

 ARL-TN-0973 ● SEP 2019

Conversion of the Lagrangian Particle
Dispersion Model (LPDM) Code to C Using
Graphics Processing Unit (GPU) Computing

by Leelinda P Dawson and Yansen Wang

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0973 ● SEP 2019

Conversion of the Lagrangian Particle Dispersion
Model (LPDM) Code to C Using Graphics Processing
Unit (GPU) Computing

Leelinda P Dawson and Yansen Wang
Computational Information Sciences Directorate, CCDC Army Research
Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2019
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

October 2018–September 2019
4. TITLE AND SUBTITLE

Conversion of the Lagrangian Particle Dispersion Model (LPDM) Code to C
Using Graphics Processing Unit (GPU) Computing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Leelinda P Dawson and Yansen Wang
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLC-EM
2800 Powder Mill Road, Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0973

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID(s): Dawson, 0000-0003-4209-8459

14. ABSTRACT

The Lagrangian Particle Dispersion Model (LPDM) simulates the ensemble average transport of aerosols and gases in
turbulent wind conditions, which can have a long execution time for it to be possibly useful to the Warfighter. Previously,
some performance improvements were achieved by using two different approaches of graphics processing unit (GPU)
computing technology with one using a Compute Unified Device Architecture (CUDA) Fortran interface via device code and
the other one using CUDA host code only. However, it was determined later that converting the original LPDM code from
Fortran to C programming language was needed to further increase its execution performance. This report documents the
implementation approach of converting the original LPDM model code to C using GPU computing technology to improve its
performance. The execution time of GPU-accelerated LPDM C application was faster than the original LPDM Fortran
application without GPU computing.

15. SUBJECT TERMS

Lagrangian Particle Dispersion Model, LPDM, graphics processing unit, GPU, CUDA, C

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

16

19a. NAME OF RESPONSIBLE PERSON

Leelinda P Dawson
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

301-394-5636
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. GPU and Conversion of the LPDM Code 1

3. Results 5

4. Conclusion and Future Work 6

5. References 8

List of Symbols, Abbreviations, and Acronyms 9

Distribution List 10

iv

List of Figures

Fig. 1 Sample of original LPDM Fortran code converted to C code 3

Fig. 2 Original LPDM Fortran code’s performance hotspot and its equivalent
GPU-accelerated C code ... 4

Fig. 3 Data results of original LPDM Fortran application and GPU-
accelerated LPDM C application .. 6

1

1. Introduction

The Lagrangian Particle Dispersion Model (LPDM) simulates the ensemble
average transport of aerosols and gases in turbulent wind conditions, which can
have a long execution time for it to be possibly useful to the Warfighter on the
battlefield. The LPDM can be coupled with the atmospheric boundary flow
models1,2 inline or offline for the transport and dispersion predictions. As discussed
in Dawson3 and Dawson and Wang,4 there were some performance improvements
of the LPDM using two techniques of graphics processing unit (GPU) computing
technology with one using Compute Unified Device Architecture (CUDA) Fortran
interface via device code and another one using CUDA host code only. However,
additional performance improvement with the LPDM code was preferred. As a
result, it was determined that converting the original LPDM Fortran code to C
programming language5 was required. It is assumed that this will help further
maximize LPDM’s execution performance since CUDA’s programming
framework was created in C.

The purpose of this document is to explain the implementation approach of
converting the original LPDM Fortran model code to C programming language
using GPU computing technology to improve its application performance. The
execution time of GPU-accelerated LPDM C application was faster than the
original LPDM Fortran application without GPU computing. However, there were
some minor differences in the output of GPU-accelerated LPDM C model code that
still need further investigation.

2. GPU and Conversion of the LPDM Code

The compute-intensive portions of a GPU-accelerated application are mainly
offloaded to the GPU with many cores running in parallel and simultaneously,
while the remainder of the application code runs on the central processing unit
(CPU).6 Thus, GPU-accelerated applications can run much faster than a CPU
application. Similar to the approaches described in Dawson3 and Dawson and
Wang,4 The US Army Combat Capabilities Development Command Army
Research Laboratory’s high-performance computer, Excalibur, was used for its
GPU computing capability during the experiment.

The original LPDM (Wang et al.7) application code was developed in Fortran 90.8
During the conversion of the LPDM Fortran code to C, CUDA 8.09 application
interface for Compute Capability 3.5 was used, similar to the approach described
in Dawson and Wang4. In contrast, OpenACC was not used and Nvidia’s CUDA

2

Compiler (NVCC) was utilized to compile the LPDM’s C model code during this
experiment.

The original LPDM code contains over 500 lines of Fortran code. Each line was
converted line-by-line to its C equivalent during the conversion process. There were
some similarities with Fortran and C, but there were more notable differences with
multidimensional arrays and loop ordering. The LPDM Fortran code contains over
10 three-dimensional arrays for various implementations, such as when using the
random number generator for marking particle dispersions. Fortran
multidimensional arrays are stored in memory with the most rapidly changing index
coming first (e.g., A(i,j,k)), whereas C multidimensional arrays are stored in
memory with the most rapidly changing index last (e.g., A[k][j][i]). In other words,
each array was transposed during the conversion from Fortran to C, where Fortran
is column-major order and C is row-major order (Fig. 1). Furthermore, the LPDM
Fortran code contains approximately 20 do-while loops for various
implementations. In the LPDM C code, all the do-while loops and one-dimensional
array declarations with their assigned values were both converted to for loops. The
Fortran arrays start at 1, while as C arrays start at 0. Therefore, each do-while loop
and array declarations in Fortran started at 1, while each C loop and array
declarations start at 0 (Fig. 1).

3

Original LPDM Fortran Code:

LPDM C Code:

Fig. 1 Sample of original LPDM Fortran code converted to C code

integer,parameter::no_pt=1000000 !number of particles
integer,parameter::nx=201,ny=201,nz=201 !number of grid points
real::aa(no_pt) !random number vectors
real::Tw_lag(nz) !lagrange integral time scale
real::sigma_w(nx,ny,nz) !Eulerian sigma w
integer::i2(no_pt),j2(no_pt),k2(no_pt) !instantaneous i,j,k index for particles
real::dx,dy,dz !grid box dx,dy,dz in meters
real::w(no_pt),dw(no_pt)
real::x(no_pt),y(no_pt),z(no_pt) !coordinate for each particle
…
k2(1:no_pt)=int(z(1:no_pt)/dz+1)
i2(1:no_pt)=int(x(1:no_pt)/dx+1)
j2(1:no_pt)=int(y(1:no_pt)/dy+1)
…
do ip=1,no_pt
if (out_flag(ip) .ne. 1 .and. ip .le. no_pt) then
dw(ip)= -(1./Tw_lag(k2(ip)))*w(ip)*dt &
+sqrt(sigma_w(i2(ip),j2(ip),k2(ip))/Tw_lag(k2(ip)))*aa(ip)
w(ip)=w(ip)+dw(ip)
…
endif
enddo
…

int const no_pt = 1000000; // number of random elements/particles
int nx=201,ny=201,nz=201; //number of grid points
float aa[no_pt]; //random number vectors
float Tw_lag[nz]; //lagrange integral time scale
float sigma_w[nz][ny][nx]; //Eulerian sigma w
int i2[no_pt],j2[no_pt],k2[no_pt]; //instantaneous i,j,k index for particles
float dx,dy,dz; //grid box dx,dy,dz in meters
float w[no_pt],dw[no_pt];
float x[no_pt],y[no_pt],z[no_pt]; //coordinate for each particle
…
for(i = 0; i < no_pt; ++i)
{
 k2[i] = (int)(z[i]/dz);
 i2[i] = (int)(x[i]/dx);
 j2[i] = (int)(y[i]/dy);
}
…
for(ip = 0; ip < no_pt; ++ip)
{
 if(out_flag[ip] != 1)
 {
 dw[ip] = -(1.0/Tw_lag[k2[ip]])*w[ip]*dt +
 sqrt(sigma_w[k2[ip]][j2[ip]][i2[ip]])/Tw_lag[k2[ip]]*aa[ip];
 w[ip] = w[ip] + dw[ip];
…
 }
}
…

4

In addition to converting all the original LPDM code from Fortran to C, an initial
effort was made to use GPU computing technology via CUDA to accelerate the
LPDM C code. As discussed in Dawson,3 the most intensive portion of the model
computation in the original LPDM Fortran code is the Gaussian random process
that simulates the diffusion by small turbulent eddies, and the function, gaussdev,
was determined to be the hotspot for the LPDM code via the PGPROF profiler.
CUDA has a built-in random number generator (RNG) library called CUDA
Random Number Generation library (cuRAND) that produces high-performance
GPU-accelerated random number generation from several RNGs distributions
including Gaussian or normal distribution.9 As a result, the LPDM Fortran code
containing all instances of the gaussdev function was replaced with cuRAND host
function calls in the LPDM C GPU-accelerated code, as shown in Fig. 2.

Original LPDM Fortran Code:

LPDM GPU-Accelerated C Code:

Fig. 2 Original LPDM Fortran code’s performance hotspot and its equivalent GPU-
accelerated C code

integer,parameter::no_pt=1000000
real::aa(no_pt)

do i=1,no_pt
 aa(i)=gaussdev()
enddo

int const no_pt = 1000000;
float aa[no_pt];
size_t const bytes = no_pt * sizeof(float);
float* inputD;
float* hostD;
float mean = 0.0, stdDev = 1.0;
curandGenerator_t gen;

hostD = (float*) malloc(bytes);
cudaMalloc((void**)&inputD, bytes);
cudaMemset(inputD,0,bytes);

curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_XORWOW);
curandSetPseudoRandomGeneratorSeed(gen, clock());
curandGenerateNormal(gen, inputD, no_pt, mean, stdDev);
cudaMemcpy(hostD, inputD, bytes, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
curandDestroyGenerator(gen);

5

3. Results

As stated in Section 2, the original LPDM Fortran code was converted to a GPU-
accelerated C application using line-by-line conversion and CUDA. The GPU C-
accelerated application was faster than the original LPDM application without GPU
computing. As discussed in Dawson,3 the original LPDM Fortran application
without GPU computing ran on the CPU with the execution time of 7 min and 57 s.
On the other hand, the GPU-accelerated LPDM C application ran at 3 min and 29 s,
which is approximately 2.28 times faster than the original LPDM application
without GPU computing.

As shown in Fig. 3, the graphical data results simulate the average transport of
aerosols and gases released under turbulent wind conditions using the original
LPDM Fortran application without GPU computing versus the LPDM GPU-
accelerated C application. The data results between the two applications have some
minor differences, which will need to be further investigated as it relates to the main
cause for them. One possible reason could be the differences in how the output
binary files are created in Fortran versus C that needs be explored, especially since
the output arrays are transposed, as discussed in Section 2. However, the effort in
converting the LPDM Fortran code to C code using GPU computing was somewhat
successful, since the LPDM execution time was reduced by the GPU-accelerated C
application.

6

LPDM GPU-Accelerated C Application:

Original LPDM Fortran Application:

Fig. 3 Data results of original LPDM Fortran application and GPU-accelerated LPDM C
application

4. Conclusion and Future Work

The original LPDM Fortran application was converted to a C GPU-accelerated
application with some success since an improvement in the application’s
performance was achieved. The LPDM GPU-accelerated C application was over
2 times faster than the original LPDM Fortran application. However, additional
work is needed to gain more performance with the LPDM C application.

The future work for the LPDM GPU-accelerated C application involves additional
investigation in the cause for minor differences in the output from the original
LPDM Fortran application. Once this is solved, the next step will be to start

7

integrating various CUDA techniques to further optimize the LPDM C application.
There are many CUDA programming techniques that can be explored, such as
constant shared memory, asynchronous memory transfers with data streams, and
dynamic parallelism. The goal is to experiment with these and other CUDA
techniques to determine which technique and/or a combination of these techniques
can be used to successfully maximize the LPDM application’s performance. Then,
the LPDM GPU-accelerated C application could possibly be used for rapid release
and planning purposes on the battlefield.

8

5. References

1. Wang Y, Williamson C, Garvey D, Chang S, Cogan J. Application of a
multigrid method to a mass consistent diagnostic wind model. J Appl
Meteorology. 2005;44:1078–1089.

2. Wang Y, MacCall BT, Hocut CM, Zeng X, Fernando HJS. Simulation of
stratified flows over ridge using a lattice Boltzmann model. Environ Fluid
Mech. 2018. https://doi.org/10.1007/s10652-018-9599-3.

3. Dawson L. The performance improvement of the Lagrangian Particle
Dispersion Model (LPDM) using graphics processing unit (GPU) computing.
Adelphi (MD): Army Research Laboratory (US); 2017 Aug. Report No.: ARL-
TR-8110.

4. Dawson L, Wang Y. The second approach to improving the performance of
the Lagrangian Particle Dispersion Model (LPDM) using graphics processing
unit (GPU) computing. Adelphi (MD): Army Research Laboratory (US); 2018
Sep. Report No.: ARL-TN-0907.

5. C language. [accessed 2019 Sep]. https://en.cppreference.com/w/c/language.

6. Krewell K. What is the difference between a CPU and a GPU? Santa Clara
(CA): Nvidia Corporation; 2009 [accessed 2019 Sep].
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-
cpu-and-a-gpu/.

7. Wang Y, Miller D, Anderson D, McManus. A Lagrangian stochastic model for
aerial spray transport above an oak forest. Agricultural and Forest Meteorology.
1995;76:277–291. ISSN 0168-1923.

8. Fortran90. Fortran90 1.0 documentation: 2018 [accessed 2019 Sep].
http://www.fortran90.org/.

9. cuRAND. Santa Clara (CA): Nvidia Corporation; 2017 [accessed 2018 Aug].
https://developer.nvidia.com/curand.

https://en.cppreference.com/w/c/language
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
http://www.fortran90.org/
https://developer.nvidia.com/curand

9

List of Symbols, Abbreviations, and Acronyms

CPU central processing unit

CUDA Compute Unified Device Architecture

cuRAND CUDA Random Number Generation Library

GPU graphics processing unit

LPDM Lagrangian Particle Dispersion Model

NVCC Nvidia’s CUDA Compiler

RNG random number generator

10

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 4 CCDC ARL
 (PDF) FCDD RLC E
 B MACCALL
 FCDD RLC EM
 L DAWSON
 Y WANG
 FCDD RLC NB
 E CHIN

	List of Figures
	1. Introduction
	2. GPU and Conversion of the LPDM Code
	3. Results
	4. Conclusion and Future Work
	5. References
	List of Symbols, Abbreviations, and Acronyms

