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Abstract 

With limited personnel resource funding availability, senior US Air Force 

(USAF) decision makers struggle to base enterprise resource allocation from rigorous 

analytical traceability.  There are over 240 career fields in the USAF spanning 12 

enterprises.  Each enterprise develops annual risk assessments by distinctive core 

capabilities.   

A core capability (e.g. Research and Development) is an enabling function 

necessary for the USAF to perform its mission as part of the Department of Defense 

(DOD).   Assessing risk at the core capability is a good start to assessing risk, but is still 

not comprehensiveness enough.   One of the twelve enterprises has linked its task 

structure to Program Element Codes (PECs).   

Planners and programmers use amount of funding per PEC to assess tasks needed 

to address a desired capability.  For the first time, a linkage between core functions, core 

capabilities, PECs, tasks and manpower has been developed.  We now can provide an 

objective nomenclatured way to compute personnel risk.   

All resources planned are not programmed (i.e. resource allocated and budgeted); 

the delta between the two translate into capability gaps and a level of strategic risk. A 

USAF career field risk demonstration is performed using normal, sigmoid and Euclidean-

norm functions.  Understanding potential personnel shortfalls at the career field level 

should better inform core capability analysis, and thus increase credibility and 

defensibility of strategic risk assessments.  
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METHODS FOR USING MANPOWER TO ASSESS USAF STRATEGIC RISK 

I. Introduction 

Personnel are a major United States Air Force (USAF) capability and are critical to 

inventory management, logistics asset readiness and supply chain risk management.  

Effective personnel management is difficult particularly in the logistics and supply chain 

domain.  However, there are analytical tools that can aid more objective personnel risk 

assessment.  This work places select techniques into a methodology for logistics and supply 

chain manpower analysts to assist senior decision making.  This research starts with a 

literature review of those select analytical procedures to objectively assess personnel risk and 

four quantitative methods that yield promising results for the logistics and supply chain 

domain.  These methods and respective applications are then described in a set of technical 

papers.  Each paper will set the context, describe the problem/challenge, present a 

methodology and provide a demonstration of that methodology.  The goal is to provide a 

methodology the USAF can exploit to better assess strategic risk using manpower analysis.  

This over-arching goal will better aid senior decision making as it relates to the management 

and prioritization of USAF personnel capability focused on the logistics and supply chain 

domain, and assist with respect to the objective assessment of USAF strategic risk.   

This research adds another dimension to the assessment of USAF enterprise risk.  

This work ascertains whether efficiency should be considered as a component of assessing 

risk.  For example, what if senior decision leaders were able to know if current management 

of manning resources of one organization was subpar compared to similar organizations.  

Should similar organizations with similar personnel makeups and missions be compared with 
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regards to personnel utilization?  If so, could these efficiency comparisons be statistically 

evaluated with respect to risk and inferences be gained to help senior decision leaders and 

planners better advocate and prioritize resources?  This research purports that before 

personnel risk can be more accurately assessed, efficiency should be examined.   

Background 

The current Agile Combat Support risk assessment (ACS RA) process lacks 

traceability to the justification of risk assessments, which severely weakens defensibility and 

significantly decreases credibility in strategic risk assessments presented to senior decision 

makers.  The problem requires a systematic resolution in order to revamp the risk assessment 

process.   

The enterprise risk assessment entails various components: people, data, time, 

stakeholders, and other various resources.  The people component consists of various 

practitioners like operations research analysts, program analysts, planners, functional area 

experts and senior decision makers.  At times, these practitioners do not share the same 

philosophy or approach to resolve problems.  A structured process is needed in order for 

practitioners to reach commonality while working shared tasks and responsibilities to meet 

collective goals.   

The data component involves the use of personnel data in the form of the number of 

personnel by career field and respective funded requirements, Program Element Codes, core 

capabilities and task activities.  These data elements are in different databases and require 

linkage before analysis can occur.   
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The time component is a finite dimension which consists of plans and schedules 

designed to meet milestones to achieve a given end state.  The ACS RA has various 

stakeholders in the form of customers, owners, enablers, experts and facilitators.  These 

groups may have different goals and as a result may possess different agendas and make 

problem resolution challenging.  Resources in the form of limited time, available subject 

matter expertise and constrained budgets make dedicated resource allocation to the ACS RA 

effort difficult.  As a result of the aforementioned components to the ACS RA, a framework 

is created as a means to guide USAF risk assessment practitioners as it relates to problem 

resolution.   

The framework involves five specific methodologies.  First, a methodology is 

presented comparing USAF core function (enterprise) risk.  Second, a repeatable way to 

compute personnel efficiency is demonstrated.  Efficiency is the ratio of useful work to the 

total energy expended in order to accomplish a task (Pisupati, 2018).  In general, efficiency is 

the ratio of outputs and inputs (Dario and Simar, 2007) .  Third, a procedure is developed 

examining relationships between efficiency and risk.  Fourth, a personnel enterprise risk 

assessment methodology is developed.  Fifth, an application of the personnel enterprise risk 

assessment is presented.  Figure I-1 is a sequence of analytical methods used to revise the 

ACS RA.  
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Figure I-1: ACS RA Risk Formulation 

This research explores various analytical methods to assess personnel efficiency and 

risk and examine if there are noteworthy relationships between these two factors.  

Specifically, this research demonstrates the assessment of USAF personnel risk through the 

specific analtycial tools: logistic regression, a normal distribution, Data Envelopment 

Analysis, non-parametric correlation analysis and Lp spacing.   

Risk 

 Merriam-Webster defines risk as the degree of probability of a loss (Merriam-

Webster, 2017).  The subject of risk can be traced as far back as 3200 B.C. by a Tigris-

Euphrates group called the Asipu (Covello, Mumpower, 1985).  The Asipu would try to 

identify and understand the problem, develop courses of actions (COAs), collect data and 

establish likely outcomes to include profit/loss or success/failure of each COA (Covello, 

Mumpower, 1985).  Over 2400 years ago, the Athenians offered risk assessments before 

making decisions during the Peloponnesian War (Aven, 2003).   
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Military risk is a highly complex phenomenon to accurately assess.   The United 

States Air Force (USAF) defines risk as the probability and consequence of an event causing 

harm to something of value (AFPD 90-16 draft, 2018).  Whether subjectively, objectively or 

both, USAF primarily assesses strategic risk in two contexts: Risk to Mission (RtM) and Risk 

to Force (RtF).  The official USAF definition of RtM is defined as the ability to execute a 

mission at acceptable human, materiel, financial, and strategic costs (AFMAN 90-1606, 

2017).  USAF defines RtF as the ability to recruit, maintain, train, equip, and sustain the 

force to meet strategic objectives (AFMAN 90-1606, 2017).  RtM is typically characterized 

by the levels of capacity (i.e. sufficient force structure) and capability (i.e. air, space, and 

cyber effects) needed to provide National Authorities when called upon (AFMAN 90-106, 

2017).   RtF is characterized by the ability to maximize the effectiveness of the force 

structure chosen to meet the desired operational requirements.  RtF are essentially capability 

enablers and practices in the form of munitions, training, equipment, infrastructure, 

personnel and institutional1.   

These two strategic contexts are measured by four risk (not including endpoints2) 

levels (ordered by increasing risk) within the framework of achieving an objective or goal: 

low, moderate, significant and high.  An example of how the levels are defined and measured 

is included in Figure I-2 also formally known as the Air Force Risk Assessment Framework 

(AFRAF). 

 

1 More details of this strategic risk context are supplied in several strategic planning documents.   
2 Technically, there are six levels of risk, if we include the Success and Failure levels, which are numerically     

0% and 100% respectively.   
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Figure I-2: AFRAF (AFMC/A9A, 2016) 

Combining the two strategic contexts (i.e RtM and RtF) with the four risk levels yield a 

framework in which the USAF assesses strategic risk.  Figure I-3 provides an illustration of 

the two strategic risk areas coupled with the four risk levels, which ultimately help 

characterize USAF risk.   
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Figure I-3: USAF Military Risk Structure (AFMAN 90-106, 2017) 

This research focuses specifically on the personnel piece of the RtF component of USAF 

strategic risk.  RtF must be assessed before RtM in order to more accurately depict USAF 

risk.   This work also assumes there is a relationship between risk and capability.  That is to 

say, the more capability (e.g. fuel, manning, higher mission capable rates (MCRs3), positive 

infrastructure levels (e.g. Common Output Level Standards (COLS)), equipment and supply 

status, etc.) that exists, the less risk incurred and conversely, the less capability that exists, 

the more risk incurred.  Figure I-4 illustrates this relationship.  This concept is further 

extended to assume there is at least a curvilinear relationship (via Sigmoid function) between 

risk and capability for Human Resources.   

 

3 MCR is the degree to which a system, subsystem or equipment is in a specified operable and committable 
state at the start of a mission, when the mission is called for at an unknown, i.e. a random, time. 
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Figure I-4: Capability versus Risk (Bradshaw, 2016) 

 

A key assertion in the current methodology is that before personnel risk can be accurately 

assessed, managerial efficiency, corporate preference, and objective risk computation, should 

be examined.  This work facilitates that examination.  Efficiency is the next topic of 

discussion. 

Efficiency 

 Efficiency is hard to assess in a dispersed organization.  USAF personnel capability is 

spread across the world.  The USAF has hundreds of installations geographically separated 

across all continents.  It is challenging for managers to provide efficiency assessments across 

these installations if objective data are not used.   A 2014 study using data from 35 USAF 

organizations revealed millions of dollars possibly wasted due to various performance 

inefficiencies (Boehmke, 2015).  The Boehmke study prompts questions, e.g., is there a 
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significant association or relationship between efficiency and risk?  If there is a significant 

association between efficiency and risk, how do we address it?   

Data Envelopment Analysis (DEA) is an aggregation technique that allows unit (to 

include units without price points) (Han and Sohn, 2011) performance to be compared by 

examining the ratio of weighted outputs and inputs (Colbert et al., 2000).   While data in the 

form of inputs and outputs alone cannot produce a holistic representation of efficiency, a 

non-parametric objective technique such as DEA yields a potential start to assessing 

personnel efficiency at USAF bases.    

A desirable DEA property is that the weight values for each assessed organization are 

defined by an optimization algorithm and not decided by the user (Huguenin, 2012).  This 

increases objectivity in determining the significance of the outputs and inputs.  DEA 

combines numerous relevant outputs and inputs into a single number that represents 

productivity or efficiency (Metters et al., 1999).  DEA is an established technique among the 

management science and operations research communities.  Between the inception of DEA 

(Charnes et al., 1978) and 1992, over 470 articles were published concerning DEA (Seiford, 

1994), and the pace appears to have accelerated since that time (Metters et al., 1999).   

According to a 2010 DEA literature survey among application-based articles, the top-

five industries addressed were:  banking, health care, agriculture and farm, transportation, 

and education.  Of approximately 5,000 articles examined, the military industry represented 

less than 20 of the total sample size or approximately 0.4% (Liu et al., 2013).  Of record, it 

appears only sixteen military articles have been published since 2010 (Zunker and Howard, 

2018).  This implies there exists a large opportunity for growth and examination of DEA and 

its application to military organizations.   
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In summary, this research foci explore various analytical-based methods to compute 

organizational risk using personnel data.  Further, this work examines if there is a statistically 

significant relationship between personnel risk and efficiency.  That is to say, the higher the 

risk, the lower the efficiency or vice versa.  The next section explores this research from an 

USAF enterprise perspective.   

Agile Combat Support 

This work uses a repeatable methodology using mathematical rigor to further quantify 

and qualify strategic personnel risk.   The scope of this work is from the Agile Combat 

Support (ACS) perspective.  ACS is a core function that enables air and space power to 

contribute to the objectives of a Joint Force Commander (JFC).   Effective combat support 

operations allow combatant commanders to improve the responsiveness, deployability and 

sustainability of forces.  ACS allows combat support to be conducted whereby 

responsiveness can be substituted for massive deployed inventories (Air University.com, 

2017).   

Further, ACS capability is the process from mission need to mission effect for all Air 

Force weapon systems, which consists of six enterprises:  Research & Development (R&D), 

Life Cycle Management (LCM), Test & Evaluation (T&E), Logistics & Sustainment (L&S), 

Installation & Mission Support (I&MS) and Institutional.   Figure I-5 illustrates the ‘Big 

picture’ view of ACS as it relates to risk delineated by force and mission.  
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Figure I-5: Agile Combat Support (ACS) Big Picture (AFMC A9A, 2016) 

In the USAF, ACS is led by the Commander of Air Force Materiel Command 

(COMAFMC).  AFMC is a major command (MAJCOM) that develops, acquires and sustains 

the aerospace power needed to defend the United States and its interests for today and 

tomorrow (AFMC website, 2017).  This is achieved through management, research, 

acquisition, development, testing and maintenance of existing and future weapons systems 

and their respective components (AFMC website, 2017).  

As the core function lead (CFL4) for ACS, COMAFMC defines RtM as the ability to 

provide effects as called for within planning constructs for anticipated threat environments 

 

4 Since, this writing, CFLs have been removed and replaced with a new leadership construct called the Air 
Force Warfighting Integration Center (AFWIC).  
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(e.g. Defense Planning Guide (DPG) scenarios).  The DPG provides guidance in the form of 

goals, priorities, and objectives, including fiscal constraints, for the development of each 

military department (Acqnotes.com, 2017).  RtM is dependent upon creating a future force 

capable of providing the desirable effects.  COMAFMC defines RtF as the ability to deliver 

the future force (e.g. Trained Personnel, Weapon Systems, Equipment, Infrastructure) used to 

evaluate RtM.  In other words, RtF should drive RtM.  Figure I-6 illustrates this concept. 

 

Figure I-6: Agile Combat Support (ACS) Risk Type Definitions (AFMC A9A, 2017) 

Problem Statement 

There is a widespread perception among Core Functions that (i.e. enterprises of 

people and systems) the logistics and mission support (which impacts RtF) required to 

execute DPG scenarios (which impacts RtM) will be in place for war or (D-Day).  The ACS 

Subject Matter Experts (SMEs) do not agree, but cannot provide sufficient analysis (Pitstick, 

2017).  A challenge to accurately depict RtF is a conundrum of assessing both programmatic 
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(i.e. weapon system programs) and capability risk.  USAF programmatic risk is typically 

managed in the form of cost, schedule and performance.  While this approach is sufficient to 

track, monitor and assess weapon system delivery and sustainment, it does not adequately 

address ACS’ ability to meet DPG scenario requirements which should be a precursor to 

determine RtM capability gaps and accurately assess strategic risk.    Capability gaps are 

often categorized into three distinct timeframes: near (0-5 year), mid (>5-10 year) and far 

(>10-30 year).  A more comprehensive risk assessment is needed to characterize potential 

capability shortfalls for a near, mid or far term crisis.  The methodology presented in this 

work provides a more rigorous alternative to assessing risk in each of the three distinct 

planning timeframes.   

The USAF uses the Strategic, Planning & Programming Process (SP3) as a guide to 

strategic budgeting and decision making.  One of the major outputs of the SP3 is the Program 

Objective Memorandum (POM).  The POM is an annual recommendation from the Military 

Services and Defense Agencies to the Office of the Secretary of Defense (OSD) concerning 

the planning and allocation of resources (i.e. Personnel, Infrastructure, Readiness and 

Modernization & Recapitalization) for programs to meet the Defense and Service (e.g. 

USAF) planning guidance (Acqnotes.com, 2017).  The POM covers the 5-year Future Year 

Defense Program (FYDP) and presents the Service proposal on the intent of allocation of 

available resources (Acqnotes.com, 2017).    

The POM includes an analysis of capabilities across the aerospace and cyber domains 

to include objectives, missions, alternative methods to accomplish objectives, and allocation 

of resources.  The resources are planned, managed and executed by 12 Air Force Core 
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Functions of which ACS is one and has the largest portfolio exceeding 60 billion dollars.  All 

resources planned are not programmed (resource allocated and budgeted); the delta between 

the two translate into a level of strategic risk.  Figure I-7 provides a visual of how the POM is 

produced.    

 

 
Figure I-7: Notional Strategic, Planning & Programming Process (SP3) (AF 5/8, 2011) 
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This work will expound upon the aforementioned ideals and provide methods to 

objectively assess personnel risk and enable senior Air Force leaders to better manage ACS 

personnel capability and enhance maximization of readiness.     

Research Objective and Questions 

 This research explores and develops a repeatable baseline personnel risk assessment 

methodology, focused on the following research question:  Can a baseline ACS 

comprehensive risk assessment (ACS RA) methodology be developed that rigorously 

accounts for personnel capability enablers and practices?  This research question requires 

examination of the following specific questions:  

• Is there a meaningful manning relationship between USAF Core Functions and full 
manning levels? 

• To what extent can the examination of active duty manning increase awareness of 
USAF efficiency?  

• Is there a statistically significant relationship between career field manning efficiency 
and risk, which can enhance resource utilization and prioritization? 

• Can an algorithm be used to compute an organizational personnel risk assessment? 

Insight gained into these questions will enhance traceability of current personnel capability 

and requirements, will improve defensibility and credibility of the ACS risk assessment, and 

enhance strategic decision making when faced with tough challenges. 

Scope 

 There are five bedrocks to USAF capability:  Personnel, Training, Equipment, 

Infrastructure and Institutional, which are further characterized as the planning force.  It is 

impossible to provide capability without all of these components.   USAF capability begins 
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and ends with the airman.  If airmen are not available and trained to perform desired tasks to 

inject capability, the remaining equipment, infrastructure and institutional components are 

ineffective.  While Figure I-7 summarizes the SP3 process to include the planning force, the 

data to adequately assess strategic risk regarding infrastructure, readiness and modernization 

are either classified or not readily accessible to analyze.   As a result, this research is scoped 

to active duty military and civil servant personnel.  Assumptions are applied to account for 

the readiness and training components.  Figure I-8 is an illustration of the scoped research 

effort.   

  

 

 

 

Figure I-8: Scoped Planning Force Analysis 

People are needed to plan, manage, distribute and execute USAF capability.  A goal of this 

research is the identification of personnel risk to be used as a precursor to better inform the 

infrastructure and modernization/recapitalization risk assessments. This approach should 

produce a more comprehensive strategic risk assessment.    
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Methodology 

The theme of this research is to develop methods to help the Logistics Supply Chain 

Management community use human resources as it relates to USAF strategic risk 

assessments.  The methodology incorportates advanced operational research techniques into 

practice using personnel data.   This work supports senior decision making as it relates to 

managing personnel capability.   

The first part of the USAF personnel risk assessment series uses statistical 

comparisons of odds ratios and contingency table analyses revealing manning shortfalls in all 

12 Core Functions or large enterprises.  From a strategic risk assessment perspective, if 

capability can be assessed via manning shortfalls,  then risk vulnerabilities and drivers 

become more traceable for decision makers.   

The second part uses Data Envelopment Analysis (DEA) to measure and compare 

efficiency among ten F-16 active duty bases utilizing pilot manning as inputs and sorties as 

outputs.   This work has two-fold purposes: 1.) demonstrate that efficiency can be objectively 

assessed using personnel manning data and 2.) pave the way for a more comprehensive 

methodology to assess if a statistically significant relationship exists between USAF 

personnel efficiency and risk.   

The third part uses the classic definition of risk and applies modeling techniques to 

produce risk values for career fields and determine if statistically significant relationships 

exist.   There are inferences from a statistically significant relationship.  For instance, if 

efficiency is positively correlated with risk, this can infer more efficiency is related to more 

risk.  If more efficiency infers less risk, then, personnel resource planners could recommend 

career field managers better utilize current manning levels before more resources are 
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considered for allocation.  The fourth part surveys risk aggregation techniques to ultimately 

produce a valid, objective personnel risk assessment.  The fifth part provides conclusions and 

recommendations regarding methodology implementation.  These added analytical insights 

foster better strategic decision making by identifying capability gaps, and provide an 

increased level of objectivity to support personnel resource allocation.  The results of the 

analysis hope to better inform the USAF Strategic, Planning & Programming Process (SP3).     

Assumptions  

To date, it appears there are no personnel capability assessments being performed to 

measure efficiency and risk, and the implications thereof.  USAF strategic risk assessments 

are currently analyzed at the core capability level.  A core capability is an enterprise 

necessary for the USAF to perform its mission as part of the Department of Defense (DOD).   

As of calendar year 2017, there were 48 distinct core capabilities.  Assessing risk at the core 

capability is a good start to assessing risk, but is not comprehensiveness enough.   There are  

many missed, unexamined and not well-understood issues that occur below the core 

capability level, particularly as it relates to RtF which theoretically should influence RtM.  

Understanding potential personnel shortfalls at the career field level should better inform 

core capability analysis, and thus increase credibility and defensibility of strategic risk 

assessments.   

Currently, ACS planners and programmers use funding level per PEC, or Program 

Element Code, to assess tasks needed to address desired capability.  All USAF programs 

have PECs.  PECs are generally alphanumeric strings of characters that represent groupings 

of Air Force Specialties (AFS) or career fields to carry out certain tasks.  The PECs are also 
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assigned cost values as the primary means to track and manage funding.  While the PECs are 

linked to ACS tasks, the amount of specific personnel (by career field) needed to accomplish 

the tasks versus personnel requirements are not connected.   Furthermore, there currently is 

no repeatable way to assess USAF personnel efficiency.   

Limitations 

The risk of using data from a centrally managed personnel database to develop a 

personnel risk assessment as a means to baseline personnel capability across all six ACS 

enterprises has an unquantifiable impact on enterprise risk assessments.   If the data are 

inaccurate, the results are skewed and subsequent risk assessments may be invalid.  To 

compound the issue, some enterprises have independently developed manpower models to 

assess their ability to meet current and future requirements (i.e. funded and unfunded).  

Funded requirements are provided in the centrally managed personnel database, while 

unfunded requirements are not provided to the enduser.  Unfortunately, these manpower 

models have not been validated by the Air Force Personnel Center (AFPC) or the Higher 

Headquarters Personnel, Manpower and Services Directorate (AF/A1).  If the data and 

manpower assumptions from the A1 database are correct, the traceability, defensibility, 

objectivity and credibility of the risk assessments increase.    

This research used personnel as key force enablers of USAF capability to assess 

strategic risk.   Specifically, is there a rigorous way to assess personnel risk to ultimately 

inform strategic decision making?   Lastly, the analysis is conducted within the HQ AFMC 

Strategic Plans, Programs, Requirements, and Analyses Directorate (HQ AFMC A5/8/9), 

whereby the Analyses and Assessments Division (HQ AFMC A9A) serves as the lead 
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integrator.  The collection of this information requires support from the HQ AFMC 5/8 

(Plans, Programs and Requirements Division).   

Implications 

ACS Planners and programmers defend the needs of their programs emotionally or 

base their arguments on precedence instead of articulating what the requirements are and 

what current capability exists to meet a desired endstate.  This results in a lack of credibility 

regarding the enterprise risk assessments, which are sometimes dismissed as over or 

understatements of risk by senior officials at higher headquarters.    

There is no repeatable, measureable baseline personnel capability assessment across 

the six enterprises in ACS (Pitstick et al., 2016).  Currently, each enterprise independently 

assesses risk (HQ AFMC A9A, 2016).  Some enterprises strongly consider manning 

shortfalls and overages, while others do not (HQ AFMC A9A, 2016).  However, ACS 

enterprises depend upon one another to deliver capability in order to achieve a given mission.  

Examining the relationship between efficiency and risk among the USAF career fields needs 

study:  for example, what if we discovered, while the Civil Engineering (CE) function may 

not have adequate manning, it performs more efficiently with its current resources than other 

career fields.  This at a minimum suggests a level of managerial insight is available for 

potential promotion across the rest of the personnel domain.  The lack of personnel risk 

accountability between and among the enterprises results in risk assessments that are 

sometimes overstated or not comprehensive enough.   

A defensible, traceable personnel risk assessment methodology allows all ACS 

enterprises to defend why they need more resources to perform required tasks.   Further, the 
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successful implementation of a repeatable, proven process lends credence to other core 

functions using this approach, which should increase USAF strategic risk assessment 

confidence.     
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Preview 

Chapter II of this research presents a literature review and background of the 

problem. The literature review examines problem resolution using various statistical and 

analytical approaches to assess personnel organizational risk to include contingency table 

analysis, logistic regression, normal, sigmoid and other known mathematical distributions 

and functions.  Chapter III is a paper that reveals mathematical evidence that a corporate 

preference exists in what enterprises senior leaders choose to fully man or not fully man.  

Chapter III uses logistic regression, relative risk and odds ratio computations to illustrate 

significant manning relationships among the USAF’s 12 core functions and 32 functional 

areas.    Chapter IV provides a production efficiency demonstration study optimizing USAF 

F-16 active duty fighter pilot manning and sortie production rates among ten bases.  Chapter 

V utilizes a variant of the logistic function and normal distribution to quantify personnel risk 

and statistically examines if there is a relationship between risk, capability and efficiency.  

Chapter VI explores aggregation techniques to depict a core capability as a consolidated risk 

score to be ultimately subsumed by a more strategic level, comprehensive risk assessment 

model.   Lastly, Chapter VII provides conclusions; dissertation significance; provides 

recommendations for courses of action (COA); and presents several avenues for further 

exploration.  
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II. Literature Review 

Introduction 

This chapter provides a literature search of various components of risk as it relates to 

capability.  The purpose is to better inform this research by providing past discussions about 

the relationship between risk and capability.  First, we identify the components of a risk 

assessment.  Second, we identify capability.  Third, we address the question, what is risk in 

the context of capability?  Fourth, organizational efficiency is explored. 

Risk Assessment Framework 

A Risk Assessment Framework (RAF), presented by the Defence Research and 

Development of Canada (DRDC), categorizes risk into three phases: Problem Formulation 

and Scoping; Planning and Conduct of Risk Assessment; and Risk Management (Bayne and 

Friesen, 2016).  Figure II-1 represents a comprehensive scan of the RAF.  What follows is an 

adaptation of the RAF from a USAF perspective using Phases I and II.  Phase III (risk 

management) is less of a focus area effort for this research.   
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Figure II-1: Canadian Risk Assessment Framework (Bayne & Friesen, 2017) 

Framework Adaptation 
 

A U.S. application of the Canadian RAF is used to illustrate Phase I: problem 

formulation.  U.S. military capability is formulated and managed by the Programming, 

Planning, Budgeting and Execution (PPBE) process.  There are volumes of literature on this 

topic.  Figure II-2 provides a visualization of the stages of PPBE.  We see the requirements 

generation stage is conducted in the first phase (Planning).  That is to say, a National Security 

Strategy (NSS) is envisioned by the National Command Authority (NCA).   
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Figure II-2: PPBE Diagram (Manning, 2017) 

The NCA consists of the US President, Vice President, Secretary of Defense and Deputy 

Secretary of Defense.  The NCA staff develops the actual NSS.  This NSS is created to 

inform the National Military and Defense Strategies (NMS and NDS, respectively) 

(Manning, 2017).   
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From these documents along with the Quadrennial Defense Review (QDR5), the chiefs of 

military services along with combatant commanders and their staffs make recommendations 

to form the Defense Planning Guidance (DPG).  These documents provide the services an 

idea of the current and future threats and broad resource expectations to counter the threats.  

This planning feeds the annual Program Objective Memorandum (POM) and fiscal guidance.   

A takeaway from the planning phase of the PPBE process is if planners, programmers 

and analysts get this wrong, the POM is misinformed; which misinforms the Presidential 

Budget (PB); which limits the services’ ability to deliver, generate and sustain combat 

capability to meet a desired end-state.  This work does not revisit or recreate the military 

requirements generation procedure.  While problem formulation is critical to assessing risk, 

we assume a well-formulated/scoped problem is defined, and thus, we use an existing 

baseline of personnel capability and compare it to existing (and future) requirements to help 

assess risk.   

Phase II of the RAF is the planning and conduct of the risk assessment.  It consists of 

three stages: planning, risk assessment and measurement.  The U.S. would use the Strategic 

Planning, Programming Process (SP3) to guide the planning piece (stage one) of phase II.  

This research is scoped to personnel capability and assumes funded personnel requirements 

take into account the current threat and capability gaps.  This assumption addresses the 

threat/hazard identification component of the risk assessment stage.  The impact is further 

studied and examined in the form of a technical paper, which is discussed later in this 

research.  The focus of this literature review is proper characterization of personnel risk via 

 

5 QDR is a legislatively-mandated review of Department of Defense strategy and priorities (Manning, 2017). 
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the classic components: likelihood of failure to not meet a desired outcome and impact of this 

failure.  The next section addresses this phenomenon.      

Risk Characterization 
 

Risk is the likelihood of failure and severity of the consequences of this failure 

(Lindbom et al., 2015).  Further, risk consists of four factors: events, consequences, 

uncertainties and tasks (Aven and Renn, 2009).   Events are possibilities of unforeseen 

situations or occurrences that can or will negatively affect an organization (Kenton, 2018).  

From a personnel risk perspective, the events are probabilities of failures ranging from 0 to 1.  

Consequences represent the severity of adverse effects (Aven, 2011).  The consequences 

from the distinctive manning rates uses a function that generates a backwards Sigmoid-curve 

(S-curve).  In other words, we seek to develop a mathematical relationship between manning 

rate (x-axis) and impact (y-axis).   The consequences from the distinctive manning rates are 

developed using a sigmoid function, which is a variant of the logistic function.   

Uncertainty is a potential, unpredictable, and uncontrollable outcome (Hansson and 

Zalta, 2014).  This research represents uncertainty as a likelihood of failure to achieve a 

given manning rate.  We explore several well-known mathematical distributions to examine 

which are the most well-suited for demonstrating personnel uncertainty.  A task is an 

identifiable function of a job or activity (Shockey, 2012).  For the ACS risk assessment, the 

tasks are already defined by SMEs and are categorized by enterprise and PEC.   

For further solidification of risk characterization, an example of a strategic risk 

framework (SRF) is explored.  Rowe et al. (2017) promote ways to prioritize investment 

decisions in military cyber capability using risk analysis assert a SRF should contain 
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independent security layers.  Rowe et al. (2017) assert in a cyber context, a security layer 

could be ‘Shape’.  Shape refers to the change of motivation behind a threat.  For example, 

overtly promoting peace talks between potential threat nations is a form of shaping.  This 

layer is assigned a probability, which signifies a likelihood of success.  By taking the 

complement, we obtain a likelihood of failure.  Figure II-3 illustrates the principle of creating 

independent security layers across two risk components:  likelihood of failure and 

consequence.  Each blue box represents a security layer.  One goal of the SRF is to shape, 

deter and prevent the threat, thereby reducing the likelihood of a failure.  If a likelihood of 

failure exists, the other goal of the SRF is to contain, adapt, investigate and protect against 

the consequence of the failure.  The overarching goal is to reduce the enduring impacts of the 

threat.   

 

Figure II-3: Cyber SRF (Rowe et al., 2017) 

An example of how the cyber SRF could be applied to personnel follows.  Perhaps 

shaping is announcing troop increases.  Deterrence could be increasing the Nuclear 

Deterrence Operations (NDO) core functional personnel footprint.  Prevention is a plus-up of 
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personnel in certain strategic military installations.  After a breach of security, protect could 

mean a recall of recently retired airmen and national air reserves.  Containment is the 

addition of the National Guard component.  Adapt is to support recovery and restoration of 

potential lost personnel.   

The existence of multiple independent security layers infers a joint probability can be 

computed.  The idea of ‘independence’ formally allows risk practitioners to compute a joint 

probability (i.e. multiply the probabilities of failures and obtain an overall risk score).  A 

limitation with this approach is the more layers, the more likely risk will increase; the 

multiplication of probabilities will yield an overall lower reliability or higher risk score.     

While a possible credible approach to characterize cyber risk, the methodology 

cannot be prescriptively applied to the ACS RA for two main reasons.  First, manpower is 

one of the most expensive assets in the USAF inventory.  For any of the security layers, swift 

maneuver and deployment of personnel to various locations is not only costly, but in practice 

difficult to administer.  Unlike a cyber maneuver, most actions can be conducted without the 

movement of forces.  Second, the scope of USAF strategic manpower spans across over 250 

career fields, encompassing some 600,000 personnel.  Each career field is arguably 

interdependent and not independent, which violates the joint probability computation 

procedure used in the cyber SRF.   These levels of complexity make the application of the 

cyber SRF to the ACS RA ill-advisable.   However, the concept of likelihood of failure and 

severity of the consequence of this failure to characterize risk is valid.    The next section 

examines risk in the context of capability.        
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Relationship between Risk and Capability 
 

A study conducted by Lindbom et al. (2015) alluded to a worldwide literature search 

of ‘capability’ and ‘capability and risk’, which yielded 500,000 and 34,000 hits, respectively.   

The study mentions that while the querying resulted in large volumes of literature, very few 

instances defined capability as it relates to risk.  The data collected for the study from 

scientific literature were condensed to 13 guidelines as it relates to the definition of 

capability.  From a military perspective, we present 4 of the 13 below: 

I. Capability refers to resources, systems, structures and processes necessary to 

deliver current and future requirements (Bhatta, 2003). 

II. Capability is the framework an organization needs to make use of assets (e.g. 

resources, competence and knowledge) and skills (e.g. capacity organization has 

to manage external conditions or events) (Renn, 2008). 

III. Capability is the attributes of an organization, such as time, labor and capital 

primarily used for exploitative purposes to implement a strategy (Kusumasari and 

Siddiqui, 2010). 

IV. Capability is a demonstrable ability to respond to, and recover from, a particular 

threat or hazard (U.K. Cabinet Office Glossary, 2014). 

From these four definitions of capability, the following commonalities are observed: 

capability is a type of resource; capability is necessary to implement strategy; and capability 

is necessary in order to respond to a threat.  Given these trends, we affirm the Air Force 

guidance (discussed in Chapter I) and its approach to classify risk and capability.   That is to 

say, the Air Force definition of risk addresses its ability to prepare (capacity) and its ability to 

respond (capability) to a given threat (Lindbom et al., 2015).   
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While there is a relationship between capability and risk, the relationship is at this 

point still mathematically ill-defined.  We assume there is a relationship between risk and 

capability.  That is to say, the more capability (e.g. fuel, manning, higher mission capable 

rates (MCRs), positive infrastructure levels (e.g. Common Output Level Standards (COLS)), 

equipment and supply status, etc.) that exist, the less risk incurred and conversely, the less 

capability that exists, the more risk incurred.   We explore mathematical functions to examine 

if personnel risk can be further categorized in the form of a likelihood of failure and impact.  

Mathematical exploration of likelihood of failure of an occurrence 
 
 Objective ways to compute personnel likelihood of failure are explored.  Ultimately, 

the goal is to obtain an operationally representative probability of having 100% or less 

available and trained personnel to achieve a task or core capability.   The likelihood of failure 

is just half of risk; we also need the impact of this failure to fully compute personnel risk.  

This portion of this work focuses on the likelihood of failure component of risk.   

The ACS RA data can be either continuous or discrete.  Manning rates are treated as 

continuous whereas manning data decomposed by number of successes (positions filled), 

number of trials (number of positions) and probability of success (100% manned) are treated 

as discrete.  We consider the following distributions:  normal6 (standard), binomial, 

lognormal, Poisson, geometric, negative binomial, hyper-geometric and gamma.   

The aforementioned distributions are compared using six categories: inputs, 

probability function (𝑝𝑝(𝑥𝑥)), range of values, expectation (𝐸𝐸(𝑥𝑥)), variance (𝑉𝑉(𝑥𝑥)) and relative 

 

6 More details on the normal distribution are provided in Chapter V. 
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application.  The probability function p(x) estimates the likelihood a career field is not 100% 

manned, trained and available.  Several inputs and parameters are necessary to make this 

computation.  The variable p represents the probability of an event.   The variable q (i.e. 

absence of a probability of event) represents the complement of p (i.e. 1 − 𝑝𝑝).    The 

probability function is either a probability distribution function (pdf) for continuous 

distributions or a probability mass function (pmf) for discrete distributions.  The range of 

values is explicitly defined to allow for function feasibility.  The expectation is the expected 

value of a random probability-weighted average of all possible values (Hamming, 1991).  

The variance is the expectation of the squared deviation of a random variable from its mean 

(Hays, 1981).  Table II-1 presents a summary of these distributions.  Of the eight examined, 

the normal, lognormal, gamma and binomial distributions are the most suited for the baseline 

portion of the ACS RA.   
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Table II-1: Distribution Summary (Mendenhall and Sincich, 2007) 

Name Inputs p(x) Values of x E(x) V(x) Application 
 

Binomial Probability of 
success, # of 
successes in n fixed 
trials  

�
𝑛𝑛
𝑥𝑥� 𝑝𝑝

𝑥𝑥𝑞𝑞𝑛𝑛−𝑥𝑥 𝑥𝑥 = 0,1, …𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝) 

The # of successes can 
be represented by 
personnel. The # of 
trials is the number of 
personnel reqmts. The 
prob. of success can be 
either a historical 
manning rate or 100%. 

Negative 
Binomial 

Probability of 
success, # of trials 
up through kth 
success 

 
�𝑥𝑥 − 1
𝑘𝑘 − 1�

(𝑞𝑞)𝑥𝑥−𝑘𝑘𝑝𝑝𝑘𝑘 𝑥𝑥 = 𝑘𝑘, 𝑘𝑘 + 1, … 
𝑘𝑘
𝑝𝑝 

𝑘𝑘𝑘𝑘
𝑝𝑝2  

Ideal for determining 
number of personnel 
reqmts 

Poisson Number of 
successes per unit of 
time, mean 

𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥

𝑥𝑥!  𝑥𝑥 = 0,1,2, … 𝜆𝜆 𝜆𝜆 
Appropriate for count 
data where mean and 
variance are equal. 

Geometric Probability of 
success, # of trials 
up through 1st 
success 

 
𝑞𝑞𝑥𝑥−1𝑝𝑝 𝑥𝑥 = 0,1,2,3 … 

1
𝑝𝑝 

𝑞𝑞
𝑝𝑝2 

Ideal for determining 
number of personnel 
reqmts 

Hyper 
Geometric 

N total # of 
elements, M # of 
successes, n # of 
elements drawn, x # 
of successes drawn 
within n elements  

 
�𝑀𝑀𝑥𝑥 � �

𝑁𝑁 −𝑀𝑀
𝑛𝑛 − 𝑥𝑥 �
𝑁𝑁
𝑛𝑛

 𝑥𝑥 = �𝑀𝑀𝑀𝑀𝑀𝑀[0,𝑛𝑛 − (𝑁𝑁 −𝑀𝑀)]
𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑛𝑛)  

𝑘𝑘
𝑝𝑝 

𝑘𝑘𝑘𝑘
𝑝𝑝2  

Ideal for determining 
number of personnel 
reqmts without 
replacement 

*Normal 
(Gaussian) 

Random variable x, 
mean (𝜇𝜇) & 
standard deviation 
(𝜎𝜎) 𝑒𝑒−

1
2[�(𝑥𝑥−𝜇𝜇)

𝜎𝜎 �]2

√2𝜋𝜋𝜋𝜋
 𝜎𝜎 > 0 𝜇𝜇 𝑘𝑘𝜎𝜎2 

100% manning rate 
reqmt can be 
represented as a 
Random Variable, 
historical career field 
rate as 𝜇𝜇 with respective 
𝜎𝜎   

LogNormal Random variable x, 
mean (𝜇𝜇) & 
standard deviation 
(𝜎𝜎) 

𝑒𝑒[�−12(log(𝑥𝑥)−𝜇𝜇
𝜎𝜎 �]2

𝑥𝑥𝑥𝑥√2𝜋𝜋
 

𝑥𝑥 = � > 0
≤ 0, 0 

𝜎𝜎 > 0 
𝜇𝜇 𝜎𝜎2 

Same as normal 
however data are 
typically right skewed, 
and results tend to be 
parsimonious 

Gamma7 Shape (∝), scale 
(𝛽𝛽) and random 
variable (x) 1

Γ(𝛼𝛼)
𝑥𝑥(𝛼𝛼−1)𝛽𝛽𝛼𝛼𝑒𝑒−(𝛽𝛽𝛽𝛽) 

𝑥𝑥 > 0 
𝛼𝛼,𝛽𝛽 > 0 

 

𝛽𝛽
𝛼𝛼 

𝛽𝛽
𝛼𝛼2 

100% manning rate 
reqmt can be 
represented as a 
Random Variable, and 
historical std dev. and 
manning rate as 𝛼𝛼 and 
𝛽𝛽, respectively.   

* Indicates the most applicable distribution 
PDFs are stated in Table II-1, but the cumulative distribution function (cdf) is needed 

in order to compute the probability of being at least 100% manned (𝑝𝑝∗).  The general cdf is 

 

7 For parametrization (i.e. assuming normally distributed data),  𝐸𝐸[𝑋𝑋] =∝ 𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎  𝑉𝑉𝑉𝑉𝑟𝑟(𝑋𝑋) = 𝛼𝛼𝛽𝛽2, respectively (SOCR, 2017).   
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presented as 𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = 1 − 𝑃𝑃(𝑋𝑋 > 𝑥𝑥), where 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) represents the probability 

that a random variable X takes on a value less than or equal to x (Park, 2018).   In the 

probability of failure context, x is 1 or 100% manned.   Table II-2 provides a listing of the 

four relevant cdfs and respective parameters and formulae needed to compute 𝑝𝑝∗.    

Table II-2: CDF Summary 

Name 
 

Parameters 
 

CDF  
(approximation) 

Binomial 
𝐹𝐹(𝑥𝑥;𝑛𝑛, 𝑝𝑝) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) 

0 ≤ 𝑥𝑥 ≤  𝑛𝑛 
��

𝑛𝑛
𝑡𝑡
�𝑝𝑝𝑡𝑡(1 − 𝑝𝑝)𝑛𝑛−𝑡𝑡

𝑥𝑥

𝑡𝑡=0

 

Normal 
𝐹𝐹(𝑥𝑥; 𝜇𝜇,𝜎𝜎) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) 

−∞ < 𝑥𝑥 <  ∞ 
�

𝑒𝑒−
1
2[�(𝑦𝑦−𝜇𝜇)

𝜎𝜎 �]2

√2𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑

𝑥𝑥

−∞
≈ Φ(

𝑥𝑥 − 𝜇𝜇
𝜎𝜎

) 

LogNormal 

𝐹𝐹(𝑥𝑥; 𝜇𝜇,𝜎𝜎) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) 

0 ≤ 𝑥𝑥 <  ∞ 

𝜎𝜎 >  0 

�
𝑒𝑒(−(ln(𝑥𝑥)−𝜇𝜇)2

2𝜎𝜎2 )

𝑥𝑥𝑥𝑥√2𝜋𝜋
𝑑𝑑𝑑𝑑

𝑥𝑥

0
≈ Φ(

ln (𝑥𝑥) − 𝜇𝜇
𝜎𝜎

) 

Gamma 

𝐹𝐹(𝑥𝑥;∝,𝛽𝛽) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) 

0 < 𝑥𝑥 <  ∞ 

∝,𝛽𝛽 >  0 
where ∝ is an integer 
manning std. deviation 

�
𝑦𝑦∝−1𝑒𝑒

−𝑦𝑦
𝛽𝛽

Γ(𝛼𝛼)𝛽𝛽𝛼𝛼
𝑑𝑑𝑑𝑑 =

𝑥𝑥

0
𝛾𝛾 �

𝛼𝛼, 𝑥𝑥𝛽𝛽
Γ(𝛼𝛼)�, 

Γ(α) = Γ(𝛼𝛼 − 1)!, 

𝛾𝛾(𝛼𝛼,
𝑥𝑥
𝛽𝛽

) = � 𝑡𝑡∝−1𝑒𝑒−𝑡𝑡
𝑥𝑥
𝛽𝛽

0
𝑑𝑑𝑑𝑑 

 

 
Table II-3 is a summary of notional career field probability of failure rates using lognormal, 

normal, binomial and gamma functions.    
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The binomial function behaves the most poorly, arguably followed by the lognormal 

and gamma.  The binomial distribution overstates risk as the illustration of having 77 people, 

with 77 authorizations and a probability of success of 100% yields a failure probability of 0.  

The gamma and normal distributions are competitive candidates to determine the probability 

of not being fully manned given a historical career field mean and variance.  The clearest 

example of comparison is shown in notional sample 5, where the normal output is the most 

operationally representative of personnel likelihood of failure given the parameters.  The 

interpretation is the Force Support Officer career field based on a historical manning rate of 

43% and 1 standard deviation from the said rate with a goal of being 100% manned, has a 

probability of failure of 0.72.  The gamma function returns a probability of 0.87.  These 

values not only account for number of personnel versus funded authorizations, but also 

available and trained personnel to achieve a task or core capability.   The sole selection of a 

distribution is based on practititioner experience, which includes a resampling of career field 

data that reveal the gamma appears more sensitive to outliers than the normal distribution.   

Further details of the normal distribution are discussed in Chapter V. 
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Table II-3: Distribution Summary  

No. Career 
Field Asgn Auth Manning 

Rate 

Hist. 
Manning 

Rate 

Hist. 
Std. 
Dev. 

Norm. 
𝑝𝑝∗ 

Lognorm. 
𝑝𝑝∗ 

Binom. 
𝑝𝑝∗ 

Gamma 
𝑝𝑝∗ 

1 Clinical 
SW 937 950 0.99 1.04 3 0.50 0.36 1.00 0.09 

2 
Logistics 
Plans 
Officer 

65 111 0.59 0.61 3 0.55 0.42 1.00 0.28 

3 
Aero. 
Medical 
Service 

77 77 1.00 1.04 1 0.49 0.15 0.00 0.61 

4 Security 
Forces 810 816 0.99 0.99 3 0.50 0.37 1.00 0.11 

5 
Force 
Support 
Officer 

25 63 0.40 0.43 1 0.72 0.33 1.00 0.87 

6 Civil Eng. 
Officer 654 662 0.99 1.04 2 0.50 0.30 1.00 0.21 

7 Civil Eng. 
(Electrical) 63 103 0.61 0.66 2 0.57 0.37 1.00 0.40 

8 
Civil Eng. 
(Ops 
Mgmt) 

106 174 0.61 0.65 2 0.58 0.37 1.00 0.41 

 

Mathematical exploration of impact of failure 
 

There is a dearth of objective-based literature regarding the impact of personnel 

capability failure.  This is mainly attributed to an inherent level of uncertainty.  That is to say, 

even if all personnel requirements are filled, risk is still not completely eliminated.  This 

phenomenon causes risk assessment analysts and managers to make general assumptions 

about personnel risk assessment practices.  For example, in an organizational risk assessment 

which consists of hundreds of thousands of personnel, we assume personnel capability 

degradation is not linear.  This means for every one funded personnel requirement not filled, 

there is not a similar reduction in overall personnel capability in a given enterprise.   The 
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impact of personnel failure is arguably a hybrid of linear and non-linear effects (Menon et al., 

1996).   

Sigmoid Function 

The relationship between personnel resources and capability satisfaction is arguably 

not completely linear or entirely non-linear; Figure II-4 visually demonstrates this 

phenomenon.   We seek to better actualize the relationship between the inability to meet 

manning expectations coupled with the impact of this shortfall.  A way to approximate a mix 

of linear and non-linear effects is to use a sigmoid function (Menon et al., 1996).  The 

sigmoid function is represented as a variant of the logistic function: 

𝑓𝑓(𝑥𝑥) = 𝑦𝑦 = 1
1+𝑒𝑒−(𝑥𝑥),                                               Eq. II-1 

where e is the natural logarithm base.  The inverse is represented as 

𝑥𝑥 = ln ( 𝑦𝑦
1−𝑦𝑦

 ).                                               Eq. II-2 

Menon et al. (1996) provide theoretical demonstrations of sigmoid function applications as it 

relates to trigonometry and neural networks.  This literature is more theoretical based and 

does not provide any reference to real-world applications.  An application-based utilization 

of the sigmoid function is published to include the prediction of cost savings (Mahalingam 

and Vivek, 2016).   

Based on historical account balances and respective dates, the algorithm is presented 

to automate savings management (Mahalingam and Vivek, 2016).  The scope is internet 

banking in India where the currency is the rupee.  For example, a bank member savings of 

10,000 rupees is equivalent to 141 US dollars (current as of 1/30/2019).  The data consist of 

member bank transactions to include debits, credits and alert messages (e.g. overdraft 
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threshold warnings).  A recommended savings percentage (not to exceed 20% of available 

account balance) is computed using a sigmoid function every 8 days or quarter of a month.   

For example, with an overall savings goal (e.g. 10,000 rupees), duration goal (e.g. 5 months) 

and maximum savings rate of 20%, the algorithm computes impact scores.  Impact scores are 

calculated for quarter-monthly current transaction and transaction message values.  The 

maximum difference between the transaction value and transaction message value determines 

the upper bound input for the sigmoid function.  Date intervals are absolute differences of 

current and future quantized values.  Date intervals are computed in 8 day increments within 

a month (i.e. 1, 9, 17, 25).  Figure II-4 illustrates the example.   

Figure II-4: Example Savings Scenario (Mahalingam and Vivek, 2016) 
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The y-axis represents the output values of the sigmoid function ranging from zero to 

one.  A pictorial representation of the automated savings sigmoid curve is provided in Figure 

II-5.   

 

Figure II-5: Automated Savings Curve (Mahalingam and Vivek, 2016) 

Other notable applications of the sigmoid function include consumer risk reduction 

strategies (Mitchell et al., 1999) and enterprise capability assessment prioritization (Bryan et 

al., 2010).    A perceived risk theory study is presented examining consumer behavior during 

holiday periods (Mitchell et al., 1999) using artificial neural networks (ANNs).  ANNs are 

fairly sophisticated models that require inputs and outputs typically coupled with the use of 

calculus (e.g. back propagation) to attempt to predict a phenomenon under examination 

(Hecht-Nielson, 1992).  Mitchel et al. (1999) use the classic definition of risk (i.e. probability 
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of failure coupled with impact of failure) as a focal point of risk foundation.  The central 

premise of this research stems from the ideal that if more tourism marketing insight can be 

gained through perceived consumer risk behavior, then strategies among the holiday travel 

promotion industry can become better focused to ultimately increase revenue and build 

branding.   Further, this work uses a survey instrument comprised of 60 questions with 152 

British undergraduate respondents to collect tourism data to assess the following two 

objectives: 1.) what are the perceived risk and risk-reduced strategies associated with 

holiday-package purchases; and 2.) determine if a relationship exists between perceived risk, 

risk reduction and purchase intent.   

The most popular ANNs consist of three categories or layers of units: input, hidden 

and output.  A layer of ‘input’ units is connected to a layer of ‘hidden’ units, which is 

connected to a layer of ‘output’ units (Rumelhart et al., 1986).  The connections are often 

referred to in neuroscience terms as ‘synapses’ similar to an interworking process of the 

human brain.  The activity of the input units represents the raw data fed into the network.  

The activity of each hidden unit is determined by the activities of the input units and the 

weights on the synapses between the input and the hidden units.  Similarly, the behavior of 

the output units depends on the activity of the hidden units and the weights on the synapses 

between the hidden and output units.  ANNs have training components.  The training of the 

network consists of feeding it multiple training samples and calculating the output for each of 

them.  After each sample, the weights are adjusted in such a way so as to minimize the output 

error, defined as the difference between the desired (target) and the actual outputs (Vasilev, 

2019).  In the holiday package perceived risk study, the input units are risk variables 

(likelihood of perceived risk and impact), while the outputs are purchase intent and risk 
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reduction strategy.   Figure II-6 provides a basic visualization of an ANN with one hidden 

layer.   

 

 

Figure II-6: ANN example (Mitchell et al., 1999) 

The sigmoid function is relevant to the ANN because it is used as a nonlinear 

function that has the ability to propagate error through the network through the use of 

thresholds.  The threshold is modeled via the sigmoid function that maps values from zero to 

one as stated in the previously discussed automated cost application.  Typically referred to as 

a loss activation function, the derivative of the sigmoid function is expressed as: 

𝑓𝑓′(𝑧𝑧) = 𝑒𝑒−𝑧𝑧

(1+𝑒𝑒−𝑧𝑧)2
= 1

(1+𝑒𝑒−𝑧𝑧)
∗ (1+𝑒𝑒−𝑧𝑧−1)

(1+𝑒𝑒−𝑧𝑧)
= 𝒐𝒐(1− 𝒐𝒐),                    Eq. II-3 

where z represents the net of the desired input vector, output vector and hidden layer. The 

error expression is generalized to include all squared errors at the outputs k =1, 2, 3…K.  The 

end result is the output vector (o) multiplied by its complement vector.  The number of 

hidden vectors depends on the dimension n of the input vector and on the number of 

separable regions in n-dimensional input space.   For the personnel risk application, when the 



 

42 

 

manning rates are large, the sigmoid function slopes steeply to signify minimal impact, but 

the curve steadily grows through a midpoint and continues to incline until a gradual ascend to 

the maximal impact as manning rates are very low.  Mitchell et al. (1996) purport the use of 

ANNs allowed a relationship between perceived risk and risk reduction strategies such that 

holiday travelers see increasing knowledge of destination by reading and watching relevant 

television programs as a useful way to increase confidence in a trip.  Further, travelers are 

less likely to become as adversarial when situations arise that require adaptation.   

The last exploration of sigmoid function application relates to an enterprise capability 

assessment and prioritization methodology from Idaho National Labs (INL) supporting the 

Department of Energy’s (DOE) interest to help develop a rigorous way to assess and 

prioritize capability gaps of an US Army enterprise (Bryan et al, 2010).  An enterprise is an 

organization or undertaking of scope that involves complication and risk (American Heritage, 

1993) that possesses capabilities such as facilities, equipment, hardware/software, skilled 

personnel and knowledge management (Bryan et al., 2010).  In order to identify capability 

gaps, a structured approach is needed to assess risk.  A pre-cursor to implementing a 

structured approach to risk assessment is to assess the current or baseline capability against a 

set of required capabilities to support an enterprise mission (Bryan et al., 2010).  To support 

this tenet, INL developed a tool called Gap Relationship & Interface Planning (GRIP) to 

examine enterprise relationships, identify and prioritize capability gaps and assess risk.   

The analytical underpinnings associated with the tool are not disclosed in the article.  

However, Figure II-7 provides a visualization of an US Army Brigade Control Team 

effectiveness using a nonlinear utility curve which notably resembles a sigmoid function.  

The x-axis represents a measure of effectiveness score from 0 to 5 (higher is more favorable), 
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while the y-axis represents a required capability performance level between 0 and 1 (higher is 

more favorable).   

 

Figure II-7: Notional Utility Curve (Bryan et al., 2010) 

INL developed a tool called Gap Relationship & Interface Planning (GRIP) to assess 

and prioritize capability gaps of an US Army enterprise.  The INL developed framework 

could be a potential topic of interest for further research as the USAF matures its risk 

assessment process.    

Generally, there are five stages of risk assessment: planning, identification, 

computation, mitigation and monitoring.  This research in this dissertation assumes the 

planning guidance is provided and primarily focuses on the identification and computation 

stages of a risk assessment.   

The sigmoid function explored in the aforementioned use cases are used in various 

contexts and are intended to inform further research as it relates to assessing impact of 
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personnel manning deficiency.  This research uses the sigmoid function as a static function to 

represent impact values from personnel manning rates.  The values are then translated from 

the Air Force Risk Assessment Framework (AFRAF) to an impact score.  The classifier 

function adaptation is applied in Chapter III.  The static function adaptation is applied in 

Chapter V.   

Using an S-curve function computation accounts for the personnel impact portion of 

risk computation.  The S-curve uses a manning rate from (0-100%) coupled with a special 

case of the logistic function to arrive at a probability.  These probabilities are used to 

translate into personnel risk factor values from the AFRAF risk scale.  Using both the normal 

distribution to compute a probability of failure occurrence and the S-curve function coupled 

with the AFRAF risk scale to compute impact of failure; yields an overall risk for a given 

career field.  This methodology allows for objective prioritization of resources as it affords 

senior personnel capability planners to readily identify career fields with greater risk, which 

arguably should be considered for more resource advocacy than career fields with less risk.  

This premise is based on equal equity among career fields.  Statistical techniques used to 

examine categorical data response variables are further explored.  This work better informs 

the examination of career field equity in the view of the corporate USAF.     

Determining relationships through categorical data 

USAF personnel risk assessments are quite challenging because while each career 

family or functional equity (FE) provides distinctive abilities as a means to achieve desired 
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effects, each career field8 is evenly valued by a governing body.  For example, the USAF is 

mandated to keep all career fields manned at certain historical averages or even 100% at 

certain units (Schiefer et al., 2007).   This makes prioritization of resources quite challenging 

because all career fields are theoretically evenly valued or weighted.  While governing 

guidance is to man all career fields at the maximum of the two conditions (i.e. 100% or 

historical world-wide average), is there an objective approach to validate that this guidance is 

being applied across the enterprises or functional equities?  In other words, is there any 

statistical evidence of corporate preference towards certain core functions (CFs) or FEs?  

Whether intentional or un-intentional, the existence of corporate preference could shed 

insight into how the USAF corporately views certain CFs or FEs.  If some CFs or FEs are 

better manned than others, there inherently exists a weight structure among CFs, FEs or even 

specific career fields that can be used for prioritization of resources.   Statistical techniques 

such as contingency table analysis, generalized linear modeling and odds-ratio analysis are 

ways to examine this phenomena. 

When we seek to compare estimated probability of events or examine if variables are 

independent, we can use contingency table analysis.  A way to categorize an experiment with 

categorical data from the same population is to construct a table of frequency counts called a 

contingency table.  Samples from the same population should yield equivalent contingency 

tables.  Contingency table analysis via hypothesis testing can be used to statistically examine 

associations or dependence between categorical variables from the same population (Haug, 

 

8 A career field is a subgroup of a career family.  For example, an analytical scientist is a subgroup of the 
acquisitions career family.    
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2019).  The main premise of the analysis is to determine independence between the variables.  

Each partition within the contingency table represents a cell.  Further, hypothesis test 

computations using contingency tables examine whether or not certain effects (i.e. 

relationship between row and column variables) are present.  That is to say, are the levels of 

the row variable differentially distributed over levels of the column variables?   

There are five steps to conduct contingency table analysis: 1) state the hypothesis; 2) 

identify the structure of the table; 3) determine the test statistic to create a rejection region; 4) 

analyze the data; and 5) interpret the results.  The identification of a hypothesis test 

examining independence between categorical variables can be stated as follows: 

𝐻𝐻0 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝐻𝐻𝐴𝐴 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

Once the hypothesis is identified, we can examine the structure of the contingency 

table to determine the associated distributions.  Theoretically, if one random variable (Y) is a 

response variable and the other an explanatory or fixed variable (X), then F(Y) has a 

probability distribution (Agresti, 2013).   Further, assuming Y is in columns, then the row 

totals represent the conditional probability: P (Y | X) or P (Y | X = x).  If both row and column 

variables are responses, then the cells represent outcomes for the joint distribution (X, Y).  

The row and column totals equate to subsets of a collection of random variables or marginal 

distributions. Table II-4 is a theoretical matrix, which depicts the general structure of a 

contingency table, where 𝑓𝑓𝑖𝑖𝑖𝑖 represents the probability (X, Y) occurs in a cell of column and 

row variables m and p respectively within row i and column j with sample size n.    

Therefore, the sample size n is equivalently written as �∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1

𝑝𝑝
𝑖𝑖=1 �.   
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Table II-4: Theoretical Contingency Table  

 Column Variable (m columns)  

1 ... j … m proportions 

 

 

 

Row 

Variable 

(p rows) 

1 
11f  

… 
jf1  

… 
mf1  

n

f
p

m

k
k

r

∑
== 1

1

1

 

              

i 
1if  

… 
ijf

 
… 

imf
 

n

f
p

m

k
ik

ri

∑
== 1

 

              

p 
1pf

 
… 

pjf
 

… 
pmf

 
n

f
p

m

k
pk

rp

∑
== 1

 

 proportions 

n

f

p
p

k
k

c

∑
=

=

1
1

1

 

… 

n

f

p
p

k
kj

cj

∑
=

=

1

 

… 

n

f

p
p

k
km

cm

∑
=

=

1
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Extrapolating these concepts, we derive an expected value 𝑒𝑒𝑖𝑖𝑖𝑖 under 𝐻𝐻0 as follows:  

𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑛𝑛 ∗ 𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝑐𝑐𝑐𝑐 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∗ (𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∗ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗𝑗𝑗ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
 

            = 𝑛𝑛 ∗  �
∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝
𝑖𝑖=1
𝑛𝑛

� ∗ �
∑ 𝑓𝑓𝑘𝑘𝑘𝑘𝑚𝑚
𝑗𝑗=1

𝑛𝑛
� = (𝑠𝑠𝑠𝑠) ∗ �𝑟𝑟𝑟𝑟𝑤𝑤 𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑠𝑠𝑠𝑠
� ∗ �𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑠𝑠𝑠𝑠
�  
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=
�∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚

𝑘𝑘=1 �∗�∑ 𝑓𝑓𝑘𝑘𝑘𝑘
𝑝𝑝
𝑘𝑘=1 �

𝑛𝑛
= (𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∗(𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝑠𝑠𝑠𝑠
         Eq. II-4 

 
where i and j represent the indices of the number of  p row and m column totals (sample 

sizes) respectively, from 𝑖𝑖 =  1, … .𝑝𝑝;  𝑗𝑗 =  1, … . ,𝑚𝑚.    

A popular approach to determine independence among category variables is to 

conduct a chi-square test for independence.   For example, fully manned (i.e. 100% or more 

manned) versus not fully manned.  Significance in this hypothesis test infers dependence.  

Non-significance infers independence.  The chi-square statistic used to reflect the difference 

between the observed value and the expected value is represented as: 

𝜒𝜒 = ��
(𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑖𝑖)2

𝑒𝑒𝑖𝑖𝑖𝑖

𝑚𝑚

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1

=  
(𝑓𝑓11 − 𝑒𝑒11)2

𝑒𝑒11
+

(𝑓𝑓12 − 𝑒𝑒12)2

𝑒𝑒12
+ ⋯+

(𝑓𝑓1𝑚𝑚 − 𝑒𝑒1𝑚𝑚)2

𝑒𝑒1𝑚𝑚
 

+ 
(𝑓𝑓21 − 𝑒𝑒21)2

𝑒𝑒21
+

(𝑓𝑓22 − 𝑒𝑒22)2

𝑒𝑒22
+ ⋯+

(𝑓𝑓2𝑚𝑚 − 𝑒𝑒2𝑚𝑚)2

𝑒𝑒2𝑚𝑚
+ ⋯+ 

+ (𝑓𝑓𝑝𝑝1−𝑒𝑒𝑝𝑝1)2

𝑒𝑒𝑝𝑝1
+ (𝑓𝑓𝑝𝑝2−𝑒𝑒𝑝𝑝2)2

𝑒𝑒𝑝𝑝2
+ ⋯+ �𝑓𝑓𝑝𝑝𝑝𝑝−𝑒𝑒𝑝𝑝𝑝𝑝�

2

𝑒𝑒𝑝𝑝𝑝𝑝
.                    Eq. II-5 

Eq. II-5 is a Pearson chi-square statistic summarized as follows (Agresti, 2013): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝜒𝜒2 = ∑ ∑ (𝑂𝑂−𝐸𝐸)2

𝐸𝐸
𝑚𝑚
𝑗𝑗=1

𝑝𝑝
𝑖𝑖=1                                    Eq. II-6 

where O and E9 are observed and expected values of the dataset, respectively.    

Recall, the null hypothesis is the row and column variables are independent, which 

implies the alternative hypothesis is the row and column variables are not independent.  As 

𝑒𝑒𝑖𝑖𝑖𝑖 ≥ 5 for every i and j, the chi-square test with level of significance (α) is as follows: 

 

9 For proper usage of the Pearson chi-square, each expected value needs be greater than or equal to 5.     
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𝐻𝐻𝑜𝑜: 𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙e  

        𝐻𝐻𝐴𝐴: 𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟e  

The rejection region is defined as: 

                                            𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝑜𝑜: 𝜒𝜒2 > 𝜒𝜒(𝑝𝑝−1)(𝑚𝑚−1),𝛼𝛼
2 = 𝐺𝐺2 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝑜𝑜: 𝜒𝜒2 ≤ 𝐺𝐺2, 

where 𝐺𝐺2 is computed from 𝑃𝑃�𝜒𝜒(𝑝𝑝−1)(𝑚𝑚−1),
2 >  𝜒𝜒(𝑝𝑝−1)(𝑚𝑚−1),𝛼𝛼

2 � = 𝛼𝛼.  Therefore,  the p-value is 

𝑃𝑃�𝜒𝜒(𝑝𝑝−1)(𝑚𝑚−1)
2 >  𝜒𝜒2�.   

Another approach to determine statistical significance between row and column 

variables is to compute a Likelihood Ratio Test (LRT).  There are many versions of LRTs to 

use as an estimator depending on the functional form of the data under examination.  The 

LRT is another goodness of fit test.  An alternative more complex function to determine a 

LRT is to use a logarithm function defined as (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 2013): 

−2𝑙𝑙𝑙𝑙𝑙𝑙.𝑅𝑅. = 2∑ ∑ �𝑒𝑒𝑖𝑖𝑖𝑖 ∗ ln �𝑒𝑒𝑖𝑖𝑖𝑖
𝑓𝑓𝑖𝑖𝑖𝑖
�� = 𝐺𝐺2𝐽𝐽

𝑗𝑗=1
𝐼𝐼
𝑖𝑖=1 .                           Eq. II-7 

If the LRT has a significant p-value (i.e. less than α), this infers a ‘more than chance’ 

relationship exists between the row and column variables.  Dividing this value by 2 yields 

similar results to the chi-square test statistic.   

Another method to examine relationships between row and column variables is via an 

odds ratio.   The odds ratio is one when the odds and probabilities of success are the same for 

each group.  Consider a 2x2 contingency table with two dichotomous sample sizes or classes: 

Group 1 is X and Group 2 is Y which is expressed in Table II-5.  
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Table II-5: Example of 2x2 Contingency Table  

Group\Outcome Successes Failure Total 

Group 1 �𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 𝑚𝑚 −�𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 m 

Group 2 �𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 𝑛𝑛 −�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 n 

Total �𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (𝑚𝑚 + 𝑛𝑛) − (�𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 𝑚𝑚 + 𝑛𝑛 

 

The odds ratio is the ratio of the odds for two groups:  OR = oddsX / oddsY.  The odds ratio 

can be expressed as (Conover, 1980): 

𝑂𝑂𝑂𝑂 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑋𝑋
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑌𝑌

=

∑ 𝑥𝑥𝑖𝑖
𝑝𝑝
𝑖𝑖=1

𝑚𝑚 − ∑ 𝑥𝑥𝑖𝑖
𝑚𝑚
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − ∑ 𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1

=
∑ 𝑥𝑥𝑖𝑖

𝑚𝑚
𝑖𝑖=1 (𝑛𝑛 − ∑ 𝑦𝑦𝑖𝑖

𝑛𝑛
𝑖𝑖=1 )

∑ 𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1 (𝑚𝑚 − ∑ 𝑥𝑥𝑖𝑖

𝑚𝑚
𝑖𝑖=1 )

.                            𝐄𝐄𝐄𝐄. 𝐈𝐈𝐈𝐈 − 𝟖𝟖 

An odds ratio of one suggests the condition or event under examination is equally likely to 

occur in both groups.  An odds ratio of greater than one suggests the event is more likely to 

occur in Group 1.  An odds ratio of less than one suggests the event is less likely to occur in 

Group 1.  The odds ratio must be be nonnegative, otherwise it is undefined.   

In determining the likelihood of an outcome (e.g. determining the likelihood of a 

functional equity or service core function being fully manned) the logistic function can be 

used.  Logistic regression analysis describes how a binary (success or fail) response variable 
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is associated with a set of explanatory variables (categorical or continuous).   The general 

form of a logistic function is 𝑓𝑓(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

, where the value of  𝑓𝑓(𝑧𝑧) is dependent on the 

value of  z (Chatterjee and  Chatterjee, 2010).  To obtain the logistic model from the logistic 

function we write z as a function of independent variables Xs and undetermined coefficients 

βs: 

𝑧𝑧 = 𝛼𝛼 + 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 = 𝛽𝛽𝒙𝒙 .                     Eq. II-9 

From this expression we write the logistic model as follows: 

𝑓𝑓(𝛽𝛽𝒙𝒙) = 1
1+𝑒𝑒−(𝛼𝛼+𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛) =  𝑒𝑒(𝛼𝛼+𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛)

1+𝑒𝑒(𝛼𝛼+𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛)          Eq. II-10 

The general logistic function is 

𝑃𝑃(𝑥𝑥) = 𝑝𝑝(𝑥𝑥) = 𝑒𝑒
( (𝛼𝛼+𝛽𝛽𝛽𝛽)

(1+𝑒𝑒(𝛼𝛼+𝛽𝛽𝛽𝛽))
)

= 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
1+𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

                                Eq. II-11 

where x is the independent variable and e is the exponential function, and p(x) is the 

probability of a functional equity or core function being fully manned.    

 A relationship exists between the logistic function and the odds ratio.  All formulae 

and theory are adapted from Agresti’s Categorical Data Analysis text (Argresti, 2013).   The 

outcome variable of the logistic function is the log odds ratio via logistic transformations 

(logits), which are computed and compared among CFs and FEs.  The logistic odds is 

represented as 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑝𝑝(𝑥𝑥)] =  𝑙𝑙𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) =  𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝(𝑥𝑥)
1−𝑝𝑝(𝑥𝑥)� =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛           Eq. II-12 

where 𝛽𝛽0 is the intercept, 𝛽𝛽𝑛𝑛 (the parameter) is the log odds ratio of one unit increase in an 

independent variable X whereas e(β) is the odds ratio of one unit increase in X (Agresti, 

2013). 
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 The log-odds interpretation is a function of the logit distribution.  We can motivate 

the logit model in terms of the odds of success vs. failure, which is given by: ( 𝑝𝑝
1−𝑝𝑝

), where p 

is a probability of an event occurrence.   The logistic transformation (logit) is the logarithm 

of the odds.  Hence, model estimates from the logit are properly referred to as ‘log-odds’ 

estimates.  The appeal of applying a logistic function 𝑓𝑓(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

   to the data from a 

personnel manning perspective is due to the following reasons: 

1. Estimates always range between 0 and 1 in personnel being either fully manned or 

not.  Such a probability provides an estimate of the risk a CF or FE will not be 

fully manned as required. 

2. It has an S-shaped curve, which indicates for low values of z the risk of not being 

fully manned remains minimal, until some threshold is reached.  Then the risk 

rises rapidly as z increases, and then again reaches its asymptotic limit and 

remains high once z gets large enough (Stanford Logistic Regression Tutorial, 

2018). 

To obtain estimates of odds and odds ratio from logistic regression we need to rewrite 

the logistic model in the logit form.  By definition, if p is the probability that an event will 

occur and is represented as follows: 

• Odds are defined as 𝑝𝑝
1−𝑝𝑝

, i.e. probability that event will occur divided by the 

probability that the event will not occur or  𝑝𝑝
𝑞𝑞
. 

• The logit of p is as follows:  
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Logit (𝑝𝑝) = 𝑙𝑙𝑙𝑙 𝑝𝑝
1−𝑝𝑝

= ln(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜).                               Eq. II-13 

The logistic model in terms of a conditional probability of being fully manned or not (F =1 or 

0) is denoted as: 

𝑃𝑃(𝐹𝐹|𝑋𝑋1,𝛽𝛽𝒙𝒙) = 𝟏𝟏
𝟏𝟏+𝒆𝒆𝜷𝜷𝜷𝜷

                                          Eq. II-14 

1 − 𝑃𝑃(𝐹𝐹|𝑋𝑋1,𝛽𝛽𝒙𝒙) =
𝒆𝒆−(𝜷𝜷𝜷𝜷)

𝟏𝟏 + 𝒆𝒆−(𝜷𝜷𝜷𝜷) 

∴ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑃𝑃(𝐹𝐹|𝑋𝑋1,𝛽𝛽𝒙𝒙)

1 − 𝑃𝑃(𝐹𝐹|𝑋𝑋1,𝛽𝛽𝒙𝒙) =
𝟏𝟏

𝒆𝒆−(𝜷𝜷𝜷𝜷) = 𝒆𝒆𝜷𝜷𝜷𝜷 

   ∴ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃) = 𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑙𝑙𝑙𝑙 𝑝𝑝
1−𝑝𝑝

= 𝑙𝑙𝑙𝑙(𝒆𝒆𝜷𝜷𝜷𝜷)                      Eq. II-15 

Thus, the logit form of the logistic model yields an expression for the log odds of being fully 

manned for a CF or FE with a specific set of independent variable Xs.  Therefore, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑋𝑋1� − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑋𝑋0� = 𝛽𝛽1, where, 𝛽𝛽1 represents the change in logistic odds that would 

result from one unit change in independent variable X.   

For odds ratio development, we know from algebra that 𝑙𝑙𝑙𝑙(𝑏𝑏) − 𝑙𝑙 𝑛𝑛(𝑎𝑎) = 𝑙𝑙𝑙𝑙(𝑏𝑏
𝑎𝑎

).  

Therefore,  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑋𝑋1� − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑋𝑋0� = 𝑙𝑙𝑙𝑙
𝑃𝑃𝑋𝑋1

(1−𝑃𝑃𝑋𝑋1)
𝑃𝑃𝑋𝑋0

(1−𝑃𝑃𝑋𝑋0)

                              Eq. II-16 

= 𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑋𝑋1)
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑋𝑋0)

= 𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝛽𝛽1.                            Eq. II-17 

Therefore, 𝑒𝑒𝛽𝛽1 = 𝑒𝑒𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑂𝑂𝑂𝑂.  

Generalized linear models (GLMs) are a broad class of models that include 

categorical response variables (Agresti, 1999).  There are three components that are common 

to all GLMs: 
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• Random component; 

• Systematic component; and 

• Link function. 

The random component refers to the probability distribution of the response Y.  We 

observe independent random variables 𝑌𝑌1,𝑌𝑌2, . . . ,𝑌𝑌𝑁𝑁.  The random variables Yi, I = 1, 2, . . . ,𝑁𝑁, 

have expected values µi, I = 1, 2, . . . ,𝑁𝑁.   The systematic component involves the explanatory 

variables 𝑥𝑥1, 𝑥𝑥2 ,· · · , 𝑥𝑥𝑘𝑘. as linear predictors: 

𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +   𝛽𝛽2𝑥𝑥2  + · · ·  +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘.                                  Eq. II-18 

The link component of the GLM ‘links’ the random and systematic components.   It 

determines how the mean µ = E(Y) relates to the explanatory variables in the linear predictor 

through specifying a function 𝑔𝑔(µ) and is denoted as:  

                                   𝑔𝑔(µ) = 𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2  + · · ·  +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 .                                 Eq. II-19 

For the logistics model, the link function is: 

𝑙𝑙𝑙𝑙[ 𝜋𝜋(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘)
1−𝜋𝜋(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘)] =𝑔𝑔(𝜇𝜇).                                              Eq. II-20 

The observations Y1, Y2, . . ., YN  have a binomial distribution (the random component). 

Thus, for logistic regression, the link function can be rewritten as ln( 𝜇𝜇
1−𝜇𝜇

) and is called the 

logit link.   

When the model is fit with only an intercept (i.e. no predictors), the value of the 

likelihood equation (the probability of the data) at its maximum value translates to a  

-2LogLikelihood (-2LogL).  If we subtract the -2LogL of a reduced model (i.e. intercept 

only) from the -2LogL of a full model (i.e. intercept and k predictors), this has a chi-square 

distribution with k degrees of freedom under the null hypothesis (i.e. βs = 0).  If the null 
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hypothesis is rejected, at least one of the k predictors is significant (i.e. at least one of the β ≠ 

0), which suggests at least one parameter is statistically significant.   

Popular variation metrics such as R-square and MSE are not very helpful in 

examining model performance when using logistic regression.  Misclassification rates and 

Area Under the Curve (AUC) metrics are two of several model performance indicators used 

to assess logistic regression model performance.  The complement of a misclassification rate 

is a classifier rate.  A classifier rate is computed from a confusion matrix.  A confusion 

matrix is expressed in terms of true and false positives and negatives, respectively.   Table II-

6 provides a general confusion matrix.   

Table II-6: A confusion matrix.   

 Matrix 

Actual 
Success 

Positive 
(Success) 

Negative 
(Failure) 

Successes a b 

Failures c d 

 

Components of a confusion matrix are as follows: 

• a is the number of successes correctly classified. 

• b is the number of successes misclassified as failures. 

• c is the number of failures misclassified as successes. 

• d is the number of failures correctly classified. 

Therefore, the classifier rate (𝐴𝐴𝑗𝑗) defined over all classification errors is represented as: 

𝐴𝐴𝑗𝑗 = 𝑎𝑎+𝑑𝑑
𝑎𝑎+𝑏𝑏+𝑐𝑐+𝑑𝑑

 .                                                  Eq. II-21 
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Further, classifier performance can also be distinguished by true and false positives 

𝑎𝑎+and 𝑎𝑎− respectively denoted as:   

𝑎𝑎+ = 𝑎𝑎
𝑎𝑎+𝑏𝑏

;   𝑎𝑎− = 𝑐𝑐
𝑐𝑐+𝑑𝑑

 .                                       Eq. II-22 

True positives are often referred to as sensitivity and false positives are referred to as (1- 

specificity), where specificity represents the true failure or negative rate (Sensitivity and 

Specificity, 2018).  

A common approach to visually represent tradeoffs between true and false positives is 

to construct Receiver Operating Characteristic (ROC) curves (Karimollah, 2013).  ROC 

curves are plots of the rate of correctly classified true positives (𝑎𝑎+) with respect to the 

percentage of incorrectly classified false positives (𝑎𝑎−).   JMP 12 (used for part of this 

research) software computes specificity and sensitivity values to build ROC curves and 

establishes a tangential line to the most optimal position of the ROC curve to build an AUC 

or ‘goodness of fit’ metric.  AUCs are expressed as values within the lower and upper bounds 

of zero and one, respectively.   AUC interpretations are subjective, but one common 

interpretation is any value greater than 0.50 suggest modeling predictions have more than a 

‘chance’ of being accurate (Narkhede, 2018).   

Given the restrictions regarding the way USAF personnel are viewed and managed, 

we can prioritize personnel capability by risk.  That is to say, if career field A has greater risk 

than career field B, career field A should receive more prioritization with regards to 

resources than career field B.  This portion of the chapter focuses on objectively computing 

personnel risk by core function and functional equity.  The next chapter seeks to add another 

dimension to the assessment of personnel risk.   
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Organizational Efficiency 
 

Is there a strong correlation (positive or negative) between risk and efficiency?  This 

work seeks to add another dimension to the assessment of personnel risk.  We seek to 

ascertain if efficiency should be considered a component of assessing risk?  That is to say, 

the more organizational efficient, the less organizational risk, and conversely, the less 

organizational efficient, the more organizational risk.   For example, what if senior decision 

leaders knew if current management of manning resources of one organization was subpar 

compared to like organizations?  Should similar organizations with similar personnel 

makeups and missions be measured with regards to personnel utilization?  If so, could these 

efficiency comparisons be statistically compared to risk and inferences gained to help senior 

decision leaders and planners better advocate and prioritize resources?  We argue before 

personnel risk can be more accurately assessed, efficiency should be examined.   

Figure II-8 is a notional schematic of how ACS efficiency could be assessed as it 

relates to personnel impact in order to maintain, sustain and deliver capability.   The arcs are 

directed from the top (Core Capability) to bottom (Career Fields).  In other words, to what 

extent with regards to risk can a core capability (e.g. Research & Development) conduct its 

steady state operations to support the warfighter?  The core capability is measured by tasks 

which have sub and sub-sub tasks.  These tasks are linked to Program Element Codes (PECs) 

that are linked to Air Force Specialties (AFS) or career fields.   
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Figure II-8: Notional ACS Risk Assessment (Personnel Centric) node structure 

If outputs could be obtained at the various tasks, subtasks, and sub-sub task levels, a 

technique entitled Data Envelopment Analysis (DEA) may be useful in examining potential 

personnel efficiency before assessing risk.    

DEA is an aggregation technique that compares unit (to include units without price 

points) (Han and Sohn, 2011) performance by examining the ratio of weighted outputs and 

inputs (Colbert et al., 2000).   Fundamentally, DEA requires m inputs, s outputs, k 

organizations and a sample size N to ultimately measure efficiency (Subhash, 2004).   

A series of related DEA techniques were published by multiple authors in the early 

1950s [(Debreu, 1951; Shephard, 1953)].  The objective of DEA is to produce the maximum 

quantity of output from a specific input bundle (Subhash, 2004).  The benchmark is 

determined by the comparison of the actual output produced with the benchmark quantity 

yielding a measure of technical efficiency between Decision Making Units (DMUs) 

(Subhash, 2004).   A Decision Making Unit (DMU) is technically efficient (TE) if it can 

produce the maximum possible output from its capacity (Atkinson and Cornwell, 1994).  A 

DEA formulation of technical efficiency is (Huguenin, 2012): 



 

59 

 

𝑇𝑇𝑇𝑇𝑘𝑘 = 𝑧𝑧 = ∑ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1
∑ 𝑽𝑽𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

 ,                                              Eq. II-23 

where TEk is the technical efficiency of an observed DMU k using m inputs to produce s 

outputs.  Yrk represents the quantity of output r produced by DMU k.  Xik represents the 

quantity of input i consumed by DMU k.  Ur and Vi are weights of the output r and input i 

respectively.  DEA modeling requires prerequisite knowledge of the following properties: 

returns to scale, orientation, model type and slack.  Returns to scale (RTS) refers to the rate 

by which an output changes if an input is changed by the same factor (OECD, 2001).   

DEA variants can accommodate two foundational types of returns to scale: constant 

and variable [(Charnes et al., 1978; Banker et al., 1984)].  The constant return to scale or 

(CRS) model created by Charnes, Cooper and Rhodes (CCR) reflects the ability of a DMU to 

maximize outputs from a given set of inputs (Mogha et al., 2015).  CRS can also be 

interpreted as overall technical efficiency (OTE).  CRS models are appropriate when all 

DMUs under examination have a linear relationship i.e. the outputs increase at the same rate 

of inputs (Ozcan, 2014).  The Banks, Cooper and Charnes (BCC) or Variable returns to scale 

(VRS) model is more appropriate when all organizations (DMUs) under comparison do not 

have the same rate of change with regards to proportion of outputs to inputs (Banks et al., 

1984).  VRS models determine pure technical efficiency (PTE).  For DEA CRS and VRS 

models, scale efficiency (SE) is computed as the ratio of respective CRS and VRS efficiency 

values (Alvarez et al., 2016) regardless of orientation (i.e. input or output).   OTE, PTE and 

SE are often referred to as relative efficiencies due to computation distinctions (Mogha et al., 

2015).   
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Another DEA property is orientation.  There are generally three types of DEA 

orientation: input, output (Charnes et al., 1978) and directional distance (Chambers et al., 

1996).  Input oriented (io) models measure how much an organization can decrease its inputs 

(e.g. manning) to achieve given outputs such as sales or generated combat sorties, compared 

to its most efficient peers.  Output oriented (oo) models reverse the idea and identify how 

much additional output should be possible for given inputs, again relative to the 

organization’s most efficient peers (Jarzebowski and Bezat-Jarzebowski, 2014).   For 

completeness, the directional distance DEA model is briefly discussed.  Directional distance-

type models are universally oriented, i.e. there is no need to distinguish between input or 

output orientation (Toloo and Tavana, 2017).  Directional distance models are typically used 

to distinguish between desirable and undesirable variables (Cheng and Zervopoulos, 2012).   

While the majority of inputs and outputs for this research are not considered interchangeable, 

an excursion is discussed in Chapter V illustrating an application of the said orientation.   

A third DEA property involves model type of which this study considers two: radial 

(Charnes et al., 1978) and additive (Lovell and Pastor, 1995) models.  Radial DEA models 

require that all inputs be contracted and/or outputs expanded from a center (e.g. origin) or 

radius.  These models are the first of several explored to compare and contrast DMU 

efficiency.   

The CRS and VRS DEA model solutions identify efficiency frontiers.  All DMUs 

which fall on the efficient frontier (i.e. CRS or VRS) are said to be technically efficient (i.e. 

there are no shortages or overages of the inputs/outputs).   These shortages or overages are 

known as negative or positive slack values respectively.  DMUs with zero slack set the 

standard or ‘benchmark’ for other DMUs that are spatially located some distance from the 
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efficiency frontier.  A practical interpretation is that DMUs operating below the efficiency 

frontier are deemed to have potential for performance improvement (Huguenin, 2012).   All 

of the said models use two-stage10 optimization to compute slack variables.  For output 

orientation DEA models, the first stage (envelopment or primal form) of optimization 

maximizes the ratio of weighted outputs to weighted inputs while assuming this ratio is less 

than or equal to unity for all DMUs (Cook and Zhu, 2005).  The second stage (multiplier or 

dual form) of DEA optimization minimizes inputs radially to maximize outputs levels (Cook 

and Zhu, 2005).    

The other DEA model type examined in this work is an additive model (AM) or 

slacked based model (SBM).  The major difference between the radial and additive model is 

the way by which technical efficiency is computed.  DEA additive models simultaneously 

consider positive and negative slack variables (Charnes et al., 1985) in order to determine 

technical efficiency.   

The summation of the weights of the ratio of DMU outputs and inputs are used to 

determine managerial implications (Bowlin, 1985).  There are differing managerial 

implications depending on DEA decreasing or increasing RTS.  Decreasing or non-increasing 

RTS (DRS) suggest DMU reduction in size (e.g. base reduction in manpower).  Non-

decreasing or increasing RTS or (IRS) infers the DMU is being mismanaged to an extent as 

resources are being underutilized [(Lu, 2010); (Cook and Zhu, 2005)].  The aforementioned 

types of managerial implication are further explored in the analysis portion of this study. 

 

10 Two stage DEA optimization refers to first: optimizing the DMUs for model type (e.g. radial) efficiency and 
second: computing the possible input excesses and output shortfalls or slacks to determine technical 
efficiency (Alvarez et al., 2016).    
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A brief exposition of DEA terminology is provided.  Specific DEA modeling formulae now 

follow in the form of non-linear and linear programs succeeded by applications.         

Models 

CCR 

Farrell (1957) published a nonlinear program formulation of DEA.  A fractional 

program maximizing technical efficiency of the observed DMU k is stated below to include 

two constraints (Huguenin, 2012): 

                                                                                 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1
∑ 𝑽𝑽𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

                                       Eq. II-24 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 

∑ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1
∑ 𝑽𝑽𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

≤ 1;   𝑗𝑗 = 1, …𝑁𝑁                                        Eq. II-25 

 𝑼𝑼𝑟𝑟 ,𝑽𝑽𝑖𝑖 > 0;   ∀𝑟𝑟= 1, … , 𝑠𝑠;    ∀𝑖𝑖= 1, … ,𝑚𝑚.                          Eq. II-26 

Eq. II-24 is the maximum technical efficiency of an observed DMU k using m inputs 

to produce s outputs.  Yrk represents the quantity of output r produced by DMU k.  Xik 

represents the quantity of input i consumed by DMU k.  Ur and Vi are optimal weights of the 

output r and input i respectively.  Eq. II-25 requires that the ratio of weighted outputs and 

inputs for each of the N DMUs cannot exceed one.  Eq. II-26 restricts the weighted outputs 

and inputs to positive values.  DMU k is CCR-efficient if 𝑇𝑇𝑇𝑇𝑘𝑘∗= 1, and there exists at least 

one optimal set of weighted input and output bundles (𝑼𝑼𝑟𝑟∗ ,𝑽𝑽𝑖𝑖∗), otherwise, DMU k is CCR-

inefficient (Cooper, 2007).   After algebraic manipulation, we can reformulate the nonlinear 
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fractional program as an LP (primal  form11-oo) and obtain the following CRS model 

(Cooper et al., 2007):        

min 𝑧𝑧 =  ∑ 𝑽𝑽𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1                                                       Eq. II-27 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 

∑ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1 = 1                                                             Eq. II-28 

  ∑ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1 − ∑ 𝑽𝑽𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 ≤ 0;  ∀𝑗𝑗= 1, … ,𝑁𝑁                                   Eq. II-29 

𝑼𝑼𝑟𝑟 ,𝑽𝑽𝑖𝑖 ≥ 0;   ∀𝑟𝑟= 1, … , 𝑠𝑠;    𝑖𝑖 = 1, … ,𝑚𝑚.                                      Eq. II-30 

Eq. II-27 (objective function) minimizes the quantity of weighted bundle input Vi 

consumed by DMU k for all m inputs.   Eq. II-28 is a constraint that ensures the quantity of 

weighted output(s) Ur consumed by k DMUs for all s outputs sum to one.  Eq. II-29 is a 

constraint that ensures the difference between the quantity or bundle of weighted outputs Ur 

consumed by k DMUs for all s outputs, and the quantity of weighted inputs Vi consumed by j 

DMUs to the total amount of DMUs for all m inputs, is less than or equal to zero.   Eq. II-30 

constrains the weighted bundled outputs and inputs to positive values.     

The dual of the preceding formulation is as follows: 

max𝜃𝜃                                                                   Eq. II-31 

𝑆𝑆𝑢𝑢𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡: 

∑ 𝑿𝑿𝑖𝑖𝑖𝑖𝜆𝜆𝑗𝑗 = 𝑿𝑿𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1                                                         Eq. II-32 

  ∑ 𝒀𝒀𝑟𝑟𝑟𝑟𝜆𝜆𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 𝜃𝜃 ∗ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟                                                  Eq. II-33 

𝑼𝑼𝑟𝑟 ,𝑽𝑽𝑖𝑖 ≥ 0;   ∀𝑟𝑟= 1, … , 𝑠𝑠;    𝑖𝑖 = 1, … ,𝑚𝑚;    𝜆𝜆𝑗𝑗 ≥ 0;   ∀𝑗𝑗= 1, … ,𝑁𝑁                Eq. II-34 

 

11 For more information on dual/primal LP relationships, reference ‘DEA in the Black Box’ (Charnes et al., 
1994).   
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Eq. II-31 is the objective function, which is to maximize TE of DMU k without the 

consideration of slack variables.  Eq. II-32 constrains the quantity of input i consumed by 

DMU k to equate to the sumproduct of the quantity of output r produced by DMU k and a 

non-negative vector 𝜆𝜆𝑗𝑗.  𝜆𝜆𝑗𝑗 is introduced as a non-negative transposed vector  

(𝜆𝜆𝑗𝑗 = (𝜆𝜆1, … 𝜆𝜆𝑁𝑁)𝑇𝑇.   The 𝜆𝜆𝑗𝑗s represent the set of optimal weights for each base.  The 

summation of each base’s weighted set determines the RTS (i.e. decreasing, constant or 

increasing scale).  Values greater than one are considered DRS; values less than one are 

considered IRS and values equal to one are considered CRS (Dario and Simar, 2007).   

Eq. II-33 constrains the sumproduct of the quantity of output r produced by DMU j 

and a non-negative vector 𝜆𝜆𝑗𝑗 to equate to a maximized TE of DMU k coupled with the 

quantity of output r produced by DMU k consumed by k DMUs for all s outputs.  Eq. II-34 

constrains the weighted bundled outputs and inputs as well as optimal weights to positive 

values.     

Recall, TEk is the technical efficiency of an observed DMU k using m inputs to 

produce s outputs.  Yrj represents the quantity of output r produced by DMU j.  Xij represents 

the quantity of input i consumed by DMU j.  TEk will result in a value [0, ∞), where 1 

represents benchmarked DMU j.  Values greater than or less than 1 are considered 

technically (radially) inefficient.  The following CCR model is formulated with slack 

variables.   
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CCR (with slacks) 

A modified version of the CCR (dual form-oo) formulation (Eq. II-31) incorporates 

input and output slack variables into the calculation of DMU efficiency (Cook and Zhu, 

2005):   

𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑘𝑘 + 𝜀𝜀 ∑ 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠
𝑟𝑟=1 + 𝜀𝜀 ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1                                        Eq. II-35 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 

 ∑ 𝜆𝜆𝑗𝑗𝒀𝒀𝑟𝑟𝑟𝑟𝑁𝑁
𝑗𝑗=1 − 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇𝑘𝑘𝒀𝒀𝑟𝑟𝑟𝑟;   𝑟𝑟 = 1, … 𝑠𝑠                                      Eq. II-36 

∑ 𝜆𝜆𝑗𝑗𝑿𝑿𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1 = 𝑿𝑿𝑖𝑖𝑖𝑖;   𝑖𝑖 = 1, …𝑚𝑚                                         Eq. II-37 

       𝜆𝜆𝑗𝑗 , 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0;   ∀𝑗𝑗= 1, … ,𝑁𝑁; 𝑟𝑟 = 1, … , 𝑠𝑠; 𝑖𝑖 = 1, … ,𝑚𝑚.                      Eq. II-38 

The quantity 𝜀𝜀 represents a small positive number and 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 represent output 

and input slack variables, respectively.  TEk will result in a value [1, ∞), where 1 represents 

benchmarked DMU j.  𝜆𝜆𝑗𝑗’s are optimal weights for each base. Values greater than 1 are 

considered technically inefficient.   

BCC (with slacks) 

Some DEA variations differ by scaling properties (Banker et al., 1984). The Banker, 

Cooper and Charnes output oriented (BCC-oo) LP (dual form) formulation is:  

𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑘𝑘 + 𝜀𝜀 ∑ 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠
𝑟𝑟=1 + 𝜀𝜀 ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1                                          Eq. II-39 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 

∑ 𝜆𝜆𝑗𝑗𝒀𝒀𝑟𝑟𝑟𝑟𝑁𝑁
𝑗𝑗=1 − 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇𝑘𝑘𝒀𝒀𝑟𝑟𝑟𝑟;   𝑟𝑟 = 1, … 𝑠𝑠                                   Eq. II-40 

∑ 𝜆𝜆𝑗𝑗𝑿𝑿𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛𝑁𝑁
𝑗𝑗=1 = 𝑿𝑿𝑖𝑖𝑖𝑖;   𝑖𝑖 = 1, …𝑚𝑚                                      Eq. II-41 

∑ 𝜆𝜆𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 1                                                         Eq. II-42  

       𝜆𝜆𝑗𝑗 , 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0;   ∀𝑗𝑗= 1, … ,𝑁𝑁; 𝑟𝑟 = 1, … , 𝑠𝑠; 𝑖𝑖 = 1, … ,𝑚𝑚.                      Eq. II-43 
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The only difference between the CRS and BCC-oo LP formulations is that the BCC 

model scaling constraint (Eq. II-42) replaces the upper bound inequality with an equality 

(Huguenin, 2012).   TEk will result in a value [1, ∞), where 1 represents benchmarked DMU 

j.  Values greater than 1 are considered technically (radially) inefficient.   

Weighted Additive Model (WAM-VRS) 

There are several versions of weighted additive models (WAM-VRS), but we use the 

Lovell and Pastor weighted technical efficiency algorithm.  For additive models, technical 

efficiency is based solely on input excesses and output shortages (Alvarez et al., 2016).  In 

other words, the model considers total slack of the inputs and outputs when arriving at a 

point with respect to the efficient frontier (Wen, 2015).  Further, the goal of the function is to 

maintain technical efficiency while simultaneously maximizing feasible decreases and 

increases in inputs and outputs respectively.  

The WAM-VRS LP formulation is:  

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝜔𝜔𝒚𝒚𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠
𝑟𝑟=1 + ∑ 𝜔𝜔𝒙𝒙𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1                                              Eq. II-44 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 

∑ 𝜆𝜆𝑗𝑗𝒀𝒀𝑟𝑟𝑟𝑟𝑁𝑁
𝑗𝑗=1 − 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒀𝒀𝑟𝑟𝑟𝑟;   𝑟𝑟 = 1, … 𝑠𝑠                                      Eq. II-45 

         ∑ 𝜆𝜆𝑗𝑗𝑿𝑿𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1 = 𝑿𝑿𝑖𝑖𝑖𝑖;   𝑖𝑖 = 1, …𝑚𝑚                                       Eq. II-46 

      ∑ 𝜆𝜆𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 1                                                           Eq. II-47  

       𝜆𝜆𝑗𝑗 , 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0;   ∀𝑗𝑗= 1, … ,𝑁𝑁; 𝑟𝑟 = 1, … , 𝑠𝑠; 𝑖𝑖 = 1, … ,𝑚𝑚.                      Eq. II-48 

Two differences between the slack-based output-oriented models and WAM-VRS 

formulations are:  the WAM model objective function (Eq. II-44) does not include technical 
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efficiency, and output/input weight vectors (𝜔𝜔𝒚𝒚,𝜔𝜔𝒙𝒙) are introduced as a Measure of 

Inefficiency Proportions (MIP) (Alvarez et al., 2016).  The MIP is defined as: 

�𝜔𝜔𝒚𝒚,𝜔𝜔𝒙𝒙� = 1
𝒚𝒚0

, 1
𝒙𝒙0

                                                       Eq. II-49 

where x and y are minimum observed values (Alvarez et al., 2016).   TEk will result in a value 

[0, ∞), where 0 represents benchmarked DMU j.  Values greater than 0 are considered 

technically (radially) inefficient.   

Superefficient Additive Model (SAM-VRS) 

There are cases where multiple DMUs within a sample size are considered equally 

technically efficient.  A methodology to provide further distinction between efficient DMUs 

is to use a superefficiency model.  A superefficient DEA model is obtained when a DMU 

under evaluation is excluded from the reference set (Alvarez et al., 2016).  Removal of 

efficient DMUs from the reference set shrinks the production set, which allows efficient 

DMUs to become superefficient and yield scores greater 100%.  If DEA efficiency results 

from previous model application (e.g. WAM, which uses all DMUs versus Superefficient 

Additive Model (SAM) where exclusion of referenced DMU is computed) remain 

unchanged, then these DMUs are said to be inefficient while scores that change are 

considered superefficient (Osman et al., 2014).   

The basic function of a superefficiency model determines the maximum percentage 

change which is feasible such that the DMU remains efficient (Vescovi and Favaretto, 2002).   

Essentially, the observed output exceeds what is necessary for a DMU to be considered 

efficient relative to other DMUs in the sample (Subhash, 2004).  In other words, assuming 

more than one DMU is efficient; the efficient DMU with greater capacity for reduction of is 
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more super-efficient than the other DMUs.  The model is unit and translation invariant (also 

for slacks) for the VRS specification.  That is to say, input or output data may thus assume 

negative or zero values (Lovell and Pastor, 1995).  Thus, superefficiency allows measuring 

DMU efficiency beyond 100% relative to peers.  There are several versions of the 

supefficiency model, but we use the function in the MATLAB Toolbox (Andersen and 

Petersen, 1993).    The SAM-VRS LP formulation is:  

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝜔𝜔𝒚𝒚𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠
𝑟𝑟=1 + ∑ 𝜔𝜔𝑥𝑥𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1                                             Eq. II-50 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 

∑ 𝜆𝜆𝑗𝑗𝒀𝒀𝑟𝑟𝑟𝑟𝑁𝑁−1
𝑗𝑗=1,≠𝑟𝑟𝑟𝑟𝑟𝑟.  𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝒀𝒀𝑟𝑟𝑟𝑟;   𝑟𝑟 = 1, … 𝑠𝑠                                  Eq. II-51 

∑ 𝜆𝜆𝑗𝑗𝑿𝑿𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁−1
𝑗𝑗=1,≠𝑟𝑟𝑟𝑟𝑟𝑟.  𝐷𝐷𝐷𝐷𝐷𝐷 ≥ 𝑿𝑿𝑖𝑖𝑖𝑖;   𝑖𝑖 = 1, …𝑚𝑚                                 Eq. II-52 

∑ 𝜆𝜆𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 1                                                          Eq. II-53  

      𝜆𝜆𝑗𝑗 , 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0;   𝜔𝜔𝒚𝒚,𝜔𝜔𝑥𝑥 > 0; ∀𝑗𝑗= 1, … ,𝑁𝑁; 𝑟𝑟 = 1, … , 𝑠𝑠; 𝑖𝑖 = 1, … ,𝑚𝑚.  Eq. II-54 

The quantity 𝜔𝜔 represents in Eq. II-50 a small positive number and 𝑠𝑠𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 represent 

output and input slack variables.  Note Eq. II-50 are Eq. II-44 are equivalent objective 

functions.   

The constraints between the two objective functions are what differ.  Eq. II-51 

constrains the quantity of output r produced by DMU k to be greater than or equal to the 

sumproduct of the quantity of output r produced by DMU j for all DMUs besides the 

referenced DMU, and a non-negative vector 𝜆𝜆𝑗𝑗.   Eq. II-52 constrains the quantity of input i 

produced by DMU k to be less than or equal to the sumproduct of the quantity of input i 

produced by DMU j for all DMUs besides referenced DMU, and a non-negative vector 𝜆𝜆𝑗𝑗.   

Eq. II-53 constrains the summation of the optimal weights for all bases to sum to one.  Eq. II-
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54 restricts the weighted bundled outputs and inputs as well as optimal weights to positive 

values.     

A DMU is regarded as super-efficient if score exceeds 100% when measured against 

a production possibility set constructed from the input-output data of all other firms in the 

sample (Subhash, 2004).  TEk will result in a value [0, ∞), where a value equal to 0 represents 

a benchmarked DMU j and is considered technically efficient.  The reader should know there 

are instances where feasibility12 can not be obtained.   

Application 

 This research uses known mathematical forms to examine and assess complex 

organizational risk and efficiency using personnel data.  A literature survey of DEA 

published papers in journals indexed by the Web of Science database from 1978 through 

August 2010 asserted almost two-thirds were application-based, while the remaining one-

third was theoretical (Liu et al., 2013).  The phenomena under investigation for this research 

is application-centric versus theoretical.  Among application-based articles, the top-five 

industries addressed were:  banking, health care, agriculture and farm, transportation, and 

education.  Of almost 5,000 articles examined, the military industry represented less than 20 

of the total sample size or approximately 0.4% (Liu et al., 2013).  Highlights from the leading 

industries of published application-based DEA articles are discussed. 

A leading cited article applying the DEA CCR model compares operating efficiencies 

among 14 branch offices of a savings bank (Sherman and Gold, 1985).  Sherman and Gold 

 

12 Infeasibility of a superefficient model can occur if an efficient DMU under evaluation cannot reach the frontier formed by the rest of 
DMUs via increasing the inputs or decreasing the outputs, depending on the orientation of the model (Mehdiloozad and Roshdi, 2019). 
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argue DEA results provide meaningful insights regarding efficiency otherwise not available 

from other techniques.  Further, a study compared 174 Italian banks and concluded efficiency 

is best explained by productivity specialization, size, and location (Favero and Papi, 1995).  

DEA was used to examine activity-based accounting with cost as an input and performance 

as an output of 250 branches in a large Mideast bank (Kantor and Maital, 1999).  For health 

care, efficiency among 3000 urban government and non-government hospitals is compared 

(Ozcan and Base 5, 1993).  The results assert government hospitals are more efficient.  As far 

as agriculture and farming, Australian dairy farms are evaluated to examine efficient 

irrigation systems (Fraser and Cordina, 1999).  Among the transportation industry, 

operational performance is compared using 15 international airlines to better understand 

strategic factors of profitability (Schefczyk, 1993).  Worldwide public transportation 

performance in metropolitan areas and small cities is examined and results show Singapore, 

London, San Francisco, and Chicago are considered scaled efficient (Chu et al., 1992).  DEA 

is used in the education industry to measure the efficiency of Israeli academic departments at 

Ben-Gurion University (Sinuanystern et al., 1994).  Lastly, DEA is applied to economics 

graduates from United Kingdom universities to evaluate teaching efficiency; results were 

inconclusive (Johnes, 2006).  While relatively a large amount of DEA literature exist for 

several industries, there appears to be a dearth of military-centric papers.  One aspect of this 

research seeks to add analytical knowledge to the said domain.    

Conclusion 

Chapter II explored known mathematical functions, distributions and techniques to 

examine personnel risk and efficiency.   While structured to accommodate the ACS core 
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function, this problem resolution framework can be extended to all USAF core functions.  

Four application-based approaches are examined to assess strategic risk from a personnel 

perspective.  The first approach uses logistic regression, odds-ratios, relative risk and 

contingency table analyses to assess the 12 core functions in the USAF from a manning 

perspective.  A core function personnel manning comparison has never been conducted, and 

thus is the first time explored.  The second approach uses Data Envelopment Analysis to 

explore efficiency using personnel data.   The third approach uses normal and sigmoid 

functions to compute probability of failure of not being manned (among USAF career fields) 

at required levels and the respective impact.  These two functions are used to compute risk. 

The fourth and final paper uses a Euclidean norm to subsume the said computed risk scores 

that will ultimately produce aggregate risk values for the five core capabilities within Agile 

Combat Support.  These scores are to be subsumed by another risk model controlled by 

higher headquarters.   With the theoretical lens in place, we now use the said application-

based approaches to demonstrate a successful USAF enterprise risk assesssment upgrade.   
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III. Methodology to Determine, Compare and Assess USAF Core Function Personnel 
Risk 

Introduction 

As discussed in Chapters I and II, USAF capability is planned, managed, distributed 

and executed through 12 service core functions (SCFs) or enterprises of personnel.  These 

various enterprises are mandated to provide annual risk assessments to inform resource 

allocation and prioritization decision making.  Capability and capacity are resources 

consisting of people, infrastructure, readiness and training, and modernization and 

recapitalization.   The highest ranking uniformed member of the USAF believes personnel 

are the service’s greatest asset to maintain a global competitive edge (Air Combat Command, 

2019).  These personnel sum to over 400,000, across 300 career fields ranging from pilots to 

cooks dispersed all over the world.   The career fields are interconnected to ultimately enable 

and execute air operations whenever, wherever, when needed.  USAF career fields are often 

undermanned and task-saturated which results in a stressed, overworked workforce that 

equates to increased military risk.   

When service planners, programmers and analysts do not rigorously define personnel 

requirements, comprehensively assess capability gaps and risk; a service failure may arise in 

more accurately informing and enabling senior leaders to advocate for resources given a 

fiscally constrained environment.  In the world of doing either the same amount of workload 

or less workload with fewer resources, how does one effectively manage resources with 

respect to assessing personnel capability?   

In the past, the USAF has developed numerous MAJCOM manpower assessments 

and techniques.  MAJCOM and Air Force Personnel Center (AFPC) manpower models were 
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the highest tiered enterprise-level personnel assessments.  However, since 2010, the USAF 

has adopted a broader enterprise-level approach via the SCF.  A SCF may utilize several 

MAJCOMs in order to execute its mission.  One enduring challenge is accurately assessing 

personnel deficiencies across the USAF by SCF.  If planners could more accurately assess 

and identify the personnel readiness by SCF, this would help substantiate the risk associated 

with a lack of required manpower to deliver wartime and peacetime capability.  If such 

statistical evidence exists, this suggests a weighting structure among career fields can be 

obtained and an interdependency model can be objectively developed.  Prior to 2016, no 

USAF personnel analysis conducted among SCFs existed.    

A proposed methodology presents a suite of objective, mathematical approaches to 

examine and assess personnel risk by SCFs.  First, since SCFs differ in sample size, multiple 

comparison confidence intervals via a Tukey-Kramer test are used to determine if a 

statistically significant relationship exists between SCF manning rates.  Insight from this 

technique is used to determine if SCF manning rates means are equal.   This is considered 

exploratory analysis.  Second, logistic regression is used to determine the probability of 

being at least 100% or more manned by SCF and functional equity (FE).  The results from 

this analysis can be used to predict future SCF and FE manning levels.  This insight reveals if 

preferential treatment at the corporate USAF level exists as it relates to the way SCF and FE 

manning is resourced.  Third, through the use of logistic regression, logistics odds ratios can 

be computed to determine the probability of one SCF or FE to be more likely to be fully 

manned than other SCFs and FEs.  This insight is noteworthy because the analysis allows 

risk assessment practitioners to understand how SCFs and FEs are related as it relates to 

manning allocation.  Fourth, relative risk determine the magnitude (i.e. number of times) one 
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SCF or FE is more likely of being 100% or more manned than another SCF or FE.  These 

four inferences from the methodology are handy inputs to compute risk as it relates to 

personnel capability assessments.    

A methodological enterprise risk comparison is demonstrated examining 12 USAF 

core functions and 32 functional equities.  This methodology can be used as a way to 

determine if evidence of corporate preference exists.  The methodology decomposes and 

synthesizes personnel data to compute, compare and contrast enterprise level risk.  The 

methodolgy helps identify capability gaps and serve as a good planning tool for validating 

risk.  This further helps senior leaders to qualify risk with analysis and increase the odds of 

filling or mitigating personnel capability gaps.                        

A methodological enterprise risk comparison is demonstrated examining 12 USAF 

core functions and 32 functional equities.  This methodology can be used as a way to 

determine if evidence of corporate preference exists.  The methodology decomposes and 

synthesizes personnel data to compute, compare and contrast enterprise level risk.  The 

methodolgy helps identify capability gaps and serve as a good planning tool for validating 

risk.  This further helps senior leaders to qualify risk with analysis and increase the odds of 

filling or mitigating personnel capability gaps.                        

Background 

The primary objective of this methodology is to examine ways to assess and analyze 

manning data to help senior Air Force leaders manage personnel capability and enhance 

maximization of readiness.   The desired endstate is a more defensible, rigorous methodology 

to better inform SCF (Figure III-1) strategic risk assessments.  This will help SCF personnel 
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planners assess manning shortages to more accurately inform the USAF budget, yielding 

better management of  personnel combat capability.   

Manning is defined as the ratio of the number of personnel assigned to the number of 

funded authorizations:   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 (𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

.                    Eq. III-1 

Each USAF unit has a unit manning document (UMD) which stipulates the number of 

personnel and funded authorizations.  Each authorization represents a funded position.  

Ideally, funded authorizations should have assigned, trained personnel filling the positions, 

but this is usually not achieved across the USAF.  

 

Figure III-1: USAF Service Core Functions (SP3 2011) 

As of July 2016, there were over 400,000 active duty military and civil servants in the 

USAF.  Of the 400,000+ personnel, 55% are enlisted, 13% are officer and the remaining 32% 

are civil servants.  The USAF has approximately 250 career field specialties or Air Force 

Specialties (AFS).  AFSs are further compartmentalized into Air Force Specialty Codes or 

AFSCs.  The AFSCs are condensed into 32 functional equities (FEs) across the 12 SCFs.  A 

mapping of the career fields to the functional equities is provided in Figure III-2.  
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Figure III-2: Functional Equity Mapping 

Thirty-two FEs across 12 SCFs equate to a dataset of 375 observations13.   Figure III-3 

shows the assigned USAF personnel by the 12 SCFs in the top chart along with associated 

manning rates in the bottom chart.  Figure III-4 shows manning rates by FE.  The amount of 

personnel differs by SCF.  The mean and median are the same for the FEs.  Each of the twelve 

SCFs are supported by Core Function Support Plans (CFSPs), developed and approved by one 

of the seven Core Function Leads.  CFSPs translate the vision for the specific SCFs into risk-

informed, resource-constrained, planning force proposals that guide follow-on Program 

Objective Memorandum (POM) and Science & Technology (S&T) decisions and activities 

 

13 The reader should be advised not all 32 functional equities are represented in every SCF, so although 32 x 
12 is 384, there are actually only 375 observations.   
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(NAP, 2014).    

Figure III-3: USAF SCF Manning Summary 

 

  

Figure III-4: USAF Functional Equity Manning Summary  



 

78 

 

Data Overview 

This study consists of over 416,485 authorizations collapsed into 375 subsets as of 

July of 2016 from the Air Force Manpower, Personnel and Services database.   Each subset 

represents a group of FE by SCF.  Each observation contains 6 variables listed in Table III-1.  

The variable type characteristics are categorical (to include nominal and ordinal) and 

numeric.   

Table III-1: Variables for categorical analysis 

Name Description and effect type Type Levels and notes 

SCF  Service Core Function (Fixed)  Nom. There are 12 USAF SCFs. 
Functional Equity 
(FE) 

Career Field Family (Fixed) Nom. There are 32 FEs. 

Manning category Binned manning categories between 
≥ 100% and < 80% (Fixed) 

Ord. 6 ordered categories 

Manning rate Assigned personnel vs Authorizations 
(Used to determine ‘Fully Manned’ & ‘Manning 
category’) 

Cont. This is a continuous value. 

Fully Manned (Y/N) Factor which consists of (Fixed) 
either fully manned or not 

Nom. Binomial variable 
(outcome) 

Overage/Shortage (-) Number of surplus/shortage of  
authorizations (Fixed) 

Disc. This is a discrete value. 

Methodology 

An analytical methodology to conduct SCF personnel risk analysis is provided.  The 

methodology consists of several mathematical techniques to understand, compute and assess 

enterprise risk.  The methodology uses five mathematical procedures to examine USAF 

personnel data by core function and functional equity.  First, a multiple comparison method 

is used to examine whether the core functions and functional equities are similar.  Second, 

the application of contingency table analyses determines existence of dependency among 

core functions and functional equities.  Third, the use of odds ratios compare the odds of 

achieving 100% or more manning levels by core function and functional equity.  Fourth, 
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logistic regression computes the likelihood of full manning levels by enterprise and 

functional equity.  Fifth, relative risk is used as a quantitative way to compare ratios of the 

probabilities of success (i.e. probability a SCF or FE is fully manned).   These techniques are 

part of a framework developed to compare and contrast strategic personnel risk.   

This SCF manning assessment approach can help identify capability gaps, and serve 

as a good planning tool and as a means of validating risk.  This helps senior leaders to qualify 

risk with analysis and increase the odds of filling or mitigating personnel capability gaps.  A 

potential tertiary inference is to determine if corporate preference exists.  If such statistical 

evidence exists, this suggests a weighting structure among career fields can be obtained and 

an interdependency model can be objectively developed.   

The interdependency model is the analytical substantiation for a more comprehensive 

model that takes into account dependent relationships between and among career fields.  This 

improved strategic manning assessment is used to improve the strategic planning and 

programming process and enable the senior decision makers to better advocate for personnel 

resources.   The subsequent research questions and hypothesis, tested at a 5% significance 

level (α = 0.05) are as follows: 

• Is there a meaningful manning relationship between USAF SCFs and full manning 
levels? 

 
Null Hypothesis (𝐻𝐻0): There is an association between SCF and Full manning 
levels. 
 
Alternate Hypothesis (𝐻𝐻𝐴𝐴): There is no association between SCF and Full 
manning levels. 

 
• Given, SCFs are unique: is there a rigorous way to compare manning levels among 
SCFs and FEs? 
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The goal of this study is to build a SCF and FE comparative manning assessment that 

decision makers can utilize for personnel capability advocacy.  Techniques explored focus on 

logistic analysis in the form of contingency tables, logistic odd ratios and other methods to 

compare the SCFs and FEs against the manning levels. 

Exploratory Analysis 

The next portion uses multiple comparison methods to examine if the 12 SCF 

populations, that consist of primarily 32 functional equities, are similar.  Figure III-5 

provides a box and whisker plot by SCF population with a grand mean.  Box and whiskey 

plots are simply visual ways to depict data.  Bow and whisker plots do not infer statistical 

significance.    Visually, there are some mean overlaps, but in order to determine statistical 

similarity, a multiple comparisons statistical test is required.   

Figure III-5: Box and Whisker plot of SCF Manning Levels 

A way to evaluate if there are any statistically significant differences between SCF 

manning rates is via a confidence interval (CI) simultaneous test.  Some key elements of any 
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multiple CI test are the per experiment (PE) error rate, per comparison (PC) error rate and 

familywise (FW) error rate (Howell, 2007).  The PE error rate represents the number of Type 

I errors we expect to make when the Null Hypothesis (Ho) is true.   

The PE error rate is typically calculated by taking the sum of comparisons and 

multiply this by the alpha level (e.g. ∝ = 0.05) (Montgomery, 2013).   The PC error rate 

represents the alpha or significance level for each test (Benjamini and Hochberg, 1995).  The 

FW error rate estimates the probability that we have at least one Type I error in the family of 

comparisons (c) (Denis, 2016).  It is typically calculated as follows: 𝐹𝐹𝐹𝐹 =  1 −  (1 − 𝑃𝑃𝑃𝑃)𝑐𝑐 

(Denis, 2016).   

The Tukey-Kramer (for unequal sample sizes) group comparison method is 

considered one of the most robust comparison techniques (Montgomery, 2013).  Unequal 

sample sizes require the computation of estimated standard deviations for each pairwise 

comparison (McDonald, 2014).  It assumes constant variance, independence and a normal 

distribution.  The Tukey method allows many confidence intervals to be compared while still 

assuring an overall confidence coefficient is maintained (Tukey, 1949).  The Tukey FW error 

rate (β) is typically expressed as ∝/𝑘𝑘 where α represents the family error rate and k 

represents the number of comparisons (NIST, 2015). 

The procedure is performed using JMP 11 Pro.  An overall significance level of 0.05 

or simply there is a 5% likelihood of committing a Type I error (rejecting the null hypothesis, 

when it is true).   Figure III-6 is a Tukey-Kramer multiple comparison among the SCF mean 

manning rates.   Figure III-6 shows evidence of SCF dissimilarity.  Specifically, the majority 

of the Tukey-Kramer test results reveal the SCFs are statistically dissimilar.  The only SCFs 
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that appear to be statistically similar are Special Operations (SO) and Personnel and 

Training (P&T) as well as Global Precision Attack (GPA) and Cyberspace Superiority (CS).     

 

 

Figure III-6: Tukey-Kramer test of SCF Manning Levels 

 
Contingency Analysis  

In this analysis, the main response variable is binary  (i.e. fully manned or not) and 

the other factors are fixed nominal and ordinal variables.   We use contingency analysis to 

examine if there are meaningful associations between SCFs and manning levels as well as 

studying associations between SCFs and FEs.   The results visually show there is a clear 

distinction between Fully Manned and not fully manned core functions and functional 

equities.  A total of 375 samples represent the number of FEs multiplied by the number of 

CFs (12), which technically is 384, but not every CF has the maximum amount of FEs, so 

375 is the final sample size N.   There exists more failures (i.e. 267 of 375) versus successes 
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(107) of the total sample size.  An illustration is provided in Figure III-7 that demonstrates 

the use of contingency analysis using the ACS CF.   

 

 
Figure III-7: Portion of SCF Contingency Table Analysis 

 
Figures III-8 and III-9 provide visual results of the overall contingency analysis of the 

CFs and FEs.  The mosaic plots presented reflect the amount of CFs and FEs fully manned 

and not fully manned.  A complete blue vertical bar indicates the CF or FE is meeting 

personnel requirements.  A composition of blue and red indicate the CF or FE is not 100% or 

more manned.  A senior decision maker’s preference is that all of the mosaic plots are blue.  

Figures III-8 and III-9 reveal evidence of only partially filled manning requirements.  For 

example, note how Global Mobility (GM) and Personnel Recovery (PR) core functions get 
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more manning support than Nuclear Deterrence Operations (NDO) and Global ISR (GISR). 

Simliarly, note how the Commander/Sr Leader functional equity gets more manning support 

than all of the other functional equities.  A procedure is applied to determine if these 

manning disparities are statistically significant.  

In addition to the success and failure inputs, other parameters of contingency analysis 

include the degrees of freedom, -loglikelihood, Likelihood Ratio Test (LRT) and p-value.  

The degrees of freedom are the number of CFs and FEs minus one, respectively, thus, 12 −

1 = 11 and 32 − 1 = 31.  The computation for the –loglikelihood is computed using 

formulae (Eq. II-5 through Eq. II-7), discussed in Chapter II.  When the –loglikelihood is 

multiplied by 2, a Chi-square test statistic is obtained.  The LRT statistic shows the chi-

square values from the SCF and FE observations are 27.814 and 50.507, respectively.  With 

∝= 0.05, and respective DFs, significant p-values of 0.0035 and 0.0153 are obtained from 

the CF and FE data.   These p-values suggest there is an association between manning status 

and CF or FE.  This further suggests (whether intentional or unintentional), it appears there is 

some level of corporate preference among the CFs and FEs.    
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Figure III-8: SCF manning Contingency Analysis 

 
Figure III-9: FE manning Contingency Analysis 
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The analysis implies the SCFs are not similarly manned, which suggests certain SCFs 

are more favorable towards being at full funding capacity levels than others.  Reasons for this 

phenomenon are not yet understood.  Potential reasons could be retention and recruitment 

shortfalls in certain undermanned career field specialties such as inspections and science & 

technology (S&T) career fields.   

Figures III-10 and III-11 depict results of contingency analysis to examine response 

homogeneity (i.e. is there a statistically significant difference in the manning levels among 

CFs and FEs).  The manning categorical variable (‘Mann_Cat’) is an ordinal response with 

six levels.  Each level corresponds to a manning range (e.g. < 80%).  The hypotheses for the 

core functions and functional equity manning level proportions are as follows: 

𝐻𝐻𝑜𝑜: 𝐴𝐴𝐶𝐶𝐶𝐶𝑀𝑀 = 𝐴𝐴𝐴𝐴𝑀𝑀 = 𝐶𝐶2𝑀𝑀 = ⋯𝑆𝑆𝑆𝑆𝑀𝑀 

𝐻𝐻𝐴𝐴: 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 ≠ 𝐴𝐴𝐴𝐴𝑀𝑀 𝑜𝑜𝑜𝑜 𝐶𝐶2𝑀𝑀 𝑜𝑜𝑜𝑜… 𝑆𝑆𝑆𝑆𝑀𝑀 

and 

𝐻𝐻𝑜𝑜: 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀 = 𝐶𝐶2 𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀 = ⋯𝑊𝑊𝑊𝑊𝑀𝑀 

𝐻𝐻𝐴𝐴: 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 ≠ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀 𝑜𝑜𝑜𝑜 𝐶𝐶2 𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀 𝑜𝑜𝑜𝑜…𝑊𝑊𝑊𝑊𝑀𝑀 

Only 117 of 375 or (31%) of FEs across 12 CFs are 100% or more manned.  Since, 

the likelihood ratio test p-values (computed using Eq. II-7) are smaller than α, the results of 

both tests suggest at least one SCF and FE manning level is statistically significantly 

different.    
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Figure III-10: SCF Ordinal Categorical Analysis 

 

Figure III-11: FE Ordinal Categorical Analysis 
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The implication of this analysis suggests that while Air Force guidance promotes equal 

career manning equity across SCF and FE, the statistical results indicate otherwise.      

Modeling Approach 

A logistic regression model can provide more meaningful insight among the SCFs 

and FEs as it relates to being fully manned or not.  Logistic regression analysis describes how 

a binary (0 or 1) response variable is associated with a set of explanatory variables 

(categorical or continuous).   The general logistic function is 𝜋𝜋(𝑥𝑥) = 𝑒𝑒(∝+𝛽𝛽𝛽𝛽)

1+𝑒𝑒(∝+𝛽𝛽𝛽𝛽) = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
1+𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

  

where x is the independent variable or factor and e is the exponential function, and 𝜋𝜋(𝑥𝑥) is 

the probability of being at least 100% manned.  For this nominal outcome variable, each 

factor is examined individually and associated model statistics are compared to a joint 

(combined) model.   The joint model has  (𝑘𝑘 − 𝑝𝑝) degrees of freedoms when both SCF and 

FE parameters are combined, where k and p represent the number of groups (44) and 

parameters (2), respectively.    

Negative loglikelihood (–loglikelihood ) estimates are computed for the full and 

reduced models.  The Full model refers to the model without any predictor variables or 

simply the intercept.  The Reduced model includes the predictor variables.  Thus, the 

Difference –loglikelihood model estimate is the difference between the Full and Reduced 

model –loglikelihood estimates.   The Chi-square estimate is simply twice the Difference  

–loglikelihood estimate.  When the test for model significance is applied, the results of the p-

value indicate the model results are statistically significant.   Figure III-12 provides a 

summary of the results.   
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Figure III-12: Joint Model Results    

The accuracy rates (1- misclassification rate) regarding predictability classifies 

success 76% of the time.  The joint model has an Area under the Curve (AUC) of 0.782.  

This suggests the modeling predictions have more than a ‘chance’ of being accurate.  In fact, 

a strict interpretation of this model is that when presented randomly with a given number of 

SCF and FE manning observations that are ≥ 100% and ≤ 100%, there is a 78.2% chance of 

correct classification.  Figure III-12 depicts the model probability estimates of being 100% or 

more manned by SCF and FE. This means given a similar population, there’s a 78% chance 

of predicting a SCF by FE is fully manned.  This is informative to senior planners, 

programmers and analysts to better assess personnel capability gaps which are tied to the 

identification of enterprise risk.   

Findings also suggest none of the FEs by SCF are likely to be 100% manned or more.   

Notably, the Science & Technology and Security Forces FEs are highly likely to not be fully 

manned in any SCF or FE.  Conversely, the commander or senior leader FEs has the potential 

in the Global Mobility and Personnel Recovery SCFs to have 100% or more manning.  This 

is illustrated via the likelihood color palette scale in Figure III-13.  Arguably, rows (FEs) in 
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red are highly less likely to be 100% or more manned.  A translation of Figure III-13 in terms 

of success/fail results is presented next.   

Figure III-13: SCF and FE Likelihood being fully manned14 

 

14 Cells without values indicate the FE was not represented in the SCF.   
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Modeling Results 

 
Figure III-14 is a matrix of the modeling interpretations of the success/failure 

probabilities of the 375 observations.  Probability of Success (( 1
1+𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝜋𝜋(𝑥𝑥)])) is considered 

100% or more manned or a green ‘Y’, otherwise blank in the matrix of cells.  If the model 

estimate is greater than 0.50, the results are considered successful, otherwise failure.  Cells 

with ‘-‘ notation are not applicable as the FE is unrepresentative for a particular SCF.    

 

Figure III-14: Likelihood of 100% manning in binary form 

The full joint model equation is listed in Appendix A.  The results of Figure III-14 suggest 

there is statistically significant evidence that the USAF does show preference with regards to 

which core functions and function equities it chooses to fund and man.  Whether the 
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preferential treatment is deliberate or un-intentional, there is evidence of corporate 

preference, which suggests all career fields are not treated the same.  This infers a weighting 

structure of the career fields exists.  This further infers a more comprehensive risk 

prioritization of career field resource management could be introduced.    

Odds Ratio Analyses 

The near (within 5 years), mid (5 to 10 years) and far (beyond 10 years) term goal of 

the USAF is to provide air operations in support of the defense of the nation.  To achieve 

this, planners, programmers, analysts and managers should take advantage of existing data 

resources and base decisions not only on anectdotes, but also on insights gleaned from 

reliable data.  For example, it may appear intuitive to some risk assessment practitioners that 

all SCFs and FEs should be equally resourced in terms of manpower and are equally likely to 

be able to provide or support air operations.  This attitude is myopic, and if not tempered 

with supporting facts can lead to unintended consequences as it relates to proper risk 

identification.  If risk is severely understated, personnel resources can be misallocated and 

misprioritized.  It is possible that other insight might be gained in rigorously identifying 

which SCFs and FEs are more likely to be fully manned than others.  Finding the most 

valuable indicators is a not only helpful for senior risk assessment practitioners, but is also 

critical to advanced predictive analytics as it relates to personnel risk assessment to inform 

senior decision making in the near, mid and far planning timeframes.   

Unfortunately, for many companies, these indicators reside across different, siloed 

databases, which makes analysis difficult. But if the data is successfully and accurately 

linked together, we can begin to take a more comprehensive look at customer behavior. 

Looking at odds ratios in relation to a particular target of interest can allow us to gain 
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insights across a wide array of indicators. While interpretation and understanding of 

statistical or predictive models isn’t always simple or straightforward, the ability to interpret 

odds and odds ratios is a key step in being able to better understand the results of logistic 

regression output 

The outcome variable is a success/fail response variable (i.e. 100% or more manned) 

so odds ratios via logistic transformations (logits) are computed and compared among SCFs 

and FEs.  The logistic odds is represented as  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝜋𝜋(𝑥𝑥)] =  𝑙𝑙𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) =  𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜋𝜋(𝑥𝑥)
1−𝜋𝜋(𝑥𝑥)� =

 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 where 𝛽𝛽0 is the intercept, 𝛽𝛽𝑝𝑝 (the parameter) is the log odds ratio of 

one unit increase in x whereas e(β) is the odds ratio of one unit increase in x (Agresti, 2013).   

The odds ratios are computed from the joint model previously discussed.   A total of 1,124 

12 32
( )

2 2
   

+   
   

 permuted odds ratios are computed and compared of which 45 (34%) and 160 

(16%) are considered ‘statistically significantly different than one,’ respectively.   These 

overview statistics suggest there are significant differences in full manning levels among 

SCFs and FEs.   Figure III-15 is a matrix of the SCF odds ratios accompanied with a scale to 

aid in interpretation.    
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Figure III-15: SCF odds ratio Comparison 

The matrix in Figure III-15 should be examined from left to right by row.   For 

example, the Air Superiority (AS) SCF compared to the Agile Combat Support (ACS) SCF 

has 0.576, or low odds, of being fully manned.   Conversely, ACS has 1.737 times the odds, 

or moderate odds, of being fully manned when compared to AS.    The top 3 SCFs with 

better odds of full manning levels are Personnel Recovery, Global Mobility and Space 

Superiority.   This is fairly intuitive as these rows are more green.  The bottom 4 SCFs with 

lesser odds of full manning levels are Command & Control, Nuclear Deterrence Options, 

Global ISR and Special Operations.  Further, the same matrix from Figure III-15 overlaid 

with turquoise outlines is used in Figure III-16 to illustrate which SCF odds ratios are 
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considered significantly different.    Similar analysis is performed by FE.  The FE results are 

listed in Appendices C and D.   

 

Figure III-16: SCF odds ratio Comparison with Significance Indicators 

Figure III-16’s results reveal the Global Mobility, Personnel Recovery and Space Superiority 

SCFs have statistically different manning levels as it relates to being fully manned or not.   

Relative Risk      

Relative risk (RR) are comparative ratios of the probabilities of success, (i.e. a given 

SCF and FE being fully manned), and are quantitative ways to compare categories.   As the 

number of categorical levels increases, the number of relative comparisons grows quite large.  

For example, 12 SCF and FE RR one-way comparisons gives 4,224 (
12
2

 
 
 

 combinations *32 

FEs) permutations or possibilities.  In this instance, we will only explore relative 

comparisons to the ACS SCF.  The probabilities of success are taken from the joint model 

results depicted in Figure III-9.   If the RR is equal to 1, we conclude independence or FE1 

with respect to a given SCF is neither more likely nor less likely of occurring than FE2 with 

respect to the same SCF.  If the RR is less than 1, we conclude FE1 with respect to a given 
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SCF is less likely of occurring than FE2 with respect to the same SCF.  If the RR is greater 

than 1, we conclude FE1 with respect to a given SCF is more likely of occurring than given 

SCF is less likely of occurring than FE2 with respect to the same SCF.  If the RR is greater 

than 1, we conclude FE1 with respect to a given SCF is more likely of occurring than FE2 

with respect to the same SCF.  The RRs are computed and shown in Figure III-17. 

Figure III-17: SCF/FE Relative Risk Ratio table  

In the ACS column of Figure III-17, the Acquisition FE is held fixed compared to the 

other FEs within the ACS SCF.  If we refer to the Airfield Operations and Acquisition FEs 

within the ACS SCF, we see a RR of 1.63.  The interpretation is that within the ACS SCF, 

the Acquisition FE is 1.63 times more likely of being 100% or more manned than Airfield 
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Operations.  For the rest of the columns (AS-SS), the RRs are compared within each row or 

the FE is held fixed relative to the ACS SCF.  For example, the 1.43 RR at the intersection of 

the Acquisition FE and AS SCF, infers that within the Acquisitions FE, the Air Combat 

Support SCF is 1.43 times likely of being 100% or more manned than the Air Superiority 

SCF.  Similarly, at the intersection of the Acquisition FE and C2 SCF, infers within the 

Acquisitions FE, the Air Combat Support SCF is 1.67 times likely of being 100% or more 

manned than the Command and Control SCF.  A takeaway from Figure III-16 is ACS has a 

relative moderate risk to the other SCFs with regards to being 100% or more manned.    

Remarks 

This research presents a rigorous methodology for assessing USAF manning by SCF 

and FE by using logistic regression functions and contingency analyses.  Statistically, there is 

an association between SCFs or FEs and full manning levels.  Manning relationships among 

SCFs or FEs can be rigorously prioritized by odds ratio comparisons.  There exists statistical 

evidence of corporate preference towards certain core functions (CFs) or FEs.  Whether 

intentional or un-intentional, the existence of a corporate prefence sheds insight into how the 

USAF corporately views certain CFs or FEs.  Since CFs or FEs are statistically significantly 

manned more than others, there inherently exists a weight structure among CFs, FEs or even 

specific career fields that can be used for prioritization of resources.   Statistical techniques 

such as contingency table analysis, logistic regression and odds ratio analysis demonstrated 

this phenomena.  

Further, this research can inform decision makers of manning capability gaps and 

substantiate advocacy for more resources to meet combat and peacetime requirements.  There 
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are no SCFs fully manned in the USAF.   Overall, across the USAF, ‘commanders or senior 

leaders’ is the only FE of 32 likely to be fully manned.   This methodology helps senior 

decision makers better qualify risk and enhance the strategic planning & programming 

process risk assessment, which in turn, enables better substantiation and advocacy. 

Limitations 

 While this research illustrates how manning relationships can be rigorously examined 

at the SCF level, the methodology has caveats.  First, criteria for success using the logistic 

function is one of two options: 100% fully manned.  This intuitively means CF and FE 

manning levels below 100% are failing.  This could be easily mischaracterized as a gross 

mis-assessment of personnel risk.  However, if manning levels are to be resourced at at least 

100%, the logistic regression analysis sheds credible light on the lack of personnel USAF 

requirements filled throughout its enterprises.  This finding has strategic implications for 

senior decision makers when advocating for resources among other service components.  If a 

USAF senior decision maker can articulate personnel capability gaps via analytic traceability 

and defensibility, the advocacy message is more credible at the joint services leadership level 

and beyond.   When we can intelligently (through rigor) argue why we need what we need, 

this increases the chances of getting the necessary resources to maximize combat capability 

in a fiscally constrained environment.  This methodology demonstrates personnel risk can be 

objectively assessed at the enterprise level.  In the next section, we examine if personnel 

efficiency can be computed at the squadron level via fighter pilot manning and sortie 

production.  Recall, a primary objective is to examine if a significant statistical relationship 

exsits between efficiency and risk.     
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IV. Methodology to Determine USAF Personnel Efficiency via DEA Bootstrapping 

Introduction 

USAF senior leaders are faced with resource challenges in the form of overseeing 

personnel and budget.  As stewards of these resources, senior decision leaders have to make 

tough decisions in a fiscally constrained environment.  Often times, tradeoffs are made 

between cost and manpower to provide an airpower capability.   That is to say, the amount of 

required personnel to perform a function is weighed against the cost of these personnel.  

Managerial insight is required at lower echelons (e.g. installation level) to ascertain if 

efficiency can be obtained to better utilize manpower to maximize combat capability.   

There are five bedrock components to United States Air Force (USAF) capability: 

Personnel, Training, Equipment, Infrastructure, and Institutional factors.  These components 

are collectively characterized as the planning force (AFMAN 90-106, 2017).  It is very 

difficult to provide mission capability without all five components of the planning force.   If 

adequate levels of personnel are not available and trained to perform desired tasks to provide 

mission capability, then the remaining equipment, infrastructure and institutional components 

become ineffective.  This research focuses on the personnel component by providing a proof 

of concept methodology based on DEA for measuring efficiency to better inform USAF 

enterprise risk assessment procedures. The goal is to increase traceability and strengthen 

defensibility in strategic risk assessments, which promotes analysis credibility with senior 

decision makers.  In particular, this case study demonstrates the use of Data Envelopment 

Analysis (DEA) to assess active duty F-16 air base operations efficiency using fighter pilot 

personnel requirements (spaces) and actual personnel (faces).  This work examines efficiency 
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i.e. benefits realized and resources used as opposed to effectiveness i.e. ability to state and 

achieve desired goals (Cooper et al., 2000).  

A methodology helps objectively determine if USAF efficiency outputs and inputs 

are linearly or nonlinearly scaled.  Specifically, sortie generation efficiency of 10 F-16 active 

duty flying bases are compared using Data Envelopment Analysis.  From a strategic risk 

assessment perspective, if capability can be assessed via efficiency then risk vulnerabilities 

become more traceable for decision makers.  This added analytical insight can foster better 

strategic decisions by identifying capability gaps and providing an objective basis to support 

resource allocation.   In addition, objective return to scale (RTS) determination of a USAF 

dataset is explored.  RTS examines whether there is a linear and nonlinear relationship 

between DEA outputs and inputs.  Past DEA application of USAF military data assumes 

linear RTS and makes no statistical inferences (including confidence intervals) regarding 

repeatability.  Repeatability is the closeness of the agreement between the results of 

successive measurements of the same measurand carried out under the same conditions of 

measurement (Trochim, 2006).  This is a critical gap in increasing managerial awareness, 

which is a way to inform senior decision making as it relates to resource management.   

Background 

When career fields are undermanned, the remaining workforce can become stressed 

and overworked which equates to increased military risk.  Personnel manning is defined as 

the ratio of the number of personnel to the number of funded authorizations:   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 (Neuhaus, 1990).                 Eq. IV-1 
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Each USAF unit has a unit manning document which stipulates the number of personnel and 

funded authorizations.  Each authorization represents a funded position.  Ideally, funded 

authorizations should have assigned, trained personnel filling the positions, but this is usually 

not achieved across the USAF.    

As early as 1984, DEA has been used for several military applications as a 

benchmarking mechanism (Charnes et al., 1984).  A USAF developmental study of DEA in 

measuring the efficiency of maintenance units at 14 distinct Air Wings (AWs) was conducted 

by Charnes et al. (1984).  This model’s inputs included maintenance manning data while the 

outputs consisted of a select group of performance metrics (e.g. cannibalization rate).   This 

work is apparently the first published application of DEA using USAF manning data.  The 

study found few statistically significant differences existed in mean Air Wing efficiency 

scores, which suggests little efficiency separation exists between Air Wings.  Cost was not 

considered in the study.   

USAF real property maintenance activities were compared using DEA window 

analysis (Bowlin, 1987).  Window analysis uses DEA to assess efficiency over time (Charnes 

et al, 1994).  In 1989, DEA was used to examine Israeli Air Force maintenance units using 

time-sequenced data (Roll et al, 1989).  More work from Bowlin continued into the 1990s 

and early 2000s examining aerospace defense finances to include Civil Reserve Air Fleet 

(CRAF) participation [(Bowlin 1995; 1999; 2004)].  A Tawainese Army study from 2000 

used DEA to assess managerial inefficiency, which became a benchmark methodology to 

assess and compare unit performance (Sun, 2004). Similarly, the National Defense 

University of Taiwan examined military organizations using DEA and advocated this work 

as a means to possibly merge like organizations (Lu, 2010).     
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Boehmke (2015), utilizing 2014 data from 35 USAF organizations, revealed millions 

of dollars possibly wasted due to various performance inefficiencies.  The Boehmke study 

prompts questions:  Is there a significant association or relationship between efficiency and 

manning?  If there is a significant association between efficiency and manning, how do we 

address it in order to mitigate risk?   

A desirable DEA property is that the weight values for each assessed organization are 

defined by an optimization algorithm and not decided by the user (Huguenin, 2012).  

Research using DEA within the AF installation sustainment community shows that 

opportunities exist to gain cost savings by comparing performance in the form of efficiency 

(Boehmke, 2015).   DEA attempts to measure efficiency by accounting for resource inputs, 

performance outputs and exogenous factors simultaneously (Boehmke, 2015).  This case 

study uses DEA optimization models consisting of ten F-16 active duty (AD) Air Force 

bases, the fighter pilot career field and an aircraft generation performance metric (i.e. (sortie 

production)).   

Bootstrapping is generally used to increase sample size to increase precision in 

estimates of a population (Efron and Tibsirani, 1993).  For predictive managerial efficiency 

purposes, bootstrapping RTS can provide insight to anticipate future or expected personnel 

efficiency levels by installation or career field.  A personnel efficiency demonstration using 

fighter pilot manning and sorties among 10 USAF installations is presented using DEA 

coupled with bootstrapping techniques to illustrate objective ways to evaluate and predict 

personnel efficiency.  If efficiency is correlated with risk (e.g. the more efficient an 

installation is, the likelier the installation is to have more risk), senior planners, programmers, 

analysts and managers can better anticipate and assess risk in the three distinctive planning 
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timeframes (near, mid and far).  RTS bootstrapping provides a means to provide predictive 

analytical insight into personnel efficiency and the assessment of future personnel risk.      

Objective 

The specific objectives of this case study are: 

I. Assess air base efficiency utilizing AD fighter pilot manning using a DEA 

model. 

II. To examine technical efficiency using personnel and sortie production metrics 

and thereby a way to quantitatively benchmark bases to promote ‘best 

practices’ throughout the USAF.  

Methodology 

Terminology 

DEA is an aggregation technique that compares unit performance by examining the 

ratio of weighted outputs and inputs (Colbert et al., 2000).   Fundamentally, DEA requires m 

inputs, s outputs, k organizations and a sample size N to ultimately measure efficiency 

(Subhash, 2004).  A series of related DEA techniques were published by multiple authors in 

the early 1950s [(Debreu, 1951; Shephard, 1953)].  The objective of DEA is to produce the 

maximum quantity of output from a specific input bundle (Subhash, 2004).  The benchmark 

is determined by the technology itself and comparison of the actual output produced with the 

benchmark quantity yielding a measure of technical efficiency between Decision Making 

Units (DMUs) (Subhash, 2004).   A Decision Making Unit (DMU) is technically efficient if 

it can produce the maximum possible number of outputs from its capacity (Atkinson and 

Cornwell, 1994).   
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A DEA formulation of technical efficiency is (Huguenin, 2012): 

𝑇𝑇𝑇𝑇𝑘𝑘 = ∑ 𝑼𝑼𝑟𝑟𝒀𝒀𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1
∑ 𝑽𝑽𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

 ,                                                       Eq. IV-2 

where TEk is the technical efficiency of an observed DMU k using m inputs to produce s 

outputs.  Yrk represents the quantity of output r produced by DMU k.  Xik represents the 

quantity of input i consumed by DMU k.  Ur and Vi are weights of the output r and input i 

respectively.  DEA modeling requires prerequisite knowledge of the following properties: 

returns to scale, orientation, model type and slack.  Returns to scale (RTS) refers to the rate 

by which an output changes if an input is changed by the same factor (OECD, 2001).  DEA 

variants can accommodate either of two types of returns to scale: constant and variable 

[(Charnes et al., 1978; Banker et al., 1984)].  Constant returns to scale (CRS) models are 

appropriate when all organizations operate at an optimal scale (Huguenin, 2012).  Optimal 

scale occurs when unit operations are sized such that any modifications to inputs or outputs 

render the unit less efficient (Masiye, 2007).  CRS is an unrealistic expectation in many 

government service establishments.   Variable returns to scale (VRS) is more appropriate 

when all organizations under comparison do not operate at an optimal scale, which seems 

typically true for USAF organizations.   

Another DEA property is orientation.  There are generally three types of DEA 

orientation: input, output (Charnes et al., 1978) and directional distance (Chambers et al., 

1996).  Input oriented (io) models measure how much an organization can decrease its inputs 

(e.g. manning) to achieve given outputs such as sales or generated combat sorties, compared 

to its most efficient peers.  Output oriented (oo) models reverse the idea and identify how 
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much additional output should be possible for given inputs, again relative to the 

organization’s most efficient peers.   Directional distance-type models are universally 

oriented, i.e. there is no need to distinguish between input or output orientation (Toloo and 

Tavana, 2017).  Directional distance models are typically used to distinguish between 

desirable and undesirable variables (Cheng and Zervopoulos, 2012).   The inputs and outputs 

for this research are not considered interchangeable, and therefore, directional distance 

models are excluded from the methodology.   

A third DEA property involves model type of which this study considers two: radial 

(Charnes et al., 1978) and additive (Lovell and Pastor, 1995) models.  Radial DEA models 

require that all inputs be contracted and/or outputs expanded from a center (e.g. origin) or 

radius.  These models are typically the first of several explored to compare and contrast 

DMU efficiency.  For DEA CRS and VRS models, scale efficiency is computed as the ratio 

of respective CRS and VRS efficiency values (Alvarez et al., 2016) regardless of orientation 

(i.e. input or output).    

The CRS and VRS DEA model solutions identify efficiency frontiers.  All DMUs 

which fall on the efficient frontier (i.e. CRS or VRS) are said to be technically efficient (i.e. 

there are no shortages or overages of the inputs/outputs).   These shortages or overages are 

known as negative or positive slack values respectively.  DMUs with zero slack set the 

standard or ‘benchmark’ for other DMUs that are spatially located some distance from the 

efficiency frontier.  A practical interpretation is that DMUs operating below the efficiency 
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frontier are deemed to have potential for performance improvement (Huguenin, 2012).   All 

of the said models use two-stage15 optimization to compute slack variables.    

The other DEA model type examined in this work is an additive model (AM).  The 

major difference between the radial and additive model is the way by which technical 

efficiency is computed.  DEA additive models simultaneously consider positive and negative 

slack variables (Charnes et al., 1985) in order to determine technical efficiency.   

Objective RTS determination of a USAF dataset is a topic worth exploration.  Past 

DEA application of USAF military data assumes RTS and makes no statistical inferences 

(including confidence intervals) regarding repeatability.  This is a critical gap in increasing 

managerial awareness, which is a way to inform senior decision making as it relates to 

resource management.  RTS assumptions can be either linear (CRS) or nonlinear (VRS).  

Recall, CRS assumes the constant rate of change in outputs and inputs is linear.  The VRS 

DEA model can be used to account for a lack of constant rate of change between inputs and 

outputs.  Some practitioners argue the RTS assumption is not of significance as when both 

CRS and VRS models are computed, the ratio between the two establishes SE, which 

determines optimality of inputs and outputs.  The desired outcome of RTS assumption is to 

provide more managerial insight as it relates to technical efficiency repeatability.  In other 

words, through simulation of a given amount of DEA data, can we develop predicted point 

 

15 Two stage DEA optimization refers to first: optimizing the DMUs for model type (e.g. radial) efficiency and 
second: computing the possible input excesses and output shortfalls or slacks to determine technical 
efficiency (Alvarez et al., 2016).    
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estimates and confidence intervals (CIs) of these data to determine ranges of anticipated 

performance based on RTS assumption?    

This work pursues both (i.e. computation of SE and implications and TE CI interval 

approximation) approaches and provides objective commentary on each.  Further, rather than 

subjectively debate the RTS assumption, a more objective process can be used to statistically 

determine RTS of DEA data, TE estimates and TE CIs.  We explore a bootstrap methodology 

proposed by Dario and Simar (2007).        

Introduction to Bootstrap Methods to Determine Statistical Inferences 

DEA is a nonparametric technique that measures efficiency as a relative estimate of a 

frontier and as a result is subject to uncertainty with regards to statistical inferences, which 

makes repeatability challenging (Daraio and Simar, 2007).  For a general nonparametric 

estimator, the following properties are necessary: randomness, positiveness, smoothness, 

consistency and convergence.  Randomness refers to the sample of firms to be identically and 

independently distributed random variables.  Positivity infers the probability of observing a 

firm on the frontier is positive.  Smoothness insures differentiability, which is one component 

needed to determine optimality.  Consistency suggests as the sample size of firms increase, 

the estimator will converge to the true, but unknown value under estimation. Mathematically, 

this means as the sample size approaches infinity, the probability of absolute error being 

greater than zero converges to zero.  Convergence is required to determine convexity or 

concavity, which is essential for global optimality.  The aforementioned properties are 

needed in order to construct a meaningful DEA bootstrap.   
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If properly constructed, a bootstrap or simulation can provide an approximation of the 

firm distribution.  Thus, bootstrap methods increase the number of theoretical versions of the 

known firm sample to ultimately assess repeatability via the estimation of bias, hypothesis 

testing and confidence intervals.    

The MATLAB DEA Toolbox software uses techniques based on bootstrapping theory 

advanced and proposed by (Silverman, 1986); (Efron and Tibshirani, 1993); [(Simar and 

Wilson, 1998; 1999c; 2001; 2002; 2000b; 2006a)]; (Bogetoft and Otto, 2001); (Wilson, 

2005a-c); and (Daraio and Simar, 2007).  Their summary is stated below with modifications 

for output orientation models.  

1. Obtain a random sample from N sample firms with replacement from a set of 2N 

reflected original DEA scores: {2 − 𝛿𝛿1, … ,2 − 𝛿𝛿𝑁𝑁 ,𝛿𝛿1, … , 𝛿𝛿𝑁𝑁}, which yields {𝛿𝛿�𝑖𝑖
∗

; 𝑖𝑖 =

1, … ,𝑁𝑁}. 

 

2. Smooth the bootstrap resampled DEA scores by perturbation (random noise 

simulation) via a Gaussian kernel density function with scale given by an optimal 

bandwidth h defined by the following Mean Integrated Squared Error (MISE) 

function: 

ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1.06 ∗min �𝑠𝑠𝑁𝑁, 𝑟𝑟𝑁𝑁
1.34� ∗ 𝑁𝑁

− 15,                                  Eq. IV-3 

where 𝑠𝑠𝑁𝑁 is the empirical standard deviation of N DEA efficiency scores and 𝑟𝑟𝑁𝑁 is the 

interquartile range within the sample size N.  Therefore, obtaining   𝛿𝛿𝑖̿𝑖
∗

; 𝑖𝑖 = 𝛿𝛿𝑖𝑖
∗ +

ℎ𝜀𝜀𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁, where 𝜀𝜀𝑖𝑖 represents random error from a standard normal 

distribution. 

   

3. Refine the smoothed resampled DEA scores by correcting for the mean and variance:  
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𝛿𝛿𝑖𝑖
∗∗ = 𝛿̈𝛿𝑖𝑖

∗
+ 𝛿𝛿�𝑖𝑖

∗
− 𝛿̈𝛿𝑖𝑖

∗

�1+ℎ2 𝑠𝑠∗2⁄
, 𝑖𝑖 = 1, … ,𝑁𝑁,                                    Eq. IV-4 

where 𝛿̈𝛿𝑖𝑖
∗

 and 𝑠𝑠∗2 are the empirical mean and variance, respectively of N (DMU 

values) of DEA scores (𝛿𝛿�𝑖𝑖
∗

).   

 

4. Reflect the inefficient DMUs (i.e. DEA scores > 1).  For 𝑖𝑖 = 1, … ,𝑁𝑁, inefficient 

DEA scores are represented as: 

𝛿𝛿𝑖𝑖
∗ = �

2− 𝛿𝛿𝑖𝑖
∗∗    𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖

∗∗ > 1,
𝛿𝛿𝑖𝑖
∗∗            otherwise.

                                           Eq. IV-5 

5. Generate inefficient outputs or inputs (depends on orientation) within the attainable 

DEA set (𝑌𝑌𝑖𝑖∗) and condition on the original input mix 𝜂𝜂𝑖𝑖 and the original input level 

𝑋𝑋𝑖𝑖.  This occurs by defining a bootstrap sample 𝑌𝑌∗as follows: 

𝑌𝑌∗ = ��𝑋𝑋𝑖𝑖∗,𝑌𝑌𝑖𝑖∗� � 𝑋𝑋𝑖𝑖∗ = 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖∗ = 𝛿𝛿𝑖𝑖
∗

𝛿𝛿�𝑖𝑖
𝑌𝑌𝑖𝑖,   𝑖𝑖 = 1, … . ,𝑁𝑁}.                  Eq. IV-6 

Courtesy of the Dario and Simar 2007 text, we restate the interpretation of (Eq. IV-6).   

The denominator of the ratio multiplying the output vector 𝑌𝑌𝑖𝑖 projects the original 

observed data point 𝑌𝑌𝑖𝑖 on the DEA efficient facet (portion) on the ray defined by 𝑌𝑌𝑖𝑖.  

Then, the numerator projects the frontier point inside the DEA attainable set, on the 

same ray, by the random bootstrap factor 𝛿𝛿𝑖𝑖
∗.  This is completed for each data point 

𝑖𝑖 =  1, … ,𝑁𝑁. 

By iterating the aforementioned steps B number of times, we produce a B 

bootstrapped sample 𝑌𝑌𝑏𝑏∗ .  For any fixed point of interest (𝑥𝑥,𝑦𝑦), a Monte-Carlo sequence of 

pseudo estimates {𝛿𝛿𝑖𝑖∗(𝑥𝑥,𝑦𝑦)} 𝐵𝐵
𝑏𝑏=1 is computed by solving preferred CCR or BCC orientation 

models with reference set 𝑌𝑌𝑏𝑏∗ .  The empirical distribution {𝛿𝛿𝑖𝑖∗(𝑥𝑥, 𝑦𝑦)} 𝐵𝐵
𝑏𝑏=1 is the bootstrap 

approximation of the sampling distribution of 𝛿𝛿�(𝑥𝑥,𝑦𝑦). 
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Using Bootstrap methods to determine Return to Scale 

Utilizing the aforementioned bootstrapping procedure, Simar and Wilson (2002) 

propose a test to determine CRS or VRS.  Given, a significance level (α) and set of DEA 

scores (𝜓𝜓𝜕𝜕), the hypotheses are as follows: 

𝐻𝐻𝑜𝑜: 𝜓𝜓𝜕𝜕 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐶𝐶𝐶𝐶𝐶𝐶 

  𝐻𝐻𝐴𝐴: 𝜓𝜓𝜕𝜕 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉𝑉𝑉𝑉𝑉                                    Eq. IV-7a 

𝑜𝑜𝑜𝑜 

𝐻𝐻𝑜𝑜: 𝜓𝜓𝜕𝜕 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉𝑅𝑅𝑅𝑅                                    Eq. IV-7b 

𝐻𝐻𝐴𝐴: 𝜓𝜓𝜕𝜕 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐶𝐶𝐶𝐶𝐶𝐶 

The test statistic to determine the rejection region is a mean of the ratios of DEA 

efficiency scores and is defined as follows (Daraio and Simar, 2007): 

𝑇𝑇(𝑋𝑋𝑁𝑁) = 1
𝑁𝑁
∑

𝜃𝜃�𝐶𝐶𝐶𝐶𝐶𝐶,𝑁𝑁(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖)

𝜃𝜃�𝑉𝑉𝑉𝑉𝑉𝑉,𝑁𝑁(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖)

𝑁𝑁
𝑖𝑖=1 .                                             Eq. IV-8 

The p-value of 𝑇𝑇(𝑋𝑋𝑁𝑁) is theoretically defined as:  

𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑃𝑃(𝑇𝑇(𝑋𝑋𝑁𝑁) ≤ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 | 𝐻𝐻0 is true),                                Eq. IV-9 

where 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is the value of T computed on the original observed sample 𝑋𝑋𝑁𝑁.  This theoretical 

p-value is practically demonstrated as the following approximation: 

𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≈ ∑ 𝑰𝑰(𝑇𝑇∗,𝑏𝑏≤ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)
𝑩𝑩

𝐵𝐵
𝑏𝑏=1  ,                                           Eq. IV-10 

where 𝑇𝑇∗,𝑏𝑏 is equal to the simulated B pseudo-samples 𝑇𝑇(𝑋𝑋𝑁𝑁
∗,𝑏𝑏) of DMU size N under the null 

hypothesis and I is an indicator variable, where if I(𝑇𝑇∗,𝑏𝑏 ≤  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜) =1, 𝑇𝑇∗,𝑏𝑏 ≤  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is true, 

otherwise false and equal to zero (Daraio and Simar, 2007).  This assumes CRS is the RTS 

estimate of the frontier for generating the pseudo-samples.  If the p-value of 𝑇𝑇(𝑋𝑋𝑁𝑁) is less 
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than α, we reject the null hypothesis (𝐻𝐻𝑜𝑜) and conclude the DEA scores are VRS, otherwise 

CRS (Daraio and Simar, 2007).   

Confidence intervals and estimated biases are computed using Monte Carlo 

simulations and quantiles.  Specifically, a confidence interval is constructed using quantile 

methods from naïve bootstrap principles (Lu and Fang, 2003) and is noted below: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝛿𝛿(𝑥𝑥,𝑦𝑦) = [𝛿𝛿(𝑥𝑥,𝑦𝑦) − 𝑎𝑎�1−∝ 2�
,𝛿𝛿(𝑥𝑥, 𝑦𝑦) − 𝑎𝑎�∝

2�
],              Eq. IV-11 

where quantiles 𝑎𝑎�𝛽𝛽 are taken from Monte-Carlo distribution quantiles of values 

{𝛿𝛿𝑏𝑏∗(𝑥𝑥,𝑦𝑦)} 𝐵𝐵
𝑏𝑏=1 for all β∈[0,1].  The bias corrected estimator is denoted below (Daraio and 

Simar, 2007): 

𝛿𝛿�(𝑥𝑥,𝑦𝑦) = 𝛿𝛿�(𝑥𝑥,𝑦𝑦) − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� �𝛿𝛿�(𝑥𝑥,𝑦𝑦)� = 2𝛿𝛿�(𝑥𝑥,𝑦𝑦)− 1
𝐵𝐵
∑ 𝛿𝛿�𝑏𝑏

∗
(𝑥𝑥,𝑦𝑦)𝐵𝐵

𝑏𝑏=1 .                Eq. IV-12 

For more details, please reference Dario and Simar 2007 and Bogetoft and Otto 2001 

literature. 

Data Overview  

Generally, aircraft flying hour training requirements drive sortie production at a given 

base (AFI 11-102 (Flying Hour Mgmt), 2011).  For pilot production, flying requirements is a 

function of the student load.  Therefore, pilot manning is assumed a sufficient input to use to 

measure sortie production from an efficiency perspective.  Analysis to confirm this assertion 

is provided in the analysis portion of this section.  The Air Force Single Flying Hour Model 

(AFSFHM) provides the methodology and processes that bases need to execute flying hour 

programs (AFI 11-401 (Aviation Management), 2013).  This model determines the number 
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of flying hours needed to attain and maintain combat readiness for all aircrew.  This case 

study examines the active duty fighter pilot portion of aircrew at F-16 bases.   

Data for the DEA optimization model consists of ten F-16 active duty bases.   The 

inputs and outputs are fighter pilot career field personnel and respective funded 

authorizations and aircraft sorties by count and hours.  The manning data (inputs) are 

collected from Air Force authoritative personnel data sources and are current as of September 

2018.   The outputs are collected through the Logistics, Installations and Mission Support-

Enterprise View (LIMS-EV) database and are current as of September 2018.  LIMS-EV 

provides a single-source business intelligence environment that delivers information and 

capabilities to agencies’ fleet managers (DOD Strategic Sustainability Performance Plan, 

2012).   

Only fighter units that reported data into LIMS-EV were captured in this analysis.  

Maintenance manning were inputs, but oftentimes maintenance squadrons are tasked to 

support more than one fighter squadron (i.e. F-16, F-22, F-15, A-10, etc.), which makes 

alignment of these personnel with specific F-16 units unmanageable and as a result are 

excluded.   More details of the inputs and outputs are provided next.   

Resource Inputs/Outputs 

Inputs 

The input variables included in the optimization procedure are manning rates from the 

fighter pilot career field (11F).  Manning rates are determined as the ratio of the number of 

personnel by career field and base and the number of personnel requirements by career field 

and base.  Table IV-1 is a career field manning rate and input summary.   
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Table IV-1: Input Variables for DEA 

 
AD Career Field/ 
Manning rate 
(by Base) 
 

11F 
Assigned/Authorized 

 
 

Manning 
Rate 

Base 1  79 75 1.05 
Base 2  33 44 0.83 
Base 3  84 100 0.84 
Base 4  61 63 0.97 
Base 5  34 52 0.65 
Base 6  65 64 1.02 
Base 7  58 64 0.90 
Base 8  36 37 0.97 
Base 9  105 108 0.97 
Base 10  43 43 1.00 

 

Outputs 

An aircraft sortie is defined as an instance that begins when the aircraft moves 

forward on takeoff or takes off vertically from rest at any point of support and ends after 

airborne flight when the aircraft returns to the surface and either engines are stopped or the 

aircraft is on the surface for five minutes, whichever occurs first (AFI 11-401 (Aviation 

Management), 2013).  Sorties are typically measured by hours.  We use active duty F-16 

sorties and respective hours as indicators of fighter pilot performance by base as outputs.  

Table IV-2 is a summary of outputs.   
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Table IV-2: Output Variables by Base for DEA 
 

 
Aircraft Sorties  

(by Base) 
 

Sorties/Hours 

 
 

Ratio 
 

Base 1 612 905 0.68 
Base 2 147 174 0.85 
Base 3 789 984 0.80 
Base 4 471 587 0.80 
Base 5 522 659 0.79 
Base 6 551 705 0.78 
Base 7 725 1071 0.68 
Base 8 367 462 0.79 
Base 9 771 1066 0.72 
Base 10 360 498 0.72 

 

Correlation Analysis 

A way to determine if appropriateness of outputs and inputs is to perform correlation 

analysis by statistically examining relationships among the data set.  Pearson correlation 

coefficients are computed among and within input and output combinations.  Figure IV-1 

provides a correlation matrix of the active duty F-16 bases.  The inputs are highly correlated 

(r = 0.95).  The outputs16 are highly correlated (r = 0.98).  Further, manning inputs are highly 

correlated with sortie outputs.   

 

 

 

 

16 In this work, we cannot distinguish between combat and training sorties.   
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Figure IV-1: Active Duty F-16 Correlation Results 

Pairwise correlation analysis among the dataset with α = 0.05 is conducted where all variable 

estimates are considered statistically significantly correlated.  Results, infer there exists 

statistical evidence a strong relationship exists between sortie production and fighter pilot 

manning.  Therefore, the aforementioned factors are suitable for DEA application.   
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DEA Analysis 

First, we examine RTS via bootstrap analysis.  Upon objective determination of RTS, 

we compute DEA models.  Results of the DEA models used to compute efficiencies for the 

ten F-16 bases are discussed.  The DEA modeling is computed using the DEA Toolbox for 

MATLAB (Alvarez et al., 2016) and results are presented in two groups of findings.  Group 

one shows the results of the radial models.  Group two depicts the results of the additive 

models.  The radial group is presented with CRS, VRS and scale efficiency scores.   

Return to Scale Estimation 

The hypothesis test for the F-16 DEA dataset is as follows: 

𝐻𝐻𝑜𝑜: 𝜓𝜓𝜕𝜕 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐶𝐶𝐶𝐶𝐶𝐶 

𝐻𝐻𝐴𝐴: 𝜓𝜓𝜕𝜕 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉𝑉𝑉𝑉𝑉 

Based on a 5% significance level (i.e. α = 0.05) and 500 bootstrapped DEA CCR-oo samples 

(B), the statistical results of the hypothesis test infer the RTS DEA technical efficiency scores 

are CRS versus VRS.  The statistical implications are we can be at least 95% confident in 

these set of TEs and respective CIs for this dataset.  The results do not suggest future DEA 

results will yield similar results.  While the latter is correct, the results can still provide 

managerial insight into a possibility of future efficiency outcomes by base provided manning 

and sortie production levels are within some small significance error of the initial results.  

Table IV-3 depicts the TEs and respective bootstrapped TEs and CIs (Upper and Lower 

Confidence Levels) by base.  The results better inform further DEA model application.    
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Table IV-3: DEA Return to Scale (RTS) Results 

 
Base 
 

TE 

 
Bootstrapped 

TE 
 

Boostrapped 
TE LCL 

 
Boostrapped 

TE UCL 

Base 1 1.3683 1.5370 1.3795 1.7391 
Base 2 2.9695 3.3089 3.0051 3.7260 
Base 3 1.3929 1.5522 1.4084 1.7437 
Base 4 1.5152 1.6313 1.5208 1.8273 
Base 5 1.0000 1.2008 1.0169 1.3446 
Base 6 1.3158 1.4126 1.3196 1.5905 
Base 7 1.0000 1.1666 1.0150 1.2983 
Base 8 1.4121 1.2291 1.1452 1.3763 
Base 9 1.5868 1.7483 1.5957 1.9585 
Base 10 1.3531 1.4827 1.3595 1.6620 

Test-statistic = 0.8187;  Critical value = 0.7514;  P-value = 0.1860 
 
 
Radial, addictive and superefficiency DEA model results follow.   
 

Radial Results 

Recall, for oo models, we hold inputs fixed to maximize outputs; and efficiency 

scores greater than one are considered radially inefficient.   Table IV-4 provides CRS-oo 

(radial) inputs, outputs, efficiency score, associated slacks and rank (via efficiency) for each 

base.   Assuming all base outputs increase by the same proportional change as all inputs 

change, we observe in the context of how well F-16 bases utilize fighter pilot manning for 

sortie production and conclude Bases 5 and 7 are considered the most efficient as their 

efficiency scores are one.  They are also considered technically efficient because there are no 

surplus slacks.  The existence of slack variables infers an overage or shortage of resources.  

For example, Base 1’s efficiency score of 1.37 with personnel and sortie slacks of 12 and 

0.86, respectively, suggest that its current level of output activity could be improved with 12 

more personnel and 0.86 more sorties.  Further, the efficiency score (compared to other 
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bases) suggests if Base 1 was able to get 12 more additional skilled, trained pilots per 

approximately 1 sortie hour, sortie production efficiency would increase by 37%.   

Further, without consideration of increasing or decreasing RTS, compared to Bases 5 

and 7, Base 2’s slack only exists in sortie hours, which suggests Base 2 has capacity to 

generate another 100 hours of sortie production without additional manpower.  However, if 

Base 2 has DRS, this suggests the base reduce sortie production by 100 hours in order to be 

considered technically efficient.  The Overall TE average is 1.46, which infers on average a 

base can increase sortie production by 46% to become technically efficient.   

The aforementioned are rigid, mathematical interpretations and should not be taken as 

exact means to reduce or increase base resources.   It is important for the reader to understand 

the data were taken from a steady-state operations timeframe.  Flying squadrons are typically 

manned and staffed for wartime, contingency operations.  Consequently, during wartime 

operations sortie production will ramp up while manpower is fixed, thus naturally increasing 

efficiency levels across the base populations. 
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Table IV-4: DEA Radial (CRS-oo) Model Results 
  Inputs Outputs 

 
Inputs* Outputs  

DMU 
(Base) 

Assigned 
(X1) 

Authorized 
(X2) 

Sortie 
(Y1) 

Sortie 
hrs 

(Y2) 

Efficiency 
Score 
(𝜑𝜑𝑖𝑖) 

Slack  
X1 

Slack  
X2 

Slack  
Y1 

Slack  
Y2 

Base 
Rank 

Base 1 79 75 612 905 1.37 12 0 0.86 0 6 
Base 2 33 44 147 174 2.97 0 0 0 100.39 10 
Base 3 84 100 789 984 1.39 0 0 0 194.88 7 
Base 4 61 63 471 587 1.51 4 0 0 164.83 8 
Base 5 34 52 522 659 1.00 0 0 0 0 1 
Base 6 65 64 551 705 1.32 7 0 0 142.05 4 
Base 7 58 64 725 1071 1.00 0 0 0 0 1 
Base 8 36 37 367 462 1.14 2 0 0 91.53 3 
Base 9 105 108 771 1066 1.59 7 0 0 115.76 9 
Base 10 43 43 360 498 1.35 4 0 0 45.74 5 
1
𝑁𝑁
�𝜑𝜑𝑖𝑖  

    
1.46      

* Manning slack variables are rounded for practical interpretation purposes. 
 
Table IV-5 provides efficiency estimates (target values) and respective weights by base.  For 

oo models, the efficiency value for inputs (𝑋𝑋𝑖𝑖) is to hold the given input fixed and subtract 

the associated slack.  Note Base 1’s efficient assigned fighter pilots is (79 − 12 = 67).   The 

efficiency value for outputs (𝑌𝑌𝑖𝑖) is computed by multiplying the DEA efficiency score by the 

given output and add the associated slack value.  Note Base 1’s relative efficient number of 

sortie production is (612 ∗ 1.37 + 0.86 ≈  839).   The efficiency estimates reveal how the 

bases should be manned along with associated sortie output levels if they are to be 

considered radially efficient compared to benchmarked bases.  For the CRS-oo model, Table 

IV-5 reveals Base 1 is DRS, which suggests a reduction in size (e.g. sortie reduction).  Base 2 

is IRS, which suggests a mismanagement of current manpower to produce sortie generation 

efficiency relative to Bases 5 and 7.  Readers should realize although Base 6 is considered 
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CRS by the summed weights, it has slacks, therefore, it is inefficient compared to Base 5 and 

Base 7 bases.  

Table IV-5: DEA Radial (CRS-oo) Targeted Value Results 

DMU 
(Base) 

Eff. 
Asgn 
(X1) 

Eff. 
Auth 
(X2) 

Eff. 
Sorties 
(Y1) 

Eff. 
Sortie 

hrs 
(Y2) 

𝜆𝜆1 𝜆𝜆2 𝜆𝜆3 𝜆𝜆4 𝜆𝜆5 𝜆𝜆6 𝜆𝜆7 𝜆𝜆8 𝜆𝜆9 𝜆𝜆10 
∑𝜆𝜆𝑗𝑗  

(RTS) 

Base 1 67 74 839 1238 0.00 0.00 0.00 0.00 0.00 0.00 1.16 0.00 0.00 0.00 DRS 

Base 2 33 40 437 617 0.00 0.00 0.00 0.00 0.25 0.00 0.42 0.00 0.00 0.00 IRS 

Base 3 84 100 1099 1567 0.00 0.00 0.00 0.00 0.51 0.00 1.15 0.00 0.00 0.00 DRS 

Base 4 57 63 714 1054 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 IRS 

Base 5 34 52 522 659 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 CRS 

Base 6 58 64 725 1071 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 CRS 

Base 7 58 64 725 1071 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 CRS 

Base 8 34 37 419 619 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.00 IRS 

Base 9 98 108 1223 1807 0.00 0.00 0.00 0.00 0.00 0.00 1.69 0.00 0.00 0.00 DRS 
Base 
10 39 43 487 720 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 IRS 

 

To obtain scale efficiency, BCC-oo model computations are necessary.  Recall, SE 

occurs when the size of DMU (base) operations is optimal such that any modifications will 

render the base less efficient.  Table IV-6 provides BCC-oo (radial) inputs, outputs, 

efficiency score, associated slacks and rank (via efficiency) for each base.   Assuming all 

bases are performing at variable RTS, we conclude Base 2, Base 3, Base 5, Base 7, Base 8 

and Base 9 are considered efficient relative to the other bases.  Realize how Base 5 has the 

lowest 11F manning rate (56%), but is considered technically efficient among the other non-

efficient bases.  The results suggests these bases may possess best practices that the other  

F-16 bases could adopt.    The PTE average is 1.12, which infers on average a base can 

increase sortie production by 12% to become purely technically efficient.  This illustrates one 

of the beauties of DEA; the procedure is not biased towards higher proportions of inputs and 
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outputs.  The measure is focused on comparing DMU efficiency or relative rate of change 

among weighted outputs and inputs.  An added benefit to the use of DEA modeling is that it 

measures efficiency by relative rates of change among DMUs and not by non-normalized 

proportions.  Therefore, higher manning rates or sortie rates do not necessarily translate into 

higher efficiency.  While the RTS of the data is statistically CRS, the VRS results are more 

operationally representative of the bases.   

Table IV-6: DEA Radial (BCC-oo) Model Results 

  Inputs Outputs   Inputs* Outputs  

DMU 
(Base) 

Assigned 
(X1) 

Authorized 
(X2) 

Sortie 
(Y1) 

Sortie 
Hrs 
(Y2) 

Efficiency 
Score 
(𝛾𝛾𝑖𝑖) 

Slack  
X1 

Slack  
X2 

Slack  
Y1 

Slack  
Y2 

Base 
Rank 

Base 1 79 75 612 905 1.18 21 10 0.74 0 7 
Base 2 33 44 147 174 1.00 0 0 0 0 1 
Base 3 84 100 789 984 1.00 0 0 0 0 1 
Base 4 61 63 471 587 1.51 4 0 0 161.41 10 
Base 5 34 52 522 659 1.00 0 0 0 0 1 
Base 6 65 64 551 705 1.32 7 0 0 142.05 9 
Base 7 58 64 725 1071 1.00 0 0 0 0 1 
Base 8 36 37 367 462 1.00 0 0 0 0 1 
Base 9 105 108 771 1066 1.00 0 0 0 0 1 
Base 10 43 43 360 498 1.20 2 0 14.74 0 8 
1
𝑁𝑁
�𝛾𝛾𝑖𝑖 

    
1.12      

*Manning slack variables are rounded for practical interpretation purposes. 
 
 

We now compute the scale efficiency scores (i.e. overall total efficiency (OTE) 

versus pure technical efficiency (PTE)).  Table IV-7 reveals that Bases 5 and 7 best utilize 

staffing to generate sorties.  Further, average SE is 1.34, which indicates on average a base 

may be able to increase sortie production by 34%.  
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Table IV-7: DEA Radial (SE-oo) Model Results 

DMU 
(Base) 

CRS 
(OTE) 

VRS 
(PTE) 

SE 
(Ω𝑖𝑖) 

Base 1 1.37 1.18 1.16 
Base 2 2.97 1.00 2.97 
Base 3 1.39 1.00 1.39 
Base 4 1.52 1.51 1.003 
Base 5 1.00 1.00 1.00 
Base 6 1.32 1.32 1.00 
Base 7 1.00 1.00 1.00 
Base 8 1.14 1.00 1.14 
Base 9 1.59 1.00 1.59 
Base 10 1.35 1.20 1.13 
1
𝑁𝑁
�Ω𝑖𝑖   1.34 

 

Thus far, the USAF personnel efficiency methodology uses DEA models with an output 

oriented direction with associated slacks.  The next portion of this research analysis 

investigates the weighted additive model (WAM) which is independent of orientation or 

direction. 

WAM-CRS Results 

Table IV-8 provides WAM-CRS (MIP) inputs, outputs, efficiency score, associated 

slacks and rank (via efficiency) for each base.  While the slack estimates vary, the target 

estimates (same as in Table IV-6) and base rankings remain unchanged.  Assuming, DRS 

(lambdas not shown), the implications are similar with varying numbers of sortie production.  

For example, Base 1 results suggest a reduction in manpower by 12 personnel and 

approximately 227 sorties and 333 sortie hours, respectively.  Bases 5 and 7 are still 

considered efficient.  Further, average WAM is 1.15, which indicates on average a base may 

be able to increase sortie production by 15%. 
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Table IV-8: WAM-CRS (MIP) Results 

  Inputs Outputs   Inputs* Outputs  

DMU 
(Base) 

Assigned 
(X1) 

Authorized 
(X2) 

Sortie 
(Y1) 

Sortie 
hrs 

(Y2) 

Efficiency 
Score 
(𝜓𝜓𝑖𝑖) 

Slack  
X1 

Slack  
X2 

Slack  
Y1 

Slack  
Y2 

Base 
Rank 

Base 1 79 75 612 905 0.89 12 0 226.28 333.34 4 
Base 2 33 44 147 174 4.52 0 0 289.52 443.08 10 
Base 3 84 100 789 984 0.98 0 0 309.96 581.84 7 
Base 4 61 63 471 587 1.37 4 0 242.67 467.27 9 
Base 5 109 194 522 659 0.00 0 0 0 0 1 
Base 6 65 64 551 705 0.94 7 0 174 365 6 
Base 7 58 64 725 1071 0.00 0 0 0 0 1 
Base 8 36 37 367 462 0.55 2 0 52.14 157.17 3 
Base 9 105 108 771 1066 1.35 7 0 452.44 741.31 8 

Base 10 43 43 360 498 0.89 4 0 127.11 221.58 4 
1
𝑁𝑁
�𝜓𝜓𝑖𝑖 

    
1.15      

*Manning slack variables are rounded for practical interpretation purposes. 
 

Superefficient Results 

Superefficiency is determined by change in additive model DEA efficiency score 

with 𝑁𝑁 − 1 bases.  A base is not superefficient if the new DEA score with computed (𝑁𝑁 − 1) 

sample size is the same as the additive model result.  Superefficient bases (oo) will have 

scores less than one.   Table IV-6 provides SAM-CRS inputs, outputs, efficiency score, 

associated slacks and rank (via efficiency) for each base.  While the slack estimates vary, the 

rankings remain unchanged.   Bases 5 and 7 are considered superefficient, which implies 

these bases exceed 100% efficiency. 

  



 

124 

 

Table IV-9: SAM-CRS Results 

  Inputs Outputs   Inputs* Outputs  

DMU 
(Base) 

Assigned 
(X1) 

Authorized 
(X2) 

Sortie 
(Y1) 

Sortie  
Hrs 
(Y2) 

Efficiency 
Score 
(𝜂𝜂𝑖𝑖) 

Slack  
X1 

Slack  
X2 

Slack  
Y1 

Slack  
Y2 

Base 
Rank 

Base 1 79 75 612 905 1.37 12 0 0.86 0 6 
Base 2 33 44 147 174 2.97 0 0 0 100.39 10 
Base 3 84 100 789 984 1.39 0 0 0 194.88 7 
Base 4 61 63 471 587 1.51 4 0 0 164.83 9 
Base 5 109 194 522 659 0.81 0 15 0 91.29 1 
Base 6 65 64 551 705 1.32 7 0 0 142.05 4 
Base 7 58 64 725 1071 0.76 16 0 93.41 0 1 
Base 8 36 37 367 462 1.14 2 0 0 91.53 3 
Base 9 105 108 771 1066 1.59 7 0 0 115.76 8 
Base 10 43 43 360 498 1.35 4 0 0 45.74 5 
1
𝑁𝑁
�𝜂𝜂𝑖𝑖 

    
1.42      

*Manning slack variables are rounded for practical interpretation purposes. 
 

Similar targeted outputs and inputs computations illustrated in Table IV-3 are 

performed with the SAM-oo DEA models.  Table IV-10 provides target values for inputs and 

outputs, and weights by base.  Note Base 1’s efficient assigned fighter pilots is (79 − 12 =

67).   The efficiency value for outputs (𝑌𝑌𝑖𝑖) is computed by multiplying the DEA efficiency 

score by the given output and add the associated slack value.  Note Base 1’s relative efficient 

number of sortie production is (612 ∗ 1.37 + 0.86 ≈  839).   The efficiency estimates reveal 

how the bases should be manned along with associated sortie output levels if they are to be 

considered radially efficient compared to benchmarked bases.  Similar to the WAM results, 

Base 1 is DRS, which suggests a reduction in size (e.g. sortie reduction).  Base 2 is IRS, 

which suggests a mismanagement of current manpower to produce sortie generation 
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efficiency relative to Base 5 and Base 7.  Although Base 6 is considered CRS by the summed 

weights, it has slacks, therefore, it is inefficient compared to Bases 5 and 7. 

Table IV-10: SAM-oo Targeted Value Results 

DMU 
(Base) 

Eff. 
Asgn 
(X1) 

Eff. 
Auth 
(X2) 

Eff. 
Sorties 
(Y1) 

Eff. 
Sortie 

hrs 
(Y2) 

𝜆𝜆1 𝜆𝜆2 𝜆𝜆3 𝜆𝜆4 𝜆𝜆5 𝜆𝜆6 𝜆𝜆7 𝜆𝜆8 𝜆𝜆9 ∑𝜆𝜆𝑖𝑖 
(RTS) 

Base 1 67 74 839 1238 0.00 0.00 0.00 0.00 0.00 1.16 0.00 0.00 0.00 DRS 

Base 2 33 40 437 617 0.00 0.00 0.00 0.25 0.00 0.42 0.00 0.00 0.00 IRS 

Base 3 84 100 1099 1567 0.00 0.00 0.00 0.51 0.00 1.15 0.00 0.00 0.00 DRS 

Base 4 57 63 714 1054 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 IRS 

Base 5 34 37 425 627 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 IRS 

Base 6 58 64 725 1071 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 CRS 

Base 7 42 64 643 811 0.00 0.00 0.00 0.00 1.23 0.00 0.00 0.00 0.00 DRS 

Base 8 34 37 419 619 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 IRS 

Base 9 98 108 1223 1807 0.00 0.00 0.00 0.00 0.00 0.00 1.69 0.00 0.00 DRS 
Base 10 
 39 43 487 720 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 IRS 

Analysis Summary 

This research shows pilot manning data in the form of personnel and funded 

personnel requirements can be objectively assessed by efficiency by base.    This work only 

examines 10 AD F-16 bases.  There are several Guard/Reserve F-16 bases.  These are not 

considered because the data are not available for this study.  

If only pilot staffing is considered, then Bases 5 and 7 become the most technically, 

radially and scaled efficient of the ten bases.   When linear rate of change assumption 

between outputs and inputs is relaxed (i.e. VRS), Base 2, Base 3, Base 5, Base 7, Base 8 and 

Base 9 AFBs are considered radially and technically efficient. Since Bases 5 and 7 are ranked 

first among all DEA computations, this research implies Bases 5 and 7 might be considered 
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as a benchmark for other F-16 active duty bases to gain efficiency in maximizing sortie 

generation with current fighter pilot manning levels.  Additional inputs such as logistics and 

other support manning should be included in the model before any final conclusions are 

reached.  

Limitations and Final Remarks 

There are limitations with the methodology.  When outputs or inputs cardinality is 

larger than the number of DMUs modeled, then discriminatory power is limited (Despotis, 

2002).   This can limit the number of reasonable outputs and inputs to include in the analysis.  

Ideally, more career fields should be used as inputs as it takes more than pilots to generate 

sorties.  For example, maintenance, security forces, civil engineering and logistics personnel 

should also be considered.  Further, a more complete assessment involves discussions with 

the actual squadron personnel (e.g. fighter pilots and maintenance personnel) and base 

leadership who could provide more insight into their unique staffing and mission constraints.  

For example, the local weather, infrastructure, and serviceable support equipment at one 

location might cause greater inefficiencies than at other bases.  The challenge with adding 

more career fields, while preserving the number of DMUs (AD F-16 bases) creates very little 

distinguishable separation between efficiency values.    

This work introduces an objective way to compute RTS.  Hypothesis test inferences 

via bootstrapping computations reveal the F-16 bases globally exhibit CRS RTS.  This 

revelation is to be tempered with the timeframe of data capture (steady state operations).  

That is to say, sortie production will increase during wartime operations, while AD manning 

will remain constant.  This infers efficiency estimates will improve for each base, which 
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means RTS will need to be re-examined and implications could change regarding base 

efficiency rankings.           

In conclusion, personnel efficiency methodology utilized four output-oriented DEA 

models, in which all except the VRS model provided consistent results.   The analysis 

suggests Base 5 and Base 7 AFBs could be potential benchmarks for other F-16 bases, but 

further modeling is needed to verify these conclusions.   The goal of this case study is to 

show how the methodology can be used to assess efficiency at operational bases.  This work 

is a step forward in shedding some light on manning efficiency, which is a component of the 

strategic risk associated with military combat capability.   

 Mathematically, a personnel productivity demonstration at the base level is computed 

using DEA.  The next Chapter examines an actual computation of risk by career field at the 

enterprise level.  DEA is utilized to determine efficiency of the same career fields, and 

statistical methods are used to determine if a significant relationship exists between 

efficiency and risk.    

If efficiency is correlated with risk (e.g. the more efficient a career field is, the likelier 

the career field is to have more risk), senior planners, programmers, analysts and managers 

can better anticipate and assess risk in the three distinctive planning timeframes (near, mid 

and far) regarding personnel allocation and prioritization.  RTS bootstrapping provides a 

means to provide predictive analytical insight into personnel efficiency and the assessment of 

future personnel risk.   
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Chapter V uses DEA as part of an over-arching methodology to compute and assess 

efficiency and risk by career field.  Other mathematical functions and distributions are 

introduced to further compute risk.  Due to computational expensiveness, scaled efficiency is 

the metric of efficiency used to statistically compare to risk in Chapter VI.  
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V. Methodology to Determine Relationships Between Risk, Capability and Efficiency 

Introduction 

 A series of procedures are developed to objectively compute and assess personnel risk 

by career field and examine relationships between efficiency, risk and capability.  The 

Chapter presents a repeatable way to demonstrate whether a significant relationship exists 

between personnel efficiency and risk using correlation analysis and normal and sigmoid 

functions.  It also illustrates how to objectively accomplish manpower resource prioritization.  

If efficiency is correlated with risk, then we can better anticipate personnel capability gaps in 

the three distinct planning timeframes (i.e. near, mid and far).     

This methodology has three-fold purposes: 1.) demonstrates that efficiency can be 

objectively assessed using personnel manning data; 2. provides meaningful insight into the 

relationships of efficiency, risk and capability; and 3.) paves the way for a more traceable 

methodology to assess USAF personnel efficiency and risk.  These added analytical insights 

foster better strategic decision making by identifying capability gaps and provide an 

increased level of objectivity to support personnel resource allocation.  The results of the 

analysis may better inform the USAF Strategic, Planning & Programming Process (SP3).   

The method determines if a statistically significant relationship exists between efficiency and 

risk.    

The chapter provides a brief background of basic risk and applies context to strategic 

military applications.  Objectives are stated, followed by the introduction of normal and 

sigmoid functions to compute and assess personnel strategic risk.  Subsequently, a brief 
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exposition of DEA is provided to compute scaled efficiency.  A methodology applying the 

analytical methods is proposed, followed by an outline of data used to compute the analysis.  

Analytical results are presented.  Lastly, a section entails limitations and summary of 

findings.     

Background 

Risk 

Maximum resource capacity does not eliminate risk.  Risk is the degree of probability 

of a loss (Merriam-Webster, 2017).   An extension of this definition includes impact and 

defines risk as the intersection of the following properties of failure: probability of 

occurrence and impact of occurrence (Dumbrava and Iacob, 2013).  Further, these failure 

properties are mapped on a Cartesian plane delineated into risk categories ranging from Low 

to High (Figure V-1).   Notionally, ‘Low risk’ infers low probability of occurrence and low 

impact.  ‘Moderate risk’ implies high probability of occurrence, but little impact.  

‘Significant risk’ suggests low probability of occurrence, but high impact.  ‘High risk’ 

usually means both probability and impact of occurrence of failure are high.   
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Figure V-1: Classic Risk Grid (www.mindtools.com, 2018) 

This aforementioned categorization of risk aids decision making communities in 

prioritizing resources towards mitigating risk.  Practically, we can focus less on low risk 

items due to the low likelihood of occurrence and low impact.   Ideally, risk mitigation 

strategies should be used on significant and high risk items.  We apply this taxonomy 

towards military risk.   Military risk is a measure of the degree friendly forces and operations 

are vulnerable to adverse strategic consequences (Air Force Policy Directive 90-16, 2018).   

This work provides a framework to examine career field efficiency, compute career field risk 

and determine statistically significant relationships between efficiency, risk and capability.  

Objective  

            The objectives of this case study are to:  measure and compare USAF active duty and 
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civil servant manning by career field using a DEA model and statistical correlation 

techniques via the following activities: 

I. examine if a normal distribution can be used to calculate the probability of a 

failure;  

 

II. utilize a variant of the logistic function to compute personnel degradation and 

couple this algorithm with an approved risk assessment framework scale, thus 

calculating risk impact; 

 

III. use DEA to objectively measure and compare career field manning efficiency; 

 

IV. explore if there is a mathematical way to demonstrate if a significant 

relationship exists between efficiency and risk.  

Normal Distribution and Sigmoid curve (S-curve) 

Principally, there is always a degree of uncertainty (or risk) remaining even if 100% 

of requirements are obtained.  A way to illustrate is by example.  A restaurant owner has 

requirements for 62 personnel and has 62 personnel; in this example people represent 

capability.  Does the fact that the owner has 100% of personnel requirements filled, eliminate 

risk (e.g. risk = not being able to generate one million dollars ($1M) a month)?  We argue 

that even if the restaurant owner has the required amount of personnel, this still does not rule 

out catastrophic events (e.g. hurricane, earthquake, tsunami, economic dearth, etc.) that could 

prevent the restaurant from earning $1M for a particular month.  Principally, there is always 

a degree of uncertainty (or risk) remaining even if 100% of requirements are obtained.  In 

order to begin exploration of the said phenomena, we study the application of the normal 

distribution to modeling risk demonstrating its use on USAF personnel data.   
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Figure V-2 represents a descriptive statistics summary of the 32 USAF career families 

(functional equities).  The top left chart is histogram with a normal fit curve accompanied 

with a box and whisker plot and normal quantile plot.  The normal quantile plot graphically 

compares empirical distribution quantiles with quantiles of the theoretical distribution (i.e. 

normal) (De Laurentis et al., 2010).  The y-axis shows the manning rates.  The x-axis depicts 

the empirical cumulative probability for each value.  If the observations deviate from a 

‘straight line’ pattern, the data are said to visually fail a normality assumption.  Further, all 

career families besides Inspections and Commanders/Sr Leaders are within +/− two standard 

deviations of the mean.  The visual results suggest the career field family manning rates are 

normally distributed.  The table on the right in Figure V-2 provides a list of summary 

statistics associated with the normally fitted distribution of the career field family dataset.  

The mean manning rate of the data is 97% with a standard deviation of 0.07. The bottom left 

table in Figure V-2 is a summary of the ‘goodness of fit’ test using a Shapiro-Wilks metric.   
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Figure V-2: Descriptive Statistics of Career Field Family Manning Rates (JMP 12, 2019) 

The Shapiro-Wilks’ test statistically determines whether a probability distribution 

differs from a hypothesized distribution (i.e. normal Gaussian distribution) (Shapiro and 

Wilks, 1965).  For example, if all 32 career field families are plotted with manning rates on 

the x-axis and the number (frequency) of the number of actual observations that fall within 

each manning rate category (e.g. increments of 5%) on the y-axis, we obtain something 

similar to the histogram in Figure V-2.  Using the mean (location parameter), standard 

deviation (dispersion parameter), respective standard errors and hypothesis test statistics (∝=

0.05) of the data, confidence intervals are computed.   In this case, the data are normally 



 

135 

 

distributed, so the Shapiro-Wilk test yields a p-value greater than 0.05, and this is stated in 

Figure V-2.     

We can use a normal distribution to compute probability of occurrence of a given 

failure because the normal distribution not only calculates probabilities based on probabilities 

of success (i.e. 100% manning or more), career field manning rate (mean), the spread of the 

manning mean (standard deviation), but it also accounts for uncertainty (even if personnel 

requirements are 100% filled).  Further, the personnel data of the Agile Combat Support17 

Risk Assessment (ACS RA) follow a normal distribution, therefore, we use this distribution 

to calculate probabilities of success (manned) and failure (not manned) and incorporate them 

as factors to calculate risk18.  This sufficiently satisfies the probability of occurrence portion 

of the classic risk calculation19.   

Recall, the other portion of risk is impact.  While, the parameters of USAF manning 

career fields fit the properties of a normal distribution, in reality the normal distribution is ill-

suited to compute operationally representative risk alone.  Arguably, the relationship 

between personnel and risk follows a curvilinear pattern (e.g. Sigmoid curve or S-curve), 

where risk impact is inherently high when manning rates are below or at a certain threshold 

(e.g. 35%) and gradually improve as rates improve (Figure V-3).  The Sigmoid function is a 

variant of the logistic function: 𝒇𝒇(𝒙𝒙) = 𝑳𝑳
𝟏𝟏+𝒆𝒆−𝒌𝒌(𝒙𝒙−𝒙𝒙𝟎𝟎), where e is the natural logarithm base, 

 

17 ACS has the largest amount of funded personnel authorizations and personnel.     
18 While the personnel data can also be represented with a binomial distribution, the function fails at 
   providing realistic probability of failure outcomes when manning rates are 0 and 100%.   
19 Classic risk is defined as the probability of occurrence of failure and its associated impact (Mitchell et al., 

1999).  
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𝒙𝒙𝟎𝟎 represents the midpoint of the curve, L is the curve’s maximum value and k represents 

curve steepness (Verhulst, 1838).  The complement of the S-curve yields:  

 𝒇𝒇(𝒙𝒙)∗ = 𝟏𝟏 − 𝑳𝑳

𝟏𝟏+𝒆𝒆−𝒌𝒌�𝒙𝒙−𝒙𝒙𝟎𝟎�
.                                                     Eq. V-1 

Figure V-3: Notional  S-curve depiction 

  Even if manning is fully achieved, we still reach a manning performance ceiling, as 

risk (i.e. level of uncertainty) cannot be completely eliminated.  Using an S-curve function 

computation accounts for impact.  The S-curve uses a manning rate from (0-100%) coupled 

with a special case of the logistic function to arrive at a probability.  We use these 

probabilities and translate them into personnel risk factor values from the AFRAF mentioned 

in Chapter I to a risk scale.  Using both the normal distribution to compute probability of 

failure occurrence and the  S-curve function coupled with the AFRAF risk scale to compute 

impact of failure, we arrive at an overall risk for a given career field.  The other consideration 

of the determination of personnel risk is the measure of efficiency.   
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DEA 

For this work, DEA is the choice of technique to measure personnel efficiency.  A 

detailed exposition of DEA terminology is provided Chapters II and IV.  For this particularly 

application, we are not concerned with slack-based methods as we seek to simply measure 

efficiency using CRS, VRS and scaled efficiency approaches.  The rank (1st rank is 

considered the most efficient) from the scaled efficiency score is the value used as the 

efficiency variable to statistically compare against the risk score for each personnel category.  

What follows are the analytical methods used to demonstrate the assessment of strategic 

personnel risk.  The next section discusses procedures to compute probability of failure and 

risk impact.   

Methodology 

Normal distribution 

The normal distribution is a ubiquitous function observed in most natural and social 

phenomena (Kalla, 2019).  If we let x represent a point estimate (100% manning 

requirement), 𝜇𝜇 equates to the mean manning rate by a given career field and 𝜎𝜎 represent the 

standard deviation of the career field manning rate, we can use the following normal 

cumulative probability density function to estimate probability of failure: 

𝐹𝐹𝑥𝑥(𝜇𝜇,𝜎𝜎) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = 𝑃𝑃(𝑋𝑋 > 𝑥𝑥) = 1 − 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = 1 −  ∫ 𝑒𝑒
−12[�(𝑦𝑦−𝜇𝜇)

𝜎𝜎 �]2

√2𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑥𝑥

−∞   (Conover, 1980). Eq. V-2 

Since, the function does not have a closed form i.e. not able to be fully integrated using 

calculus, standard normal numerical approximations are used and thus, yield the following 

approximation (Conover, 1980): 
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 𝑁𝑁(𝜇𝜇,𝜎𝜎) = 1 − 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) =  𝛷𝛷(𝑥𝑥) = 𝛷𝛷(𝑥𝑥−𝜇𝜇
𝜎𝜎

).                         Eq. V-3 

𝛷𝛷(𝑥𝑥) = 1 − 𝑃𝑃(𝑍𝑍 ≤ 𝑥𝑥−𝜇𝜇
𝜎𝜎

).                                            Eq. V-4 

A correction is added to the normal cumulative function, by establishing the risk to be 1, if 

manning rates are at or below 33%.  This ensures career fields with severe manning 

challenges are identified as higher risk entities.  Assumptions of the normal distribution are:  

1. The data are from a random sample or population.   

2. The probability that a normal random variable X equals any particular value is 0. 

3. The standard deviation of the mean is greater than zero.   

Table V-1 is an example, where the Civil Engineering (CE) career field has a 

historical manning rate (mean) of 92%, standard deviation of one and a 100% manning rate 

requirement or 1, represents the random variable.  We seek the probability of the CE career 

field being 100% or less available and trained.  The results yield a cumulative probability of 

0.532%.  That is to say, given we do not know the amount of available and trained CE 

professionals, but the historical manning rate and standard deviation are known, we can say 

there is approximately a 53% chance the CE function will not meet a 100% manning 

requirement.    
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Table V-1: Normal probability calculator (Stattrek.com, 2018) 

 
Example Normal Probability Calculation 

Normal random variable (x) 1.00 

Cumulative probability: P(X ≤ 

1) 
0.532 

Mean 0.92 

Standard deviation 1.00 

 

We theorize these distinctive probabilities can be used to an extent to assess CE 

personnel probability of failure occurrence.   Essentially, satisfying the assumptions of a 

normal distribution, we can say, the probability of CE not manned at current requirements or 

more is at least 𝑃𝑃(1 <  𝑥𝑥) or 0.532 ~ 53%. 

The normal distribution application to the probability of failure occurrence is ideal for 

several reasons.  First, the personnel data fulfill the normal distribution properties.  Second, 

the normal distribution function inherently, appropriately accounts for uncertainty.  In other 

words, if we were to simply use the CE current manning rate 92% to assess risk, we would 

faultily conclude a 8% (1 - 92%) personnel risk.  Third, we no longer need to strongly 

consider other factors of the actual assigned CE personnel such as training shortfalls, 

personnel outages due to medical issues, Temporary duties (TDYs), deployments, etc. 

because the normal function has properties that account for these aforementioned 

uncertainties.  Fourth, the data are continuous which fit nicely with a normal distribution.  

Fifth, we can use these normal probabilities to build an algorithm that assesses personnel 
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capability by career field, which is one of the primary goals of this research.   This 

sufficiently satisfies the probability of occurrence portion of the classic risk calculation.  We 

further discuss the risk assessment methodology using the S-curve function to compute risk 

impact. 

Sigmoid function 

Using an S-curve function computation accounts for impact.  The S-curve uses a 

historical career field manning rate from (0-100%) coupled with the S-curve function to 

arrive at a probability.  We use these probabilities and translate them into personnel risk 

factor values from the AFRAF risk scale shown in Figure I-1.  Using both the normal 

distribution to compute probability of failure occurrence and the S-curve function coupled 

with the AFRAF risk scale to compute impact of failure, we arrive at an overall risk for a 

given USAF career field.   

For example, recall, we use the normal function to compute the probability of 

personnel manning rates at most 100%.  However, having 100% of personnel resources does 

not eliminate risk.  Therefore, we assign a raw personnel risk value of 0.01, if the normal 

function returns a value of 0.  This algorithm correction allows risk to always be greater than 

or equal to 1%.  The probability of failure (𝑝𝑝∗) and severity of the failure (𝑖𝑖∗) computations 

are combined using the mapping grid illustrated in Figure V-1 and further defnined by  

Eq.V-5.   

The intersection of the probability of failure occurrence and impact equate to 

personnel risk for career field i.     

𝑃𝑃𝑖𝑖 = (𝑥𝑥𝑖𝑖.𝑦𝑦𝑖𝑖) = (𝑖𝑖∗,𝑝𝑝∗)                                             Eq. V-5 
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Ultimately a personnel raw risk value between 0.01 and 1.00 is computed.   Eq. V-5 is 

represented by two variables: 𝑝𝑝∗ represents the probability of being at most manned at the 

number of current personnel for a given career field; and 𝑖𝑖∗ represents the impact of the said 

probability using the sigmoid function.  In this particular instance, 𝑖𝑖∗ is obtained through the 

following sigmoid function parameters from Equation V-1: L = 1 (maximum height);  k = 

0.09 (steepness); x = manning value between 0-100 and 𝑥𝑥0 = 50 (midpoint).  Figure V-4 

provides an illustration of how personnel risk is obtained, assessed and prioritized.  For 

example, if the Air Traffic Control (ATC) career family has a notional impact value of 0.95 

and a 0.88 probability of failure occurrence, then the intersection of these two values 

provides an ordinal risk level of ‘High’.    

 

Figure V-4: Personnel Risk Prioritization Example 
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Figure V-4 is an illustration of how senior planners can visually prioritize risk by 

career field.  If all career families are considered equally important, the inference gained 

from Figure V-4 suggests Explosive Ordinance Disposal (EOD), Cyber operations and ATC 

should be higher priority for resource consideration as risk scores are considered more 

significant than others.  Table VI-1 provides a codification of risk illustrated by the Cartesian 

mapping in Figure V-4.   

Table V-2: Composite Personnel Risk Ordinal Ratings 

Raw Risk boundary Risk Rating 

  𝑖𝑖∗ = 0,𝑝𝑝∗ = 0       𝑆𝑆𝑘𝑘 = 1 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆            

 𝑖𝑖∗ < 0.5,𝑝𝑝∗ < 0.5 𝑆𝑆𝑘𝑘 = 2 → 𝐿𝐿𝐿𝐿𝐿𝐿             
𝑖𝑖∗ ≥ 0.5,𝑝𝑝∗ ≤ 0.5 𝑆𝑆𝑘𝑘 = 3 → 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
𝑖𝑖∗ < 0.5,𝑝𝑝∗ ≥ 0.5   𝑆𝑆𝑘𝑘 = 4 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   
𝑖𝑖∗ > 0.5,𝑝𝑝∗ > 0.5 𝑆𝑆𝑘𝑘 = 5 → 𝐻𝐻𝑖𝑖𝑖𝑖h           
𝑖𝑖∗ = 1,𝑝𝑝∗ = 1     𝑆𝑆𝑘𝑘 = 6 → 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹           

 

Both risk inputs (i.e. probability of failure occurrence and impact) are equally 

important (weighted) and scaled from 0 to 1.  In order to obtain a composite personnel risk 

score, the risk inputs are averaged.  Ultimately a composite personnel raw risk value between 

0.01 and 1.00 is computed.   In practice, the computation is as follows: 

𝑃𝑃𝑖𝑖∗∗ = 𝑓𝑓(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑥𝑥 = 0, 𝑥𝑥 = 0.01, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(𝑖𝑖
∗+𝑝𝑝∗

2
), .        Eq. V-6 



 

143 

 

 Upon computation of the composite personnel risk value, we use the AFRAF scale to 

determine the qualitative impact or final personnel risk.  For example, if the composite 

personnel risk value of the ATC career field is (0.95+0.88
2

) or 0.915, this equates to 

approximately 92% risk.  The 92% risk is translated according to the AFRAF scale of impact 

as high.  Therefore, the personnel risk assessment for this particular task, career field, sub-

task, etc. would be interpreted as “achievement of goal or task is highly unlikely.”  

Using a random variable of 100% manned, historical manning rates and standard 

deviations, ACS career field risk scores are computed.  Next, efficiency values and respective 

rankings using DEA are computed.   The career field risk scores and efficiency rankings are 

compared using statistical correlation procedures to examine if a significant relationship 

exists between efficiency and risk.   If a significant relationship exists, this has inferences.  

For example, if efficiency is positively correlated with risk, this can infer more efficiency is 

related to more risk.  Conversely, if efficiency is negatively correlated with risk, this suggests 

the more efficiency, the lesser risk.  These inferences have implications to how the USAF 

strategic decision making community assesses the planning force.  For instance, if more 

efficiency infers less risk, then, personnel resource planners could recommend career field 

managers better utilize current manning levels before more resources are considered for 

allocation. 

Data Overview  

DEA Inputs/Outputs 

Conducting DEA, this work uses career fields as DMUs.  Since, each USAF career 

field (AD and civilian) is measured differently, we use career field manning variables as the 
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inputs and outputs of the analysis.   These variables are the only entities we can explore that 

span across all DMUs.  For DEA scaled efficiency computations, the number of assigned 

personnel by career field is the input within ACS.  The output is the number of funded 

authorized positions career field within ACS.  We ask whether there are career fields that 

perform more efficiently than others given the various career field manning requirements 

within ACS.    

 

Input and Output 

Arguably, each career field has a unique skill needed to manage, deliver, execute, 

maintain and sustain USAF capability.  These career fields are further aggregated into seven 

distinctive career field disciplines by the ACS core function.  The 247 air force specialties 

can be seen in the Air Force Specialty Codes guide (Air Force Officer Classification 

Directory, 2007).  Table V-2 provides a career field summary.   The output represents funded 

requirements by career field (AFS).   The input represents the amount of personnel by career 

field (AFS).   

The radial orientation assumption of the dataset requires relaxation as two of the 

seven examined career family disciplines have assigned personnel (input) and an absence of 

funded authorizations (i.e. output).  Recall, from Chapter II, the radial orientation requires 

outputs and inputs to be positive as normalization is mathematically impossible when values 

are zero.  To account for zero-valued observations within the output, we use the directional 

distance function (DDF) for the Acquisition and Special Experience career field disciplines.  

This function allows outputs or inputs to be negative, positive or zero [(Alvarez et al., 2016); 

(Toloo and Tavana, 2017)].   For more details reference Lovell and Pastor (1999).    
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Table V-3: AFS Career Field Summary (AFSC Wikipedia, 2019) 

Air Force Specialty Designator Career Field Discipline Title 

1X (Enlisted Operations (Ops)) 
10X (Ops Commander) 
11X (Pilot) 
12X (Combat Systems) 
13X (Space, Missile and Command & Control) 
14X (Intelligence)  
15X (Weather) 
16R (Ops Support) 

Operations 

2X (Enlisted Logistics) 
20X (Logistics Commander) 
21X (Logistics) 

Logistics 

3X (Enlisted Support) 
30X (Support Commander) 
31P (Security Forces) 
32E (Civil Engineering) 
33X (Communications) 
35X (Public Affairs) 
38F (Force Support) 

Support 

4X (Enlisted Medical) 
40C (Medical Commander) 
41X (Health Services) 
42X-43X (Biomedical Services) 
44X (Medicine) 
45X (Surgery) 
46X (Nurses) 
47X (Dental) 
48X (Aerospace Medicine) 

Medical 

5X (Enlisted Professional) 
51J (Judge Advocate) 
52R (Chaplain)  

Professional 

6X (Enlisted Acquisition) 
61X (Scientist) 
62E (Engineer) 
63X (Program Manager) 
64X (Contracting) 
65X (Finance) 

Acquisition 

7X-8X (Special Experience (e.g. Agent, Instructor, 
etc.)) Special Experience 

 

Details of the input and output variables are listed in a separate annex.  The next section 

provides an analysis of the outcome from the data.    
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Analysis 

Correlation Results 

 Correlation analysis is performed using JMP 12 software.  A total of eight career field 

disciplines (to include a combined dataset) are examined.  Risk and efficiency ranks for each 

dataset exhibit strong evidence of left skewedness and fail normality goodness of fit tests.   

Figure V-5 reveal normality quantile and scatter plots for each variable.  The results suggest 

parametric correlation techniques (i.e. Pearson) are ill-suited.  Therefore, non-parametric 

correlation procedures are used to determine if a positive or negative association exists 

between risk and efficiency.    Specifically, a technique called Hoeffding’s Dependence 

coefficience (D) is used to determine if risk and efficiency variables are independent, i.e. no 

statistical evidence of association (Agresti, 2010). 

 

Figure V-5: ACS Career Field Quantile and Scatter Plots for Risk and SE 
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Hoeffding’s D is a rank-based, distribution free measure that only require bivariate 

data to be ordinal, continuous and random (Hoeffding, 1948).  The test determines whether 

or not the bivariate data are independent and takes on values within 1 to -0.5.  Hoeffding’s D 

is considered a superior nonparametric (e.g. compared to Kendall’s Tau) when evidence of 

nonlinearity is present in bivariate data (Clark, 2011).  The statistic approximates a weighted 

sum over observations of chi-square statistics for two-by-two classification tables (JMP, 

2018).  Hoeffding’s D measures the distance between the ranks of joint and marginal CDFs 

of bivariate data (Hollander and Wolfe, 1999).  The two-by-two tables are made by setting 

each data value as the threshold.  If a perfect association exists among the bivariate data, 

where 𝐷𝐷 = 1, then, the bivariate data are the same or completely dependent.  If a perfect 

association exists among the bivariate data,where 𝐷𝐷 = -0.5, the bivariate data are opposite or 

independent.  If the bivariate data are independent, 𝐷𝐷 = 0.   The three steps to conduct the test 

are listed below (JMP, 2018). 

1. Construct a hypothesis (e.g. one or two tailed test).  A two tailed test is used and 
represented as  

𝐻𝐻0: 𝐷𝐷 = 0 

𝐻𝐻𝐴𝐴: 𝐷𝐷 ≠ 0.                                                  Eq. V-7 

2. Compute D: 

𝐷𝐷 = 30 (𝑛𝑛−2)(𝑛𝑛−3)𝐷𝐷1+𝐷𝐷2−2(𝑛𝑛−2)𝐷𝐷3
𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−2)(𝑛𝑛−3)(𝑛𝑛−4)

,                                 Eq. V-8 

where n is the total of observations among the bivariate data (risk, efficiency), 

𝐷𝐷1,𝐷𝐷2,𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷3 are further defined as follows:   
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   𝐷𝐷1 = ∑ (𝑄𝑄𝑖𝑖 − 1)(𝑄𝑄𝑖𝑖 − 2)𝑛𝑛
𝑖𝑖=1                                      Eq. V-9 

𝐷𝐷2 = ∑ (𝑅𝑅𝑖𝑖 − 1)(𝑅𝑅𝑖𝑖 − 2)(𝑆𝑆𝑖𝑖 − 1)(𝑆𝑆𝑖𝑖 − 2)𝑛𝑛
𝑖𝑖=1                        Eq. V-10 

𝐷𝐷3 = ∑ (𝑅𝑅𝑖𝑖 − 2)(𝑆𝑆𝑖𝑖 − 2)(𝑄𝑄𝑖𝑖 − 1)𝑛𝑛
𝑖𝑖=1                        Eq. V-11 

𝐷𝐷1 refers to the sumproduct of one plus the number of bivariate ranks (𝑄𝑄𝑖𝑖) with 

values less than the ith point, 𝐷𝐷2 refers to the sumproduct of the number of risk and 

efficiency ranks (𝑅𝑅𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑖𝑖, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) with values less than the ith point and 𝐷𝐷3 

refers to the sumproduct of the number of risk, efficiency and bivariate ranks with 

values less than the ith point.                      

3. Compute the test statistic and determine the rejection region.  The hypothesis test 

characteristics will dictate the rejection region.  We use a two-tailed test, therefore, 

the rejection region is as follows: 

Rejection Region: |𝐷𝐷| > 𝑑𝑑𝛼𝛼 2⁄ , where 𝑑𝑑𝛼𝛼is the α (0.05) tail percentile of the 

asymptotic distribution associated with D, for n ≥ 5, the approximation is 

(𝑛𝑛−1)𝜋𝜋4

60
𝐷𝐷 + 𝜋𝜋4

72
.                                                Eq. V-12 

A separate annex lists career field discipline results. Results include career field, 

manning assigned and authorization numbers, scaled efficiency score, scaled efficiency rank, 

composite risk score and AFRAF translated composite risk score into an ordinal rating (e.g. 

0.92 = 92% risk or ‘High’).   

Nonparametric correlations are computed for each bundle of career fields to include 

an overall bundle.  For the combined dataset (Separate Annex Table 1), a Hoeffding’s D 

score of 0.0084 is computed with a corresponding p-value of 0.0059.  P(|D| >𝑑𝑑0.05 2⁄ ) = 

0.0059, therefore, we reject the null hypothesis and conclude there is a statistically significant 

association between personnel risk and efficiency.   The Hoeffding’s D coefficient is very 
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close to zero, which implies, while the p-value is significant, practical, statistical significance 

between risk and efficiency is suspect.   

 
Figure V-6: Scatter plot of Risk vs DEA Efficiency Rank  

Removal of one of three potential outliers from the top portion of Figure V-6 increased the p-

value beyond the 5% significance level using the Hoeffding’s D coefficient.  However, the 

data are examined as is and are not changed.  The complete dataset statistical implications 

suggest personnel risk increases with efficiency.  This intuitively makes sense as when 

manpower is fixed, with simultaneous maximal output (as shown with DEA), optimal 

personnel scaled efficiency implies resources are extended to capacity while maximizing 

output.  Further stress and strain on optimized manpower increases risk.       

The 247 ACS career field manning data taken from March of 2018 reveals statistical 

evidence that risk and efficiency are not independent.  The combined career field bundle 

correlation results suggests overall career field risk has a positive association with efficiency 
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ranks.  Higher DEA efficiency ranks translate into poorer efficiency.  This infers higher risk 

more likely than not, implies lower efficiency.  Medical and Acquisition communities reveal 

significant negative association, i.e. lower risk tends to yield higher efficiency ranks.  This 

means lower risk more likely than not, infers lower efficiency.  Table V-3 provides a 

summary of correlation results by career field bundle.  Table V-4 summarizes the top 10 

higher risk career fields with respective efficiency findings.   

Table V-4: ACS Career Field Bundle Correlation Summary 

Discipline 
Hoeffding’s 

D 
Count p-value 

Operations 0.0145 61 0.0552 
Logistics -0.0257 26 1.0000 

Support -0.0158 29 0.9285 
Medical 0.0347 77 0.0021 

Professional* 0.0000 4 1.000 
Acquisition 0.2201 16 0.0007 

Special 
Experience -0.0005 34 0.3795 

Combined 0.0084 247 0.0059 
 

*For sample sizes ≤ 5, Kendall’s Tau20 measure is used in lieu of Hoeffding’s D. 
  

 

20 For specifics regarding the computation of Kendall’s Tau, please refer to Agresti’s Categorical Data text, 
2013.   
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Table V-5: Top 10 ACS Higher Risk Career Fields 

Career Field Asgn Auth Manning 
Rate Risk Risk 

Rating 
*Efficiency 

Score 
*Efficiency 

Rank 
Career Field 1 1 6 0.17 1.00 Failure 1 1 
Career Field 2 3 12 0.25 1.00 Failure 1.5 2 
Career Field 3 61 207 0.29 1.00 Failure 0.00 1 
Career Field 4 3 8 0.38 0.64 Significant 0.12 21 
Career Field 5 6 13 0.46 0.56 Significant 1.19 8 
Career Field 6 15 30 0.50 0.52 Significant 0.02 15 
Career Field 7 26 43 0.60 0.47 Moderate 2.52 27 
Career Field 8 8 14 0.57 0.44 Moderate 2.51 6 
Career Field 9 10 17 0.59 0.42 Moderate 1.00 1 
Career Field 10 134 199 0.67 0.40 Moderate 4.04 10 

*Efficiency Scores and Rank are relatively assessed within career field bundle 
 
 

Evidence suggests higher risk probabilities may lead to lower DEA efficiency ranks.  

Lower DEA efficiency ranks equate to superior efficiency.  Thus, higher personnel risk infers 

higher manning efficiency.   A takeaway is more people (i.e. greater assigned and authorized) 

equate to less risk however, more people equate to lower efficiency.   A second takeaway is 

if capability and risk are curvilinearly negatively related, then, more people (i.e. more 

capability) lends to less risk and less capability infers higher risk or lower efficiency.  A third 

takeaway is considering more personnel capability implies greater funding and spending, 

while resource budgeting is limited, what are the most effective manning levels to mitigate 

risk?   These takeaways suggest tradeoff analysis should be a highly regarded consideration 

to determine manning levels in light of capability, risk, efficiency and cost.    

Figure V-7 illustrates relationships between capability, risk, cost, efficiency and 

effectiveness.  Arguably the four of the five (effectiveness not examined) said areas are at 

least curvilinearly related.  The scope of this work addresses personnel capability, risk and 

efficiency, but further research may extrapolate the cost and effectiveness aspects.  While 
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cost is not explicitly considered in this research, it intuitively makes sense that increased 

resources will incur some form of fiscal increase.  Effectiveness may pose challenges as 

personnel performance output metrics among homogeneous career fields are scarce.   

 

Figure V-7: Summary of Results Relationship Diagram 
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Limitations/Summary 

 Evidence suggests higher risk probabilities may lend to lower DEA scaled efficiency 

scores.  Lower DEA scaled efficiency scores equate to superior efficiency.  Thus, higher 

personnel risk infers higher manning efficiency.   A takeaway is more people (i.e. greater 

assigned and authorized) equate to less risk however, more people equate to lower efficiency.   

A second takeaway is if capability and risk are curvilinearly negatively related, then, more 

people (i.e. more capability) lends to less risk and less capability infers higher risk or lower 

efficiency.  A third takeaway is considering more personnel capability implies greater 

funding and spending, while resource budgeting is limited, what are the most effective 

manning levels to mitigate risk?   These takeaways suggest tradeoff analysis should be a 

highly regarded consideration to determine manning levels in light of capability, risk, 

efficiency and cost.   

A 2018 US Air Force dataset containing 247 career fields is analyzed for significant 

manning relationships between efficiency and risk.  For the first time, career field risk is 

objectively computed using normal and sigmoid functions.  Six out of 247 or 2.5% of career 

fields have significant to failure risk; 229 are moderate risk and the remaing 12 are either low 

or success with regards to risk.  This research assumes all career field capabilities are equal, 

which is debatable.  Unequally weighing career fields will likely change risk valuations, 

which may drive varying strategic personnel resource prioritization and allocation decisions.      

A series of procedures is presented, objectively computing personnel risk by career 

field and examining relationships between efficiency, risk and capability.  An explanation 

with demonstrations provides a use case of how career field manning can be used with 
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normal and sigmoid functions to ultimately compute risk, thus enabling objective personnel 

resource prioritization in fiscally constrained environments.   

The next section provides an overview of data elements considered to assess 

personnel risk within an organizational context.  The organizational assessment includes core 

capabilities, which consist of tasks, sub-tasks, and career fields.  A demonstration is provided 

revealing the use of personnel data to objectively assess enterprise risk.          
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VI. Methodology Using a Euclidean Norm to Aggregate risk 

Introduction  

This work provides an aggregation methodology to compute a core USAF personnel 

capability risk score.   Recently, the USAF has adapted its risk-based assessment to become 

more capability-based.  The rationale is when requested by a combatant commander during 

contingency operations, the service will provide air power, regardless of risk.   As a result, 

the USAF’s focus has shifted fundamentally from a risk-based assessment to a more 

capability-based assessment.    

We tailor an algorithm used in Pacific Air Forces Command (PACAF) that used root 

mean squaring via a weighted p-norm  (𝑙𝑙𝑝𝑝) methodology to assess personnel capability.   For 

the first time, a personnel risk aggregation methodology is developed potentially enabling 

enterprise planners and programmers to provide an objective, defensible situational 

awareness procedure for senior decision makers to get a core capability-level personnel 

capability assessment.  To help assess the connectedness of core capabilities, the USAF 

Studies, Analysis and Assessments directorate (AF/A9) has developed an interdependency 

framework called the Comprehensive Core Capability Risk Assessment Framework 

(C3RAF).  C3RAF is a network model that combines risk and multi-domain interdependency 

data to inform senior leader decisions.   The non-linear model uses Core Function inputs (e.g. 

ACS enterprise inputs) and aims to identify the most influential core capabilities regarding 

AF-wide risk (AFGM2016-90-1101, 2016).  C3RAF also aims to identify how changes in 

risk affect elements throughout the USAF and identify where planning decisions might 

influence systemic risk (AFGM2016-90-1101, 2016).  C3RAF is being used to influence 
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senior level decision making regarding budgeting of resources (e.g. ACS equities).  To lessen 

the negative impact of ‘Garbage In, Garbage Out’ to the C3RAF model, it behooves ACS 

sub-enterprises to carefully examine current capability enablement and the impact on future 

capability enablement if not resourced.    

Data for the ACS RA consists of manning data in the form of personnel and 

personnel funded authorizations from the ACS Core Function.   The personnel data spans 

across many bases and almost 250 career fields.  The ACS core function is linked to six core 

capabilities with numerous Program Element Codes (PECs).   

All USAF programs have PECs.  PECs are generally alphanumeric strings of 

characters that represent groupings of career fields to carry out certain tasks.  The PECs are 

also assigned cost values as the primary means to track and manage funding.  Other than 

recent development by the author, the PECs were not linked to personnel.  This linkage now 

accounts for the amount of specific personnel (by career field) needed to accomplish the core 

capability tasks versus respective personnel requirements in terms of resource dollars.   

             Figure VI-1 provides the six ACS enterprises and their associated top-level tasks.  

Each task has subtasks, sub-subtasks, sub-sub-tasks, et cetera.  When these sub metrics are 

aggregated or ‘rolled up’ for senior decision level making, critical metrics are often 

smothered and as a result do not accurately depict strategic risk implications for enterprises.  

For example, we consider the Installation & Mission Support (I&MS) core capability subtask 

4.8., which is to ‘Provide Installation Support’.  The subtask description is very detailed and 

involves producing and delivering operationally-capable facilities, real property-installed 

A5/8P, 2016).   Producing and delivering operationally-capable facilities, real property-
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installed equipment, These entities require personnel capability to execute, maintain and 

sustain.   

 

Figure VI-1: ACS Enterprise Task structure…v11.1 (AFMC 5/8/9, 2016) 

 
If this subtask cannot be achieved through lack of personnel, training, funding, etc., 

can the I&MS enterprise deliver optimal operational I&MS support?   Given, the aggregate 

nature of the USAF strategic assessment, and given, we cannot measure all components of 

capability, what is a better rigorous procedure to pursue?   Assuming, some level of 
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suboptimization21, is there a rigorous way to assess personnel risk to ultimately inform 

strategic decision making?   C3RAF attempts to address this issue, but there is not a high 

degree of confidence in the enterprise assessments that the said model uses to increase 

defensibility and repeatability in assessing strategic risk.  

Background 

Issue 

Some ACS assessments over or understate risk.  Specifically, some assessments 

assume a ‘single outcome’ (i.e. can either complete task or not) approach.   Sometimes 

organizational assessments can be very one-dimensional.  For example, they define success 

as binary (i.e. success or fail), which does not consider variation and forces senior decision 

makers and managers to explain more (as in why they lost).  This traditional form of 

measurement can lead to false conclusions and have negative implications.  The intent of the 

AFRAF construct is to measure risk by capability output.  Some ACS enterprise risk 

assessments do not accurately portray capability output.  Figure VI-2 is an adaptation of the 

AFRAF construct.  The boundaries of risk are defined by likelihood and impact of achieving 

functional objective tasks.  An additional consideration for impact is risk mitigation ability 

during planned timeframes.  Timeframes are near, mid and far as discussed Chapter I.    

  

 

21 Suboptimization refers to the practice of focusing on one component of a total system and making changes 
intended to improve that one component and ignoring the effects on the other components (Watkins, 2018). 
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Figure VI-2: ACS adaptation of AFRAF  

There are several ways to compute aggregative computations for organizational risk 

assessments.  What follows summarizes are summaries of techniques useful for computing 

organizational risk.   

Organizational Risk Assessment Approaches 

Bayesian Networks 

Bayesian networks (BNs) are growing in popularity particularly as it relates to 

organizational assessments.  BN implementation is used in risk analysis and predictive 

analytics for decision making (Parra and Garrido, 2012).  BNs are based on a mathematical 

theory known as Bayes’ theorem, which is used to calculate the probability of an event 

occurring given a known related piece of information (Cummings et al., 2008).  Bayes’ 

theorem states, 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)∗𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

.                                          Eq. VI-1 
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P(A) is the prior probability or the initial estimate of the probability.   P(B|A) is the 

conditional probability or the probability of B given A.  P(A|B) is the posterior probability or 

the probability of A given B.   

BNs are a set of random variables (nodes) and directed edges (arcs), with each node 

having a finite set of states or a set of values.  For each random variable A, with parent nodes 

𝐵𝐵1 …𝐵𝐵𝑛𝑛, there exists a table of probabilities P(A|𝐵𝐵1 …𝐵𝐵𝑛𝑛) (Jensen, 2001).   

BNs represent a potential approach for improving the understanding of how personnel 

resources are strategically assessed, and a literature gap seems to exist on application in the 

USAF human resource allocation domain.  BNs use neobayesian attributes (Pearl, 1990) to 

attempt to provide reasoning to a phenomena with uncertainty (Wang, 1993).  The three main 

attributes are: 

• Willingness to accept subjective belief as an substitute for raw data or a priori. 

• Adherence to Bayes’ conditional independence as the primary mechanism to provide 

new information about a phenomena under examination [(Heckerman, 1999); (Pearl, 

2000)]. 

• All Markovian states and uncertainties of phenomena under examination are known 

to have probability distributions (Postlewaite and Schmeidler, 1984).   

BNs are defined by a directed acyclic graph (DAG) structure of random variables 

(nodes) with joint probability distributions that can be factored into smaller local probability 

distributions (Scutari, 2017).  In other words, each variable is conditionally independent of 

all its nondescendants in the graph given the value of all its parents (Davies and Moore, 

2016).  For example, consider random variables X and Y to be conditionally independent, and 
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P(X,Y|Z) is to be determined.   The aforementioned can be decomposed into P(X,Y|Z)*P(Z). 

Further, using the idea of conditional independence we obtain P(X|Z)*P(Y|Z)*P(Z).   

While the current structure of the personnel career fields is not in nodal form, we 

know the (quasi) network consists of undirected and directed arcs.  Essentially, conditional 

independence is in constant violation due to the various interdependencies among the career 

fields.  This assumption violation suggests BNs may not be ideal (Sanford and Moosa, 2012) 

for using personnel interdependencies to assess risk.  For example, most of the maintainer 

community (officer and enlisted) depend on each other to meet the demands of a flying 

schedule.  Bi-directional relationships among these career fields exist in order to effectively 

communicate disconnects, issues, concerns, goals, instructions, et cetera.  Arguably, there is 

very little conditional independence in this community.  We assert similar arguments apply to 

the aviation medical and legal career fields.   Figure VI-3 illustrates this concept.   

 

Figure VI-3: Notional USAF AFS Network 
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 Further, if we consider career fields ability to generate aircraft sorties to be binary 

(i.e. generate sortie or not) and there are 247 variables (career fields) to examine, we must 

computationally consider at least 2(247−1) or 1.13078E+74 configurations (Scutari, 2017).  

Not only is this approach (if violations were not applicable) computationally expensive, it 

can also be misleading if there are decent amounts of dependent correlations among the 

variables.   

The literature express five commonalities relating to BNs [(Boehmke, 2016); 

(Lockamy and McCormacket, 2011); (Koller and Pfeffer, 1997)].  One, the assumption of a 

DAG exists, which implies directed arcs within a network.  Two, the states and associated 

probability distributions have to be enumerated.  Three, a priori of the portfolio are required.  

Four, a periodic update of risk profiles is necessary.  Five, software and simulation are 

needed in order to better account for certain dynamics and simultaneity.  Four of the five 

assumptions are fairly attainable, however, the DAG relationships are a major concern. 

While possible opportunities to extend this research may include further BN 

exploration, this work focuses on value-frame theory (VFT) or weighted average and systems 

engineering aggregation techniques.  Average, weighted average and systems reliability 

approaches are compared using a generic enterprise.  Case studies are explored in the next 

section.         

Averaging and Weighted Averaging 

For multiple outcome organizational risk assessments where units or elements are 

large (n > 30), averaging techniques can be explored.   A Pest Risk Assessment (PRA) 

performed in New Zealand conducted by the National Resources Institute of the United 

Kingdom examined the incorporation of various averaging (to include weighted) 
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methodologies as a means to aggregate risk [(Zhu et al., 2000); (Holt, 2005); (Black, 20xx)].    

After exploring advantages and disadvantages of using averaging risk factors, Zhu, Holt and 

Black conclude weighted averaging coupled with normalization are sufficient techniques to 

use when 1.) there exists a large number of risk elements (e.g. tasks); 2.) there is no historical 

record of valid computations; and 3.) immediate action is required.   

With the aforementioned, we consider a generic enterprise comprised of many 

organizations.  An organizational risk assessment can be computed as the average of a set of 

point estimates and is represented as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 1
𝑛𝑛
∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 ,                                                Eq. VI-2 

where n represents the number of units (organizations) under examination and 𝑝𝑝𝑖𝑖 is the point 

estimate value.  This is one of the simplest techniques to use when assessing aggregate data.  

The approach is appropriate when the spread of unit effects are equally likely.  For units with 

more effects than others, a weighted average approach can be used.  This is represented as 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 1
𝑛𝑛
∑ (𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,                                      Eq. VI-3 

where a weight (𝑤𝑤𝑖𝑖) is added to every ith unit in Eq. VI-3 representing the amount of relative 

impact of a particular unit (e.g. career field, task, sub-task, etc.).  There are various ways to 

set weights (i.e. by SME or objectivity).   When organizations are unique and expertise is 

voluminous, SME weight setting is a valid approach.  Conversely, when there exists very 

little insight on the organization, using an objective approach such as a normalization 

technique is a common approach (Zhu et al., 2000).  These approaches will be applied to an 

USAF enterprise, but we first explore a systems reliability approach.  The next aggregation 

technique adapts principles from systems reliability principles.   
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System Reliability 

 One way to measure system component relationships is to construct reliability block 

diagrams (RBDs) in serial, parallel or a combination thereof and assign reliabilities or 

probabilities of success to each component (Blanchard and Fabrycky, 2006).  Serial 

relationships are mathematically defined as 

𝑅𝑅 = (𝑅𝑅𝐴𝐴)(𝑅𝑅𝐵𝐵)(𝑅𝑅𝐶𝐶)(𝑅𝑅𝐷𝐷),                                       Eq. VI-4 

where 𝑅𝑅𝑖𝑖 are reliability rates of individual components.  Of course, when any value of the 

serial chain is less than one, the sumtotal of the chain or overall reliability will always yield a 

value less than one.  Further, if any value of the serial chain is zero, the overall system 

reliability is zero.  Parallel relationships are defined as 

 𝑅𝑅 = 1 − (1 − 𝑅𝑅𝐴𝐴)(1 − 𝑅𝑅𝐵𝐵)(1 − 𝑅𝑅𝐶𝐶)(1− 𝑅𝑅𝐷𝐷).                      Eq. VI-5 

Systematically, if one component fails, while the remaining are operational, the overall 

system reliability impact is relatively negligible compared to a serial configuration.  

Combinations of parallel and serial components are defined in numerous configurations.  An 

example is listed as 

𝑅𝑅 = (𝑅𝑅𝐴𝐴)(1 − (1 − 𝑅𝑅𝐵𝐵)(1 − 𝑅𝑅𝐶𝐶)(1− 𝑅𝑅𝐷𝐷).                      Eq. VI-6 

The substitution of notional reliabilities for components A through D yield the following 

probabilities: 

𝑅𝑅𝐴𝐴 = 0.95, 𝑅𝑅𝐵𝐵 = 0.98, 𝑅𝑅𝐶𝐶 = 0.99,        𝑅𝑅𝐷𝐷 = 0. 

Based on Equations VI-4 through VI-6, we obtain the following overall system reliabilities: 

0, 0.999999 and 0.949810 or risk values 0.000001 and 0.050190, respectively.      

  If we consider a personnel system by USAF core function, we can construct a 

notional RBD.  Figure VI-4 illustrates multiple functional equities (FEs) of career families 
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distributed across a network defined as a system.  Each FE can be assigned a probability of 

success (i.e. manning rate).  Based on the relationship of Figure VI-5, the dependency begins 

with the communications FE, where commander’s guidance is provided to planners, thereby 

base support (e.g. Safety, Force Support, Legal services, Contracting, Security Forces, Civil 

Engineering, etc.) is executed.  These collective services are needed in order for flightline 

operations (e.g. Distribution, Maintenance, Airfield Ops, Weather, etc.), which then allow for 

sortie generation by pilots, combat systems navigators and remotely piloted aircraft 

operators.  The notional structure of the RBD infers if any one of these serial components is 

unavailable (i.e. 0% manned), the entire system fails to provide capability.     

 

 

Figure VI-4: Notional USAF Personnel RBD 

A major concern with using a system reliability approach to assess the risk of this 

notional version of a USAF network (i.e. Figure VI-4) is the way by which the risk is 
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propagated.  Using the network structure, a bootstrapped demonstration of system 

reliabilities assigned to each FE ranging from 99 to 100% is performed.  Assuming a linear 

relationship between risk and capability, a bootstrapped sample of 500 yields an average 

system overall reliability of 0.227 or 22.7% capability, which is analogous to approximately 

77% risk.  This theoretically means when there exists all but 1% risk in any or all 

components of the notional USAF enterprise, on average, the organizational ability to 

achieve a mission is about 25%.  Presenting these results to a senior decision leader is ill-

advisable, as the results are not credit-worthy and do not depict a realistic representation of 

risk when personnel capability on average is 99%.   

The systems reliability approach is applied to a notional USAF core capability 

consisting of multiple tasks and subtasks.  The USAF has over 40 core capabilities managed 

by a dozen core functions or enterprise of personnel employed to plan, manage, deliver and 

execute a given capability.  A core capability is an enabling function necessary for the USAF 

to perform its mission as part of the Department of Defense (DOD).  Assessing risk at the 

core capability is a good start to assessing risk, but is still not comprehensiveness enough. 

There are lots of missed, unexamined and not well-understood issues that occur below the 

core capability level particularly as it relates to mission and force risk.  Consequently, core 

capabilities have an activity or task structure as a means to mitigate risk (Pitstick, 2017). 

Largely, the ability to accomplish these tasks or subtasks is based on personnel 

availability rates (McMillie, 2017) in three distinctive timeframes (i.e. Near (0-5 yrs); Mid 

(6-10 yrs); Far (11-30 yrs)).  We use the Installation Mission and Support (I&MS) core 

capability as an illustration.  Provided a serial relationship exists between tasks, notionally, if 
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there are eight tasks to accomplish I&MS and any one of the tasks is assessed as 100% risk, 

then the ability to accomplish this core capability is 0%.  

The systems reliability (serial network), weighted (weights arbitrarily chosen) 

average and average risk results are presented in Figure VI-5 coupled with a legend to 

identify bands of risk.  Another notional outcome of risk is displayed at the far right to 

illustrate cases where if the systems reliability approach (e.g. serial configuration) is used the 

overall risk results are overstated.   
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Figure VI-5: Notional USAF Core Capability Assessment (AFMC/A9A, 2016) 
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 If the tasks are assembled in a parallel configuration, using risk values from IM&S 

example in Figure VI-5 on the far left, the overall risk results are drastically different.  The 

overall system reliability using a parallel scheme is 100%.  Further, using the aforementioned 

scheme, if we consider the values used in the far right table of Figure VI-5, the result for near 

term is 99.9999%.  This depiction of risk is not organizationally or operationally 

representative.   

If we expand the discussion to include subtasks and sub-subtasks, the results become 

even more unrealistic.  For example, consider a core capability (e.g. IM&S) with 11 tasks, 

each with 4 subtasks and each subtask has 7 sub-subtasks totaling 308 (11 ∗ 4 ∗ 7) 

components. Also, each component reliability ranges from 99 to 100%.  Simulated mean 

system reliability result for serial configuration is 24%.  The results infer a senior leader has 

an abundance of resources and is still failing to deliver desired capability.  For a parallel (at 

task and subtask level) and serial (sub-subtask level) configuration, the mean is 99.99999%.  

The latter results appear superficially reasonable, but just because the capability requirement 

is met, does not eliminate risk.  Further, if the lower bound reliability threshold is decreased 

from 95% to 70%, the combination configuration mean is 99.99999%.  From an 

organizational risk assessment perspective, the risk propagation is incorrectly depicted.   

While all possible outcomes of task/sub-task configurations are not explored, the 

aforementioned results reveal for an organizational risk assessment, the weighted average 

and average results are more realistic and operationally representative than system reliability 

approaches.   Ideally, an organizational risk assessment should account for mitigated risk 

actions, whereby if a risk imbalance exists, management actions may be able to rebalance to 
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a certain extent.  Weighted average and average techniques appear to provide a more 

balanced approached to the assessment of organizational risk.    

The next section of this manpower strategic assessment research examines an 

aggregation methodology to compute a core capability risk score using a normalization 

algorithm.   We consider tailoring an algorithm used in Pacific Air Forces Command 

(PACAF) that used root mean squaring via a weighted p-norm (𝐿𝐿𝑝𝑝) methodology to assess 

personnel capability.   Several years ago, PACAF adopted a USAF risk-based assessment to 

become more capability-based.  The rationale is when requested by a supported commander 

during contingency operations, PACAF will provide air power, regardless of risk.   As a 

result, the command’s focus shifted fundamentally from a risk-based assessment to a more 

capability-based assessment.   

Methodology 

The PACAF shift to a capability-based assessment paved the way for the warfighter 

capability assessment (WCA), which is a capability-based assessment for the Pacific 

Commander of Air Forces and/or the Joint Force Air Component Compact Commander on 

how Air Force resources and assets are postured in terms of providing air power capability to 

meet operational requirements in the Pacific theater.   Capability (in response to a crisis prior 

to force flow) is based upon eight functional areas (i.e. Aircraft, Munitions, Fuels, 

Installation, Communications, Personnel, Medical, And Services) spanning across nine air 

bases.   Prior to a revision in 2014, the assessment was highly subjective.   Figure VI-6 

provides a notional example of the WCA used by PACAF.   
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Figure VI-6: Notional example of PACAF Capability Assessment (PACAF A9, 2014).   

The methodology only worked with consistent subject matter expertise (SME) 

participation who were engaged with the various functional managers at bases in theater in 

order to ascertain insight into capability gaps or general unit health.   This approach was 

often not repeatable or consistently defensible.   The 2014 revision afforded the opportunity 

for less subjectivity, and relied more on quality (how capable are we), quantity (how much 

capability can we provide) and timeliness (how quickly can we provide the capability) 

metrics by base to support a crisis.  All eight functional capability (to include personnel) 
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areas were successfully revised.   In the next section we demonstrate a way to effectively 

assess organizational risk using a norming algorithm.  

P-norm 

A norm or p-norm is typically expressed as a vector which consists of distance and 

magnitude (Elmore and Richman, 2001).  Specifically, a norm is a 𝑝𝑝𝑡𝑡ℎ root of all summed 

elements within a sample space (e.g. career field risk scores) to the 𝑝𝑝𝑡𝑡ℎ power.  In fact for 

every real number (to include integers), a norm can be computed.   The Euclidean norm or 2-

norm is one of the most widely used distance computational algorithms in the field of 

mathematics.  In many instances, the Euclidean norm is used as a component of penalization 

or loss functioning in order to propagate error in regression and machine learning (ML) 

(Gentile and Littlestone, 1999).  The p-norm has also been used in the field of multi-task 

feature selection, which is a type of ML whereby different tasks share a subset of relevant 

features to be selected from a larger common space of features (Obozinski et al., 2006).  

Additionally, the p-norm is used in the context of multi-task selection applications to include 

speech recognition, robotics, and handwriting authenticity (Obozinski et al., 2006).   

The 2-norm is a significant application to this work as it mathematically provides 

more weight to larger risk items, while not dominating the sample size.  Essentially, the 2-

norm allows numerous organizational tasks to be aggregated such that no one sub-performing 

task is going to severely degrade the organizational success level.   This is appropriate for 

USAF enterprises that have tens of thousands of personnel performing and enabling a 

multitude of tasks to ultimately provide a core capability.  An additional advantage of the 2-

norm is while the risk space generally shrinks for individual tasks, weightier tasks (i.e. tasks 
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with more risk) still have larger impacts on the organizational risk assessment than tasks with 

not as much risk.  If we let  

x = 






 x1 

 x2 
 … 
 xn 

 and x = (x1, x2, …, xn) be column and row vectors, then   

|| x ||2   =    (x1)2 + (x2)2 + … + (xn)2                                  Eq. VI-7 

which represents the length of a line segment from the origin to x or 2-norm of x.  An USAF 

application using a 2-norm is discussed in the next section.   

2-norm application 

 A SORTS-based algorithm (at the time referred to as SORTS Base Rollup (SBR)) 

was used to objectively assess personnel capability by base (Bradshaw and Novak, 2014).  

AF-IT 22 (formerly known as Status of Resources and Training system (SORTS)) data 

provides insight to unit health by base.  AF-IT is the primary system of record for operational 

unit health reporting (AFI 10-201, 2019).   Notable effort was taken in revising the personnel 

functional area of the assessment by combining AF-IT reporting and response times from 

130 different operational units.   This aggregation methodology was presented during the 

2014 Air Force Operations Research Symposium (AFORS).  The SBR algorithm is adapted 

and applied to the personnel component of the ACS RA, whereby Air Force Specialties or 

career field bundle risk scores will replace response time weights and the SORTS vector 23 

 

22 AF-IT provides near real-time force readiness and consists of four areas: Personnel, Training, Equipment Condition and Equipment 
Status.   

23 For more details on the actual procedure, please reference classified AFORS 2014 presentation. 
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(Bradshaw, 2014) will be replaced with risk scale vectors using the AFRAF.  Details of the 

procedure are what follow.   

Assuming a function has a uniquely determined property (i.e. boundary condition) for 

any vector (distance) within the vector space, using a weighted p-norm (Bourbaki, 1987), we 

can express a task risk score (TR) between zero and infinity ([0, ∞) as  

𝑇𝑇𝑇𝑇 = [∑ 𝑟𝑟𝑗𝑗 ∗ (‖𝑠𝑠𝑘𝑘‖)𝑝𝑝𝑁𝑁
𝑖𝑖=1 ]1/𝑝𝑝.                                               Eq. VI-8 

The risk score (𝑟𝑟𝑗𝑗) is represented as a weighted value within the bounds of 1 and 10 or 

(1 ≤  𝑟𝑟𝑗𝑗 ≤ 10).  Recall, 𝑃𝑃𝑖𝑖 is the expectation of probability of failure occurrence and 

consequence of respective impact.  These values are obtained from the normal,  Sigmoid and 

expectation functions discussed in Chapter V.   Sk represents a distinctive vector (value) from 

the AFRAF scale, within the set {1,2…,6}.   The p-norm (p ≥ 1) produces a reasonable 

spread across a span of risk scores.  This is the most critical component of the algorithm to 

account for proper aggregation of the various career field bundle risk scores.  In this specific 

case, we use the 2- norm.   N represents the total number of career field bundled risk scores 

within a given task.   Similarly, if we normalize the algorithm for a given number of career 

field bundles for a task, we can achieve an aggregated value or capability risk value (CR).  

We express the minimal (best) and maximum (worst) possible task risk scores as: 

𝑏𝑏𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇 = (∑ 𝑟𝑟𝑗𝑗 ∗ (‖1‖)2)𝑁𝑁
𝑖𝑖=1

1/2]                                Eq. VI-9 

and 

𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇 = (∑ 𝑟𝑟𝑗𝑗 ∗ (‖6‖)2)𝑁𝑁
𝑖𝑖=1

1/2]                                      Eq. VI-10 

Collectively, these parameters are used to express an aggregation risk score or CR as: 
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  𝐶𝐶𝐶𝐶 = (𝑇𝑇𝑇𝑇−𝑏𝑏𝑖𝑖)
(𝑤𝑤𝑖𝑖−𝑏𝑏𝑖𝑖)

 , (0 ≤ 𝐶𝐶𝐶𝐶 ≤  1).                                                     Eq. VI-11 

For the personnel risk prioritization in Chapter V, magnitude of impact was a value 

between 0.01 and 1.  Since, the career fields are theoretically equal, this level of magnitude is 

sufficient in order to compute personnel risk by career field in isolation.  However, when 

career field risk is aggregated or propagated to a task or core capability level, further 

computations are needed.  To prepare the data for 2-norm aggregation, we consider a simple 

translation of the composite personnel risk scores computed in the methodology section of 

this Chapter V.   

We note the translation of the composite risk score to the AFRAF did not have an 

additional magnitude to account for weightiness of each career field.  We introduce a scale 

depicted in Table VI-1, which shows bounds for each AFRAF risk level and ordinal ratings, 

respectively.  This measure allows more separation between sub-tasks and tasks as they are 

computed to ultimately assess aggregated risk within a core capability (i.e. I&MS).   

Table VI-1: Risk to AFRAF Translation for Aggregation 

Composite Risk boundary Risk Rating 

            0 < 𝑓𝑓(𝑥𝑥) ≤ 0.005       𝑖𝑖 = 1 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆            

 0.005 < 𝑓𝑓(𝑥𝑥) ≤ 0.20 𝑖𝑖 = 2 → 𝐿𝐿𝐿𝐿𝐿𝐿             

   0.20 < 𝑓𝑓(𝑥𝑥) ≤ 0.50 𝑖𝑖 = 3 → 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

  0.50 < 𝑓𝑓(𝑥𝑥) ≤ 0.80    𝑖𝑖 = 4 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   

  0.80 < 𝑓𝑓(𝑥𝑥) < 1.00 𝑖𝑖 = 5 → 𝐻𝐻𝐻𝐻𝐻𝐻ℎ           

𝑓𝑓(𝑥𝑥) = 1.00      𝑖𝑖 = 6 → 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹           
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Case Study 

The case study uses the prescribed methodology to assess personnel capability 

shortfalls.  The methodology can be applied to a near, mid or far term planning cycle.  Tables 

VI-2-4 provide a visualization of the step-by-step process used to the ACS RA to include 

subtask association to career field manning rates.   Table VI-2 shows overall manning of the 

I&MS task (4.x) to be 93%.  This simple rate assumes personnel are trained and available 

and does not adequately account for risk.  Further, where certain sub-tasks are overmanned in 

career fields, does not mean these overages can be applied to undermanned career fields as 

the skillsets and level of expertise differ.  Analysis at lower levels of manning echelons are 

needed in order to more adequately assess personnel capability and risk.   
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Table VI-2: Notional Core Capability Sub-task Career Field Manning 

Career Field Core Capability Sub-task Asgn 
(Actual) 

Auth 
(Allocated) 

 
Manning 

Rate 
 

Airfield Mgmt 4.1.1 Provide Airfield Mgmt 499 499 1.00 
Clinical SW 4.1.5 Provide Socially Safe Environment 937 950 0.99 
Logistics Plans Officer 4.2.1 Provide Airfield Operations  65 111 0.59 
Fuels Specialist 4.2.2 Perform Installation Supply Log.  162 162 1.00 
Aero. Medical Service 4.3.1 Provide Emergency Services 77 77 1.00 
Security Forces 4.4.1 Provide Protection Services 810 816 0.99 
Force Support Officer 4.5.1 Provide Family Services 25 63 0.40 
Traffic Mgmt  4.6.1 Command Community Log. Service 265 266 1.00 
Services Mgmt 4.6.2 Fitness and Rec. Operations 41 122 0.34 
Explosive Ord. Disposal 4.7.1 Provide Combat Support 40 134 0.3 
Materiel Mgmt 4.8.3 Sustain Operating Locations 740 744 0.99 
Pavement/Construction 4.8.3 Sustain Operating Locations 375 354 1.06 
Personnel Mgmt 4.8.4 Operate Facilities 966 970 1.00 
Civil Eng. Officer 4.8.5 Maintain/Sustain Infrastructure 654 662 0.99 
Civil Eng. (Electrical) 4.8.5 Maintain/Sustain Infrastructure 63 103 0.61 
Civil Eng. (Ops Mgmt) 4.8.5 Maintain/Sustain Infrastructure 106 174 0.61 
Civil Eng. (HVAC) 4.8.6 Provide Family Housing 0 1 0.00 

 
5800 6208 93% 

 

Table VI-3 applies risk components (probability of failure and impact) to manning 

rates from Table VI-2 to ultimately compute composite risk scores, which are translated by 

the AFRAF risk scale into ordinal ratings.  A correction procedure is applied to the 

probability of failure occurrence algorithm computed by the normal cumulative distribution 

function.  If a career field is 33% manned or less, the probability of failure is 100%.  This 

purposefully serves to send a severely degraded personnel capability indicator.   We seek to 
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obtain the overall task personnel capability assessment, given the individual subtask 

assessments.  The 2-norm is used to compute an overall core capability risk value.  

Table VI-3: Notional Core Capability Sub-task Personnel Risk Assessment 

 Normal Sigmoid (𝒑𝒑∗ + 𝒊𝒊∗) 𝟐𝟐⁄   

Career Field Core Capability Sub-sub 
task 

*Prob. of 
failure 

Occurrence 
(𝒑𝒑∗) 

Impact 
(𝒊𝒊∗) 

Personnel 
Comp. Risk 

(𝑷𝑷𝒊𝒊) 

AFRAF 
Risk 
(𝑺𝑺𝒌𝒌) 

Airfield Mgmt 4.1.1 Provide Airfield Mgmt 0.49 0.011 0.251 3 
Clinical SW 4.1.5 Provide Socially Safe 

Environment 0.50 0.012 0.256 3 

Logistics Plans Officer 4.2.1 Provide Airfield 
Operations  0.55 0.308 0.429 3 

Fuels Specialist 4.2.2 Perform Installation 
Supply Log.  0.50 0.011 0.256 3 

Aero. Medical Service 4.3.1 Provide Emergency 
Services 0.49 0.011 0.251 3 

Security Forces 4.4.1 Provide Protection 
Services 0.50 0.012 0.256 3 

Force Support Officer 4.5.1 Provide Family 
Services 0.72 0.711 0.716 4 

Traffic Mgmt  4.6.1 Command Community 
Log. Service 0.48 0.011 0.246 3 

Services Mgmt 4.6.2 Fitness and Rec. 
Operations 0.63 0.808 0.719 4 

Explosive Ord. 
Disposal 

4.7.1 Provide Combat 
Support 1.00 0.858 0.929 5 

Materiel Mgmt 4.8.3 Sustain Operating 
Locations 0.50 0.012 0.256 3 

Pavement/Construction 4.8.3 Sustain Operating 
Locations 0.48 0.0048 0.242 3 

Personnel Mgmt 4.8.4 Operate Facilities 0.49 0.011 0.251 3 
Civil Eng. Officer 4.8.5 Maintain/Sustain 

Infrastructure 0.50 0.012 0.256 3 

Civil Eng. (Electrical) 4.8.5 Maintain/Sustain 
Infrastructure 0.57 0.271 0.421 3 

Civil Eng. (Ops Mgmt) 4.8.5 Maintain/Sustain 
Infrastructure 0.58 0.271 0.426 3 

Civil Eng. (HVAC) 4.8.6 Provide Family 
Housing 1.00 1.00 1.00 6 
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Table VI-4 demonstrates the use of the 2-norm algorithm to compute aggregated risk 

for a task (e.g. Provide Installation & Mission Support capability).  Weights are simply 

multipliers of the probability of failure rates (i.e. (10 ∗  𝑃𝑃∗)).  Subtask, best subtask and 

worst subtask scores are computed based on weights and AFRAF vectors.  The values are 

summed and normalized to determine an overall risk score.   

Table VI-4: Notional Core Capability Personnel Risk Assessment 

Career Field Core Capability Sub-subtask 𝑃𝑃𝑖𝑖 
AFRAF  
vector 

sk 

Weight 
rj 

Subtask  
Score 

TRi 

Best 
Task  
Score 

bi 

Worst 
Task  
Score 

wi 
Airfield Mgmt 4.1.1 Provide Airfield Mgmt 0.251 3 4.9 14.7 4.9 29.4 
Clinical SW 4.1.5 Provide Socially Safe 

Environment 0.256 3 5 15 5 30 

Logistics Plans Ofcr. 4.2.1 Provide Airfield Operations  0.429 3 5.5 16.5 5.5 33 
Fuels Specialist 4.2.2 Perform Installation Supply Log.  0.256 3 5 15 5 30 
Aero. Med. Service 4.3.1 Provide Emergency Services 0.251 3 4.9 14.7 4.9 29.4 
Security Forces 4.4.1 Provide Protection Services 0.256 3 5 15 5 30 
Force Support Ofcr. 4.5.1 Provide Family Services 0.716 4 7.2 28.8 7.2 43.2 
Traffic Mgmt 4.6.1 Command Community Log. 

Service 0.246 3 4.8 14.4 4.8 28.8 

Services Mgmt 4.6.2 Fitness and Rec. Operations 0.719 4 6.3 25.2 6.3 37.8 
EOD 4.7.1 Provide Combat Support 0.929 5 10 50 10 60 
Materiel Mgmt 4.8.3 Sustain Operating Locations 0.256 3 5 15 5 30 
Pave./Construction 4.8.3 Sustain Operating Locations 0.242 3 4.8 14.4 4.8 28.8 
Personnel Mgmt 4.8.4 Operate Facilities 0.251 3 4.9 14.7 4.9 29.4 
CE Officer 4.8.5 Maintain/Sustain Infrastructure 0.256 3 5 15 5 30 
CE (Electrical) 4.8.5 Maintain/Sustain Infrastructure 0.421 3 5.7 17.1 5.7 34.2 
CE (Ops Mgmt)  4.8.5 Maintain/Sustain Infrastructure 0.426 3 5.8 17.4 5.8 34.8 
CE (HVAC) 4.8.6 Provide Family Housing 1.000 6 10 60 10 60 

𝛴𝛴 = 362.9 99.8 598.8 
 

The complement of the overall risk score is the core capability expressed as a rate (e.g. 58%).  

Thus, the I&MS core capability assessment when considering the potential lack of available 
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and trained professionals, is 42% or 58% risk, which by the AFRAF scale is considered 

‘significant risk’.     

Limitations and Final Remarks 

The analysis is presented under the assumption of maximum resource capacity does 

not equate to risk eradication.  There are several career fields that appear to be overmanned, 

only when training and availability of personnel are not considered.  Only viewing manning 

from people versus people requirements is a myopic approach to assessing personnel risk.  

Known mathematical functions are applied via normal probability distributions, sigmoid and 

expectation functions to account for the lack of available and trained personnel by career 

field.   Further, a Euclidean norm is applied to objectively propagate risk in an enterprise.   

Strengths and limitations of the Agile Combat Support personnel capability 

assessment methodology are discussed.  A strength of the said personnel risk aggregation 

methodology is the ability to provide an objective, defensible situational awareness 

procedure for senior leaders to get an enterprise-level personnel capability assessment.  The 

procedure is a proven technique used in Pacific Air Force PACAF command, and is adapted 

for core function core capabilities.  As long as personnel data are available, the procedure is 

repeatable and can be easily tailored for USAF wide usage.  While the strengths outweigh the 

limitations of the personnel capability assessment procedure, a summary of limitations is 

provided.   

An upfront limitation of the ACS core capability assessment is anecdotal evaluation 

along with other functional assessments to make accurate assessment of base personnel 

capability cannot be eliminated.  While highly objective, the assessment requires managerial 
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and functional oversight; it is not intended to replace common sense.  Another limitation is if 

the AFRAF model becomes obsolete, the assessment procedure will have to be re-examined 

as 2-norm vectors will need to be re-established.       
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VII. Conclusions and Recommendations 

Overview 

 The final chapter provides a comprehensive set of conclusions and recommendations 

from the body of research presented in Chapters I through VI.  First, the chapter begins by 

drawing conclusions from this research objectives and questions.  Second, the chapter 

discusses this research significance and potential benefits of the various proposed 

methodologies to meet USAF enterprise risk assessment challenges.  Third, 

recommendations are stated for further research.  Fourth, the chapter concludes with a 

summary of the dissertation contribution. 

Research Conclusions 

A building block approach of numerous mathematical techniques from logistic 

regression to linear optimization were used to examine USAF personnel capability.  Review 

of this research suggests several conclusions can be made.  Chapters I and II provide the 

foundation for which the problem is scoped and defined and known mathematical formulae 

are explored as potential solutions.  The literature search (Chapter II) explored several 

discrete and continuous distributions and concluded the normal distribution is the best known 

distribution to use to compute probability of personnel failure.  The sigmoid function is a 

well-known function used in numerous risk assessment applications, and thereby is the best 

candidate for risk impact determination.   The coupling of these two mathematical functions 

yields an operationally representative, objective risk score.   

Chapter III presents the use of categorical data analysis techniques to create a 

repeatable, measureable baseline personnel capability assessment across the 12 USAF core 
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functions.   Specifically, logistic fit analyses via logistic odds ratio comparisons and 

contingency table analyses revealed significant manning shortfalls in all 12 core functions.  

This work demonstrates how seemingly disparate types of raw data; can be systematically 

synchronized to produce meaningful insight relating to personnel capability, not only at the 

core function, but functional equity (career family) level.  The methodology can serve as a 

way to standardize how enterprise-level manning assessments are computed across the 

USAF.    

One of the goals of this research was to examine if efficiency could be examined 

using personnel data and airbase resiliency metrics.  Chapter IV demonstrates that fighter 

pilot manning data and respective sorties can be collected by base to compute efficiency 

using Data Envelopment Analysis (DEA).  The methodology uses a bootstrapping technique 

to estimate future efficiency trends of the 10 F-16 bases examined.  This research identified 

potential base benchmarks as a means to improve aircraft sortie production with current 

fighter pilot manning levels.  The next portion of this research seeks to examine if there is a 

statistically significant relationship between efficiency and personnel risk.   

Chapter V illustrates four outcomes:  1.) personnel data can be decomposed by career 

family;  2.) assuming equal equity, personnel capability can be objectively prioritized;  3.) 

DEA can be used to compute efficiency by career family and;  4.) risk and efficiency can be 

nonparametrically statistically examined to determine significant relationships.   Until this 

work, none of the these have been studied and published.   This research is further expounded 

to include a use case of how to compute risk in an organizational context. 

Chapter VI examines aggregation methodologies to compute a core USAF personnel 

core capability risk score.  This work is a capstone of Chapters I through V, which presents a 
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use case of an organizational risk assessment using career field data by task and subtask.  

Numerous risk aggregation techniques were surveyed, but the 2-norm root mean squaring 

function appeared to be the most operationally representative way to depict USAF personnel 

capability and risk from an organizational perspective.  Normal and sigmoid functions are 

used to compute composite personnel risk values by task/subtask; these values are then 

codified using an existing USAF risk assessment framework.   A 2-norm is used to aggregate 

the tasks and subtasks to an overall personnel risk or capability score, and an ultimate 

assessment is developed.   

Significance of Research 

Currently, each USAF core function independently assesses risk.  Some enterprises 

strongly consider manning shortfalls and overages, while others do not.  Until recently, there 

was no repeatable, measureable way to assess baseline personnel capability assessment 

across the six enterprises in Agile Combat Support (ACS).  Understanding potential 

personnel shortfalls at the career field level should better inform core capability analysis, and 

thus increase credibility and defensibility of strategic risk assessments.  ACS Planners and 

programmers no longer have to defend the needs of their programs emotionally or base their 

arguments on precedence.  These experts can use data coupled with mathematical acumen to 

produce credible, defensible risk/capability assessments.  This is needed for improved senior 

decision making as it relates to resource allocation and prioritization.   

ACS enterprises are dependent upon one another to deliver capability in order to 

achieve a given mission.  Not only is this true, but other core functions heavily depend on the 

success of the ACS mission in order to deliver and execute airpower globally at any given 
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time or place.   Deliberately, examining risk by greatest USAF capability asset (i.e. 

personnel), objectively affords senior decision makers opportunities to advocate for resources 

when needed.   

Examining the relationship between efficiency and risk among USAF career fields 

has never been fully studied.  Using applied statistics and optimization, we discovered there 

is a statistically significant correlation between personnel manning risk and efficiency.   In 

other words, more people equate to less efficiency.  However, more people equate to less 

risk.    More people (to include training) equate to more cost.  Additional analysis is needed 

to ascertain if competency levels of various personnel career fields are the real force 

multipliers in determining personnel capability.   If the personnel management community is 

able to increase personnel competency levels while sustaining current manning levels, this 

may yield lower risk and higher efficiency.   

With the aforementioned, at least a minimum, a level of managerial insight is 

provided to enhance personnel capability at the enterprise and sub-enterprise level.  If a 

defensible, traceable personnel risk assessment methodology were developed, all ACS 

enterprises could more easily defend why they need more resources to perform required 

tasks.   Further, the successful implementation of a repeatable, proven process lends credence 

to other core functions using this approach, which should increase USAF strategic risk 

assessment confidence at very little or no cost. 

Way Forward 

 Currently, ACS is the only core function with a ‘task structured’ library.  The other 

core functions have activities aggregrated to their respective core capabilities.  With the 
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current ACS construct, this research has created a repeatable process to link enterprise tasks 

to program element codes (PECs) by career field, thereby increasing risk assessment 

traceability, defensibility and credibility.  If ACS planners and programmers now know the 

number of airmen required to complete a task at the PEC level, they can better justify why 

they either need or do not require resources.  This makes defending requirements more 

traceable and credible.  If this approach is extended across the USAF, we now have a 

standardized way to assess personnel risk.   In fact, the analysis can be conducted by one 

organization as the data are centrally managed.   

General Ellen Pawlokowski (former commander of Air Force Materiel Command 

(AFMC) and ACS core function) had four goals for Fiscal Year 2016 and one was to 

“Bolster Trust and Confidence of those we serve, by meeting our commitments.” (AFMC CC 

FY16 Report, 2017)  She planned to achieve this objective by 

 “…striving to earn and maintain the trust of our partners by delivering the right 

capabilities at the right time.  We want those we serve to value our support and come to us 

for solutions because they trust that we will deliver what they need when we say we will and 

at the agreed upon cost or better.”  –Gen. Ellen Pawlokowski  

The former commander of the ACS core function was clearly stakeholder conscious.   Dr. 

Charles Keating, a Systems Engineering professor at Old Dominion University teaches a 

main systemic error to avoid when complex system problem solving, and that is not 

considering all stakeholder viewpoints to the problem domain (Keating, 2005).  Stakeholder 

analysis is necessary in order for an enterprise-level risk assessment upgrade is to be 

successfully implemented.  
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Stakeholder analysis aims to identify stakeholders and assess how they are likely to 

be impacted by the project.   The primary goal of stakeholder analysis is to develop 

cooperation between the stakeholder and the project team to assure a successful outcome 

(Camilleri, 2011).  Stakeholder analysis needs bounds in the form of assumptions.  We 

assume all stakeholders share similar worldviews for the ACS risk assessment, otherwise 

problem resolution is extremely difficult.    

After successful identification of the stakeholders, problem resolution needs 

exploration.  In 20 years of experience with enterprise level problem resolution 

implementations, the success rate percentage is 0% when there are not leadership ‘buy in’, 

middle management salesmanship, facilitation expertise and subject matter expertise.   If any 

one of these critical components is absent, the implementation will either not occur or not 

have the intended impact.  Provided those four critical components are present, we can use 

whatever current organizational staffing solution tools (e.g. Task Management Tool (TMT), 

Senior Officer Communication Coordination  Electronic Resource (SOCCER), etc.) to give 

key personnel an indication of leadership expectations.   

An implementation of this magnitude will take at least a year if inefficiencies are 

considered before assessing (personnel) risk.  Bottom line: scope drives the length of 

implementation.  The more resources (e.g. personnel, infrastructure, equipment, etc.) to 

consider, equates to more decision space; which means more time and money are needed to 

ensure all of the elements of the complex problem system are identified first before 

resolution.  For more details on complex problem resolution, please request access to a 

document entitled ‘Keating’s Top 10: ten ways to increase complex problem system 

resolution.”   
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A project charter is needed in order to provide a level of codification/governance to 

enhance the chances of successfully implementing the new initiative.   A charter is a 

governing document for a new initiative that outlines leadership expectations, identifies the 

problem, identifies the suppliers, inputs, products, outputs and consumers (SIPOC), key 

personnel required to tackle the initiative, goals and impact of the initiative if successful.   

The analysis could be conducted within the HQ AFMC Strategic Plans, Programs, 

Requirements, and Analyses Directorate (AFMC A5/8/9), whereby the Analyses and 

Assessments Division (AFMC A9A) would serve as the lead integrator.  The collection of 

this information requires support from the AFMC 5/8 (Plans, Programs and Requirements 

Division).  If the personnel databases are unavailable, then the proposed framework is void.   

The personnel capability/risk research is open to other proven methods/approaches with 

regards to proper portrayal of strategic risk notably as it relates to the ACS core function or 

AFMC.   

Recommendations for Future Research 

 An interdependency model is needed to examine the interdependencies among USAF 

career fields.  As of July 2016, there were over 400,000 active duty military and civil 

servants in the USAF.  Of the 400,000+ (assigned) personnel, 55% are enlisted, 13% are 

officer and the remaining 32% are civil servants.  To date, there is no visual or mathematical 

representation of how each Air Force Specialty or career field is connected to the other.   

This research would inform strategic decision making by illustrating multi-order effects of 

resource constraints on career fields.  In other words, senior leaders could visually observe 
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the dependencies between career fields and recognize the potential impact of under/over-

filling certain career fields.   

The dependency model could be explored in the context of aircraft sortie generation.  

The model would make several assumptions.  The model should assume an inherent level of 

dependency among functional communities (i.e. rated operations, maintenance, 

communications, intelligence, medical, finance, acquisitions and resiliency support (e.g. 

chaplain, legal, force support, etc.)).  For example, the safety function is something 

equivalent to the legal or chaplain career field.   That is to say, the safety functional service 

or some career field equivalent, is required for most operational career fields.  This infers 

there is a level (albeit not exactly known) of safety career field dependency in order for the 

operational career fields to accomplish a mission.   This research should also seek to identify 

a mathematical way to use the career field dependency model to assess risk.  

Summary 

 Procedurally and wisely using mathematical application coupled with SME insight 

are proven ways to inform strategic decision making.   Applied statistics and optimization (to 

suggest a few) are ways to increase rigor, traceability, defensibility, repeatability and better 

inform strategic decision making.  If used correctly, hard data (e.g. personnel current and 

historical manning rates) can provide substantiating insight to help quantify risk.  These 

added analytical insights foster better strategic decision making by identifying capability 

gaps, and provide an increased level of objectivity to support personnel resource allocation.  

The results of the analysis contribute to better inform the USAF Strategic, Planning & 

Programming Process (SP3).    
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Appendix A. Joint Model from Chapter III 
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Appendix B. SCF and FE Assigned Manning levels by Demographic

Figure B-1: SCF Assigned Manning Levels by Demographic    

Figure B-2: FE Assigned Manning Levels by Demographic    
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Appendix C. (FE Manning Odds Ratio Analyses) 

 

Figure C-1: FE Manning Odds Ration Analyses  
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Appendix D. FE Significant Difference in Manning Odds Ratio Analyses  
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