

 ARL-TR-8815 ● SEP 2019

Unsupervised Learning of Library Routines to
Predict Function

by Anne Logie and Michael S Lee

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8815 ● SEP 2019

Unsupervised Learning of Library Routines to
Predict Function

Anne Logie and Michael S Lee
Computational and Information Sciences Directorate,
CCDC Army Research Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2019
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

October 2018–August 2019
4. TITLE AND SUBTITLE

Unsupervised Learning of Library Routines to Predict Function

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Anne Logie and Michael S Lee
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLC-NB
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8815

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID(s): Michael S Lee, 0000-0002-0419-6069

14. ABSTRACT

Since malware is a constantly evolving threat, it requires significant expertise to detect, identify, and mitigate. We postulate
that deep learning can be adapted to this problem domain to provide automated analysis of arbitrary binary code to aid cyber
analysts in the identification of functional components. As a proof-of-concept, we trained a convolutional autoencoder to
reproduce various fields of the disassembled binaries of standard Linux libraries. We then performed clustering on the
bottleneck layer to identify possible clusters of similarity among the various routines. Our spot check of 100 routines suggests
that deep learning may indeed be useful for routine classification. However, further network-topology refinement and a
concerted ground-truth labelling effort will be required to yield a production-level analytical tool.

15. SUBJECT TERMS

deep learning, malware, cyber warfare, Linux, binaries, topic modeling, unsupervised learning, disassembly

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

21

19a. NAME OF RESPONSIBLE PERSON

Anne Logie
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-6394
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

1.1 Challenges 1

1.2 Previous Machine Learning Work in the Cyber Domain 2

2. Methods 3

2.1 Preprocessing Data Sets 3

2.2 Autoencoder Model Topology 5

2.3 Clustering and Semisupervised Evaluation 6

3. Results 7

3.1 Visualization of Clusters 7

3.2 Matching Clusters to Labels via Linear Sum Assignment 8

4. Discussion 9

5. Conclusion 10

6. References 11

List of Symbols, Abbreviations, and Acronyms 14

Distribution List 15

iv

List of Figures

Fig. 1 First few lines of a typical disassembly report and outlines of regions
considered as input for various experiments 3

Fig. 2 Schematic of convolutional autoencoder topology used in this work ... 5

Fig. 3 2-D t-SNE visualization of GMM clusters of the autoencoder latent
space for a) E1: full report, b) E2: opcode mnemonic only, c) E3: full
binary, d) E4: first two instruction bytes, and e) E5: first instruction
byte .. 8

List of Tables

Table 1 Input data for each experiment ... 4

Table 2 Routine categories manually assigned in this work 7

Table 3 Linear-sum-assignment results ... 9

1

1. Introduction

Cyber-attacks are a continuously growing threat to computer systems and networks.
Traditional malware-identification techniques such as byte hashes are quickly
becoming ineffective, as attackers are able to obfuscate malware through methods
such as polymorphism (You 2010). To combat this phenomenon, cyber analysts are
required to manually detect, identify, and mitigate potential and current threats to
the systems and networks they protect. As this job becomes more and more
challenging, it will become essential to provide automated analytics tools to
streamline their efforts (Le Quan et al. 2018).

In this work, we propose that unsupervised machine learning, specifically
multilayered convolutional networks, can be used to help identify the functions of
underlying binary code, thereby elucidating the purpose and potential actions of
unknown programs found on a system. One of the critical bottlenecks in the
development of any such deep-learning-based tool is the massive ground-truth
labeling of known data—in this case, function-category assignments for
disassembled routine binaries. Therefore, in this work we explore the use of
convolutional autoencoders to assist in the labeling task as a form of unsupervised
learning. State-of-the-art convolutional autoencoders extract clusters that match
labelled data quite accurately for the simple Modified National Institute of
Standards and Technology (MNIST) handwriting digits data set and moderately
well for the more complex Fashion-MNIST data set (Ben-Yosef and Weinshall
2018; Edwards and Lee 2019).

Analyzing disassembled binaries is analogous to the established field of natural
language processing. Language modeling, for example, requests the following,
“given N previous tokens (characters/words), predict the next token.” Topic
modeling, closely related to this work, asks the question, “Given N tokens, what is
the title or description of this set?” Supervised topic modeling is fairly common,
but often boils down to the detection of a few keywords that hint to the topic. In the
case of assembly language, this simplification is not as likely given that the same
operation codes (opcodes), such as MOV and ADD, are found in all function types.
Perhaps sequences (Kang et al. 2016), subsets of opcodes, and histograms of
opcode usage (Shabtai et al. 2009; Shabtai et al. 2012) are more indicative.

1.1 Challenges

Our task is full of challenges. Each routine may be a composition of a rather large
tree of dependencies: a typical function calls other functions, which, in turn, calls
other functions, and so on. Analyzing static code only focuses on the central

2

processing unit (CPU) operations within the routine and its function calls, but not
the code associated with the functions it calls. This fact reduces the precision of
both the automated and manual labeling procedures. In addition, the code of a
binary has major traits beyond its function including the following:

1) Authorship: who actually wrote it, which could be one or more people;

2) Ancestry: where this code was derived from;

3) Programming language: most likely C or C++, but could be any other of a
number of popular languages;

4) Compiler: different compilers produce different binary instructions for the
same source code; and

5) Templates: routines within a particular library/package may share common
features.

With these challenges in mind, we also had to choose a machine-learning
framework that could manage the high nonlinear dimensionality of this problem.
Convolutional autoencoders, along with generative adversarial networks (GANs),
are typically used to denoise and improve the resolution of data such as images and
audio. Their bottleneck layer, also known as the “latent space”, often provides a
low-dimensional semantic-rich vector that can be introduced into any modern
dimension reduction or clustering algorithm. Here, we cluster the latent space to a
specified number of groups and investigate whether these clusters match up with
our intuition about routine functions while realizing that other traits such as
authorship, and so on, could also be critical components of the latent space.

1.2 Previous Machine Learning Work in the Cyber Domain

Most machine-learning efforts for malware detection in the literature involve an
initial step of manually defining features. A few recent works take advantage of
advances in deep learning, namely convolutional neural networks (CNNs) that can
learn features automatically (McLaughlin et al. 2017; Kolosnjaji et al. 2016; Huang
and Kao 2018; Cao et al. 2018). This idea is parallel to the use of CNNs and
recurrent neural networks (NNs) to encode, analyze, and predict natural language
text (Young et al. 2018). Regarding supervised learning, Shin et al. (2015) used
NNs to recognize the start/stop indices of functional blocks in binaries. Lee (2018)
demonstrated that a CNN could classify opcode streams for five program classes.
Raff et al. (2018) demonstrated classification of malware versus goodware for
2 million programs using gated CNNs. Gibert (2016) used image-based CNNs to
classify nine virus families from a 2014 Microsoft Kaggle Competition

3

(Ronen et al. 2018). CNNs are also used to identify authorship of natural language
text (Hitschler et al. 2017; Shrestha et al. 2017). Extension of the same authorship-
attribution methods to assembly language should be possible.

2. Methods

2.1 Preprocessing Data Sets

The raw data set in this work was derived from the standard libraries found in the
/usr/lib64 directory of the CentOS 7 Linux distribution. Preprocessing was
required to prepare the raw data set for five separate experiments. The raw data set
contained multiple lib64 assembly routines that were disassembled and parsed into
experiment-specific input formats in two preprocessing phases.

The first phase used objdump, a command-line program that displays information
from object files, to disassemble lib64 object files and generate a disassembly report
(Fig. 1). This disassembly report includes multiple lines that collectively comprise
machine-code instructions compiled from a higher-level programming language.
Each line contains information about a single machine instruction and can be
decomposed further into five separate columns. The first column contains the
code’s memory address. The second column contains the executable machine
instruction in hex (a hexadecimal number). The next two columns consist of the
machine instructions translated into assembly language: the third column
representing the opcode assembly language mnemonic and the fourth column
representing the operands. An opcode portion of the machine instruction specifies
what operation the CPU must perform on the operands, or arguments. The fifth
column contains comments.

Fig. 1 First few lines of a typical disassembly report and outlines of regions considered as
input for various experiments

The second phase involved parsing and preparing each disassembled routine report
into their corresponding experimental input format. Each experiment required
different information from the lines of the disassembly report. The first experiment
(E1) included the full line, while the second experiment (E2) included only the
assembly language mnemonic opcode. The third experiment (E3) included the full

4

executable machine instructions, where the hexadecimal was converted to bytes.
The fourth experiment (E4) included the first two bytes of the executable machine
instruction, and the fifth experiment (E5) included only the first byte of the
executable machine instruction. Figure 1 visually outlines the specific experimental
inputs. The parsing process extracted this information from each line of the
disassembled routine report and converted the information gathered for each
disassembled routine into an input format the NN could digest. The information
gathered consisted of a list of symbols. The symbol value was based on ASCII
codes in E1 and E2, and bytes in E3–E5. Inputs to the autoencoder were always a
list of bytes (uint8). Experiment-specific sample length requirements reduced the
number of usable routines for each experiment. Specifically, this reduction process
eliminated data samples (routines) less than the length requirement and trimmed
data samples greater than the length requirement. Small routines were discarded
since they are likely doing trivial operations like wrapping another routine. Because
the fixed-length data samples for each experiment covered a different combination
of features and columns, experiments that gathered more information per line had
a smaller average routine line count than experiments that gathered less information
per line. Finally, we used a Keras utility to one-hot encode data samples based on
the number of unique symbols in the experiment. Experimental data sets did not
exceed 200,000 disassembled routines. Table 1 summarizes experiment
specification details.

Table 1 Input data for each experiment

Name Input format No. of
routines

No. of
symbols per

sample

Average
line

count

No. of
unique

symbols

E1 All ASCII characters from the
disassembly routine report 140541 1024 281 126

E2
ASCII characters from the

routine’s opcode mnemonics
separated by spaces

116368 128 318 123

E3 All instruction bytes 106795 128 361 256

E4 First two instruction bytes 66377 128 552 256

E5 First instruction byte 36356 128 931 256

5

2.2 Autoencoder Model Topology

Next, we trained a convolutional autoencoder NN in Keras (Chollet 2015) with a
backend of TensorFlow (Abadi et al. 2016) to reproduce the input data sets and
generate a latent space for later clustering and visualization. The model topology
contained mirroring encoder and decoder networks as seen in Fig. 2, sharing
similarity to our previous model used for images (Edwards and Lee 2019). Each
experiment’s model had six convolutional layers with respective 30, 50, 70, 90,
110, and 130 filters that were transposed reflections of each other. The topology
also included one intermediate dense layer with a dimension of 20. Each
convolution layer used a kernel size of 4 and stride operation of 2, represented as
4/2 (downsample) and 4×2 (upsample via strided-transposed convolution) in Fig.
2. The encoder and decoder layers used an x-Gaussian activation function, 𝑓𝑓(𝑥𝑥) =
𝑥𝑥𝑒𝑒−𝑥𝑥2, as introduced in the Edwards and Lee paper (2019), and the dense layer used
a linear activation function to maximize the range of the latent space. The last layer
for each model had a channel count equal to the number of desired symbols to
generate a categorical one hot vector (kernel size = 1, stride = 1 and softmax
activation function). Each model was compiled with the categorical cross entropy
loss function and the Adam optimizer (Kingma and Ba 2014).

Fig. 2 Schematic of convolutional autoencoder topology used in this work

6

2.3 Clustering and Semisupervised Evaluation

The latent space of autoencoders provides a sophisticated input for other
unsupervised learning methods like clustering and dimension reduction. Even
though the purpose of the autoencoder is to reproduce input data, it tends to learn a
useful low-dimensional latent space in its bottleneck layer. It is often argued that
similar input data should project into similar locations in the latent space. We
clustered the latent space with a Gaussian mixture model (GMM) and specified the
formation of 12 clusters. GMMs (McLachlan and Basford 1988) generate
multidimensional ellipsoids that are more adaptive than spherically constrained k-
means clusters. Then we visualized these clusters in a 2-D space using the powerful
t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction
algorithm (van der Maaten and Hinton 2008).

Next, we performed a second type of analysis by actually labeling some of the data
by hand. Specifically, we conjectured that there are 12 functional routine categories
(Table 2) that a deep-learning clustering algorithm might detect including basic
operations, data, memory, file, process, system, network, graphics, math,
encryption, compression, and other algorithms. We selected these classes based on
our intuition and Microsoft’s website for run-time routines by category (Microsoft
2019). Then, we hand-labeled 100 randomly selected routines from our data set
with one of these categories.

We compared our hand-labeled assembly routines to their GMM-predicted cluster
indices to determine whether our belief of how the assembly routines should cluster
aligned with how they actually clustered. We used the Hungarian algorithm to solve
the linear sum assignment problem to optimally match the assigned clusters to the
predicted clusters with the scipy.optimize function,
linear_sum_assignment. Then, we determined how well the 100 randomly
selected assembly routines aligned between manual and predicted labels. Most of
the experiments had fewer than 100 samples because some of the samples were
eliminated during preprocessing for being too small.

7

Table 2 Routine categories manually assigned in this work

Index Class name Description

1 Basic
operations

Type casting, definitions, and other simple operations

2 Data Sets with one or more variables

3 Memory Large-scale manipulation of memory including clearing,
allocation, and transformation

4 File Access–Input/Output for files, storage, external storage devices

5 Process Sharing/communication between processes/applications

6 System

Any system calls not part of other categories (e.g., setting time;
manipulating system variables or more sophisticated system
functions)

7 Network Operations that involve two or more computers

8 Graphics Pixels, video, lines, fonts, transforms of the graphical memory vs.
changing a single graphical user interface (GUI) variable

9 Math Mathematical functions

10 Encryption Cryptographic functions

11 Compression Data-compression functions

12 Algorithm Any algorithm that does not fit neatly into existing categories

3. Results

3.1 Visualization of Clusters

Clustering results (Fig. 3) were based on the different portions of the disassembled
report included as input in the five different experiments (E1–E5). Each experiment
iterated and parsed the disassembled routine report by line, but extracted a different
portion of each line. Recall that the portions included by the experiments: E1) full
line, E2) mnemonic opcode, E3) full executable machine instruction in bytes, E4)
first two bytes of the executable machine instruction, and E5) first byte of the
executable machine instruction. E1 and E3 included more information per report
line than the other experiments and their t-SNE presented the least visibly discrete
clusters. E2, E4, and E5 included less information per report line and focused more
on clustering opcode information. This fine-grained focus placed on opcode-only
information appeared to improve clustering and visualization. Of all experiments,
E5, with only one byte per instruction line considered, displayed the most visually
distinctive clusters.

8

a) b)

c) d)

 e)

Fig. 3 2-D t-SNE visualization of GMM clusters of the autoencoder latent space for a) E1:
full report, b) E2: opcode mnemonic only, c) E3: full binary, d) E4: first two instruction bytes,
and e) E5: first instruction byte

3.2 Matching Clusters to Labels via Linear Sum Assignment

The 100 hand-labeled assembly routines were compared to their corresponding
cluster assignment to determine to what extent the routines were clustering based
on function. The linear-sum-assignment algorithm attempted to match cluster

9

index and hand-labeled index to optimize a cost value/score as seen in Table 3. A
perfect score would equal the sample size multiplied by negative one. The worst
possible score would be roughly the sample size divided by the number of clusters.
Table 3 lists the number of data samples included in this analysis and each
experiment’s optimal cost value. The agreement between data sets in each
experiment performed better than random, but the evidence suggested only weak
correlations. E4 and E5 appeared to generate clusters that most closely correlated
with our handcrafted function labels.

Table 3 Linear-sum-assignment results

Experiment No. of samples Optimal cost
value

Effective
accuracy

E1 100 –23 23%

E2 86 –20 23%

E3 80 –23 29%

E4 46 –16 35%

E5 30 –11 37%

4. Discussion

While our experiments and results only scratch the surface, they provide some
insights for future exploration. First, we find that the best input feature to
characterize routines appears to the first byte of each instruction. This makes
intuitive sense, in that it limits analysis to the opcodes, which others have found to
be the most informative (Lee 2018). Second, beyond opcode mnemonics, the first
byte in x86 instructions often groups multiple similar opcodes.

Another observation we made is that there appears to be a correlation between the
aesthetics of the cluster visualization and the clustering accuracy relative to our
manually labeled ground truth. This suggests that internal consistency between two
unsupervised metrics (manifold reduction and clustering) is predictive of external
consistency with human-intuited groupings.

Regarding the “low” 37% accuracy we find, it should be noted that we would not
expect 100% accuracy compared with our function label given the other
characteristics of authorship, programming language, compiler, and so on. Also, it
is fully expected that a supervised learning approach with hand-curated labels
would provide a significant accuracy boost in the same way that going from

10

unsupervised to supervised learning improves accuracy from 60% to 90% in
Fashion-MNIST (Ben-Yosef and Weinshall 2018).

In x86 binaries, the opcode bytes are nontrivial to parse because they vary in length.
Specifically, our experiments do not account for the variable byte length of the
opcodes. Experiments E4 and E5 extracted the same number of bytes only from the
beginning of each instruction. Further experiments should investigate extracting the
correct number of bytes associated with each opcode. This may perform better than
examining only the first one or two bytes of each instruction.

Finally, one should consider some other caveats of this work:

1) All of the libraries in this study were “shipped” with the Linux operating
system; thus, the tasks they perform may be narrow compared with the
universe of tasks that executables run.

2) All of the libraries in this study are open source and nonproprietary with a
majority having noncommercial authorship. Compared with malware, the
programming style could be very different.

3) Some real-life malware may have a completely different “supply chain” in
terms of the libraries and functions it uses; some may not even call external
libraries.

4) Some aspects of Linux binaries are fundamentally different from Windows
binaries, where different types of malware are more prevalent.

5. Conclusion

In this work, we grouped library routines based on their binaries and disassembled
reports using deep-learning autoencoders and a standard unsupervised clustering
algorithm. Of the many combinations of features considered, we found the first byte
of each instruction line to be the most informative for the purposes of manifold
reduction, clustering, and correspondence to known function. To push the field of
automated function analysis forward, future work should consider 1) further
improving the ability of autoencoders to cluster and organize data and 2) supervised
training against a larger set of routines with hand-labeled functions.

11

6. References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S,
Irving G, Isard M, et al. TensorFlow: a system for large-scale machine
learning. In: Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16); 2016 Nov 2–4; Savannah,
GA. Washington, DC; Berkeley (CA): USENIX Association; c2016.
p. 265–283.

Ben-Yosef M, Weinshall D. Gaussian mixture generative adversarial networks for
diverse datasets, and the unsupervised clustering of images; 2018 Aug 30;
arXiv preprint arXiv:1808.10356.

Cao D, Zhang X, Ning Z, Zhao J, Xue F, Yang Y. An efficient malicious code
detection system based on convolutional neural networks. In: CSAI ’18.
Proceedings of the ACM 2018 2nd International Conference on Computer
Science and Artificial Intelligence; 2018 Dec 8–10; Shenzhen, China. New
York (NY): Association for Computing Machinery; c2018. p. 86–89.

Chollet F. Keras; 2015. [accessed 2019 Sep 24] https://github.com/fchollet/keras.

Edwards SN, Lee MS. Using convolutional neural network autoencoders to
understand unlabeled data. In: Pham T, editor. SPIE Defense + Commercial
Sensing; Proceedings Vol. 11006, Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications; 2019 Apr 14–18;
Baltimore, MD. Bellingham (WA): SPIE-International Society for Optics and
Photonics; c2019.

Gibert LD. Convolutional neural networks for malware classification. [master’s
thesis]. [Barcelona (Catalonia, Spain)]: Universitat Politècnica de Catalunya;
2016.

Hitschler J, van den Berg E, Rehbein I. Authorship attribution with convolutional
neural networks and POS-eliding. In: Proceedings of the Workshop on
Stylistic Variation; 2017 Sep; Copenhagen, Denmark. Stroudsburg (PA):
Association for Computational Linguistics. c2017. p 53–58.

Huang TT, Kao HY. R2-D2: color-inspired convolutional neural network (CNN)-
based android malware detections. In: 2018 IEEE International Conference on
Big Data; 2018 Dec 10–13; Seattle, WA. Washington (DC): IEEE Computer
Society; c2018.

12

Kang BJ, Yerima SY, Sezer S, McLaughlin K. N-gram opcode analysis for android
malware detection. Int J Cyber Situation Aware. 2016;1(1):231–254. arXiv
preprint arXiv:1612.01445.

Kingma DP, Ba J. Adam: a method for stochastic optimization. In: ICLR 2015.
Proceedings of the 3rd International Conference for Learning Representations;
2015 May 7–9; San Diego, CA. arXiv preprint arXiv:1412.6980; 2014.

Kolosnjaji B, Webster G, Zarras A, Eckert C. Deep learning for classification of
malware system call sequences. In: Kang BH, Bai Q, editors. AI 2016:
Advances in Artificial Intelligence. Proceedings of 29th Australasian Joint
Conference on Artificial Intelligence; 2016 Dec 5–8; Hobart, TAS, Australia.
Cham, Switzerland: Springer International Publishing AG; c2016. p. 137–149.

Le Q, Boydell O, Namee BM, Scanlon M. Deep learning at the shallow end:
malware classification for non-domain experts. In: DFRWS USA 2018. 18th
Annual Digital Forensics Research Workshop Conference; 2018 July 15–18;
Providence, RI. Digital Investigation 26. 2018:S118–S126.

Lee Michael S. Convolutional neural networks for functional classification of
opcode sequences. In: Blowers M, Hall RD, Dasari VR, editors. SPIE Defense
+ Security; Proceedings Vol. 10652, Disruptive Technologies in Information
Sciences; 2018 Apr 15–19; Orlando, FL. Bellingham (WA): SPIE-
International Society for Optics and Photonics; c2018.

McLachlan GJ, Basford KE. Mixture models: inference and applications to
clustering. Statistics, Textbooks and Monographs, Vol. 84. New York (NY):
M. Dekker; 1988.

McLaughlin N, Martinez Del Rincon J, Kang B-J, Yerima S, Miller P, Sezer S,
Safaei Y, Trickel E, Zhao Z, et al. Deep android malware detection. In:
CODASPY ’17. Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy; 2017 Mar 22–24; Scottsdale, AZ. New York
(NY): Association for Computing Machinery; c2017.

Microsoft. Universal C runtime routines by category. [accessed 2019 Sep 18]
https://docs.microsoft.com/en-us/cpp/c-runtime-library/run-time-routines-by-
category?view=vs-2019.

Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas CK. Malware
detection by eating a whole EXE. In: Workshops of the Thirty-Second AAAI
Conference on Artificial Intelligence; 2018 Feb 2–3; New Orleans, LA. Menlo
Park (CA): Association for the Advancement of Artificial Intelligence. c2018.
p 268–276.

13

Ronen R, Radu M, Feuerstein C, Yom-Tov E, Ahmadi M. Microsoft malware
classification challenge. 2018 Feb 22; arXiv preprint arXiv:1802.10135.

Shabtai A, Moskovitch R, Elovici Y, Glezer C. Detection of malicious code by
applying machine learning classifiers on static features: a state-of-the-art
survey. Inform Secur Tech Rep; 2009;14(1):16–29.

Shabtai A, Moskovitch R, Feher C, Dolev S, Elovici Y. Detecting unknown
malicious code by applying classification techniques on OpCode patterns.
Secur Inform. 2012;1(1).

Shin ECR, Song D, Moazzezi R. Recognizing functions in binaries with neural
networks. In: Proceedings of the 24th USENIX Security Symposium; 2015
Aug 12–14. Washington, DC; Berkeley (CA): USENIX Association. c2015. p.
611–626.

Shrestha P, Sierra S, González F, Montes M, Rosso P, Solorio T. Convolutional
neural networks for authorship attribution of short texts. In: Lapata M,
Blunsom P, Koller A, editors. Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume
2, Short Papers; 2017 Apr; Valencia, Spain. Stroudsburg (PA): Association for
Computational Linguistics; c2017. p. 669–674.

You I, Yim K. Malware obfuscation techniques: a brief survey. In: BWCCA 2010.
Proceedings of 2010 International Conference on Broadband, Wireless
Computing, Communication and Applications; 2010 Nov 4–6; Fukuoka,
Japan. New York (NY): Institute of Electrical and Electronics Engineers
(IEEE); c2010. p. 297–300.

Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based
natural language processing [review article]. IEEE Comp Intel Mag.
2018;13(3):55–75.

van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res.
2008;9:2579 –2605.

14

List of Symbols, Abbreviations, and Acronyms

2-D two-dimensional

CNN convolutional neural network

CPU central processing unit

GAN generative adversarial network

GMM Gaussian mixture model

GPU graphical processing unit

GUI graphical user interface

MNIST Modified National Institute of Standards and Technology

NN neural network

opcode operation code

OS operating system

t-SNE t-Distributed Stochastic Neighbor Embedding

x86 Intel-based x86 processors

15

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 10 CCDC ARL
 (PDF) FCDD RLC
 B HENZ
 T PHAM
 FCDD RLC N
 B RIVERA
 FCDD RLC ND
 T BRAUN
 J CLARKE
 M DE LUCIA
 G SHEARER
 M WEISMAN
 FCDD RLC NT
 A SWAMI
 FCDD RLS SA
 L KAPLAN

	List of Figures
	List of Tables
	1. Introduction
	1.1 Challenges
	1.2 Previous Machine Learning Work in the Cyber Domain

	2. Methods
	2.1 Preprocessing Data Sets
	2.2 Autoencoder Model Topology
	2.3 Clustering and Semisupervised Evaluation

	3. Results
	3.1 Visualization of Clusters
	3.2 Matching Clusters to Labels via Linear Sum Assignment

	4. Discussion
	5. Conclusion
	6. References
	List of Symbols, Abbreviations, and Acronyms

