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Abstract

Space Situational Awareness (SSA) is an activity vital to protecting national and

commercial satellites from damage or destruction due to collisions. Recent research

has demonstrated a methodology using evolutionary algorithms (EAs) which is in-

tended to develop near-optimal Space Surveillance Network (SSN) architectures in the

sense of low cost, low latency, and high resolution. That research is extended here

by (1) developing and applying a methodology to compare the performance of two or

more algorithms against this problem, and (2) analyzing the effects of using reduced

data sets in those searches. Computational experiments are presented in which the

performance of five multi-objective search algorithms are compared to one another

using four binary comparison methods, each quantifying the relationship between two

solution sets in different ways. Relative rankings reveal strengths and weaknesses of

evaluated algorithms empowering researchers to select the best algorithm for their

specific needs. The use of reduced data sets is shown to be useful for producing rel-

ative rankings of algorithms that are representative of rankings produced using the

full set.
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METHODOLOGY FOR COMPARISON OF ALGORITHMS FOR REAL-WORLD

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS: SPACE SURVEILLANCE

NETWORK DESIGN

I. Introduction

1.1 Background

When humanity first developed spaceflight capabilities, little attention was given

to the issue of congestion. Space was a seemingly infinite frontier containing a mere

handful of artificial objects. In the intervening decades, much has changed. Technol-

ogy has progressed at an astonishing rate, and the domain that was once in reach only

for global superpowers is now more accessible than ever before. In particular, with the

rise of miniaturization, technologies such as CubeSats [11] have opened space to much

wider use. What once required tremendous government resources is now achievable

by commercial entities and even high schools [8]. Concurrently, space has become an

indispensable domain for the United States Government (USG) and military, enabling

a myriad of capabilities such as communication, surveillance, reconnaissance, navi-

gation, and weather forecasting at levels that would not be otherwise possible [44].

In particular, with its 24-hour orbital period, the Geostationary Earth Orbit (GEO)

regime allows satellites to loiter over particular points on the surface of the Earth [31],

and has proven to be a particularly valuable orbital regime for the USG. However, as

the number of nations and industries dependent on space increase, the once untapped

domain of space is becoming ever-more congested, competitive, and contested [44].

1



1.2 Problem Statement

Space Situational Awareness (SSA).

Congestion in the exosphere is a growing problem. With the total number of Res-

ident Space Object (RSO) orbiting the Earth projected to multiply several times over

in the near future [28, 45, 39], including the associated debris from each launch, the

risk of accidental conjunctions and, therefore, the need for effective Space Situational

Awareness (SSA) will continue to increase. Current SSA capabilities are already

overburdened [1]. RSOs in GEO are not observed often enough nor with sufficient

resolution to detect hazardous conditions, accidental or hostile, in a reliably timely

manner.

In response to this problem, Stern and Wachtel [51] developed a minimization ap-

proach intended to find a selection of Space Surveillance Network (SSN) architectures

that explore the trade space of low cost, low latency, and small detection size (high

sensitivity). In both their research and the present effort, an SSN is defined to be

a collection of optical telescopes each of which can be either ground-based at one of

nine locations or in orbit around the Earth in one of three orbital regimes.

In their work, the SSN architecture design problem is framed as a multi-objective

minimization problem with three objectives: minimize cost, latency, and detection

size of candidate SSN architectures [51]. The cost is the approximate expense to

build, deploy, and operate the collected telescopes within the architecture, and is

primarily driven by the numbers, sizes, and deployment domains of telescopes. La-

tency describes the average elapsed time between observations an architecture can

be expected to provide, which mainly depends on the number of telescopes and the

number of RSOs to be observed. Detection size is the smallest object the architecture

can be expected to be able to detect which, though dependent on many factors, is

most impacted by the aperture size of the telescopes in the architecture and, to a

2



lesser degree, the number and distribution of RSOs across the sky.

These objectives are not independent, meaning that changes made to improve one

objective will worsen another. Consider an effort to optimize arbitrary architecture.

If one attempts to improve (reduce) overall cost by reducing the number of telescopes,

latency will suffer as there are fewer telescopes to observe the same number of RSOs.

Improving cost by reducing the aperture size of all telescopes results in a worsening of

detection size. Conversely, if one increases the size of apertures to improve detection

size, or increases the number of telescopes to improve latency, cost increases. This

phenomenon is demonstrated using specific architectures in Appendix A.

Computational Cost.

The search space considered for this problem is enormous, with 2.428× 1021 pos-

sible architectures in Stern and Wachtel’s underlying model [51]. Compounding the

problem, Stern and Wachtel’s objective functions, as implemented in this research,

result in an average evaluation time of 303.2 seconds for a single architecture on the

Mustang High-Performance Computer (HPC) at the Air Force Research Laboratory

(AFRL) (Section 3.6 summarizes Mustang’s technical specifications).1 This means

that an exhaustive search would require approximately 23.3 × 1015 years of CPU

time using technology available today. In Stern and Wachtel’s work, the optimiza-

tion method relied on an evolutionary algorithm (EA) to perform a non-exhaustive

search, producing a set of near-optimal solutions in a more reasonable time. Search

algorithms are not all created equally, however, and each will perform better on some

problems and worse on others [55]. A problem of this importance should be evaluated

with a number of appropriate algorithms to determine which algorithm(s) are most

effective and efficient.

1Stern and Wachtel reported an average evaluation time of “30 to 40 minutes” per generation on
AFRL’s decommissioned Spirit HPC [53]. Each individual in a generation is evaluated in parallel
under their methodology.
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The high computational cost is one barrier to performing such a comparison among

algorithms. Furthermore, the computational cost of this problem grows with the num-

ber of RSOs simulated. In contrast with the 303.2 second average evaluation for the

current implementation of Stern and Wachtel’s model, which simulates 813 RSOs, pre-

liminary computational experiments in this research effort simulating only 20 RSOs

reduced that to an average of 8.3 seconds. Overall, those early trials demonstrated

that computational costs increase superlinearly as the number of RSOs increases.

This was not surprising because each evaluation of a candidate architecture must

process each 30 second observation interval in the 24-hour simulation period for each

sensor/target pair, accumulating results as it goes, before determining final values

for the entire architecture. Any inefficiency in computations, such as delasy related

to managing the larger memory footprint, would push this otherwise linear growth

into the superlinear range. Reducing the number of RSOs is a simple way to reduce

the computational cost of evaluations, i.e. to improve algorithmic efficiency, but the

impact of this reduction on algorithmic effectiveness is not obvious a priori.

Problem Statement - Determine the relative ranking of search algorithms,
with respect to solution quality, when evaluating a high-dimensional SSN
model.

1.3 Research Objectives, Questions, and Hypotheses

As discussed above, Stern and Wachtel’s model has not been rigorously tested to

determine the effectiveness of alternate optimization algorithms2. This is presumably

due in part to the high computational cost of their implementation precluding the

possibility of performing the necessary computational experiments.

2Effectiveness can have a number of meanings. In a problem such as this, where the optimization
is not done in real-time, it refers mainly to the ability to obtain the best solutions with respect to
the objective functions across a large portion of the search space (quality and diversity). However,
in other situations it could also consider computational cost and other time/speed measures.
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These circumstances motivate the following research objectives.

RO1 The main objective of this research is to develop a methodology to efficiently

determine the most effective among a set of candidate search algorithms for the

SSN architecture design problem.

RO2 Since this necessarily involves comparing the results produced by the various

algorithms, a supporting objective is to assess the value of various methods of

performing those comparisons.

RO3 Finally, since the first objective seeks an efficient methodology, another support-

ing objective is to assess the viability of performing the algorithm comparisons

at reduced computational cost by reducing the number of RSOs simulated.

The steps taken in this effort toward satisfying these research objectives are guided

by three research questions that lead to four testable hypotheses.

Research Questions.

By applying a representative selection of classical and evolutionary search al-

gorithms to the SSN optimization problem, and employing four binary comparison

methods to compare the output of those algorithms, this research addresses the fol-

lowing questions:

Q1 Which of the representative algorithms is (are) most effective?

Q2 What useful insights are provided by various means of comparing the results of

the algorithms?

Q3 What is the impact of using fewer simulated RSOs on the quality of solutions

produced by these algorithms?
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There are, of course, myriad classical search algorithms and evolution algorithm

variants. The scope of this research is limited to random search, random restart

hill climbing, and three multi-objective evolutionary algorithm variants, which are

discussed in greater detail in Section 3.4.

Hypotheses.

These questions suggest some testable hypotheses, several of which have multiple

implicit hypotheses due to the use of multiple comparison methods. Where the terms

better or worse are used, they refer to the numeric results of those binary comparisons.

H1 For each pair of algorithms, one will tend to produce better Pareto fronts than

the other.

H2 The Pareto fronts produced by random search tend to be worse than those of

all remaining algorithms.

H3 Each evolutionary algorithm tends to produce better Pareto fronts than a

random-restart hill climber.

H4 Simulating fewer randomly selected RSOs does not tend to change the relative

effectiveness of the algorithms.

1.4 Methodology

These research questions and hypotheses are addressed through two series of com-

putational experiments. The first series, which addresses research questions Q1 and

Q2 and hypotheses H1 through H3, compares the solution sets produced by various

multi-objective search algorithms when applied to the problem of optimizing SSN ar-

chitectures. Because this is a real world problem, there is no known Pareto Optimal

Set against which to compare results. Therefore, the results of the search algorithms
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being evaluated can only be compared to one another to produce an overall rank-

ing. Several binary3 comparison methods can be employed to quantify the differences

between two solution sets. Four such binary comparison methods are used in this

research: binary hypervolume, coverage, ε-indicator, and additive ε-indicator (see

Section 2.5).

The second series of experiments, which addresses research questions Q2 and Q3

and hypothesis H4, examines the impact on algorithmic effectiveness of reducing the

computational cost of the search algorithms by simulating fewer randomly selected

RSOs. The direct relationship between computational cost and the number of RSOs

simulated strongly motivates the desire to understand the impact of using fewer RSOs

on the quality of solutions produced by search algorithms, relative to the results

produced using a full complement of RSOs. If the relationship is predictable, many

algorithms may be evaluated at a much lower computational cost than is currently

possible.

This research combines three major concepts: the Stern and Wachtel space surveil-

lance network architecture model [51], search algorithms, and Pareto front compari-

son methods. The model produces executable architectures4 defined by 28 dimensions

that define quantity, size, and location of telescopes on the ground or in one of three

orbits. It evaluates them using pre-simulated data and three objectives: cost, Mean

Maximum Observation Time Gap (MMOTG) (also known as latency), and minimum

detectable object size (detection size).

Each of the various search algorithms employs a different approach to guide its

exploration of the search space through several thousand evaluated architectures.

3Binary, in this usage, refers to the comparison of two items, not the numbering system. This
is in contrast to unary indicators, which characterize a single solution set in isolation (e.g. the
hypervolume indicator) [12].

4An executable architecture is an architecture that includes enough detailed information that it
can be implemented automatically or semi-automatically [15]. They are useful when using simula-
tions to analyze systems for emergent properties.
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These algorithms are run several times each, accelerated by running them in parallel

using AFRL’s HPC facilities [32]. In addition to running the algorithms using the

full simulation data, they are also run repeatedly using smaller sets of simulation

data, which simulate several reduced sets of RSOs. There are five sets of simulation

data used with 813, 407, 203, 81, and 20 RSOs (100%, 50%, 25%, 10%, and 2.5%,

respectively). Search does not alter the simulation data data, so the five data sets

are only simulated once and reused with each of the search algorithms. Regardless of

which algorithm is used, the concept of Pareto domination is used to select a final set

of architectures that present optimal compromises among the three objectives. Thus,

each algorithm run produces a set of solutions.

The repeated runs of each algorithm are compared pairwise using four different

comparison methods to assess the relative reliability of the algorithms as well as the

effects of using smaller data sets. The results of the runs are also aggregated for each

algorithm and compared with those of the other algorithms to assess the relative

effectiveness of the algorithms against this specific problem.

1.5 Assumptions and Limitations

This research assumes that the Stern and Wachtel model [51] accurately predicts

the cost, latency, and detection size of SSN architectures; no effort is made here

to modify or improve its function beyond those changes necessary to facilitate the

execution of the computational experiments. All assumptions of the model and any

inaccuracies in its predictions remain. Assessment of the accuracy of the model and

enhancements to address any inaccuracies remain areas for future research.

It is also assumed that there is an external Decision Maker (DM) whose prefer-

ences are not known, meaning that no weighting scheme is applied when evaluating

candidate solutions. This rules out the use of single-objective optimization algorithms
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applied to a linear combination of the multiple objectives. Identification of candidate

preference schemes and incorporation into the search process could result in software

tools with greater real-world utility, but this is also left as an area for future research.

Finally, it is assumed that this is a real-world problem, and that there is no prior

knowledge of the search landscape to guide algorithm selection. Relaxation of this

assumption and incorporation of domain knowledge in the optimization algorithm

could lead to improved effectiveness, but this is left as yet another area for future

research.

This research is primarily limited by available computing power. Even using

HPCs, the combination of computational cost, the number of runs required of each

algorithm, and the use of multiple data sets limits the total number of algorithms

to five. Also, there is a self-imposed limitation to working with a single library of

algorithms. Doing so eliminates concerns about varying skill levels among different

programmers, and it also enables the implementation of supporting software tools

that will be easier for future researchers to understand and modify than would be

possible if multiple libraries were used.

1.6 Implications

This research represents a first step in, and a methodology for, identifying algo-

rithms that are more effective against the SSN architecture search problem. Stern

and Wachtel’s work [51] makes it clear that building a SSN that will meet our needs

is likely to cost billions of dollars and require years of planning. Given that the most

appropriate algorithms for this problem do not guarantee truly optimal solutions, it is

important to ensure that the most effective algorithm is being applied before choosing

an architecture for such a large undertaking.

This research also provides insight into the uses and limitations of using reduced
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data sets with problems relating to GEO and related large-scale simulation-based

optimizations. In the search for the most effective algorithm, many algorithms will

need to be applied to this problem. Given that the search space considered is so large

that a modern computer could not search even 1% of the search space in the Sun’s

remaining lifetime, finding effective ways to reduce the computational load of this

problem is extremely important.

1.7 Organization

Chapter II discusses the basics of SSA, EAs, and binary comparison methods.

Brief descriptions of common multi-objective algorithms are included, as is a summary

of Stern and Wachtel’s work.

In Chapter III, the methodology used to answer the research questions is described.

This includes descriptions of computational experiments to test the hypotheses and

some discussion of obstacles that affect the methodology.

Chapter IV presents results obtained from the comparisons and the analysis of

the data. These results include how each algorithm performs relative to the others,

as well as the impact of using reduced data sets on the results of each algorithm.

Optimal SSN architectures are not presented, except where appropriate to elaborate

on the results.

Finally, Chapter V presents conclusions and makes recommendations for future,

related work.
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II. Literature Review

2.1 Chapter Overview

The purpose of this chapter is to define concepts and terminology relevant to

this research, describe the current state of SSA and recent research in the field,

and to describe the tools that are used to perform the computational experiments

described in Chapter III. The goal is to highlight areas where efficiencies are likely to

be obtainable and where further study is required. The chapter begins with definitions

of terminology, algorithms, and tools that relate to the computational aspect of the

problem. Next, terminology and concepts relating to SSA are discussed. Finally, the

specific SSN model to be used in this research is introduced.

2.2 General Definitions

Before delving into detailed discussions of the major areas of this research, brief

summaries are offered for easy reference throughout the thesis. It is not a substitute

for the more thorough discussions immediately following this section, but serves to

be more descriptive than the list of acronyms at the beginning of the document.

High-Performance Computing (HPC), refers to the general concept of using one

or more nodes within a cluster of high-end computers that is purpose-built to handle

heavy computational loads. The use of HPC is not significant to the outcomes of this

research, and is simply a tool to offload the most computationally expensive portions

of the work in order to receive the highest-quality results possible within the available

time.

Evolutionary Algorithms (EAs) can refer to a broad category of algorithms, en-

compassing subcategories such as Genetic Algorithms (GA) [30, 25], Evolutionary

Programming (EP) [23], and Evolution Strategies (ES) [9], in which evolutionary con-
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cepts are used to guide the “evolution” of progressively better sets of solutions [12, 18].

As the specific classes of EA are not a central topic to the research, “EA” is used in

a general sense to indicate any such algorithm except in places where a more specific

definition is appropriate.

Multi-objective Optimization (MOO) is a special type of optimization in which

a problem has multiple objectives and, in most cases, some of the objectives are in

direct opposition to one another. That is, when variables are adjusted to improve one

objective value, it comes at the cost of another objective value becoming worse. Multi-

objective algorithms normally return a set of possible solutions, each representing

some optimal compromise between objectives, referred to as a Pareto Front [12].

The term Space Surveillance Network (SSN) typically refers to the collection of

radar and optical telescope sites maintained by the US Air Force for the purpose of

monitoring objects in orbit around the Earth [43]. For this research, SSN is used

more genearlly to describe a collection of ground- or space-based optical telescopes

tasked to monitor objects in GEO. Other types of sensors or orbital regimes are not

considered here.

2.3 High Performance Computing (HPC)

HPC is a tool that is used heavily to accommodate the significant computational

burden of this research effort. Note that the acronym HPC may refer to either “high

performance computing” or “high performance computer,” and is used in both ways

throughout this document. HPC platforms are clusters of server-grade computers

that can be used to tackle computational problems that are too large for a traditional

workstation. While they can be small clusters of just a few computers used for

business purposes, clusters with thousands of machines and tens of thousands of cores

are the norm for scientific and government purposes. Unlike traditional computing,

12



focusing on performing small tasks in a generally serial manner, HPCs are designed

with highly parallel performance in mind. Use cases for an HPC typically fall into two

types of jobs: running many instances of a serial task simultaneously, or distributing

one or more highly-parallelizable task across many nodes.

HPCs consist of a collection of servers interconnected with a specialized, high-

speed network. Individual nodes may have dozens of cores, and hundreds of gigabytes

of system memory [26]. There may also be multiple classes of machine available on

a cluster, with most falling into a standard category, a handful offering much higher

system memory, and another small collection of nodes with specialized coprocessors,

such as a Graphical Processing Unit (GPU).

While the allure of an HPC can be great, there are distinct pros and cons associ-

ated with using HPCs which must be considered before electing to make use of them in

any research effort. Advantages mainly center on the enormous pool of computational

resources and the careful tuning of the architecture for parallel computation. These

advantages offer the promise of faster execution for certain tasks, and the possibility

of tackling problems that would be otherwise intractable. Many of the disadvantages

also center around the parallel nature of the system: writing programs to properly

capitalize on the architecture can be more difficult than with traditional computers,

memory management is more complicated, problems that cannot be decomposed into

enough sub-tasks will not enjoy meaningful speedup, and debugging can be slower

and more difficult than with dedicated, traditional hardware. Additionally, HPCs are

almost always shared resources, with many users competing for processing time, so

delays while a job waits in the queue can be both significant and unpredictable as

they are influenced by many dynamic factors. Finally, virtually all HPCs are some-

what custom orders, and there can be significant variation in software and hardware

employed from one HPC to the next, making portability a challenge if one wishes to
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migrate their work, or to extend previous work on a different platform.

2.4 Evolutionary Algorithms (EAs)

Evolutionary algorithms are a broad class of algorithm that draw some inspi-

ration from the theory of evolution. These algorithms operate on populations of

candidate solutions, and apply some combination of evolutionary operators (typically

categorized as either selection or variation operators) to evolve progressively more

fit generations of solutions [18]. In terms of an EA, fitness is defined in terms of

the objectives of the optimization problem, so a minimization problem’s population

becomes more fit as the overall objective values trend downward, and less fit as they

trend upward. An individual is simply one possible solution to the problem, repre-

sented as a combination of valid characteristics, often called a decision variable vector,

that can be mapped to specific values for each of the objectives, called an objective

vector [12]. The population is a collection of individuals against which evolutionary

processes can be imposed. Every individual is evaluated for fitness using a fitness

function, which mathematically evaluates the individual against the objective(s) of

the problem. In the case of a minimization problem, individuals that have a lower

value for some objective function are deemed more fit than those with higher values.

The search ends based on some termination criteria, typically either based on the

number of candidates evaluated or in the overall fitness of the population, and the

best solution(s) found are output to the user.

Bio-inspired Terminology.

As EAs borrow heavily from biology, some terminology is also borrowed. In biol-

ogy, two ways to describe an organism are genotypically or pheontypically. “Geno-

typic” refers to the genetic makeup of an organism, while “phenotypic” refers to the

14



outward appearance or traits of the organism. Roughly speaking, genetic data is

encoded in chromosomes and decomposed into specific factors, genes, which can take

on any one of several possible values, known as alleles. Depending on the value of

one or more specific genes, different phenotypes (observable traits) may result.

Similarly, EAs are discussed in terms of genes and alleles in both genotye and

phenotype, with the addition of objective values [18]. Genotypic space, also called

decision space, is a k-dimensional space, where k is the number of factors that can be

controlled (i.e. genes), representing all of the feasible combinations of factors relevant

to the problem. Again, phenotype is the outward expression of the genotype, which

is specific to the problem. Objective space is an n-dimensional space, where n is

the number of objectives for the problem. It is important to note that there is no

requirement for k and n to be equal, and a typical problem difficult enough to warrant

an EA will have complex interactions between multiple genes for some (or all) of the

objectives. It is common to see problems with more genes than objectives.

Selection Operators.

Selection operators are routinely used in two ways. First, they can be used to

select parents from a population from which to create offspring (selecting individuals

to mate). Second, they can be used to select replacements or successors to make

up the next generation (selecting individuals to survive). Selection operators can

be implemented in a number of ways, but always use fitness as a driving factor,

selecting the more fit individuals more often than the less fit ones. This is normally

accomplished using a probabilistic approach which assigns a higher probability of

selection to more fit individuals without completely precluding the possibility of a

less fit individual’s selection [18]. The idea is that there may be some good genes

hidden in less fit individuals that could be beneficial to subsequent generations when
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combined with good genes from other individuals. Though these operators would

seem to work hand in hand, algorithms do not always implement both forms of

selection.

Variation operators.

Variation operators are used to introduce and maintain diversity in the popula-

tion [18]. The two main variation operators are recombination and mutation. Muta-

tion operates on an individual, making random changes to its genotype, while recom-

bination, sometimes called crossover, operates on two or more “parents” combining

their genotypes to make one or more “children” [12]. These operators work to intro-

duce alleles that were not present in the population and to produce new combinations

of existing genes, respectively, aiding in the exploration of the decision space.

It is most common to see both operators used, but, as with selection operators, it is

possible to implement algorithms which do not use both. For example, the Mutation

Only Genetic Algorithm (MOGA) [52] and Evolution Strategies (ES) [9] rely solely on

mutation to introduce variation, and therefore do not implement parent selection or

recombination operators. It is important to note that the method of recombination or

mutation used depends on the genotypic data representation. For example, changing

a binary bit from a 0 to a 1 or from a 1 to a 0, called bit flipping, should normally

only be used if the genotype is represented as a string of binary bits. If the data is

represented as real numbers, then some form of random number generation (RNG)

would be required, instead. Likewise, if allele values are pulled from a discrete list of

values, then neither bit flipping nor RNG would directly apply. The effectiveness of

specific variation operators is not a focus of this research effort, so the discussions of

relevant algorithms later in this chapter do not describe the specific types of variation

operators. Rather, they state only whether they are used or not.
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Dominance and Pareto Optimality.

Dominance, a relation on the set of solutions and denoted by A ≺ B for a min-

imization problem, is an important concept for MOO used to determine which so-

lutions are “better” than others. Simply put, given two solutions to a problem, A

and B, A dominates B if all of its objective values are at least as good as B’s corre-

sponding objective values, and at least one of its objective values is better than B’s

corresponding value [18]. In the case of minimization, all objective values in A must

be less than or equal to the corresponding objective values in B, and at least one

value must be strictly lesser than B’s. It is formally expressed as follows:

A ≺ B ⇐⇒ ∀i ∈ {1, ..., n} |ai ≤ bi ∩ ∃i ∈ {1, ..., n} |ai < bi (1)

Additionally, there are different “strengths” of dominance which are summarized in

[61]. Weak dominance, denoted by A � B, is a relaxed form of dominance in which

we only say that A is equal to or better than B in all objectives. This is simply

dominance which allows for the special case where A is equal to B in all objectives.

Strong or strict dominance, denoted by A Î B, indicates a case where A is better than

B in all objectives. Strong (or strict) dominance implies dominance, and dominance

implies weak dominance. Finally, A and B are said to be incomparable (A||B) when

neither A weakly dominates B, nor B weakly dominates A. Figure 1 illustrates these

concepts in a 2-objective minimization problem.

Pareto optimality, which is an idea borrowed from economics [42], describes a

distribution of resources in which no reallocation can be accomplished except at the

detriment of one of the individuals to whom resources are distributed. In MOO,

the concept is adapted to describe a solution A for which there exists no solution B

that improves one or more objective values without worsening another, with respect

17



Figure 1. Dominance relationships

to A [12]. In other words, a solution is Pareto Optimal if no other solution to the

problem dominates it. In Figure 1, solutions A, B, and C are Pareto Optimal. In

a solution set, the subset of Pareto Optimal solutions is known as the Pareto set,

or the Pareto front, or the nondominated set [18]. In the case where the Pareto

front is found for the entire search space, meaning all Pareto Optimal solutions have

been found, this is called the Pareto Optimal Set, sometimes denoted as PF* [12].

This differs from a Pareto front in that the Pareto Optimal Set for a given problem

is unique, but any subset of solutions to that same problem has a Pareto front, of

which all, some, or none of the solutions may be members of the Pareto Optimal Set.

This distinction is important when comparing algorithms because many algorithms,

including EAs, make no guarantee to find the Pareto Optimal Set, but merely a good

approximation of that set.
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Parameter Tuning.

A typical EA has multiple parameters that dictate its behavior. Each variation

and selection operator has at least one parameter associated with it, in addition to

the higher level parameters like population size and maximum numbers of generations

or evaluations. Adjusting any one of these parameters can affect the behavior of the

algorithm, and adjusting multiple parameters together can amplify or mitigate the

individual effects in interesting and surprising ways [18]. The process of determining

the best combination of parameters for a given problem is known is parameter tuning,

and is a field of research unto itself. Many recent research projects have been devoted

solely to the determination of ideal parameters [50, 49] or automating the tuning of

parameters [41, 37], which has been a staple of the Evolution Strategies branch of EA

research since its inception. Parameter tuning is not the primary focus of this research.

Values proposed in [51] are used for most parameters. The one notable exception to

this is the case of stopping conditions. These are the parameters that determine when

the algorithm should stop its search, and can have tremendous impact on the output

of an algorithm. This research adheres to the recommendation of Beiranvand et al. [7]

to ensure that all algorithms to be compared use the same stopping conditions.

Relevant Algorithms and Libraries.

When dealing with a real-world problem for which little is known about its objec-

tive space, selecting an algorithm can be a difficult. There are countless algorithms

in existence today and many software packages available that implement some col-

lections of those algorithms. Searching the literature and internet for suggestions

regarding which algorithm to use for a given problem typically yields a daunting and

generally unhelpful list of recommendations. What follows here is a series of short

summaries of a few relevant software packages, as well as some of the more popular
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multi-objective algorithms. The purpose is to briefly summarize the distinctive fea-

tures, capabilities, and limitations found in the original literature for each. Specific

operators employed by the algorithms are not discussed in depth. Software pack-

ages are limited to those available for the Python language, as the existing codebase

consists entirely of Python.

inspyred.

The software package used in Stern et al.’s experiments [51], Garrett’s inspyred [24],

is a collection of optimization algorithms for Python. It consists mainly of single-

objective algorithms, is somewhat limited in the types of data that can be used with

the algorithms implemented, and requires the user to provide a significant amount of

code to operate. It is, however, well-documented and easy to get started when apply-

ing to a custom problem. It also offers built-in capabilities for distributed processing

using several different models and underlying technologies, from the use of multiple

cores on a standalone machine, all the way up to distributing an algorithm on an

HPC cluster.

PyGMO.

Published by the European Space Agency’s (ESA) Advanced Concepts Team

(ACT) [20], PyGMO is a Python library implementing many bio-inspired algorithms [19].

It is essentially a Python wrapper around their PAGMO library, which is implemented

in C++. It has the obvious advantage that the C++ core is doing the heavy lifting,

and therefore tends to be faster than most Python implementations of the same pro-

cedures. Documentation is extensive and, like inspyred, it offers strong support for

distributed computing. It offers an impressive collection of algorithms, but of its 34

algorithms, only 4 support multi-objective problems.
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Table 1. Summary of operators used by common algorithms. A - External Archive,
BT - Binary Tournament, C - Crowding, D - Dominance, εD - Epsilon Dominance, I -
Indicator, N - Neighborhood, R - Random

Algorithm IBEA MOEA/D NSGA-II εNSGA-II NSGA-III PAES SPEA2

Parent Selection BT R, N BT BT R n/a BT
Survivor Selection I D D, C εD D, N n/a D, A
Recombination X X X X X X
Mutation X X X X X X X
Local Search X X

Platypus.

Hadka’s Platypus package [29] is a pure Python library which is exclusively devoted

to multi-objective algorithms. While it does not have as extensive a collection of

algorithms as PyGMO, each one is multi-objective out of the box. Compared to

the others, it is rather poorly documented. Despite the limited documentation, it is

relatively easy to implement a custom problem quickly. It features a well-developed

type system that allows virtually any data type to be used with any algorithm (though

some algorithms inherently exclude certain data types), and also eliminates the need

for the user to implement a solution generator. With few exceptions, a problem needs

to be defined only once and can be used with any algorithm available in the package

without any changes to the code. Due to its wide offering of MO algorithms and

relative ease of use, this is the library used exclusively for this research.

IBEA.

The Indicator-Based Evolutionary Algorithm (IBEA) [58], is an EA that makes

use of binary quality indicators as a survivor selection tool. Binary quality indicators

are comparison methods that can be used to compare two multi-objective solutions

quantitatively, and are discussed later in this chapter. After randomly generating an

initial population, IBEA uses binary tournament selection, recombination, and mu-

tation to generate offspring to be added to the population. It calculates an indicator
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value for each member of the population by comparing it to every other individual

in the population and summing the results. The individual with the lowest (worst)

value is eliminated. The compare-and-eliminate process is repeated until the popu-

lation is reduced to the specified population size. This is one generation. The entire

procedure is repeated with the current population, and subsequent populations, until

the maximum generation is reached or some other termination criteria is met.

MOEA/D.

The multi-objective evolutionary algorithm based on decomposition

(MOEA/D) [47] attempts to exploit single-objective optimization techniques by de-

composing the problem into a user-defined number of single-objective sub-problems.

Each sub-problem applies a unique weighting scheme to the multi-objective problem

(MOP), allowing all of the objectives to be collapsed to a single value. Each weighting

scheme simply specifies the relative weight of each objective to simulate a decision

maker’s preference. These different weightings of objectives serve to break the objec-

tive space into “neighborhoods” where individuals of similar fitness are segregated;

mating is restricted to random selection within each neighborhood. The final output

of MOEA/D is still an n-dimensional Pareto front, where n is the number of objec-

tives in the MOP, but internally the algorithm splits its computation time evenly

between each weighting scheme, making use of single-objective heuristics that might

otherwise be unavailable to a typical MO algorithm.

NSGA-II.

The Non-dominated Sorted Genetic Algorithm II (NSGA-II) [14] is one of the

most successful MOEAs developed to date, routinely appearing in literature as a

comparison benchmark for newly proposed algorithms. The distinctive features of
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this algorithm are the sorting of the population into multiple domination fronts and

the use of a crowding calculation. Multiple domination fronts are found in the same

way as finding a single front, except the procedure is repeated several times, removing

the current Pareto front between each repetition. Each front is assigned a value

(e.g. Front 0, Front 1). Crowding is approximated by the perimeter length of a

cuboid drawn between the closest neighbors to a solution under consideration. Taken

together, survivor selection is accomplished by preferring solutions in lower fronts and

in less crowded regions in an attempt to maintain a population that is evenly-spread

in objective space. Many variations of NSGA-II exist [12].

Epsilon NSGA-II.

Of the many variants of NSGA-II, one interesting option is the Epsilon Non-

Dominated Sorted Genetic Algorithm II (ε-NSGAII) [36]. This variant makes use of

ε-dominance [38] to eliminate the need for a distinct crowding function and, therefore,

reduce overall computational cost. This technique requires a user to input epsilon

values for each objective, which are then used to form a grid in objective space.

Solutions that occur in the same grid block are compared and dominated solutions

are removed. The overall result is a population that includes no more than one

solution per grid block at the end of the dominance sorting step. This method can

be helpful when something is known of a decision maker’s preferences in advance,

allowing for a coarser (larger epsilon) or finer grid size (smaller epsilon) for different

objectives.

NSGA-III.

Another successor to NSGA-II is NSGA-III [33]. With the overall success of

NSGA-II, one might be tempted to look at NSGA-III and assume that it must be an
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upgraded, drop-in replacement for NSGA-II. This is not the case, though. NSGA-III

was explicitly developed to handle many-objective problems (problems with four or

more objectives). While it is capable of handling a standard MOP with two or three

objectives, it builds on the framework of NSGA-II, adding five adaptations to mitigate

the special considerations of many-objective problems. This can result in a modest

increase in computational complexity over its predecessor. For traditional MOPs,

such as the one studied in this research, NSGA-III can normally be disregarded and

is not evaluated herein.

PAES.

The earliest of algorithms discussed in this review, the Pareto Archived Evolu-

tion Strategy (PAES) [35] is designed to be a computationally inexpensive baseline

algorithm against which more complicated algorithms can be compared. Unlike the

other algorithms discussed, it uses only local search, and is not population-based.

Instead, it evaluates one solution at a time, moving to another by performing small

mutations. As it traverses genotypic space, an external archive of non-dominated

solutions is maintained and updated with each evaluation. At its termination, PAES

outputs this archive. Though seemingly outclassed by the other algorithms on the

list, it can be useful to consider less complex solvers when dealing with real-world

problems for which there is no known Pareto Optimal Set.

SPEA2.

In improvement upon the original Strength Pareto Evolutionary Algorithm,

SPEA2 [59] is another well-known algorithm that is used as a benchmark for newly

proposed MOEAs. Its distinctive feature is an external archive of non-dominated

solutions found throughout the search. The archive has a pre-defined maximum size.
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Once the archive is full, a truncation operator is used to remove individuals from

densely populated regions of the Pareto front to make room for individuals that be-

long to less-densely populated regions. Modifications to the techniques associated

with the archive distinguish SPEA2 from SPEA. Reproduction is accomplished using

binary tournament selection and standard recombination and mutation operators.

2.5 EA Comparison Methods

With an assortment of algorithms at one’s disposal, methods by which to compare

their results are required. Several methods are available for comparing solution sets,

and with multiple runs of a single algorithm, these methods can be extended to

compare algorithms, thereby elucidating benefits and shortcomings of the various

algorithms. This section discusses the comparison methods that are pertinent to this

research and, without loss of generality, assumes a minimization problem.

Following Zitzler et al. [61], Table 2 defines five kinds of binary relations that can

exist between two solutions and extends those concepts to solution sets. The table

omits equality (=), which is a special case of incomparability but is nonetheless a

sixth binary relation in this category.

Table 2. Binary relations defined for this research as they exist between objective
vectors (solutions) and approximation sets (solution sets). Adapted from Zitzler at
al. [61]

relation objective vectors approximation sets

strictly dominates z1 Î z2 z1 is better than z2 in all objectives A Î B
every z2 in B is strictly dominated
by at least one z1 in A

dominates z1 ≺ z2
z1 is at least as good as z2 in all objectives
and better in at least one objective

A ≺ B
every z2 in B is dominated by
at least one z1 in A

superior1 A / B
every z2 in B is weakly dominated
by at least one z1 in A and A 6= B

weakly dominates z1 � z2 z1 is at least as good as z2 in all objectives A � B
every z2 in B is weakly dominated
by at least one z1 in A

incomparable z1‖z2 neither z1 weakly dominates z2 nor
z2 weakly dominates z1

A||B neither A weakly dominates B nor
B weakly dominates A
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Any valid solution set comparison method is able to make at least one of the six

types of claims about relations on the space of solution sets. However, all methods

known to the author are limited to some proper subset of these relations. Each method

collapses complex relationships between sets into a single scalar measure in a distinct

way, and the various methods are therefore capable of answering different kinds of

questions about the relationships between solution sets. The remainder of this section

discusses five solution set comparison methods: Visual, Binary Hypervolume, Cov-

erage, Binary ε-Indicator, and Binary Additive ε-Indicator. The discussion includes

the relations that can be determined by each, which are summarized in Table 3.

Table 3. Binary indicators and their capabilities. Adapted from Zitzler et al. [61]

Indicator
can determine relation:

Î ≺ / � = ‖

Epsilon Indicator
(Iε)

Iε(A,B) < 1 n/a
Iε(A,B) ≤ 1
Iε(B,A) > 1

Iε(A,B) ≤ 1
Iε(A,B) = 1
Iε(B,A) = 1

Iε(A,B) > 1
Iε(B,A) > 1

Additive Epsilon
Indicator (Iε+)

Iε+(A,B) < 1 n/a
Iε+(A,B) ≤ 0
Iε+(B,A) > 0

Iε+(A,B) ≤ 0
Iε+(A,B) = 0
Iε+(B,A) = 0

Iε+(A,B) > 0
Iε+(B,A) > 0

Coverage (IC) n/a
IC(A,B) = 1
IC(B,A) = 0

IC(A,B) = 1
IC(B,A) < 1

IC(A,B) = 1
IC(A,B) = 1
IC(B,A) = 1

0 < IC(A,B) < 1
0 < IC(B,A) < 1

Binary
Hypervolume (IH2)

n/a n/a
IH2(A,B) > 0
IH2(B,A) = 0

IH2(A,B) ≥ 0
IH2(B,A) = 0

IH2(A,B) = 0
IH2(B,A) = 0

IH2(A,B) > 0
IH2(B,A) > 0

Visual.

Visual comparison is the oldest and most subjective method. In this method,

two solution sets are plotted in a single graph, and then visually evaluated. It is

capable of determining whether one solution set dominates another in a MOP with

two objectives, but is not capable of quantitatively evaluating the domination, nor

can it quantify relationships where neither set fully dominates the other (intuitively,

this is the case whenever the Pareto fronts “cross”). It is far less capable of evaluating

1Zitzler et al. [61] use the term “better” here. It is changed to superior to distinguish it from the
many other uses of “better” in this document.
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three-objective MOPs, and essentially can not be applied to problems with more than

three objectives. This method is not employed for this research and is not included

in Table 3.

Binary Hypervolume.

Hypervolume (HV) is the union of polytopes formed between each point in a

solution set and some reference point [12]. For example, in two dimensions (a two-

objective problem), it is the area formed by the union of rectangles between each

solution and the reference point. In three dimensions, such as the problem addressed

in this research, it is volume of the union of cuboids formed between each solution

and the reference point. Taken by itself, it describes the volume of objective space

weakly dominated or “covered” by the solution set under consideration. Zitzler [57]

defines binary hypervolume

IH2(A,B) = HV (A+B)−HV (B), (2)

where HV (A + B) is the hypervolume of the union of Pareto front A and Pareto

front B. Thus, IH2(A,B) indicates the volume of decision space weakly dominated

by solution set A, but not by solution set B, which Zitzler proposes as a method to

compare two solution sets using hypervolumes.

Binary Hypervolume is vulnerable to differences in scale between the objectives of

a problem. It will over-represent differences between solution sets in an objective with

a very large scale, relative to objectives with much smaller scales. Normalizing objec-

tive values is recommended to ensure that each objective is given equal representation

with this comparison method.

To decisively answer any questions about the relationship between the two solution

sets, this measure should be performed in both directions (IH2 (A,B) and IH2 (B,A)).
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Doing so renders an indication of overall “betterness,” and can, at best, indicate if one

set weakly dominated the other, such as when (IH2 (A,B) > 0 and IH2 (B,A)) = 0.

This is due to the fact that a value greater that at least one solution in B is dominated

by at least one solution in A, but there is no way of knowing if every point in B is

dominated by at least one point in A.

Coverage.

For solution sets A and B, the coverage indicator IC(A,B) is the fraction of points

in B that are weakly dominated by A [57, 60]

IC(A,B) =
|{b ∈ B | ∃ a ∈ A : a � b}|

|B|
. (3)

Like binary hypervolume, this indicator relies on weak dominance and, therefore,

IC(A,B) is not guaranteed to equal 1 − IC(B,A). As such, IC also should be eval-

uated in both directions. Unlike binary hypervolume, which deals with volumes of

objective space, the coverage indicator relies on pairwise comparisons of objective

vectors. Consequently, it is more susceptible to skewing by a few exceptional solu-

tions in an otherwise mediocre solution set. Zitzler [57] recommends using IH2 and IC

as complementary tools to build a fuller picture of the relationship between solution

sets.

Binary ε-Indicator.

Zitzler et al. [61] introduce the ε-Indicator (Iε) to allow one to not only make claims

about the binary relationship between two solutions sets, but to also quantify the

degree of certain relationships. For example, in addition to determining if A strictly

dominates B, it can also quantify the factor by which it dominates B. This capability

is very useful for the objective comparison of algorithms, as it can be combined with
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other characteristics of the algorithms, such as running time, to quantify the amount

of qualitative gain or loss in contrast with the non-qualitative factors.

In simple terms, Iε(A,B) computes A’s ε-dominance of B, outputting the value

of ε. Specifically, ε-dominance is defined as follows: for a minimization problem

with n positive objectives (Z ⊆ R+n
), an objective vector z1 = (z11 , z

1
2 , ..., z

1
n) ∈ Z

ε-dominates another objective vector z2 = (z21 , z
2
2 , ..., z

2
n) ∈ Z, written z1 �ε z2, if and

only if

∀1 ≤ i ≤ n : z1i ≤ ε · z2i (4)

for a given ε > 0. The binary ε-indicator Iε for two solution sets, A and B is defined

as follows:

Iε(A,B) = inf
ε∈R
{∀z2 ∈ B ∃ z1 ∈ A : z1 �ε z2} (5)

The value of Iε(A,B) indicates smallest the value by which every objective value

in B can be multiplied to scale the entire solution set in objective space to a point

where B is weakly dominated by A.

Binary Additive ε-Indicator.

Zitzler et al. [61] also propose the Binary Additive ε-Indicator. It is essentially the

same indicator as the Binary ε-Indicator with the same capabilities and limitations.

This version uses an additive ε-dominance (�ε+) to find the largest value that can be

added to every objective value in B to translate the entire solution set in objective

space to be weakly dominated by A. This indicator is therefore defined as

Iε+(A,B) = inf
ε∈R
{∀z2 ∈ B ∃ z1 ∈ A : z1 �ε+ z2} (6)

29



where z1 �ε+ z2 if and only if

∀1 ≤ i ≤ n : z1i ≤ ε+ z2i (7)

Despite its nearly identical function, this indicator does not tend to reveal the

same relative rankings as the standard ε-Indicator. The use of addition instead of

multiplication (a translation rather than a scaling) means that this indicator will

compare two Pareto fronts differently based on the shapes of the two fronts. It is also

heavily influenced by large differences in scale between objectives. Like Binary Hy-

pervolume, objective values should be normalized to ensure each objective is equally

represented in the comparison of fronts.

2.6 Space Situational Awareness

The real-world problem of designing a near-optimal space surveillance network is

a complicated issue of aerospace and systems engineering. While this research does

not seek to break new ground in those disciplines, some familiarity with the material

is appropriate. What follows is a brief introduction to the basic concepts of SSA and

some recent research in the design of near optimal SSNs.

SSA is central to a nation’s ability to operate in space, and is defined by the Joint

Chiefs of Staff as “the requisite foundational, current, and predictive knowledge and

characterization of space objects and the [operational environment] upon which space

operations depend” [54]. While there are many ways to gather information in support

of SSA, one of the primary tools is a SSN of optical telescopes devoted to making

detailed observations of the RSOs in orbit around the Earth.

In Annex 3-4 Counterspace Operations, the Curtis E. Lemay Center divides SSA

into four functional capabilities [13]:
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1 Detect, Track, Identify (DTID) - the ability to search, discover, and track space

objects in order to maintain custody of objects and events; distinguish objects

from others; and recognize objects as belonging to certain types, missions, etc.

2 Threat Warning and Assessment (TW&A) - the ability to predict and differ-

entiate between potential or actual attacks, space weather environment effects,

and space system anomalies, as well as provide timely friendly force status.

3 Characterization - Characterization is the ability to determine strategy, tactics,

intent, and activity, including characteristics and operating parameters of all

space capabilities (ground, link, and space segments) and threats posed by

those capabilities.

4 Data Integration and Exploitation (DI&E) - the ability to fuse, correlate and

integrate multi-source data into a UDOP and enable decision-making for space

operations.

The latter three items rely heavily upon DTID as a primary source of data. This

research mainly supports DTID, focusing on the detect-and-track capabilities pro-

vided by a space surveillance network. Other AFIT research efforts supporting DTID

includ work by Greve and Hopkinson [27] as well as that of McQuaid [40]. The for-

mer considers tasking space surveillance assets using an evolutionary algorithm to

incorporate target priority, while the latter explores the use of machine learning to

identify targets in GEO based on variations in brightness over time.

While a number of technologies are available for observing objects in orbit (see,

e.g. the 2008 report of the Joint Defense Science Board Intelligence Science Board

Task Force on Integrating Sensor-Collected Intelligence [34]), the Stern and Wachtel

model [51] focuses exclusively on optical telescopes. An SSN can consist of both

ground- and space-based telescopes. Ground-based telescopes are limited to the hours
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of darkness to make observations, while space-based telescopes may make continuous

observations, limited only by objects, such as the Earth passing in front of RSOs or

sources of light, such as the Moon and Sun, passing behind RSOs. The relative motion

of the Sun, Moon, and Earth, makes it necessary to employ multiple telescopes at

physically distant locations to enable observation of the entire catalog of observable

RSOs. The typical use of an SSN is to schedule all telescopes to routinely scan

through some subset of observable RSOs in an efficient manner to maintain current

data on the current orbit of each RSO. For the purposes of this research, only RSOs

in geostationary orbit are considered.

Optimizing SSN designs using models, with or without EAs, is not a new idea.

One common factor to these efforts, however, is that there has been no formal, explicit

evaluation and comparison of search algorithms for this problem.

As far back as 2005, Fahnestock and Erwin [21] used a brute-force gridding tech-

nique and a basic (unidentified) EA to optimize the design of a constellation of space-

based telescopes for observation of GEO. Among their other results, the research

showed that the EA found comparable results at a fraction of the computational

cost.

Yates, Spanbauer, and Black [56] devised a process for evaluating entire con-

stellations of space-based telescopes while studying their theoretical performance in

different types of orbits. Ackerman et al [2, 1] began to evaluate entire SSN archi-

tectures, rather than individual components, evaluating gaps in current coverage and

ways to supplement them with ground- and space-based telescopes.

Building on their work, Stern and Wachtel devised a comprehensive model for

an SSN allowing for ground-based telescopes, as well as space-based constellations

in three different types of orbits. They applied an EA to search for near optimal

solutions in terms of cost, latency, and detection size, and employed HPC resources to
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accomplish the search. Felten [22] extends Stern and Wachtel’s research by expanding

design boundaries and refining the methodology.

2.7 Stern and Wachtel

Stern and Wachtel’s work [51] forms the basis for this research. This section sum-

marizes the pertinent details. A high level depiction of the methodology developed by

Stern and Wachtel is shown in Algorithm 1. Their model has 77 sensor configurations

and uses 813 simulated RSOs in GEO. Sensor configuration refers to a particular lo-

cation on the ground or a constellation of space-based telescopes in a particular orbit.

Each of the 77 configurations is simulated individually, producing three text files for

each sensor/target pair in the simulation, meaning that a total of 62,601 pairs are

simulated, producing 187,803 files per simulation.

These files record data about line-of-sight, distance, angles, illumination condi-

tions, and relative positions between the sensor, target, Sun, and Moon. Two dif-

ferent 24-hour time periods are simulated to address some of the more challenging

scenarios for a SSN, at the cost of doubling the computational load and output of the

simulation phase. Once simulated, the data can be reused for the entire optimization

phase, and further simulations are not necessary.

Optimization is accomplished using NSGA-II [14] and consists of up to 100 gener-

ations with the population consisting of 96 possible architectures. The computational

load is spread across multiple nodes by splitting a generation into groups of as many

individuals as there were cores available in the HPC nodes (eight, in their case), and

then collecting the results back to the node running the optimization algorithm.

Each generation is a new job submitted to the HPC queue, meaning that there

are 100 separate jobs submitted per run of the optimizer. The final output of the

optimization is a text file containing the full architecture and objective values of each
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non-dominated solution selected by the search algorithm.

Model.

The model developed by Stern and Wachtel consists of 28 decision variables and 3

objectives (i.e a 28-dimensional decision space and a 3-dimensional objective space).

It includes four classes of telescope and a discretized alphabet of values for each

decision variable. The model is summarized in Table 4.

The four sensor classes allowed are as follows: ground-based telescopes (GBT),

equatorial low-earth orbit (LEO) observation satellites (obsats), sun-synchronous ob-

sats, and near-GEO obsats. Ground based telescopes are limited to nine real-world

locations already in use for SSA, and the model allows for zero to four telescopes at

each location. Though separate locations could have different telescope designs, if

multiple telescopes were used at a single location, they are required to be identical.

Up to one constellation of equatorial obsats can be placed at a single altitude with

six possible values, with up to four satellites in the constellation. Sun-synchronous

obsats can be placed into either one or two orbital planes, with up to two obsats per

plane, again in one of six altitudes. Finally, up to one constellation of up to four

near-GEO obsats can be placed at one of four altitudes: two lower than GEO and

two higher than GEO. For the three possible types of obsats, different parameters are

allowed for each constellation, but all telescopes within a constellation are required

to be identical.

Objective Functions.

The ultimate goal is the minimization of three objectives: cost, latency, and detec-

tion size. Cost, which is fairly self-explanatory, includes estimates of acquisition costs,

operation costs (for ten years), maintenance costs, and launch costs for space-based
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Table 4. Architectural Parameters and Ranges in the Stern and Wachtel Model [51]

Architectural Parameters (genes) Lower bound Upper bound Step size

GBT count (at each of nine locations) 0 4 1
GBT aperture diameter 0.5 (m) 4 0.5
LEO sun-synchronous altitude 500 (km) 1000 100
LEO sun-synchronous satellites per plane 0 2 1
LEO sun-synchronous planes 1 2 1
LEO sun-synchronous aperture diameter 0.15 (m) 1 Varies
LEO equatorial altitude 500 (km) 1000 100
LEO equatorial observer count 0 4 1
LEO equatorial aperture diameter 0.15 (m) 1 Varies
Near-GEO observer altitude (∆ from GEO) -1000 (km) 1000 500
Near-GEO observer count 0 4 1
Near-GEO observer aperture diameter 0.15 1 Varies

telescopes. Formally,

C(X) =
∑

CSat +
∑

CTel +
(∑

CSatOp +
∑

CTelOp

)
× 10yrs+

∑
CLaunch, (8)

where the individual cost functions are defined in Equations 9 through 12 and D is

the aperture diameter in meters.

CSat = $400, 000, 000×D (9)

CTel = $4, 000, 000×D2.45 (10)

CSatOp = $9, 900, 000× numConstellations (11)

CTelOp = CTel × 0.20 (12)

Note that CLaunch does not have an equation. It is determined using a launch vehicle

selection script, based on a aperture diameter and estimated weight, selecting the

least expensive launch vehicle assuming no ride sharing and limiting launch sites to

either Cape Canaveral or Vandenberg Air Force Base.
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Latency, defined as

L(X) =

∑numTgt
RSO=1

[
max

1≤o≤numObs
(t1 − tstart, to+1 − t0, tend − tnumObs)

]
RSO

numTgt
, (13)

is the mean maximum of RSO observation gap (MMOTG) and represents the longest

gap in observation for an average target satellite.

The final objective is the Detection Size

S(X) =

∑numTgt
RSO−1

(∑numObs
o=1 sizeo
numObs

)
RSO

numTgt
, (14)

which is the average minimum RSO size that a given architecture is predicted to

be able to detect in GEO. It is calculated by determining the average minimum

detection size for all scheduled observations. This objective function depends not

only on a telescope’s aperture size, but a number of other environmental factors, as

well as physical characteristics of the photoelectric detector used in a telescope and

the instantaneous distance to the given target. These issues are explored in detail

in [51].

Methodology.

Each experiment in Stern and Wachtel’s methodology consists of two broad phases:

simulation and search. For both phases, a “full” complement of RSOs is 813, but using

a small number of RSOs allows for test runs to be performed quickly, even on regular

workstations. Algorithm 1 summarizes the overall methodology.
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Simulation.

Cost can be calculated directly from the genotypic representation of an architec-

ture, but latency and minimum detection size both require simulation data before

they can be calculated. Simulations are performed using AGI’s Systems Toolkit

(STK) software [5] running on AFRL’s now decommissioned “Spirit” HPC. Rather

than simulating every possible architecture, each of the 77 possible sensor configu-

rations is simulated individually with 813 simulated targets in GEO. The data can

then be mixed and matched into any combination of configurations needed to create

a data set appropriate to any possible architecture.

The simulation does not model sensors or RSOs (those characteristics are cal-

culated during the search phase), but only gathers data about line-of-sight, angles,

illumination conditions, and range between each sensor, each target, and the Sun and

the Moon. Much of this is collected in the form of STK’s built-in AER report which

provides azimuth, elevation, and range between two appropriate objects.

Each of the 77 simulations is run on an HPC node as a separate job using STK for

Linux. Data is output to text files directly by STK using pre-defined report templates.

Due to software limitations of the time this methodology was developed, this file-based

method is necessary as the simulations are orchestrated using the connect system,

which is a one-way communication method in which commands can be scripted and

sent to STK, but no data can be returned [4]. Unfortunately, this method creates a

total of three text files per sensor/target pair, and a total of 187,303 files per 24-hour

period simulated.

Their work includes simulations of two days which each offer a different challenge

to SSA. First, summer solstice is simulated as it provides the shortest night of the

year for most of the GBTs. Second, the vernal equinox is simulated as it puts each

GEO RSO in eclipse for 70 minutes, making passive detection impossible.
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Search.

Search is accomplished using NSGA-II as implemented in the inspyred software

and four different search techniques. In addition to a standard unconstrained MO

search, they also perform a constrained MO search, and a constrained and uncon-

strained single-objective search. For the single-objective searches, the three objectives

are normalized and equally weighted to collapse them into a single scalar value.

Actual search is accomplished by identifying which text files contain the data re-

quired for a given architecture, reading in and parsing the data files, converting values

to the correct data types, and then performing a series of calculations to determine

cost, latency, and detection size values. Population size is set to 96, mutation rate is

set to 5%, and each trial is terminated after 100 generations.

Algorithm 1: Original SSN Search Algorithm

input : A set A of valid space surveillance architecture parameters, a set of
sets L of sensor locations, set T of targets (satellites in GEO)

output: A Pareto-optimal set of architectures found by optimizer

foreach sensor s ∈ S do
Simulate in STK
foreach target t ∈ T do

Calculate access
Calculate AER for (s, t)
Calculate phase angles
if s is a GBT then

Calculate zenith angles

Create and save access reports to disk
Create and save AER reports to disk
Create and save angle reports to disk
Check (read in) all reports for valid data

/* Start optimizer (NSGA-II) */

foreach configuration c generated by optimizer from A do
Ingest all reports associated with sensors in c
Combine report data
Calculate objective functions
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Computational Cost.

There are several factors that contribute to the “costliness” of this methodology.

Some can be easily quantified while others are limited to generalization and anecdotal

evidence. The driving factor in computational cost is the optimization. The simula-

tions are not particularly time consuming, relatively speaking, largely due to the fact

that they only need to be completed once. Non-computational factors contributing

to the overall time required are file I/O and the HPC queue wait times, both of which

inject a large amount of idle time simply waiting for something to happen.

Optimization.

Optimization is a very costly aspect of the methodology. It involves a great

deal of arithmetic, file I/O, and text parsing. Compounding this is the repetitive

nature of search. Successful genotypes may be expressed in whole or in part for many

generations, but every architecture is treated as new and the files are read in every

time they are needed. It is difficult to quantify these effects as each architecture has

a different number and combination of data files associated with it. In comparison

with a call to cache or memory, disk access is orders of magnitude slower [48]. When

dealing with hundreds of thousands of files, the file-based method can contribute vast

periods of time to otherwise simple operations over methods that use fewer files or

make better use of memory.

HPC Queue Wait Times.

The use of shared HPC resources necessitates the use of a queue system to ensure

that no single user monopolizes the HPC for extended periods of time. AFRL’s

HPC resources use the Portable Batch System (PBS) to manage the queue [3]. The

very nature of the queue is that there is a delay before each job is run. There
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are also multiple queues for tasks of higher or lower priority. Most work falls into

the “standard” queue, which can have extremely variable wait times depending on a

number of factors. Typical wait times can range from a few hours to over a day during

exceptionally busy periods. Therefore, it is difficult to predict the delay that will be

incurred for any one job, and the more jobs submitted, the greater the compounded

delay. The search phase is implemented on the HPC by breaking each generation into

a collection of parallel jobs, submitting a batch of jobs for each generation, waiting for

results, building the next generation, and submitting another batch of jobs. This is a

very inefficient use of PBS which causes each trial, at a minimum, to have incurred 100

successive waits in the queue (one for each generation). A more efficient, albeit more

complicated to implement, technique is to use a single job for each trial, spreading

the computational load via software across as many nodes as necessary to complete

the trial in a reasonable period of time.

2.8 Chapter Summary

This literature review covers several important items. First, while some work has

been done in applying HPC resources and EAs to the problem of SSN architecture

optimization, no clear attempt has been made to formally evaluate the relative effec-

tiveness of different algorithms or classes of algorithms against the problem. There

is no single algorithm known to be the most effective multi-objective optimizer, but

there are many multi-objective algorithms readily available via the Platypus library,

each employing different techniques intended to get the best possible solution sets.

There are also several methods for comparison of multi-objective solution sets. These

methods each make comparisons based on different characteristics of the solution sets.

The comparison methods, therefore, are able to identify different subsets of the pos-

sible relationships solution sets may have. Therefore, no single method is a clear best
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method for comparing algorithms. Furthermore, these methods are specific to com-

paring individual solution sets; using these methods to compare algorithms require

multiple runs to be performed and aggregated.

Second, the existing methodology developed by Stern and Wachtel is computa-

tionally expensive and depends on HPC resources. Their use of HPCs led to design

choices that introduced substantial overhead that likely dominates the overall run-

time of their optimization code and, to a lesser degree, their simulations. In order to

perform multiple optimization runs with a variety of algorithms, overhead must be

addressed. Overall runtime also seems to be strongly linked to the number of RSOs

present in the simulation data. Reducing that number may prove to be a useful tool

in driving down the computational cost of evaluating many algorithms against this

problem.

This research applies the model described by Stern et al. [51], a variety of binary

comparison techniques, and a selection of algorithms to build a better understanding

of which algorithms are most effective on this problem, as well as to explore techniques

to drive down computational costs associated with it. Chapter III describes how these

tools are integrated to meet those goals.
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III. Methodology

3.1 Chapter Overview

The purpose of this chapter is to explain the methods used to perform the com-

putational experiments necessary to compare the performance of multiple search al-

gorithms with the SSN architecture problem. These methods include modification

of the data management scheme, pre-simulation of data, application of HPCs, and

the software and hardware used. The chapter concludes with an explanation of the

computational experiments that are conducted.

3.2 High-Level Approach

This section describes at a high level the computational experiments used to collect

performance data. Simulation data is produced in advance. Each algorithm is run on

the problem five times. Resulting solution sets are aggregated for each algorithm, and

compared pairwise using the four binary comparison methods described in Chapter

II (excluding the visual method). In addition to performing this process on the 813-

RSO simulation data, it is repeated with data from simulations of 20, 81, 203, and

407 RSOs, or 2.5%, 10%, 25%, and 50%, respectively, of the full set of RSOs. For

each set of data, an equal number of runs is performed.

3.3 Performance Measurement

Many techniques are discussed in the literature by which to measure the perfor-

mance of an algorithm depending on one’s objectives and tools. The methods used

to evaluate performance in this research are detailed below. After a brief explana-

tion of how the overall workflow is modified from that of Stern and Wachtel [51], the
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general performance measurement strategy and the comparison of optimization runs

and algorithms are discussed.

Revised Algorithm.

As discussed in Chapter II, Stern and Wachtel’s original methodology relies on a

file-based data management system that dominates search run time. As such, in order

to facilitate efficient comparison of the search algorithms, the high-level algorithm

used in this research incorporates performance tuning enhancements. The result of

this tuning is shown in Algorithm 2. The overall technique is not changed, but data

Algorithm 2: Revised SSN Search Algorithm

input : A set A of valid space surveillance architecture parameters, a set C of
sensor classes, containing sets Sc of possible possible locations (or
constellations) of sensors within the class, set T of targets (satellites
in GEO)

output: A Pareto-optimal set of architectures found by optimizer

Create a custom data structure for each class of sensor
foreach class c ∈ C do

Simulate in STK
foreach sensor s ∈ Sc do

foreach target t ∈ T do
Calculate access data and append to sensor-level access report
Calculate AER data for (s, t) and append to sensor-level AER report
Calculate phase angle data and append to sensor-level phase angle
report

if s is a GBT then
Calculate zenith angles
Append zenith data to sensor-level zenith angle report list

Store sensor data to its class-specific data structure

Serialize class-specific data structure to a single file on disk

foreach optimizer do
Deserialize data files to memory
foreach configuration c generated by optimizer from A do

Calculate objective functions

flow is streamlined. Instead of using dozens of simulations to generate hundreds
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of thousands of files, simulations are consolidated, simulating entire sensor classes in

four large simulations. Likewise, data is consolidated into four custom data structures

that store simulation data for each class of sensor. These structures are saved using

Python’s pickle module at the end of the simulation, which preserves data types and

data structures when the file is later read into memory.

This class-based strategy leaves the algorithm open to parallelization, albeit on

a coarser scale, while consolidating the output data into a manageable and portable

footprint and enabling greater flexibility for anyone using the data (e.g. simulating the

data once and then sharing with multiple users, teams, or platforms). This does come

at a cost of approximately doubling the disk space required to store the data files,

however, and requires a larger memory footprint during optimization runs, relative

to the original methodology.

The optimization phase deserializes the class simulation files into memory at the

start of optimization. That data is used for the entire course of the optimization, elim-

inating all file I/O and string parsing from the actual optimization loop. These minor

changes effectively mitigate the worst of the overhead, reducing average evaluation

time from the roughly 22 minutes observed with the old methodology to approxi-

mately 5 minutes (when using the full set of simulation data), and enabling more

efficient utilization of processing power during the optimization phase. More details

regarding the performance tuning process can be found in Appendix B.

Measurement Strategy.

Beirenvand, Hare, and Lucet [7] identify efficiency, reliability, and quality of solu-

tion as three common measures of performance. Measuring efficiency is normally done

in terms of running time, fundamental evaluations, or, in rare cases, CPU time [7].

The number of fundamental evaluations is another possible measure of efficiency in
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the performance of an EA, especially in cases where convergence detection is used as

a termination condition. This problem is not a real-time optimization, so efficiency is

not of particular interest, and was not used as a performance metric for the purposes

of this research.

The reliability of an optimizer, how closely the results of one run resemble others,

could be a useful metric in selecting a “best” algorithm. As such, each optimizer is run

multiple times and the resulting solutions sets are analyzed using the four comparison

methods described in Chapter II. The pairwise comparisons of those solution sets

result in two comparison values per pair of runs for each comparison method, for a

total of eight per pair of runs.

Measuring the solution quality of the optimizers is accomplished in a similar fash-

ion. Each of the comparison methods identified in Chapter II is designed for com-

paring solution sets, and not algorithms, but can easily be applied to algorithms by

aggregating multiple runs of the same algorithm into a single Pareto front and com-

paring it to another algorithm’s aggregated front [61]. Aggregating the runs of each

algorithm, quality comparisons are performed pairwise between algorithms’ aggregate

fronts using the same four comparison methods.

As discussed in earlier chapters, reducing the number of RSOs in the simulation

data is one possible method of reducing the computational cost of performing fitness

evaluations. Measuring the effect of using fewer RSOs is accomplished by repeating

the process described above on multiple sets of simulation data. Each data set is

generated using STK in the same way as the full data set, but with fewer RSOs than

the original simulation. The full set of RSOs is stored in a randomized list designed

to provide a realistic distribution of satellites for simulations of less than 813 RSOs,

so selection of subsets consists of selecting the first k RSOs, where k was the desired

RSO count for that subset. This not only keeps the code simple, but also ensures
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simulations are easily reproducible by future researchers.

Finally, as recommended by Barr et al. [6], the specific parameters of the selected

algorithms are reported as well. These include pertinent probabilistic rates (mutation,

crossover, etc), population limits, and operators used. Specific operators are reported

in Chapter II, and other parameters are listed in this chapter.

3.4 Selected Optimization Algorithms

In real world problems such as these, the choice of optimizer can be difficult as

there is no known optimal solution, and often only general knowledge of the search

space as it relates to the specific problem is available. The set of possible opti-

mization algorithms is infinite. Even limiting oneself to the “well-known” algorithms

leaves dozens to consider. It is, therefore, impractical to attempt to exhaustively

evaluate every optimization algorithm on a given problem. This section discusses the

algorithms used in this research and the rationale by which they were selected.

Previous Optimizer.

In Stern and Wachtel’s work, optimization is accomplished using Garret’s imple-

mentation of NSGA-II [24, 14]. Performance of the optimizer in their experiments [51]

provides some hints that it may not be the best fit. The strongest hint is extremely

rapid convergence. In experimental runs performed by Stern and Wachtel, evolution

is limited to 100 generations, and typically the experiments converge in under 30

generations. Given that the creators of NSGA-II required 500 generations to achieve

convergence near the true Pareto-optimal front for several well known multi-objective

benchmark problems [14], such rapid convergence suggests that either the problem

may be solvable using simpler methods or the algorithm is prematurely converging

to a set of local optima.
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Algorithms Evaluated.

Five algorithms are evaluated in this research. Two “classical” algorithms and

three EAs are used to test a variety of factors. First, Random Search (RS) is applied.

While there is little chance that random search will be the best algorithm for real-

world optimization problems, it serves as a baseline against which to compare more

sophisticated algorithms. The refinements implemented in each of the other algo-

rithms can be anticipated to garner quantifiable improvements over the performance

of random search. In cases where two algorithms are deemed to be incomparable,

there is a good chance that they will both still be comparable with random search,

providing an additional possible method of comparison.

The other classical algorithm is the Random Restart Hill Climber (RRHC) [10].

Despite its traditional name, this algorithm is capable of both hill climbing (maximiza-

tion) and hill descending (minimization). It is among the simplest search algorithms

available other than random search. At its core, it is a random search with a local

search heuristic applied, and can render surprisingly good results for many problems

despite its simplicity. With the rapid convergence observed in Stern and Wachtel’s

work, this algorithm serves as an intermediate step between random search and the

more sophisticated EAs.

The three EAs used are NSGA-II, IBEA, and SPEA2. NSGA-II is selected not

only because it is a very well known and successful multi-objective evolutionary al-

gorithm (MOEA), but also because it is the original optimizer used by Stern and

Wachtel. Due to many changed variables, and the use of a single 24-hour period,

the results of their experiments are not directly comparable to those obtained in this

research. Thus, including the algorithm in the experiments of this research serves as

somewhat of a surrogate for their results. Collectively, the three EAs are selected to

compare different operators. Table 1 lists the operators used for a number of algo-
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rithms available in the Platypus library. Of them, roughly half use binary tournament

for selection. These three are selected because they each use binary tournament, but

different survivor selection operators (see Table 1). Differences in performance may

inform future research efforts in this area.

3.5 HPC Implementation

Through the course of this research, it became apparent that, while the simulations

themselves could be run in a reasonable amount of time on a high-end workstation

instead of an HPC, the size of the search space and the costliness of the fitness eval-

uations do demand extreme computing power to effectively explore the space. After

performance tuning was completed, evaluations averaged 303.2 seconds when using

the full simulation data. With 2.428 × 1021 possible architectures in the underlying

model, an exhaustive search evaluating 100 architectures in parallel at a time would

take approximately 2.334×1014 years to complete, and more than two trillion years to

explore just 1% of that space. Even using heuristics such as evolutionary techniques,

the computational burden of a multi-objective search space this large is too great to

place on even a very high-end workstation.

HPC Migration.

Migrating search to an HPC was a reasonably straightforward process. The Platy-

pus library natively supports distributing computations via MPI [29], so only rela-

tively minor changes were required to adapt the code to run on the HPC. The random

search and random restart hill climber algorithms, which are not part of Platypus,

did not require substantial coordination between parallel runs, thanks to the relative

independence of one evaluation with all previous evaluations.

With minimal modification, those algorithms are simply run as parallel, individual
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instances, reporting back final results to a central node where results are consolidated

into a single solution set. Computations are parallelized into nk processes, where n is

some number of HPC nodes, and k is the number of duplicates of simulation data that

can fit in a single node’s memory. The value of n is calculated for each job to ensure

that, for the designated number of generations, jobs do not exceed the maximum time

limit for jobs on the HPC, which is 168 hours (7 days) for the machines used in these

experiments.

Parallel Performance Tuning.

Parallelization revealed that using a few large data files resulted in an unrea-

sonable memory footprint when running multiple instances. For the full data set,

approximately 72 GB of memory was required for each parallel evaluation, resulting

in a situation in which a single HPC node was required to run as few as few as two

parallel evaluations on a standard Mustang node, or ten on a large memory node.

This was a very inefficient use of the HPC, with up to 90% of the cores in a node

going unused. In response to this, the code was modified to take 77 simulation data

files that correspond to the 77 “locations” in Stern and Wachtel’s model and new

simulations were run to produce the necessary files. The result was an 80% reduction

in memory requirement, to just under 15 GB, with the added cost of loading up to

13 files for each evaluation. This was more than offset by the ability to run five times

the number of parallel evaluations per HPC node.

3.6 Hardware and Software Used

The computational experiments are accomplished using a variety of platforms and

tools. In line with the recommendations of Barr et al. for reporting the results of

computational experiments [6], this section lists the most significant hardware and
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software applied to this research.

HPC Mustang.

AFRL’s Mustang is the primary HPC used to perform the searches for this re-

search. It offers 1,128 standard compute nodes, 24 large-memory compute nodes,

and 24 GPU compute nodes, with a total of 56,448 compute cores. It features 244

terabytes TB of memory and is rated at 4.88 peak petaflops PFLOPS. Both standard

and large-memory nodes are used. Both feature 48 cores per node, and either 192

gigabytes GB 768 GB of memory [32].

HPC Thunder.

AFRL’s Thunder HPC is also used to perform searches on the smaller data sets.

It offers 3,216 standard compute nodes, 4 large-memory compute nodes, 178 Xeon

Phi compute nodes, and 178 GPU compute nodes, totalling 125,888 compute cores.

It has 460 TB of memory and is rated at 5.62 peak PFLOPS. Only standard nodes

are used on Thunder, which offers 36 cores and 128 GB of memory per node [32].

Workstation.

A Dell T5600 workstation is used to perform all development, STK simulations,

and data analysis. It features two 8-core Intel Xeon e5-2680 processors and 128 GB

of memory. Development and simulations are done on Windows 10 Professional.

STK.

STK 11.5 [5] is used to perform all simulations. Simulations are executed with the

STK engine, reducing the time required by orders of magnitude. Python scripting is

used to orchestrate the simulations and to collect and save the resulting data.
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Python and Optimization Libraries.

Python 3.6 is used for all simulation and optimizations. The inspyred library [24]

was used in early tests and updating of Stern and Wachtel’s code. The Platypus

library [29] is used for all EA-based optimization runs. PyGMO’s [19] hypervolume

tool is used in the binary hypervolume indicator.

3.7 Chapter Summary

The methodology described above makes use of a powerful SSN model, a selection

of evolutionary and classical optimization algorithms, and binary comparison methods

to evaluate the effectiveness of different algorithms with the model, as well as to

determine whether reduced sets of simulated RSOs can be used to evaluate algorithms

for this problem. Chapter IV discusses and analyzes the results obtained by the

computational experiments described in this chapter. Final conclusions are presented

in Chapter V.
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IV. Results and Analysis

4.1 Chapter Overview

This chapter presents the results obtained through the computational experiments

described in the previous chapter, as well as the analysis of those results. Section 4.2

describes the presentation of results and provides guidelines for interpretation of the

data presented throughout this chapter. Next, Section 4.3 summarizes the specific

parameters used for the computational experiments.

In Sections 4.4 and 4.5, individual runs are aggregated, compared, and analyzed

to determine overall effectiveness of algorithms. Results and analysis of the relative

reliability of each algorithm are presented in Sections 4.6 and 4.7, comparing individ-

ual runs of different algorithms to determine which tend to perform better, in terms

of the binary comparison methods.

Next, the impact of using fewer RSOs is considered in Section 4.8. Results from

the optimization runs performed on the smaller data sets are subjected to the same

methodology as the full data set, and results are compared to determine trends.

Analysis of both algorithm effectiveness and reliability are presented.

4.2 Presentation of Comparison Results

This chapter contains many tables indicating results comparing the results of in-

dividual experiments. Each comparison is built around the idea of comparing two

arbitrary Pareto fronts, A and B, using one of the four non-visual binary compari-

son methods discussed in Section 2.5. Results of both the binary hypervolume and

additive ε-indicator methods are sensitive to objective value scales, so all objective

values are normalized to a scale of zero to one before applying the binary comparison

methods. One side effect of the normalization is that some vales are exceptionally
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small, leading to some rounding of non-zero values to zero, where other values are

legitimate zeroes. In these cases, a legitimate zero is shown as 0, while a value that

rounded to zero is displayed as 0.00.

Section 2.5 summarizes the capabilities of each comparison method. In particular,

Table 3 describes the relationships that can be determined when comparing those

Pareto fronts using the four methods. It is the basis for assertions that are made

based on the comparison method values.

General guidelines for interpretation of the results of comparisons of Pareto front

A to Pareto front B using each method, and thereby the data in this chapter’s tables

of results, are listed below.

• Binary hypervolume is the hypervolume of B subtracted from the hypervolume

of the union of A and B. Each hypervolume is defined with respect to a reference

point defined by the maximum theoretical value for each objective function.

Larger binary hypervolume values are better for A.

• Coverage is the fraction of points in B that are equal to or weakly dominated

by at least one point in A. Again, larger values are better for A.

• The ε-Indicator is the infimum of values by which every objective value in B

can be multiplied and still be weakly dominated by A. The ε value indicates

how much B must be scaled down (or can be scaled up) in order for the entire

Pareto front to be weakly dominated by A, so smaller ε values are better for A.

• The Additive ε-Indicator is the infimum of values that can be added to every

objective value in B and still be weakly dominated by A. In other words, the

ε value indicates how much Pareto front B needs to be translated towards the

origin (or can be translated towards the reference point) to be weakly dominated

by Pareto front A, so smaller ε values are, again, better for A.

53



In the tables of results, the row labels refer to algorithm A, and the column labels

refer to algorithm B. If the relevant guideline above includes a statement that a

larger or smaller value is “better” for A, then the largest or smallest value in any row

occurs in the column of the B algorithm against which A performed the best with

respect to the comparison method for that table. Furthermore, a relative ranking of

algorithms from best to worst, relative to A, can be determined by sorting the values

in A’s row, either from largest to smallest, or smallest to largest.

4.3 Computational Experiments

The five algorithms are run five times each for each of the five data sets. Alto-

gether, 25 optimization runs are performed with each data subset, producing a total

of 125 Pareto fronts. This number of runs allows for maximal statistical significance

in the reliability analysis, while retaining feasibility of completion with the HPC

resources available.

Each run terminates after evaluating 25,000 architectures (classical search algo-

rithms) or 250 generations with a population size of 100 architectures per generation

(EAs). For this population size, the takeover time of binary tournament selection

without replacement is dlog2(100)e = 7 generations [18]. Thus, 250 generations would

allow for sequential optimization of b250/7c = 35 genes. Heuristically, this suggests

a nontrivial probability of optimizing the 28 genes in the SSN architecture represen-

tation used in these experiments. The high-level parameters used for each algorithm

are summarized in Table 5.

4.4 Comparison of Algorithm Effectiveness

In order to compare the effectiveness of the algorithms using the four binary

comparison methods, it is necessary to represent the effectiveness of each algortihm
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Table 5. The high-level parameters used for each algorithm considered. No parameter
tuning was performed in this research.

Algorithm
Rate of

Mutation

Rate of

Crossover

Population

Size
Generations Evaluations

RS n/a n/a n/a n/a 25000

RRHC n/a n/a n/a n/a 25000

NSGA-II .05 1.0 100 250 n/a

IBEA .05 1.0 100 250 n/a

SPEA2 .05 1.0 100 250 n/a

by a single Pareto front. This is achieved by aggregating all of the fronts produced

by the runs of a given algortihm on a given set of simulation data. Specifically, the

Pareto fronts produced by all of the runs of a given algortihm runs are merged to

form a single solution set from which dominated solutions are removed to form a

single Pareto front.

Before comparing the effectiveness of the algorithms, it is useful to consider de-

scriptive statistics of the aggregated Pareto fronts. Because each comparison method

tends to reward different characteristics of Pareto fronts, and the methods therefore

tend to produce different results, this descriptive data clarifies how these apparent

contradictions come about. Specifically, Table 6 summarizes the aggregate fronts in

terms of their individual (normalized) hypervolumes, as well as the range of (normal-

ized) values found for each objective. Graphs of the aggregated Pareto fronts further

clarify the results, and are shown in Figure 2.

Algorithms are compared pairwise using the four comparison methods applied to

the aggregated fronts for the full set of 813 RSOs. Results of these comparisons are

presented in Table 7.
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Table 6. Aggregate Pareto front descriptive statistics (normalized objective values)

Detection Size Latency Cost

Algorithm RSOs Hypervolume min max min max min max

RS

20 9.85e-01 0.00 0.01 0.00 0.64 0.01 0.55

81 9.83e-01 0.00 0.01 0.00 0.73 0.00 0.56

203 9.78e-01 0.00 0.13 0.01 0.54 0.01 0.43

407 9.68e-01 0.00 0.27 0.01 0.56 0.01 0.47

813 9.56e-01 0.00 0.38 0.02 0.86 0.01 0.43

RRHC

20 9.34e-01 0.00 0.01 0.00 0.42 0.06 0.47

81 9.62e-01 0.00 0.01 0.00 0.19 0.03 0.34

203 9.64e-01 0.00 0.13 0.01 0.42 0.02 0.34

407 9.52e-01 0.00 0.13 0.01 0.50 0.03 0.34

813 9.58e-01 0.00 0.21 0.02 0.42 0.01 0.39

NSGA-II

20 9.91e-01 0.00 0.05 0.00 1.0 0 0.48

81 9.89e-01 0.00 0.05 0.00 1.0 0 0.60

203 9.85e-01 0.00 0.27 0.01 1.0 0 0.49

407 9.79e-01 0.00 0.42 0.01 1.0 0 0.48

813 9.67e-01 0.00 0.65 0.02 1.0 0 0.47

IBEA

20 9.89e-01 0.00 0.00 0.00 0.70 0.00 0.19

81 9.83e-01 0.00 0.01 0.01 0.86 0.00 0.15

203 9.82e-01 0.00 0.01 0.01 0.62 0.00 0.21

407 9.79e-01 0.00 0.12 0.01 0.51 0.00 0.18

813 9.66e-01 0.00 0.11 0.02 0.79 0.00 0.16

SPEA2

20 9.91e-01 0.00 0.01 0.00 0.85 0.00 0.51

81 9.89e-01 0.00 0.02 0.00 0.86 0.00 0.47

203 9.85e-01 0.00 0.19 0.01 0.86 0.00 0.55

407 9.78e-01 0.00 0.51 0.01 0.88 0.00 0.55

813 9.66e-01 0.00 0.54 0.02 1.0 0 0.44
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(a) Random Search (b) Random Restart Hill Climber

(c) NSGA-II (d) IBEA

(e) SPEA2

Figure 2. Aggregate Pareto fronts, 813 RSOs (normalized objective values)
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Table 7. Binary comparisons of aggregate Pareto fronts, 813 RSOs (normalized objec-
tive values)

(a) Binary Hypervolume
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RS 1.67e-03 2.10e-06 7.41e-04 1.33e-07

RRHC 3.82e-03 2.79e-05 5.46e-04 5.48e-06

NSGA-II 1.10e-02 8.87e-03 1.05e-03 5.61e-04

IBEA 1.13e-02 8.99e-03 6.47e-04 8.17e-04

SPEA2 1.08e-02 9.66e-01 3.80e-04 1.04e-03

(b) Coverage
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RS 0.65 0.03 0.0 0.00

RRHC 0.23 0.05 0.01 0.01

NSGA-II 0.81 0.84 0.01 0.09

IBEA 0.45 0.67 0.28 0.24

SPEA2 0.96 0.99 0.52 0.04

(c) ε-Indicator
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RS 4.01 2.42 11.69 2.41

RRHC 1.54 1.83 10.11 1.99

NSGA-II 2.44 6.88 12.22 1.68

IBEA 1.36 2.47 1.13 1.21

SPEA2 2.02 6.88 1.48 12.77

(d) Additive ε-Indicator
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RS 0.44 0.06 0.27 0.07

RRHC 0.08 0.05 0.23 0.08

NSGA-II 0.38 0.65 0.55 0.31

IBEA 0.00 0.37 0.00 0.00

SPEA2 0.27 0.58 0.04 0.43

4.5 Analysis of Algorithm Effectiveness

The results presented in Table 6 do not indicate a single most effective algorithm.

Rather, they indicate tradeoffs with respect to different aspects of effectiveness. It

must be emphasized that the following observations apply to the results observed in

these experiments, and are not guaranteed to apply in general.

IBEA does not explore the search space as thoroughly as the other algorithms,

based on its tendency to produce fronts with the smallest ranges for most objectives.

It is, however, quite competitive in terms of total hypervolume, indicating that it

better exploits the search space it does explore. Likewise, NSGA-II demonstrates

with its very large ranges for each objective that it explores the search space most

broadly, but does not exploit the search space as aggressively as IBEA does. SPEA2

tends to lie somewhere between NSGA-II and IBEA in terms of both exploration and

exploitation. Finally, based on raw ranges and hypervolumes, Random Search and
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the Random Restart Hill Climber both explore the search space somewhat better

than IBEA and worse than SPEA2 and NSGA-II, but exploit the space far less

effectively than IBEA. It is not clear how they relate to NSGA-II or SPEA2 in terms

of exploitation.

The binary comparison results presented in Table 7 contain a great deal of informa-

tion that both confirms and expands on the relationships suggested by the descriptive

statistics in Table 6. In agreement with observations based on the descriptive statis-

tics, IBEA tends to do very well with respect to the binary comparison methods. In

fact, it does the best with all comparison methods except Coverage, for which it is

outperformed by both SPEA2 and NSGA-II.

A closer look at the Coverage results shows that none of the algorithms covered

more than a few of IBEA’s solutions, while IBEA was only able to cover about a

quarter of the solutions produced by the other EAs, and half to two-thirds of the

solutions produced by the classical search methods. This means that a vast majority

of the solutions produced by IBEA are closer to the axis than the solutions produced

by the other algorithms, but that they are clustered tightly enough in some region

of the search space to only be able to dominate those relatively small portions of its

competitors’ solution sets.

IBEA outperforms the other algorithms in Binary Hypervolume despite not ex-

ploring large regions of the Pareto front that its competitors do. This fact implies

that its performance in the regions it explores is sufficiently superior to compensate

for the regions it does not explore. This is meaningful in two ways. First, it confirms

that IBEA does not explore the search space very broadly, as suspected from the

descriptive statistics. Second, it suggests that the other algorithms, at least in the

space explored by IBEA, have significant room for improvement with regard to the

quality of solutions found.
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Furthermore, in all cases, SPEA2 ranks higher than NSGA-II, which is in addition

to the three measures in which IBEA ranks higher than both SPEA2 and NSGA-II.

This suggests that, without parameter tuning, NSGA-II is probably not as appropri-

ate an EA for the problem. Both competing EAs are able to produce higher-quality

solutions, and SPEA2 is able to do so without sacrificing much in terms of its ability

to explore the search space.

Finally, contrary to the predicted result, the Random Restart Hill Climber per-

formed quite well in both variants of the ε indicator, actually outperforming all but

IBEA. This suggests that the problem itself may not need techniques as sophisticated

as EAs to explore the search space.

Using only the comparison data in Table 7, the observed relative rankings are

listed in Table 8. Rankings for a given binary comparison method are determined by

assigning a score to each of the values in each column, assigning 1 to the best and

4 to the worst. Ties receive the average of scores that would have gone to the tied

algorithms, so if there is two-way tie for second place, each algorithm gets a score of

2.5. The scores are summed across each row and assigned to that row’s respective

algorithm. The algorithms are ranked from best to worst in order of ascending score.

Table 8. Relative rankings of algorithm effectiveness based on the results of each binary
comparison method.

Rank

Binary

Coverage ε-Indicator

Addative

Hypervolume ε-Indicator

1 IBEA SPEA2 IBEA IBEA

2 SPEA2 NSGA-II RRHC RRHC

3 NSGA-II IBEA SPEA2 RS

4 RRHC RRHC NSGA-II SPEA2

5 RS RS RS NSGA-II
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4.6 Comparison of Algorithm Reliability

Aggregate Pareto fronts are vulnerable to over-representing a single exceptional

run. Therefore, the algorithms are further tested to determine their relative reliabil-

ity using the individual runs’ data. Specifically, each algorithm is compared to each

of the others n times, where n is the number of individual runs performed on each

algorithm. For two Algorithms, A and B, forward comparison data from each of the

four comparison methods for corresponding runs (e.g. binary hypervolume for A1

to B1, A2 to B2, etc) is used as one sample, and reverse comparison data (binary

hypervolume for B1 to A1, B2 to A2, etc) is used as the second sample. Unsurpris-

ingly, tests for normality indicate that at least some of these samples are not normally

distributed. As such, the non-parametric equivalent to a t-test, the Mann-Whitney

U test, is used to test each pairing of runs to determine whether there is a statisti-

cal difference in how frequently one algorithm outperforms the other. When this is

the case, the U statistic indicates the more reliable algorithm with respect to that

particular comparison method. The results of the Mann-Whitney tests are listed in

Table 9.

4.7 Analysis of Algorithm Reliability

Determining reliability is a slightly more complicated analysis to perform than

the analysis of algorithm effectiveness, but it gives valuable insight into which algo-

rithms routinely outperform others with respect to each the four comparison methods.

Interestingly, these results contrast with the rankings found among aggregate front

comparisons.

For Binary Hypervolume, none of the EAs outperforms either of the other EAs

with statistical significance. Overall, Random Restart Hill Climber is the most suc-

cessful, outperforming all other algorithms in both forward and backward compar-
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Table 9. Relative reliability of algorithms based on comparisons of individual runs
on the 813 RSO data set. Cell values of A indicate that the algorithm named in the
left column outperformed the algorithm named in the top row, while cell values of B
indicate the reverse. Values of N/A indicate no significant difference. (Mann-Whitney
U Test, α = 0.05)
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(d) Additive ε-Indicator
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NSGA-II A A A A

IBEA B B B B

SPEA2 N/A A B A

isons. Random Search also outperforms the EAs in all comparisons. Coverage sees

similar results for the two classical algorithms, while there is a clear ordering among

the EAs: NSGA-II outperforms the other two EAs in all comparisons, and SPEA2

also outperforms IBEA in both comparisons.

Both ε-Indicators present clear orderings as well. They both rank NSGA-II first

and IBEA last, overall, with Random Search outperforming Random Restart Hill

Climber in both measures. These results contrast sharply with the analysis of the ag-

gregated Pareto fronts. This indicates that some of the aggregate fronts over-represent

either a small number of exceptional results hidden among otherwise mediocre runs,
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or a few abnormally good runs. IBEA, for example, does not outperform any algo-

rithm in any measure with statistically significant regularity. Therefore, either there

was one exceptional run that contributes most of the solutions in the aggregate Pareto

front, or the algorithm tends to produce a handful of exceptional architectures each

time it runs. In either case, the algorithm is not capable of reliably performing as

well as the aggregate front indicates on this problem.

NSGA-II, Random Search, and, to a lesser degree, Random Restart Hill Climber,

rank as high or higher in the reliability tests than they do in the aggregate front com-

parisons. Three related points can be inferred from this. First, in these experiments,

these algorithms produce Pareto fronts in a typical run that are more representative

of their respective aggregate fronts than IBEA and SPEA2. Second, these produce

fronts that are superior to the fronts produced by IBEA and SPEA2 in a typical run.

Third, despite out-performing IBEA and SPEA2 in most measures of quality in a typ-

ical run, NSGA-II, Random Search, and Random Restart Hill Climber produce fewer

exceptional solutions of the calibre of those produced by their competitors. Taken

together, these inferences describe a scenario where, if one were to imagine a surface

applied to the Pareto fronts, NSGA-II, Random Search, and Random Restart Hill

Climber tend to produce “smoother” fronts while IBEA and SPEA2 produce rougher

fronts with a few deep ravines (the exceptionally well minimized solutions) in any

given run.

Overall, five of the eight first and second place reliability rankings are occupied by

classical algorithms, again suggesting that this problem may not require sophisticated

evolutionary techniques. While they may not produce the rare gems that IBEA tends

to, the results of any single classical algorithm run tend to be of high enough quality

to compete strongly against EAs.

Table 10 lists the rankings of relative reliability derived from the results listed in
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Table 9. Overall rankings are derived in a fashion similar to that used for Table 8.

Scores of 1 are assigned to all A’s in Table 9, scores of 2 are assigned to all N/A

values, and scores of 3 are assigned to all B values. Scores are summed for each row

of the tables and assigned to the respective algorithms.

Table 10. Relative rankings of algorithm reliability based on the results of each bi-
nary comparison method. Two-way and three-way ties are denoted by (T2) and (T3),
respectively. Note that there are two separate two-way ties for Additive ε-Indicator.

Rank

Binary

Coverage ε-Indicator

Addative

Hypervolume ε-Indicator

1 RRHC RRHC NSGA-II NSGA-II

2 RS RS RS SPEA2 (T2)

3 NSGA-II (T3) NSGA-II SPEA2 (T2) RS (T2)

4 IBEA (T3) SPEA2 RRHC (T2) RRHC (T2)

5 SPEA2 (T3) IBEA IBEA IBEA (T2)

4.8 Impact of Reduced Data Sets

This section details the results of the trials using the subsets of simulation data.

The first subsection addresses the quality comparisons between the aggregate Pareto

fronts. The next subsection addresses the reliability comparisons between individual

runs of each algorithm. For both subsections, each table gathers values for an indi-

vidual comparison method across all subsets. When relating these tables back to the

comparison methods, they should be read as Algorithm A in the left column, and

Algorithm B in the top row.

Quality Comparisons Across Data Subsets.

Tables 11 through 14 show the results of each comparison method across all subsets

of simulation data. The tables show that, though values do tend to change as the
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number of simulated RSOs vary, relative ranking of algorithms from one subset to the

next tends to remain consistent for each of the comparison methods. For example, in

Table 11, the Random Search rows, which show how Random Search compared with

the other four algorithms in each subset of data, shows that it performed best against

Random Restart Hill Climber and second best against IBEA across all data sets, and

that it performed the worst against SPEA2 in three data sets and against NSGA-II

in the other two. Similarly, in the SPEA2 row of Table 14, the relative ranking of

how well SPEA2 competed against theo other four algorithms is the same across all

data sets (from best to worst, NSGA-II, RS, IBEA, RRHC). While not every group

is so conclusive, the larger trend is for an ordering to be apparent across all subsets.

An implication of the consistency in algorithm ranking is that, though objective

values obtained with smaller subsets of simulation data do not correctly predict per-

formance of a given SSN architecture, the relative ranking of algorithms using any

one of the subsets tends to be representative of the relative rankings produced using

the full set of simulation data. In other words, algorithms can be tested against this

problem faster and at a lower computational cost with reasonable confidence using

far fewer simulated RSOs.
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Table 11. Summary of Binary Hypervolume comparisons across all data subsets (nor-
malized objective values)

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 5.06e-02 9.97e-05 2.14e-03 1.18e-04

81 2.10e-02 3.68e-06 5.87e-03 9.19e-07

203 1.41e-02 1.61e-05 3.48e-03 4.68e-05

407 1.70e-02 5.50e-06 5.37e-04 6.25e-07

813 1.67e-03 2.10e-06 7.41e-04 1.33e-07

RRHC

20 6.59e-05 1.12e-05 1.60e-03 1.40e-07

81 7.37e-06 1.12e-06 5.62e-03 2.98e-07

203 2.05e-06 7.76e-06 2.86e-03 1.45e-08

407 2.45e-04 1.36e-05 5.16e-04 8.32e-08

813 3.82e-03 2.79e-05 5.46e-04 5.48e-06

NSGA-II

20 6.71e-03 5.71e-02 2.85e-03 5.26e-04

81 6.19e-03 2.72e-02 6.85e-03 7.74e-04

203 6.82e-03 2.09e-02 4.05e-03 7.22e-04

407 1.04e-02 2.72e-02 9.37e-04 1.27e-03

813 1.10e-02 8.87e-03 1.05e-03 5.61e-04

IBEA

20 6.69e-03 5.66e-02 7.90e-04 5.42e-04

81 5.91e-03 2.66e-02 6.99e-04 7.21e-04

203 7.36e-03 2.08e-02 1.12e-03 1.22e-03

407 1.13e-02 2.81e-02 1.31e-03 1.59e-03

813 1.13e-02 8.99e-03 6.47e-04 8.17e-04

SPEA2

20 6.85e-03 5.72e-02 6.55e-04 2.73e-03

81 5.97e-03 2.69e-02 5.59e-04 6.66e-03

203 6.61e-03 2.06e-02 4.87e-04 3.91e-03

407 9.98e-03 2.68e-02 8.31e-04 7.74e-04

813 1.08e-02 8.67e-03 3.80e-04 1.04e-03
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Table 12. Summary of Coverage comparisons across all data subsets

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 0.87 0.28 0.0 0.14

81 0.57 0.16 0.00 0.07

203 0.73 0.14 0.0 0.03

407 0.41 0.04 0.00 0.02

813 0.65 0.03 0.0 0.00

RRHC

20 0.38 0.04 0.0 0.06

81 0.33 0.13 0.0 0.08

203 0.19 0.07 0.0 0.0

407 0.26 0.03 0.00 0.02

813 0.23 0.05 0.01 0.01

NSGA-II

20 0.57 0.62 0.0 0.16

81 0.48 0.45 0.01 0.20

203 0.39 0.36 0.00 0.16

407 0.57 0.60 0.0 0.15

813 0.81 0.84 0.01 0.09

IBEA

20 0.09 0.32 0.26 0.31

81 0.27 0.43 0.27 0.34

203 0.33 0.37 0.20 0.19

407 0.33 0.35 0.27 0.25

813 0.45 0.67 0.28 0.24

SPEA2

20 0.65 0.75 0.48 0.01

81 0.72 0.73 0.46 0.01

203 0.83 0.94 0.48 0.02

407 0.85 0.87 0.40 0.01

813 0.96 0.99 0.52 0.04
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Table 13. Summary of ε-Indicator comparisons across all data subsets

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 3.01 2.15 6.78 2.14

81 3.80 2.51 4.51 2.40

203 3.10 1.98 17.18 2.68

407 2.11 2.00 15.13 2.02

813 4.01 2.42 11.69 2.41

RRHC

20 2.49 1.90 5.24 2.37

81 1.57 2.16 3.26 1.94

203 2.83 2.61 14.56 2.37

407 1.63 2.12 10.23 2.33

813 1.54 1.93 10.11 1.99

NSGA-II

20 10.94 13.43 18.56 7.53

81 9.24 12.48 16.05 8.16

203 2.18 3.01 20.44 5.86

407 2.33 4.14 16.39 2.13

813 2.44 6.88 12.21 1.68

IBEA

20 1.08 1.94 1.09 1.07

81 1.30 4.47 1.31 1.30

203 1.32 1.49 1.15 1.36

407 1.08 1.15 1.11 1.15

813 1.36 2.47 1.13 1.21

SPEA2

20 3.32 3.69 1.47 5.29

81 2.10 4.47 1.65 4.37

203 1.80 2.90 1.95 14.31

407 2.83 5.04 1.39 15.17

813 2.02 6.88 1.48 12.77
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Table 14. Summary of Additive ε-Indicator comparisons across all data subsets (nor-
malized objective values)

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 0.22 0.07 0.35 0.03

81 0.54 0.07 0.41 0.09

203 0.12 0.06 0.21 0.10

407 0.14 0.05 0.29 0.06

813 0.01 0.44 0.06 0.07

RRHC

20 0.06 0.05 0.27 0.06

81 0.03 0.05 0.19 0.04

203 0.04 0.05 0.13 0.08

407 0.03 0.03 0.16 0.37

813 0.08 0.05 0.23 0.08

NSGA-II

20 0.36 0.58 0.30 0.15

81 0.27 0.81 0.44 0.14

203 0.46 0.58 0.38 0.14

407 0.44 0.50 0.49 0.12

813 0.39 0.65 0.55 0.31

IBEA

20 0.05 0.27 0.00 0.00

81 0.13 0.67 0.01 0.00

203 0.08 0.20 0.00 0.00

407 0.00 0.02 0.00 0.00

813 0.00 0.38 0.00 0.00

SPEA2

20 0.20 0.42 0.05 0.32

81 0.13 0.67 0.05 0.31

203 0.32 0.44 0.08 0.34

407 0.33 0.41 0.09 0.39

813 0.27 0.58 0.04 0.43
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Reliability Analysis Across Data Subsets.

Tables 15 through 18 show relative reliability across all subsets of simulation data.

With the exception of ε-Indicator for IBEA and random restart hill climber in the 81-

RSO data set, reliability was found to be consistent in all cases where significance was

found for all comparison methods. This clearly demonstrates that, for this problem,

the relative quality of solutions produced by algorithms does not tend to vary based

on the fidelity of the data. Again, the raw objective values were affected by the

use of fewer RSOs in the simulations, but tendency for one algorithm to outperform

another in a given binary comparison methods did not tend to change. This further

confirms that, when comparing the performance of MOO algorithms on this problem,

algorithms will tend to fall into the same relative rankings, even when using as little

as 2.5% of the full complement of RSOs in the simulations.

4.9 Chapter Summary

This chapter presents the results of the computational experiments described in

Chapter III. First, binary comparisons are performed between each of the five algo-

rithms using the full simulation data set. Relative rankings of the algorithms are not

consistent between the binary comparison methods, confirming that the comparisons

tend to reward different aspects of the compared Pareto fronts. Overall, the compari-

son of aggregate Pareto fronts indicates that on the basis of these experiments, IBEA

and SPEA2 tend to be the best-performing algorithms on this problem.

Next, individual runs are compared to determine overall reliability of the algo-

rithms relative to one another. The results contrast with the aggregate comparison

results, with IBEA and SPEA2 performing poorly in terms of reliability, and NSGA-

II and Random Restart Hill Climber performing as well or better than in the aggre-

gate comparisons. This suggests that IBEA and SPEA2 tend to produce somewhat
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Table 15. Summary of Binary Hypervolume reliability analysis across all data subsets

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 B N/A N/A A

81 B A N/A A

203 B A A A

407 B A A A

813 B A A A

RRHC

20 A A A A

81 A A A A

203 A A A A

407 A A A A

813 A A A A

NSGA-II

20 N/A B N/A N/A

81 B B B N/A

203 B B B N/A

407 B B N/A N/A

813 B B N/A N/A

IBEA

20 N/A B N/A A

81 N/A B A A

203 B B A N/A

407 B B N/A N/A

813 B B N/A N/A

SPEA2

20 B B N/A B

81 B B N/A B

203 B B N/A N/A

407 B B N/A N/A

813 B B N/A N/A
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Table 16. Summary of Coverage reliability analysis across all data subsets

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 B N/A A A

81 B A A A

203 B A A A

407 N/A N/A A A

813 B A A A

RRHC

20 A N/A A A

81 A A A A

203 A N/A A A

407 N/A A A A

813 A A A A

NSGA-II

20 N/A N/A A A

81 B B A A

203 B N/A A A

407 B B A A

813 B B A A

IBEA

20 B B B B

81 B B B B

203 B B B B

407 B B B B

813 B B B B

SPEA2

20 B B B A

81 B B B A

203 B B B A

407 B B B A

813 B B B A
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Table 17. Summary of ε-Indicator reliability analysis across all data subsets

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 A N/A A N/A

81 A N/A A N/A

203 A N/A A N/A

407 A N/A A N/A

813 A N/A A N/A

RRHC

20 B B N/A N/A

81 B B B B

203 B B A N/A

407 B B A N/A

813 B B A N/A

NSGA-II

20 N/A A A N/A

81 N/A A A N/A

203 N/A A A N/A

407 N/A A A N/A

813 N/A A A A

IBEA

20 B N/A B B

81 B A B B

203 B B B B

407 B B B B

813 B B B B

SPEA2

20 N/A N/A N/A A

81 N/A A N/A A

203 N/A N/A N/A A

407 N/A N/A N/A A

813 N/A N/A B A

73



Table 18. Summary of Additive ε-Indicator reliability analysis across all data subsets

Algorithm RSOs RS RRHC NSGA-II IBEA SPEA2

RS

20 A B A N/A

81 A B N/A N/A

203 A B A N/A

407 A B A B

813 A B A N/A

RRHC

20 B B N/A B

81 B B B B

203 B B N/A B

407 B B N/A B

813 B B B B

NSGA-II

20 A A A N/A

81 A A A N/A

203 A A A N/A

407 A A A N/A

813 A A A A

IBEA

20 B N/A B B

81 N/A A B B

203 B N/A B B

407 B N/A B B

813 B B B B

SPEA2

20 N/A A N/A A

81 N/A A N/A A

203 N/A A N/A A

407 A A N/A A

813 N/A A B A
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mediocre Pareto fronts with a few exceptional solutions scattered across them, while

NSGA-II tends to produce relatively consistent Pareto fronts from one run to the

next. The net result is that the few exceptional solutions, when aggregated, overstate

the typical performance of IBEA and SPEA2, while the lack of unusually good solu-

tions tends to rank NSGA-II and Random Restart Hill Climber lower against their

more erratic competition.

Finally, aggregate fronts and reliability are evaluated across the different simula-

tion data subsets. In both cases, the data supports the hypothesis that using fewer

RSOs does not affect the relative performance of the algorithms. While there is some

variation between subsets, the tendency is for relative rankings between algorithms

to be consistent from one subset to the next.
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V. Conclusion

5.1 Chapter Overview

This chapter summarizes the outcomes of this research. In Section 5.2, findings

are discussed through the lens of the research questions and hypotheses stated in

Chapter I. The chapter concludes with a brief listing of specific contributions and

recommendations for future research in Section 5.3.

5.2 Research Questions and Hypotheses Answered

This section coordinates findings with specific research questions and hypotheses.

1 Which of the representative algorithms is (are) most effective?

The answer to this question largely depends on what is needed from the chosen

algorithm. Each of the comparison methods highlights different characteristics

of a Pareto front, and therefore the various methods are more sensitive to dif-

ferent aspects of an algorithm’s behavior. This results in inconsistent rankings

from one comparison method to the next. Considering just the collective results

of those comparisons, IBEA was ranked as best for three of the four comparison

methods, and SPEA2 ranked second best, when comparing aggregate Pareto

fronts.

Consideration of the descriptive statistics of the Pareto fronts (ranges of ob-

jective values and individual hypervolumes) casts the results in a somewhat

different light. The ranges of objective values indicate that IBEA explores far

less of the search space than its competitors. It then makes up for the lack

of exploration by very aggressively exploiting the regions of the search space

it does explore to obtain far better solutions that its competitors in those re-
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gions. NSGA-II most effectively explores the search space, and SPEA2 explores

nearly as well. The classical algorithms are both generally mediocre in terms of

exploration.

Finally, incorporating the results of the reliability analysis further complicates

the issue by revealing that IBEA and SPEA2 are the least and second least

reliable algorithms, respectively, meaning that neither is able to reliably out-

perform its competitors during a typical single optimization run. Meanwhile,

NSGA-II ties for most reliable with Random Search and Random Restart Hill

Climber. One major implication is that, for the algorithms with parameters,

each displays strengths and weaknesses that could potentially be emphasized

or mitigated, respectively, with deliberate parameter tuning. Considering the

results obtained in this research, without parameter tuning, the degree to which

exploitation or exploration is preferred dictates which of the EAs is most effec-

tive for this problem.

Hypotheses 1 through 3 directly relate to this research question:

• H1 - For each pair of algorithms, one will tend to produce better Pareto

fronts than the other.

Confirmed. Comparison of aggregate Pareto fronts reveals a difference in

each case with each comparison method.

• H2 - The Pareto fronts produced by random search tend to be worse than

those of all remaining algorithms.

Confirmed. In consideration of only the results of the comparison methods

with the aggregated Pareto fronts produced using the 813-RSO data set,

Random Search ranks the worst in three of the four comparison methods.

• H3 - Each evolutionary algorithm tends to produce better Pareto fronts than
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a random-restart hill climber.

Not Confirmed. In consideration of only the results of the comparison

methods with the aggregated Pareto fronts produced with the 813-RSO

data set, Random Restart Hill Climber performs better than NSGA-II a

slight majority of the time.

2 What useful insights are provided by various means of comparing the results of

the algorithms?

Usefulness is not easily quantified and each comparison method provides some

insight that the others do not. Binary Hypervolume, especially when combined

with contradictory results from the Coverage comparison, is the only compar-

ison method that gives a hint that some algorithms explore the search space

more effectively while others exploit it more effectively, which is an important

consideration in large-scale problems such as this. Coverage provides insight

into how much of the solution set is dominated by a competing algorithm, but

gives no indication to the magnitude of the differences. It also provides no in-

sight into whether its results are due to an overall trend, or to a few exceptional

results. On the other hand, the ε-Indicator provides a quantification of the

difference between solution sets, but does not provide any way of knowing how

much of one solution set is dominated by the other if the sets are incomparable.

The Additive ε-Indicator was more sensitive to differences in scale between ob-

jectives, and necessitates the normalization of objective values to get unbiased

results. This measure differs from the standard ε-Indicator in that it is a trans-

lation of the Pareto front instead of a scaling, so it is a more direct comparison

of the fronts. In problems such as this one where the shapes of fronts being

compared are quite different, this measure may be preferred over the standard

ε-Indicator. Ultimately, Binary Hypervolume, coverage, and either ε-Indicator
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work together to provide a multifaceted picture of the relationship between al-

gorithms, though the use of both ε-Indicators tends to bring more confusion

than clarity to the situation.

3 What is the impact of using fewer simulated RSOs on the quality of solutions

produced by these algorithms?

The impact of using fewer simulated RSOs is observable in two major ways.

First is its effect on the relative performance of search algorithms, and second is

its effect on objective values obtained when evaluating candidate architectures.

With regard to the latter, the number of simulated RSOs directly affects the

objective values produced by the evaluation functions, resulting in objective

values that do not accurately predict the real-world performance that one could

expect from a given architecture. However, the effects of using smaller simula-

tion data sets on the effectiveness of an algorithm has much subtler effects. In

general, the relative rankings of algorithms, based on the results of the compar-

ison methods, are fairly consistent from one data set to the next. While there

are instances where relative rankings varied between simulation data subsets,

the overall trend was for rankings to remain consistent. Furthermore, in the

cases where significance was found, results of reliability analysis are consistent

across data subsets in all but one instance.

Hypothesis 4 directly relates to this research question:

• H4 - Simulating fewer RSOs does not tend to change the relative effective-

ness of the algorithms.

Confirmed. Taken together, the comparisons of aggregate Pareto fronts

and the reliability analysis strongly suggests that comparing algorithms

with a reduced number of RSOs tends to produce relative rankings that
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are consistent with those obtained with the full simulation data.

5.3 Future Work

This section discusses a number of areas in which this research can be extended.

Opportunities for future work include enhancements to both the model and the com-

putational aspects of the problem. The former was well-addressed by the authors

of the model who offered twelve recommendations for future. This section focuses

primarily on the latter.

• Incorporate other measures of algorithm performance.

The four comparison methods used in this research are not the only measures

of algorithm performance. Other factors that capture other practical aspects

of an algorithm’s performance, such as convergence time for EAs, could be

incorporated into this methodology. While each comparison method added is

another opportunity for a ranking that does not agree with the other methods,

it is also another tool for a researcher to make an educated choice of algorithm.

• Explore relationship between objective values and the number of RSOs.

Latency and Detection Size objective values were impacted by using fewer RSOs

in the simulation data, but those changes were not thoroughly analyzed in this

research. Evaluating an extensive set of predefined architectures on each of

the data subsets may reveal a predictable relationship between the number

of RSOs and the change to objective values. If such a relationship did exist,

it would be possible to estimate architecture performance using the smaller

subsets. While it likely would not be a substitute for performing search on the

best data available, it could be a useful tool for initial searches or for quickly

testing modifications to the underlying model.

80



• Perform parameter tuning for the EAs considered in this research.

Each of the EAs evaluated in this research showed promise, but each also had

problems with their performance, relative to the others. It is a near certainty

that performing even modest parameter tuning on each would render improve-

ments to their overall effectiveness on this problem, potentially revealing one

algorithm to be a better overall choice with fewer compromises.

• Compare algorithms of different types.

There are many types of multi-objective search algorithms that could be ap-

plied to this problem. This research compares relatively similar algorithms, but

there is great value in understanding the performance of algorithms that use

very different techniques. Some examples of successful algorithms that might

be useful are swarm-based searches, such as Ant Colony Optimization [16]; Sim-

ulated Annealing [17], which is modeled explicitly after the molecular behavior

observed in the annealing process; and Evolution Strategies [9], which along

with evolving solutions to the problem, use self-adaptation to simultaneously

evolve better parameters for the algorithm itself.

• Incorporate preferences into tools.

The tools developed for this research do not currently address decision maker

preferences in the search. Development of a built-in capability to identify can-

didate preference schemes and incorporate them into the search process could

result in software tools with greater real-world utility.

• Explore finer discretization in optimizations or simulations where appropriate.

In an effort to reduce computational cost, the underlying model was rather

coarsely discretized. Taking advantage of the improvements to evaluation time

gleaned through the refinements to the Stern and Wachtel methodology, it may
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be possible to discretize the search space more finely, or even convert some

discrete variables to continuous variables. Changes to certain variables, such as

constellation altitudes and GBT locations, would require new simulations, but

other values such as aperture size could be changed and applied to the problem

using existing data.

• Incorporation of domain-specific knowledge into search.

This research effort assumed that little was known of the search space. In reality,

there is a great deal of knowledge regarding space surveillance networks. There

could be great gains realized by incorporating this domain-specific knowledge

into the search algorithms.

5.4 Impact of Research

GEO SSA is an important issue for both national and civilian interests. The

search space for this problem is vast, and the search is computationally expensive. A

method of evaluating candidate algorithms against this problem and comparing their

effectiveness at a relatively low computational cost is highly desirable to ensure that

the highest quality solutions to this multi-billion dollar problem can be obtained in a

practical time and computational cost. This research shows that combining multiple

binary comparison methods provides a multifaceted picture of the relative effective-

ness of two or more multi-objective algorithms. It further shows how fewer simulated

RSOs can be used to perform this comparison at a lower computational cost, relative

to using a full complement of simulated RSOs. Incorporating the techniques described

in this methodology into current space system engineering will undoubtedly improve

quality, speed, and efficiency of future expansions to the current space surveillance

networks.
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METHODOLOGY FOR COMPARISON OF ALGORITHMS FOR REAL-WORLD

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS: SPACE SURVEILLANCE

NETWORK DESIGN

A. Relationships Among Objective Functions

The objective functions in this problem are not independent, meaning that a set of

solutions exists for which improvements are possible with respect to one or more of the

objective functions, but only by worsening one or both of the other objectives. This

phenomenon was described in general terms in Chapter I. Here, a specific example is

presented.

A solution is selected at random from the aggregated Pareto front produced by

IBEA using the full simulation data set. Each allele is then mutated one step in both

directions (where possible) and reevaluated. The resulting fitness values are compared

to the original to demonstrate the way each allele affects multiple objectives.

Table 19 lists each architecture compared and Table 20 holds the respective ob-

jective values. The objective values have been color coded such that green is an

improvement over the base architecture, and red is a deterioration. There are two

cases in which there is no impact on any of the objective values, and four (lines 12,

15, 18, and 23) that are actually overall improvements over the base architecture.

As an aside to this discussion, these four examples demonstrate that this example,

though produced by one of the most successful algorithms evaluated in this research,

is not on the True Pareto Front. The remaining 23 architectures demonstrate that,

in general, improvements to one objective gained by changing a single allele come at

the detriment of one or more other obejctives.
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This phenomenon is further illustrated by Figure 3. It depicts the aggregate front

produced by NSGA-II on the 813-RSO data set in three two-dimensional plots por-

traying each of the different possible combinations of two objectives. (See Figure 2

for the three-dimensional depiction of the same front.) For each of the plots, if one of

the objectives were independent, the points would form a nearly vertical or horizon-

tal line perpendicular to the axis representing the independent objective, indicating

its optimal value. This is not the case here, further emphasizing that none of the

objectives in this problem are independent.

(a) Cost vs. Latency (b) Cost vs. Detection Size

(c) Latency vs. Detection Size

Figure 3. The NSGA-II aggregate Pareto front, depicted in three two-dimensional
scatter plots. Each represents one possible two-objective combination of objectives.
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Table 19. List of architectures compared to demonstrate that objective functions are
not independent for this problem. The first is the starting architecture, and each
subsequent architecture is a variant on the original in which just one allele is mutated
one step in either direction.
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0 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

1 1 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

2 0 1 1 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

3 0 1 0 2 0 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

4 0 1 0 2 2 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

5 0 1 0 2 1 2.5 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

6 0 1 0 2 1 3.5 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

7 0 1 0 2 1 3 1 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

8 0 1 0 2 1 3 0 1 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

9 0 1 0 2 1 3 0 2 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

10 0 1 0 2 1 3 0 1.5 1 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

11 0 1 0 2 1 3 0 1.5 0 4 1 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

12 0 1 0 2 1 3 0 1.5 0 4 0 4 3 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

13 0 1 0 2 1 3 0 1.5 0 4 0 4 4 1 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

14 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 1 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

15 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 3 1 800 2 2 0.15 1000 4 0.15 42664 4 0.15

16 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 0.5 800 2 2 0.15 1000 4 0.15 42664 4 0.15

17 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1.5 800 2 2 0.15 1000 4 0.15 42664 4 0.15

18 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 700 2 2 0.15 1000 4 0.15 42664 4 0.15

19 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 900 2 2 0.15 1000 4 0.15 42664 4 0.15

20 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 1 2 0.15 1000 4 0.15 42664 4 0.15

21 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 1 0.15 1000 4 0.15 42664 4 0.15

22 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.3 1000 4 0.15 42664 4 0.15

23 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 900 4 0.15 42664 4 0.15

24 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 3 0.15 42664 4 0.15

25 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.3 42664 4 0.15

26 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 41664 4 0.15

27 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 43164 4 0.15

28 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 3 0.15

29 0 1 0 2 1 3 0 1.5 0 4 0 4 4 0.5 0 3.5 4 1 800 2 2 0.15 1000 4 0.15 42664 4 0.3
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Table 20. Fitness values for each evaluated architecture. Line 0 holds the objective
values of the base architecture, and is the standard to which all other lines are com-
pared. Green font indicates an improvement and red font indicates a deterioration in
an objective value, relative to line 0.

Architecture Detection Size (cm) Latency (min) Cost ($100M)

0 63.59118036 34.01414514 16.00711229

1 63.64952302 34.01230012 16.12711229

2 61.93594264 34.01353014 16.66281161

3 78.16977623 34.01414514 14.23648024

4 63.59118036 34.01414514 17.60068113

5 64.0460524 34.01414514 15.36923075

6 63.24121935 34.01414514 16.8196203

7 62.62447993 34.01353014 16.33115692

8 63.59118036 34.01414514 16.00711229

9 63.59118036 34.01414514 16.00711229

10 1055.82302 34.01230012 19.58995897

11 55.06657121 34.01414514 19.58995897

12 63.59118036 34.01414514 15.98857162

13 56.78504642 34.01414514 16.36103205

14 1776.878302 34.01353014 18.59025235

15 63.59118036 34.01414514 15.90580311

16 67.24683506 34.01414514 15.65319253

17 62.0975765 34.01414514 16.74371341

18 63.56365627 34.00861009 16.00711229

19 63.56590575 34.01722017 16.00711229

20 62.85847269 40.98216482 14.01711229

21 62.83052785 40.98093481 14.98111229

22 63.3966146 34.01414514 18.57311229

23 63.55778121 34.0104551 16.00711229

24 63.39222233 37.0301353 15.50056643

25 63.53327831 34.01414514 18.17311229

26 62.07059898 34.01537515 16.00711229

27 64.42856199 34.01660517 16.00711229

28 54.28705137 37.19372694 15.50056643

29 50.57749216 34.01414514 18.17311229
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B. Performance Tuning

Introduction

Section 2.7 outlines several performance and overhead concerns in the original

algorithm. Before optimizers could be evaluated, performance tuning was required

to mitigate those problems. Initial evaluation identified three key areas where inef-

ficiencies were likely to negatively impact run time, which are listed at the end of

this appendix. Informed by those key areas, performance tuning had three primary

objectives: 1) move to the Object Model (OM), 2) consolidate data into a few large

files, and 3) eliminate the need for data parsing in the optimizer.

Of these three objectives, converting to the OM was the most difficult, as it re-

quired identifying and conversion of many of the several hundred connect commands,

of which there were hundreds, to their OM equivalent. (The commands setting en-

vironmental conditions were unchanged, but any command that created an object in

the simulation required conversion.) It also required moving from a Linux environ-

ment to Windows as the object model for Linux is only available through a Java API,

and would have required an unacceptable investment of resources to port the code to

another programming language.

Interestingly, the other two stages were solved simultaneously with a single change

made possible by moving to the OM. With raw data exposed to Python script, it was

possible to perform simulations of entire sensor classes (i.e. GBT, sun-synchronous,

etc.), retrieve data directly, perform checks for validity, consolidate results into class-

specific data structures, and then save those data structures to disk. Data was saved

using Python’s pickle serialization module, which saves entire data structures to bi-

nary files, and restores them in their original form when “unpickling” the files back

into memory. This greatly improved performance of the optimizer because data were
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supplied to the optimizer in the correct types, completely removing the need for string

manipulation in the optimization stage. During this performance tuning, it was found

that the simulations of space-based telescopes were simulating duplicate sensors; 40%

of the data produced for these classes were duplicates due to this minor error. The

move to this sensor-class-based simulation strategy allowed these simulations to be

merged together, eliminating the excess computational load.

The final result of this tuning was a complete overhaul to the way data is managed.

In the original algorithm, 77 parallel simulations, each simulating a single class and

configuration of sensors and the 813 RSOs in geosynchronous orbits, would be run on

an HPC to gather three text files of key data for each sensor/target pair. These files

would be consumed by the optimizer as needed, creating a file I/O bottleneck. The

new data flow consists of the Python program running four simulations on a desktop

workstation, harvesting data directly from STK. It uses the correct data types to

store the collections of key data from each pair in custom data structures and pickles

(saves) each dictionary to a binary file. As is often the case, this was a trade-off in

which the size of the data files increased to a total of about 16 gigabytes, but the

number disk accesses required to generate and evaluate the data was reduced from

millions per simulated time frame to just eight.

Modification Strategy

While not the focus of this research, the original code required dramatic changes

to reduce the file I/O burden previously discussed. The general modification strategy

was to make the fewest changes possible to mitigate overhead and facilitate drop in

replacement of the optimizer. The goal was not to squeeze every ounce of performance

out the existing code, but rather to limit modifications to addressing performance

issues at algorithm level and enabling efficient testing. This included refactoring
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where necessary to facilitate evaluation and modification, streamlining the data flow

as described earlier in this appendix, and decoupling the objective functions’ code

from the optimizer code. It did not include low-level changes, such as the choice of

programming language, one library over another, or any other factor that falls into

the area of preference or coding style unless absolutely necessary, as these are factors

that are independent of the algorithm design. These limitations resulted in an overall

reorganization of code and an overhaul of the data management, but virtually no

changes to the core code implementing the model and equations described in Stern

and Wachtel’s work.

One noteworthy exception to this is an overall update of the codebase to Python 3.

The initial codebase was written in Python 2, which has an End of Life date set for

January 1st of 2020 [46]. This seemed most appropriate as the necessary updates

were relatively minor, and would be beneficial to any future researchers.

Key Areas

At the beginning of this research effort, the following areas of the original algorithm

were identified as areas where improvements could potentially be made. There is

some overlap between some of the areas, but each represents some aspect of potential

degradation of overall performance.

STK Interaction.

The previous research used the connect interface to interact with STK. This inter-

face relies on building a series of commands as an array of strings that are supplied to

the engine sequentially via a network connection, or a loopback connection for local

execution. This interface allows users to configure an entire simulation, run it, and

command STK to save the results to a file, but does not allow for interactive features
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such as retrieving results directly from the engine.

An alternative is the Object Model in which the simulation is treated as an object

in the calling program. This model allows for an interactive simulation in which

values are available directly to the calling program, and dynamic behaviors based on

results. This is a much more powerful interface, and has potential to be much more

efficient, overall, than the connect interface. In the case of the legacy code which was

completely dependent on the connect interface, it could be leveraged to reduce the

overall reliance on file I/O.

File I/O.

File I/O is a major concern for the efficiency of this algorithm. When compared

to random access memory (RAM) or cache, disk access is among the slowest ways

to retrieve stored data in typical computing scenarios. According to Scott (writing

in 2012) [48], an average memory reference incurs about 100nS of latency, while a

solid state drive (SSD) random read requires 160 times that at 16μS, and a hard

disk drive (HDD) seek incurs 30,000 times greater latency, or 3mS. The original

algorithm constructs, stores to disk, reads in, and evaluates nearly 188,000 text files

per simulation, all before handing control over to the optimizer.

Once the optimizer takes over, file I/O actually becomes a larger issue. Since

each individual was evaluated in isolation, none of the raw data was stored in mem-

ory for reuse. Instead, each architecture evaluation read in all of the files necessary

to represent each sensor/target pairs represented in the particular architecture be-

ing evaluated. At three files per pair, and 813 target satellites, each sensor in an

architecture required 2,439 files to be read in. In the worst case, where there are

telescopes at all nine of the ground stations, four equatorial observer satellites, four

sun-synchronous observer satellites, and four near-GEO observer satellites, a single
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architecture required 51,219 files.

Recall also that there are multiple altitudes possible for each class of observer

satellite, so there are many unique worst-case combinations possible. This means

that a single generation could, in the worst case of 96 worst-case architectures, require

4,917,024 files (more than thirteen times the original number created) to be read in

and parsed. The data generated in the simulation phase amounts to over six gigabytes

of text data, but that data was repeatedly ingested by the optimizer many times over

the course of the optimization, easily amounting to hundreds of gigabytes of data

worth of file I/O to evaluate some subset of a six gigabyte data set.

Data Representation.

Though the simulation data consists exclusively of numbers (floats) and time

stamps, all values were stored as text and parsed as needed in the original algorithm.

There is an incredible amount of string manipulation taking place in a typical run of

the optimizer. Recalling the number of files being read in for a worst case scenario,

a worst-case file (one for a sensor/target pair for which there was continuous access),

contained 11,524 strings to be parsed by the optimizer. While parsing between pri-

matives (basic data types – string, integer, float, and booleans in Python) requires

a relatively minor amount of computational power, this happened many millions of

times in a run of the optimizer. Furthermore, parsing to more complex data types

can be much more computationally expensive. For example, reading in the data for

the pairing of GBT #4 and target #11 (by no means a worst-case pairing) requires

the parsing of 22,305 individual strings into their respective data types. Furthermore,

through profiling on an interim version which was using data stored in memory in-

stead of files, it was found that parsing time stamp strings to a datetime object is an

exceptionally expensive computation, representing as much as 80% of the computa-
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tion performed by the optimizer. Storing and processing data in native data types

was a key target for reducing unnecessary overhead.
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C. User’s Guide

HPC Tips and Tricks

Determine Python Version.

At the command line, run the python command. This opens Python’s interactive

interpreter. The first lines displayed should start with the current version of Python

and will look like the following:

[your_username@mustang08 ~ ]$ python

Python 2.7.5 (default, May 31 2018, 09:41:32)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Getting Python3.

Python 3 is required to run the code produced for this research. If Python 2.7

is the current version, Python 3 will need to be loaded. Luckily it is a very simple

thing to do. Simply run the module load python3 command. Much of this code uses

Message Passing Interface (MPI), so you will also want to load the mpi4py library

by running the module load mpi4py command. This is not a permanent change, and

will need to be accomplished every time you log in. A permanent solution is to edit

your .personal.bashrc file to include those commands.

On systems using the Common Open Source Tools (COST) module (e.g. Thunder),

first run module load costinit, then load Python modules as above.
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Installing Python Modules.

Some modules may not be readily available. One notable example is the Platypus

library. There are two ways of getting it. With Python3 already loaded, Platypus is

available via the pip command by running pip install --user Platypus-Opt from

the webshell. Note the use of the --user option. The installation will fail without it

due to lack of permissions to install to the Python directories. At the time of writing,

the version available via pip is 1.0.3. This version has two bugs that are relevant to

the optimization code, that have been fixed in the version available via GitHub. To

get this version, follow this procedure:

1 Download the latest version from https://github.com/Project-Platypus/Platypus

as a zip file.

2 In your home directory on the HPC, create a folder named “Platypus” and

upload the zip file to this folder. (Answer yes when prompted to expand it, or

manually expand it if needed.)

3 Using the webshell, navigate to the Platypus directory you just created.

4 Enter python setup.py develop --user to install the library locally. Again,

note the use of the double dash with the user flag.

Running serial and parallel evaluations.

The “production” code used in this project runs in parallel and relies on MPI

which is natively available on the HPCs and spawning child processes via Python’s

multiprocessing module. These dependencies do impose some special restrictions.

First and foremost, Python can not be debugged or profiled using standard tools when

used with MPI. If at all possible, modifying and testing code should be done using

a serial version, and then incorporated into the parallel version once it is functioning
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as expected. For modifying the parallel version, built-in debuggers such as the pdb

module can be used to print useful information, though breakpoints will not work.

Be sure to use the sys.stdout.flush() command to ensure that debugging messages

are written to stdout before an MPI process exits.

A second, related problem is that Python will fail if processes are spawned while in

interactive mode. This makes testing and troubleshooting difficult, especially because

there is no useful error produced when this happens. Python simple crashes.

Submitting PBS Jobs.

This research relied heavily on PBS to schedule jobs on the HPC. What follows is

an example of a PBS script that was used for this research effort. This is not intended

to be a full tutorial on using PBS or shell scripting, but just a template specific to

this research. Anyone wishing to extend this research should familiarize themselves

with the PBS guide associated with the HPC he or she will use.

Submitting a script is done by creating a valid .pbs job script and then entering

the qsub your job script.pbs command. A typical script looks like the following:

#!/bin/bash

## Required Directives ------------------------------------

#PBS -l select=8:ncpus=48:mpiprocs=26:bigmem=1

#PBS -l walltime=85:00:00

#PBS -q standard

#PBS -A <YOUR_PROJECT_ID>

## Optional Directives ------------------------------------

#PBS -N 813_EAs

#PBS -j oe

#PBS -M <YOUR_EMAIL_ADDRESS>
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#PBS -m bae

## Environment Setup --------------------------------------

JOBID=‘echo ${PBS_JOBID} | cut -d ’.’ -f 1‘

# change directory to job-specific directory within scratch

# directory in /p/work1

cd ${JOBDIR}

# FIRST DATA SUBSET

# stage input data $HOME

cp ${HOME}/thesis/813_tgts_77/*.res .

# copy the executable from $HOME

cp ${HOME}/thesis/inspyred_mpi.py .

cp ${HOME}/thesis/best_arch_platypus_parallel_77.py .

cp ${HOME}/thesis/clearSky.py .

cp ${HOME}/thesis/thesis_classes.py .

## Execution ---------------------------------------------

module load python3

module load mpi4py

mpiexec_mpt -n ${BC_MPI_TASKS_ALLOC} python ./best_arch_platypus_parallel_77.py

-c 3 -t 813 -a NSGAII -p 100 -e 25000 > nsga_813_77_output.out

mpiexec_mpt -n ${BC_MPI_TASKS_ALLOC} python ./best_arch_platypus_parallel_77.py

-c 3 -t 813 -a IBEA -p 100 -e 25000 > ibea_813_77_output.out

mpiexec_mpt -n ${BC_MPI_TASKS_ALLOC} python ./best_arch_platypus_parallel_77.py

-c 2 -t 813 -a SPEA2 -p 100 -e 25000 > spea_813_77_output.out
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## Cleanup ------------------------------------------------

cd ${JOBDIR}

rm *.py

rm 1.res 2.res 3.res 4.res 5.res 6.res 7.res 8.res 9.res 10.res 11.res

rm 12.res 13.res 14.res 15.res 16.res 17.res 18.res 19.res 20.res 21.res

rm 22.res 23.res 24.res 25.res 26.res 27.res 28.res 29.res 30.res 31.res

rm 32.res 33.res 34.res 35.res 36.res 37.res 38.res 39.res 40.res 41.res

rm 42.res 43.res 44.res 45.res 46.res 47.res 48.res 49.res 50.res 51.res

rm 52.res 53.res 54.res 55.res 56.res 57.res 58.res 59.res 60.res 61.res

rm 62.res 63.res 64.res 65.res 66.res 67.res 68.res 69.res 70.res 71.res

rm 72.res 73.res 74.res 75.res 76.res 77.res

rm moon_phase.res sim_dates.res

Notes on PBS scripts:

1 A PBS script is just a shell script (bash, in this case) with some PBS directives

added to the beginning. Anything that can be done in a shell script can be

done here, as well.

2 The first mandatory directive selects resources for the job. Most important,

“select” determines how many physical nodes will be used, then “ncpus” is the

number of cores to be used per node (this must be set to the total number of

cores in a standard node) and “mpiprocs” determines the total number of MPI

processes per node. Total CPUs and MPI processes are found by multiplying

the latter two numbers by the number of nodes selected. To save users from

multiplication errors, the ${BC MPI TASKS ALLOC} variable is the total number

of MPI processes for the current job. This can be replaced with an integer if a

task requires fewer than the total requested processes, for some reason.
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3 Of the optional directives, the most useful may be the PBS -M directive. Setting

this to a valid email address will tell the system to email updates on the events

specified in the #PBS -m directive.

4 Each mpiexec mpt command is a single line in the script, but is broken into

two lines to fit on the page. Similarly, all of the rm commands could be done

in a single line.

5 Carefully calculate time required. This should be done using the debug queue

to perform small runs to determine how long a full-scale job will require. In the

case of this research, that means running test jobs on each subset of data, since

evaluation times varied depending on the number of RSOs in the simulation

data.

Data Generation

Running simulations is a fairly simple process, but it does have some dependencies.

First, a full educational STK license is required to run the engine with all of the

necessary tools. Next, ActiveX needs to be enabled on the machine, and the wx

Python module must be installed. Finally, there must be enough memory. For full

813-RSO simulations, at least 80 GB of memory should be available to complete the

simulations.

Granular control of the simulation is possible through command line arguments.

The -t argument is used to specify the number of RSOs to use. The -g, -s, -e, and -n

are flags that specify that ground-based, sun-synchronous, equatorial LEO, and Near-

GEO telescopes should be simulated, respectively. While it is completely possible to

do all simulations at once, it is usually more practical to only do one set at a time for

the larger simulations (407 and 813 RSOs). Start an 813-RSO simulation with GBTs
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and equatorial obsats by running the following command:

python thesis gen 77.py -t 813 -g -e

For help, run python thesis gen 77.py -h

Running Optimizations

Optimization runs should be run on an HPC following the examples in the PBS

script shown earlier in this appendix. Similar to the simulation script, the optimiza-

tion scripts take command line arguments to customize what is to be done. Running

python best arch platypus 77.py -h will display instructions on how to use the

arguments properly.

Small scale testing on a workstation is also possible. On a Windows machine,

install Microsoft MPI. At the time of writing, the latest version is 10.0, and is available

for download at https://www.microsoft.com/en-us/download/details.aspx?id=57467.

Once installed, MPI programs can be run locally. Running IBEA on 4 MPI processes

with the 20-RSO data set would be accomplished with the following command:

mpiexec -n 4 python best arch platypus 77.py -a IBEA -t 20 -p 10 -e 100

Performing comparisons

Running the post-processing scripts is done in a similar fashion to the other scripts,

but it makes some assumptions about where data is stored. The script assumes that

the result files from optimization runs exist in a sub-directory called “Results” and

will fail if they are stored anywhere else. It also assumes that files have been renamed

to the naming scheme of ALGORITHM TARGETS RUN.res, where runs are lettered,

starting with A. So for the first IBEA run with the 203-RSO data set, it would be

named IBEA 203 A.res.

To perform binary comparisons, use the merge platypus fronts.py script. This
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script takes two arguments: -t specifies the number of targets, and -m is a flag spec-

ifying that fronts should be merged. Omitting the -m flag will result in comparisons

between individual runs instead of aggregated fronts.
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