

 ARL-TR-8810 ● SEP 2019

Visualizing an Active Protection System Monte
Carlo Simulation

by Vincent Perry, Michael Chen, Russell Binaco, Wendy Gao,
and Simon Su

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8810 ● SEP 2019

Visualizing an Active Protection System Monte
Carlo Simulation

Vincent Perry and Simon Su
Computational and Information Sciences Directorate, CCDC Army Research
Laboratory

Michael Chen
Weapons and Materials Research Directorate, CCDC Army Research Laboratory

Russell Binaco
Rowan University

Wendy Gao
University of Maryland, Baltimore County

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2019
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

May 2018–July 2019
4. TITLE AND SUBTITLE

Visualizing an Active Protection System Monte Carlo Simulation
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Vincent Perry, Michael Chen, Russell Binaco, Wendy Gao, and Simon Su
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLC- S
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8810

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES
ORCID ID(s): Vincent Perry, 0000-0003-0429-1813; Simon Su, 0000-0002-2460-3899.

14. ABSTRACT

A recent undertaking by the US Combat Capabilities Development Command Army Research Laboratory to create a Vehicle
Protection Software Suite for the modeling and simulation of active protection systems (APSs) has spawned many data-
analysis efforts to better understand these systems. Furthermore, the software is being written to utilize the high-performance
computing resources provided by the Department of Defense Supercomputing Resource Center. This report discusses a
number of concurrent developmental efforts by the Data Analysis and Assessment Center to visualize an APS Monte Carlo
simulation as well as improvements to current visualization applications to enable further analysis when the software suite
matures. The visualizations include data-driven 3-D animations of the APS simulation as it plays out, 2-D charts and graphs
for variable analysis of the simulation data, and a 2-D to 3-D hybrid visualization framework to coordinate different views of
the entire data set for an all-encompassing analytical workflow. This report documents the visualization applications and some
of the technical underpinnings to enable the data-analysis capabilities.
15. SUBJECT TERMS

visualization, simulation, high-performance computing, HPC, Monte Carlo, active protection system

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

31

19a. NAME OF RESPONSIBLE PERSON

Vincent Perry
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-4896
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

Acknowledgments v

1. Introduction 1

2. 3-D Visualization 2

2.1 Unity Playback Application 3

2.2 UE4 5

2.2.1 Full Engagement Life Cycle 6

2.2.2 Post-engagement Threat Analysis 8

3. 2-D Visualization 9

3.1 SyncVis Application 10

3.2 Filtering Improvements 11

4. Hybrid Visualization 13

4.1 Previous Implementation 13

4.2 Improvements to the 2-D–3-D Hybrid Framework 14

4.2.1 Bidirectional Communication Pipeline between Unity and
Data Server 14

4.2.2 Interactive 3-D Immersive Environment 16

5. Conclusion and Future Work 18

6. References 21

List of Symbols, Abbreviations, and Acronyms 23

Distribution List 24

iv

List of Figures

Fig. 1 Engagement life cycle of an APS ... 2

Fig. 2 Unity application showing a single animation time step based on the
output of the Monte Carlo simulation run... 3

Fig. 3 Unity application showing the use of the particle system to illustrate
the CM’s explosion ... 5

Fig. 4 OpenGL application (left), Unity application (middle), UE4
application (right).. 6

Fig. 5 Pre-engagement unit formation... 7

Fig. 6 Three CMs in the engagement phase: hard-kill canister (top left) and
canister detonation (top right), flare (bottom left), and soft-kill
electromagnetic pulse (bottom right) .. 7

Fig. 7 Post-engagement phase of engagement life-cycle simulation 8

Fig. 8 Visual analysis of threat residuals colliding with friendly units 9

Fig. 9 SyncVis showing multiple coordinated views of 2-D visualization
components: Unity playback animation (top left), a UI for time-range
selection (top center), histogram of selected variables (top right), chord
diagram of selected variables (bottom left), variable selector (bottom
center), and cubism charts of selected variables (bottom right) 11

Fig. 10 SyncVis before donut charts added (left) and SyncVis with the
addition of donut charts (right) ... 12

Fig. 11 Message-passing pipeline between WAMP server and unity 15

Fig. 12 Communication pipeline from SyncVis to Unity (top) and Unity to
SyncVis (bottom) .. 16

Fig. 13 Unity application with static asset trajectories.................................... 17

Fig. 14 2-D–3-D hybrid visualization framework for APS 18

v

Acknowledgments

This work was supported in part by the Department of Defense (DOD)
High-Performance Computing Modernization Program at the US Army Research
Laboratory, DOD Supercomputing Resource Center.

1

1. Introduction

The US Army Research Laboratory* Department of Defense Supercomputing
Resource Center (ARL DSRC) provides high-performance computing (HPC)
resources and support to the Army’s research, development, test, and evaluation
communities.1 Within these scientific communities, data analysis and assessment
are vital components of the scientific process. Without understanding the data, there
is little to conclude from these modeling and simulation efforts. Enabling scientists
and researchers to gain insights from their data through visualization and interaction
is an important component of the DSRC Data Analysis and Assessment Center
(DAAC) operations. The DAAC team provides this analytical and assessment
capability to users in many different forms, from traditional scientific visualization
applications such as ParaView, Ensight, and Visit, to remote desktop environments
for a familiar user interface (UI) to an HPC environment.2 In the past couple of
years, the DAAC team has been investigating moving beyond traditional scientific
visualization capability to accommodate more unstructured data. This entails both
2-D visualizations that coordinate similar information within a data set, as well as
3-D visualizations that demonstrate how the data appear in a world-like
environment. Furthermore, these capabilities can be coordinated across dimensions
to provide a visual-analytics capability, where the user drives the data-analysis
workflow by interacting with the visualization applications.3

One particular use case for this visualization capability is an active protection
system (APS) Monte Carlo simulation. An APS is a defense system for Army tanks
and other armored vehicles, and the Monte Carlo simulation enables scientists to
better understand how the APS will perform. The ARL architecture for simulating
and evaluating the performance of the APS is the Vehicle Protection Software Suite
(VPSS), which has grown out of the legacy code called System Survivability
Engineering Software.4 The VPSS is currently under development to expand
simulation features used for characterizing protection technology’s performance
against adversarial threats. Furthermore, the simulation software is being written to
run on the HPC resources supported by the DSRC for both scalability and
sustainability into the future. The APS refers to the response mechanisms equipped
to a tank while VPSS refers to the simulation software encompassing all of the
different aspects of an APS. The lifecycle of an APS is shown in Fig. 1, including
the launch and detonation of the countermeasure (CM) weapon. Ultimately, the

* Some of the work outlined in this report was performed while the US Army Research Laboratory
(ARL) was part of the US Army Research, Development, and Engineering Command (RDECOM).
As of 31 January 2019, the organization is now part of the US Army Combat Capabilities
Development Command (formerly RDECOM) and is called CCDC Army Research Laboratory.

2

goal is to visualize the entire life cycle including post-engagement residual-threat
analysis using the data derived from the Monte Carlo simulation. More information
on the APS project may be referenced in these reports.4–7

In this report, we present our data-analysis support for the APS project. This
includes improvements to a 3-D playback animation of the simulation data and
enhanced filtering capability to visualize relevant subsets of the data set on 2-D
charts, as well as improvements to our hybrid visualization framework to enable
coordinated data analysis across the 2-D–3-D threshold.

Fig. 1 Engagement life cycle of an APS

2. 3-D Visualization

At the inception of the project, the DAAC team inherited the previous data viewer,
which was an OpenGL application over a decade old. The data viewer would read
in the data file from the Monte Carlo simulation and animate the engagement life
cycle of an APS. This involves an incoming threat trajectory toward a tank, a CM
being fired from the tank once the threat is detected, and the CM engaging the
incoming threat, fragmenting the threat by detonating within the vicinity. As an
initial data-analysis capability, the DAAC team sought to update the current
visualizer with an updated graphics engine. As mentioned in Graham’s contractor
report,7 the DAAC team was given data and 3-D models of the simulation to create
higher-fidelity 3-D visuals than the one previously used. The first game engine used
was Unity, followed by Unreal Engine 4 (UE4) for more impressive graphics.

3

2.1 Unity Playback Application

Unity is an application development platform that allows the import of 3-D assets
and models into a 3-D environment and manipulating those assets via scripting and
interaction.8 In the development of the Unity-based visualization application, we
used the 3-D models provided by our collaborator and developed C#-based
animation scripts to animate the 3-D models using the positional and orientation
data from the simulation data. We started the development process by loading the
3-D models provided into Unity to ensure they were importable with the correct
scale and dimensions. Figure 2 shows a scene from our Unity-based application
illustrating one time step from the data file.

Fig. 2 Unity application showing a single animation time step based on the output of the
Monte Carlo simulation run

The threat projectile and tank model had to be manipulated within the 3-D
environment to correctly rotate and scale them to a world-like environment.
Furthermore, as the tank model was made up of many pieces, we had to manipulate
the model by using a script to iterate through the pieces separately. We had to
recreate the CM model in Unity, as it was not provided by our collaborator. We
also used a skybox model that was provided to add realism to the animation, and
the terrain model was modeled and textured using one of the image assets provided.

The next step in the development was to correctly animate the scene using the
simulation data provided. The data file provides the timing of the simulation
together with positional and orientation data for all the 3-D objects in the

4

simulation. The entire data file was processed as a comma-separated values file into
arrays in Unity with all of the data from the same reference frame stored
accordingly.

The main challenge is the synchronization of the time provided by the simulation
into animation timing in Unity. Although the data contain the timestamps for each
simulation step, Unity uses timing differently, using frames and pauses in loop
iterations in the scripts. We had to track Unity time and compare it with the
simulation time in order to synchronize the two times manually. Although we are
not using the simulation time to drive the timing of the Unity animation at this time,
each 3-D object moves according to its coordinates from the data set.

For each of the Monte Carlo runs the entire animation is for a few seconds’ duration,
so we gave the user the ability to slow the animation in Unity to allow them time to
analyze the simulation. The user can control the timing of the animation by pressing
“s” for slower or “f” for faster animation speed. We also included the “r” or reverse
command to go backward through the data set at the same rates of speed that was
set. The “p” key will toggle the pause and play of the animation. We also included
different observation points in the scene for the user and the “c” button changes the
view of the user in the scene to follow the missile or the canister. Furthermore, we
added the ability to view the animation within virtual reality (VR).

Everything the user sees in the animation up to this point is based on the data from
a scientifically correct simulation output. However, we do not have data for the
detonation of the CM and its fragmentation of the incoming threat. Instead, we
implemented the CM’s detonation using a particle system for aesthetics. Figure 3
shows use of the Unity particle system to show the CM’s detonation. Instead of
animating many small spheres and scripting them, it is quicker and less resource
heavy to implement a particle effect. To maintain the scientific accuracy up to the
point of the particle-system effect, we only trigger the particle system when the data
from the simulation indicate the CM detonates.

5

Fig. 3 Unity application showing the use of the particle system to illustrate the CM’s
explosion

2.2 UE4

As mentioned previously, the DSRC DAAC team historically has used the Unity
game engine to visualize 3-D environments and simulations. However, within the
past couple of years UE4 has become Unity’s number one competitor. UE4 is an
open-source game engine that has been gaining in popularity and user base, with a
growing developer community. The transition to UE4 from Unity was due to its
rapid development workflow, better quality, and higher resolution graphics. UE4
focuses on visual scripting through blueprints instead of traditional programming,
which is a process described at great length within its documentation.9 Features of
UE4 include the integrated physics engine with various adjustable factors such as
gravity, force, mass, and object collision, as well as the integrated Apex Destruction
plugin that takes a static mesh and fractures it to form a destructible mesh. We
utilize both the physics engine and Apex Destruction plugin during the formation
of the engagement and post-engagement phases of the simulation.

When transitioning our visualization from Unity to UE4, we originally sought to
recreate the Unity playback application described previously. This proved
relatively straightforward, utilizing UE4’s data-table structures to read and store the
data set and animating the 3-D assets in the scene accordingly. For the CM’s
detonation, the physics engine and Apex Destruction plugin replicate the particle
system used in the Unity application. We were then able to view the animation in
VR using the OculusVR plugin for UE4 and use the hand controllers for movement
and interaction. In total, recreating the Unity application in UE4 was a rapid
development workflow that produced very promising results. Figure 4 shows the
APS visualization from all three applications.

6

Fig. 4 OpenGL application (left), Unity application (middle), UE4 application (right)

Once we recreated the existing application, we chose to continue iterating upon our
data-analysis support for the APS project.10 Instead of just showing the APS
animation playback of a single threat, we created a visualization to show the entire
engagement life cycle of an APS including post-engagement fragmentation. This
includes multiple land assets and incoming threats, multiple different kill measures,
pre-engagement radar detection of threats, and post-engagement fragmentation
containing residual-threat analysis. At this time, the simulations to produce the data
for these components are under development. Thus, none of these components of
the application were data-driven, but instead stubbed to be able to read data in from
the VPSS simulations when the data become available.

2.2.1 Full Engagement Life Cycle

In a typical engagement scenario, friendly tank(s) and other units are in formation
and encounter one or more threats launched by hostile forces. The two common
threats an APS is designed to counter are rocket-propelled grenades (RPGs) and
antitank guided missiles (ATGMs). The engagement life cycle begins in pre-
engagement, which is composed of threat detection and tracking as well as targeting
systems. When an appropriate response has been derived in the pre-engagement
phase, a CM is launched that can be either hard kill or soft kill. The hard-kill
mechanisms use an explosive canister that will physically intercept the threat via
detonation, whereas the soft-kill mechanisms use jamming or other nonlethal
technologies to neutralize the threat. After this engagement has occurred, there is a
post-engagement phase where residual fragments from the neutralized threat can
still potentially cause damage to friendly units.11

The engagement scenario for the application is an array of tanks and accompanying
forces moving forward in battle formation that encounter enemy threats. Figure 5
shows the friendly units in this formation, as well as the text interface that displays
how many times the vehicles have been hit by missile fragments in the
post-engagement phase.

7

Fig. 5 Pre-engagement unit formation

In this simulation, a missile appears every 5 s in the field in front of the units and
randomly targets a tank. When the missile spawns, the radar system first detects the
threat. Currently, the missiles spawn in random locations, providing variation as to
when the radar system detects them, but this can be modified to more realistically
match the behavior of any existing radar technology should that information be
provided. Once the targeted tank’s radar detects the incoming threat, the tank
responds with one of three CMs. Figure 6 presents these responses.

Fig. 6 Three CMs in the engagement phase: hard-kill canister (top left) and canister
detonation (top right), flare (bottom left), and soft-kill electromagnetic pulse (bottom right)

The top of Fig. 6 shows a hard-kill CM before and after detonation. The hard-kill
CM is a canister that targets the missile and explodes in close vicinity, causing the
missile to fragment. The bottom left of Fig. 6 shows a flare CM, which is meant to
circumvent the targeting system of the guided missile and causes the missile to

8

reroute and target the flare instead of the tank. Upon colliding with the flare, the
missile fragments. Lastly, the bottom right of Fig. 6 shows a soft-kill mechanism,
demonstrated by a laser representing an electromagnetic pulse that disables the
missile. The missile’s targeting system becomes disabled, causing it to fall directly
to the ground and fragment upon impact. After these three cases, the post-
engagement phase consists of the fragments’ trajectory. Figure 7 shows fragments
lying on the ground as a result of the engagement.

Fig. 7 Post-engagement phase of engagement life-cycle simulation

2.2.2 Post-engagement Threat Analysis

A visual casualty-analysis system was developed to analyze the collision of the
hostile projectile’s debris and is shown in Fig. 8. As the friendly forces are struck
by the threat residuals, the material of the vehicle or personnel changes to become
red temporarily, clearly displaying where fragments have collided with the units. A
quantitative visual in the top-left corner displays the total number of each type of
friendly unit that is hit, along with the number of times each individual unit is hit.
Other features of the application include a simulation pause, user movement with
keyboard and Oculus Rift controls, and partial time compression to allow the user
to observe the environment in slow motion while moving at a normal speed.

9

Fig. 8 Visual analysis of threat residuals colliding with friendly units

This application focuses on the optimization of the CM’s interception for the least-
incurred damage to the friendly forces. Because the simulation data are not yet
available, we were able to manipulate variables such as the force and height of the
threat explosion and the angle of approach of the threat to gain variability in
potential approaches of threat residuals. Fifteen and 25 m from the formation were
used to display the range for an RPG, while 50 and 75 m demonstrated the range
for an ATGM. Currently, the threat–CM engagement is emulated with UE4’s
physics engine, but it has demonstrated the ability to manipulate objects based on
given data, as well.

Currently, the post-engagement threat analysis consists of logging the number of
collisions between threat fragments and friendly units. Given additional
information about the durability of the vehicles and impact damage of missiles,
analysis can be integrated into the simulations to provide a more detailed threat
assessment. An animation pause, partial time compression for slow-motion, and
user movement are included features of the application. The user is also able to
view and move around the 3-D environment within VR, allowing the analyst to
view the animation and engagements from different angles and distances. In
addition, the keypress “o” produces a JavaScript Object Notation (JSON)-
structured log file, for further analysis, that reports when each threat was engaged.

3. 2-D Visualization

Although the original data viewer provided for the APS simulation was a 3-D
playback animation driven by the data file, there are other ways to analyze data
beyond just viewing a simulation realization. With exploratory data-analysis
problems involving many variables of heterogeneous types, it is useful to have

10

several charts showing different angles of the overall data. Further, creating a full
visual analytic solution involves the interoperation of a collection of charts and
visualizations that represent the same slice, combination, or configuration of data
that the analyst wishes to see. This enables the synchronization of each view such
that any user action in one view changes all others, guaranteeing a unified
representation. This is referred to as brushing and linking.11 Charts are linked
because they are a connected to the same data set, and when that data set changes
or is filtered, those changes are then brushed across all of the charts and graphs.
Thus, to enable a more complete data-analysis capability for the APS simulation,
we created a 2-D visualization application containing multiple coordinated views
for the analyst to further inspect the simulation data.

3.1 SyncVis Application

In earlier work, we created a front-end application layer on top of the
ParaViewWeb12 framework, which we named SyncVis.13 We used ParaViewWeb
because its InfoViz application programming interface (API) supports interactive
coordination across multiple views, and also supports linking of common data
across multiple charts. SyncVis is a web-based application that contains a
composite of different visualization tools and components meant for rendering
simulation data. It is a prototype data-visualization tool that integrates dc.js,14
Unity, and ParaViewWeb to visualize data through multiple 2-D visualizations. All
of these visualizations are linked to the same data server such that whenever a data
filter is applied to the main data server, the brushing of those data is coordinated
server-side and applied to all of the synced visualization tools. The web page itself
is organized through React and has six different application boxes. The boxes are
spread evenly across the webpage in a grid (Fig. 9). Each box and its respective
charts are set up in a different way, but they are all united because they all receive
their data from the same underlying ParaViewWeb server. In order to communicate
with the server, SyncVis uses a one-way Remote Procedure Call (RPC) to send and
request data. These are all done through a separate communication file that allows
SyncVis to coordinate with other client applications.

ParaViewWeb contains provider modules that facilitate data flow from data source
to visualizations. That is, each provider module is responsible for managing a
particular piece of data and/or part of the application state, potentially coming in
remotely, and interested visualization components are notified when there is a
change in state through a publish/subscribe approach. In addition to the provider
design, the InfoViz API also includes a collection of useful charts for visualizing
more complex correlations between variables.

11

Fig. 9 SyncVis showing multiple coordinated views of 2-D visualization components: Unity
playback animation (top left), a UI for time-range selection (top center), histogram of selected
variables (top right), chord diagram of selected variables (bottom left), variable selector
(bottom center), and cubism charts of selected variables (bottom right)

In addition to data management, SyncVis manages visualization-component
rendering by using the React framework.15 React makes it simpler to create
composable UIs in a declarative fashion and also allows us to use state-of-the-art,
open-source React-based visualization components more easily. To create new
web-based visualization front ends, we would simply have to create a new provider
module to deliver new types of data to the visualizations. Existing React-based
visualization components can directly be used in SyncVis. ParaViewWeb
composite providers are available throughout the React component hierarchy;
hence, individual visualization components can subscribe to provider events to
retrieve new data and update the state of the visualization component, which
triggers React to re-render the visualization automatically.

3.2 Filtering Improvements

For the APS data it is helpful to understand both individual and pairwise
relationships of variables from the simulation. For time-based simulations, a natural
filtering method is based on time, where an analyst may choose to only look at a
specific period of time within the simulation. Previously, the only filter the SyncVis
application supported to filter the main data server was a time filter. However, the
APS data set brought to light new variables that an analyst may wish to filter by, in
particular binary variables. This section describes adding a new filtering method
for binary variables in the data set instead of just the time stamp, as well as a way
to filter by multiple variables at once.

12

For visualizing the binary filters, dc.js “donut charts” were used because they are
useful for filtering data and the concept of “on” and “off” is very intuitive for
analysts. On initialization, the server automatically calculates and records the
binary variables of the data set. As described previously, the donut charts must
communicate with the ParaViewWeb server through asynchronous RPCs, where a
communications JavaScript file coordinates all of the RPCs to the server.16 To
accommodate this mode of communication, two new RPCs were added to the
communications file for getting and setting the binary variables upon user
interaction.

To interact with SyncVis, the variables may be selected by the user on the variable
selector shown in the bottom center of Fig. 9. Whenever a variable is selected, the
subsequent filter is applied if applicable. If the variable is binary, this filter simply
combs through that variable’s values and calculates the ratios for its Boolean
values. Once the ratios are calculated, the ensuing donut chart will appear
underneath the time filter as seen in Fig. 10. From there, the user can interact with
SyncVis by selecting the donut chart. On selection, the newly set RPC sends the
name of the selected binary variable and the section of the donut chart that was
selected (i.e., “true” or “false”) to the ParaViewWeb server for further filtering of
the data set.

Fig. 10 SyncVis before donut charts added (left) and SyncVis with the addition of donut
charts (right)

To include Boolean variable filtering in addition to the time range, filtering in
SyncVis needed to be redesigned to accommodate the application of multiple filters
to the data set. Instead of just the time filter, SyncVis needs the ability to cross-
filter over multiple different data points. Previously, the time-stamp filter just
removed the indices that did not correspond to the selected range of data in the data
set. At first, the solution was to just manipulate this object by removing more data
points from it, but it conflicted with other modules within the code base. Instead of
this system, the time filter and donut charts were each given their own lists to filter
the data into one master list of data points. These filters were originally intended to
be composed of “true” and “false” values that determine whether the data point is
included or excluded by the filter. However, when applying multiple filters, there

13

was no way to efficiently reverse one filter while maintaining the structure of the
other filters.

To allow for binary variable filters to stack on top of each other within one filter
module, the filters were redesigned to be arrays of numbers in which 0 represents
“true” and any number higher than 0 represents “false”. The system is designed so
that any new additional filters should act similarly. After each individual filter has
been calculated, they are then compiled into a single abstract filter array. After all
data points have been added to the array, the data are served to the client with the
relevant filtering.

4. Hybrid Visualization

In a paper for the Software Engineering and Architectures for Realtime Interactive
Systems workshop,17 we described the creation of a hybrid visualization framework
to visualize the APS simulation by coordinating both 2-D and 3-D visualizations.
The APS use case requires that data be represented by both 2-D charts and graphs
and 3-D representations that visualize the data’s spatiotemporal dynamics. Further,
there are benefits to viewing these data in an immersive 3-D VR environment, for
it can allow for novel, more cognitively intuitive ways of interacting with the data.
Previous work has used Unity to visualize the dynamics of an APS simulation and
have this playback coordinated to a 2-D collection of data visualizations through a
simple web interface for state communication. This section briefly discusses the
previous implementation, followed by improvements made to the visualization
framework to enable further data-analysis capability.

4.1 Previous Implementation

In terms of the 3-D visualization, the initial approach was simply to view the
dynamics by playing back an entire simulation realization. The work developed a
way for the simulation playback to coordinate with the SyncVis web-app dashboard
and respond to a time-selection filter applied in SyncVis. When a time selection is
applied, the Unity application would restrict the simulation data for that particular
selected time range, allowing the user to view the corresponding clip of the animation
on loop. For example, Fig. 2 in Section 2.1 shows a snapshot of a scene. While 3-D
playback animation provides the user with a visual of the test scenario as it would
play out in real time, it does not facilitate any exploration of the data other than
watching the scenario play out. Unfortunately, there is no way for a user to interact
with this animation other than starting or stopping the playback. In addition, there is
not very much information to be gained from stopping the animation playback at one

14

single time step. Thus, to support a more in-depth and useful data-analytics
experience, we decided to represent the 3-D data in a different way.

In terms of communication of input and filter information between Unity and web
application servers, this was previously done by exposing filtering information
through a separate microservice as a Representational State Transfer (REST) API.
In this setup, the data server, upon changes in the time filter range, would send a
POST request to deliver this update to the microservice. The Unity application
would constantly poll the API and determine when the time filter has changed. This
design was not an ideal choice but was chosen due to lack of better options on the
Unity side of implementation. In our reconfigurable visualization ecosystem,18 state
and data changes are normally communicated through the Web Application
Messaging Protocol (WAMP), in contrast to REST. WAMP allows two types of
high-level messaging patterns to be communicated across distributed, connected
devices: RPC and publish/subscribe type messaging. Unfortunately, the current
stable .NET version available for Unity does not support the desired WAMP
libraries we would have liked to use to establish a full, high-level bidirectional
communication capability between the data server and the Unity app. This setup
would have been ideal because filter changes would be able to be pushed directly
to the Unity app, rather than the app having to poll the server.

4.2 Improvements to the 2-D–3-D Hybrid Framework

This work aimed to improve upon our initial implementations, discussed
previously, with the following:

• Create a more robust pipeline between Unity applications and our server
side, such that the Unity application can interplay with other data
visualizations connected to it and have it work in a coordinated fashion.

• Create a more interactive 3-D environment that better facilitates a user to
peer into their data instead of just a playback over time.

4.2.1 Bidirectional Communication Pipeline between Unity and Data
Server

As previously mentioned, to establish bidirectional communication between Unity
applications and the WAMP data server, we designed a middleware that serves as
an event translation service. Figure 11 shows a schematic of the pipeline.

15

Fig. 11 Message-passing pipeline between WAMP server and unity

The event-translation service is designed to map WAMP functionality over to the
Unity app. The event-translation microservice is designed to forward specific cases
of these messages to and from the Unity app, as needed for the APS 2-D–3-D
visualization. Specifically, the microservice will receive a payload from Unity
specifying the RPC to call, as well as the argument inputs, and will forward this to
the WAMP server by calling the corresponding RPC on it with the given inputs. In
addition, the event-translation microservice can subscribe to a topic published by
the WAMP server with a corresponding event handler that pushes the published
topic and payload to the Unity app as a serialized JSON message. At that point, the
Unity app can respond to the message accordingly.

In this particular application, the Unity app can be used to select a time range of the
simulation to drill into, whose filter would apply to other visualization apps
connected to the WAMP server. Further, when the time range is changed in another
app, the Unity app can (and should) respond to the change accordingly. For the
former, upon selecting a desired range in Unity a JSON payload will be sent to the
microservice consisting of the RPC name to call on the server, called
“timerange.set”, and the actual time range as a two-element array containing the
start and end time. The microservice will take the RPC name and run it through a
switch statement containing the corresponding RPC calls mapped by RPC name,
then call “timerange.set” on the WAMP server. In terms of the latter, the
microservice subscribes to the “timerange.updated” topic. When the WAMP server
publishes this topic coming from another application, the microservice receives it
along with the new time range and sends both pieces of information to the Unity
app. Figure 12 illustrates this pipeline, which will be illustrated further in the next
section.

16

Fig. 12 Communication pipeline from SyncVis to Unity (top) and Unity to SyncVis
(bottom)

4.2.2 Interactive 3-D Immersive Environment

In our updated visualization, we show the incoming threat and CM data at
increments within the 3-D space instead of playing the animation on a loop for the
given time range. When the entire time range of values is selected in SyncVis, the
3-D visualization shows a snapshot of both the threat trajectory and CM trajectory
for incremental time steps within the entire time range.

There are 57 static threats present in the scene, aligned along the entire threat’s
trajectory path at increments of about every 5 time steps for the entire simulation.
There are 66 static CMs present in the scene, one at each time step during the CM’s
trajectory. The 3-D visualization does not provide any insight into how the scenario
plays out in real time, no longer playing the actual animation over time but, rather,
contains a number of static 3-D assets showing the trajectories within the scenario.
The 3-D assets still contain references to their time-step data from the simulation
data, but the scene allows the user to inspect the trajectory paths as a whole, not
just as they play out over time. Figure 13 shows the visualized scene.

17

Fig. 13 Unity application with static asset trajectories

With the integration of the WAMP data server and event-translation microservice
we have a more robust pipeline in place to push state changes within either
application. At the front-end application view, nothing appears different to the user.
As the user selects a smaller time range to visualize in SyncVis, the 3-D
visualization reflects the change by showing only the threat and CM data that are
present within that time range. When a time-range selection occurs in SyncVis,
SyncVis will call the “timerange.set” RPC on the WAMP data server, the data
server will publish a “timerange.updated” notification, and the microservice will
respond by forwarding the updated time range to the Unity application. The Unity
application will then turn the renderers off on the assets in the scene that do not fall
within this time range. Thus, the selection of the time bar in SyncVis updates the
scene in Unity to only show the corresponding threat and CM positions within that
time range. (Figure 12’s top half illustrates this particular data flow through the
pipeline.) This allows the user to further inspect the trajectories of the data and to
visualize when the CM gets fired in response to the incoming missile threat.

To create a more interactive 3-D environment for data exploration and analysis, the
3-D assets in the scene are selectable. This allows the user to spatially select the
assets of interest in the 3-D environment to initiate a visual filter on the data from
3-D back to 2-D. In VR, the user is able to use a laser pointer from the hand
controller to select a range of 3-D assets worth analyzing. This occurs by pointing
the controller at an asset and pressing the trigger to select the asset. When an asset
is selected, it will highlight in the 3-D scene. While still holding the trigger, the user
may then drag the pointer across multiple assets, releasing the trigger when
finished. This will highlight all of the assets in the scene that were toggled over
while the trigger was pressed. The starting time point and ending time point of the
range of assets selected are calculated, a request for time range update is sent as a

18

message to the microservice over the web-socket connection, and in turn the
corresponding “timerange.set” RPC is called on the WAMP data server. (Refer to
the bottom half of Fig. 12 for an illustration of this data-flow scenario.) Further, the
microservice, being subscribed to “timerange.updated” topic occurring on the
WAMP data server, will relay these published updates over web socket back to
Unity. When the Unity application receives an updated time range, it disables the
renderers of the assets in the scene containing a time step not within the updated
range. When the selection comes from Unity, all assets that are not highlighted in
Unity will disappear after the selection occurs. To reset the time range in Unity, the
user may select anywhere in the scene that is not a threat or CM asset. When this
click registers, a message is sent to the microservice over the web socket to reset
the minimum and maximum values for the time range to the minimum and
maximum of the entire dataset. Then, all assets in the Unity scene will reappear.
Figure 14 depicts users interacting with the 2-D–3-D hybrid visualization. One user
interacts with SyncVis on the display wall while the other user interacts with the
Unity application in VR. This allows for collaborative data analysis where any
update in either application is reflected in the other.

Fig. 14 2-D–3-D hybrid visualization framework for APS

5. Conclusion and Future Work

The DSRC DAAC team has provided ample data-analysis support for the APS
project. The data-driven 3-D animations created using both Unity and UE4 provide

19

high-fidelity graphics for analysts to visualize the Monte Carlo simulations. From
a technical standpoint, UE4 has proven itself capable and flexible to rapidly develop
visualizations of these types of simulations. It supports data-driven visualization in
both static data-table and live data-streaming formats and in situ communication
with external processes or simulations. UE4 can render high-resolution visuals
without experiencing performance issues, even with multiple units and
simultaneous events. Furthermore, development for VR technology is seamlessly
integrated with UE4.

Because APS is just a subset of the VPSS project as a whole, the DAAC team has
worked with the project collaborators to anticipate future data-analysis capability.
The two new UE4 applications have been created to visualize various components
of an APS life cycle once the simulation data become available. These applications
provide a structure for optimization-based immersive analysis, as well as an
architecture in which visualization can be coupled with other processes that define
the behavior of military systems being simulated. This includes radar, targeting,
and weapons systems. The rest of the VPSS simulation code is currently being
developed, optimized, and/or parallelized to run on the HPC resources. Once these
components are functioning and can produce data, those data can be used to drive
the UE4 applications.

Once these 3-D applications are data-driven, the next step will be to hook the
applications directly to the code running on the HPC resources for in situ analysis.
That is, as the simulations run as a job on the HPC, the simulation output is directly
injected into the UE4 application such that the analyst may view their simulation
running in real time. UE4 has shown to be capable of communicating with external
processes, but these complex systems still need to be integrated into the project.
Once VPSS contains the software to accurately simulate the behavior of military
systems, these UE4 applications can be used to visualize those simulations.

For the 2-D visualization, we were able to accommodate a new type of filtering
with which the analysts can drill down into their simulation data, as well as
demonstrate the ability to cross-filter the data using multiple filters at once. The
multiple coordinated charts and graphs provide a means for in-depth analysis
beyond just viewing the 3-D simulation realization. It enables both single-variable
analysis and pairwise analysis between variables. With multiple coordinated views
demonstrating the same data with the ability to visually select the data to analyze,
the analyst can explore and discover anomalies within the data set that may not be
apparent otherwise. The next steps for the 2-D visualization are to enable more
filtering capability based off the variables in the data sets and to optimize the cross-
filtering used for even quicker drill-downs as the size of the data sets continues to
grow.

20

The enabling of the 2-D–3-D hybrid visualization framework allows analysts to
coordinate their data-analysis efforts across the 2-D–3-D threshold. With both
visualization applications displaying the same set of data, we have provided the
analysts with multiple modes to suit their analytical needs. Currently, the hybrid
framework only supports the analysis of one simulation run of the APS. Ideally, the
analyst would be able to compare the data across multiple simulation runs;
however, this may require some novel, new visualization capability to coordinate
multiple variables over time over multiple simulation runs. We are currently
researching visualization strategies to depict multivariate spatio-temporal
correlation over multiple simulation runs. One way to do this is to move our current
2-D visualizations to a 3-D environment where the third dimension can be used for
simulation runs, effectively “stacking” the 2-D visualization for each simulation
run to compare. We would also like to hook the new UE4 applications we have
developed to the hybrid visualization framework similarly to how we hooked in the
Unity application.

21

6. References

1. US Army Research Laboratory DoD Supercomputing Resource Center
[accessed 2019 Aug]. https://www.arl.hpc.mil/about/index.html.

2. Data Analysis and Assessment Center [accessed 2019 Aug].
https://daac.hpc.mil/index.html.

3. Su S, Barton JM, An M, Perry V, Panneton B, Bravo L, Kannan R, Dasari V.
Reconfigurable visual computing architecture for extreme-scale visual
analytics. In: Blowers M, Hall RD, Dasari VR, editors. Proceedings of SPIE
10652, Disruptive Technologies in Information Sciences, SPIE Defense and
Security; 2018 Apr 15–19; Orlando, FL.

4. Chen M. Vision, strategy, and tactics of system survivability engineering
software (SSES) for adaptive and cooperative protection simulations–an
enabling technology for next-generation combat vehicles. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2018 Feb. Report No.: ARL-
TR-8290.

5. Chen M, Graham MJ. Transition and implementation of survivability suite
engineering simulation (SSES) for active protection systems. Aberdeen
Proving Ground (MD): Army Research Laboratory (US); 2017 Jul. Report
No.: ARL-TR-8048.

6. Chen M, Graham MJ, McNeir M. Preliminary development of survivability
suite engineering simulation (SSES): software architecture and design.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2016 Oct.
Report No.: ARL-TR-7855.

7. Graham MJ. Active protection system (APS) end-to-end modeling (EEM)
animation and analysis tools. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2018 Jan. Report No: ARL-CR-0823.

8. Unity User Manual. San Francisco (CA): Unity Technologies; 2019 [accessed
2019 Aug]. https://docs.unity3d.com/Manual/index.html.

9. Unreal Engine 4 Documentation. Cary (NC): Epic Games; 2019 [accessed
2019 Aug]. https://docs.unrealengine.com.

10. Binaco R, Gao W, Su S. Assessment of collateral damage in post-engagement
of an active protection system: visualization and simulation of an active
protection system engagement lifecycle. High Performance Computing
Modernization Program (US); 2019 Aug. Report No.: HIP-19-005.

22

11. Gough J, Chen M. Visual vulnerability assessment of nonstationary vehicles
subject to threat residuals in active protection systems. High Performance
Computing Modernization Program (US); 2018 Aug. Report No.: HIP-18-041.

12. North C, Shneiderman B. Snap-together visualization: a user interface for
coordinating visualizations via relational schemata. Proceedings of the
Working Conference on Advanced Visual Interfaces, AVI 2000. New York
(NY): ACM; 2000. p. 128–135.

13. ParaViewWeb: a JavaScript library for building web-based applications with
scientific visualization. Kitware; 2019 [accessed 2019 Aug].
https://kitware.github.io/paraviewweb/docs/.

14. dc.js – Dimensional charting Javascript library [accessed 2019 Aug].
https://dc-js.github.io/dc.js/.

15. React: a JavaScript library for building user interfaces. Facebook Inc; 2019
[accessed 2019 Aug]. https://reactjs.org/.

16. Richard J, An M, Su S. HPC enabled visual analytics for heterogeneous big
data: Cross-filtering weapon defense data on binary variables by integrating
dc.js and ParaViewWeb on the Syncvis Application. High Performance
Computing Modernization Program (US); 2018 Aug. Report No.: HIP-18-030.

17. Su S, Perry V, An M, Chen M. Real-time interactive hybrid 2D and 3D visual
analytics on large high resolution display and immersive virtual environment.
SEARIS 2018 11th Workshop on Software Engineering and Architectures for
Realtime Interactive Systems; IEEE Virtual Reality; 2018 Mar. Accepted for
publication.

18. Su S, Bravo L, Dasari V. Reconfigurable visual computing architecture for
extreme-scale visual analytics. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2018 Sep. Report No.: ARL-TR-8504.

23

List of Symbols, Abbreviations, and Acronyms

2-D 2-dimensional

3-D 3-dimensional

API application programming interface

app application

APS active protection system

ARL US Army Research Laboratory

ATGM antitank guided missile

CCDC US Army Combat Capabilities Development Command

CM countermeasure

DAAC Data Analysis and Assessment Center

DSRC Department of Defense Supercomputing Resource Center

HPC high-performance computing

JSON JavaScript Object Notation

REST Representational State Transfer

RPC Remote Procedure Call

RPG rocket-propelled grenade

SSES System Survivability Engineering Software

UE4 Unreal Engine 4

UI user interface

VPSS Vehicle Protection Software Suite

VR virtual reality

WAMP Web Application Messaging Protocol

24

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 3 CCDC ARL
 (PDF) FCDD RLC S
 V PERRY
 S SU
 FCDD RLW PA
 M CHEN

	List of Figures
	Acknowledgments
	1. Introduction
	2. 3-D Visualization
	2.1 Unity Playback Application
	2.2 UE4
	2.2.1 Full Engagement Life Cycle
	2.2.2 Post-engagement Threat Analysis

	3. 2-D Visualization
	3.1 SyncVis Application
	3.2 Filtering Improvements

	4. Hybrid Visualization
	4.1 Previous Implementation
	4.2 Improvements to the 2-D–3-D Hybrid Framework
	4.2.1 Bidirectional Communication Pipeline between Unity and Data Server
	4.2.2 Interactive 3-D Immersive Environment

	5. Conclusion and Future Work
	6. References
	List of Symbols, Abbreviations, and Acronyms

