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Cellular stress response, and cellular death
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[THz vs. Bulk Heating (BH)]
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2.52 THz Energy Stimulate Specific Signhaling
Pathways in Human Cells
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2.25 THz Energy Regulates Gene Expression
[THz at Different Intensities]
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Morphological changes in mouse Pulsed broad-
stem cells after THz irradiations band or CW

In Various Ways

/ 2.25 THz Energy Influence Cellular Processes

THz pulses cause DNA damage
. and activate DNA damage repair

High UVA

Human skin tissue models
Titova LV et al. 2013
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Frohlich Theory: Existence of Coherent
Excitations in Biological Systems

Volume 26A, number 9 FHYSICS LETTERS 25 March 1968

BOSE CONDENSATION OF STRONGLY EXCITED LONGITUDINAL
ELECTRIC MODES

H. FROHLICH

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, VOL. 11, 641-649 (1968)
Long-Range Coherence and Energy Storage
in Biological Systems
H. FROHLICH

Herbert Fréhlich, (1905-1991)—A
Physicist

» Vibrational modes within polar molecules can order and condensate
in just one of the collective modes, the mode of a lowest-frequency.

« Such a condensation would have a profound influence on the
organization and order in living systems

JR Reimers - 2009

* Low-frequency collective vibrational modes of biomolecules (i.e., proteins and protein-
composed structures) in the terahertz frequency range (0.1-10 THz), are expected to have a
strong influence on their function

« Frohlich's model provided a framework for cellular intra- and inter-interactions via EM fields

Three foundation stones

Electrical polarity of bio-structures

Spectral energy transfer between oscillating biomolecules

Continuous energy supply from metabolic activity, which supports the molecular
oscillations and generation of endogenous EM fields.

D00

Distribution A. Approved for public release; PA # TSRL 16-0321 6



Overall Objective of The Study
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Herbert Fréhlich

Empirically investigate the Frohlich mechanism
through interference with the intracellular oscillations,
using an exogenous excitation with THz energy

»Would an external excitation at specific THz frequencies (or Frohlich frequencies)
interfere with the intrinsic oscillations of specific bio-structures and the endogenous EM
fields they produce?

»Would these specific frequencies disturb the dynamic behavior and function of the
target bio-structures?

»How would the overall intracellular organized states be affected?

Distribution A. Approved for public release; PA # TSRL 16-0321 7



Microtubule Candidates for Frohlich’s Theory
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Why Microtubules?

e s 2 1119
Astrophysics and Space Science 23: 171-179, 1997 Bioelectrochemistry 63 (2004) 321-326
© 1997 Kluwer Acadennic Publishers. Printed in Belginm,

Vibrations in Microtubules
J.POKORNY' F. JELINEK?, V. TRKAL®, I. LAMPRECHT? and

Excitation of vibrations in microtubules in living cells

X
1. Pokorny

=

g

3

2

g R. HOLZEL? v 3

D \ , — —

% Microtubule . Bioelectrochenustry and Bioenergetics 43 (1998) 239-245 Slip layer
= Network /o = m (AR)
5 Electric field around microtubules G0, %

% 2R, 2R o \‘\ Transition region
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» Microtubules: Are polar and dynamic structures; Vibrations in their structure generate an oscillating electric
field around them; Energy is supplied to the microtubular structures through metabolic activity

Integrate

0 The Penrose—Hameroff model ('Orch OR")

» Microtubules: function as cellular guantum computing elements,
according to the Penrose-Hamerhoff “Orch OR, orchestrated ‘
objective reduction” model of consciousness. )

> The physical cause of the coherent activity within the microtubules, nupphys.orgnews) === ===~~~
2009-03-frhlich-

Orch OR

as Penrose and Hamerhoff suggest, could be Frohlich ondencatos. Slassical Conscious
condensates. quantum- ) —or
consciousness.html Quantum

Computing
Isolation

Integrate NEg :

Hameroff & Penrose (2014)

Fire
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\Qg{ Microtubule Candidates for Frohlich’s Theory

» Effects on engineered microtubules and microtubules within cells (transfected with fluorescent-
tubulin)

Malvern Zetasizer Nano ZS syste

Atomic force microscopy (AFM) Dynamic IigpqutEering (DLS)

MICROTUBULES . ~ M
Protein-composed bio-structures o -

THz Source
IFIR-50 OPTL

¥T0Z ‘e 1© 97 uosdwoy

» How an exogenous THz stimulus would influence microtubules.

--Conformational change —Structures
--Formation x -
--Dynamics ~\ / ’

» If microtubules are perturbed by THz frequencies, would that cause ~
. . . Cell Shape . MICROTUBULES ’ Gene
alterations in their fundamental processes?

Distribution A. Approved for public release; PA # TSRL 16-0321 10



\/ Microtubule Candidates for Frohlich’s Theory

<

» Predicting the Frohlich frequencies that excite microtubules using
molecular modeling

oo

Use molecular dynamics
simulations (MDS) that
Incorporate THz-scale, driven
oscillations to determine the
Frohlich frequencies that excite
the microtubules.

Jeremy Moix , Ph. D. (GDIT contractor)
James Parker, Ph. D. (GDIT contractor)

v' Large scale MDS of a solvated microtubule to
---examine vibrational energy absorption and dissipation mechanisms
----- describe the expected behavior of the microtubule following THz excitation

Distribution A. Approved for public release; PA # TSRL 16-0321 11



Dynamics of Low-frequency Vibrational Modes
of Microtubules

Setting up the system and equilibration

Retrieve the PDB file [3J2U] from the Protein Data Bank

a
U Base unit is copied, translated, and rotated

Microtubular array that resembles
a doubled-walled tubular structure, with
the kinesin head domains residing
between the inner and outer walls.

L The inner helical microtubule is then selected for simulation

» Comprised of slightly more than half a million atoms and
forms four full turns of the helical assembly
* OQOuter diameter of ~25 nm

O Simulate tublin heterodimer and the microtubule in its
natural environment: solvation added (TIP3P water &
Counter ion)

0 Run MDS with NAMD (version 2.11) and the all-atom,
CHARMM 22 protein force field Orthorhombic simulation

Moix J. et al., under PA approval to be submitted to J. Physical Chemistry 325 ><_325 % _352 °A
Six million total atoms

Distribution A. Approved for public release; PA # TSRL 16-0321 12



Dipole-dipole Correlation Function for
Microtubule and Solvating Waters

10° 10° 10" 10° 10° 10% 10* 10" 10* 10™ 10" 10 10" 10 10%
v v vd vl vid vd v vl v vd vd vid v vl d d

p-wave THz
8+ 8_ 8+ 8_ - e Gap l/I} - o
-€ - _-) - Frequency (THz): v 01" 1.0 " 100
- L N N MR | N N MR |
attraction

30|00 3(|)0 30

Wavelength (um): A= clv

* The total dipole moment of the Wavenumber (em): k=1 % %4 B0
subsystem is - B
y M(t) =) q7i(t) (1)

where q; is the fixed partial charge on‘each atom and r; is the corresponding position vector

The dipole moment
is recorded at least
every 25 fs in order

* From the time-dependence of the dipole moment, the
classical absorption spectrum can be calculated from

the Fourier transform of the dipole-dipole correlation to span the
function yo2 o frequency range
AW) = ey |t (M0)-41()) @ from O to 600 cm?

where kg is Boltzmann's constant, T is the temperature, V is simulation volume, c is
the speed of light, and 7(w) is the refractive index of the medium, taken here to be
independent of frequency

Moix J. et al., under PA approval to be submitted to J. Physical Chemistry
Distribution A. Approved for public release; PA # TSRL 16-0321 13



Absorption Spectra for the Microtubule
and a- and B-Tubulins

0.004 T T T T
—— Microtubule
. . — = Tubulin 4
Dipole-dipole _oonst
. . f<
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'go.ooz-
2mw? > - y S 5
Aw) = : dte— it <M 0)- M(t > g
@) 3kpTVen(w) [—x ‘ (©) (t) = poot}
The vibrational absorption spectra of a 05 e
portion of a solvated microtubule and o (em’™)
the a- and B-tubulin monomers in A 020 L A B 020
solution spanning the THz Band — A
j 015_ —— Myoglcbm N : 015_
Minimal differences between the  § 5
spectra of the tubulin monomer = € o0 |
and the full microtubule are seen ‘
over the entlre frequency range e 00 100 200 300 400 500 oo 0 100 200 300 400 500
- -1 Frequency, om’ Frequency, cm’”
StUdIed (O to 600 ¢m ) Mott A. & P Rezl, Eur. Biophys. J. 2015

The low-frequency THz region shows very little structure up to a frequency of
) ) 300 cm™', in agreement with experimental measurements on myoglobin by
Moix J. et al., under PA approval to be submitted to J. Zhang et al. (2004) and lysozyme by Knab et al. (2006).

Physical Chemistry
Distribution A. Approved for public release; PA # TSRL 16-0321 14



All of the spectra for the
varying water layers are
identical to that of the bulk
(>30 A),

with the single exception of
the waters lying within 2 A of
the microtubule, displaying a
slight enhancement in the
librational absorption at
roughly 200 cm-1 (~ 6 THz)

Vibrational Response of the Solvating Waters
Surrounding a Microtubule

0.002

A(o) (arb. units)

0.001

1
0 200

1
400 600
® (cm'l)

Moix J. et al., under PA approval to be submitted to J. Physical
Chemistry
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\
Influence of the Microtubule on the
\az}{/ Water Dynamics

The Velocity Autocorrelation Functions (VACF) and Vibrational Density Of States (VDOS) of the
various water layers

Normalized VACFs, (', (1) = (¢(t) - ©(0)) / (#(0) - ©(0))

The normalizing factor in the autocorrelation function is a constant for all water subsets and given by the

equipartition value, <g"([]) . F([})} — 3,311]3']—';'-;';'3.
VDOS, defined as the Fourier

Normalized VACFs C, (t) transform of the normalized VACF
T T T T T T T T T T 4 T T T T T I T T
— <24 i
-— 2-54
5-10A 7] 3 A
— Bulk
| 7]
] & ]
] 1 i
(B) ] ] ] L —
015 0.6 % 200 400 600 800 1000

® (cm'l)
Moix J. et al., under PA approval to be submitted to J. Physical Chemistry
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Qualitative Behavior of the Microtubule

Bioelectrochemistry 63 (2004) 321-326 mmm\
Excitation of vibrations in microtubules in living cells | 2Rm| |2Rmo AN
1. Pokomny® RGO

Autocorrelation function for the center
of mass motion for each tubulin
monomer

C-'I(if) _ <r5;'ir_'c (?‘)ii;r’c(ﬂ))

(62(0)2)

where oxe(t) = we(t) — T
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Moix J. et al., under PA approval to be submitted to J. Physical Chemistry
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Summary & Conclusions
(MDS Study)

O In the low-frequency THz regime, the computed absorption spectrum of the microtubule is
nearly indistinguishable from that of a simple solvated system containing only the a- and B-
tubulin monomers

O Additionally below ~ 300 cm—1 both systems display similar spectra to other globular proteins

O The center of mass dynamics of the monomers in the microtubule appears to be overdamped
as is generally observed for solvated systems, rather than underdamped, as has been
suggested

O Results on the VACFs, VDOSs, and diffusion rates indicate that waters within approximately
10 A from the microtubule surface possess modified dynamics with respect to the bulk

» The microtubule is quite average in comparison with the
results of molecular dynamics simulations of other protein
systems and is unlikely to support large scale vibrational
processes such as Frohlich condensates

Distribution A. Approved for public release; PA # TSRL 16-0321 18



\
/ What are the Mechanisms Behind THz-induced

> Gene Expression Changes?

THz pulses cause DNA damage
Formation of a localized opening in and activate DNA damage repair
DNA in the presence of a THz field Micronuclei in the HaCaT cells
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Kleine-Ostmann et al. 2009
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Se 20 4 5 Titova LV et al. 2013
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DAPI Cyclin B yH2AX DAPI Cyclin B yH2AX

DAPI

Alexandrov BS. et al., 2010

Bogomazova AN et al. 2015

Human embryonic stem cells
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DNA Damage & Repair and Epigenetic DNA
Methylation Regulate Neuronal Gene Expression

MIT News DNA breakage underlies both d - L

ON CAMPUS AND AROUND THE WORLD Iear n | n g , ag e_rel ated d am ag e fesponse gene  Neuronal RNA Polll

» OFF activity
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D evancr DNA Breaks Govern
meacin ¥ the Expression of

Ly

Topo I ==
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-, s %" Neuronal Early-

\ N > 2
g oM Tpoipmesdedd & 8 Response Genes
.“ in the promoter °‘ o Py 9

Tsal e o || s Tl Neuron
Basal state Upon activity
BN Enhancer MMM Promoter

Madabhushi R et al., Cell, 2015

DNA damage and repair regulates
expression of both early response and later
response genes in hippocampal neurons DNA methylation and Memory Formation

Ea"\(!e';e;%g"’f; S?"es Late Zzslz:’sgg%enes State change Plasticity-inducing Plasticity-preventing £I? I
b Q- Cros, 2 it Mukame
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R 3 e
\ L > Y 95hme :
5 ~' e E £ £ E sug L]
Active Condition  Double Strand Breaks Active DNA demethylation =

Johns Hopkins (DSBs; DNA damage) BER (DNA repair)
. . Global increase/decrease in Gene expression patterns altered, Neuron rendered aplastic,
U nive rSIty SChOOI responsiveness establishes permissive resulting change in synaptic strength synaptic weights stabilized
state for long-term change
Su Y el al., Cell Research, 2015 Day, JJ el al., Nature neuroscience, 2010
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THz Radiation Induce mRNAs and
MIRNASs Involved in Synaptic Plasticity
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>Genes regulation plays central role in various synaptogenetic processes:
Neurite Outgrowth, Synapse Development and Maturation, Balance between Excitatory and Inhibitory

Synapses, and Learning and Memory
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A )
N\ 7 2.52 THz Affects DNA Methylation/Demethylation
@ In NG108 Neuronal Cells
- Catherine Millar-Haskell Hpall Msp | < Temperature Profile
(Ph.D. Student Delaware) ; ! :/r T
« Brady McMicken, Ph. D. CClGG c lGG CClGG c lGG g .
(NRC Postdoc) Cleavable Uncleavable Cleavable Cleavable E ”_‘ pv——
. : : - : . Thermal = »
High 60min Sham 60min High 30min Sham 30min 100 - “/
> 90 - SRR RS
80 -

70 | DNA methylation

60 -
50 -
40 -
30 +
20 -
10 -
0 -
H30 H60

%Undigested Relative to Mock

Low 60min Sham 60min Low 30min Sham 30min N(l)og'thermal =EighTTlljz
] ow z
80 -

70 - :
co . DNA demethylation

50 -
40 -
30 -
20 -
10 -
O -
L30 L60 22

% Undigested Relative to Mock

Distribution A. Approved for public release; PA # TSRL 16-0321




)
4  Can THz Regulate Neuronal Circuit Activity?

Q:'\ (DNA Damage Response and Epigenetic DNA Modifications)

dendrite astrocyte (glial cell) oligodendrocyte
a axon (glial cell)

Dr. Chris M. Valdez (NRC postdoc)
Dr. Ibey

Normal ] Atypical |

filopodia stubby mushreom bifurcated branched

4 A 4 A
28 b
» < >

| Theta-burst LTP
250 pre-TBS post-TBS

neuron (cell body)

axon terminals

0 Would THz Energy (thermal and non-thermal) elicit a neuronal activity that
would orchestrate the expression of neuronal activity-regulated gene in
neuron & supporting cells, and hippocampal slices?

» Electrophysiology (whole-cell voltage-clamp recordings, action potential, spontaneous '

{EPSP siope (% baselne)

activity, mEPSP) W T H Bk
* Neurite outgrowth and spine morphology!'(microscopy and image analysis) e (mntes)

* Synaptic plasticity RT-PCR arrays (IEGs, LTP and LTD genes)

]

O What are THz mechanism of actions?
* Isthe THz-mediated gene expression governed by an activation of a DNA
damage mechanism
(yH2AX levels, genome-wide yH2AX Chip-sequencing)
* |Is THz-mediated gene expression a result of an active DNA
methylation/demethylation
(Global patterns, Bisulfite-sequencing analysis)

in vivo

U Would THz energy regulate neuronal circuit activity?
Hippocampal dendritic arborization

Synaptic transmission (Electrophysiology, fEPSP, LTP and LTD) Valdez CM. 2016,
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