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1. Introduction 

The US Army Research Laboratory* Department of Defense Supercomputing 
Resource Center (ARL DSRC) provides high-performance computing (HPC) 
resources and support to the Army’s research, development, test, and evaluation 
communities.1 Within these scientific communities, data analysis and assessment 
are vital components of the scientific process. Without understanding the data, there 
is little to conclude from these modeling and simulation efforts. Enabling scientists 
and researchers to gain insights from their data through visualization and interaction 
is an important component of the DSRC Data Analysis and Assessment Center 
(DAAC) operations. The DAAC team provides this analytical and assessment 
capability to users in many different forms, from traditional scientific visualization 
applications such as ParaView, Ensight, and Visit, to remote desktop environments 
for a familiar user interface (UI) to an HPC environment.2 In the past couple of 
years, the DAAC team has been investigating moving beyond traditional scientific 
visualization capability to accommodate more unstructured data. This entails both 
2-D visualizations that coordinate similar information within a data set, as well as 
3-D visualizations that demonstrate how the data appear in a world-like 
environment. Furthermore, these capabilities can be coordinated across dimensions 
to provide a visual-analytics capability, where the user drives the data-analysis 
workflow by interacting with the visualization applications.3 

One particular use case for this visualization capability is an active protection 
system (APS) Monte Carlo simulation. An APS is a defense system for Army tanks 
and other armored vehicles, and the Monte Carlo simulation enables scientists to 
better understand how the APS will perform. The ARL architecture for simulating 
and evaluating the performance of the APS is the Vehicle Protection Software Suite 
(VPSS), which has grown out of the legacy code called System Survivability 
Engineering Software.4 The VPSS is currently under development to expand 
simulation features used for characterizing protection technology’s performance 
against adversarial threats. Furthermore, the simulation software is being written to 
run on the HPC resources supported by the DSRC for both scalability and 
sustainability into the future. The APS refers to the response mechanisms equipped 
to a tank while VPSS refers to the simulation software encompassing all of the 
different aspects of an APS. The lifecycle of an APS is shown in Fig. 1, including 
the launch and detonation of the countermeasure (CM) weapon. Ultimately, the 
                                                 
* Some of the work outlined in this report was performed while the US Army Research Laboratory 
(ARL) was part of the US Army Research, Development, and Engineering Command (RDECOM). 
As of 31 January 2019, the organization is now part of the US Army Combat Capabilities 
Development Command (formerly RDECOM) and is called CCDC Army Research Laboratory. 
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goal is to visualize the entire life cycle including post-engagement residual-threat 
analysis using the data derived from the Monte Carlo simulation. More information 
on the APS project may be referenced in these reports.4–7 

In this report, we present our data-analysis support for the APS project. This 
includes improvements to a 3-D playback animation of the simulation data and 
enhanced filtering capability to visualize relevant subsets of the data set on 2-D 
charts, as well as improvements to our hybrid visualization framework to enable 
coordinated data analysis across the 2-D–3-D threshold. 

 

Fig. 1 Engagement life cycle of an APS 

2. 3-D Visualization 

At the inception of the project, the DAAC team inherited the previous data viewer, 
which was an OpenGL application over a decade old. The data viewer would read 
in the data file from the Monte Carlo simulation and animate the engagement life 
cycle of an APS. This involves an incoming threat trajectory toward a tank, a CM 
being fired from the tank once the threat is detected, and the CM engaging the 
incoming threat, fragmenting the threat by detonating within the vicinity. As an 
initial data-analysis capability, the DAAC team sought to update the current 
visualizer with an updated graphics engine. As mentioned in Graham’s contractor 
report,7 the DAAC team was given data and 3-D models of the simulation to create 
higher-fidelity 3-D visuals than the one previously used. The first game engine used 
was Unity, followed by Unreal Engine 4 (UE4) for more impressive graphics. 
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2.1 Unity Playback Application 

Unity is an application development platform that allows the import of 3-D assets 
and models into a 3-D environment and manipulating those assets via scripting and 
interaction.8 In the development of the Unity-based visualization application, we 
used the 3-D models provided by our collaborator and developed C#-based 
animation scripts to animate the 3-D models using the positional and orientation 
data from the simulation data. We started the development process by loading the 
3-D models provided into Unity to ensure they were importable with the correct 
scale and dimensions. Figure 2 shows a scene from our Unity-based application 
illustrating one time step from the data file.  

 

Fig. 2 Unity application showing a single animation time step based on the output of the 
Monte Carlo simulation run 

The threat projectile and tank model had to be manipulated within the 3-D 
environment to correctly rotate and scale them to a world-like environment. 
Furthermore, as the tank model was made up of many pieces, we had to manipulate 
the model by using a script to iterate through the pieces separately. We had to 
recreate the CM model in Unity, as it was not provided by our collaborator. We 
also used a skybox model that was provided to add realism to the animation, and 
the terrain model was modeled and textured using one of the image assets provided.  

The next step in the development was to correctly animate the scene using the 
simulation data provided. The data file provides the timing of the simulation 
together with positional and orientation data for all the 3-D objects in the 
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simulation. The entire data file was processed as a comma-separated values file into 
arrays in Unity with all of the data from the same reference frame stored 
accordingly.  

The main challenge is the synchronization of the time provided by the simulation 
into animation timing in Unity. Although the data contain the timestamps for each 
simulation step, Unity uses timing differently, using frames and pauses in loop 
iterations in the scripts. We had to track Unity time and compare it with the 
simulation time in order to synchronize the two times manually. Although we are 
not using the simulation time to drive the timing of the Unity animation at this time, 
each 3-D object moves according to its coordinates from the data set.  

For each of the Monte Carlo runs the entire animation is for a few seconds’ duration, 
so we gave the user the ability to slow the animation in Unity to allow them time to 
analyze the simulation. The user can control the timing of the animation by pressing 
“s” for slower or “f” for faster animation speed. We also included the “r” or reverse 
command to go backward through the data set at the same rates of speed that was 
set. The “p” key will toggle the pause and play of the animation. We also included 
different observation points in the scene for the user and the “c” button changes the 
view of the user in the scene to follow the missile or the canister. Furthermore, we 
added the ability to view the animation within virtual reality (VR).  

Everything the user sees in the animation up to this point is based on the data from 
a scientifically correct simulation output. However, we do not have data for the 
detonation of the CM and its fragmentation of the incoming threat. Instead, we 
implemented the CM’s detonation using a particle system for aesthetics. Figure 3 
shows use of the Unity particle system to show the CM’s detonation. Instead of 
animating many small spheres and scripting them, it is quicker and less resource 
heavy to implement a particle effect. To maintain the scientific accuracy up to the 
point of the particle-system effect, we only trigger the particle system when the data 
from the simulation indicate the CM detonates.  
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Fig. 3 Unity application showing the use of the particle system to illustrate the CM’s 
explosion 

2.2 UE4 

As mentioned previously, the DSRC DAAC team historically has used the Unity 
game engine to visualize 3-D environments and simulations. However, within the 
past couple of years UE4 has become Unity’s number one competitor. UE4 is an 
open-source game engine that has been gaining in popularity and user base, with a 
growing developer community. The transition to UE4 from Unity was due to its 
rapid development workflow, better quality, and higher resolution graphics. UE4 
focuses on visual scripting through blueprints instead of traditional programming, 
which is a process described at great length within its documentation.9 Features of 
UE4 include the integrated physics engine with various adjustable factors such as 
gravity, force, mass, and object collision, as well as the integrated Apex Destruction 
plugin that takes a static mesh and fractures it to form a destructible mesh. We 
utilize both the physics engine and Apex Destruction plugin during the formation 
of the engagement and post-engagement phases of the simulation.  

When transitioning our visualization from Unity to UE4, we originally sought to 
recreate the Unity playback application described previously. This proved 
relatively straightforward, utilizing UE4’s data-table structures to read and store the 
data set and animating the 3-D assets in the scene accordingly. For the CM’s 
detonation, the physics engine and Apex Destruction plugin replicate the particle 
system used in the Unity application. We were then able to view the animation in 
VR using the OculusVR plugin for UE4 and use the hand controllers for movement 
and interaction. In total, recreating the Unity application in UE4 was a rapid 
development workflow that produced very promising results. Figure 4 shows the 
APS visualization from all three applications.  
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Fig. 4 OpenGL application (left), Unity application (middle), UE4 application (right) 

Once we recreated the existing application, we chose to continue iterating upon our 
data-analysis support for the APS project.10 Instead of just showing the APS 
animation playback of a single threat, we created a visualization to show the entire 
engagement life cycle of an APS including post-engagement fragmentation. This 
includes multiple land assets and incoming threats, multiple different kill measures, 
pre-engagement radar detection of threats, and post-engagement fragmentation 
containing residual-threat analysis. At this time, the simulations to produce the data 
for these components are under development. Thus, none of these components of 
the application were data-driven, but instead stubbed to be able to read data in from 
the VPSS simulations when the data become available.  

2.2.1 Full Engagement Life Cycle 

In a typical engagement scenario, friendly tank(s) and other units are in formation 
and encounter one or more threats launched by hostile forces. The two common 
threats an APS is designed to counter are rocket-propelled grenades (RPGs) and 
antitank guided missiles (ATGMs). The engagement life cycle begins in pre-
engagement, which is composed of threat detection and tracking as well as targeting 
systems. When an appropriate response has been derived in the pre-engagement 
phase, a CM is launched that can be either hard kill or soft kill. The hard-kill 
mechanisms use an explosive canister that will physically intercept the threat via 
detonation, whereas the soft-kill mechanisms use jamming or other nonlethal 
technologies to neutralize the threat. After this engagement has occurred, there is a 
post-engagement phase where residual fragments from the neutralized threat can 
still potentially cause damage to friendly units.11 

The engagement scenario for the application is an array of tanks and accompanying 
forces moving forward in battle formation that encounter enemy threats. Figure 5 
shows the friendly units in this formation, as well as the text interface that displays 
how many times the vehicles have been hit by missile fragments in the  
post-engagement phase.  
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Fig. 5 Pre-engagement unit formation 

In this simulation, a missile appears every 5 s in the field in front of the units and 
randomly targets a tank. When the missile spawns, the radar system first detects the 
threat. Currently, the missiles spawn in random locations, providing variation as to 
when the radar system detects them, but this can be modified to more realistically 
match the behavior of any existing radar technology should that information be 
provided. Once the targeted tank’s radar detects the incoming threat, the tank 
responds with one of three CMs. Figure 6 presents these responses.  

 

 

Fig. 6 Three CMs in the engagement phase: hard-kill canister (top left) and canister 
detonation (top right), flare (bottom left), and soft-kill electromagnetic pulse (bottom right) 

The top of Fig. 6 shows a hard-kill CM before and after detonation. The hard-kill 
CM is a canister that targets the missile and explodes in close vicinity, causing the 
missile to fragment. The bottom left of Fig. 6 shows a flare CM, which is meant to 
circumvent the targeting system of the guided missile and causes the missile to 
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reroute and target the flare instead of the tank. Upon colliding with the flare, the 
missile fragments. Lastly, the bottom right of Fig. 6 shows a soft-kill mechanism, 
demonstrated by a laser representing an electromagnetic pulse that disables the 
missile. The missile’s targeting system becomes disabled, causing it to fall directly 
to the ground and fragment upon impact. After these three cases, the post-
engagement phase consists of the fragments’ trajectory. Figure 7 shows fragments 
lying on the ground as a result of the engagement.  

 

Fig. 7 Post-engagement phase of engagement life-cycle simulation 

2.2.2 Post-engagement Threat Analysis 

A visual casualty-analysis system was developed to analyze the collision of the 
hostile projectile’s debris and is shown in Fig. 8. As the friendly forces are struck 
by the threat residuals, the material of the vehicle or personnel changes to become 
red temporarily, clearly displaying where fragments have collided with the units. A 
quantitative visual in the top-left corner displays the total number of each type of 
friendly unit that is hit, along with the number of times each individual unit is hit. 
Other features of the application include a simulation pause, user movement with 
keyboard and Oculus Rift controls, and partial time compression to allow the user 
to observe the environment in slow motion while moving at a normal speed. 
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Fig. 8 Visual analysis of threat residuals colliding with friendly units 

This application focuses on the optimization of the CM’s interception for the least-
incurred damage to the friendly forces. Because the simulation data are not yet 
available, we were able to manipulate variables such as the force and height of the 
threat explosion and the angle of approach of the threat to gain variability in 
potential approaches of threat residuals. Fifteen and 25 m from the formation were 
used to display the range for an RPG, while 50 and 75 m demonstrated the range 
for an ATGM. Currently, the threat–CM engagement is emulated with UE4’s 
physics engine, but it has demonstrated the ability to manipulate objects based on 
given data, as well.  

Currently, the post-engagement threat analysis consists of logging the number of 
collisions between threat fragments and friendly units. Given additional 
information about the durability of the vehicles and impact damage of missiles, 
analysis can be integrated into the simulations to provide a more detailed threat 
assessment. An animation pause, partial time compression for slow-motion, and 
user movement are included features of the application. The user is also able to 
view and move around the 3-D environment within VR, allowing the analyst to 
view the animation and engagements from different angles and distances. In 
addition, the keypress “o” produces a JavaScript Object Notation (JSON)-
structured log file, for further analysis, that reports when each threat was engaged.  

3. 2-D Visualization 

Although the original data viewer provided for the APS simulation was a 3-D 
playback animation driven by the data file, there are other ways to analyze data 
beyond just viewing a simulation realization. With exploratory data-analysis 
problems involving many variables of heterogeneous types, it is useful to have 
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several charts showing different angles of the overall data. Further, creating a full 
visual analytic solution involves the interoperation of a collection of charts and 
visualizations that represent the same slice, combination, or configuration of data 
that the analyst wishes to see. This enables the synchronization of each view such 
that any user action in one view changes all others, guaranteeing a unified 
representation. This is referred to as brushing and linking.11 Charts are linked 
because they are a connected to the same data set, and when that data set changes 
or is filtered, those changes are then brushed across all of the charts and graphs. 
Thus, to enable a more complete data-analysis capability for the APS simulation, 
we created a 2-D visualization application containing multiple coordinated views 
for the analyst to further inspect the simulation data. 

3.1 SyncVis Application 

In earlier work, we created a front-end application layer on top of the 
ParaViewWeb12 framework, which we named SyncVis.13 We used ParaViewWeb 
because its InfoViz application programming interface (API) supports interactive 
coordination across multiple views, and also supports linking of common data 
across multiple charts. SyncVis is a web-based application that contains a 
composite of different visualization tools and components meant for rendering 
simulation data. It is a prototype data-visualization tool that integrates dc.js,14 
Unity, and ParaViewWeb to visualize data through multiple 2-D visualizations. All 
of these visualizations are linked to the same data server such that whenever a data 
filter is applied to the main data server, the brushing of those data is coordinated 
server-side and applied to all of the synced visualization tools. The web page itself 
is organized through React and has six different application boxes. The boxes are 
spread evenly across the webpage in a grid (Fig. 9). Each box and its respective 
charts are set up in a different way, but they are all united because they all receive 
their data from the same underlying ParaViewWeb server. In order to communicate 
with the server, SyncVis uses a one-way Remote Procedure Call (RPC) to send and 
request data. These are all done through a separate communication file that allows 
SyncVis to coordinate with other client applications. 

ParaViewWeb contains provider modules that facilitate data flow from data source 
to visualizations. That is, each provider module is responsible for managing a 
particular piece of data and/or part of the application state, potentially coming in 
remotely, and interested visualization components are notified when there is a 
change in state through a publish/subscribe approach. In addition to the provider 
design, the InfoViz API also includes a collection of useful charts for visualizing 
more complex correlations between variables.  
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Fig. 9 SyncVis showing multiple coordinated views of 2-D visualization components: Unity 
playback animation (top left), a UI for time-range selection (top center), histogram of selected 
variables (top right), chord diagram of selected variables (bottom left), variable selector 
(bottom center), and cubism charts of selected variables (bottom right) 

In addition to data management, SyncVis manages visualization-component 
rendering by using the React framework.15 React makes it simpler to create 
composable UIs in a declarative fashion and also allows us to use state-of-the-art, 
open-source React-based visualization components more easily. To create new 
web-based visualization front ends, we would simply have to create a new provider 
module to deliver new types of data to the visualizations. Existing React-based 
visualization components can directly be used in SyncVis. ParaViewWeb 
composite providers are available throughout the React component hierarchy; 
hence, individual visualization components can subscribe to provider events to 
retrieve new data and update the state of the visualization component, which 
triggers React to re-render the visualization automatically. 

3.2 Filtering Improvements 

For the APS data it is helpful to understand both individual and pairwise 
relationships of variables from the simulation. For time-based simulations, a natural 
filtering method is based on time, where an analyst may choose to only look at a 
specific period of time within the simulation. Previously, the only filter the SyncVis 
application supported to filter the main data server was a time filter. However, the 
APS data set brought to light new variables that an analyst may wish to filter by, in 
particular binary variables. This section describes adding a new filtering method 
for binary variables in the data set instead of just the time stamp, as well as a way 
to filter by multiple variables at once. 
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For visualizing the binary filters, dc.js “donut charts” were used because they are 
useful for filtering data and the concept of “on” and “off” is very intuitive for 
analysts. On initialization, the server automatically calculates and records the 
binary variables of the data set. As described previously, the donut charts must 
communicate with the ParaViewWeb server through asynchronous RPCs, where a 
communications JavaScript file coordinates all of the RPCs to the server.16 To 
accommodate this mode of communication, two new RPCs were added to the 
communications file for getting and setting the binary variables upon user 
interaction.  

To interact with SyncVis, the variables may be selected by the user on the variable 
selector shown in the bottom center of Fig. 9. Whenever a variable is selected, the 
subsequent filter is applied if applicable. If the variable is binary, this filter simply 
combs through that variable’s values and calculates the ratios for its Boolean 
values. Once the ratios are calculated, the ensuing donut chart will appear 
underneath the time filter as seen in Fig. 10. From there, the user can interact with 
SyncVis by selecting the donut chart. On selection, the newly set RPC sends the 
name of the selected binary variable and the section of the donut chart that was 
selected (i.e., “true” or “false”) to the ParaViewWeb server for further filtering of 
the data set.   

 

Fig. 10 SyncVis before donut charts added (left) and SyncVis with the addition of donut 
charts (right) 

To include Boolean variable filtering in addition to the time range, filtering in 
SyncVis needed to be redesigned to accommodate the application of multiple filters 
to the data set. Instead of just the time filter, SyncVis needs the ability to cross-
filter over multiple different data points. Previously, the time-stamp filter just 
removed the indices that did not correspond to the selected range of data in the data 
set. At first, the solution was to just manipulate this object by removing more data 
points from it, but it conflicted with other modules within the code base. Instead of 
this system, the time filter and donut charts were each given their own lists to filter 
the data into one master list of data points. These filters were originally intended to 
be composed of “true” and “false” values that determine whether the data point is 
included or excluded by the filter. However, when applying multiple filters, there 
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was no way to efficiently reverse one filter while maintaining the structure of the 
other filters. 

To allow for binary variable filters to stack on top of each other within one filter 
module, the filters were redesigned to be arrays of numbers in which 0 represents 
“true” and any number higher than 0 represents “false”. The system is designed so 
that any new additional filters should act similarly. After each individual filter has 
been calculated, they are then compiled into a single abstract filter array. After all 
data points have been added to the array, the data are served to the client with the 
relevant filtering. 

4. Hybrid Visualization 

In a paper for the Software Engineering and Architectures for Realtime Interactive 
Systems workshop,17 we described the creation of a hybrid visualization framework 
to visualize the APS simulation by coordinating both 2-D and 3-D visualizations. 
The APS use case requires that data be represented by both 2-D charts and graphs 
and 3-D representations that visualize the data’s spatiotemporal dynamics. Further, 
there are benefits to viewing these data in an immersive 3-D VR environment, for 
it can allow for novel, more cognitively intuitive ways of interacting with the data. 
Previous work has used Unity to visualize the dynamics of an APS simulation and 
have this playback coordinated to a 2-D collection of data visualizations through a 
simple web interface for state communication. This section briefly discusses the 
previous implementation, followed by improvements made to the visualization 
framework to enable further data-analysis capability. 

4.1 Previous Implementation 

In terms of the 3-D visualization, the initial approach was simply to view the 
dynamics by playing back an entire simulation realization. The work developed a 
way for the simulation playback to coordinate with the SyncVis web-app dashboard 
and respond to a time-selection filter applied in SyncVis. When a time selection is 
applied, the Unity application would restrict the simulation data for that particular 
selected time range, allowing the user to view the corresponding clip of the animation 
on loop. For example, Fig. 2 in Section 2.1 shows a snapshot of a scene. While 3-D 
playback animation provides the user with a visual of the test scenario as it would 
play out in real time, it does not facilitate any exploration of the data other than 
watching the scenario play out. Unfortunately, there is no way for a user to interact 
with this animation other than starting or stopping the playback. In addition, there is 
not very much information to be gained from stopping the animation playback at one 
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single time step. Thus, to support a more in-depth and useful data-analytics 
experience, we decided to represent the 3-D data in a different way. 

In terms of communication of input and filter information between Unity and web 
application servers, this was previously done by exposing filtering information 
through a separate microservice as a Representational State Transfer (REST) API. 
In this setup, the data server, upon changes in the time filter range, would send a 
POST request to deliver this update to the microservice. The Unity application 
would constantly poll the API and determine when the time filter has changed. This 
design was not an ideal choice but was chosen due to lack of better options on the 
Unity side of implementation. In our reconfigurable visualization ecosystem,18 state 
and data changes are normally communicated through the Web Application 
Messaging Protocol (WAMP), in contrast to REST. WAMP allows two types of 
high-level messaging patterns to be communicated across distributed, connected 
devices: RPC and publish/subscribe type messaging. Unfortunately, the current 
stable .NET version available for Unity does not support the desired WAMP 
libraries we would have liked to use to establish a full, high-level bidirectional 
communication capability between the data server and the Unity app. This setup 
would have been ideal because filter changes would be able to be pushed directly 
to the Unity app, rather than the app having to poll the server. 

4.2 Improvements to the 2-D–3-D Hybrid Framework 

This work aimed to improve upon our initial implementations, discussed 
previously, with the following: 

• Create a more robust pipeline between Unity applications and our server 
side, such that the Unity application can interplay with other data 
visualizations connected to it and have it work in a coordinated fashion. 

• Create a more interactive 3-D environment that better facilitates a user to 
peer into their data instead of just a playback over time. 

4.2.1 Bidirectional Communication Pipeline between Unity and Data 
Server 

As previously mentioned, to establish bidirectional communication between Unity 
applications and the WAMP data server, we designed a middleware that serves as 
an event translation service. Figure 11 shows a schematic of the pipeline. 
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Fig. 11 Message-passing pipeline between WAMP server and unity 

The event-translation service is designed to map WAMP functionality over to the 
Unity app. The event-translation microservice is designed to forward specific cases 
of these messages to and from the Unity app, as needed for the APS 2-D–3-D 
visualization. Specifically, the microservice will receive a payload from Unity 
specifying the RPC to call, as well as the argument inputs, and will forward this to 
the WAMP server by calling the corresponding RPC on it with the given inputs. In 
addition, the event-translation microservice can subscribe to a topic published by 
the WAMP server with a corresponding event handler that pushes the published 
topic and payload to the Unity app as a serialized JSON message. At that point, the 
Unity app can respond to the message accordingly. 

In this particular application, the Unity app can be used to select a time range of the 
simulation to drill into, whose filter would apply to other visualization apps 
connected to the WAMP server. Further, when the time range is changed in another 
app, the Unity app can (and should) respond to the change accordingly. For the 
former, upon selecting a desired range in Unity a JSON payload will be sent to the 
microservice consisting of the RPC name to call on the server, called 
“timerange.set”, and the actual time range as a two-element array containing the 
start and end time. The microservice will take the RPC name and run it through a 
switch statement containing the corresponding RPC calls mapped by RPC name, 
then call “timerange.set” on the WAMP server. In terms of the latter, the 
microservice subscribes to the “timerange.updated” topic. When the WAMP server 
publishes this topic coming from another application, the microservice receives it 
along with the new time range and sends both pieces of information to the Unity 
app. Figure 12 illustrates this pipeline, which will be illustrated further in the next 
section. 
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Fig. 12 Communication pipeline from SyncVis to Unity (top) and Unity to SyncVis 
(bottom) 

4.2.2 Interactive 3-D Immersive Environment 

In our updated visualization, we show the incoming threat and CM data at 
increments within the 3-D space instead of playing the animation on a loop for the 
given time range. When the entire time range of values is selected in SyncVis, the 
3-D visualization shows a snapshot of both the threat trajectory and CM trajectory 
for incremental time steps within the entire time range. 

There are 57 static threats present in the scene, aligned along the entire threat’s 
trajectory path at increments of about every 5 time steps for the entire simulation. 
There are 66 static CMs present in the scene, one at each time step during the CM’s 
trajectory. The 3-D visualization does not provide any insight into how the scenario 
plays out in real time, no longer playing the actual animation over time but, rather, 
contains a number of static 3-D assets showing the trajectories within the scenario. 
The 3-D assets still contain references to their time-step data from the simulation 
data, but the scene allows the user to inspect the trajectory paths as a whole, not 
just as they play out over time. Figure 13 shows the visualized scene. 
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Fig. 13 Unity application with static asset trajectories 

With the integration of the WAMP data server and event-translation microservice 
we have a more robust pipeline in place to push state changes within either 
application. At the front-end application view, nothing appears different to the user. 
As the user selects a smaller time range to visualize in SyncVis, the 3-D 
visualization reflects the change by showing only the threat and CM data that are 
present within that time range. When a time-range selection occurs in SyncVis, 
SyncVis will call the “timerange.set” RPC on the WAMP data server, the data 
server will publish a “timerange.updated” notification, and the microservice will 
respond by forwarding the updated time range to the Unity application. The Unity 
application will then turn the renderers off on the assets in the scene that do not fall 
within this time range. Thus, the selection of the time bar in SyncVis updates the 
scene in Unity to only show the corresponding threat and CM positions within that 
time range. (Figure 12’s top half illustrates this particular data flow through the 
pipeline.) This allows the user to further inspect the trajectories of the data and to 
visualize when the CM gets fired in response to the incoming missile threat.  

To create a more interactive 3-D environment for data exploration and analysis, the 
3-D assets in the scene are selectable. This allows the user to spatially select the 
assets of interest in the 3-D environment to initiate a visual filter on the data from 
3-D back to 2-D. In VR, the user is able to use a laser pointer from the hand 
controller to select a range of 3-D assets worth analyzing. This occurs by pointing 
the controller at an asset and pressing the trigger to select the asset. When an asset 
is selected, it will highlight in the 3-D scene. While still holding the trigger, the user 
may then drag the pointer across multiple assets, releasing the trigger when 
finished. This will highlight all of the assets in the scene that were toggled over 
while the trigger was pressed. The starting time point and ending time point of the 
range of assets selected are calculated, a request for time range update is sent as a 
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message to the microservice over the web-socket connection, and in turn the 
corresponding “timerange.set” RPC is called on the WAMP data server. (Refer to 
the bottom half of Fig. 12 for an illustration of this data-flow scenario.) Further, the 
microservice, being subscribed to “timerange.updated” topic occurring on the 
WAMP data server, will relay these published updates over web socket back to 
Unity. When the Unity application receives an updated time range, it disables the 
renderers of the assets in the scene containing a time step not within the updated 
range. When the selection comes from Unity, all assets that are not highlighted in 
Unity will disappear after the selection occurs. To reset the time range in Unity, the 
user may select anywhere in the scene that is not a threat or CM asset. When this 
click registers, a message is sent to the microservice over the web socket to reset 
the minimum and maximum values for the time range to the minimum and 
maximum of the entire dataset. Then, all assets in the Unity scene will reappear. 
Figure 14 depicts users interacting with the 2-D–3-D hybrid visualization. One user 
interacts with SyncVis on the display wall while the other user interacts with the 
Unity application in VR. This allows for collaborative data analysis where any 
update in either application is reflected in the other. 

 

Fig. 14 2-D–3-D hybrid visualization framework for APS 

5. Conclusion and Future Work 

The DSRC DAAC team has provided ample data-analysis support for the APS 
project. The data-driven 3-D animations created using both Unity and UE4 provide 
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high-fidelity graphics for analysts to visualize the Monte Carlo simulations. From 
a technical standpoint, UE4 has proven itself capable and flexible to rapidly develop 
visualizations of these types of simulations. It supports data-driven visualization in 
both static data-table and live data-streaming formats and in situ communication 
with external processes or simulations. UE4 can render high-resolution visuals 
without experiencing performance issues, even with multiple units and 
simultaneous events. Furthermore, development for VR technology is seamlessly 
integrated with UE4.  

Because APS is just a subset of the VPSS project as a whole, the DAAC team has 
worked with the project collaborators to anticipate future data-analysis capability. 
The two new UE4 applications have been created to visualize various components 
of an APS life cycle once the simulation data become available. These applications 
provide a structure for optimization-based immersive analysis, as well as an 
architecture in which visualization can be coupled with other processes that define 
the behavior of military systems being simulated. This includes radar, targeting, 
and weapons systems. The rest of the VPSS simulation code is currently being 
developed, optimized, and/or parallelized to run on the HPC resources. Once these 
components are functioning and can produce data, those data can be used to drive 
the UE4 applications. 

Once these 3-D applications are data-driven, the next step will be to hook the 
applications directly to the code running on the HPC resources for in situ analysis. 
That is, as the simulations run as a job on the HPC, the simulation output is directly 
injected into the UE4 application such that the analyst may view their simulation 
running in real time. UE4 has shown to be capable of communicating with external 
processes, but these complex systems still need to be integrated into the project. 
Once VPSS contains the software to accurately simulate the behavior of military 
systems, these UE4 applications can be used to visualize those simulations. 

For the 2-D visualization, we were able to accommodate a new type of filtering 
with which the analysts can drill down into their simulation data, as well as 
demonstrate the ability to cross-filter the data using multiple filters at once. The 
multiple coordinated charts and graphs provide a means for in-depth analysis 
beyond just viewing the 3-D simulation realization. It enables both single-variable 
analysis and pairwise analysis between variables. With multiple coordinated views 
demonstrating the same data with the ability to visually select the data to analyze, 
the analyst can explore and discover anomalies within the data set that may not be 
apparent otherwise. The next steps for the 2-D visualization are to enable more 
filtering capability based off the variables in the data sets and to optimize the cross-
filtering used for even quicker drill-downs as the size of the data sets continues to 
grow. 
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The enabling of the 2-D–3-D hybrid visualization framework allows analysts to 
coordinate their data-analysis efforts across the 2-D–3-D threshold. With both 
visualization applications displaying the same set of data, we have provided the 
analysts with multiple modes to suit their analytical needs. Currently, the hybrid 
framework only supports the analysis of one simulation run of the APS. Ideally, the 
analyst would be able to compare the data across multiple simulation runs; 
however, this may require some novel, new visualization capability to coordinate 
multiple variables over time over multiple simulation runs. We are currently 
researching visualization strategies to depict multivariate spatio-temporal 
correlation over multiple simulation runs. One way to do this is to move our current 
2-D visualizations to a 3-D environment where the third dimension can be used for 
simulation runs, effectively “stacking” the 2-D visualization for each simulation 
run to compare. We would also like to hook the new UE4 applications we have 
developed to the hybrid visualization framework similarly to how we hooked in the 
Unity application. 
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

3-D 3-dimensional 

API application programming interface 

app application 

APS active protection system 

ARL US Army Research Laboratory 

ATGM antitank guided missile 

CCDC US Army Combat Capabilities Development Command 

CM countermeasure 

DAAC Data Analysis and Assessment Center 

DSRC Department of Defense Supercomputing Resource Center 

HPC high-performance computing 

JSON JavaScript Object Notation 

REST Representational State Transfer 

RPC Remote Procedure Call 

RPG rocket-propelled grenade 

SSES System Survivability Engineering Software 

UE4 Unreal Engine 4 

UI user interface 

VPSS Vehicle Protection Software Suite 

VR virtual reality 

WAMP Web Application Messaging Protocol 
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