Extended Case Study of Causal Learning within Architecture Research (preliminary results)

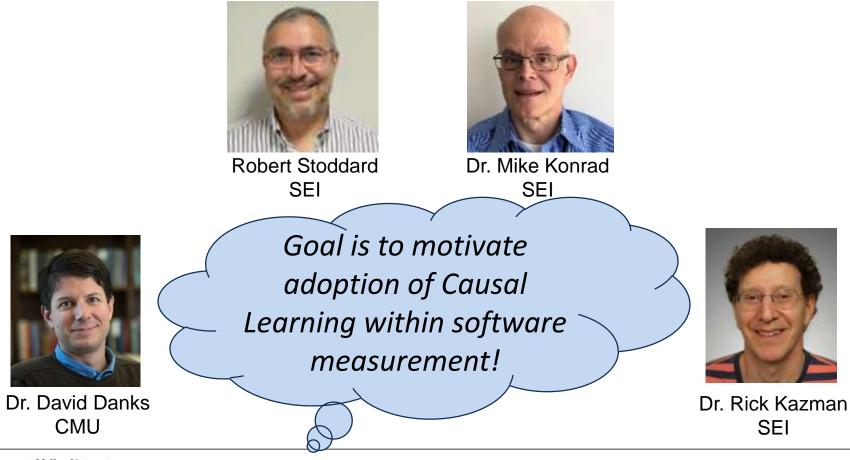
Robert Stoddard, SEI Mike Konrad, SEI Rick Kazman, SEI David Danks, CMU

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

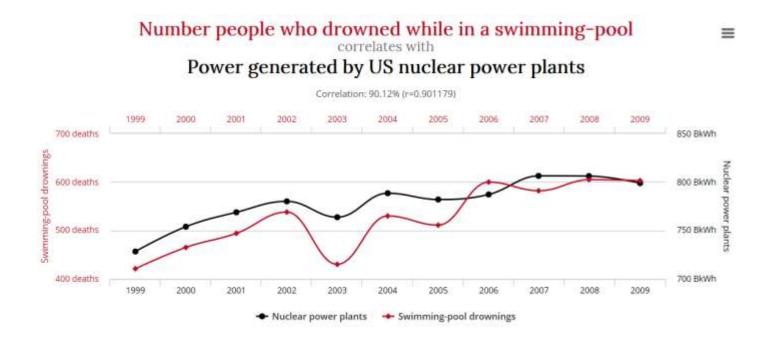
Carnegie Mellon University Software Engineering Institute

Goal of the Authors



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

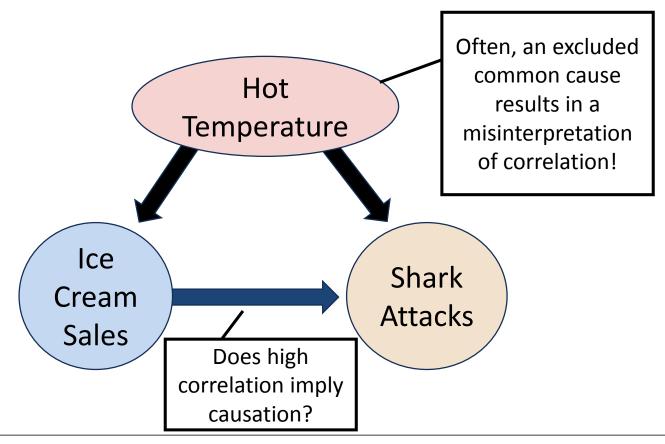
Why Do We Care about Causation?



http://www.tylervigen.com/spurious-correlations

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

More about Misinterpreting Correlation!



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carregie Mellon University

Regression must be interpreted in context of a DAG!

Correlation, hence regression, may be fooled by spurious association!

Before jumping into regression, we need a Directed Acyclic Graph (DAG) representing our context

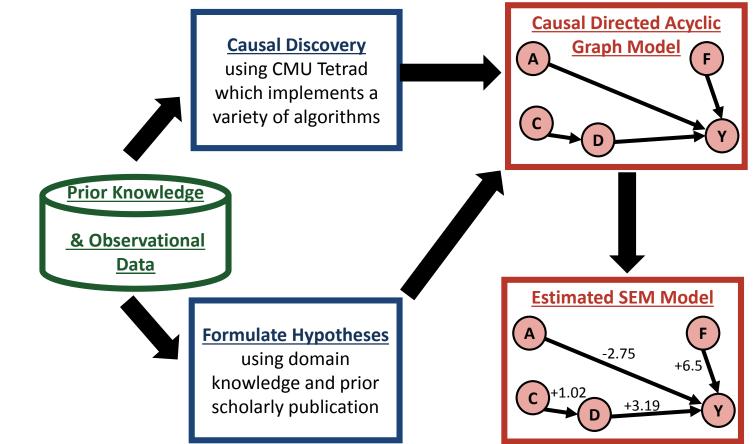
We then need to determine which paths are causal and which are spurious.

We then must block spurious correlation paths.

Lastly, we then conduct regression with the correct set of factors!

Remember, context of the DAG determines the suitability of the regression model!

The Causal Learning Landscape



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Preliminary Architecture Research Causal Findings

Nine open source systems analyzed using static code analysis (> 9000 files)

Four architecture pattern violations studied for impact on quality

Each file had the following attributes measured:

- <u>Age</u> in Months
- <u>Number of Developers</u> touching each file
- <u>Size</u> in Lines of Code
- Number of times the file participated in a <u>pattern violation of</u>:
 - the cyclic dependency
 - Improper inheritance
 - Unstable interface
 - Lack of modularity
- <u>Quality</u> outcome of Number of Bugs associated with each file
- Bug churn associated with each file

R. Mo, Y. Cai, R. Kazman and L. Xiao, "Hotspot Patterns: The Formal Definition and Automatic Detection of Architecture Smells," 2015 12th Working IEEE/IFIP Conference on Software Architecture, Montreal, QC, 2015, pp. 51-60. doi: 10.1109/WICSA.2015.12

Carnegie Mellon University Software Engineering Institute

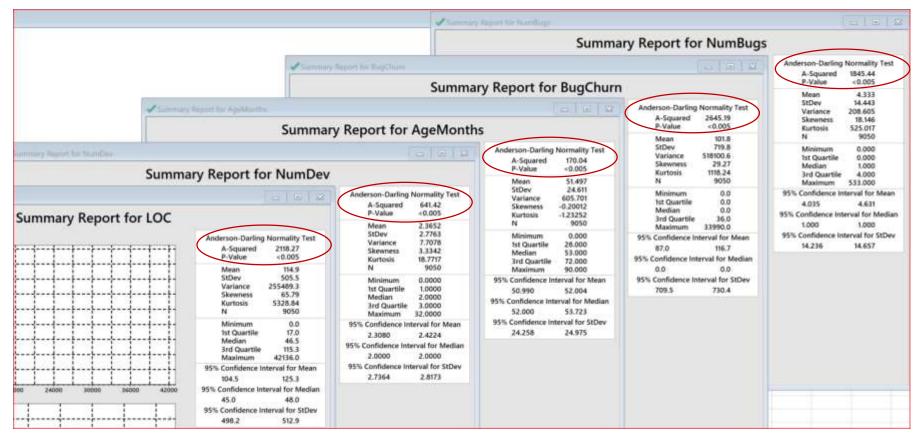
Correlation Matrix of All Factors

	AgeMonths	NumDev	NumCommits	LOC	NumBugs	NumChanges	BugChurn	ChangeChurn	NumCyclicDepend	NumModularityVio	NumUnstableInter
NumDev	0.1790										
	0.0000										
								-			
NumCommits	0.0930	0.6890									
	0.0000	0.0000						NumBugs, NumChanges, and			and
								NumCommits are highly correlated;			
LOC	0.0460	0.2640	0.2720							• •	
	0.0000	0.0000	0.0000					Wi	ll keep Num	Bugs onlv ir	n the
								_	•	• •	
NumBugs	0.1160	0.6540		0.2570				modeling;			
	0.0000	0.000	0.0000	0.0000				Likewis	e ChangeCh	nurn and IC)C highly
		(Likewise, ChangeChurn and LOC highly			• •
NumChanges	0.0960	0.6880	0.9990	0.2720	0.9340			correlated, so kept only LOC in the			in the
	0.0000	0.0000	0.0000	0.0000	0.0000						
								modeling			
BugChurn	0.0380	0.3920		0.7270	0.6390						
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
ChangeChurn	0.0180	0.2980		0.9400	0.4120		0.8300				
	0.0880	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
NumCyclicDepend	0.0340	0.1520		0.1000	0.2430		0.1240	0.1080			
	0.0010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
NumModularityVio	0.0490	0.3270	0.2100	0.1070	0 4 5 0 0	0.0400	0.0000		0.0420		
Numiviodularityvio	0.0490	0.3270		0.0000	0.1590		0.0980	0.1000	0.0130		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2140		
NumUnstableInter	0.0390	0.5400	0.4820	0.1580	0.3940	0.4810	0.2220	0.2000	0.1420	0.2670	
Ramonstablemiter	0.0000	0.0000		0.0000	0.3940	0.4810	0.2220	0.2000	0.1420		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
NumImproperInher	0.1280	0.2060	0.2110	0.1040	0.1850	0.2120	0.1150	0.0740	0.1620	0.0020	0.1330
	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

Carnegie Mellon University Software Engineering Institute

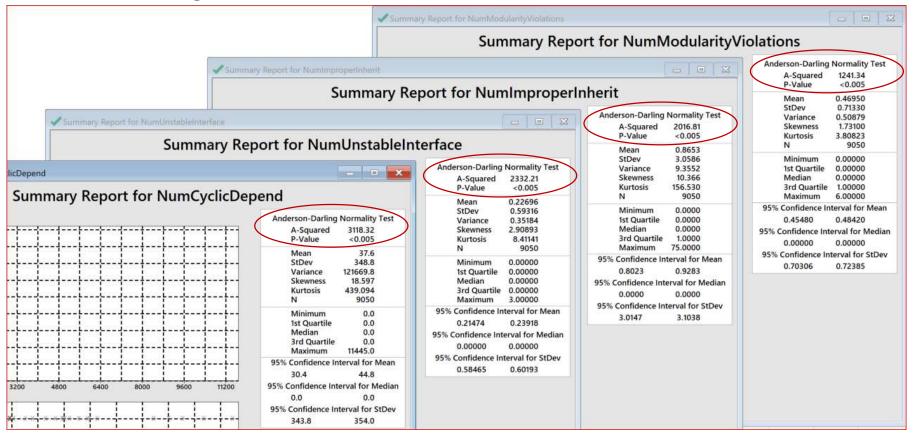
Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

All Remaining Factors are Non-Normal - 01



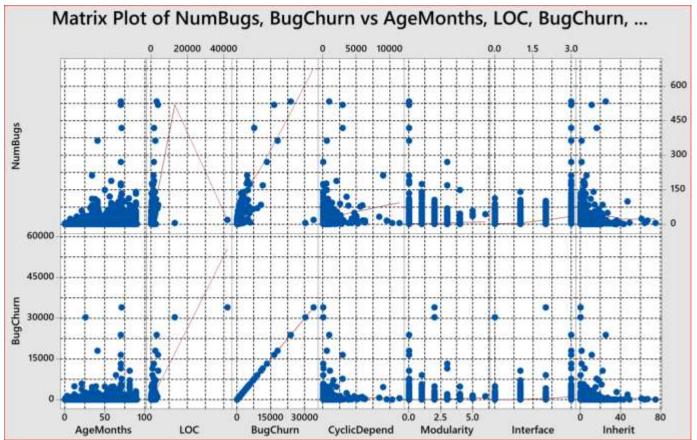
Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Cancegle Mellon University

All Remaining Factors are Non-Normal - 02

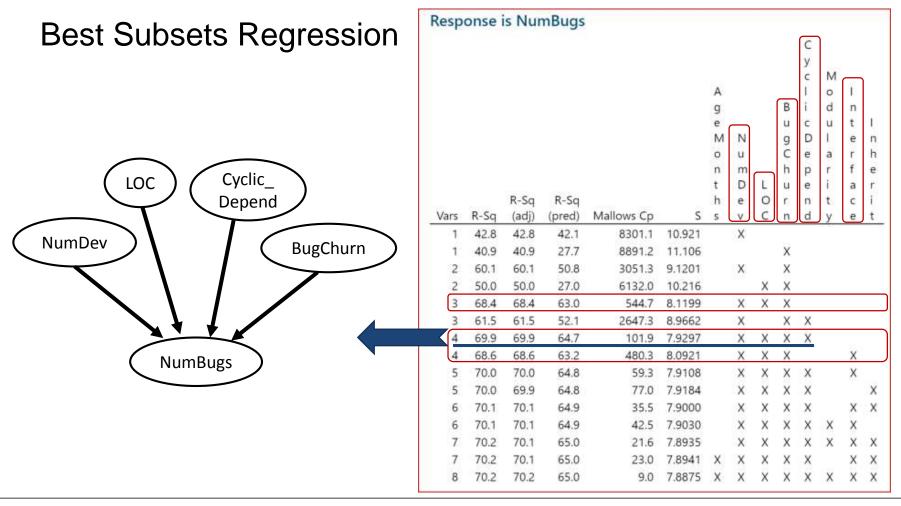


Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Eyeballing Bivariate Relationships

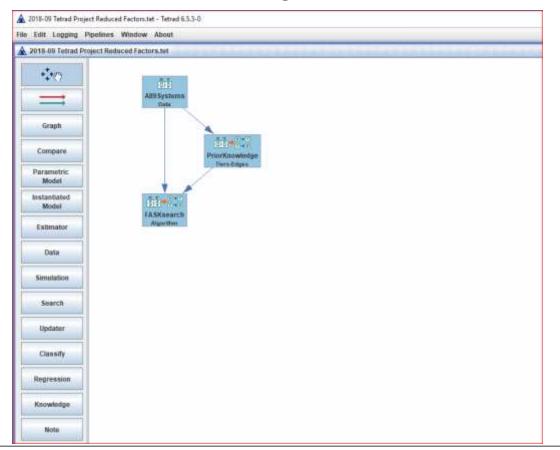


Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Conduct Causal Search using Tetrad



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

A View of the Data File Loaded into Tetrad

	All9 Systems (Data)									
File	File Edit Tools									
All 9	All 9 for Tetrad-v010.csv									
	C1	C2	C3	C4	C5	C6	C7	C8	C9	-
	AgeMonths	NumDev	LOC	NumBugs	BugChurn	NumCyclic	NumModul	NumUnsta	NumImpro	=
1	71.0000	8.0000	491.0000	18.0000	241.0000	8.0000	2.0000	3.0000	1.0000	
2	35.0000	5.0000	270.0000	10.0000	329.0000	167.0000	1.0000	1.0000	4.0000	
3	52.0000	2.0000	58.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
4	42.0000	1.0000	47.0000	2.0000	13.0000	0.0000	0.0000	0.0000	0.0000	
5	49.0000	1.0000	10.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	
6	36.0000	2.0000	103.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
7	54.0000	2.0000	29.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
8	75.0000	8.0000	163.0000	13.0000	134.0000	0.0000	1.0000	3.0000	0.0000	
9	74.0000	2.0000	15.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
10	57.0000	2.0000	26.0000	1.0000	16.0000	22.0000	0.0000	0.0000	0.0000	
11	48.0000	4.0000	81.0000	2.0000	6.0000	0.0000	1.0000	0.0000	0.0000	
12	39.0000	1.0000	30.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
13	49.0000	2.0000	46.0000	3.0000	36.0000	0.0000	0.0000	0.0000	0.0000	
14	46.0000	3.0000	34.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
15	75.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	-
•										•
	Done									

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carregie Mellon University

Prior Knowledge Entered into Tetrad

PriorKnowledge1 (Tiers and Edges)	ø
File	
Tiers Other Groups Edges	
Not in tier:	# Tiers = 3 -
Tier 1	Forbid Within Tier
AgeMonths LOC NumDev	
Tier 2	✓ Forbid Within Tier
NumCyclicDepend NumImproperInherit NumUnstableInterface	NumModularityViolations
Tier 3 BugChurn NumBugs	🔲 Forbid Within Tier
Use shift key to select multiple items.	
Done	

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Using FASK Search with Associated Parameters

TASKsearch (Algorithms that Generate Graphs)		2
Algorithm Filters	Choose Algorithm	Algorithm Description
Show algorithms that:	BPC FAS FASK FASK Concatenated FCI FGES FGES-MB FOFC FTFC GFCI	
Show only:	GFCI GLASSO IMAGES Continuous IMAGES Discrete LINGAM	E
Choose Independence Test and Score Filter by dataset properties: Variables with linear relationship Gaussian variables	MBFS MGM MIMBuild PC All R1 R2 R3	
Test: Score: Sem BIC Score	RFCI RSkew RSkewE Skew	_
<	t Parameters >	▶
	Done	

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

Additional FASK Search Parameter Settings

FASKsearch (Algorithms that Generate Graphs)						
FASK Parameters						
Penalty discount (min = 0.0)	2					
Maximum size of conditioning set (unlimited = -1)	-1					
Alpha orienting 2-cycles (min = 0.0)	1.0E-6					
Threshold for including extra edges	0.3					
Threshold for judging negative coefficient edges as X->Y (range (-1, 0)	-0.2	=				
Yes if adjacencies from the FAS search should be used Yes No						
Yes if adjacencies from conditional correlation differences should be used Yes Yes Yes						
The number of bootstraps (min = 0)						
Ensemble method: Preserved (0), Highest (1), Majority (2)	1					
Yes if verbose output should be printed or logged	🔾 Yes 🖲 No	-				
< Choose Algorithm Run Search & Generate Graph >						
Done						

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Causal Search Algorithms

Constraint-based: Calculate independences in the data and do "backwards inference"; used to minimize the degree of false negative edges

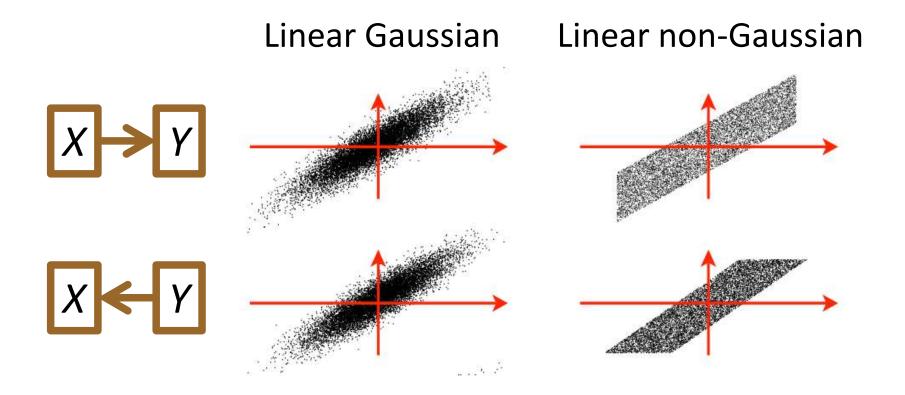
Score-based (Bayesian): Calculate the likelihood of different DAGs given the data; used to minimize the degree of false positive edges

Hybrid: Use constraint-based to get "close," then Bayesian search around neighborhood

- A B No evidence of a causal link
- A -----> B Evidence of a causal link from A to B
- - → B Evidence of an unmeasured confounder

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Some Algorithms Exploit Non-Gaussianality



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Cancegie Mellon University

Causal Search Capable with Small Data

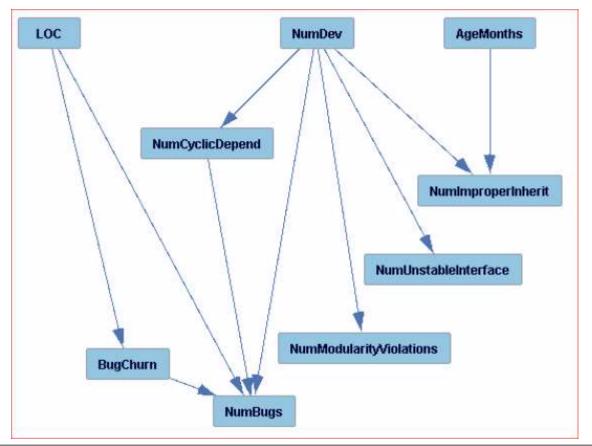
Challenge: Which genes regulate flowering time in Arabidopsis thaliana?

Using only 47 observations, causal search identified 9 out of 21,326 genes as causal on gene activation

Subsequent greenhouse study, that used knockout variants, confirmed that 4 of the 9 were actual regulators

Taken from Dave Danks, 2016 Summer Causal Workshop

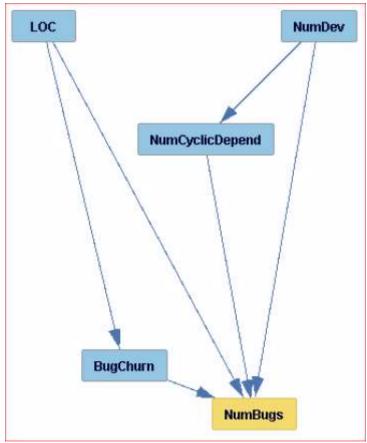
Causal Structure Graph Result



Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Markov Blanket of the NumBugs Factor



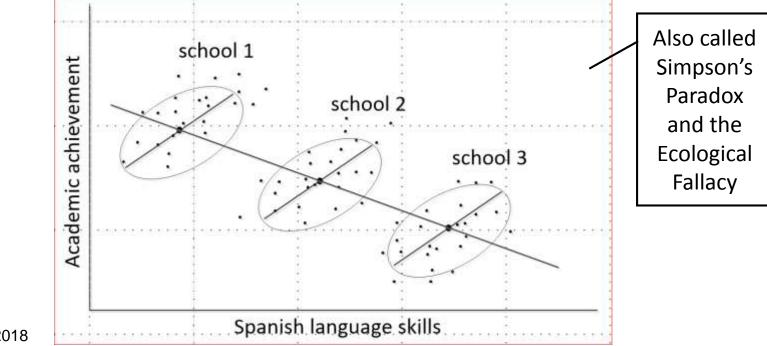
Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Canegie Mellon University

Motivation to Look at Multi-Level SEM Models (MSEM)

Within schools, students with better Spanish skills had higher academic achievement.

Yet, schools with highest proportion of Spanish speakers performed poorest.

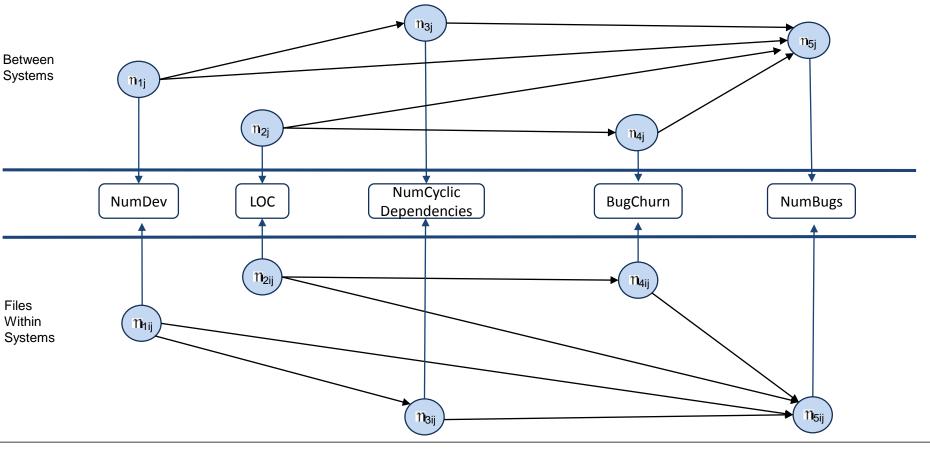


Kris Preacher, 2018 Carnegie Mellon University

Software Engineering Institute

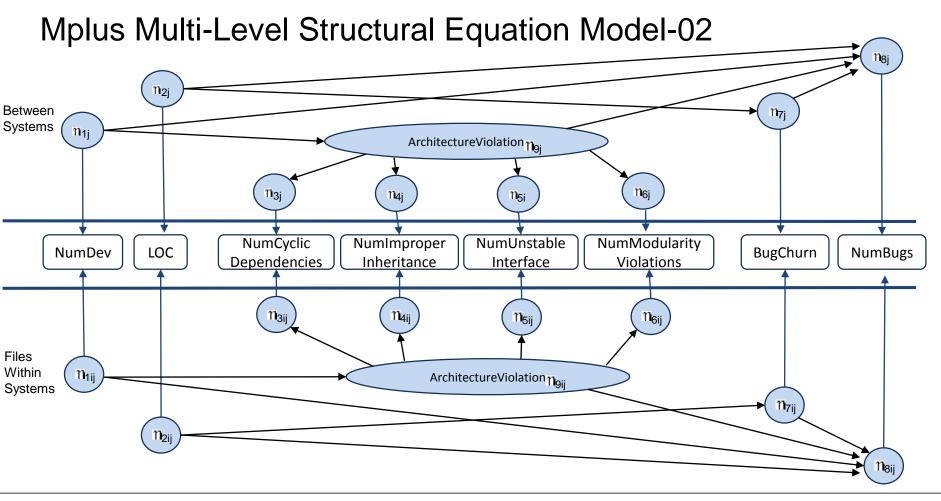
Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

Mplus Multi-Level Structural Equation Model-01



Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

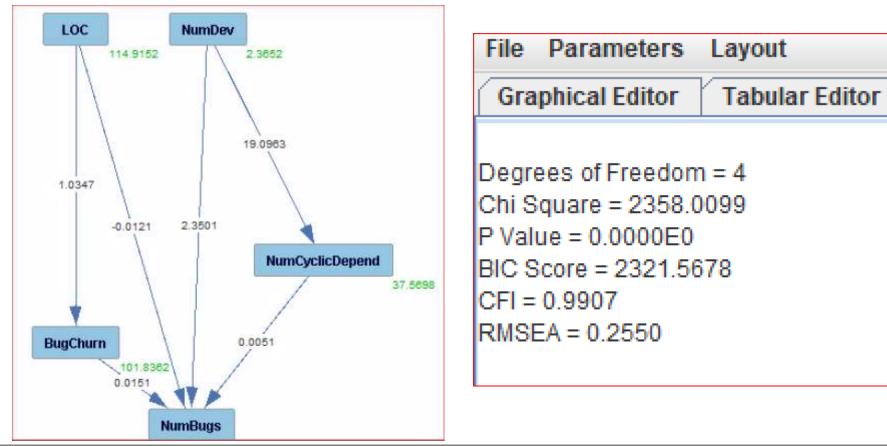
Mplus Code

```
TITLE: Basic Model of NumBugs Markov Blanket;
DATA: FILE IS All9forMplus.csv;
VARIABLE: NAMES ARE AgeMos NumDev LOC Cycles Inherit Interfac Modular BugChurn NumBugs
System;
USEVARIABLES ARE NumDev LOC Cycles BugChurn NumBugs System;
CLUSTER IS System;
ANALYSIS: TYPE IS TWOLEVEL:
MODEL:
SBETWEENS
NumBugs ON BugChurn LOC NumDev Cycles;
NumBugs; BugChurn; LOC; NumDev; Cycles;
[NumBugs]; [BugChurn]; [LOC]; [NumDev]; [Cycles];
%WTTHTN%
NumBugs ON BugChurn LOC NumDev Cycles;
OUTPUT: SAMPSTAT STDYX;
```

Mplus MSEM Results

SUMMARY OF DAT	A				
Number of	clusters		9		
Average c	luster size	1005.556			
Estimated	l Intraclass Co	orrelations	for the Y Va	riables	
Variable	Intraclass Correlation	Variable	Intraclass Correlation	Variable	Intraclass Correlation
NUMBUGS CYCLES	0.052 0.039	NUMDEV BUGCHURN	0.084 0.026	LOC	0.008

Traditional SEM Results from Tetrad



Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

Conclusions

- 1. We attempted MSEM modeling to be sensitive to the "between" and "within" variation components of all the factors
- 2. We also wanted to guard against Simpson's paradox
- 3. The Mplus MSEM analysis, via the Intraclass Correlation measures, showed that in this data situation, we do not need to perform MSEM with two levels
- 4. We then conducted a single level, univariate SEM within Tetrad
- 5. We achieved regression coefficients that take into account the mediation effects occurring on the outcome, NumBugs
- 6. Traditional regression would have been ignorant of the above

Next Steps

Perform more causal searches

- Additional algorithms
- Sensitivity analysis of algorithm parameters
- Using bootstrapping to get confidence intervals on causal edges

Perform additional multilevel structural equation models:

- Investigate more factors associated with attributes of the open source system
- Evaluate whether a latent factor representing the "voice" of any architecture pattern might be helpful

Publish results:

- Comparison of different models
- Distinguish the causal influence of factors at both the file level and within a system

Convince others in the community to adopt Causal Learning and MSEM

Questions?

Robert Stoddard, SEI rws@sei.cmu.edu

Mike Konrad, SEI mdk@sei.cmu.edu

Rick Kazman, SEI rkazman@sei.cmu.edu

David Danks, CMU ddanks@cmu.edu

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

Carnegie Mellon University Software Engineering Institute