 40.0◦. A detailed characterization of both mean and unsteady flow features
has been presented with special attention to the unsteady pressure behavior along the span.

Significant separation is observed in oil flow visualizations and pressure measurements for all shock generator
configurations. Strong corner features are present at the root and tip of the SBLI, but a quasi-infinite region
is identified for each case in the center of the tunnel. Pressure measurements at separation show that the
pressure rise is independent of span, with data collapsing when observed normal to the local separation line. This
suggests that the local behavior of pressure at separation scales cylindrically and agrees with the free interaction
concept. Pressures at reattachment show spanwise dependency, but collapse when the spanwise coordinate
along reattachment is scaled using a virtual origin (z0) that accounts for the increase in interaction length (and
subsequent milder pressure rise) with increasing span. The global behavior for ψ = 22.5◦, 30.0◦ and 40.0◦ suggests
that the interactions demonstrate conical scaling while 15◦ appears cylindrical. The idea of conical scaling in the
global separation behavior is supported by TPIV results at ψ = 30.0◦.

Unsteady pressure measurements obtained using fast-response transducers show the separation shock exhibits
significant low-frequency unsteadiness, in qualitative agreement with unswept SBLIs. Corner features located
towards the root and tip influence the amplitude of unsteadiness locally, but within the quasi-infinite region the
amplitude increases linearly with span. PSDs extracted at various spanwise locations show that the frequency
distribution underneath the shock foot is constant across the span. A spanwise travelling ripple is observed in
the pressure along the separation shock foot at speeds much lower than the freestream velocity (≈ 15% of U∞).
This ripple steadily accelerates along the shock foot reaching (≈ 25% of U∞) near the tip. Significant coherence
levels are observed along the span at frequencies that correspond with dominant low-frequency spectral peaks
measured at the shock foot. The increasing wave speed at constant frequency suggests the spanwise ripples
increase in wavelength along span. There appears to be minimal upstream influence associated with the low
frequency unsteadiness supporting the idea of a source mechanism within the SBLI.



7. Conclusions

Our combined approach of experiments, simulations and stability analysis for investigating swept impinging
oblique SBLI has resulted in the following contributions. Note that this is the only detailed investigation of this
canonical and highly relevant SBLI to date. As such, there are ample opportunities for impactful future work
which are the subject of current white papers and proposals.

• An analytical model for inviscid swept oblique shock reflections has been developed allowing the precise
definition and unification of the shock-induced pressure rise across various configurations. The model
outperforms existing treatments for swept shocks and delta wings providing more accurate predictions of
past experimental and numerical observations. The inviscid model also allows for the design of swept shock
generators that eliminate or at least minimize the inception region located near the root which we believe
is a highly influential feature. Finally, it gives insight into the possible boundary between cylindrical and
conical similarities which has been linked to the maximum turning angle based on experimental data.

• The mean flow topology for a Mach 2.3 swept impinging SBLI has been mapped out for various sweep angles
with constant deflection angle of 12.5 degrees. The angle of the separation line asymptotically approaches
a constant value that is independent of, but shallower than, the impinging shock angle. The angle of the
reattachment line is nearly identical to the impinging shock in all cases but is offset downstream. Wall
pressure distributions show local separation lengths that are constant with span for 15deg and increase
with span for sweep angles of 22.5, 30 and 40 degrees. Mean pressures at separation collapse along the
separation line, suggesting local agreement with the free interaction concept. Reattachment pressures can
be similarly collapsed by adjusting for the growth in separation length along the span which results in
milder pressure rise. For large sweep angles (22.5, 30 and 40 deg), the global flow structure appears quasi-
conical. Tomographic PIV has revealed the full volumetric character of the SBLI. The spanwise growth
of the interaction length scale for a sweep angle of 30 degrees is consistent with surface data and other
swept SBLI configurations. The SBLI displays an open separation bubble with significant spanwise velocity
components near reattachment that increase with span. This sizeable data set is still be analyzed.

• Low-frequency unsteadiness is present even for swept interactions with conical similarity (open separation).
Compared to the unswept interaction, the frequencies are higher with reduced amplitudes in agreement
with compression ramp studies. It is noteworthy that some computational studies argue that low-frequency
unsteadiness is not present for open separation due to the absence of an absolute instability that may be
present in closed separations with cylindrical similarity. This stands in stark contrast to our experiments.
Our experiments have also shown that upstream influence, which has been proposed as a source mechanism
for low frequency unsteadiness, is negligible and another mechanism is at play in this case.

• The frequencies associated with the separation shock foot motion are surprisingly constant along the span
and coherent with spanwise traveling ripples that travel at approximately 20% of the freestream velocity.
The low frequency unsteadiness starts as broadband near the SBLI root and becomes more focused and
high amplitude as it propagates along the span. The unsteadiness in wall pressure has been connected
to instantaneous features of the volumetric flow from tomographic PIV including a large-scale growth and
collapse of the separated region. We believe closed separation features at the inception region (root) of
swept SBLIs play a role in the low-frequency unsteadiness and its propagation along the span.

• Simulations using both LES and a hybrid turbulence model have complemented the experiments throughout.
Because periodic boundary conditions were employed in the spanwise direction, the setup of the simulation
forced the separated region to be cylindrically symmetric, and disturbances that leave the domain at one
spanwise boundary enter the domain again at the other spanwise boundary. No closed separation could be
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obtained with the hybrid turbulence model. For the LES, the ripples were noticeably absent and existing
low-frequency contents could be related to a breathing motion of the bubble. In addition to spanwise
coherent structures, traveling oblique structures could be identified downstream of the swept interaction.
This highlights the importance of various boundary conditions in establishing the SBLI character.

• The cause of low-frequency unsteadiness has been investigated using full and linearized DNS. To deliber-
ately exclude the effect of turbulent boundary layer structures, only laminar and transitional SBLIs have
been considered. The linearized simulations reveal a strong disturbance amplification in the separated re-
gion for unswept interactions. As for supersonic boundary layer transition, 3D oblique disturbances were
most amplified at Mach 2.3. The full DNS revealed a low-frequency unsteadiness in the frequency range ex-
pected based on literature. 3D transitional simulations with forced breakdown also showed a low-frequency
unsteadiness. The use of a laminar approach boundary layer means that an instability of the bubble itself
rather than inflow turbulence is the major driver of the unsteadiness in agreement with our turbulent SBLI
experiments mentioned above.



8. Researchers/Students Supported by Grant

• James Threadgill, UA, Postdoc

• Jayahar Sivasubramanian, UA, Postdoc

• Jorge Alberto Castro Maldonado, UA, PhD (NSF Fellowship)

• Sathyan Padmanabhan, UA, PhD

• Adam Doehrmann, UA, MS 2018

• Ilona Stab, TU Berlin, MS 2017

• Ethan Beyak, UA, BS 2017

• Jacklyn Paige Higgs, UA, BS

• Marcos Ronald De Rose, UA, BS 2018

• Sunyoung Lee, NMSU, PhD

136



9. Publications

9.1 Journal Publications

• Threadgill, J. A. S, and Little, J. C., “An Inviscid Analysis of Swept Oblique Shock Reflections”, submitted
to Journal of Fluid Mechanics.

• Threadgill, J. A. S, and Little, J. C., “Volumetric Study of a Turbulent Boundary Layer and Swept Im-
pinging Oblique SBLI at Mach 2.3”, under preparation for Journal of Fluid Mechanics.

• Padmanabahn, S., Doehrmann, A. C., Threadgill, J. A. S, and Little, J. C., “Unsteady Separation Shock
Motion in Swept Impinging Oblique SBLI”, under preparation for AIAA Journal.

• Gross, A., Little, J. C., and Fasel, H. F., “Numerical Analysis of Turbulent Shock-Wave Boundary Layer
Interactions”, under preparation for AIAA Journal.

9.2 Conference Publications

• Sivasubramanian, J., and Fasel, H. F., “Numerical Investigation of Shock-Induced Laminar Separation
Bubble in a Mach 2 Boundary Layer”, 45th AIAA Fluid Dynamics Conference, AIAA-2015-2641.

• Sivasubramanian, J., and Fasel, H. F., “Numerical Investigation of Shockwave Boundary Layer Interactions
in Supersonic Flows”, 54th AIAA Aerospace Sciences Meeting, AIAA-2016-0613.

• Gross, A., and Fasel, H. F., “Numerical Investigation of Shock Boundary-Layer Interactions”, 54th AIAA
Aerospace Sciences Meeting, AIAA-2016-0347.

• Threadgill, J. A. S, Stab, I., Doehrmann, A. C., and Little, J. C., “Three-Dimensional Flow Features of
Swept Impinging Oblique Shock/Boundary-Layer Interactions”, 55th AIAA Aerospace Sciences Meeting,
AIAA-2017-0759.

• Gross, A., Little, J. C., and Fasel, H. F., “Numerical Investigation of Shock Wave Turbulent Boundary
Layer Interactions”, 56th AIAA Aerospace Sciences Meeting, AIAA-2018-1807.

• Doehrmann, A. C., Padmanabhan, S., Threadgill, J. A. S, and Little, J. C., “Effect of Sweep on the Mean
and Unsteady Structures of Impinging Shock/Boundary Layer Interactions”, 56th AIAA Aerospace Sciences
Meeting, AIAA-2018-2074.

• Threadgill, J. A. S, and Little, J. C., “Volumetric Study of a Turbulent Boundary Layer and Swept Im-
pinging Oblique SBLI at Mach 2.3”, 2018 Fluid Dynamics Conference, AIAA-2018-3707.

• Gross, A., and Lee, S., “Numerical Analysis of Laminar and Turbulent Shock-Wave Boundary Layer Inter-
actions”, 2018 Fluid Dynamics Conference, AIAA-2018-4033.

• Padmanabhan, S., Maldonado, J. C., Threadgill, J. A. S, and Little, J. C., “Experimental Study of Swept
Impinging Oblique Shock Boundary Layer Interaction”, 57th AIAA Aerospace Sciences Meeting, AIAA-
2019-0340.

137



CHAPTER 9. PUBLICATIONS 138

Acknowledgments

This research was funded by the Air Force Office of Scientific Research (AFOSR) (PO: Dr. Ivett Leyva). High
Performance Computing (HPC) resources were provided by the Department of Defense HPC Modernization
Program (HPCMP) project AFOSR37572195. An allocation of computer time from the UA Research Computing
HPC at the University of Arizona is also gratefully acknowledged. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the AFOSR or the U. S. Government.



Bibliography

[1] Smits, A. J. and Dussauge, J.-P., Turbulent shear layers in supersonic flow , Springer, New York, 2nd ed.,
2006.

[2] Babinsky, H., Harvey, J. H., Candler, G. V., Debiève, J.-F., Délery, J. M., Dupont, P., Dussauge, J.-
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