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Data Analytics for Large Sensor Systems
Eric Smith, Leanna House and Scotland Leman, Department of Statistics
Nathan Alexander and Wiiliam Devenport, Department of Aerospace and Ocean Engineering,
Virginia Tech, Blacksburg VA 24061,

Final Report for grant N00014-15-1-2326

Abstract and summary

Moder wind tunnel testing involves multiple diverse sensor systems with anywhere from hundreds
to thousands ofindividual sensors. These large-scale tests can be quite expensive and are usually time-
sensitive. As such, any delays due to faulty instrumentation can have serious consequences. Equally
serious is the possibility of discovering a sensor failure after the test has been completed, since time and
effort will have been spent collecting what amounts to hoise. Although sometimes correctable, the time
involved in doing so distracts the experimenter from achieving the experimental goals.

As such, any large scaie sensor system needs methods to ensure that all the individual sensors are
working as intended. Most commercial sensor systems contain rudimentary error detection for sensors within
a given system, but these methods typically have no way of incorporating information about the ambient
conditions under which they were run, or, more importantly, information from the output of other systems
which are used in conjunction. This is a significant problem, as most large sensor systems in wind tunnel
tests are made of smaller, unique sensor subsets. By combining the information from diverse sensor
systems into a global error detection process, we can measure the extent to which sensors across systems are
correlated and use that correlation information to produce more powerful predictions and error detection
capabilities,

This report summarizes approaches that have been developed to evaluate sensor systems both for a
single type of sensor as well as for systems that include multiple sensor types. A MATLAB macro is
described to analyze arrays of data arising from a study utilizing a single sensor type. An approach to
analysis of sensor systems using multiple types is described based on a Gaussian process model. Examples

are provided to illustrate applications of the methodoelogies,



Objectives
. Develop statistical measures to rapidly identify suspect sensors or measurement system
problems, and identify datasets containing physically important information.
. Evaluate the approach using large microphone array data sets of both aercdynatnic and
acoustic sources, with varying levels of imperfection, from diverse experimental test programs in the
Virginia Tech Stability Wind Tunnel.
. Automate approach to integrate into “live” experiments.
. Generate controlled “faulty” data for inspection of qualities which can be used as identifiers

of signal faults and estimate correct detection rates.

. To demonstrate the need for a global error detection scheme that uses a holistic view of the
experiment,
. To develop a statistically rigorous foundation for this detection scheme that requires no

knowledge of the facility, test articles, or problem physics.
° To demonstrate this method on a large, diverse set of wind tunnel data collected during a

Virginia Tech Stability Wind Tunnel experimental campaign.

Approach

Modern wind tunnel testing involves multiple diverse sensor systems with anywhere from hundreds
to thousands of individual sensors. These large-scale tests can be quite expensive and are usually time-
sensitive. As such, any delays due to faulty instrumentation can have serious consequences. Equally
serious is the possibility of discovering a sensor failure after the test has been completed, since time and
effort will have been spent collecting what amounts to noise. Although sometimes correctable, the time
involved in doing so distracts the experimenter from achieving the experimental goals.

Assuch, any farge-scalesensor system needs methods to ensure that all the individual sensors are
working as intended. Most commercial sensor systems contain rudimentary error detection for sensors within
agiven system, but these methods typically have no way of incorporating information about the ambient
conditions under which they were run, or, more importantly, information from the output of other systems
which are used in conjunction. This is a significant problem, as most large sensor systems in wind tunnel
tests are made of smaller, unique sensor subsets. By combining the information from diverse sensor
systems into a global error detection process, we can measure the extent to which sensors across systems are
correlated and use that cotrelation information to produce more powerful predictions and error detection
capabilities.

The analytical tools described in this report aim to evaluate the issue of sensor maifunction by

automating much of the error identification process. The structure of the tool is described and evaluated using
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data from microphone arrays. Aithough the methods were developed specifically for microphone arrays, the
program and tools can be useful in other situations where rapid assessment of sensor quality is required,
This report first briefly discusses microphone arrays, as these are the motivation for the work. Then the
statistical and graphical methods and their implementation are discussed. Examples using data from a wind
tunnel experiment is given to illustrate the package and more general methodology. Finally, some extensions

are described.

The Virginia Tech Wind Tunnel and Experiments

The Stability Wind Tunnel, shown in Figure 1, is a continuous, single return, subsonic wind tunnel
with removable 7.3-m long square test sections with 1.83-m long edges. The facility has a conventional
hard-walled test section and a Kevlar-walled test section ideal for aeroacoustic measurements, The data used
in thisreport were recorded for experiments using the Kevlar-walled test section, which has a well-documented
performance (Devenport et af,, 2013). The tunnel can reach flow speeds up to 80 m/s for an empty test
section. Each side of the testsection has an anechoic chamber covered in foam wedges designed to eliminate
reflections above 190 Hz, The anechoic chambers are used for measuring far-field sound, as pictured in Figure
2.

For the first application, data are from part of a study that focuses on the acoustic effects of a
discontinuity or step in an otherwise smooth surface. For example, the surface of a ship may be mostly
smooth except for discontinuities in the hull where plates are joined. Such steps may be acousticaily loud
and interest lies in the study of the effect of step size on acoustic characteristics of flow (Awasthi et al.,
2014) and the design of efficient low-noise vehicles.

Inthe overall experiment step sizes of 3.6, 14,6 and 58.3 mm are used with flow speeds of 30 and 60
m/s. A variety of measurements are made including the mean wall Cp, mean velocity profiles, 3-D
turbulence profiles and wall pressure spectra. Measurements are made using 31 wall-mounted microphones
placed forward and aft of a sharp step at a particular location (Figure 3).

For the second application, a 251-microphone array (Alexander et al., 2016) was split into two sub-
arrays, and each was placed in an anechoic chamber at 45 degrees relative to the free-siream direction, as
seen in Figure 4. The experimental photos describing this are shown in Figure 5. The atray was sampled at
51200 Hz for 32 seconds with a custom DAQ system. The system output is a time series signal for every
microphone. The acquisition data can create acoustic beamform maps based on these signals, which aliow
the experimenter to visualize sound sources on the test article (see Figure 6 for an example), For the
Gaussian Process (GP) analysis, however, only the root-mean-square of each microphone signal is used as an
input, in order to give it the same dimensionality as the metadata. This is equivalent to stating that the

Overall Sound Pressure level (OASPL) is used as an input.



The experiment mnade use of all the available instruments in the facility in order to build a
comprehensive data set with which to test the GP methods. It should be noted that, based on the experimental
objectives, not all sensor systems were used simultaneously for each measurement run. Following is a
description of each sensing method.

In addition to the phased array, acoustic measurements were taken with four standalone Bruel and
Kjaer microphones in the port chamber. Data from these microphones was recorded with a Bruel & Kjaer
LAN-XI 3050-A DAQ sampling at 65536 Hz for 32 seconds (separate from the phased array acquisition
system). The microphones were placed in the port chamber in front of the sub-atray, also shown in Figures 4
and 5. Each standalone microphone has a corresponding time series that would typically be associated with it.
The data from each microphone would usually be presented as a Sound Pressure Level spectrum, which will
be shown in the final paper. As with the phased array, only the root-mean-square (equivalently, OQASPL),
of each microphone is used as an input,

Hot-Wire Anemometry (HWA) techniques were used to measure {ocal flow velocities. Briefly, the
concept of HWA is that convection effects of the flow over a wire change the wire resistance, and these
changes can be converted to local velocity fluctuations. Further details can be found in the literature
describing the development of this measurement technique (Kegerise and Spina, 2000). For our purposes, it
is sufficient to say that the HWA measurements give a voltage time series at each point that can be
converted to flow velocity, although the analysis will differ based on the specific measurements.

Measurements of the flow around a 10-bladed rotor ingesting the wake of an upstream cylinder were
made with pairs of on-blade probes on adjacent blades (Alexander et al., 2014) sampled at 51200 Hz for 30
seconds, and measurements downstream of a two-bladed marine rotor were made with a conventional
single-wire probe sampled at 50000Hz for 30 seconds. Figure 7 shows the experimental set-up for the on-
blade measurements, and atypical processed result is included in Figure 8. Single-wire measurements were
taken at single points downstream of a two-bladed rotor, as well as in a radial profile. The probe is shown in
Figure 9a, and a typical processed result is shown in Figure 10,

For some measurements, a cylinder was placed upstream of the rotor plane to create turbulence for
rotor ingestion. The cylinder had pressure ports in a spiral pattern along the circumference, which
allowed experimenters to measure a (scalar) mean pressure at each surface point. Typically, the data would be
shown as a plot of the pressure coefficient as a function of angular position, which will be included in
Crandell et al, (2017, to appear).

Measurements with a drag rake were also performed, consisting of a span-wise array of Pitot and
Pitot-static probes that can be traversed in the vertical direction. This device is pictured in Figure 11. Each

probe records the mean pressure at a point.



Additional pressure measurements were made with a Pitot probe traversed downstrean of a two-
bladed marine rotor (Figure 9b). The data has not been processed, but a typical output will be included in the
Crandell et al, (2017, to appear), as with the rest of the sensors.

Every quality wind tunnel test will require measurement of the reference conditions, such as the flow
speed, temperature, and pressure, in addition to the measurements unique to achieving the experimental
objectives (i.e. microphones to measure the acoustics of a rotor ingesting a turbulent wake). In addition to
recording, the reference conditions, the authors were also interested in recording the metadata that is
usually left behind. The term “metadata” is used broadly here to describe data that gives information
(indirectly or directly) about the test, such as the reference conditions. Examples of this metadata include
the tunnel motor armature voltage, armature current, bearing temperatures, and test section humidity. The
idea is that the breadth of data of acquired, along with the Gaussian Process framework, will provide
experimenters with a holistic view of the measurement. This idea is explored further in the following section.

Common faitures with microphones include complete failure in which the microphone turns off
resuiting in a flat signal with low variability, drift of the signal and groups of signals that are different
from regular signals. In addition, some microphones exhibit over-range and clipping. Over-range is defined
here as having values that exceed normal ranges for the microphone. Clipping occurs when a value, usually at

the upper-most or lower-most value occurs multiple times.

Statistical Methods
Single type of sensor

The datathatare used for a system of single sensor types is viewed as consisting of measurcments
on K microphones or sensors. Each mictophone is assumed to have the same starting and ending value and
generate the same number of measurements. The measutements are indexed by atime sequence. Thus, we
take xjj to be a measurement from microphone 7, i=1,2,..., K attime;, 7 =1,2, ..., T.

A standard approach for evaluating unusual observations in statistical analysis makes use of means
and standard deviations of data. However, this approach is limited because odd values can increase standard
deviations and biased means that reduces sensitivity. In addition, the approach requires a large number of
sensors relative to the number of observations and the use may be limited due to cotrelations between
measurements on the same sensor. For microphone data it is not uncommon to have as many as 512,000
data values for a single microphone over a 30 second interval. Thus, we are dealing with a relatively small
number of long series. In this work, the preference is to make use of a nonparametric approach that is less
sensitive to extreme values and reduces correlation over time.

The first step is to divide the series for a sensor into M segments of equal or roughly equal length. If
L is the length of the segment, then A/=7/L. We then index the data values for microphone 7 x;; as x;, with i=

1,2, Landm =1, 2., M. The second step is to define a statistic that summarizes the segment. For this



purpose we use a range that contains a specified percentage of observations, i.e. a range percentile. The
range percentile is based on the quantiles from the data in each segment. Specifically, define the range
percentiie level o, that determines the ttppér and lower quantiles and hence the quantile range within each
segment. For example, for an a = 90% range percentile, use a quantile interval based the 5th and 95th
quantiles of the xy. for each microphone i and segment m. In applications, the o = 90% quantile interval is
used however in implementation other values may be used. A larger value of & would result in identifying
more individual observations while a smaller value would focus more on groups of observations. This
value of the percentile range is referred to as /QRa. The M segments then produce M values for ecach
microphone, i.e. /{QRaim. We then calculate the median and pseudo standard deviation (PSD) of these values
for each microphone. Extreme values are defined as values that are more extreme than the median plus or
ininus z times the PSD. The values of z is user defined and is associated with a desired level of cettainty in
correctly identifying sensor oddities. In addition to these calculations, checks are also made to identify over-
range, clipping and microphones that are off. Over-range is evaluated by identifying if observations exceed
specified limits, while clipping is determined by the number times the minimum of maximum limits are
duplicated. Microphones are determined to be off if a farge number of values are below some threshold that is

user determined,

Multiple types of sensors

The main predictive engine for this application is the Gaussian process (GP). This is a flexibie,
non-parametric data fitting and smoothing technique. GPs have seen wide use, originally in mining and
geo-spatial analysis (Matheron, 1962), and later in modeling output from computationally demanding
computer experiments (Kennedy and O’Hagan, 2001, Grammacy et al., 2015, Higdon et al, 2004). Unlike
traditional statistical methods such as least-squares based regression, GPs make very loose assumptions about
the data under study. This allows them to infer a preat deal of the structure in the data from the data itself,
making them well suited to studying complex flow phenomena typically seen in wind tunnel tests,

Central to the idea of GPs is a notion of distance between sensors. When considering sensors within
a given system, it is natural to consider the physical separation of the sensors, and to make the assumption
that the extent to which the output of two sensors will correlate is a decreasing function of their distance
(put another way, that the correlation decreases with increasing distance). While physical separation is a
reasonable proxy for correlation within a sensor system, this may not always be the case, particularly for
correlation across independent sensor systems. For example, suppose one wishes to measure the far-field
sound generated by an ideal dipole source, It is conceivable that a microphone on the null axis of the dipole
would record no sound, while a nearby, adjacent microphone may be directly in the sound field. For this

case, we need a different notion of correlation. We introduce such a metric by considering the output from



any two sensors across all runs during which they were both active and computing the average 71 norm

between those observations

d(y.y,)= iIZI Y= Yy
Pim

This equation is called the response distance. This metric has many advantages as a measure of
similarity between sensors. First, by appropriately scaling the output of the sensors, this metric becomes
agnostic to the particular system from which the outputs come. This allows comparison between arbitrary
systems. Second, the metric makes no assumptions about the dynamics of the phenomenon being measured.
Due to the complex and highly non-linear nature of the flow in a wind tunnel test, most simplifying
assumptions of the kind usually seen in statistical models can easily break down. This metric learns about
correlation entirely from the data. Third, this metric learns correfation not only between sensots in different
systems, but also between sensors in the same system. Our method combines this information with
information derived from spatial correlation, weighs the two distance metrics appropriately, and combines
them to produce a unified correlation measure. This synthesis allows us to estimate correlation and produce
predictions after a single run in the wind tunnel experiment.

We will first describe the general framework for Gaussian process regression in the context of a
single sensor system. We will then generalize to simultaneous prediction for several systems, and finally
extend this framework to prediction across several runs of a unified experimental apparatus. The basic idea
of GP regression is to infer the value of a response at a given point through a weighted average of the
observed responses at all points in a training data set. The extent to which a point in the data set coniributes
to this average is a function of its distance, physical or otherwise, from the prediction location. The first
step in constructing a GP model is fo define the precise relationship between distance and correlation. This
relationship is encoded in what is known as a kernel function.

The most popular GP kernel is the anisotropic Gaussian kernel. This kernel is appropriate for measuring

correlation based on physical distance. If we fet xi and xj be two length p vectors encoeding the positions of

two measurements, then this kernel has the form:

2%, =X, _)2
C(xf,xj):exp[—z%]
&

k=1




The & parameters are known as length scales, and they control the relative importance of distance
along the different axes. This allows for the possibility that correlation does not with scale with distance in
an isotropic way. Note that without the s the argument to the exponential function is the negative of the
squared Euclidean distance.

Given n observations, then we can define an nxn matrix, whose i7" entry is C(x,x;). By
combining this with a few more parameters, wethen constructthe covariance function. As before, there are

many possible choices, but we adopt the following fiexible and lightweight parametrization:

Kn =a2(Cn +¢21p),

where Iy is the # % n identity matrix. The parameter ¢ is known as the nugget effect, which augments the

diagonal of the C matrix by qoz, increasing the covariance between an observation and itself. The nugget

effect can be thought of as measurement error, and it allows for the possibility that the responses were

measured imprecisely. The final parameter o2 is known as the partial sill, and it controls the overall scale of
the correlation. Note that all the above parameters are required to be positive.
Given this covariance matrix, we have the following model for the data generating process. Lety be

the vector of the measured response values., Then:

1 .
y’K.,'y]
(2

fOon=27 2K | exp[—z ;

[n other words, the vector y follows a multivariate Gaussian distribution with mean 0 and
covariance Kp. In this formulation, the response vector y is assumed to be a scalar at every spatial
location x. It is a substantial approximation to reduce a measured time-series to a scalar, but we will show that
even with this highly limiting assumption we are able to find anomalous signals, We will also argue that our
method can handle multivariate output, and plan to expand this capability in {uture work.

There are many methods for choosing appropriate numerical values for the parameters listed above.

In this report, we use maximum likelihood estimation. This particular parametrization allows us to estimate

o2 in closed form, but the nugget and length scale parameters require numerical methods for their estimation.
Finally, we can incorporate metadata (for example, the freestream reference conditions) into the model via a

linear form for the mean of the Gaussian model. If we let D be a matrix of metadata measured along with the



response values at every location, and fet § be a vector of regression parameters, then we have the following

firal model for y:

J=27 K, [ eXP(— 2;2 (y-DAY' K (v - Dﬁ)}

As with o2, estimates for B are avaiiable in closed form,

Once we estimate the model parameters, predictive means and variances are given in closed form,.
In particular, the predictive distribution for some new response y* at location x* with metadata d* is a

Gaussian distribution with mean E(y*|y) and variance Var(y*ly) given by:

EQ*|y) =% f+C(y,y)K; (y-DJ),
and Var(y*1y)= o (1 +¢* —COA, y)K,'Cly*,y))

where C(y*, y) is the row vector of covariances between the prediction location x* and all the training

locations, with C(y, »*) being its transpose. While these predictive equations are valid for any location x¥,
we will mainly be interested in these predictions at the same locations as the sensors themselves. In that

case, the joint distribution of the predictive vector is a multivariate Gaussian with

E(P|y)=DA+C,K; (y-Df)
Var(3|y)=6"[ (14491, -CI;'C, |
+67 XNXK'X,) X, - CKX, (XK 'X,) XK,
The methods described above work well when considering a single sensor system, but require
modification for monitoring multiple systems run concurrently. In the case of a typical wind tunnel test,

for instance, sensors within an array are on the order of centimeters apart, but separate systems can be

separated by several meters. A GP model trained to infer correlation on a scale of centimeters will zero out on

the scale of meters (imagine 8—100)_ Thus, the model will infer zero spatial correlation between systems and
will do no better than separate GPs trained on separate systems. While that would be a valid approach for
detecting local errors within a single system, it is not aligned with the stated objective of developing a
framework for a global, holistic detection scheme. In order to unify disparate systems, we need a different

notion of distance,

The main idea here is to rethink the space in which the sensor exists, The previous formulation
considers a sensor and its corresponding measurement as a point in three-dimensional space. Instead, we

will think of a sensor’s position as a vector in a space whose dimensionality is equal to the number of
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runs during which the sensor produced a measurement. The coordinates of that vector are the response values
measured for each run. Then, the distance between two sensors can be computed by considering the
values of this response vector,

More formally, consider two sensors / and J/» coming from two arbitrary systems. Let y,, be the
appropriately scaled univariate response from sensor 7 during run g and y, be the scaled vector of such
responses. Finally, let #;; be the number of runs during which both sensors i and j produced a

measurement. Then, the response distance between these two sensors is given by:

, i
Ay == A Ve Vi |
m; %

where the sum is taken over ail runs during which both sensors were measured. Plugging this into the same

kernel function as above gives the response covariance:
Y —¥ (3, ¥y)
C(yny)=e

The response distance, as formulated, can be thought of as the average L1 distance between the two
response vectors. We chose this norm because it is robust to the presence of cutliers. While other choices are
possible. The L1 norm has proven sufficient for this study. |

As well as giving us a way forward with cross system GP modeling, the numerical values in the
response covariance matrix are of use in their own right. The matrix can be produced very early in an
experimental process, as soon as after a single trial, and gives the experimentalist a quick way to assess
the overall performance of their apparatus. In particular, sensors that are offline have a very clear visual

signature, which we will illustrate in the example below.

Sealing

Since different sensor systems can measure different physical quantities on different numerical
scales, it is essential to scale the output in some way in order to make a sensible comparison, In addition to
ensuring that all quantities are unitless and in the same order of magnitude, scaling accentuates some features
ofthe data while hiding others. We consider two scaling regimes, called system scaling and sensor scaling.

Sensor scaling is applied to the cutput from a single sensor considered across all relevant runs. That
is, the output of any given scaled sensor from all its runs has a mean of zero and a standard deviation of one.

System scaling is applied to the output of an entire sensor system considered for a single run, Under this

15



regime, for instance, the output from a microphone array during a given run has mean zero and standard
deviation one, as does the output of a pressure rake during a given run.

As well as using information from one system to learn about another, we also want to use
information between separate runs of the experimental apparatus. This is also essential for learning the
effects that metadata have on sensor outputs. Since the metadata we consider are typically fixed for an
entire run, we must consider separate runs in order to gain information about how sensor outputs and
metadata co-vary.

Our algorithm handles simultaneous prediction of responses from multiple runs in a natural way. If

we lety, and y, be the response vectors from two runs g and 4, then we can let y' = [y5,y,] and predict the

combined vector with a single GP. This combined vector requires a similarly augmented covariance matrix.

One natural choice is to take the covariance matrix from a single run, K,, and repeat it in block

structure:

C, C
K, =| " "|+¢1
In |iC" C”} ¢ 2n

We call this a full block covariance structure. This is possible because neither the relative
physical locations of the sensors with a system change between runs, nor does the response covariance
matrix, since it is run-averaged. Outputs from an arbitrary number of triaf runs can be stacked in this way.

At first glance, this may appear to be computationally infeasible for even a moderate number of
runs. In our experiments we used on the order of 500 different sensors, which is a reasonable amount of data

ot which to fit a GP. However, GPs scale poorly with larger data sets due the necessity of inverting the i x

covariance matrix, an O(n3) operation. The whole experiment consisted of about 400 runs, and to consider
all of the output simultaneousty would require a response vector of length 200,000, This is far teo large for
GP methods.

However, due to the highly replicated nature of the cross-run covariance matrix, we can use ideas
developed in (Binois, Grammacy and Ludkovski, 2016) to quickly invert this matrix. Rather than inverting
the entire.matrix, we need only invert the submatrix K» and use that to reconstruct the entire inverse using

relatively quick operations. If we wish to consider m runs in a single GP, then we can let U = Lip ® In,

where & denotes the Kronecker product and 1;» a column vector of 1°s. Then,

KIHH = ¢ZIHH! + UC"UT
K;, = ¢71,, + ¢ U(C; +;—ZI,,)U?'
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where the inverse is computed using the well-known Woodbury matrix identity {(Woodbury, 1950), Note
that the inversion steps only involve matrices of size » rather than mn.

Another covariance parameterization we consider has the following form:

Cn O 2
I(Zn = O C" +¢ IZn

We call this model a block diagonal covariance structure. Similarly easy to compute formulas for the
inverse of the covariance matrix will be included in the appendix of Crandel] et al, {2017, to appear). Inthis
model, data from one run is not used to estimate correlations from another run. This model is appropriate
when, for instance, an experimentalist expects that changes in the experimental conditions make cross-run
correlation non-meaningful. Wewill demonstrate the differentkinds of predictions and different kinds of

anomalies these covariance structures are able to detect.

Work Completed .
Two applications are described below. The first is based on a GUI developed using MATLAB for
rapid identification of data collected from arrays of a single types of sensor, in this case microphones, The
second application uses a GP approach based on a multiple-sensor system. Data for assessment of the

methodology was obtained from the Virginia Tech Wind Tunnel Facility.

Single sef of sensors
The statistical methods incorporated into a MATLAB graphical user interface (GUI) are now illustrated.
Additional examples are given in Vasta et al. (2017). The interface has two sections or tabs. Analytical
methods used with the first tab are implemented to identify channels and segments that are suspect. The
second tab is designed to display information about selected channels. This includes a display of the time
series and ifs power spectra as well as information about extreme and unusual segments. Input into the
package is a .csv file and is part of the first tab. The .csv {ile needs to be organized beforehand so that each
column is a time series of a specific microphone, e.g. channel. Additional data input includes the record
length, number of channels and measure of extreme sensitivity, The record length is the number of time
points that is used to determine a natural window for evaluating the interquantile range. For example, if a
measurement series consists of 100,000 points, one might divide the series info M=100 segments with
record length of size L=1000. The number of channels corresponds to the number of columns in the input
file. The input associated with extreme sensitivity is the cutoff for evaluating points that are extrente; it is set
at z=3 as a default. From here we have two tabs of the application. When the application is initiated the

initial page is blank ad awaiting file input.
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The data evaluated below is part of a study on pressure fluctuations produced by forward steps
immersed in a turbulent boundary layer (Awasthi et al., 2014). Tigure 2 show a schematic of the test section,
test wall and anechoic chambers. In a typical study sidewalis are constructed of Kevlar cloth however for
this study one wall was removed and replaced with an adjustable wall that is suitable for growing high-Reynoids
number two-dimensional turbulent boundary layers,

Diagnostic plots of the 31 channels are presented in Figure 12 and suggest problems with several
microphones. Three microphones are identified as being off and five channels suggest clipping. The three
channels have power spectra that are considerably different from the other microphones. This isalso illustrated
inthe segment bar chart and the heatmap. Varicties of other channels have minor violations. A plot of
channel 4 illustrates clipping (Figure 13). Note that the histogram plotted in the lower left plot shows peaks
at the upper and lower values. Channel 6 is one channel that is identified as being off and this is indicated by
the flat time series, the narrow histogram and simple power spectra (Figure 14).

The MATLAB GUI allows rapid evaluation of microphone data quality and identifies extreme
segments, microphones that are not functioning as well as clipping and overrange. In an example with 31
microphones, weidentified three microphones that were not functioning and several microphones with
clipping, Identification of these issues may lead to improved analysis of the information in the microphone
system. The GUI provides some flexibility for a user. This includes selection of the critical threshold for
identifying unusual groups of observations. It is recommended that the user use the GUI with some data of
known quality to identify the threshold prior to use on experimental data. We have found the threshold of three
to be somewhat liberal with real data, i.e. it tends to identify unusual observations that do not affect resuiting
analyses. Evaluation of individual series using a Bonferroni correction can also be helpful in selecting the
critical threshold.

Having developed the mathematical foundation for the error detection framework, and described
the components of the facility sensor system, we apply the GP methodology to our data set to gain

some insights about the system performance and anomalies,

Multiple types of sensors

In this section we illustrate the kinds of output our methods produces when considered across multiple
runs of a given system. While the kinds of anomalies the algorithm finds are often clear to the human eye,
the algorithm can consider the output from an entire experimental trial at once. This saves the experimenter
the need to manually analyze the output of every sensor system, a potentially monumental task,

Figure 15 shows the output from the phased array system across eight expetrimental runs.
Specifically, the circles indicate the root-mean-square of the measured time-series for each microphone

signal. The dashed lines separate the output from one run to the other (there are 251 microphones in the
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phased array; hence, 251 obsetvations per run). There is no natural continuity between runs however, they
are presented sequentially for convenience. GP predictions for the same set of data (circles) are shown with
lines. Here, we compare the predictions made with two different covariance structures: a block diagonal
structure, which does not correlate sensor data across runs, and a full block structure, which does.
Essentially, this means that for the eight runs shown in F igure [5, using a block diagonal would only use
information from run 1 to predict run |, whereas the full diagonal would also use information from runs all
runs to predict run 1. We chose to include this set of runs to demonstrate two classes of anomalies found
thus far and illustrate the performance of the two covariance structures considered.

The first type of anomaly is a recurring sensor failure, shown by the repeatedly low point with an
RMS of about -10. That specific microphone was faulty at the start of the experiment and remained
faulty throughout. The block diagonal structure predicts a drastically different value for the output of the
sensor than the actual measured output. In essence, the prediction is smoothed over by the nearby
microphones in the array. Because of the great discrepancy between the prediction and the actual value, our
algorithm will flag this output as anomalous. Contrast that to the output of the fulf block structure. Because
the full block uses data from every run, and because the anomaly is consistent across runs, this implementation
interprets the disparate output as signal and produces a prediction in line with the observed value,

The second type of anomaly is an idiosyncratic sensor malfunction, one that manifests itself for a short
period of time and then vanishes. The exact cause forthis is still unknown, buta thorough discussion of both
anomalies in the context of this global detection scheme will be included in the final paper and compared to
the results of a more typical engineering analyses. The 12 example runs were performed sequentially, so the
anomalies in panel 9 were repeated neither before nor after. Because the full block structure learns the
relationship between the sensors by considering every run, it does an excellent job of modeling what the
proper signal for panel 9 ought to have been. The block diagonal structure has no such recourse, however, as
it does not attempt to correlate sensor output across runs.

Figures 16 and 17 show the global correlation maps using the sensor scaling and system scaling
approaches, respectively. White indicates a high correlation, and red indicates a low correlation. The
dashed lines are used to show the sub-matrices corresponding to the four available sensor systems, The
solid white rectangles are runs where data was not taken with that particular sensor group. The difference
between the two is in the way tlﬂe raw sensor outputs are scaled. Figure 16 uses a sensor scaling approach and
Figure 17 uses a system scaling approach.

First, note that these plots were produced without using the GP methodology described above. In
the final paper, the covariance matrices corresponding to these heat maps will be used for modeling and

anomaly detection, but they are revealing in their own right. While the results we will discuss are
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preliminary, we wish to highlight that even with this relatively simple construction, we are able to see global
patterns in the experimental data and raise interesting questions about the relationships therein.

Next, note the solid red lines crossing all the way across Figure 17 in the rows corresponding to the
rake. These lines indicate that the sensors to which they correspond do not correlate with any other sensor in
the entire apparatus. While this is not necessarily an aberrant outcome, as it is possible to have sensors
which measure a mostly independent quantity, it is unusual that the pattern is so drastically different from the
other rake sensors. The reason for this pattern is that these sensors were not used during the experimental
trials, a fact known to the engineers but not revealed to the statisticians. This demonstrates that, by
examining these figures, one is able to clearly see non-functional sensors without having any knowledge of
the physics, or even the instrumentation, of the experiment.

We can readily see additional features in the data by examining Figure 16. Note the distinct
fooking squares in the corners of the rake by rake section of Figure 16, These blocks cotrespond to the
peripheral rake sensors, the ones in the boundary tayer of the wind tunnel. We hypothesize that these
sensors are cotrelated with themselves, but not to with the sensors in the center of test section, because of the
different flow regimes in which the sensors are placed (the freestream and the boundary layer).

Finally, note the bands in the rake by phased array submatrix in Figure 16. These bands are brighter
at the edges and darker in the interior, indicating that the phased array is more ¢orrelated with the sensors
in the boundary layet than they are with those in the smooth flow. The reasons for this are not clear and will
be explored more fully in future work. This demonstrates that our methodology raises novel questions about
the relationships in the experiment, questions that may lead to novel insight about the experimental apparatus,

or potentially even the underfying physics,

Opportunities and additional research

The Gaussian process approach provides a valuable tool for the identification of anomalies and is a powerful
approach for combining information from different sensor types. There is considerable opportunity for
additional research to extend and further investigate the above ideas. These include:

1. Development of the theoretical methods needed to assess sensor fidelity, design sensor systems for
error tolerance, and design run schedules for large-scale, fault-tolerant test campaigns that:
a. Exploit available metadata
b. Account for data of different dimnension
c. Account for diverse data types
d. Can be integrated over existing operations
. & Learn with experience
2. Development of practical software tools that incorporate the above methods into functioning
measurement and test planning systems in a realistic diverse and large scale test operation (the VT
Stability Tunnel)

i5



3. Demonstration of the effectiveness of the above methods through application to and integration into
routine operations of a large-scale facility such as the VT Stability Tunnel,
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Figute 2: Top view of the test section used in the experiment to collect microphone array data,

showing the anechoic chamber. All measurements are in meters,
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Figure 3: Locations of microphones to collect atray data.
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Figure 4: Phased array and standalone microphone placement relative to the free-stream direction.

19



Figure 5: Tunnel view of the test section, phased microphone array, and standalone microphones (white
circles added for emphasis). From left to right: port anechoic chamber, test section, and starboard chamber
(flow is out of page).
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Figure 6: Beamform map at 2500 Hz. The map shows localized noise sources on the blades as well as on the
motor housing (likely due to mechanicaf noise).
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(a) Ten-bladed rotor ingesting the wake
of an upstream cylinder.

(b} The on-blade hot-wire probes (flow is
directed into the page).

Figure 7: Experimental photos of the on-blade HWA probes and upstream cylinder.
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Figure 8: Upwash velocity for various advance ratios. The dashed line shows the cylinder location (upstream
of the rotor). The probes cross through the wake center twice per rotation.
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(a) Hot-wire probe (indicated by the white
arrow) down- stream of a tripped tworhladed rotor,
measuring flow ve- locity.

{b) Pitot probe {indicated by white arrow)
downstream of tripped twobladed rotor, measuring
pressuve.

Figure 9: Experimental photos of the probe measurements made downstream of a two-bladed rotor. The
probes could be traversed to obtain a radial profile. Flow direction is from left to right.
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Figure 10: Phase-averaged mean velocity in the rotor plane, with the blades spinning clockwise.
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Prassure Probes

Figure 11: Wake rake of Pitot and Pitot-static probes that can be traversed vertically to give a cross-sectional
profile. Flow is out of page.
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Figure 13: Graphical displays for channel 4 in microphone array data.
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Figure 14: Graphical displays for channel 6 in microphone array data.
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Figure 15: Root-Mean-Square of each of phased atray microphone signal (circles), plotted versus microphone
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microphones, GP predictions are shown in red, using a) a block diagonal covariance matrix b} a full block
covariance matrix.
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Figure 16: Heat map of the response covariance using sensor scaling
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