“£= Software Engineering Institute | Carnegie Mellon University © 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0315

Infrastructu s Code
22 Mal 2019

=== Software Engineering Institute | Carnegie Mellon University o 2019 Gamegellon Unverty

ment] pproved for public release and unlimited distribution.

Outline

Background
¥ Problem
Approach

Infrastructure as Code
22 Mar 2019

Software Engineering Institute | Carnegie Mellon University ©2015 Camegie Mellon Uriversiy

[Distribution Statement A] Approved for public release and unlimited distribution.

Infrastructure as Code* — Benefits Beyond Agile

Today

- Automated Deployment
- Immutable Infrastructure
- Versioning and Rollback
- Environment Parity

Future

- Portability across laaS
- Assurance evidence

- Moving Target Defense

*Process and technology to manage and provision computers
and networks (physical and/or virtual) through scripts

—____% Software Engineering Institute | Carnegie Mellon University

DoD Problem

Software Engineering Centers (SECs), Software Maintenance Groups (SMGSs),
and other sustainment organizations want to realize the benefits of infrastructure

as code

They must first recover the technical baseline for the deployment

* Infrastructure as code doesn’t exist for legacy systems, or no government data
rights to contractor deployment scripts
 Often the only authoritative artifact is an instance of the running system

Can the deployment structure be automatically recovered from an
Instance of the running system?

Problem arises from acquisition context — SEI is uniquely positioned to solve it

—% Software Engineering Institute | Carnegie Mellon University

Why is it hard for DoD to adopt Infrastructure as Code
practices?

Deployment scripts are manually coded

* Requires specialized skills and knowledge — infrastructure design, deployment
tools, and internal design of the system

« Complex and error-prone — usually, errors are detected quickly and rolled back
- Not always, e.g., AWS US-EAST-1 Region outage in February 2017

Recover the baseline = inspect every node in the deployment (10s-100s)
Tempo mismatches

* Deployment can be changing frequently during development and active
sustainment — infrastructure as code needs to match this tempo

* |aC tools are open source and rapidly evolving, infrastructure code needs to
evolve to stay current even if there is no ongoing active sustainment

Result: “laC is too hard/takes too long. We'll use traditional operations
practices, and deal with this later.”

—% Software Engineering Institute | Carnegie Mellon University

Solution Approach - Technology

Automatically recover a (Original Running System | (Copy of Running System)
deployment model from |

running system and
generate laC scripts from

< - \alidation = %

model
. J \ J
Model-based deployment perloy
enables automation: ioiiule |
. laC Tool
» Port scripts to new tools C D I
or laaS T .
] Analyzer
* Analyzing model - |
: : Populate Execute
against design rules v v
e Transform model Recovered Generator Infrastructure as
. Depl t . . Cod
(moving target defense) A f(model, | > Seripts
- target)

== Software Engineering Institute | Carnegie Mellon University

Solution - Technology

Research Focus

* Design deployment
model

* Analyze inventory and
populate model

* Generate laC scripts
from the model

Analyzer
Populate
v
Generator
Recovered
Deployment t— | f(model, | —
— target)

Infrastructure as Code
22 Mar 2019
©2

—% Software Engineering Institute | Carnegie Mellon University

Analysis “Principles”

1.

2.

3.

4.

We care about files that can execute.

OS
Started by service manager (e.g., initd, serviced)
User runs command in shell

Files that execute use other types of files:
Management scripts (start, stop, restart, ...)
Configuration
Content (e.g., content delivered by a web server)

Files originate in a limited number of ways
Part of OS installation
Part of an installed package and unmodified
Part of an installed package, modified (e.g., config file)

Executable that is not part of an installed package (e.g., copied onto the system)
Linux Filesystem Hierarchy Standard provides a laundry list of places to look for executables

(in a well-behaved environment)

—% Software Engineering Institute | Carnegie Mellon University

Analysis Approach

All files start as Origin = UNKNOWN. We will mark each file’s origin as we
discover it

First, take care of the easy stuff

*OS

* Installed packages, modified and unmodified files

e Stuff that you don’t want to propagate (e.g., /proc, much of /var, ...)
Apply heuristic rules
Make It easy to add rules

* Easily extensible framework (Strategy Pattern)
« Utility functions for common operations

—% Software Engineering Institute | Carnegie Mellon University

Heuristic Rule Types —
“What would an expert do?”
Package-specific rules, e.qg.,

* |s Postgresgl package installed? If so, do we start the service? If not, we're
done.

* If we start the service, parse the configuration file to ID the data directory and
mark that as “content”
User-installed services (not part of a package)
 RHEL/CentOS puts these in /etc/systemd/system/multi-user.target.wants
 Look there, ignore the usual suspects (e.g., sshd)
 For each service we find, parse the configuration file. Find references to
files/directories, and mark that as user-installed.
User home directories - /home/*

e Parse shell initialization dotfiles, look for additions to $PATH, mark content from
those directories.

—% Software Engineering Institute | Carnegie Mellon University

Generation Approach

Targeting Ansible automation engine

* YAML-based script syntax
* Using “generic” automation engine features, could generate for other
tools such as Chef

Provision VM, if needed.
Start from image for appropriate Linux distribution/version

Install packages
Apply patches for modified files.
Copy files that don’t come from installed packages.

—% Software Engineering Institute | Carnegie Mellon University

