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Background

* Trusted and assured autonomy is the holy grail of unmanned robotics systems
* The future of Army robotics is built around ROS-M
* ROS-M is to be based on ROS 2

* |tis unclear if ROS 2 can support the necessary anomaly detection tasks necessary
for trusted and assured autonomy.
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Background

ROS-I (ROS Industrial) is a similar effort, but for industrial robotics
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Anomaly Detection
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Anomaly Detection

Inconsistent with trusted model
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Non-malicious faults present many
false alarms

Long-held belief that anomalies mean a failure of the system
but
A robot could behave anomalously often without ever failing!
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Non-malicious faults present many
false alarms

* Threshold based
* Model based rejection
* QOut-of-distribution, Bayesian analysis

Online human in the loop ML to learn from the operator

Explain

Feedback
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d data anomalous?

IS INVa

When
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When is invalid data anomalous?

Data can be flawed
given a static interpretation
framework

Data is never anomalous;
interpretations are
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When is invalid data anomalous?

- )

Sensor Data Processing  Data Interpretation
Pipeline Pipeline

Invalid data % Anomalous behavior

Fix | A)

/! N

Function that defines normal behavior Set of assumptions

13 [DISTRIBUTION A] APPROVED FOR PUBLIC RELEASE



When is invalid data anomalous?

- )

Sensor Data Processing  Data Interpretation
Pipeline Pipeline

Invalid data % Anomalous behavior

F(x [|A)

/! N

Function that defines normal behavior Set of assumptions

14 [DISTRIBUTION A] APPROVED FOR PUBLIC RELEASE



How do we update our assumptions?

The Role of Assumptions
in Machine Learning and Statistics:

' Don’t Drink the Koolaid!
We could avoid them altogether? on’t Drink the Koolal

Larry Wasserman
April 12 2015

 Non-parametric methods let us do this

1 Introduction

There is a gap between the assumptions we make to prove that our methods work and the
assumptions that are realistic in practice. This has always been the case, and the size of the

M Odel the aSSU m ptions and Cond ition i_);((li)()::(lltljn‘l:::t)::lli(“lel(ltIillll(()()tl\(: lhlll\(( lll::ii:.l:”ity of high dimensional problems, the gap has
our anomaly detection algorithm on the
assumption model?

Gap

Other approaches?

1900 1920 1940 1960 1980 2000
r
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Intentional anomalous behavior and
emergency stops
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Hierarchies of systems with shared
functionality

A robot is defined as:

® a collection of k nodes V = {vi, ..., W« }, where some nodes are connected by directed
edges E = {(vi, vi )} variously representing physical anchoring, energy flow,
or information flow of various kinds,

® the graph is defined as G = (V, E),

® nodes can be grouped in the form of { v« | flvy) } 3.x € C, where f(x) represents a predicate

function that returns true if v« has a certain functionality, and C represents the overall
set of all groups in the robotic system,

® and v« IS a member of only one subset of C
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Hierarchies of systems with shared
functionality

Composability!

Behavior of nodes V:
B=[b, ..., b, where |B| = |V|.
Vector of constants @ = [a, ..., a ], |D| = |B|.

Linear composability is then
defined by:

CDT -B=aibi + ... + Qo

AN

This entire relationship is decomposable!
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Distribution of computation across

hosts
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Distribution of computation across
hosts
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Distribution of computation across
hosts
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Distributed and Efficient ML

Parallelized Stochastic Gradient Descent

Martin A. Zinkevich Markus Weimer
Yahoo! Labs Yahoo! Labs
Sunnyvale, CA 94089 Sunnyvale, CA 94089
maz@yahoo-inc.com weimer@yahoo-inc.com
Alex Smola Lihong Li
Yahoo! Labs Yahoo! Labs
Sunnyvale, CA 94089 Sunnyvale, CA 94089
smola@yahoo-inc.com lihong@yahoo-inc.com
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Fixing anomalies on the fly
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Kristen Holtz, Daniel Maturana, and Sebastian Scherer. "Learning a Context-Dependent
Switching Strategy for Robust Visual Odometry."
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Fixing anomalies on the fly
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Fixing anomalies on the fly
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Open Problems in Robotic Anomaly Detection

Ritwik Gupta', Zachary T. Kurtz!, Sebastian Scherer?, and Jonathon M. Smereka®

Abstract— Failures in robotics can have disastrous conse-
quences that worsen rapidly over time. This, the ability to rely
on robotic systems, depends on our ability to monitor them
and intercede when necessary, 1y or ly. Prior
work in this area surveys intrusion detection and security chal-
lenges in robotics, but a discussion of the more general anomaly
detection problems is lacking. As such, we provide a brief
insight-focused discussion and frameworks of thought on some
compelling open problems with anomaly detection in robotic
systems. Namely, we discuss non-malicious faults, invalid data,
intentional anomalous behavior, hierarchical anomaly detection,
distribution of comp ion, and ly correction on the fly.
We demonstrate the need for additional work in these areas
by providing a case study which i the limitati of
implementing a basic anomaly detection (AD) system in the
Robot Operating System (ROS) 2 middleware. Showing that
if even supporting a basic system is a significant hurdle, the
path o more complex and advanced AD systems is even more
problematic. We discuss these ROS 2 platform limitations to
support solutions in robotic anomaly detection and provide
recommendations to address the issues discovered.

I. INTRODUCTION

Anomaly detection (AD) is an increasingly important area
of study in the field of robotics as robotic systems tend
towards higher levels of autonomy. Being able to predict.
identify, and correct these anomalies is critical. especially
when the robotic systems can have a direct or indirect impact
on human life. Unfortunately. while all versions of anomaly
detection seek to identify things that are anomalous. there is
still considerable variation in precisely what this means:

1) Extreme: The point lies above a threshold t.

2) Isolated: In some metric space. the distance to other
points is greater than ¢ except for at most n of other
very nearby points (a point at the center of a highly
bimodal distribution can be isolated and not extreme).
Abnormal (or inconsistent with a trusted model). As
an example. an auditor keeps track of the ratio of
total income to total taxes paid for a collection of
organizations. One organization is far larger than the
others, with income and taxes being both extremely
high. However. the ratio of taxes to income for this
large organization is comparable to the ratio for smaller
organizations, and the auditor considers it normal.
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Thus. a point can be both extreme and/or isolated and
yet still fail to be abnormal.

The differences between the senses above are conceptually
superficial. For any space containing an isolated point. there
exists a simple transformation of the space that results in the
isolated point becoming an extreme value. Similarly. the size
(in terms of income and taxes) of an organization is really
a distraction if the ratio of income to taxes is what matters,
so why not just talk about that ratio? Unfortunately. while
these kinds of conceptual connections between competing
notions of anomalousness are trivial for simple examples.
they become less trivial as the dimension of the space grows.

The anomaly detection task is especially challenging when
we are asked to treat the data as a black box. withno a priori
insight into what is “normal”. A general-purpose anomaly
detection algorithm will require considerable sophistication
to automatically notice the relationship between income and
taxes without any prior knowledge of finance. Accordingly.
varying techniques of anomaly detection in robotic monitor-
ing focus on predefined relationships of what is a “normal
range” of operation [ 1], [2]. [3]. [4]. [5]. however, as we show
in this work. there are still several open problems in robotic
anomaly detection that significantly degrade the assumption
of being able to define that “normal range”.

Finally, we demonstrate the need for additional work in
these areas by providing a case study which examines the
limitations of implementing a basic anomaly detection (AD)
system in the Robot Operating System (ROS) 2 middle-
ware [6]. which is an attempt to revise and improve many
engineering decisions from the ROS 1 platform [7]. ROS
has often been difficult to work with and requires specific
engineering guidelines which are not conducive to real-time
anomaly detection. Accordingly. we draw the conclusion that
if even supporting a basic system is a significant hurdle. the
path to more complex and advanced AD systems is even
more problematic. We discuss these ROS 2 platform limita-
tions to support solutions in robotic anomaly detection and
provide recommendations to address the issues discovered.

II. OPEN PROBLEMS WITH REGARDS TO ROBOTIC AD
SYSTEMS

A Non-malicious faults present many false alarms.

False positives and false negatives have been well studied
in AD and intrusion detection systems [8], [9]. [10]. It
is a long-held belief that an anomaly means a failure of
a system directly. However, not all anomalies represent
Jailures. A robot can behave anomalously frequently without
ever failing, resulting in a large amount of false alarms that,
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