
1
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Infrastructure as Code

Deployment Recovery and Automation
Technology (DRAT)

John Klein

2
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0315

3
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Outline

Background

Problem

Approach

4
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Infrastructure as Code* – Benefits Beyond Agile

*Process and technology to manage and provision computers

and networks (physical and/or virtual) through scripts

Enables

Agile

DevOps
Continuous

Delivery/Integration

Infrastructure

as code

Today

- Automated Deployment

- Immutable Infrastructure

- Versioning and Rollback

- Environment Parity

Future

- Portability across IaaS

- Assurance evidence

- Moving Target Defense

5
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

DoD Problem

Software Engineering Centers (SECs), Software Maintenance Groups (SMGs),
and other sustainment organizations want to realize the benefits of infrastructure
as code

They must first recover the technical baseline for the deployment

• Infrastructure as code doesn’t exist for legacy systems, or no government data
rights to contractor deployment scripts

• Often the only authoritative artifact is an instance of the running system

Can the deployment structure be automatically recovered from an
instance of the running system?

Problem arises from acquisition context – SEI is uniquely positioned to solve it

6
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Why is it hard for DoD to adopt Infrastructure as Code
practices?
Deployment scripts are manually coded

• Requires specialized skills and knowledge – infrastructure design, deployment
tools, and internal design of the system

• Complex and error-prone – usually, errors are detected quickly and rolled back
- Not always, e.g., AWS US-EAST-1 Region outage in February 2017

Recover the baseline = inspect every node in the deployment (10s-100s)

Tempo mismatches

• Deployment can be changing frequently during development and active
sustainment – infrastructure as code needs to match this tempo

• IaC tools are open source and rapidly evolving, infrastructure code needs to
evolve to stay current even if there is no ongoing active sustainment

Result: “IaC is too hard/takes too long. We’ll use traditional operations
practices, and deal with this later.”

7
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

IaC Tools

Original Running System

Recovered

Deployment

Model

Crawl and

Inspect

Populate

Generator

f(model,

tools,

target)

Infrastructure as

Code

Scripts

Today, every b usiness is a sof t w are b usiness. Give your teams t he p ow er to p rovision, m anage

and adapt your IT inf rast ructure to m eet your b usiness needs w ith round-the-clock availab ilit y

and stab ilit y.

Chef is the aut omat ion p lat form

for DevOps. Achieve speed, scale

and consistency w ith Chef.

• Turn your infrastructure into code. W ith Chef, you

describe your inf rast ructure as code, w hich m eans it ’s

versionab le, hum an-readab le, and testab le.

• Accelerate cloud adoption. A re you m oving app licat ions

to the cloud? Chef m akes your adop t ion path not just

sm ooth, but fast . Mig rate workloads quickly, consistent ly

and at a pace that suit s your business needs.

• Manage both data center and cloud environments.

Chef g ives you a sing le automat ion p lat form fo r m anag ing

all your environm ent s, no m at ter how many vendors you

use. Manag e W indow s, Linux, A IX and Solaris. W ith Chef,

you can p rovision, dep loy and maint ain both your cloud

environm ent s and your dat a centers.

• Manage multiple cloud environments. Chef is cloud

agnost ic , w hich m eans you ’re f ree to p ick the p rovid ers

that g ive you w hat you w ant , w hen you w ant it . Avoid

vendor lock-in and take cont rol of all your cloud

environm ent s. If you use both a pub lic and p rivate

cloud , use Chef t o m anage them both.

• Test before deploy. Chef com es w ith the Chef

developm ent kit (Chef DK), w hich p rovides all the tools

you need to test your inf rast ruct ure code and m ake

sure it w orks before you dep loy it to p roduct ion.

• Transform your business. Autom at ion and DevOps go

hand in hand . Together, DevOps and Chef can t ransfo rm

a t rad it ional enterprise into one that q uickly takes

innovat ive ideas f rom the w hiteboard to p roduct ion,

w hile st ill manag ing risk and m aintaining st ab ilit y.

Chef m anages system s w ith reusab le build ing b locks

called cookbooks. These cookbooks contain the code

that describes your infrast ruct ure.

For exam ple, here’s how you can use Chef to install the

A pache webserver and run it as a service on a Red Hat

Enterp rise Linux (RHEL) or CentOS server.

package 'httpd'

service 'httpd' do

 action [:enable, :start]

end

This installs the A pache package, called ht tpd , enab les

the service and start s it w hen the server boot s.

Chef uses a client / server architecture to d ist r ib ute

policy and st ate and manage the net w ork holist ically.

Here’s how it w orks:

Node

Policy

Request current polic y

Policy and netw ork stat e

Current node stat e

State

619 W estern Avenue Suit e 4 0 0 | Seat t le, W A 9810 4 | PH: 20 6 .50 8 .4799 | sales@chef .io | w w w .chef .io

6/ 16

Execute

Copy of Running System

Deploy

Validation

Inventory

Analyzer

Solution Approach - Technology

Automatically recover a
deployment model from
running system and
generate IaC scripts from
model

Model-based deployment
enables automation:

• Port scripts to new tools
or IaaS

• Analyzing model
against design rules

• Transform model
(moving target defense)

8
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

IaC Tools

Original Running System

Recovered

Deployment

Model

Crawl and

Inspect

Populate

Generator

f(model,

tools,

target)

Infrastructure as

Code

Scripts

Today, every b usiness is a sof t w are b usiness. Give your teams t he p ow er to p rovision, m anage

and adapt your IT inf rast ructure to m eet your b usiness needs w ith round-the-clock availab ilit y

and stab ilit y.

Chef is the aut omat ion p lat form

for DevOps. Achieve speed, scale

and consistency w ith Chef.

• Turn your infrastructure into code. W ith Chef, you

describe your inf rast ructure as code, w hich m eans it ’s

versionab le, hum an-readab le, and testab le.

• Accelerate cloud adoption. A re you m oving app licat ions

to the cloud? Chef m akes your adop t ion path not just

sm ooth, but fast . Mig rate workloads quickly, consistent ly

and at a pace that suit s your business needs.

• Manage both data center and cloud environments.

Chef g ives you a sing le automat ion p lat form fo r m anag ing

all your environm ent s, no m at ter how many vendors you

use. Manag e W indow s, Linux, A IX and Solaris. W ith Chef,

you can p rovision, dep loy and maint ain both your cloud

environm ent s and your dat a centers.

• Manage multiple cloud environments. Chef is cloud

agnost ic , w hich m eans you ’re f ree to p ick the p rovid ers

that g ive you w hat you w ant , w hen you w ant it . Avoid

vendor lock-in and take cont rol of all your cloud

environm ent s. If you use both a pub lic and p rivate

cloud , use Chef t o m anage them both.

• Test before deploy. Chef com es w ith the Chef

developm ent kit (Chef DK), w hich p rovides all the tools

you need to test your inf rast ruct ure code and m ake

sure it w orks before you dep loy it to p roduct ion.

• Transform your business. Autom at ion and DevOps go

hand in hand . Together, DevOps and Chef can t ransfo rm

a t rad it ional enterprise into one that q uickly takes

innovat ive ideas f rom the w hiteboard to p roduct ion,

w hile st ill manag ing risk and m aintaining st ab ilit y.

Chef m anages system s w ith reusab le build ing b locks

called cookbooks. These cookbooks contain the code

that describes your infrast ruct ure.

For exam ple, here’s how you can use Chef to install the

A pache webserver and run it as a service on a Red Hat

Enterp rise Linux (RHEL) or CentOS server.

package 'httpd'

service 'httpd' do

 action [:enable, :start]

end

This installs the A pache package, called ht tpd , enab les

the service and start s it w hen the server boot s.

Chef uses a client / server architecture to d ist r ib ute

policy and st ate and manage the net w ork holist ically.

Here’s how it w orks:

Node

Policy

Request current polic y

Policy and netw ork stat e

Current node stat e

State

619 W estern Avenue Suit e 4 0 0 | Seat t le, W A 9810 4 | PH: 20 6 .50 8 .4799 | sales@chef .io | w w w .chef .io

6/ 16

Execute

Copy of Running System

Deploy

Validation

Inventory

Analyzer

Solution - Technology

Research Focus

• Design deployment

model

• Analyze inventory and

populate model

• Generate IaC scripts

from the model

9
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Analysis “Principles”

1. We care about files that can execute.

• OS

• Started by service manager (e.g., initd, serviced)

• User runs command in shell

2. Files that execute use other types of files:

• Management scripts (start, stop, restart, …)

• Configuration

• Content (e.g., content delivered by a web server)

3. Files originate in a limited number of ways

• Part of OS installation

• Part of an installed package and unmodified

• Part of an installed package, modified (e.g., config file)

• Executable that is not part of an installed package (e.g., copied onto the system)

4. Linux Filesystem Hierarchy Standard provides a laundry list of places to look for executables
(in a well-behaved environment)

10
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Analysis Approach

All files start as Origin = UNKNOWN. We will mark each file’s origin as we

discover it

First, take care of the easy stuff

• OS

• Installed packages, modified and unmodified files

• Stuff that you don’t want to propagate (e.g., /proc, much of /var, …)

Apply heuristic rules

Make it easy to add rules

• Easily extensible framework (Strategy Pattern)

• Utility functions for common operations

11
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Heuristic Rule Types –
“What would an expert do?”
Package-specific rules, e.g.,

• Is Postgresql package installed? If so, do we start the service? If not, we’re
done.

• If we start the service, parse the configuration file to ID the data directory and
mark that as “content”

User-installed services (not part of a package)

• RHEL/CentOS puts these in /etc/systemd/system/multi-user.target.wants

• Look there, ignore the usual suspects (e.g., sshd)

• For each service we find, parse the configuration file. Find references to
files/directories, and mark that as user-installed.

User home directories - /home/*

• Parse shell initialization dotfiles, look for additions to $PATH, mark content from
those directories.

12
Infrastructure as Code

22 Mar 2019

© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Generation Approach

Targeting Ansible automation engine

• YAML-based script syntax

• Using “generic” automation engine features, could generate for other

tools such as Chef

Provision VM, if needed.

Start from image for appropriate Linux distribution/version

Install packages

Apply patches for modified files.

Copy files that don’t come from installed packages.

