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1. Introduction  

Cyber-attacks are a continuously growing threat to computer systems and networks. 
Traditional malware-identification techniques such as byte hashes are quickly 
becoming ineffective, as attackers are able to obfuscate malware through methods 
such as polymorphism (You 2010). To combat this phenomenon, cyber analysts are 
required to manually detect, identify, and mitigate potential and current threats to 
the systems and networks they protect. As this job becomes more and more 
challenging, it will become essential to provide automated analytics tools to 
streamline their efforts (Le Quan et al. 2018). 

In this work, we propose that unsupervised machine learning, specifically 
multilayered convolutional networks, can be used to help identify the functions of 
underlying binary code, thereby elucidating the purpose and potential actions of 
unknown programs found on a system. One of the critical bottlenecks in the 
development of any such deep-learning-based tool is the massive ground-truth 
labeling of known data—in this case, function-category assignments for 
disassembled routine binaries. Therefore, in this work we explore the use of 
convolutional autoencoders to assist in the labeling task as a form of unsupervised 
learning. State-of-the-art convolutional autoencoders extract clusters that match 
labelled data quite accurately for the simple Modified National Institute of 
Standards and Technology (MNIST) handwriting digits data set and moderately 
well for the more complex Fashion-MNIST data set (Ben-Yosef and Weinshall 
2018; Edwards and Lee 2019).  

Analyzing disassembled binaries is analogous to the established field of natural 
language processing. Language modeling, for example, requests the following, 
“given N previous tokens (characters/words), predict the next token.” Topic 
modeling, closely related to this work, asks the question, “Given N tokens, what is 
the title or description of this set?” Supervised topic modeling is fairly common, 
but often boils down to the detection of a few keywords that hint to the topic. In the 
case of assembly language, this simplification is not as likely given that the same 
operation codes (opcodes), such as MOV and ADD, are found in all function types. 
Perhaps sequences (Kang et al. 2016), subsets of opcodes, and histograms of 
opcode usage (Shabtai et al. 2009; Shabtai et al. 2012) are more indicative.  

1.1 Challenges 

Our task is full of challenges. Each routine may be a composition of a rather large 
tree of dependencies: a typical function calls other functions, which, in turn, calls 
other functions, and so on. Analyzing static code only focuses on the central 
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processing unit (CPU) operations within the routine and its function calls, but not 
the code associated with the functions it calls. This fact reduces the precision of 
both the automated and manual labeling procedures. In addition, the code of a 
binary has major traits beyond its function including the following: 

1) Authorship: who actually wrote it, which could be one or more people;  

2) Ancestry: where this code was derived from; 

3) Programming language: most likely C or C++, but could be any other of a 
number of popular languages; 

4) Compiler: different compilers produce different binary instructions for the 
same source code; and 

5) Templates: routines within a particular library/package may share common 
features. 

With these challenges in mind, we also had to choose a machine-learning 
framework that could manage the high nonlinear dimensionality of this problem. 
Convolutional autoencoders, along with generative adversarial networks (GANs), 
are typically used to denoise and improve the resolution of data such as images and 
audio. Their bottleneck layer, also known as the “latent space”, often provides a 
low-dimensional semantic-rich vector that can be introduced into any modern 
dimension reduction or clustering algorithm. Here, we cluster the latent space to a 
specified number of groups and investigate whether these clusters match up with 
our intuition about routine functions while realizing that other traits such as 
authorship, and so on, could also be critical components of the latent space.  

1.2 Previous Machine Learning Work in the Cyber Domain 

Most machine-learning efforts for malware detection in the literature involve an 
initial step of manually defining features. A few recent works take advantage of 
advances in deep learning, namely convolutional neural networks (CNNs) that can 
learn features automatically (McLaughlin et al. 2017; Kolosnjaji et al. 2016; Huang 
and Kao 2018; Cao et al. 2018). This idea is parallel to the use of CNNs and 
recurrent neural networks (NNs) to encode, analyze, and predict natural language 
text (Young et al. 2018). Regarding supervised learning, Shin et al. (2015) used 
NNs to recognize the start/stop indices of functional blocks in binaries. Lee (2018) 
demonstrated that a CNN could classify opcode streams for five program classes. 
Raff et al. (2018) demonstrated classification of malware versus goodware for 
2 million programs using gated CNNs. Gibert (2016) used image-based CNNs to 
classify nine virus families from a 2014 Microsoft Kaggle Competition  
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(Ronen et al. 2018). CNNs are also used to identify authorship of natural language 
text (Hitschler et al. 2017; Shrestha et al. 2017). Extension of the same authorship-
attribution methods to assembly language should be possible.  

2. Methods 

2.1 Preprocessing Data Sets 

The raw data set in this work was derived from the standard libraries found in the 
/usr/lib64 directory of the CentOS 7 Linux distribution. Preprocessing was 
required to prepare the raw data set for five separate experiments. The raw data set 
contained multiple lib64 assembly routines that were disassembled and parsed into 
experiment-specific input formats in two preprocessing phases.   

The first phase used objdump, a command-line program that displays information 
from object files, to disassemble lib64 object files and generate a disassembly report 
(Fig. 1). This disassembly report includes multiple lines that collectively comprise 
machine-code instructions compiled from a higher-level programming language. 
Each line contains information about a single machine instruction and can be 
decomposed further into five separate columns. The first column contains the 
code’s memory address. The second column contains the executable machine 
instruction in hex (a hexadecimal number). The next two columns consist of the 
machine instructions translated into assembly language: the third column 
representing the opcode assembly language mnemonic and the fourth column 
representing the operands. An opcode portion of the machine instruction specifies 
what operation the CPU must perform on the operands, or arguments.  The fifth 
column contains comments. 

 

Fig. 1 First few lines of a typical disassembly report and outlines of regions considered as 
input for various experiments 

The second phase involved parsing and preparing each disassembled routine report 
into their corresponding experimental input format. Each experiment required 
different information from the lines of the disassembly report. The first experiment 
(E1) included the full line, while the second experiment (E2) included only the 
assembly language mnemonic opcode. The third experiment (E3) included the full 
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executable machine instructions, where the hexadecimal was converted to bytes. 
The fourth experiment (E4) included the first two bytes of the executable machine 
instruction, and the fifth experiment (E5) included only the first byte of the 
executable machine instruction. Figure 1 visually outlines the specific experimental 
inputs. The parsing process extracted this information from each line of the 
disassembled routine report and converted the information gathered for each 
disassembled routine into an input format the NN could digest. The information 
gathered consisted of a list of symbols. The symbol value was based on ASCII 
codes in E1 and E2, and bytes in E3–E5. Inputs to the autoencoder were always a 
list of bytes (uint8). Experiment-specific sample length requirements reduced the 
number of usable routines for each experiment. Specifically, this reduction process 
eliminated data samples (routines) less than the length requirement and trimmed 
data samples greater than the length requirement. Small routines were discarded 
since they are likely doing trivial operations like wrapping another routine. Because 
the fixed-length data samples for each experiment covered a different combination 
of features and columns, experiments that gathered more information per line had 
a smaller average routine line count than experiments that gathered less information 
per line. Finally, we used a Keras utility to one-hot encode data samples based on 
the number of unique symbols in the experiment. Experimental data sets did not 
exceed 200,000 disassembled routines. Table 1 summarizes experiment 
specification details. 

Table 1 Input data for each experiment 

Name Input format No. of 
routines 

No. of 
symbols per 

sample 

Average 
line 

count 

No. of  
unique 

symbols 

E1 All ASCII characters from the 
disassembly routine report 140541 1024 281 126 

E2 
ASCII characters from the 

routine’s opcode mnemonics 
separated by spaces 

116368 128 318 123 

E3 All instruction bytes 106795 128 361 256 

E4 First two instruction bytes 66377 128 552 256 

E5 First instruction byte 36356 128 931 256 
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2.2 Autoencoder Model Topology 

Next, we trained a convolutional autoencoder NN in Keras (Chollet 2015) with a 
backend of TensorFlow (Abadi et al. 2016) to reproduce the input data sets and 
generate a latent space for later clustering and visualization. The model topology 
contained mirroring encoder and decoder networks as seen in Fig. 2, sharing 
similarity to our previous model used for images (Edwards and Lee 2019). Each 
experiment’s model had six convolutional layers with respective 30, 50, 70, 90, 
110, and 130 filters that were transposed reflections of each other. The topology 
also included one intermediate dense layer with a dimension of 20. Each 
convolution layer used a kernel size of 4 and stride operation of 2, represented as 
4/2 (downsample) and 4×2 (upsample via strided-transposed convolution) in Fig. 
2. The encoder and decoder layers used an x-Gaussian activation function, 𝑓𝑓(𝑥𝑥) =
𝑥𝑥𝑒𝑒−𝑥𝑥2, as introduced in the Edwards and Lee paper (2019), and the dense layer used 
a linear activation function to maximize the range of the latent space. The last layer 
for each model had a channel count equal to the number of desired symbols to 
generate a categorical one hot vector (kernel size = 1, stride = 1 and softmax 
activation function). Each model was compiled with the categorical cross entropy 
loss function and the Adam optimizer (Kingma and Ba 2014). 

 

 

Fig. 2 Schematic of convolutional autoencoder topology used in this work 
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2.3 Clustering and Semisupervised Evaluation 

The latent space of autoencoders provides a sophisticated input for other 
unsupervised learning methods like clustering and dimension reduction. Even 
though the purpose of the autoencoder is to reproduce input data, it tends to learn a 
useful low-dimensional latent space in its bottleneck layer. It is often argued that 
similar input data should project into similar locations in the latent space. We 
clustered the latent space with a Gaussian mixture model (GMM) and specified the 
formation of 12 clusters. GMMs (McLachlan and Basford 1988) generate 
multidimensional ellipsoids that are more adaptive than spherically constrained k-
means clusters. Then we visualized these clusters in a 2-D space using the powerful 
t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction 
algorithm (van der Maaten and Hinton 2008). 

Next, we performed a second type of analysis by actually labeling some of the data 
by hand. Specifically, we conjectured that there are 12 functional routine categories 
(Table 2) that a deep-learning clustering algorithm might detect including basic 
operations, data, memory, file, process, system, network, graphics, math, 
encryption, compression, and other algorithms. We selected these classes based on 
our intuition and Microsoft’s website for run-time routines by category (Microsoft 
2019). Then, we hand-labeled 100 randomly selected routines from our data set 
with one of these categories.   

We compared our hand-labeled assembly routines to their GMM-predicted cluster 
indices to determine whether our belief of how the assembly routines should cluster 
aligned with how they actually clustered. We used the Hungarian algorithm to solve 
the linear sum assignment problem to optimally match the assigned clusters to the 
predicted clusters with the scipy.optimize function, 
linear_sum_assignment. Then, we determined how well the 100 randomly 
selected assembly routines aligned between manual and predicted labels.  Most of 
the experiments had fewer than 100 samples because some of the samples were 
eliminated during preprocessing for being too small.  
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Table 2 Routine categories manually assigned in this work 

Index Class name Description 

1 Basic 
operations 

Type casting, definitions, and other simple operations 

2 Data Sets with one or more variables 

3 Memory Large-scale manipulation of memory including clearing, 
allocation, and transformation 

4 File Access–Input/Output for files, storage, external storage devices  

5 Process Sharing/communication between processes/applications 

6 System 
 

Any system calls not part of other categories (e.g., setting time; 
manipulating system variables or more sophisticated system 
functions) 

7 Network Operations that involve two or more computers 

8 Graphics Pixels, video, lines, fonts, transforms of the graphical memory vs. 
changing a single graphical user interface (GUI) variable 

9 Math Mathematical functions 

10 Encryption Cryptographic functions 

11 Compression Data-compression functions 

12 Algorithm Any algorithm that does not fit neatly into existing categories 

3. Results 

3.1 Visualization of Clusters 

Clustering results (Fig. 3) were based on the different portions of the disassembled 
report included as input in the five different experiments (E1–E5). Each experiment 
iterated and parsed the disassembled routine report by line, but extracted a different 
portion of each line. Recall that the portions included by the experiments: E1) full 
line, E2) mnemonic opcode, E3) full executable machine instruction in bytes, E4) 
first two bytes of the executable machine instruction, and E5) first byte of the 
executable machine instruction. E1 and E3 included more information per report 
line than the other experiments and their t-SNE presented the least visibly discrete 
clusters. E2, E4, and E5 included less information per report line and focused more 
on clustering opcode information. This fine-grained focus placed on opcode-only 
information appeared to improve clustering and visualization. Of all experiments, 
E5, with only one byte per instruction line considered, displayed the most visually 
distinctive clusters. 
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a) b) 

c) d) 

                                         e) 

Fig. 3 2-D t-SNE visualization of GMM clusters of the autoencoder latent space for a) E1: 
full report, b) E2: opcode mnemonic only, c) E3: full binary, d) E4: first two instruction bytes, 
and e) E5: first instruction byte 

3.2 Matching Clusters to Labels via Linear Sum Assignment 

The 100 hand-labeled assembly routines were compared to their corresponding 
cluster assignment to determine to what extent the routines were clustering based 
on function.  The linear-sum-assignment algorithm attempted to match cluster 
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index and hand-labeled index to optimize a cost value/score as seen in Table 3. A 
perfect score would equal the sample size multiplied by negative one. The worst 
possible score would be roughly the sample size divided by the number of clusters. 
Table 3 lists the number of data samples included in this analysis and each 
experiment’s optimal cost value. The agreement between data sets in each 
experiment performed better than random, but the evidence suggested only weak 
correlations. E4 and E5 appeared to generate clusters that most closely correlated 
with our handcrafted function labels.   

Table 3 Linear-sum-assignment results 

Experiment No. of samples Optimal cost 
value 

Effective 
accuracy 

E1 100 –23 23% 

E2 86 –20 23% 

E3 80 –23 29% 

E4 46 –16 35% 

E5 30 –11 37% 

 

4. Discussion 

While our experiments and results only scratch the surface, they provide some 
insights for future exploration. First, we find that the best input feature to 
characterize routines appears to the first byte of each instruction. This makes 
intuitive sense, in that it limits analysis to the opcodes, which others have found to 
be the most informative (Lee 2018). Second, beyond opcode mnemonics, the first 
byte in x86 instructions often groups multiple similar opcodes.  

Another observation we made is that there appears to be a correlation between the 
aesthetics of the cluster visualization and the clustering accuracy relative to our 
manually labeled ground truth. This suggests that internal consistency between two 
unsupervised metrics (manifold reduction and clustering) is predictive of external 
consistency with human-intuited groupings. 

Regarding the “low” 37% accuracy we find, it should be noted that we would not 
expect 100% accuracy compared with our function label given the other 
characteristics of authorship, programming language, compiler, and so on. Also, it 
is fully expected that a supervised learning approach with hand-curated labels 
would provide a significant accuracy boost in the same way that going from 
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unsupervised to supervised learning improves accuracy from 60% to 90% in 
Fashion-MNIST (Ben-Yosef and Weinshall 2018).  

In x86 binaries, the opcode bytes are nontrivial to parse because they vary in length. 
Specifically, our experiments do not account for the variable byte length of the 
opcodes. Experiments E4 and E5 extracted the same number of bytes only from the 
beginning of each instruction. Further experiments should investigate extracting the 
correct number of bytes associated with each opcode. This may perform better than 
examining only the first one or two bytes of each instruction. 

Finally, one should consider some other caveats of this work: 

1) All of the libraries in this study were “shipped” with the Linux operating 
system; thus, the tasks they perform may be narrow compared with the 
universe of tasks that executables run. 

2) All of the libraries in this study are open source and nonproprietary with a 
majority having noncommercial authorship. Compared with malware, the 
programming style could be very different. 

3) Some real-life malware may have a completely different “supply chain” in 
terms of the libraries and functions it uses; some may not even call external 
libraries. 

4) Some aspects of Linux binaries are fundamentally different from Windows 
binaries, where different types of malware are more prevalent. 

5. Conclusion 

In this work, we grouped library routines based on their binaries and disassembled 
reports using deep-learning autoencoders and a standard unsupervised clustering 
algorithm. Of the many combinations of features considered, we found the first byte 
of each instruction line to be the most informative for the purposes of manifold 
reduction, clustering, and correspondence to known function. To push the field of 
automated function analysis forward, future work should consider 1) further 
improving the ability of autoencoders to cluster and organize data and 2) supervised 
training against a larger set of routines with hand-labeled functions.  
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List of Symbols, Abbreviations, and Acronyms 

2-D two-dimensional 

CNN convolutional neural network 

CPU central processing unit 

GAN generative adversarial network 

GMM Gaussian mixture model 

GPU graphical processing unit 

GUI graphical user interface 

MNIST Modified National Institute of Standards and Technology  

NN neural network 

opcode operation code 

OS operating system 

t-SNE t-Distributed Stochastic Neighbor Embedding 

x86 Intel-based x86 processors 
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