
Solving the Traveling Salesman Problem Using
Ordered-Lists

THESIS

Petar D. Jackovich, 1st Lt, USAF

AFIT-ENS-MS-19-M-127

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-19-M-127

SOLVING THE TRAVELING SALESMAN PROBLEM USING ORDERED LISTS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Petar D. Jackovich, B.S.

1st Lt, USAF

21 March 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-19-M-127

SOLVING THE TRAVELING SALESMAN PROBLEM USING ORDERED LISTS

THESIS

Petar D. Jackovich, B.S.
1st Lt, USAF

Committee Membership:

Lt Col Bruce A. Cox, PhD
Chair

Dr. Raymond R. Hill, PhD
Member

AFIT-ENS-MS-19-M-127

Abstract

The arc-greedy heuristic is a constructive heuristic utilized to build an initial, quality

tour for the Traveling Salesman Problem (TSP). There are two known sub-tour elim-

ination methodologies utilized to ensure the resulting tours are viable. This thesis

introduces a third novel methodology, the Greedy Tracker (GT), and compares it to

both known methodologies. Computational results are generated across multiple TSP

instances. The results demonstrate the GT is the fastest method for instances below

400 nodes while Bentley’s Multi-Fragment maintains a computational advantage for

larger instances.

A novel concept called Ordered-Lists is also introduced which enables TSP in-

stances to be explored in a different space than the tour space and demonstrates

some intriguing properties. While computationally more demanding than its tour

space counterpart, the solution quality advantages, as well as a possibly higher pro-

portion of optimal occurrences, when optimality is achievable via the ordered-list

space, warrants further investigation of the space. Three meta-heuristics that lever-

age the ordered-list space are introduced. Testing results indicate that while at a

severe iteration disadvantage, these methodologies benefit from using the ordered-list

space which yields a higher per iteration improvement rate.

iv

Acknowledgements

First, I would like to thank my dog, Modi, for tolerating the long hours I spent not

giving him attention while I was at school or in my home office working on this thesis.

I would like to thank my parents for listening to my weekly ramblings and emotional

vents about this thesis. I would like to thank Dr. Raymond Hill for convincing me to

pursue this thesis topic. Finally, I’d like to thank my research advisor, Lt Col Bruce

Cox, for putting up with my varying levels of motivation and excitement throughout

the course of this thesis.

Petar D. Jackovich

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1

1.1 Motivation . 1
1.2 The Traveling Salesman Problem . 2
1.3 Research Questions . 4
1.4 Outline . 4

II. Literature Review . 6

2.1 NP-Hardness . 6
2.2 LP Relaxation . 7
2.3 Cutting Plane Method . 8
2.4 Heuristics . 9
2.5 Greedy-type Construction Heuristics . 11

Nearest Neighbor (node-greedy heuristic) . 11
Arc-greedy Heuristic . 12
Recursive-Selection Heuristic . 13

2.6 Greedy-type Construction Heuristic Modifications 14
Minimizing the Variance of Distance Matrix Greedy 14
Greedy with Regret . 14

2.7 Meta-Heuristics . 15
Simulated Annealing . 15
Genetic Algorithm . 16

2.8 Lin-Kernighan Algorithm . 17
2-Opt . 17
Concorde . 18

III. Arc-Greedy Subtour Elimination Methodologies . 20

3.1 Exhaustive Loop . 21
Directional vs. Non-Directional . 22

3.2 Multi-Fragment . 24
3.3 Greedy Tracker . 28

GT Improvements . 32

vi

Page

IV. Greedy Sub-tour Elimination Results . 36

4.1 TSP Instances . 36
4.2 Testing . 38
4.3 Symmetric Instance Results . 39
4.4 Asymmetric Instance Results . 40
4.5 Future Improvements . 41

V. Ordered-Lists Methodology . 44

5.1 Ordered-Greedy Heuristic . 44
5.2 Perfect-Ordered List . 47
5.3 Ordered-Lists vs. Tour Order . 49
5.4 Perfect List Random Greedy Search . 51

PLGRS - Random Swaps . 53
PLGRS - Bad Arc Targeting . 54
PLGRS - Bad Arc Targeting & Good Node . 56
PLGRS - ALL . 57

VI. PLGRS Results . 60

6.1 Greedy+2-Opt Comparison . 60
6.2 Simulated Annealing Comparison . 61
6.3 Future Improvement . 63

VII. Conclusion . 64

7.1 Sub-tour Elimination . 64
7.2 Ordered-Lists . 65

Appendix A. R Code . 66

Bibliography . 87

vii

List of Figures

Figure Page

1. Konigsberg Bridges [1] . 3

2. Computational Complexity [2] . 6

3. TSP Relaxation Solution . 8

4. Cutting Plane [3] . 9

5. Greedy Worst Solution Example . 12

6. Greedy Subtour 1 . 20

7. Greedy Subtour 2 . 21

8. EL Subtour 1 . 22

9. EL Subtour 2 . 22

10. EL Subtour 3 . 24

11. MF Subtour 1 . 25

12. MF Subtour 2 . 26

13. MF Subtour 3 . 26

14. Greedy Tracker 1 . 29

15. Greedy Tracker 2 . 29

16. Greedy Tracker 3 . 29

17. Greedy Tracker 4 . 30

18. Greedy Tracker 5 . 30

19. Greedy Tracker 6 . 31

20. Greedy Tracker 7 . 31

21. GT Row Delete 1 . 33

22. GT modified 1 . 33

viii

Figure Page

23. GT modified 2 . 34

24. GT modified 3 . 34

25. GT modified 4 . 34

26. Raw Data Snapshot . 37

27. Microbench Output . 38

28. Microbench Output Plot . 39

29. Proposed Future GT 1 . 42

30. Proposed Future GT 2 . 42

31. Proposed Future GT 3 . 43

32. Proposed Future GT 4 . 43

33. Ordered-Greedy 1 . 45

34. Ordered-Greedy 2 . 45

35. Ordered-Greedy 3 . 46

36. Perfect-Order 1 . 47

37. Perfect-Order 2 . 47

38. Perfect-Order 3 . 48

39. Perfect-Order 4 . 48

40. gr48 Optimal Tours . 49

ix

List of Tables

Table Page

1. TSP Instances . 37

2. Greedy Sub-tour Methodology Run Times (Symmetric) 40

3. Greedy Sub-tour Methodology Run Times (Asymmetric) 41

4. 5 by 5 to 9 by 9 List vs. Tour Comparison . 50

5. Tour Distance Comparisons (Symmetric) . 52

6. Tour Distance Comparisons (Asymmetric) . 53

7. Greedy 2-Opt vs. PLGRS Comparison . 61

8. SA 2-Opt vs. PLGRS Comparison . 62

9. SA 2-Opt vs. PLGRS Iterations Comparison . 63

x

SOLVING THE TRAVELING SALESMAN PROBLEM USING ORDERED LISTS

I. Introduction

This thesis presents a novel sub-tour tracking and elimination methodology, the

Greedy Tracker (GT), which ensures feasible solutions to the Traveling Salesman

Problem during the implementation of the arc-greedy constructive heuristic. The

GT is compared to other currently accepted sub-tour elimination methodologies to

examine situational computational advantages. The paper then utilizes constructive

heuristics to develop and explore a novel meta-heuristic that seeks to find an optimal,

or near optimal, tour utilizing a novel concept called Ordered-Lists.

1.1 Motivation

Linear programming problems fall under the mathematical topic of optimization;

they seek to optimize a linear function representing a measure of merit while minding

linear equality and or inequality constraints on the systems performance [4]. The

term linear programming was coined by economist and mathematician T.C. Koop-

mans based on work that George B. Dantzig was doing as a mathematical advisor

to the United States Air Force during the late 1940s. Dantzig later developed the

“simplex method” to solve these linear programs which became widely accepted due

to its ability to model important and complex management decision problems and

its capability for producing solutions to many important linear programs in a reason-

able amount of time. However, the simplex method was not able to solve all LPs in

a reasonable amount of time, leading mathematicians to seek an understanding on

the types of problems that proved intractable for the method. Combinatorial opti-

1

mization problems are a subset of discrete linear programs that involve finding an

optimal set from a finite set of solutions. While these problems theoretically have

fewer possible solutions than a traditional linear program, they break the underlying

continuity assumptions used in the simplex method thus preventing its usage. Other

direct solution approaches to combinatorial optimization problems have also proved

intractable, due to their exponential computational growth as problem size increases.

One such combinatorial optimization problem that has long captured the interest of

mathematicians is the traveling salesman problem.

1.2 The Traveling Salesman Problem

Applegate et al [5] describes the traveling salesman problem as, “Given a set of

cites along with the cost of travel between each pair of them, the traveling salesman

problem, or TSP for short, is the problem of finding the cheapest way of visiting

all the cities and returning to the starting point.” It can also be mathematically

defined as, given a complete undirected graph G = (V,E), cities are represented via

the graph vertices, and edges represent the paths between the cities where the edge

weights are the distances between each city. In terms of a graph the problem can

be posed as: What is the shortest tour that visits all vertices once and returns to

the starting vertex? One of the earliest examples of a similar graph problem was

that of Euler’s bridge conundrum in Konigsberg. The city of Konigsberg consisted of

four land areas separated by two branches of the river Pregel but connected by seven

bridges. Euler analyzed the challenge of finding a way to cross all the bridges exactly

once and return to the origin. This problem differs from the TSP as it seeks to travel

each arc once, and return to the starting node. However, while different, Euler’s

problem established much of the graph theory that is utilized to define problems like

the TSP. The exact origins of the TSP are not known and there are many examples of

2

Figure 1. Konigsberg Bridges [1]

other similar early concepts. The first recorded use of the phrase “Traveling Salesman

Problem” occurred in 1949 by Julia Robinson in her paper On the Hamiltonian game

(a traveling salesman problem) [5]. When traditional linear programming methods

were applied to the TSP, intractability issues arose [5]. It has since been shown this

is because the TSP falls into a class of known computationaly ‘hard’ problems called

NP-Complete [6]. As a result, nontraditional methods such as heuristics are often

used when solving the TSP.

A heuristic is a “method which, on the basis of experience or judgment, seems

likely to yield a reasonable solution to the problem, but which cannot be guaranteed to

produce the mathematically optimal solution” [7]. This is the key difference between

a heuristic and an algorithm. An algorithm guarantees optimality, whereas a heuristic

does not. Heuristics have many advantages over algorithms, especially when it comes

to the class of NP-Complete problems. Evans and Zanakis [8] present a multitude

of these reasons, but considering the intractability of the TSP, the primary reason is

that while “An exact method is available. It it is computationally unattractive due

to excessive time and or storage requirements. Large real-world complex problems

3

may prevent an optimizer from finding an optimal or even a feasible solution within a

reasonable effort. Heuristics, on the other hand, can produce at least feasible solutions

with minimal time and storage requirements.”

Many heuristics utilize a greedy-type methodology, where the best choice accord-

ing to some predefined parameter is selected at each step of the method. An example

of a greedy-type method for the TSP is the arc-greedy constructive heuristic, where

the shortest available arc is added to the tour. However, this greedy heuristic runs

the risk of generating sub-tours. These sub-tours are disconnected tours of less than

size N (where N is the number of nodes present in the graph) that prevent a single

continuous tour from being formed. Some research has been completed to develop

methodologies that avoid sub-tours when utilizing the arc-greedy heuristic [9][10].

1.3 Research Questions

1. This paper introduces a novel sub-tour elimination methodology for the arc-

greedy heuristic that is compared to two known sub-tour elimination method-

ologies. Computational results are generated across multiple TSP instances for

each method.

2. A novel concept called Ordered-Lists is introduced which enables TSP instances

to be explored in a different space than the tour space. This concept demon-

strates some intriguing properties which we leverage in some novel meta-heuristics.

1.4 Outline

In Chapter 2, various methods used to solve the TSP are reviewed. In Chap-

ter 3, two known arc-greedy sub-tour tracking and elimination methodologies are

introduced with pseudo code, examples, and theoretical advantages. This chapter

also introduces a novel sub-tour elimination method, the Greedy Tracker. Chapter 4

4

summarizes each of these methodologies performance across different instances of the

TSP focusing on run-time comparisons and identifying run time trends due to under-

lying instance structure. In Chapter 5, a novel concept for viewing TSP instances,

Ordered-Lists, is introduced and a novel TSP meta-heuristic utilizing this concept is

proposed. In Chapter 6, results from the proposed meta-heuristic are summarized fol-

lowed by Chapter 7 where, all results are concluded with recommendations on future

research of utilizing the arc-greedy methodology on the TSP and other combinatorial

optimization problems.

5

II. Literature Review

In this chapter several well known algorithms and heuristics used to solve the

TSP are introduced. The chapter starts with a brief overview of NP-Hardness and is

followed by the Linear Programming formulation of the TSP, an overview of heuristic

methods, and an introduction to popular construction and meta-heuristic’s specif-

ically used on the TSP. Understanding these motivates the sub-tour elimination

methods for arc-greedy constructive heuristics as well as methodologies used in the

Ordered-List meta-heuristics introduced later in this paper.

2.1 NP-Hardness

The TSP is an NP-Complete problem [6]. NP-complete is one of the classes of

computational complexity. The other classes P, NP, and NP-hard along with their

currently understood relationships are found in Figure 2. Briefly, the class P consists

Figure 2. Computational Complexity [2]

of problems solvable in polynomial time [2], the class NP consists of problems whose

solutions can be verified in polynomial time. It is an open question if the class P is

equivalent to class NP [11]. In additions, the class NP-hard can be informally thought

of as the class of problems that are ”at least as hard as the hardest problems in NP.”

The intersection of NP-Hard problems , and NP problems is called NP-complete. No

6

one has yet developed an efficient method for solving large instances of NP-complete

problems to optimality [12]. The inclusion of the TSP in the set of NP-complete

problems motivates the usage of other solving techniques such as LPs with cuts and

heuristics.

2.2 LP Relaxation

The LP formulation for the the TSP as initially described by Dantzig et al [13] is

given as:

minimize cTx

subject to 0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is an end of e) = 2 for all cities v.

(1)

In this formulation, the decision variable xe represents the choice of including edge e in

the tour. The objective function associates a cost matrix with this decision variable,

while the constraints ensure that each edge is used at most once and that each node

has “two edges”. The authors, however, go on to discuss that this formulation is not

the actual problem they want to solve, but is instead the problem they can solve. The

formulation above is a relaxation of the actual problem which allows for a solution

containing sub-tours, as well as solutions that partially assign edges. For instance,

Figure 3 shows a allowable solution to (1), as it satisfies all constraints however it

does not produce a single continuous tour. The answer found from the relaxation is

however still useful as it provides a lower bound objective value for a TSP instance

which can then be used to grade the quality of a proposed tour found by heuristics,

or as a foundation for cutting plane algorithms.

7

Figure 3. TSP Relaxation Solution

2.3 Cutting Plane Method

Research from Heller [14] and Kuhn [15] indicated it may be possible to define

beforehand a finite list of inequalities to add to the LP relaxation to exactly define the

feasible region. However, the full list of inequalities could be far too large for any linear

programming solver to handle directly. One methodology proposed by Applegate et

al [5] to utilize this list is to implement a series of iterative cuts to remove infeasible

solutions. A cut, or cutting plane, is a linear inequality that constricts the convex

hull of the feasible region. The process of adding these cuts involves solving the LP

relaxation, examining the solution to determine if it is a feasible tour, determining

which additional inequalities are necessary to break any sub-tours, adding them and

resolving the problem. This continues until a feasible, and thus optimal solution, to

the TSP is found. Iterative cutting is possible because not every inequality needs

to be added to the LP to find the optimal solution. Therefore, by solving multiple

smaller LPs and iteratively adding cutting planes to remove infeasible intermediate

tour solutions, an optimal solution can be found. However, the time to solve grows

exponentially depending on the number of cuts that may be necessary. Because of

this, a heuristic solution methodology appears to be the best way to quickly produce

good, if not optimal tours [9].

8

Figure 4. Cutting Plane [3]

2.4 Heuristics

The difficulties encountered in applying cutting planes motivate the usage of

heuristic methodologies to solve the TSP. The earliest recorded use of heuristics traces

all the way back to ancient Greek mathematical literature. The name heuristic comes

from the Greek verb ”heurskein” meaning ”to find”. From then to now people have

been applying creative methodologies to solve difficult problems. As the name implies,

some of the earliest examples of the TSP were records of various Salesman discussing

the idea that more thought should be put into how they organize their journeys, or

tours, to neighboring cities. A excerpt from the Commis-Boyageur, a 1830s German

traveling salesman handbook [5], was brought to the attention of the TSP research

community by Heiner Muller-Merbach in 1983 which translated to, ”The main thing

to remember is always to visit as many localities as possible without having to touch

them twice.” This excerpt indicates that as early as the 1800s, a salesman was cog-

nizant that his routes should be planned as to minimize the number of places he visits

more than once.

9

There are many desired qualities that make a good heuristic. Evans and Zanakis

[8] give a list of characteristics they feel defines a good heuristic:

• Simplicity,

• Reasonable core storage requirements,

• Speed,

• Accuracy,

• Robustness,

• Acceptable to multiple starting points,

• Produce multiple solutions,

• Good stopping criteria,

• Statistical estimation, and

• Interactive.

While many of these are intuitive, some may require further explanation. Because a

heuristic does not necessarily converge to the optimal solution like a algorithm, the

starting point, or initial solution, is very important. Different feasible initial solutions

start at different locations within the feasible region and can often converge to dif-

ferent local optima. By making a heuristic acceptable to multiple starting solutions,

it has a better chance to test and explore more of the feasible region. As it’s Greek

root implies, A heuristic also needs to have a good stopping mechanism to determine

when it has ”found” a suitable solution. This ensures that the heuristic does not

run for a unreasonably long time searching for answers without improvement. It also

ensures the the heuristic does not stop before possibly reaching a very good set, or

neighborhood, of new solutions.

Most heuristics can be broken into three categories, construction heuristics, local-

search heuristics, and meta-heuristics. In relation to the TSP, construction heuristics

10

build a tour from scratch, local heuristics improve a given tour, and meta-heuristics

apply a combination of constructive and iterative local-search heuristics [16], of partic-

ular note is a meta heuristics ability to be interactive. Modern meta-heuristics often

include user definable elements, which allow the user to tune the meta-heuristic for

the given instance it is solving. These elements often include number of iterations,

stopping criteria, number of initial starting solutions generated, and the definition

of neighboring solutions, all of which are very important to how the meta-heuristic

performs with regards to many of Evans and Zanakis’s qualities.

2.5 Greedy-type Construction Heuristics

One of the most common construction heuristic methodologies is the greedy heuris-

tic. A greedy heuristic is one that at each step selects the best decision for a given

metric, with no regard to how such choices may effect future decisions. For the

TSP, there are three primary greedy construction heuristics; Nearest neighbor (node-

greedy), arc-greedy, and Recursive Selection.

Nearest Neighbor (node-greedy heuristic).

The nearest neighbor(NN) heuristic was first applied to the TSP in a 1954 paper

by Flood [17] but was introduced as the ”next closest city method.” The process was

later refined by Dacey [18] and coined with its eventual name. The NN starts at

an arbitrary city, and successively visits the closest unvisited city. It is important

to to note that the nearest neighbor heuristic maintains a single path fragment that

originates at the predetermined starting city, and cannot be closed into a cycle until

every node has been visited. Therefore the decision of “which arc to add” is limited

to only those arcs that leave the current end node of the fragment, this yields an

algorithm run time of O(N2). Future work by Bentley [9] allowed this heuristic to

11

perform in O(N log N). This methodology allows NN to quickly create an initial tour

which avoids sub tours. However, this approach is extremely sensitive to the choice

of starting node, especially in larger instances. This sensitivity leads to a common

practice of running NN for all cities as the starting node to provide the best solution,

which is never more than ([log N] + 1)/2 times the length of the optimal tour[19].

The shortfall of this heuristic is that one can easily create examples that cause the

heuristic to produce the worst possible solution. A simple example of a scenario where

this occurs can be seen in Figure 5. If Node A is selected as the starting node, the

Figure 5. Greedy Worst Solution Example

heuristic is stuck in a situation where it constantly crosses it’s own path to connect

to the nearest node thus producing the worst possible solution for the given instance.

This is a characteristic downfall that is quite common in many greedy heuristics due

to the short term framing of the greedy decisions being made.

Arc-greedy Heuristic.

The arc-greedy heuristic was first introduced by Papadimitiou and Steiglitz [20]

as a modification of a process first seen in a 1968 paper by Steiglitz and Weiner

[21]. The heuristic is a more complex greedy-type TSP heuristic where all edges of

the graph are sorted from shortest to longest. Edges are then added to the tour

starting with the shortest arc as long as the addition of this arc will not make it

impossible to complete a tour. Specifically, this means avoiding adding edges that

make early cycles, and also avoiding creation of vertices of degree three. This process,

12

as originally proposed, required O(N2 log N) time. However, Bentley was also able to

speed up this process to O(N log N) [9] in a paper introducing his Multi-Fragment

(MF) version. This yields a similar run time to NN while maintaining a similar

worst case solution quality. Arc-greedy’s tour construction methodology causes the

heuristic to only produce a single solution for each instance where NN can arrive at

different solutions based on starting point. This is one of the shortcomings of arc-

greedy when related to NN; the failure to generate variability in the output tour. On

average though, the arc-greedy heuristic tends to outperform NN in tour quality on

a instance to instance basis[9], however there are problem instances where the arc-

greedy heuristic is significantly outperformed by NN as the scope of the arc-greedy,

considering all arcs at any instance, is inherently more greedy than NN, whose decision

is bound to a single node. Thus, the arc-greedy heuristic can create situations where

the final arcs needed to connect the various fragments into a single tour are of poor

quality.

Recursive-Selection Heuristic.

Taking the arc-greedy shortcoming into account, Okano et al [16] introduced a

new heuristic known as the Recursive-Selection Heuristic (RS). Rather than sorting

all arcs by length, the RS sorts all points by order of the distance between each

point and its nearest neighbor and iterates through the list adding points as long as

they do not create a degree of three or early cycles. Once it has iterated through

the list, if any points still have a degree of one or zero, it will resort the list with the

closest available nearest neighbors and iterate through again. No runtime performance

was given for the RS, but the RS+2-Opt meta heuristic designed by Okano steadily

outperformed the MF+2-Opt through many of the instances tested in [16]. This RS

heuristic motivates one of the central research questions of this paper “What is the

13

best way to order the greedy decisions made when solving the TSP?” It appears that

modifying the decision framework can change how well a greedy heuristic performs.

2.6 Greedy-type Construction Heuristic Modifications

Minimizing the Variance of Distance Matrix Greedy.

A recent modification to the arc based greedy heuristic utilizes work from a 1970

paper by Held and Karp [22] to produce an arbitrary real vector, π, which transforms

the distance matrix D to D′ by stretching and manipulating the distances between

each node [10]. In general, the optimal tour of both distance matricies are the same.

This allows for the possibility of finding a vector π such that when the arc based greedy

heuristic is implemented on D′ a better solution is produced versus when the same

heuristic runs on D. Further research by Wang et al [10] showed that the performance

of the arc based greedy heuristic was significantly negatively correlated to the variance

of D′. This motivates the remainder of the paper, finding a vector π that minimizes

the variance of the distance matrix D′, thus producing better greedy solutions. The

authors identify the fact that minimizing the variance of the distance matrix mitigates

a key disadvantage of the arc-based greedy heuristic; the disadvantage being that the

last few edges added are often very inefficient due to the non-forward-thinking, greedy

nature of the methodology.

Greedy with Regret.

A greedy heuristic with regret modifies a greedy heuristic so that it may recon-

sider past decisions to possibly improve the final solution. Hassin and Keinan applied

this methodology to the TSP utilizing the Cheapest Insertion Heuristic [23]. Adding

regret allows the greedy heuristic to correct one of its biggest faults, selecting the best

decision at the present moment with no regard to what happens to future moves. Has-

14

sin and Keinan create a deletion step which allows the heuristic to delete a previously

added edge to the sub-tour if it is more expensive than the current decision.

2.7 Meta-Heuristics

This section discusses three meta-heuristics that can incorporate greedy type ele-

ments into their solution methodologies. As discussed earlier, a meta-heuristic com-

bines both constructive and, sometimes multiple, local-search heuristics with tunable

elements to achieve near, if not optimal, solutions.

Simulated Annealing.

Simulated annealing (SA) is a local search type heuristic, modeled after the anneal-

ing process that occurs in metal and glass making. The heuristic was first introduced

in 1953 by Metropolis et al [24] as a numerical simulation. This heuristic was then

applied to specific combinatorial optimization problems in 1983 by Kirkpatrick et al

[24], and finally the TSP, two years later in a paper by Cerny [25]. Additional tunable

elements and advantages were added to a later iteration by Eglese [26] who noted that

the crux of SA was the ability to tune its temperature parameters to probabilistically

accept worse solutions in order to avoid the heuristic getting stuck in a local minima.

This is accomplished by a ‘temperature’ control parameter that assigns a probability

to accepting a worse solution when considering any neighbor solution. Generally, SA

starts with a warm temperature, corresponding to a high probability of accepting

worse neighboring solutions, and cools over time. Reheating functions can be applied

so that the heuristic can climb out of local minima. The biggest weakness of SA is the

difficulty in tuning the heuristic to different instances, the proper stopping criteria,

the proper set of neighbors, and the fact that ideal heating and cooling functions can

change drastically from instance to instance.

15

Genetic Algorithm.

Genetic Algorithms (GA) are modeled after the evolutionary process. This idea

was first conceived in 1950 by A.M. Turing [27]. He came up with the following list

of connections which he believed could be incorporated into a computerized process

modeling hereditary evolution.

• Structure of the child machine = hereditary material,

• Changes of the child machine = mutation,

• Natural selection = judgment of the experimenter.

D. B. Fogel [28] first applied this methodology to the TSP in 1988. The GA follows a

Darwinian ”Survival of the Fittest” type mentality by first generating a random initial

population. A percentage of the population is then selected and evolved through

mutation and/or reproduction. This continues until a set termination criterion is met

and the newly created individuals are then evaluated against a fitness parameter. A

new population is generated from individuals with a specified fitness level and the

population is once again evolved. Generally, GAs perform very well due to their

ability to explore many solutions simultaneously and identify quality schema utilizing

a concept known as intrinsic parallelism. Reeves describes schema as a “subset of a

space in which all the strings share a particular set of defined values [29]. In the case

of the TSP, schema may be tours that have a certain number of common values in a

row. For example, if we have a 10 node TSP, the group of tours that have a common

connection of 3-4-5-6 would be a schema. If those connections are efficient and occur

in many of the higher fitness population a GA identifies the string as a quality schema.

Intrinsic parallelism is the idea that information on many schemata can be processed

in parallel [30]. The difficulty of GAs in relation to the TSP is that special precautions

have to be taken to ensure that mutations do not cause incomplete tours. Multiple

16

methodologies ensuring feasibility of solutions via mutation and combinations of tours

are discussed by Merz and Freisleben [31].

2.8 Lin-Kernighan Algorithm

The Lin-Kernighan (LK) heuristic was published in 1972 [32]. Various iterative

improvements have been made to the LK since its conception, some of the most recent

advances can be found in a paper by Rego et al [6] documenting LK variants as well

as state-of-the-art data structures which play a key role in many of the improvements.

The core of this heuristic involves an adaptive k -opt swap methodology that allows

for a variable number of swaps to occur at each iteration.

2-Opt.

An example of a k -opt swap, the 2-OPT routine incrementally considers pairs

of arcs for a swap. In order to perform a thorough local search, the 2-OPT routine

increments through each node along the tour and considers all possible arc pair swaps

at that point. One methodology for performing such a swap is to replace the interme-

diate tour between two nodes with its reverse order. If the swap is shown to reduce

to total tour cost, the swap is saved (but not executed) and compared against all

other swaps in the current iteration. At the end of the iteration if an improvement

has been saved, the improved tour is executed and becomes the new tour, and the

process starts over. Generally k-Opt methodologies need to have a good starting so-

lution to be effective. One of the best starting solutions for a 2-Opt is the arc-greedy

heuristic [16]. Thus one popular methodology is the arc-greedy+2-Opt. Pseudocode

for this process can be seen in Algorithm 1.

17

Algorithm 1 Arc-Greedy+2-Opt Pseudocode

1: Initialize Variables
2: Generate arc-greedy tour
3: BestCost & SaveCost = arc-greedy tour cost
4: BestTour & SaveTour = arc-greedy tour
5: while Stop <1 do
6: i = 0
7: while i <Size-1 do
8: i = i + 1
9: j = i + 1
10: while j <Size do
11: TESTtour = replace tour between i and j with reverse
12: Calculate TESTtourCost
13: if TESTtourCost <BestCost then
14: BestTour = TESTtour
15: BestCost = TESTtourCost
16: end if
17: j = j + 1
18: end while
19: end while
20: if BestCost <SaveCost then
21: SaveTour = BestTour
22: SaveCost = BestCost
23: else
24: Stop = 1
25: end if
26: end while

Concorde.

The Concorde is a heuristic LP-type solver designed by Applegate et al [5] that

incorporates various separation routines into a primary cutting-plane loop. It orders

the routines by rough estimates of their computational requirements. Utilizing a

controller type program cuts from a routine are added to the LP relaxation and the

problem is solved. If the LP bound for the entire round of cutting planes is above a

threshold value, the round is broke off, column generation is applied, and the code

returns to the start of the loop. If the total improvement is less than the threshold,

additional cuts from the next separation routine are added and the problem is solved

18

again. This continues until a total improvement bound is less than a designated

threshold.

19

III. Arc-Greedy Subtour Elimination Methodologies

This chapter provides detailed explanations, examples, and pseudo-code for two

known sub-tour elimination methodologies for the arc greedy TSP constructive heuris-

tic as well as a third novel sub-tour elimination method. The arc based greedy heuris-

tic gradually constructs a TSP tour by adding to the tour the shortest arc available at

each iteration that does not cause a node to have a degree of more than 2 (see Figure

6). However, this degree constraint alone does not prevent sub-tours. The heuristic

must also verify that a tour of less than size N, a premature partial circuit, called a

sub-tour is not created. For example, consider the following tour construction utiliz-

ing an arc greedy constructive heuristic methodology on a 5 node TSP instance. After

Figure 6. Greedy Subtour 1

adding the first two shortest arcs A-B and B-C, we can see from the distance matrix

that arc A-C is the next shortest and still ensures that all nodes in the graph do not

exceed a degree of 2. However, adding this arc creates a sub-tour, which would pre-

vent the heuristic from ever constructing a feasible TSP tour (see Figure 7. There are

two known methodologies for preventing sub-tours while using an arc greedy heuris-

tic, namely Bentley’s Multi-fragment method [9], and an exhaustive loop test. This

paper introduces a third novel method for eliminating sub-tours while using an arc

greedy constructive heuristic. Each of the following methodologies were reproduced

in R adhering strictly to the source descriptions and pseudocode.

20

Figure 7. Greedy Subtour 2

3.1 Exhaustive Loop

The Exhaustive Loop (EL), is a methodology for preventing sub-tours while using

the arc greedy constructive heuristic. This method is not well documented in academic

literature but is often simply referenced as “the standard way.” A literature review

yielded no scholarly articles on this methodology. EL exhaustively cycles through

every edge connected to the most recently added edge. Once a edge eij is added to

the partial tour, node i will be identified as the “start node” and node j will be set

as “current node.” A trace along the current partial tour then begins. At each step

of the trace the “current node,” node j, is checked to see if it is connected to another

node k via edge ejk in the partial tour. If it is, then node k becomes the new “current

node.” If the trace returns back to the “start node” in under N steps. Where N is

the number of nodes in the instance, then the added edge eij has created a sub-tour

and is an illegal edge. If no edge leaves the “current node” the addition of edge eij

is valid and the current portion of the tour is still a fragment. Each time a edge is

added, a count is incremented and the process continues until N-1 edges have been

added upon which the last two endpoints are then connected.

When applied to the earlier example, after adding edge A-C the heuristic identifies

node A as the starting node and Node C as the current node (seen in Figure 8). The

heuristic then looks at Node C and sees it has a degree of 2 and finds the other

21

Figure 8. EL Subtour 1

connected arc C-B. Node B becomes the current node and the heuristic verifies that

the current node is not the same as the start node (seen in Figure 9). Once again, the

Figure 9. EL Subtour 2

heuristic looks at the new current node, Node B, and identifies that it has a degree of

2 and finds the other connected arc B-A, and updates the current node to Node A.

This time when the heuristic checks the current and start node, it realizes they are the

same (Figure 10). It then sees how many edges have been added to the tour. Since

the number is less than N, the heuristic marks that a subtour has formed and that

arc C-A is not valid. Pseudocode for this methodology can be found in Algorithm 2.

Directional vs. Non-Directional.

The methodology above can be described as non-directional, where the direction

of travel for each arc does not matter during tour construction. This methodology can

only be used with symmetric TSP instances where the distance to travel from node to

22

Algorithm 2 Exhaustive Loop Pseudocode

1: Initialize Variables
2: Sort edges: Shortest to Longest
3: while Nodes.Visited <Size-1 do
4: if Both nodes of current edge have degree <2 then
5: Set Start = Tail of current edge
6: Set Current = Head of current edge
7: while Continue = True do
8: if Current is Tail to Another Edge then
9: Set Next Node = Head of found edge
10: if Next Node = Start then
11: Subtour Formed — Remove Edge
12: Continue = False
13: else
14: Current = Next
15: end if
16: else
17: Continue = False
18: Set edge as part of tour
19: Nodes.Visited = Nodes.Visited + 1
20: end if
21: end while
22: end if
23: Next Edge in List
24: end while
25: Connect Hamilton Path

23

Figure 10. EL Subtour 3

node is equal in both directions. This poses some computational advantages as only

n ∗ (n+ 1)/2 arcs need to be initially sorted. The EL can also be modified to handle

a directional methodology which can be used on both symmetric and asymmetric

instances when the direction of the arcs is either of importance to the final solution

and/or takes different distances to travel in each direction. In this directional scenario,

all arcs of each direction n2 − n, are sorted from shortest to longest and rather than

tracking the total degree of each node, the connections are split into a T (To) and F

(From) array. Utilizing these data structures ensures that each node is only entered

once and left once ensuring a continuous direction throughout the tour.

3.2 Multi-Fragment

The Multi-Fragment heuristic described in Bentley’s [9] paper utilizes a unique

non-directional methodology for eliminating subtours by focusing only on the ends

(tails) of each tour fragment. The following structures are utilized in this methodol-

ogy:

• An array, Degree, that keeps track of each nodes degree

• An array, Tail, that keeps track of the opposite tail of each fragment

All nodes are initialized as their own tail and given a degree of zero when the heuristic

begins. As each arc is added, the tails of the nodes and fragment ends are updated.

24

While Bentley’s paper and pseudocode made no mention of how to update these tails,

through testing, four possible scenarios were identified.

The first scenario is that the degree of both nodes of the added edge are 0, which

is the same as 2 nodes being connected to form a new fragment. In this case, the

heuristic sets the tail of each node equal to the node at the opposite end of the edge.

Continuing with the 5 node example, this type of update occurs when the first edge

is added. As seen in figure 11, when fragment A-B is added the tails for each node

Figure 11. MF Subtour 1

simply becomes the other node, and the degree of each is incremented. With respect

to the graph, this scenario is just connecting two nodes.

The second and third scenario are fundamentally the same and occur when an

added edge has one node with a degree of 1 and the other node has a degree of zero

(for coding purposes they are separate scenarios dependent on which node node has

a degree of 0 and which node has a degree of 0). With respect to the graph, this

scenario is synonymous with a node being connected to a existing fragment. Figure

12 shows this scenario as node C is connected to the fragment made up of A and

B. Node B’s degree is updated to be blank indicating that it is in the middle of a

fragment. To update the other tail values, the heuristic must reference the tail B,

which was A, and update it to show a tail of C, and then update the tail of C to what

the tail of B previously was, or A.

The final scenario for updating the tails occurs when two fragments are being

25

Figure 12. MF Subtour 2

connected by a new edge. See Figure 13, adding edge A-E utilizes a methodology

Figure 13. MF Subtour 3

where the tail of each node that makes up the edge must have its tail’s tail updated to

be the value of the opposite nodes tail. So in this case, node A’s tail, which was node

C, must have its tail value updated to the tail value of node E, which is node D. The

same updating must occur in respect to the other end of the fragment. Pseudocode

for MF is included in Algorithm 3.

The description and pseudocode above depicts a non-directional methodology on

a symmetric instance for constructing TSP tours using Benteley’s MF heuristic. It is

possible to modify this methodology to function directionally on both symmetric and

asymmetric instances. To do this, the degree array would be split into a To and From

array as described when converting EL to a directional variant (see Section 3.1).

26

Algorithm 3 Multi-Fragment Pseudocode

1: Initialize Variables
2: Sort edges(i,j): Shortest to Longest
3: while Nodes.Visited <Size-1 do
4: if both nodes of current edge have degree ¡ 2 & Tail[i] is not j then
5: Add edge(i,j)
6: if Degree[i]=0 & Degree[j]=0 then
7: tempTaili = Tail[i]
8: tempTailj = Tail[j]
9: Tail[i] = tempTailj
10: Tail[j] = tempTaili
11: else if Degree[i]=1 & Degree[j]=0 then
12: tempTaili = Tail[i]
13: Tail[tempTaili] = Tail[j]
14: Tail[j] = tempTaili
15: Tail[i] = 0
16: else if Degree[i]=0 & Degree[j]=1 then
17: tempTailj = Tail[j]
18: Tail[tempTailj] = Tail[i]
19: Tail[i] = tempTailj
20: Tail[j] = 0
21: else if Degree[i]=1 & Degree[j]=1 then
22: tempTaili = Tail[i]
23: tempTailj = Tail[j]
24: Tail[tempTaili] = tempTailj
25: Tail[tempTaili] = tempTailj
26: Tail[i] = 0
27: Tail[j] = 0
28: end if
29: Degree[i] = Degree[i] + 1
30: Degree[j] = Degree[j] + 1
31: Nodes.Visited = Nodes.Visited + 1
32: end if
33: Next Edge in List
34: end while
35: Connect Hamilton Path

27

3.3 Greedy Tracker

The first original contribution this thesis makes is through the introduction of a

novel way to track the progress of the arc greedy construction heuristic, and ensure

sub-tours are not created. This new method is called the“greedy tracker” (GT). Con-

ceptually, the GT serves as a methodology to track a nodes communication with other

nodes when constructing a TSP tour. While GT can operate on both symmetric and

asymmetric instances, it is conceptually easier to visualize the GT using its directional

methodology on a symmetric instance and then generalizing the process for asymmet-

ric instances or to the non-directional methodology on symmetric instances. Because

of this, the following introduction to the GT utilizes the directional methodology on

a symmetric matrix and is accomplished using the following structures:

• X = binary n by n matrix of xij

• F = binary n by 1 array of fi

• T = binary n by 1 array of ti

• xij = 0 if arc from i to j is eligible, greater than 0 if not eligible

• fi = binary for whether node i has been left

• ti = binary for whether node i has been entered

These structures track each move, and in doing so, prevent Hamilton cycles and sub

tours. The process by which this is accomplished can be seen in Figure 14:

The X (identity), F (From), and T (To) structures can be seen above on the left

and a distance matrix from the TSP can be seen on the right. The 1s loaded on the

diagonal of the X matrix (where i=j) signal that these moves are ineligible. Note

that the diagonal on the distance matrix has been colored red to correspondingly

show these ineligible arcs. Looking at the distance matrix it can be seen that the

shortest arc is either from A to B or vice versa, thus arc A to B is selected. The X,

28

Figure 14. Greedy Tracker 1

F, and T matrices are updated with 1s to indicate this move, this is shown in Figure

15.

Figure 15. Greedy Tracker 2

Then, the column of the X matrix associated with the new arc is processed. Every

row where a 1 appears is combined with the From row of the created arc. Figure 16

illustrates this operation. As seen in Figure 16, since Row 2 has a 1 in the same

Figure 16. Greedy Tracker 3

column as our new arc, the two rows were combined so that any 1s that were in the

Row 1 are now also in Row 2. Note that for the example we only show values of 1 so

29

as to not detract from their purpose of referring to an ineligible move, however in the

code the values in each row will actually be added and values of greater than 1 will

appear. For ease of reference in this example ineligible values in the distance matrix

are turned red (Figure 17). As can be seen in Figure 17, distances that correspond

Figure 17. Greedy Tracker 4

with a 1 in the X matrix have been made ineligible moves. Note that any row or

column that has a 1 in the T or F arrays will also be marked as an ineligible move.

This information will be utilized in the first step of the next iteration where the

shortest available arc is identified. As seen in Figure 18, the shortest available arc

is B-C and once again the X,F, and T matrices are updated with 1s to indicate the

move. Once again the column of X associated with the “To” node of the new arc is

Figure 18. Greedy Tracker 5

processed and every row where a 1 appears is combined with the “From” row of the

created arc which can be seen in Figure 19. All the distances that correspond with

a 1 in the X matrix are marked as ineligible moves in the distance matrix, as well

as any distances associated with a 1 in the T and F arrays. The resulting step can

30

Figure 19. Greedy Tracker 6

be seen in Figure 20. The red in the distance matrix indicates that adding arc A-C

Figure 20. Greedy Tracker 7

is no longer possible because node C already has an edge entering it. This process

thus removes the formation of the sub-tour shown earlier. The process shown above

continues to iterate until all nodes have been visited which creates a Hamiltonian

Path. The final connection to complete the tour is made using the T and F arrays as

each should have one index that is still empty. Pseudo code for this methodology is

in Algorithm 4.

This methodology can also be used on asymmetric instances as described, or

may also be modified to handle a Non-Directional methodology for symmetric TSP

instances. For this methodology, the T (To) and F (From) arrays are changed to a

Degree array similar to the one used in MF. The row addition loop must also occur

twice, once for every 1 in the column of the added edge (i, j), and once for every 1 in

the column for the opposite edge (j, i). This nuance makes the GT quite inefficient

31

Algorithm 4 Greedy Tracker Pseudocode

1: Initialize Variables
2: Sort edges(i,j): Shortest to Longest
3: while Nodes.Visited <Size-1 do
4: if To[j]=0 & XMatrix[i,j]=0 then
5: Nodes.Visited + 1
6: XMatrix[i,j]=1
7: From[i]=1
8: To[j]=1
9: for k = 1 to size do
10: if XMatrix[k,j]=1 then
11: XMatrix[k,]=XMatrix[k,]+Xmatrix[i,]
12: end if
13: end for
14: Next Edge in List
15: end if
16: end while
17: Connect Hamilton Path

when utilized non-directionally as it doubles the computational time.

GT Improvements.

Certain adjustments to the GT methodology can be made to reduce the total

number of operations that occurs within each iteration. These adjustments involve

removing the addition of values in specific columns and rows as each node has been

left and entered. This process decreases the dimensionality of the GT as the tour is

constructed. This is possible because once a node has been entered, or left, no more

arcs may enter that node or leave that node. Therefore, it is unnecessary to track

what arcs could produce a sub-tour by entering or leaving that node. Consider the

the same 5 by 5 instance used earlier, after completing row additions after adding

arc A-B, column B can be deleted. Figure 21 shows the resulting GT and distance

matrix. As can be seen, all moves in column B, or to Node B, are in eligible because

Node B already has an arc entering it. Therefore, it is unnecessary to track and

conduct row additions in this column. When working with a non-directional instance

32

Figure 21. GT Row Delete 1

a column would be deleted after the node had a degree of 2.

R struggles to re-dimensionalize matrices in an efficient fashion. Thus, modifi-

cations to this methodology were made. Breaking down the process of the row and

column delete methodology in greater detail yields the realization that only one nec-

essary value, the tail of the current fragment, is being transferred to a new node.

The GT is thus very similar to Bentley’s MF. When the diagonal is populated with

1s, the X matrix is initializing all nodes as their own tail and for the remainder of

the tour construction the tail is passed as fragments are connected. In the case of

the Directional GT only one value is passed because a directional fragment can only

reattach to itself in one direction. This is why the non-directional GT requires two

sweeps as opposed to the directional GT’s one. Consider the example below on the

modified GT. Figure 22 shows a similar initialization to the original GT with the

exception that the added arc is no longer reflected in the X matrix. After this step

Figure 22. GT modified 1

is performed the “To” column of the arc is scanned for a 1 that coincides with an

33

empty, or 0 value in the “From” array. Figure 23 shows that this occurs in row B.

The next step in the iteration is to find the value in row A that coincides with an

Figure 23. GT modified 2

empty value in the “To” array. Figure 24 shows that this value occurs at A. Thus

Figure 24. GT modified 3

the next step is to set the intersection of the column identified in the previous step to

the row identified directly before to a value of 1. In this case, the intersection of row

B and column A is set to 1 as seen in Figure 25. In this first iteration the tail of A,

Figure 25. GT modified 4

which was itself, is passed to B, exactly as it would have been in the MF heuristic.

34

This process continues until a Hamiltonian path is formed. The pseudocode for this

modified GT is in Algorithm 5.

Algorithm 5 Greedy Tracker modified Pseudocode

1: Initialize Variables
2: Sort edges(i,j): Shortest to Longest
3: while Nodes.Visited <Size-1 do
4: if To[j]=0 & XMatrix[i,j]=0 then
5: Nodes.Visited + 1
6: XMatrix[i,j]=1
7: From[i]=1
8: To[j]=1
9: Row = Intersect(which(X[,j]==0,which(From==0))
10: Column = Intersect(which(X[,j]==0,which(From==0))
11: XMatrix[Row,Column]=1
12: Next Edge in List
13: end if
14: end while
15: Connect Hamilton Path

35

IV. Greedy Sub-tour Elimination Results

This section covers the TSP instances used, and testing methods employed, along

with results from all three of the sub-tour elimination methodologies demonstrated

in the prior chapter.

4.1 TSP Instances

TSP data for multiple instances and variations is available in an online library,

TSPLIB, maintained by Ruprecht-Karls-Universitat Heidelberg located in Baden-

Wurttemberg, Germany. The data from TSPLIP is available via one of two formats

in an .atsp file type. A picture of the data’s raw format for these files can be seen

in Figure 26. The first file type consists of a distance matrix containing a string

of distances from node to node for all edges in the instance. However, the file is

not properly formatted to be imported into R. To make this file type usable, the

information was saved as a text string and then processed to place the information

in matrix form. The second file type contains a series of coordinates for each node

which can be utilized to form a distance matrix. The distances for every edge can be

calculated via a euclidean distance formula (Equation 2) and placed into a distance

matrix in R.

Euclidean Distance =
√

(x1 − x2)2 + (y1 − y2)2 (2)

The values also must be rounded. TSPLIB provides the best known optimal tours and

scores for heuristic testing. For the purposes of this research testing was performed on

the instances seen in Table 1, where the alpha prefix is an identifier and the numerical

suffix indicates the instance size (in number of nodes).

36

Figure 26. Raw Data Snapshot

Table 1. TSP Instances

37

4.2 Testing

Initial tests verify that each sub-tour method (MF, EL, GT, Modified GT) pro-

duced the same tour and distance for all TSP instances. These tests were conducted

with both directional and non-directional versions of codes on symmetric TSP in-

stances. In addition, the directional code versions were run on asymmetric TSP

instances. Directional and non-directional codes were tested on symmetric TSP in-

stances as they generally produce different solutions, and have different run times due

to the number of arcs that must be considered.

Once testing verified each method produced identical greedy tours; that is all direc-

tional code variants produced identical tours, and all non-directional codes produced

identical tours, the remaining testing focused on computational run-time compar-

isons. Each methodology was placed in the same arc-greedy heuristic shell so that

testing would fairly compare the speed of the three sub-tour tracking and elimination

methodologies. Bentley [9] and Wang [10] each utilized advanced computer tech-

niques (k-d trees) and additional data structures to speed up the process of finding

the next shortest arc available. However, since neither of these effect the speed of the

sub-tour tracking and elimination methodologies they were not utilized.

Speed tests were conducted utilizing the R package “microbenchmark.” This pack-

age allows testing of multiple R codes simultaneously. Microbenchmark randomly

generates run order to handle possible CPU speed fluctuation during testing. The

package also reports a variety of statistics to summarize run results. A sample of

this output is in Figure 27. Microbenchmark output the minimum, mean, median,

Figure 27. Microbench Output

38

and maximum run-times as well as the lower and upper quartiles. 100 iterations of

each code were run to create these summary statistics on 13 different symmetric TSP

instances and 9 asymmetric instances. Density plots of runtimes were also reported

utilizing the Microbenchmark and ggplot2 R packages, an example of which are in

Figure 28. Both symmetric and asymmetric instances were tested to determine if

Figure 28. Microbench Output Plot

symmetry effected run time.

4.3 Symmetric Instance Results

Mean run times for a variety of symmetric TSP instances utilizing each of the

methodologies can be seen in Table 2. When looking at the directional methodolo-

gies, the GT and modified GT tend to be the fastest methodologies on small instances

followed by EL and MF. Once instance size reaches around 442, MF takes over as the

fastest method for eliminating sub-tours. This largely is due to it’s linear growth in

operation count as instance size grows. For larger instances, the heuristic is conduct-

ing the same number of operations at each step. While the operations are slower for

small instances, once the problem becomes larger it proves to be the most efficient.

39

Table 2. Greedy Sub-tour Methodology Run Times (Symmetric)

We see that the modified GT and original GT tend to perform very similar for smaller

instances but once the instance size grows the elimination of the row addition opera-

tions in the modified methodology gives the modified GT a computational advantage.

The reduction in operations is still not enough to keep GT faster than MF as the

searching procure utilized by the modified GT is still a computationally demanding

process as instance size grows.

These performance trends are continued when looking at the non-directional code

variants applied to these same symmetric instances as seen on the right half of Figure

2, with the exception of the original GT. In the non-directional instance, the dual

row sweeping doubles the operations at each step, which gives the modified GT and

EL a speed advantage. However, once again MF becomes the fastest methodology

from the 442 node instance and larger.

4.4 Asymmetric Instance Results

The directional variants of each sub-tour elimination codes were also run on Asym-

metric TSP instances to compare runtimes to determine if any trends changed. The

mean runtimes are in Table 3.

There was greater variability between methods for some of the asymmetrical in-

stances. This could be due to the how the edges fluctuate in each direction which

40

Table 3. Greedy Sub-tour Methodology Run Times (Asymmetric)

causes more searching to find edges to complete the tour. Prior overall trends remain,

where modified GT is competitive for small to medium sized asymmetric instances,

but MF is fastest for larger instances.

4.5 Future Improvements

The portion of the Modified GT most susceptible to computational growth is the

search to identify what tail is necessary to move. If this search process growth can be

limited, it is possible that the modified GT could outperform MF for larger instances

as well. Some possible methodologies to limit computational growth include a better

implementation of the row and column delete methodology in conjunction with a new

row and column generation methodology. Size of the search operations could also be

reduced drastically especially during the early iterations of the arc-greedy heuristic

by only generating nodes and tails as needed. This is accomplished by storing a list

of indices, call them Tnodes and Fnodes, for what arcs values are necessary for tail

storage and transfer. The following example explains this methodology using the

modified GT.

This proposed methodology starts with an empty X matrix. The To and From

arrays are populated as usual, but the values searched when a tail is being moved, is

limited to the indices contained within the subsets Tnodes and Fnodes. Therefore,

for visual purposes, only nodes within these indicies show their values in the figures,

41

Figure 29. Proposed Future GT 1

represented as To[Tnodes] and From[Fnodes]. As with previous examples the first

arc added is arc A-B. Figure 30 shows A and B are added to Tnodes and Fnodes,

which generates a respective row and column for each to track the tail generated by

the addition of the arc. This generation technique is possible because all unconnected

Figure 30. Proposed Future GT 2

nodes initialize as their own tail. Utilizing the Modified Greedy Methodology any 1s

in the ”To” column of the added arc that correspond with a 0 in the ”From” array

will identify what row the tail will be transferred to. This is followed by searching the

Row associated with the ”From” node of the current arc and identifying any nodes

in this row that correspond with a 0 in the To array. This step can be seen in Figure

31. Once this step is completed, both rows and columns that correspond 1s in the

“From” or “To” are deleted from the matrix and removed from the subsets Tnodes

or Fnodes(as seen in Figure 32). This process could drastically decrease the size of

each iterations search larger TSP instances. This methodology along with coding in

a more advanced computer language could help GT to maintain is performance gap

over MF in larger instances.

42

Figure 31. Proposed Future GT 3

Figure 32. Proposed Future GT 4

43

V. Ordered-Lists Methodology

This section introduces a novel constructive heuristic called Ordered-Greedy. This

is followed by a comparison of tour quality between the ordered-greedy output result-

ing from 1000 random generated lists, versus viewing the lists as tours. This com-

parison is performed for 13 symmetric instances, the outcome of which motivates the

development of a new meta-heuristic based on Ordered-Lists.

5.1 Ordered-Greedy Heuristic

Given the sub-tour tracking abilities of the aforementioned methodologies, there

are some interesting alterations to the arc-greedy heuristic that can be made. One

such change is to utilize one of the elements realized by the Recursive Selection heuris-

tic, where the order in which greedy decisions are made is taken into consideration.

This concept motivated the development of a novel constructive heuristic called the

Ordered-Greedy (OG) heuristic. The OG heuristic is a node-greedy heuristic that

takes as input a complete list of nodes. Starting at the top of the list, each node

is considered in turn and the available set of choices is limited to the feasible arcs

originating at that node. What differentiates the OG from NN, another node-greedy

heuristic, is that multiple fragments may exist during the tour construction.

The motivation for this heuristic is to apply a more structured approach to what

nodes should be given priority in connecting to their nearest neighbors. Nodes higher

in the list have maximum flexibility with minimal concern for node degree or sub-

tours and thus typically choose better arcs than nodes later in the list. The quality

of the solution found is heavily dependent on the order of the list.

To introduce the methodology of the OG heuristic, consider the following example.

In this example an ordered list of D,E,C,B,A has been, through some unspecified

44

fashion, predetermined. This ordering of the nodes list is reflected in the matrix on

the right-side of Figure 33 whose rows are now sorted according to this list order.

The constructive heuristic now makes greedy decisions starting at the top of this list

and working down. The first greedy decision is made with respect to node D. The

Figure 33. Ordered-Greedy 1

greediest, or shortest arc, from node D is arc D-E as indicated above. This arc and its

associated node is tracked by the GT so that the next decision can be made. The next

decision is made with respect to node E. This is not due to node E being the head of

the previous arc added, but rather because it is second in the provided ordered list:

D,E,C,B,A. Looking at the row in the Distance matrix associated with node E along

with the GT output that captures ineligible moves (as seen in Figure 34), it can be

seen that the shortest legal arc available is arc E-B. This process continues row by

Figure 34. Ordered-Greedy 2

row until the final row is reached which is where the T and F arrays are scanned to

find the final legal arc as seen in Figure 35. After adding arc A-D, the resulting tour

becomes A-D-E-B-C-A which is also the optimal tour for this TSP instance. This

45

Figure 35. Ordered-Greedy 3

result motivated the creation of the concept of a Perfect-Ordered List. Pseudocode

for the OG is in Algorithm 6.

Algorithm 6 Ordered-Greedy Pseudocode

1: Initialize Variables
2: Generate Order
3: Nodes.Visited = 0
4: while Nodes.Visited <Size-1 do
5: Moves = arcs leaving Order[Nodes.Visited+1]
6: Moves[To==True]= Inf
7: Moves[XMatrix[Order[Nodes.Visited+1],]]= Inf
8: minmove = min(Moves)
9: Get First index i of Moves where Moves[i]=minmove
10: Add Arc(Order[Nodes.vistied+1],i) to tour
11: Track moves with Greedy Tracker
12: Nodes.Visited = Nodes.Visited+1
13: end while
14: Connect Hamilton Path

The OG non-directional and OG directional methodologies yield the same solu-

tions because of how the OG handles connections to nodes that already have a degree

of one. If a node attempts to connect to another node with a degree of 1, the con-

nection will only be accepted if that node has already occurred in the order. This is

because if the node has not yet occurred in the order, and the connection is allowed,

the node will have a degree of 2 before its turn in the ordered-list. Thus, when its

turn does come, it would not be able to make a connection. This behavior causes the

non-directional to treat these nodes as if they were of the opposite direction, causing

46

the two methodologies to produce the same solution.

5.2 Perfect-Ordered List

A perfect ordered list (POL) is simply an ordered-list which, when iterated through

using the ordered greedy heuristic described above, will yield the optimal solution.

Most, but not all, optimal solutions can be associated with a POL (the reasoning for

which is discussed later). To find whether a POL exists for a given optimal solution,

following methodology based on the GT is used.

First, initialize by identifying all arcs in the optimal solution, and the shortest

available Arc (using lowest index to break ties) for each node. Figure 36 shows the

completion of this initialization. The next step is to then identify all, so called, Tier 1

Figure 36. Perfect-Order 1

nodes. These are nodes where the optimal arc is the same as the shortest arc available.

During this iteration (seen in Figure 37), the only arc in the optimal solution that

matches its shortest arc is Arc D-E.

Figure 37. Perfect-Order 2

47

This move is updated in the GT and the distance matrix is reanalyzed to determine

the remaining shortest legal arc available for each node. The second iteration identifies

any nodes that now match their shortest available arc with the optimal solution arc.

These nodes are labeled as Tier 2 node. The intuition is that Tier 2 nodes derive their

optimal arc matches as a result of the greedy decisions made by the Tier 1 nodes. As

seen in Figure 38, the Tier 1 move effected the shortest available legal move for node

E and is marked as a Tier 2 node. This process continues until either all nodes are

Figure 38. Perfect-Order 3

given a Tier as seen in Figure 39 or no greediest legal arcs match their optimal arc in

an iteration. If the later occurs then no POL exists for the given optimal tour. If the

Figure 39. Perfect-Order 4

process does run to completion, then the order of the nodes are sorted with respect

to their Tier. In the case of the example provided, the POL would be D,E,C followed

by either A,B or B,A.

Order within the tiers does not effect the resulting tour, which reveals an inter-

esting insight into solving the TSP using ordered-lists. More than one ordered list

48

corresponds to a single tour. Since the total number of permutations of nodes is

equal for tours and ordered lists, we can deduce that certain feasible tours cannot

be reached via the ordered list solution space. This information is cause for concern

as it leads one to question whether the optimal tour is always achievable within the

ordered list solution space. Tests on the 13 symmetric instances initially yielded POs

for only 8 of the instances. However further testing on the GR48 instance revealed

there exists multiple optimal tours. The images in Figure 40 show the difference

between two unique optimal tours, one of which (left) cannot be represented by a

Ordered List (i.e. cannot be found utilizing the OG Heuristic) and the other (right)

can be found by the OG. Similar situations may exist for the larger instances but it

Figure 40. gr48 Optimal Tours

is nontrivial to find additional optimal tours for these large instances to verify. This

line of inquiry is left as a question for future research.

5.3 Ordered-Lists vs. Tour Order

Since not all valid tours for an instance have an analog in the Ordered-List solution

space, it is important to compare solution quality of each space. Exhaustive testing

comparing all tour permutations and all ordered list permutations could only be

completed on examples smaller than 10x10. Some 5x5 test instances were generated

49

by selecting the first 5 nodes, and associated distances between them, for 5 of the

symmetric and 2 of the asymmetric instances. Then each of these 5x5 instances had

one additional node added to generate the 6x6 instance and so on until the 9 by

9 instance. This provided some comparison as to how the solution space for each

instance was effected by the addition of a single node. The summary of the results

for these tests are in Table 4.

Table 4. 5 by 5 to 9 by 9 List vs. Tour Comparison

As seen in Table 4, the Ordered-List feasible solutions outperformed Tour feasible

solutions in all measures of merit for tour quality, producing shorter average tours,

with shorter maximum tour lengths and exhibiting a higher number of occurrences

of the optimal solution. This is due to the indifference to order within tiers. So if a

PO exists, it appears that the many variants of orders makes for a higher chance of

finding an optimal solution through the use of lists.

50

While it is not computationally possible to exhaustively test the feasible space of

larger instances, the spaces can be sampled to see if the trend of the ordered list space

providing generally better solutions continues. To this end, 1000 random tours were

generated for all 13 large symmetric instances and 9 asymmetric instance considered

previously and compared to the performance of solutions generated by their ordered

list counterparts. These tests results are in Table 5.

The main takeaway from these results is that in all symmetric instances the tour

generated by the random ordered-list out-performed the randomly generated string

tours. This indicates that the quality of solutions resulting from ordered-lists are

superior to their associated random tours. This is not a surprising discovery as it

is more computationally demanding to calculate a tour from an ordered list when

compared to calculating the distance associated with a random string tour. However,

the quality of the solutions of ordered-list generated tours appears to warrant this

additional time.

The results pertaining to asymmetric instances show mixed results when compar-

ing tours generated by an ordered-list and randomly generated string tours. Specif-

ically, the randomly generated string tours either performed relatively equal to or

better than ordered-lists for all four rgb instances. This may indicate that this spe-

cific instance type. The results of these tests can be seen in Table 6.

These results motivate the development of the Perfect List Random Greedy Search

(PLGRS) Meta-heuristic, which seeks to initialize an Ordered-List for a given TSP

instance and then improve the solution by making alterations to the list.

5.4 Perfect List Random Greedy Search

PLGRS is a meta-heuristic methodology that focuses on improving an instance

tour by randomly searching the ordered-list solution space. Unlike many other meta-

51

Table 5. Tour Distance Comparisons (Symmetric)

heuristic, PLGRS iteratively utilizes a constructive heuristic (OG) to improve the

solution. All variants of PLGRS operate by generating an initial tour utilizing the

Non-Directional Greedy heuristic and then deconstructing the tour to generated the

associated ordered-list. After this is completed PLGRS seeks to alter the ordered-list

to improve the solution. Three versions of PLGRS are described below.

52

Table 6. Tour Distance Comparisons (Asymmetric)

PLGRS - Random Swaps.

The first form of PLGRS attempts to improve tour quality by altering the as-

sociated ordered list utilizing a random swap of nodes within the order. This swap

occurs by simply selecting 2 nodes in the ordered list and swapping their indices giv-

ing each a different selection of available arcs in the OG heuristic. The total number

of iterations, and the number of swaps that occur at each iteration are tuneable pa-

rameters which allows the user to tune the heuristic to the size of the TSP instance.

Pseudocode for the Random Swap PLGRS code is in Algorithm 7.

53

Algorithm 7 PLGRS - Random Swaps Pseudocode

1: M = # of iterations
2: n = # of swaps at each iteration
3: tour = Find Arc-Greedy tour
4: bestScore = score
5: bestTour = tour
6: order = Deconstruct Arc- Greedy tour to Ordered-List
7: bestOrder = order
8: for i = 1 to M do
9: for j = 1 to n do
10: swap1 = sample(size,1)
11: swap2 = sample(size,2)
12: temp = order[swap2]
13: order[swap2] = order[swap1]
14: order[swap1] = order[swap2]
15: end for
16: Ordered Greedy(order)
17: if score ≤ bestScore then
18: bestScore = score
19: bestTour = tour
20: bestOrder = order
21: else
22: order = bestOrder
23: end if
24: end for

PLGRS - Bad Arc Targeting.

In order to attempt more educated alterations to improve an ordered list, the

Bad Arc Targeting (BAT) methodology was conceived. Wang et al [10] indicated

that generally the reason that the greedy heuristic performed poorly was due to the

final arcs added as they typically were the worst in the tour. This BAT methodology

attempts to target these arcs and move their respective nodes higher in the list to

improve the solutions. The heuristic works by starting considering only the worst arcs

in the present best solution, and then narrowing the scope of neighboring solutions

it is considering. After a user specified number of iterations with no improvement

this scope expands to include slight better arcs. If an improvement is found then the

54

scope is reset to only consider the worst arcs in the current solution. The reasoning

for this methodology is the worst arcs to the solution may completely change based on

a slight alteration to the ordered list. Thus, the heuristic is greedily attempting to fix

the worst arcs first and then expanding to consider a growing number of better arcs

until another improvement is found. Arcs are identified as “Bad” utilizing tuneable

criterion that can change as the Heuristic progresses. The tuneable criterion are:

• α = xtimes min arc value for current node considered “Bad”,

• startα = α value that starts search,

• changeα = amount α decrease by indicated, and

• intensifyα = number of iterations with no improvement before decreasing α.

After the heuristic has generated an ordered-list from the arc-greedy tour, the mini-

mum value arc for each node is found. Bad arcs are identified using α and and the

shortest arc available for each node (Equation 3).

Bad Arc Threshold = (minimum arc value) + α ∗ (minimum arc value) (3)

The number of bad arcs must be equal to at least 2 to ensure some variety in attempted

moves for the period until alpha is adjusted. If less than 2 arcs are considered bad

then alpha is decreased by changeα. Bad arcs are randomly selected and inserted

higher into the ordered-list in an attempt to improve the solution. After a certain

number of iterations, intensifyα with no improvement α will be reduced by changeα.

If an improvement is found, or α has reached 0 for intensifyα iterations, α is reset

to the startα. Pseudocode for this process is in Algorithm 8.

55

Algorithm 8 PLGRS - Bad Arc Targeting Pseudocode

1: M = # of iterations
2: tour = Find Arc-Greedy tour
3: bestScore = score of Arc-Greedy tour
4: bestTour = tour
5: order = Deconstruct Arc- Greedy tour to Ordered-List
6: bestOrder = order
7: minvals = calculate min arc distance for all nodes
8: for i = 1 to M do
9: arcvals = value of current arcs for each node
10: haveArc = False
11: while haveArc = False do
12: badarc = which(arcvals ≥ minvals + minvals*α)
13: if length(badarc) <2) OR αcount ≥ intensifyα then
14: α = α− changeα
15: αcount=0
16: else
17: movenode = sample(badarc,1)
18: havearc = True
19: end if
20: end while
21: Move movenode to random new location in order
22: Perform Ordered Greedy(order)
23: if score ≤ bestScore then
24: if score <bestScore then
25: α = startα
26: αcount=0
27: end if
28: bestScore = score
29: bestTour = tour
30: bestOrder = order
31: else
32: order = bestOrder
33: αcount = αcount + 1
34: end if
35: end for

PLGRS - Bad Arc Targeting & Good Node.

The “Good Node” methodology identifies quality candidate nodes to be moved

later in an ordered list. This methodology uses the same alpha parameters used in

56

BAT but in addition to moving nodes up the list, alpha is also used to generate a list

of candidate nodes to move down in the ordered list. This is accomplished by using

Startα to generate a number of arcs within α percent length of the best available

arc for each node. Then the nodes with the greatest number of arcs within this

threshold will be considered to be swapped with one of the nodes identified by the

BAT methodology. Pseudocode for PLGRS- Bad Arc Targeting & Good Node is in

Algorithm 9.

PLGRS - ALL.

The last version of PLGRS, PLGRS - All, utilizes all the methodologies described

above and randomly selects one methodology to alter the current order at each iter-

ation. Pseudocode for PLGRS-All is in Algorithm 10.

57

Algorithm 9 PLGRS - Bad Arc Targeting & Good Node Pseudocode

1: M = # of iterations
2: tour = Find Arc-Greedy tour
3: bestScore = score of Arc-Greedy tour
4: bestTour = tour
5: order = Deconstruct Arc- Greedy tour to Ordered-List
6: bestOrder = order
7: minvals = calculate min arc distance for all nodes
8: for p = 1 to Size do
9: goodnodes[p] = length(which(ArcLengths[p,] ≤ minvals[p]*(1/startα)
10: maxgood = max(goodnodes)
11: end for
12: for i = 1 to M do
13: arcvals = value of current arcs for each node
14: haveArc = False
15: Perform BAT to identify node to move up
16: swap1 = node found by BAT
17: movenode = sample(which(goodnodes≥ α/startα*maxgood),1)
18: swap2 = which(order=movenode)
19: temp = order[swap2]
20: order[swap2]=order[swap1]
21: order[swap1]=temp
22: Perform Ordered Greedy(order)
23: if score ≤ bestScore then
24: if score <bestScore then
25: α = startα
26: αcount=0
27: end if
28: bestScore = score
29: bestTour = tour
30: bestOrder = order
31: else
32: order = bestOrder
33: αcount = αcount + 1
34: end if
35: end for

58

Algorithm 10 PLGRS - ALL Pseudocode

1: M = # of iterations
2: tour = Find Arc-Greedy tour
3: bestScore = score of Arc-Greedy tour
4: bestTour = tour
5: order = Deconstruct Arc- Greedy tour to Ordered-List
6: bestOrder = order
7: minvals = calculate min arc distance for all nodes
8: for p = 1 to Size do
9: goodnodes[p] = length(which(ArcLengths[p,] ≤ minvals[p]*(1/startα)
10: maxgood = max(goodnodes)
11: end for
12: for i = 1 to M do
13: arcvals = value of current arcs for each node
14: haveArc = False
15: type = sample(3,1)
16: if type = 1 then
17: Perform PLGRS Random Swaps
18: else if type = 2 then
19: Perform PLGRS Bad Arc Targeting
20: else if type = 3 then
21: Perform PLGRS Bad Arc Targeting & Good Node
22: end if
23: Perform Ordered Greedy(order)
24: if score ≤ bestScore then
25: if score <bestScore then
26: α = startα
27: αcount=0
28: end if
29: bestScore = score
30: bestTour = tour
31: bestOrder = order
32: else
33: order = bestOrder
34: αcount = αcount + 1
35: end if
36: end for

59

VI. PLGRS Results

The same 13 symmetric instances introduced in section 4.1 were used to compare

all meta-heuristics. Microbenchmark was used to test each heuristic. 10 iterations

of each instance size were run, with the exception of the 1002 size instance which

was only run three times due to computational requirements. Percent deviation from

optimality for each iteration was collected as well as run-times to summarize the

performance of each heuristic.

6.1 Greedy+2-Opt Comparison

The first test was conducted comparing all three PLGRS heuristics against a

arc-greedy+2-Opt heuristic. The arc-greedy+2-opt heuristic was selected due to its

deterministic nature which causes it to always converges to the same solution. There-

fore, the arc-greedy+2-Opt does not contain features such as randomness or tuneable

elements. While each aspect can be advantageous in a heuristic methodology, if used

improperly they can also be a hindrance. Thus, the arc-greedy+2-opt gives a good

baseline computational time and final solution for which to compare the PLGRS

codes against. Since the arc-greedy+2-opt heuristic always converges to the same

solution we limited the number of iterations provided to the PLGRS code so it was

not given an advantage. If run indefinitely, most randomized meta-heuristics, while

not guaranteed to reach optimality, will approach it. Thus, by limiting the number

of iterations assigned to PLGRS, it was ensured that all heuristics found a solutions

within a similar amount of time. To accomplish this, the PLGRS - Random Swaps

code was run with varying numbers of iterations until a time close to the runtime of

the arc-greedy+2-Opt was achieved. This runtime threshold determination was ac-

complished for all instances with the exception of the Bays29 and gr48 instances, for

60

which PLGRS could not run a single iteration in the time it took the arc-greedy+2-opt

to run to completion. For those instances, PLGRS was given 50 iterations. Results

for these runs are in Table 7.

Table 7. Greedy 2-Opt vs. PLGRS Comparison

The results do not clearly indicate any heuristic being truly dominant. It appears

the most notable trend is that the PLGRS heuristics tend to perform better, relative to

the Greedy-2-Opt, as instance size grow, with the exception of instances 195 and 225.

Given that the PLGRS heuristic is an iterative constructive heuristic, each iteration

of PLGRS takes longer to complete than an iteration of the arc-greedy+2-Opt. Thus

PLGRS is able to consider significantly less iterations/solution. The advantages of

the ordered-list space, however seem to largely counteract this, thus while PLGRS

considers less solutions, they tend to be of higher quality.

6.2 Simulated Annealing Comparison

The simulated annealing comparison meta-heuristic also generates an initial greedy

tour, each iteration then considers a random 2-opt where good moves are accepted

and bad moves are probabilisticaly accepted based on a temperature function. For

these runs, SA was tested to determine a suitable number of iterations until noticeable

61

stagnation began to occur the associated run time for stagnation was noted. Then

the PLGRS codes were run to determine the number of iterations associated with

this runtime threshold and were limited in testing to this number of iterations. Table

8 is a summary of the SA vs PLGRS runs.

Table 8. SA 2-Opt vs. PLGRS Comparison

For a majority of instances, SA demonstrated markedly lower optimality gaps then

the PLGRS codes. This issue is exacerbated by larger instances, which highlights

an issue with utilizing a iterative constructive heuristic methodology. As instance

size grows, the time for each iteration also grows with the PLGRS codes. So when

comparing PLGRS to a fast pseudo-random heuristic such as SA, and confining each

to similar run-times, PLGRS is at an extreme disadvantage. A principle factor is likely

the number of iterations each heuristic code accomplished over the fixed runtime by

instance (Table 9), as the SA employs many more iterations.

Starting at the Bays29 instance, the SA 2-Opt code completes roughly 30 times as

many iterations as the PLGRS code, and this ratio steadily rises to the 1002 instance

where SA can complete nearly 6700 times more iterations than PLGRS. Considering

the optimality gaps in this testing evidence strongly points toward searching the

Ordered-List subspace providing advantages on a per iteration basis, however the

62

Table 9. SA 2-Opt vs. PLGRS Iterations Comparison

time it takes to do so severely limits the methodology’s potential.

6.3 Future Improvement

When comparing the results of each of the PLGRS variants it appears that PLGRS

- ALL generally outperformed the other two variants, although there were cases where

PLGRS-RS was the best performing methodology. This suggests some benefit in the

strategic approach of targeting bad arcs and swapping their location in an ordered-

list with arcs that have a high number of relatively good connections. However,

future research should consider the direct effects of making such moves, whether there

is a more informed way of performing such operations, and then performing those

moves computationally cheaper. With such enhancements, PLGRS could maximize

its conceptual advantages to improve the tour.

The PLGRS methodology also lends well to utilizing parallel processing which

could provide vast improvements to its computational time. If multiple lists could be

tested simultaneously at each iteration, always tracking and attempting to improve

upon the best solution, would allow PLGRS to close the iteration count gap it is

experiencing in relation to these other heuristics. This could give further motivation

for using the ordered-list space when solving the TSP.

63

VII. Conclusion

As a hard combinatorial optimization problem, the TSP is often solved via heuris-

tic methodologies. One of the biggest considerations when constructing solutions is

avoiding sub-tours, or a loop of interconnected nodes that prevents a single continuous

tour amongst all cities within the instance. This paper introduced a novel sub-tour

elimination methodology for the arc-greedy heuristic that is compared to two known

sub-tour elimination methodologies. Computational results were generated across

multiple TSP instances for each method. A novel concept called Ordered-Lists was

also introduced which enables TSP instances to be explored in a different space than

the tour space. The Ordered-List tour space demonstrates some unique properties.

We propose some novel meta-heuristics that seek to utilize this new space.

7.1 Sub-tour Elimination

When utilizing an arc-greedy heuristic, additional steps must be taken to ensure

that sub-tours are avoided and resulting tour is a valid TSP solution. This paper

recognized two accepted arc-greedy sub-tour elimination methodologies, the Exhaus-

tive loop and Bentley’s Multi-fragment, and compared them to a novel methodology,

the Greedy Tracker. The comparison utilized both directional and non-directional

variants of each code on 13 symmetric TSP instances and the directional variants on

9 asymmetric instances.

The results of the comparison between each of these arc-greedy sub-tour elimi-

nation methodologies showed that the GT was the fastest tracking methodology for

small to medium sized instances. However, Bentley’s MF still maintains the compu-

tational advantage for larger instances and thus most, if not all, instances that would

be solved utilizing a heuristic methodology.

64

However, these results also indicated that given a more efficient coding implemen-

tation of methodology used for the X Matrix, the GT could become the preferred

methodology for all instance sizes. For future research, the GT should be modi-

fied to handle a new row/column generation and delete technique to minimize the

computational time utilized in the searching portions of the GT.

7.2 Ordered-Lists

Any improvement upon any of these sub-tour elimination methodologies would

also provide direct computational improvement to the novel heuristic methodology,

the Ordered Greedy, which in turn would give greater efficiency to searching the

Ordered-List solution space.

While computationally more demanding than its tour list counterpart, the solution

quality advantages, as well as a possibly higher number of optimal occurrences, when

a Perfect Order exists, seems to indicated that further investigation of the space may

be worthwhile to the TSP community.

The novel meta-heuristic methodologies introduced in this paper sought to lever-

age the advantages of the Ordered list space. Testing results indicate that while at

a severe iteration disadvantage, the PLGRS methodologies benefited from using the

ordered-list space which yields a higher per iteration improvement rate. For future

research, the PLGRS methodologies could benefit from parallel processing and a more

efficient methodology for targeting what list modifications should be made. Deeper

investigation of the Ordered-List space would also be worthwhile to fully investigate

its relation to the tour order space.

65

Appendix A. R Code

Greedy Tracker

1 library(readxl)

2 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test1002.csv",header

= FALSE)

3 #Turn it into a usable matrix

4 Data <-as.matrix(TSP_Data)

5 a = Sys.time()

6 #Get the data sets size

7 #dim initial vars

8 size <-dim(Data)[1]

9 listarcs = matrix(0,size ^2,3)

10 tours = matrix(0,size ,size)

11 to = rep(0,size)

12 from = rep(0,size)

13 trails = matrix(0,size ,size)

14 diag(trails)=1

15 #generate list of arcs

16 count = 1

17 for (i in 1:size) {

18 for (j in 1:size) {

19 listarcs[count ,1] = Data[i,j]

20 listarcs[count ,2] = i

21 listarcs[count ,3] = j

22 if (i==j) {listarcs[count ,1]= Inf}

23 count= count + 1

24 }

25 }

26 #sort list

27 listarcs = listarcs[order(listarcs [,1], decreasing = FALSE),]

28
29 opcount =0

30 num.visited = 0

31 count = 1

32
33 #While statement

34 while (num.visited <size -1) {

35 #check all greedy tracker structures to see if current arc is valid if not loop to

next arc

36 if ((from[listarcs[count ,2]]==0)&&(to[listarcs[count ,3]]==0)&&(trails[listarcs[

count ,2], listarcs[count ,3]]==0)) {

37 #add arc

38 num.visited = num.visited +1

39 trails[listarcs[count ,2], listarcs[count ,3]]=1

40 tours[listarcs[count ,2], listarcs[count ,3]]=1

41 from[listarcs[count ,2]]=1

42 to[listarcs[count ,3]]=1

43
44 #greedy tracker

45 #find all rows with >0

46 listarc = which(trails[,listarcs[count ,3]] >0)

47 #add current row to rows with column value >0

48 for (i in 1: length(listarc)) {

49 trails[listarc[i],]= trails[listarc[i],]+ trails[listarcs[count ,2],]

50 opcount = opcount +1

51 }

52 }

53 count = count +1

54 }

55 #Connect hamilton path start to finish

56 tours[which(from ==0),which(to==0)]=1

57
58 b = Sys.time()

59 score=sum(tours*Data)

66

60
61 print(score)

62 print(b - a)

Greedy Tracker Modified

1 library(readxl)

2 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test1002.csv",header

= FALSE)

3 #Turn it into a usable matrix

4 Data <-as.matrix(TSP_Data)

5 a = Sys.time()

6 #Get the data sets size

7 #dim initial vars

8 size <-dim(Data)[1]

9 listarcs = matrix(0,size ^2,3)

10 tours = matrix(0,size ,size)

11 to = rep(0,size)

12 from = rep(0,size)

13 trails = matrix(0,size ,size)

14 diag(trails)=1

15 #generate list of arcs

16 count = 1

17 for (i in 1:size) {

18 for (j in 1:size) {

19 listarcs[count ,1] = Data[i,j]

20 listarcs[count ,2] = i

21 listarcs[count ,3] = j

22 if (i==j) {listarcs[count ,1]= Inf}

23 count= count + 1

24 }

25 }

26 #sort list

27 listarcs = listarcs[order(listarcs [,1], decreasing = FALSE),]

28 num.visited = 0

29 count = 1

30
31 #While statement

32 while (num.visited <size -1) {

33 #check all greedy tracker structures to see if current arc is valid if not loop to

next arc

34 if ((from[listarcs[count ,2]]==0)&&(to[listarcs[count ,3]]==0)&&(trails[listarcs[

count ,2], listarcs[count ,3]]==0)) {

35 #add arc

36 num.visited = num.visited +1

37 #trails[listarcs[count ,2], listarcs[count ,3]]=1

38 tours[listarcs[count ,2], listarcs[count ,3]]=1

39 from[listarcs[count ,2]]=1

40 to[listarcs[count ,3]]=1

41
42 #greedy tracker

43
44 #add current row to rows with column value >0

45 listarc = intersect(which(trails[,listarcs[count ,3]] >0),which(from ==0))

46 listarc2 = intersect(which(trails[listarcs[count ,2],]>0),which(to==0))

47 #add current row to rows with column value >0

48 trails[listarc ,listarc2]=1

49 }

50 count = count +1

51 }

52 #Connect hamilton path start to finish

53 tours[which(from ==0),which(to==0)]=1

54
55 b = Sys.time()

67

56 score=sum(tours*Data)

57
58 print(score)

59 print(b - a)

Ordered Greedy

1 library(readxl)

2 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test7by7.csv",header

= FALSE)

3
4 #Turn it into a usable matrix

5 Data <-as.matrix(TSP_Data)

6 #Read in Dataset named Lab_Data

7
8 #Get the data sets size

9 size <-dim(Data)[1]

10 order = rep(1:size ,1)

11 a = Sys.time()

12
13 #Initialize Variables

14 num.visited = 0

15 to = rep(0,size)

16 from = rep(0,size)

17 trails = matrix(0,size ,size)

18 diag(trails)=1

19 tours = matrix(0,size ,size)

20
21 #While statement

22 while (num.visited <size -1) {

23 current.distances <-Data[,order[num.visited +1]]

24 eligible = intersect(which(to==0),which(trails[order[num.visited +1] ,]==0))

25 nextTownToVisit = eligible[as.integer(which(current.distances[eligible]==min(

current.distances[eligible]),arr.ind = T,useNames = F)[1])]#In case of ties ,

take just the first

26
27 nextTownToVisit = c(order[num.visited +1], nextTownToVisit)

28 trails[nextTownToVisit [1], nextTownToVisit [2]]=1

29 tours[nextTownToVisit [1], nextTownToVisit [2]]=1

30 from[nextTownToVisit [1]] = 1

31 to[nextTownToVisit [2]]= 1

32
33 #row addition Trails code

34 listarc = which(trails[,nextTownToVisit [2]]==1)

35 for (i in 1: length(listarc)) {

36 trails[listarc[i],]= trails[listarc[i],]+ trails[nextTownToVisit [1],]

37 }

38 num.visited = num.visited + 1

39 }

40 #Set last arc to finalize tour

41 tours[which(from ==0),which(to==0)]=1

42 score=sum(tours*Data)

43
44
45 tourcheck = which(tours ==1,arr.ind = T,useNames = F)

46 tour=rep(0,size)

47 start = 1

48 current = 1

49 current = tourcheck[current ,1]

50 count = 1

51 while (current!=start) {

52 tour[count]= current

53 current = tourcheck[current ,1]

54 count = count +1

68

55 }

56 tour[count]= current

57
58 b=Sys.time()

59 print(score)

60 print(b - a)

61 print(best_order)

62 print(tour)

PLGRS RS

1 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test48.csv",header =

FALSE)

2 #Turn it into a usable matrix

3 Data <-as.matrix(TSP_Data)

4
5 #Get the data sets size

6 size <-dim(Data)[1]

7
8 iter = 50

9 startalpha =4

10 changealpha =.5

11 intensifycrit = 5

12
13 greedytour = rep(1:size ,1)

14 #***********PART 1: get Greedy Tour*******************

15
16 listarcs = matrix(0,size*(size +1)/2,3)

17 tours = matrix(0,size ,size)

18 Degree = rep(0,size)

19 Tail = rep(1: size)

20 taili=0

21 tailj=0

22 temptaili = 0

23 temptailj = 0

24 #generate list of arcs column 1 is length , column two is tail , column 3 is head

25 count = 1

26 for (i in 1:size) {

27 for (j in i:(size)) {

28 listarcs[count ,1] = Data[i,j]

29 listarcs[count ,2] = i

30 listarcs[count ,3] = j

31 if (i==j) {listarcs[count ,1]= Inf}

32 count= count + 1

33 }

34 }

35 #sort the list by length

36 listarcs = listarcs[order(listarcs [,1], decreasing = FALSE),]

37 #initialize more variables

38 num.visited = 0

39 count = 1

40 #While statement (create hamilton path)

41 while (num.visited <size -1) {

42 #node leaving does not have a arc leaving and node going to does not have an arc

entering

43 if ((Degree[listarcs[count ,2]] <2)&&(Degree[listarcs[count ,3]] <2)&&(Tail[listarcs[

count ,2]]!=listarcs[count ,3])) {

44 #add arc

45 tours[listarcs[count ,2], listarcs[count ,3]]=1

46 tours[listarcs[count ,3], listarcs[count ,2]]=1

47 #if both are 0 degree

48 if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==0)) {

49
50 taili =Tail[listarcs[count ,2]]

69

51 tailj =Tail[listarcs[count ,3]]

52 Tail[listarcs[count ,2]]= tailj

53 Tail[listarcs[count ,3]]= taili

54
55 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==0)) {

56
57 taili =Tail[listarcs[count ,2]]

58 Tail[taili]=Tail[listarcs[count ,3]]

59 Tail[listarcs[count ,3]]= taili

60 Tail[listarcs[count ,2]]=0

61
62 } else if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==1)) {

63
64 tailj =Tail[listarcs[count ,3]]

65 Tail[tailj] =Tail[listarcs[count ,2]]

66 Tail[listarcs[count ,2]]= tailj

67 Tail[listarcs[count ,3]]=0

68
69 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==1)) {

70
71 taili =Tail[listarcs[count ,2]]

72 tailj =Tail[listarcs[count ,3]]

73 Tail[taili]=tailj

74 Tail[tailj]=taili

75 Tail[listarcs[count ,2]]=0

76 Tail[listarcs[count ,3]]=0

77 }

78 #set start to tail and current to head

79 Degree[listarcs[count ,2]]= Degree[listarcs[count ,2]]+1

80 Degree[listarcs[count ,3]]= Degree[listarcs[count ,3]]+1

81 num.visited = num.visited +1

82 }

83 count = count +1

84 }

85 #connect hamilton path start to finish

86 tours[which(Degree <2)[1],which(Degree <2) [2]]=1

87 tours[which(Degree <2)[2],which(Degree <2) [1]]=1

88 score=sum(tours*Data)/2

89
90 previousnode = 0

91 currentnode = 1

92 for (j in 1:size) {

93 nodes = which(tours[currentnode ,]==1)

94 if (nodes [1]!=previousnode) {

95 greedytour[j] = nodes [1]

96 previousnode=currentnode

97 currentnode=nodes [1]

98 } else {

99 greedytour[j] = nodes [2]

100 previousnode=currentnode

101 currentnode=nodes [2]

102 }

103 }

104
105 TSP_Tour=greedytour

106 TSP_Tour = c(TSP_Tour ,greedytour [1])

107 Greedy_Tour = matrix(0,size ,1)

108 prev = TSP_Tour [1]

109 for (i in 1:size +1) {

110 Greedy_Tour[prev] = TSP_Tour[i]

111 prev = TSP_Tour[i]

112 }

113
114 #**********PART 2: Get Greedy Order with tiering***********

115
116 #Initialize Variables

70

117 num.visited = 0

118 to = rep(T,size)

119 from = rep(T,size)

120 trails = matrix(T,size ,size)

121 diag(trails)=F

122 tours = matrix(0,size ,size)

123 greedloop = rep(0,size)

124 GreedyOrder = rep(0,size)

125 tiering = rep(0,size)

126 tier = 1

127 while (num.visited <size -1) {

128 current.distances <-Data[]

129 current.distances[!from] = Inf

130 current.distances[,!to] = Inf

131 current.distances=ifelse(trails ==F,Inf ,current.distances)

132 numintier = 0

133 #go though every node

134 for (i in 1:size) {

135 #if node hasnt been left yet

136 if (from[i]==T) {

137 #find the min distance arcs

138 availmin = which(current.distances[i,]== min(current.distances[i,]),arr.ind =

T, useNames = F)[1]

139 #if only min distance arc AND same as in opt tour (this can probably just be

made availmin [1] and length removed)

140 if ((availmin == Greedy_Tour[i])&&((numintier+num.visited) <(size -1))) {

141 #update number in tier

142 numintier = numintier + 1

143 #store connection

144 greedloop[numintier]= i

145 }

146 }

147 }

148 #loop through connections in tier

149 for (j in 1: numintier) {

150 #Perfrorm greed tracker

151 trails[greedloop[j],Greedy_Tour[greedloop[j]]]=F

152 tours[greedloop[j],Greedy_Tour[greedloop[j]]]=1

153 from[greedloop[j]] = F

154 to[Greedy_Tour[greedloop[j]]] = F

155
156 #row addition Trails code

157 for (i in 1:size) {

158 if (trails[i,Greedy_Tour[greedloop[j]]]==F) {

159 trails[i,]= trails[i,]&trails[greedloop[j],]

160 }

161 }

162
163 num.visited = num.visited + 1

164 #stroe perfect orde4r list

165 GreedyOrder[num.visited] = greedloop[j]

166 tiering[num.visited] = tier

167 }

168 tier = tier+1

169
170 }

171 #Set last arc to finalize tour

172 tours[which(from==T),which(to==T)]=1

173 #sometimes cause error due to looping structure

174 GreedyOrder[num.visited +1]= which(from==T)

175 tiering[num.visited +1]= tier

176
177 #*********** PART 3: Greedy Random Search **********

178 graphvector <-matrix ()

179 order = GreedyOrder

180

71

181 best_order = order

182 best_score = score

183 a = Sys.time()

184 #Number of list order swaps at each iteration

185 numswaps = 1

186
187 for (k in 1:iter) {

188 #Initialize Variables

189 num.visited = 0

190 to = rep(T,size)

191 from = rep(T,size)

192 trails = matrix(T,size ,size)

193 diag(trails)=F

194 tours = matrix(0,size ,size)

195
196 for (j in 1: numswaps) {

197 swap1 = sample(size ,1)

198 swap2 = sample(size ,1)

199 temp = order[swap2]

200 order[swap2]= order[swap1]

201 order[swap1]=temp

202 }

203
204 #While statement

205
206 while (num.visited <size -1) {

207 current.distances <-Data[,order[num.visited +1]]

208 current.distances[!to]=Inf

209 current.distances[!trails[order[num.visited +1] ,]]= Inf

210 nextTownToVisit = as.integer(which(current.distances ==min(current.distances),

arr.ind = T,useNames = F)[1])#In case of ties , take just the first

211
212 #current.distances.notVisited <-Data[,order[num.visited +1]][to][trails]

213 #shortestDistance = min(current.distances.notVisited)

214 # The exclamation mark was not added in V1

215 #current.distances[!to] = NA #Any towns visited set to NA so they can ’t be

matched in next line

216 #nextTownToVisit = as.integer(which(current.distances == shortestDistance)[1])

#In case of ties , take just the first

217 ################################

218 nextTownToVisit = c(order[num.visited +1], nextTownToVisit)

219 trails[nextTownToVisit [1], nextTownToVisit [2]]=F

220 tours[nextTownToVisit [1], nextTownToVisit [2]]=1

221 from[nextTownToVisit [1]] = F

222 to[nextTownToVisit [2]]= F

223
224 #row addition Trails code

225 listarc = which(trails[,nextTownToVisit [2]]==F)

226 for (i in 1: length(listarc)) {

227 trails[listarc[i],]= trails[listarc[i],]&trails[nextTownToVisit [1],]

228 }

229 num.visited = num.visited + 1

230 }

231 #Set last arc to finalize tour

232 tours[which(from==T),which(to==T)]=1

233 score=sum(tours*Data)

234
235
236
237 if (score <=best_score) {

238 best_score=score

239 best_tour=tours

240 best_order=order

241 } else {

242 order = best_order

243 }

72

244
245 }

PLGRS BAT

1
2 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test48.csv",header =

FALSE)

3 #Turn it into a usable matrix

4 Data <-as.matrix(TSP_Data)

5
6 #Get the data sets size

7 size <-dim(Data)[1]

8
9
10 iter = 50

11 startalpha =4

12 changealpha =.5

13 intensifycrit = 5

14
15 greedytour = rep(1:size ,1)

16
17 #***********PART 1: get Greedy Tour*******************

18
19 listarcs = matrix(0,size*(size +1)/2,3)

20 tours = matrix(0,size ,size)

21 Degree = rep(0,size)

22 Tail = rep(1: size)

23 taili=0

24 tailj=0

25 temptaili = 0

26 temptailj = 0

27 #generate list of arcs column 1 is length , column two is tail , column 3 is head

28 count = 1

29 for (i in 1:size) {

30 for (j in i:(size)) {

31 listarcs[count ,1] = Data[i,j]

32 listarcs[count ,2] = i

33 listarcs[count ,3] = j

34 if (i==j) {listarcs[count ,1]= Inf}

35 count= count + 1

36 }

37 }

38 #sort the list by length

39 listarcs = listarcs[order(listarcs [,1], decreasing = FALSE),]

40 #initialize more variables

41 num.visited = 0

42 count = 1

43 #While statement (create hamilton path)

44 while (num.visited <size -1) {

45 #node leaving does not have a arc leaving and node going to does not have an arc

entering

46 if ((Degree[listarcs[count ,2]] <2)&&(Degree[listarcs[count ,3]] <2)&&(Tail[listarcs[

count ,2]]!=listarcs[count ,3])) {

47 #add arc

48 tours[listarcs[count ,2], listarcs[count ,3]]=1

49 tours[listarcs[count ,3], listarcs[count ,2]]=1

50 #if both are 0 degree

51 if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==0)) {

52
53 taili =Tail[listarcs[count ,2]]

54 tailj =Tail[listarcs[count ,3]]

55 Tail[listarcs[count ,2]]= tailj

56 Tail[listarcs[count ,3]]= taili

73

57
58 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==0)) {

59
60 taili =Tail[listarcs[count ,2]]

61 Tail[taili]=Tail[listarcs[count ,3]]

62 Tail[listarcs[count ,3]]= taili

63 Tail[listarcs[count ,2]]=0

64
65 } else if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==1)) {

66
67 tailj =Tail[listarcs[count ,3]]

68 Tail[tailj] =Tail[listarcs[count ,2]]

69 Tail[listarcs[count ,2]]= tailj

70 Tail[listarcs[count ,3]]=0

71
72 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==1)) {

73
74 taili =Tail[listarcs[count ,2]]

75 tailj =Tail[listarcs[count ,3]]

76 Tail[taili]=tailj

77 Tail[tailj]=taili

78 Tail[listarcs[count ,2]]=0

79 Tail[listarcs[count ,3]]=0

80 }

81 #set start to tail and current to head

82 Degree[listarcs[count ,2]]= Degree[listarcs[count ,2]]+1

83 Degree[listarcs[count ,3]]= Degree[listarcs[count ,3]]+1

84 num.visited = num.visited +1

85 }

86 count = count +1

87 }

88 #connect hamilton path start to finish

89 tours[which(Degree <2)[1],which(Degree <2) [2]]=1

90 tours[which(Degree <2)[2],which(Degree <2) [1]]=1

91 score=sum(tours*Data)/2

92
93 previousnode = 0

94 currentnode = 1

95 for (j in 1:size) {

96 nodes = which(tours[currentnode ,]==1)

97 if (nodes [1]!=previousnode) {

98 greedytour[j] = nodes [1]

99 previousnode=currentnode

100 currentnode=nodes [1]

101 } else {

102 greedytour[j] = nodes [2]

103 previousnode=currentnode

104 currentnode=nodes [2]

105 }

106 }

107
108 TSP_Tour=greedytour

109 TSP_Tour = c(TSP_Tour ,greedytour [1])

110 Greedy_Tour = matrix(0,size ,1)

111 prev = TSP_Tour [1]

112 for (i in 1:size +1) {

113 Greedy_Tour[prev] = TSP_Tour[i]

114 prev = TSP_Tour[i]

115 }

116
117 #**********PART 2: Get Greedy Order with tiering***********

118 #Initialize Variables

119 num.visited = 0

120 to = rep(T,size)

121 from = rep(T,size)

122 trails = matrix(T,size ,size)

74

123 diag(trails)=F

124 tours = matrix(0,size ,size)

125 greedloop = rep(0,size)

126 GreedyOrder = rep(0,size)

127 tiering = rep(0,size)

128 tier = 1

129 while (num.visited <size -1) {

130 current.distances <-Data[]

131 #current.distances[!from] = Inf

132 current.distances[,!to] = Inf

133 current.distances=ifelse(trails ==F,Inf ,current.distances)

134 numintier = 0

135 #go though every node

136 for (i in 1:size) {

137 #if node hasnt been left yet

138 if (from[i]==T) {

139 #find the min distance arcs

140 availmin = which(current.distances[i,]== min(current.distances[i,]),arr.ind =

T, useNames = F)[1]

141 #if only min distance arc AND same as in opt tour (this can probably just be

made availmin [1] and length removed)

142 if ((availmin == Greedy_Tour[i])&&((numintier+num.visited) <(size -1))) {

143 #update number in tier

144 numintier = numintier + 1

145 #store connection

146 greedloop[numintier]= i

147 }

148 }

149 }

150 #loop through connections in tier

151 for (j in 1: numintier) {

152 #Perfrorm greed tracker

153 trails[greedloop[j],Greedy_Tour[greedloop[j]]]=F

154 tours[greedloop[j],Greedy_Tour[greedloop[j]]]=1

155 from[greedloop[j]] = F

156 to[Greedy_Tour[greedloop[j]]] = F

157
158 #row addition Trails code

159 for (l in 1:size) {

160 if (trails[l,Greedy_Tour[greedloop[j]]]==F) {

161 trails[l,]= trails[l,]&trails[greedloop[j],]

162 }

163 }

164
165 num.visited = num.visited + 1

166 #stroe perfect orde4r list

167 GreedyOrder[num.visited] = greedloop[j]

168 tiering[num.visited] = tier

169 }

170 tier = tier+1

171
172 }

173 #Set last arc to finalize tour

174 tours[which(from==T),which(to==T)]=1

175 #sometimes cause error due to looping structure

176 GreedyOrder[num.visited +1]= which(from==T)

177 tiering[num.visited +1]= tier

178
179
180 #*********** PART 3: Adaptive List **********

181 #Re -Initialize Variables

182 graphvector <-matrix ()

183 order = GreedyOrder

184
185 alpha=startalpha

186 alphacount = 0

75

187 best_order = order

188 best_score = score

189 a = Sys.time()

190 #Number of list order swaps at each iteration

191
192 minvals = rep(0,size)

193 badarc = rep(0,size)

194
195 for (i in 1:size) {

196 minval = tail(sort(Data[i,], decreasing = F,index.return=T) ,2)

197 minvals[i] = minval$x[2]

198 }

199
200 for (k in 1:iter) {

201 #Initialize Variables

202 num.visited = 0

203 to = rep(T,size)

204 from = rep(T,size)

205 trails = matrix(T,size ,size)

206 diag(trails)=F

207 arcvals = rowSums(tours*Data)

208 tours = matrix(0,size ,size)

209
210 havearc=F

211
212 while (havearc == F) {

213 badarc = which(arcvals >=(minvals+minvals*alpha))

214
215 if ((length(badarc) <2)||(alphacount >= intensifycrit)){

216 alpha = alpha -changealpha

217 alphacount =0

218 if (alpha < 0) {alpha=startalpha}

219 } else {

220 move1 = sample(badarc ,1)

221 oldloc=which(order == move1)

222 if (oldloc!=1) {

223 havearc=T

224 }

225 }

226 }

227
228 newloc=sample(oldloc -1,1)

229
230 if (newloc ==1) {

231 if (oldloc ==size) {

232 temporder = c(move1 ,order [1:size -1])

233 order=temporder

234 } else {

235 temporder = c(move1 ,order)

236 order = c(temporder [1:(oldloc)],temporder [(oldloc +2):(size +1)])

237 }

238 } else if (oldloc ==size){

239 temporder = c(order [1:newloc -1],move1 ,order[newloc:size])

240 order = c(temporder [1:(oldloc)])

241 } else {

242 temporder = c(order [1:newloc -1],move1 ,order[newloc:size])

243 order = c(temporder [1:(oldloc)],temporder [(oldloc +2):(size +1)])

244 }

245
246 #While statement

247 while (num.visited <size -1) {

248
249 current.distances <-Data[,order[num.visited +1]]

250 current.distances[!to]=Inf

251 current.distances[!trails[order[num.visited +1] ,]]= Inf

252 nextTownToVisit = as.integer(which(current.distances ==min(current.distances),

76

arr.ind = T,useNames = F)[1])#In case of ties , take just the first

253
254 nextTownToVisit = c(order[num.visited +1], nextTownToVisit)

255 trails[nextTownToVisit [1], nextTownToVisit [2]]=F

256 tours[nextTownToVisit [1], nextTownToVisit [2]]=1

257 from[nextTownToVisit [1]] = F

258 to[nextTownToVisit [2]]= F

259
260 #row addition Trails code

261 listarc = which(trails[,nextTownToVisit [2]]==F)

262 for (i in 1: length(listarc)) {

263 trails[listarc[i],]= trails[listarc[i],]&trails[nextTownToVisit [1],]

264 }

265 num.visited = num.visited + 1

266 }

267 #Set last arc to finalize tour

268 tours[which(from==T),which(to==T)]=1

269 score=sum(tours*Data)

270
271 if (score <=best_score) {

272 if (score <best_score) {

273 alpha=startalpha

274 alphacount =0

275 }

276 best_score=score

277 best_tour=tours

278 best_order=order

279 } else {

280 order = best_order

281 alphacount = alphacount + 1

282 }

283
284 }

PLGRS BATGN

1 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test48.csv",header =

FALSE)

2 #Turn it into a usable matrix

3 Data <-as.matrix(TSP_Data)

4
5 #Get the data sets size

6 size <-dim(Data)[1]

7
8
9 iter = 50

10 startalpha =4

11 changealpha =.5

12 intensifycrit = 5

13 greedytour = rep(1:size ,1)

14
15 #***********PART 1: get Greedy Tour*******************

16
17 listarcs = matrix(0,size*(size +1)/2,3)

18 tours = matrix(0,size ,size)

19 Degree = rep(0,size)

20 Tail = rep(1: size)

21 taili=0

22 tailj=0

23 temptaili = 0

24 temptailj = 0

25 #generate list of arcs column 1 is length , column two is tail , column 3 is head

26 count = 1

27 for (i in 1:size) {

77

28 for (j in i:(size)) {

29 listarcs[count ,1] = Data[i,j]

30 listarcs[count ,2] = i

31 listarcs[count ,3] = j

32 if (i==j) {listarcs[count ,1]= Inf}

33 count= count + 1

34 }

35 }

36 #sort the list by length

37 listarcs = listarcs[order(listarcs [,1], decreasing = FALSE),]

38 #initialize more variables

39 num.visited = 0

40 count = 1

41 #While statement (create hamilton path)

42 while (num.visited <size -1) {

43 #node leaving does not have a arc leaving and node going to does not have an arc

entering

44 if ((Degree[listarcs[count ,2]] <2)&&(Degree[listarcs[count ,3]] <2)&&(Tail[listarcs[

count ,2]]!=listarcs[count ,3])) {

45 #add arc

46 tours[listarcs[count ,2], listarcs[count ,3]]=1

47 tours[listarcs[count ,3], listarcs[count ,2]]=1

48 #if both are 0 degree

49 if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==0)) {

50
51 taili =Tail[listarcs[count ,2]]

52 tailj =Tail[listarcs[count ,3]]

53 Tail[listarcs[count ,2]]= tailj

54 Tail[listarcs[count ,3]]= taili

55
56 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==0)) {

57
58 taili =Tail[listarcs[count ,2]]

59 Tail[taili]=Tail[listarcs[count ,3]]

60 Tail[listarcs[count ,3]]= taili

61 Tail[listarcs[count ,2]]=0

62
63 } else if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==1)) {

64
65 tailj =Tail[listarcs[count ,3]]

66 Tail[tailj] =Tail[listarcs[count ,2]]

67 Tail[listarcs[count ,2]]= tailj

68 Tail[listarcs[count ,3]]=0

69
70 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==1)) {

71
72 taili =Tail[listarcs[count ,2]]

73 tailj =Tail[listarcs[count ,3]]

74 Tail[taili]=tailj

75 Tail[tailj]=taili

76 Tail[listarcs[count ,2]]=0

77 Tail[listarcs[count ,3]]=0

78 }

79 #set start to tail and current to head

80 Degree[listarcs[count ,2]]= Degree[listarcs[count ,2]]+1

81 Degree[listarcs[count ,3]]= Degree[listarcs[count ,3]]+1

82 num.visited = num.visited +1

83 }

84 count = count +1

85 }

86 #connect hamilton path start to finish

87 tours[which(Degree <2)[1],which(Degree <2) [2]]=1

88 tours[which(Degree <2)[2],which(Degree <2) [1]]=1

89 score=sum(tours*Data)/2

90
91 previousnode = 0

78

92 currentnode = 1

93 for (j in 1:size) {

94 nodes = which(tours[currentnode ,]==1)

95 if (nodes [1]!=previousnode) {

96 greedytour[j] = nodes [1]

97 previousnode=currentnode

98 currentnode=nodes [1]

99 } else {

100 greedytour[j] = nodes [2]

101 previousnode=currentnode

102 currentnode=nodes [2]

103 }

104 }

105
106 TSP_Tour=greedytour

107 TSP_Tour = c(TSP_Tour ,greedytour [1])

108 Greedy_Tour = matrix(0,size ,1)

109 prev = TSP_Tour [1]

110 for (i in 1:size +1) {

111 Greedy_Tour[prev] = TSP_Tour[i]

112 prev = TSP_Tour[i]

113 }

114
115 #**********PART 2: Get Greedy Order with tiering***********

116 #Initialize Variables

117 num.visited = 0

118 to = rep(T,size)

119 from = rep(T,size)

120 trails = matrix(T,size ,size)

121 diag(trails)=F

122 tours = matrix(0,size ,size)

123 greedloop = rep(0,size)

124 GreedyOrder = rep(0,size)

125 tiering = rep(0,size)

126 tier = 1

127 while (num.visited <size -1) {

128 current.distances <-Data[]

129 #current.distances[!from] = Inf

130 current.distances[,!to] = Inf

131 current.distances=ifelse(trails ==F,Inf ,current.distances)

132 numintier = 0

133 #go though every node

134 for (i in 1:size) {

135 #if node hasnt been left yet

136 if (from[i]==T) {

137 #find the min distance arcs

138 availmin = which(current.distances[i,]== min(current.distances[i,]),arr.ind =

T, useNames = F)[1]

139 #if only min distance arc AND same as in opt tour (this can probably just be

made availmin [1] and length removed)

140 if ((availmin == Greedy_Tour[i])&&((numintier+num.visited) <(size -1))) {

141 #update number in tier

142 numintier = numintier + 1

143 #store connection

144 greedloop[numintier]= i

145 }

146 }

147 }

148 #loop through connections in tier

149 for (j in 1: numintier) {

150 #Perfrorm greed tracker

151 trails[greedloop[j],Greedy_Tour[greedloop[j]]]=F

152 tours[greedloop[j],Greedy_Tour[greedloop[j]]]=1

153 from[greedloop[j]] = F

154 to[Greedy_Tour[greedloop[j]]] = F

155

79

156 #row addition Trails code

157 for (l in 1:size) {

158 if (trails[l,Greedy_Tour[greedloop[j]]]==F) {

159 trails[l,]= trails[l,]&trails[greedloop[j],]

160 }

161 }

162
163 num.visited = num.visited + 1

164 #stroe perfect orde4r list

165 GreedyOrder[num.visited] = greedloop[j]

166 tiering[num.visited] = tier

167 }

168 tier = tier+1

169
170 }

171 #Set last arc to finalize tour

172 tours[which(from==T),which(to==T)]=1

173 #sometimes cause error due to looping structure

174 GreedyOrder[num.visited +1]= which(from==T)

175 tiering[num.visited +1]= tier

176
177 #*********** PART 3: Adaptive List **********

178 #Re -Initialize Variables

179 order = GreedyOrder

180
181 #tuneable parameters

182
183 numswaps =1

184 goodnodes = rep(0,size)

185 alpha=startalpha

186 alphacount = 0

187 best_order = order

188 best_score = score

189 a = Sys.time()

190 #Number of list order swaps at each iteration

191
192 minvals = rep(0,size)

193 badarc = rep(0,size)

194
195 for (i in 1:size) {

196 minval = tail(sort(Data[i,], decreasing = F,index.return=T) ,2)

197 minvals[i] = minval$x[2]

198 }

199
200 for (p in 1:size) {

201 goodnodes[p]= length(which(Data[p,]<= minvals[p]+ minvals[p]*(1/startalpha)))

202 }

203 maxgood = max(goodnodes)

204
205
206 ##################

207 for (k in 1:iter) {

208 #Initialize Variables

209 num.visited = 0

210 to = rep(T,size)

211 from = rep(T,size)

212 trails = matrix(T,size ,size)

213 diag(trails)=F

214 arcvals = rowSums(tours*Data)

215 tours = matrix(0,size ,size)

216
217 havearc=F

218 while (havearc == F) {

219 badarc = which(arcvals >=(minvals+minvals*alpha))

220 if ((length(badarc) <2)||(alphacount >= intensifycrit)){

221 alpha = alpha -changealpha

80

222 alphacount =0

223 if (alpha < 0) {alpha=startalpha}

224 } else {

225 move1 = sample(badarc ,1)

226 swap1=which(order==move1)

227 havearc=T

228 }

229 }

230 move2 = sample(which(goodnodes >=alpha/startalpha*maxgood) ,1)

231 swap2 = which(order==move2)

232 temp = order[swap2]

233 order[swap2]= order[swap1]

234 order[swap1]=temp

235
236 #While statement

237 while (num.visited <size -1) {

238
239 current.distances <-Data[,order[num.visited +1]]

240 current.distances[!to]=Inf

241 current.distances[!trails[order[num.visited +1] ,]]= Inf

242 nextTownToVisit = as.integer(which(current.distances ==min(current.distances),

arr.ind = T,useNames = F)[1])#In case of ties , take just the first

243
244 nextTownToVisit = c(order[num.visited +1], nextTownToVisit)

245 trails[nextTownToVisit [1], nextTownToVisit [2]]=F

246 tours[nextTownToVisit [1], nextTownToVisit [2]]=1

247 from[nextTownToVisit [1]] = F

248 to[nextTownToVisit [2]]= F

249
250 #row addition Trails code

251 listarc = which(trails[,nextTownToVisit [2]]==F)

252 for (i in 1: length(listarc)) {

253 trails[listarc[i],]= trails[listarc[i],]&trails[nextTownToVisit [1],]

254 }

255 num.visited = num.visited + 1

256 }

257 #Set last arc to finalize tour

258 tours[which(from==T),which(to==T)]=1

259 score=sum(tours*Data)

260
261
262
263 if (score <=best_score) {

264 if (score <best_score) {

265 alpha=startalpha

266 alphacount =0

267 }

268 best_score=score

269 best_tour=tours

270 best_order=order

271 } else {

272 order = best_order

273 alphacount = alphacount + 1

274 }

275
276 }

277 PLGRS_BATGA[countBATGA]=best_score

278 countBATGA =countBATGA +1

PLGRS ALL

1
2 TSP_Data <- read.csv("C:\\ Users\\ petar\\ Documents \\R\\R Studio \\ test48.csv",header =

FALSE)

81

3 #Turn it into a usable matrix

4 Data <-as.matrix(TSP_Data)

5
6 #Get the data sets size

7 size <-dim(Data)[1]

8
9
10 iter = 50

11 startalpha =4

12 changealpha =.5

13 intensifycrit = 5

14 greedytour = rep(1:size ,1)

15
16 #***********PART 1: get Greedy Tour*******************

17
18 listarcs = matrix(0,size*(size +1)/2,3)

19 tours = matrix(0,size ,size)

20 Degree = rep(0,size)

21 Tail = rep(1: size)

22 taili=0

23 tailj=0

24 temptaili = 0

25 temptailj = 0

26 #generate list of arcs column 1 is length , column two is tail , column 3 is head

27 count = 1

28 for (i in 1:size) {

29 for (j in i:(size)) {

30 listarcs[count ,1] = Data[i,j]

31 listarcs[count ,2] = i

32 listarcs[count ,3] = j

33 if (i==j) {listarcs[count ,1]= Inf}

34 count= count + 1

35 }

36 }

37 #sort the list by length

38 listarcs = listarcs[order(listarcs [,1], decreasing = FALSE),]

39 #initialize more variables

40 num.visited = 0

41 count = 1

42 #While statement (create hamilton path)

43 while (num.visited <size -1) {

44 #node leaving does not have a arc leaving and node going to does not have an arc

entering

45 if ((Degree[listarcs[count ,2]] <2)&&(Degree[listarcs[count ,3]] <2)&&(Tail[listarcs[

count ,2]]!=listarcs[count ,3])) {

46 #add arc

47 tours[listarcs[count ,2], listarcs[count ,3]]=1

48 tours[listarcs[count ,3], listarcs[count ,2]]=1

49 #if both are 0 degree

50 if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==0)) {

51
52 taili =Tail[listarcs[count ,2]]

53 tailj =Tail[listarcs[count ,3]]

54 Tail[listarcs[count ,2]]= tailj

55 Tail[listarcs[count ,3]]= taili

56
57 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==0)) {

58
59 taili =Tail[listarcs[count ,2]]

60 Tail[taili]=Tail[listarcs[count ,3]]

61 Tail[listarcs[count ,3]]= taili

62 Tail[listarcs[count ,2]]=0

63
64 } else if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]]==1)) {

65
66 tailj =Tail[listarcs[count ,3]]

82

67 Tail[tailj] =Tail[listarcs[count ,2]]

68 Tail[listarcs[count ,2]]= tailj

69 Tail[listarcs[count ,3]]=0

70
71 } else if ((Degree[listarcs[count ,2]]==1)&&(Degree[listarcs[count ,3]]==1)) {

72
73 taili =Tail[listarcs[count ,2]]

74 tailj =Tail[listarcs[count ,3]]

75 Tail[taili]=tailj

76 Tail[tailj]=taili

77 Tail[listarcs[count ,2]]=0

78 Tail[listarcs[count ,3]]=0

79 }

80 #set start to tail and current to head

81 Degree[listarcs[count ,2]]= Degree[listarcs[count ,2]]+1

82 Degree[listarcs[count ,3]]= Degree[listarcs[count ,3]]+1

83 num.visited = num.visited +1

84 }

85 count = count +1

86 }

87 #connect hamilton path start to finish

88 tours[which(Degree <2)[1],which(Degree <2) [2]]=1

89 tours[which(Degree <2)[2],which(Degree <2) [1]]=1

90 score=sum(tours*Data)/2

91
92 previousnode = 0

93 currentnode = 1

94 for (j in 1:size) {

95 nodes = which(tours[currentnode ,]==1)

96 if (nodes [1]!=previousnode) {

97 greedytour[j] = nodes [1]

98 previousnode=currentnode

99 currentnode=nodes [1]

100 } else {

101 greedytour[j] = nodes [2]

102 previousnode=currentnode

103 currentnode=nodes [2]

104 }

105 }

106
107 TSP_Tour=greedytour

108 TSP_Tour = c(TSP_Tour ,greedytour [1])

109 Greedy_Tour = matrix(0,size ,1)

110 prev = TSP_Tour [1]

111 for (i in 1:size +1) {

112 Greedy_Tour[prev] = TSP_Tour[i]

113 prev = TSP_Tour[i]

114 }

115
116 #**********PART 2: Get Greedy Order with tiering***********

117
118 #Initialize Variables

119 num.visited = 0

120 to = rep(T,size)

121 from = rep(T,size)

122 trails = matrix(T,size ,size)

123 diag(trails)=F

124 tours = matrix(0,size ,size)

125 greedloop = rep(0,size)

126 GreedyOrder = rep(0,size)

127 tiering = rep(0,size)

128 tier = 1

129 while (num.visited <size -1) {

130 current.distances <-Data[]

131 #current.distances[!from] = Inf

132 current.distances[,!to] = Inf

83

133 current.distances=ifelse(trails ==F,Inf ,current.distances)

134 numintier = 0

135 #go though every node

136 for (i in 1:size) {

137 #if node hasnt been left yet

138 if (from[i]==T) {

139 #find the min distance arcs

140 availmin = which(current.distances[i,]== min(current.distances[i,]),arr.ind =

T, useNames = F)[1]

141 #if only min distance arc AND same as in opt tour (this can probably just be

made availmin [1] and length removed)

142 if ((availmin == Greedy_Tour[i])&&((numintier+num.visited) <(size -1))) {

143 #update number in tier

144 numintier = numintier + 1

145 #store connection

146 greedloop[numintier]= i

147 }

148 }

149 }

150 #loop through connections in tier

151 for (j in 1: numintier) {

152 #Perfrorm greed tracker

153 trails[greedloop[j],Greedy_Tour[greedloop[j]]]=F

154 tours[greedloop[j],Greedy_Tour[greedloop[j]]]=1

155 from[greedloop[j]] = F

156 to[Greedy_Tour[greedloop[j]]] = F

157
158 #row addition Trails code

159 for (l in 1:size) {

160 if (trails[l,Greedy_Tour[greedloop[j]]]==F) {

161 trails[l,]= trails[l,]&trails[greedloop[j],]

162 }

163 }

164
165 num.visited = num.visited + 1

166 #stroe perfect orde4r list

167 GreedyOrder[num.visited] = greedloop[j]

168 tiering[num.visited] = tier

169 }

170 tier = tier+1

171
172 }

173 #Set last arc to finalize tour

174 tours[which(from==T),which(to==T)]=1

175 #sometimes cause error due to looping structure

176 GreedyOrder[num.visited +1]= which(from==T)

177 tiering[num.visited +1]= tier

178
179 #*********** PART 3: Adaptive List **********

180 #Re -Initialize Variables

181 order = GreedyOrder

182
183 #tuneable parameters

184
185 numswaps =1

186 goodnodes = rep(0,size)

187 alpha=startalpha

188 alphacount = 0

189 best_order = order

190 best_score = score

191 a = Sys.time()

192 #Number of list order swaps at each iteration

193
194 minvals = rep(0,size)

195 badarc = rep(0,size)

196

84

197 for (i in 1:size) {

198 minval = tail(sort(Data[i,], decreasing = F,index.return=T) ,2)

199 minvals[i] = minval$x[2]

200 }

201
202 for (p in 1:size) {

203 goodnodes[p]= length(which(Data[p,]<= minvals[p]+ minvals[p]*(1/startalpha)))

204 }

205 maxgood = max(goodnodes)

206
207
208 ##################

209 for (k in 1:iter) {

210 #Initialize Variables

211 num.visited = 0

212 to = rep(T,size)

213 from = rep(T,size)

214 trails = matrix(T,size ,size)

215 diag(trails)=F

216 arcvals = rowSums(tours*Data)

217 tours = matrix(0,size ,size)

218
219 type = sample (3,1)

220
221 if (type == 1) {

222
223 havearc=F

224 while (havearc == F) {

225 badarc = which(arcvals >=(minvals+minvals*alpha))

226 if ((length(badarc) <2)||(alphacount >= intensifycrit)){

227 alpha = alpha -changealpha

228 alphacount =0

229 if (alpha < 0) {alpha=startalpha}

230 } else {

231 move1 = sample(badarc ,1)

232 oldloc=which(order == move1)

233 if (oldloc!=1) {

234 havearc=T

235 }

236 }

237 }

238 newloc=sample(oldloc -1,1)

239 if (newloc ==1) {

240 if (oldloc ==size) {

241 temporder = c(move1 ,order [1:size -1])

242 order=temporder

243 } else {

244 temporder = c(move1 ,order)

245 order = c(temporder [1:(oldloc)],temporder [(oldloc +2):(size +1)])

246 }

247 } else if (oldloc ==size){

248 temporder = c(order [1:newloc -1],move1 ,order[newloc:size])

249 order = c(temporder [1:(oldloc)])

250 } else {

251 temporder = c(order [1:newloc -1],move1 ,order[newloc:size])

252 order = c(temporder [1:(oldloc)],temporder [(oldloc +2):(size +1)])

253 }

254
255 } else if (type == 2) {

256 for (j in 1: numswaps) {

257 swap1 = sample(size ,1)

258 swap2 = sample(size ,1)

259 temp = order[swap2]

260 order[swap2]= order[swap1]

261 order[swap1]=temp

262 }

85

263 } else if (type == 3) {

264
265 havearc=F

266 while (havearc == F) {

267 badarc = which(arcvals >=(minvals+minvals*alpha))

268 if ((length(badarc) <2)||(alphacount >= intensifycrit)){

269 alpha = alpha -changealpha

270 alphacount =0

271 if (alpha < 0) {alpha=startalpha}

272 } else {

273 move1 = sample(badarc ,1)

274 swap1=which(order==move1)

275 havearc=T

276 }

277 }

278 move2 = sample(which(goodnodes >=alpha/startalpha*maxgood) ,1)

279 swap2 = which(order==move2)

280 temp = order[swap2]

281 order[swap2]= order[swap1]

282 order[swap1]=temp

283 }

284
285 #While statement

286 while (num.visited <size -1) {

287
288 current.distances <-Data[,order[num.visited +1]]

289 current.distances[!to]=Inf

290 current.distances[!trails[order[num.visited +1] ,]]= Inf

291 nextTownToVisit = as.integer(which(current.distances ==min(current.distances),

arr.ind = T,useNames = F)[1])#In case of ties , take just the first

292
293 nextTownToVisit = c(order[num.visited +1], nextTownToVisit)

294 trails[nextTownToVisit [1], nextTownToVisit [2]]=F

295 tours[nextTownToVisit [1], nextTownToVisit [2]]=1

296 from[nextTownToVisit [1]] = F

297 to[nextTownToVisit [2]]= F

298
299 #row addition Trails code

300 listarc = which(trails[,nextTownToVisit [2]]==F)

301 for (i in 1: length(listarc)) {

302 trails[listarc[i],]= trails[listarc[i],]&trails[nextTownToVisit [1],]

303 }

304 num.visited = num.visited + 1

305 }

306 #Set last arc to finalize tour

307 tours[which(from==T),which(to==T)]=1

308 score=sum(tours*Data)

309
310 if (score <=best_score) {

311 if (score <best_score) {

312 alpha=startalpha

313 alphacount =0

314 }

315 best_score=score

316 best_tour=tours

317 best_order=order

318 } else {

319 order = best_order

320 alphacount = alphacount + 1

321 }

322
323 }

86

Bibliography

1. B. Hopkins and R. J. Wilson, “The Truth about Konigsberg,” The College Math-
ematics Journal, vol. 3, no. 1, pp. 198–207, 2004.

2. C. A. Tovey, “Tutorial on computational complexity,” Interfaces, vol. 32, no. 3,
pp. 30–61, 2002.

3. “Mixed-Integer Programming (MIP) - A Primer on the Basics.” http://www.

gurobi.com/resources/getting-started/mip-basics. Accessed: 2018-11-15.

4. M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network
Flows. Hoboken, New Jersey: John Wiley & Sons, Inc, 4th ed., 2010.

5. D. Applegate, R. Bixby, V. Vhvatal, and W. Cook, The Traveling Salesman
Problem: A Computational Study. Princeton, New Jersey: Princeton University
Press, 2006.

6. C. Rego, D. Gamboa, F. Glover, and C. Osterman, “Traveling salesman problem
heuristics: Leading methods, implementations and latest advances,” European
Journal of Operational Research, vol. 211, no. 3, pp. 427–441, 2011.

7. E. A. Silver, “An overview of heuristic solution methods,” Journal of the Opera-
tional Research Society, vol. 55, no. 9, pp. 936–956, 2004.

8. S. H. Zanakis and J. R. Evans, “Heuristic ”Optimization”: Why, When, And
How to Use It,” Interfaces, vol. 11, no. 5, pp. 84–91, 1981.

9. J. J. Bentley, “Fast Algorithms for Geometric Traveling Salesman Problems,”
ORSA Journal on Computing, vol. 4, no. 4, pp. 387–411, 1992.

10. S. Wang, R. Weizhen, and Y. Hong, “A Distance Based Algorithm for Solving
the Traveling Salesman Problem,” Operational Research, 2018.

11. S. Cook, “The Complexity of Theorem Proving Procedures,” Proceedings of the
Third Annual ACM Symposium, pp. 151–158, 1971.

12. A. Khan, M. Khan, and Iqbal Muneeb, “Multilevel Graph Partitioning Scheme
To Solve Traveling Salesman Problem,” in 2012 Ninth International Conference
on Information Technology - New Generations, (Las Vegas), pp. 458–463, 2012.

13. G. Dantzig, R. Gulkerson, and S. Johnson, “Solution of a large-scale traveling-
salesman problem,” Operations Research, vol. 2, pp. 393–410, 1952.

14. I. Heller, “On the problem of the shortest path between points.,” Bulletin of the
American Mathematical Society, vol. 59, pp. 551–551, 1953.

87

15. H. W. Kuhn, “On certain convex polyhedra.,” Bulletin of the American Mathe-
matical Society, vol. 61, pp. 557–558, 1955.

16. H. Okano, S. Misono, and K. Iwano, “New TSP Construction Heuristics and
Their Relationships to the 2-Opt,” Journal of Heuristics, vol. 5, no. 1, pp. 71–88,
1999.

17. M. M. Flood, “The Traveling Salesman Problem,” Operations Research, vol. 4,
no. 1, pp. 61–75, 1956.

18. M. F. Dacey, “Selection of an Initial Solution for The Traveling-Salesman Prob-
lem,” Operations Research, vol. 8, no. 1, pp. 133–134, 1960.

19. D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An Analysis of Several
Heuristics For The Traveling Salesman Problem,” SIAM Journal On Computing,
vol. 6, no. 3, pp. 563–581, 1977.

20. C. Papadimitiou and K. Steiglitz, Combinatorial Optimization. Englewood Cliffs,
NJ: Prentice-hall, 1982.

21. K. Steiglitz and P. Weiner, “Some Improved Algorithms for Computer Solution of
the Traveling Salesman Problem,” in 6th Annual Allerton Conference on Circuit
and Systems Theory, no. October, (Urbana), pp. 814–821, 1968.

22. M. Held and R. Karp, “The traveling salesman problem and minimum spanning
trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970.

23. R. Hassin and A. Keinan, “Greedy heuristics with regret, with application to the
cheapest insertion algorithm for the TSP,” Operations Research Letters, vol. 36,
no. 2, pp. 243–246, 2008.

24. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

25. V. Černý, “Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm,” Journal of Optimization Theory and Applications,
vol. 45, no. 1, pp. 41–51, 1985.

26. R. W. Eglese, “Simulated annealing: A tool for operational research,” European
Journal of Operational Research, vol. 46, no. 3, pp. 271–281, 1990.

27. A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol. 59, no. 236,
pp. 433–460, 1950.

28. D. B. Fogel, “An Evolutionary Approach to the Traveling Salesman Problem,”
Biological Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.

88

29. C. R. Reeves, “Genetic Algorithms for the Operations Researcher,” INFORMS
Journal on Computing, vol. 9, no. 3, pp. 231–249, 1997.

30. Holland J.H., Adaption in Natural and Artificial Systems. Ann Arbor, MI: Uni-
versity of Michigan Press, 1992.

31. P. Merz, H. Hannover, and B. Freisleben, “Memetic Algorithms for the Traveling
Salesman Problem,” Complex Systems, vol. 13, no. 4, pp. 297–345, 2001.

32. S. Lin and B. W. Kernighan, “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem,” Operations Research, vol. 21, no. 2, pp. 498–516, 1973.

89

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
21-03-2019

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From - To)
Sept 2017 – Mar 2019

4. TITLE AND SUBTITLE
Solving the Traveling Salesman Problem Using Ordered-Lists

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Jackovich, Petar D, 1st Lt

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

Air Force Institute of Technology
Graduate School of Engineering and Management
(AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENS-MS-19-M-127

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Intentionally Left Blank
 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A. Approved for Public Release; distribution unlimited.

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
 14. ABSTRACT
The arc-greedy heuristic is a constructive heuristic utilized to build an initial, quality tour for the Traveling Salesman Problem
(TSP). There are two known sub-tour elimination methodologies utilized to ensure the resulting tours are viable. This thesis
introduces a third novel methodology, the Greedy Tracker (GT), and compares it to both known methodologies.
Computational results are generated across multiple TSP instances. The results demonstrate the GT is the fastest method for
instances below 400 nodes while Bentley's Multi-Fragment maintains a computational advantage for larger instances.

A novel concept called Ordered-Lists is also introduced which enables TSP instances to be explored in a different space than
the tour space and demonstrates some intriguing properties. While computationally more demanding than its tour space
counterpart, the solution quality advantages, as well as a possibly higher proportion of optimal occurrences, when optimality
is achievable via the ordered-list space, warrants further investigation of the space. Three meta-heuristics that leverage the
ordered-list space are introduced. Testing results indicate that while at a severe iteration disadvantage, these methodologies
benefit from using the ordered-list space which yields a higher per iteration improvement rate.

 15. SUBJECT TERMS
Traveling Salesman Problem, Greedy Heuristic, Multi-Fragment, Ordered-List, Ordered-Greedy

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Lt Col Bruce A. Cox,
AFIT/ENS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

UU 101 19b. TELEPHONE NUMBER (include area
code)
(937) 255-3636 x4510 Bruce.Cox@Afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Thesis_vFinal
	JackovichThesis - SF 298

