
1
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA  15213

[[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Reference Architecture, 
Mission Threads and Software 
Integration 

Stephen Beck

Jerry Jackson

Mark Kasunic

Tom Merendino

Bryce Meyer

Jeff Thieret

James Wessel

This material is not complete without 

accompanying verbal presentation



2
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. 
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a 
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be 
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE 
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO 
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT 
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR 
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic 
form without requesting formal permission. Permission is required for any other use.  Requests for permission 
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0025



3
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Agenda

Simplified general example and review of Reference 

Architectures & Mission Threads 

Transition into an example and discussion of the 

importance of a Reference Architecture and Mission 

Threads for describing an UAS (Unmanned Aircraft 

System)



4
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Reference Architecture

Many definitions for “Reference Architecture” can be found in the 

literature. Many of those exist in the Software Engineering literature. 

However, widely agreed-upon definitions of Reference Architecture have 

been, and remain elusive 

For present purposes, the DoD definition1 for Reference Architecture 

suffices:

“Reference Architecture is an authoritative source of information about a specific 

subject area that guides and constrains the instantiations of multiple architectures and 

solutions.” (from http://acqnotes.com/acqnote/tasks/reference-architecture-arch )

Still somewhat vague, but the important ideas that apply to software and 

hardware are that Reference Architectures:

• guide and constrain Solution Architectures

• can be used to reason about static structure and dynamic behavior of 

solution architectures

http://acqnotes.com/acqnote/tasks/reference-architecture-arch


5
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Example Reference Architecture model for a 
“Smart Illuminator” (structural view)

Diffuser

Light Source

Connector & Bus

Function controls processor

Power source

Base

Sensor Controls Processor

User Controls/IF Processor

Power controls processor

RF Controls Processor

Actuator Processor

Network Processor



6
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Several examples of system solution 
architectures (structural views)

How well do the Illuminator solution architecture structural views 

realize the reference architecture?

A reference architecture can be used by separate design 

teams to guide making compatible design decisions and 

identify interdependency of key design decisions

Diffuser

Light Source

Connector & Bus

Function controls processor

Power source

Base

Sensor Controls Processor

User Controls/IF Processor

Power controls processor

RF Controls Processor

Actuator Processor

Network Processor



7
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Examples of system software solution 
architectures (structural views)

Note that key software architecture decisions become 

constraints for downstream development teams.

Can you identify a few key constraining decisions within 

the reference architecture?

Diffuser

Light Source

Connector & Bus

Function controls processor

Power source

Base

Sensor Controls Processor

User Controls/IF Processor

Power controls processor

RF Controls Processor

Actuator Processor

Network Processor

Operating System

Network 
Layer

RF 
Controls

Function 
Controls

Connector & Bus

User 
Controls

Power 
Controls

Actuator 
Controls*

Sensor 
Controls

* Actuator Controls software consists of proprietary implementation with restricted license (black box)



8
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Mission Threads and representation of an 
architecture’s Dynamic Behavior views

Previous charts illustrated examples of structural views of an architecture

Mission Threads (MTs) are a useful technique for reasoning about the 

dynamic behavior views of an (Reference or Solution) architecture

• MTs – a dynamic sequence of activities / events occurring within a 

given context in which the structural entities of an architecture have 

participating roles

• Can leverage and tailor SEI’s Mission Thread Workshop (MTW) 

methodology when beneficial to facilitate identification and prioritization 

of essential MTs that should drive the overall architecture

As needed, the context and scope of a MT can be narrow (i.e., several 

subsystems within a system) or can be much broader (i.e., end-to-end 

across Several platforms and Systems-of-Systems)



9
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Representing MTs

MT’s sequence of activities and events may be represented in several 

ways, i.e.,:

• Ordered list of steps, augmented by desired Quality Attributes (QAs 

such as Maintainability, Evolvability, Performance, etc

• Sequence diagrams 

• Activity diagrams 

• Process / workflow diagrams 

• Communications diagrams, etc

We can leverage useful MT description templates from SEI’s Mission 

Thread Workshop (MTW) 

• The MTW primarily follows the first sub-bullet above to represent 

MTs

• Other MT representation diagrams can be used when needed as 

supplementary descriptions to improve clarity



10
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Dynamic views – simplified example of “Mission Thread” 
for low light detected using Mission Steps representation

Mission 

Steps

Description
(include time if applicable in each step)

Engineering Considerations, Issues, Challenges 
(This column will be filled in during the MTW)

1A The Sensor Controls subsystem detects that a low-light
condition has occurred. The Sensor Controls software 
forms a <<Low Illum Threshold Detected>> event 
message and send this asynchronous message to the 
“Actuator Controls” SW via the “Connector & Bus” 

1B The “Connector & Bus” entity routes the <<Low Illum
Threshold Detected>>  event message to the “Actuator 
Controls” SW

2A “Actuator Controls” SW error-checks the received <<Low 
Illum Threshold Detected>> message. If check is okay, 
the “Actuator Controls” SW forms and sends the 
<<Ramp up brightness level>> command message to the 
“Sensor Controls” SW via the “Connector & Bus”

A system error log fault indicating an “Actuator Controls” SW 

command/response timeout has occurred. This fault needs to 

be generated and recorded if the “Actuator Controls” SW 

does not respond by sending the <<Ramp Up Brightness 

Level>> command message to the “Sensor Controls” SW 

within 500 milliseconds of having received the <<Low Illum

Threshold Detected>> message. Who generates this fault and 

where is it stored?

2B The “Connector & Bus” entity routes and delivers the  
<<Ramp Up Brightness Level>> command message to 
the “Sensor Controls” SW.

3A The “Sensor Controls” SW executes the received 
<<Ramp-up Brightness>> command message, computes 
the new brightness level, forms and sends an <<Indicate 
Brightness Level>> command message to the “User 
Controls & IF” SW via the “Connector & Bus”.

3B The “Connector & Bus” entity routes and delivers the  
<<Indicate Brightness Level>> command message  to the 
“User Controls & IF” SW.



11
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Dynamic views – simplified example of “Mission Thread” 
for low light detected using Sequence Diagram 
representation

Diffuser

Light Source

Connector & Bus

Function controls processor

Power source

Base

Sensor Controls Processor

User Controls/IF Processor

Power controls processor

RF Controls Processor

Actuator Controls Processor

Network Processor

Sensor 
controls

Actuator 
Controls*

Connector 
& Bus

User 
Controls 

& IF
Low Illum

Threshold 

Detected Low Illum

Threshold 

Detected

Ramp up 

brightness 

level

Indicate 

brightness 

level

Ramp up 

brightness 

level

Indicate 

brightness 

level

How might individual development teams 

use such dynamic views to reason about 

potential architecture risks?

* Actuator Controls consists of proprietary implementation with restricted license (black box)



12
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Key take-aways for utility of Reference 
Architectures and Mission Threads

• They help to guide and constrain Solution Architectures

• They help to reason about static structure and suitability of 

candidate solution architectures to meet expectations of key 

system qualities

• They can be used to reason about dynamic behavior of 

candidate solution architectures

• They can be used to help identify dependent or coupled design 

decisions made within different development teams

Benefit to the Program Office – Risk Avoidance
Actively reasoning about the system and software architecture enables the 
system AND SoS system engineers to assess a common, early and ongoing 

team-wide picture of integration risks – a significant cause of cost over-runs, 
schedule delays, and decreased system reliability and overall performance.



13
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

UAS System example contains significant amounts of SW 
that determines development and runtime behavior

Payload SW 
Interface

Modelling Software, 
Aircraft Test Software, 
hardware system tests

DevOps: Test Scripts and stubs, Environment, 
Cybersecurity, progress tracking, Test Asset 

Management/Ops, Reports, automated 
workflow, docs, dev training, in-stream 
integration, backlog (w/bugs) etc. etc.

Independent (Semi 
Independent) V+V: ‘lab’ 

test software, test 
reporting, training s/w AT 

SCALE/RAINY DAY

Maintenance and Training 
Software, Maint. Equip. SW, 

VR, Docs,  etc.

Flight/Mission/C4ISR/etc.  
Planning Services, 

Applications

Top Level Program 
Management and MBSE 

(w/integration in DevOps)

Payload SW 
Interface
Payload SW 

Interface
Payload SW 

Interface
Payload SW 

Interface

Propulsion 
Ext. CommOFP 

Nav Internal 
Sensors 

Internal Network 



14
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Strawman Reference Architecture for UAS

Propulsion 
Computers Ext. Comm

Internal Mission critical Network 

Flight / 
Guidance 
computer

Mission 
computer

Navigation 
computer

Weapons Payload 
computers

Payload 
computers

Internal sensor 
computers

Internal Flight critical / Surety Network isolator

Security Accreditation 

Boundary 

Flight / Surety Critical Mission Critical

Gnd
Support IF

Carrier platform 
Support Interface

Flight and weapons 

surety Accreditation 

Boundary 

Above is an example of a structural view

How can we focus on understanding desired system behavior?

• Focus articulation of the most important end-to-end system Mission Threads (MTs) that 

are in-turn augmented by the most important system Quality Attributes (QAs) affecting 

those threads

• Note that Mission Threads can be focused on Operations, Acquisition, Development or 

Maintenance / Sustainment scenarios or vignettes

Mother 
Ship

Mission 
Planner

Maintainer



15
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Most Important end-to-end Mission Threads

A sampling of initial MT examples…  work these with SMEs

Operational Vignette:

• Mission Plan Load

• Platform Launch / Take-off

• Ingress (further example in next few charts)

• Engage Target

Development Vignette:

• Successful Surety Accreditation

• Captive Carry IOT&E

Sustainment Vignette:

• Tech Refresh Insertion of Improved Navigation subsystem



16
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

What are the most important qualities to be 
promoted by the Reference Architecture?

Upon brief introduction to the program, it seems the top 3-5 QAs 

are likely to include these: 

• Resiliency / Robustness (More general forms of Reliability)

• Successful Surety / Safety Accreditations

• Performance

• Evolvability

• Sustainability

Others instead / in addition?? … work with SMEs 



17
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Mission Thread “Ingress” – An Example of 
Vignette Summary (refer to charts 14-16)

Name Ingress 

Vignette

(Summary 

Description)

Tactical Situation:    

The UAS has had its target mission and flight plans loaded, has been 

successfully launched from its mothership platform and is in high altitude 

guided flight. It begins maneuvering to low altitude flight as it transitions 

into the ingress area. The Navigation and Flight Guidance systems provide 

adjustment commands to Propulsion Subsystem to adjust the UAS final flight 

path to target 

The UAS navigates successfully to Target Engagement area and is ready to 

engage the target

Nodes Actors  UAS

 Mother Ship

 Navigation Computer

 Flight Guidance Computer

 Propulsion Computer

 Internal Flight critical / Surety Network 

 Internal Mission critical Network

 Isolator

Assumptions 1. UAS has successfully executed Launch Procedures and inflight systems 

checks. All are good to go.

2. Communications links between UAS and Mother Ship are operational



18
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Mission Thread “Ingress” – An Example of 
Mission Steps (refer to charts 14-16)

Mission 

Steps

Description
(include time if applicable in each step)

Engineering Considerations, Issues, Challenges 
(This column will be filled in during the MTW)

1 Navigation Computer sends flight plan progress 
updates over internal UAS networks to Flight Guidance
Computer and, via Isolator, to Mission Computer

1. Update messages are sent every 250 milliseconds. Is 

the isolator a potential bottleneck?

2 Flight Guidance Computer executes High Altitude 
Cruise controls (waypoint following, altitude monitoring 
and adjustment, sending time control adjustments via 
Isolator to Propulsion Computers)

1. Adjustments made by Propulsion Computers are 

made at each Flight Plan Waypoint 

3 Mission Computer determines UAS has entered the 
Ingress area of the Flight Plan and sends command to 
Flight Guidance Computer via the Isolator and Internal 
Flight critical / Surety Network to start decent per 
Mission Plan

1. A non-surety computer is determining that a flight 

plan phase transition into the Target Ingress phase. 

The isolation mechanism must be approved by both 

Surety and Security Authorities

4 Flight Guidance Computer starts controlling the descent 
and entry into Low Altitude flight by sending commands 
to Propulsion Computer via Isolator 

5 Flight Guidance Computer monitors decent progress via 
updates from Navigation Computer and sends 
notification to Mission Computer via Isolator upon 
entry into Low Altitude Flight.

6 Flight Guidance Computer monitors UAS progress of 
Low Altitude Flight Plan and sends adjustment 
commands as needed to Propulsion Computers over 
UAS internal networks via Isolator

1. Sending of Adjustment Commands via the isolator 

needs approvals by Surety and Security Authorities

7 Flight Guidance Computer sends notification to Mission 
Computer, via isolator and internal UAS networks, to 
start the Target Engagement phase of the Flight Plan



19
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Mission Thread “Ingress” – Example of Over-
Arching Quality Attributes (refer to charts 14-16)

Over-Arching Quality Attributes

Name Description

Resiliency / 
Robustness (More 
general forms of 
Reliability)

Identify the off-nominal system response should software errors occur or be detected 
during the decent phase of the Ingress Mission Thread.

Should errors detected during a critical step of Thread operation attempt to be transmitted 
or stored somewhere?

Successful Surety / 
Safety Accreditations

Certain mission thread steps require that some messages, commands or events originate 

on a Mission Critical Computer part of the architecture and must traverse a the isolator and 

be consumed by an architectural entity that is part of  the Surety / Safety critical part of the 

architecture. What are alternative architectural patterns might be proposed should it turn 

out that the Surety accreditation authorities will not accredit the design? 

Performance Can the isolator keep up with message throughput without exceeding Key timing

constraints ?

Evolvability How can we convince Surety and IA certifying authorities that the entire system should not 

need to be re-certified if we modify or add a largely independent subsystem 

Sustainability



20
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Examples of potential UAS Software Architecture 
Patterns

https://www.backblaze.com/blog/vm-vs-containers

sigada.org/conf/hilt2016/paper-Tokar.pdf

FACE / ARINC Based:

Trending – Virtualization patterns 

based on VM Hypervisors or 

Containers:

Many key architectural decisions are needed to arrive at a solutions architecture

Deploying software within the architecture (i.e., Chart 14) and selection of 

architectural patterns are among the most difficult decisions that cross-cut 

among development teams

https://www.backblaze.com/blog/vm-vs-containers
http://sigada.org/conf/hilt2016/paper-Tokar.pdf


21
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Use of FPGAs in the Solution Architecture

The functions provided by any of the processor units referred to in the 

prior examples may be implemented by firmware within FPGAs (firmware) 

or by software executing on processing units.

The design decisions made to trade off whether certain functionality is 

implemented via Firmware/FPGAs or via Software/Processing Units are 

key decisions to document and understand

• Documented visibility into the rationale for such decisions is crucial to 

enable sustainment of the platform’s design for multiple decades.

• The firmware designed and implemented in FPGAs needs to be 

documented, version controlled and released using the same 

procedures as any other software that is part of the UAS platform.

• Outside accreditation of Firmware by Surety, Safety and IA authorities 

is to be expected as stringent as for Software



22
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Summary

• Reference Architectures help to guide and constrain decisions made 

by downstream development teams

• Those decisions you do not want to leave up to the downstream 

teams should be part of the Reference Architecture

• Reference Architectures can be used to reason about static structure 

and dynamic behavior of solution architectures

• Such reasoning early in the design phase may be the only 

opportunity to discover development team interdependencies 

regarding key decisions

• Reference Architectures can be used as a framework to assess the 

merits of candidate solution architectures



23
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Questions?



24
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Backup



25
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

SEI Mission Thread-related Definitions (DoD 
Context)

Vignette: A description of the geography, own force structure and mission, 

strategies and tactics, the enemy forces and their attack strategies and tactics, 

including timing. There may be associated Measures of Performance (MOP) and 

Measures of Effectiveness (MOE). A vignette provides context and scope for one 

or more mission threads.

Mission Thread (4 types):

Operational: A sequence of end-to-end activities and events beginning with an 

opportunity to detect a threat or element that ought to be attacked and ending with 

a commander’s assessment of damage after an attack.

Sustainment: A sequence of activities and events which focus on installation, 

deployment, logistics and maintenance.

Development: A sequence of activities and events that focus on re-using or re-

engineering legacy systems and new adding capabilities

Acquisition: A sequence of activities and events that focus on the acquisition of 

elements of an SoS, and the associated contracts and governance



26
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Air and Missile Defense (AMD) OV-1 Example

26

Protect 

Forces Afloat

Defend HVA

THAAD

Carrier Strike Group

Surface Action Group
ML

UEWR

Alpha

Beta

Gamma

JOC/
STRATCOM/

C2BMC

COCOM/
JFACC
JFMCC
C2BMC

7) BMD
LS&T

ML

ML



27
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Vignette – Example Wording

Two ships (Alpha and Beta) are assigned to integrated air and 

missile defense (IAMD) to protect a fleet containing two high-value 

assets (HVA). A surveillance aircraft SA and 4 UAVs are assigned 

to the fleet and controlled by the ships. Two UAVs flying as a 

constellation can provide fire-control quality tracks directly to the 

two ships. A three-pronged attack on the fleet occurs:

• 20 land-based ballistic missiles from the east

• 5 minutes later from 5 aircraft-launched missiles from the south

• 3 minutes later from 7 submarine-launched missiles from the 

west

The fleet is protected with no battle damage.

From: Michael Gagliardi, SEI, “Mission Thread Workshop Planning”



28
[Reference Architectures, Mission Threads and SW 

Integration
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved 

for public release and unlimited distribution.

Mission Threads Flow from Vignettes –
Example (Non-Augmented)
1. 20 land-based missiles launched - X minute window

2. Satellite detects missiles - cues CMDR

3. CMDR executes re-planning – reassigns Alpha and Beta         

4. Satellite sends track/target data - before they cross horizon

5. Ships’ radars are focused on horizon crossing points

…

N Engagement cycle is started on each ship

N+1. Aircraft are detected heading for fleet

N+2. SA detects missile launches – tells CMDR

N+3. CMDR does re-planning - UAVs are re-directed 

N+4. FCQ tracks are developed from UAV inputs


