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Abstract

The arc-greedy heuristic is a constructive heuristic utilized to build an initial, quality
tour for the Traveling Salesman Problem (TSP). There are two known sub-tour elim-
ination methodologies utilized to ensure the resulting tours are viable. This thesis
introduces a third novel methodology, the Greedy Tracker (GT), and compares it to
both known methodologies. Computational results are generated across multiple TSP
instances. The results demonstrate the GT is the fastest method for instances below
400 nodes while Bentley’s Multi-Fragment maintains a computational advantage for
larger instances.

A novel concept called Ordered-Lists is also introduced which enables TSP in-
stances to be explored in a different space than the tour space and demonstrates
some intriguing properties. While computationally more demanding than its tour
space counterpart, the solution quality advantages, as well as a possibly higher pro-
portion of optimal occurrences, when optimality is achievable via the ordered-list
space, warrants further investigation of the space. Three meta-heuristics that lever-
age the ordered-list space are introduced. Testing results indicate that while at a
severe iteration disadvantage, these methodologies benefit from using the ordered-list

space which yields a higher per iteration improvement rate.
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SOLVING THE TRAVELING SALESMAN PROBLEM USING ORDERED LISTS

I. Introduction

This thesis presents a novel sub-tour tracking and elimination methodology, the
Greedy Tracker (GT), which ensures feasible solutions to the Traveling Salesman
Problem during the implementation of the arc-greedy constructive heuristic. The
GT is compared to other currently accepted sub-tour elimination methodologies to
examine situational computational advantages. The paper then utilizes constructive
heuristics to develop and explore a novel meta-heuristic that seeks to find an optimal,

or near optimal, tour utilizing a novel concept called Ordered-Lists.

1.1 Motivation

Linear programming problems fall under the mathematical topic of optimization;
they seek to optimize a linear function representing a measure of merit while minding
linear equality and or inequality constraints on the systems performance [4]. The
term linear programming was coined by economist and mathematician T.C. Koop-
mans based on work that George B. Dantzig was doing as a mathematical advisor
to the United States Air Force during the late 1940s. Dantzig later developed the
“simplex method” to solve these linear programs which became widely accepted due
to its ability to model important and complex management decision problems and
its capability for producing solutions to many important linear programs in a reason-
able amount of time. However, the simplex method was not able to solve all LPs in
a reasonable amount of time, leading mathematicians to seek an understanding on

the types of problems that proved intractable for the method. Combinatorial opti-



mization problems are a subset of discrete linear programs that involve finding an
optimal set from a finite set of solutions. While these problems theoretically have
fewer possible solutions than a traditional linear program, they break the underlying
continuity assumptions used in the simplex method thus preventing its usage. Other
direct solution approaches to combinatorial optimization problems have also proved
intractable, due to their exponential computational growth as problem size increases.
One such combinatorial optimization problem that has long captured the interest of

mathematicians is the traveling salesman problem.

1.2 The Traveling Salesman Problem

Applegate et al [5] describes the traveling salesman problem as, “Given a set of
cites along with the cost of travel between each pair of them, the traveling salesman
problem, or TSP for short, is the problem of finding the cheapest way of visiting
all the cities and returning to the starting point.” It can also be mathematically
defined as, given a complete undirected graph G = (V, E), cities are represented via
the graph vertices, and edges represent the paths between the cities where the edge
weights are the distances between each city. In terms of a graph the problem can
be posed as: What is the shortest tour that visits all vertices once and returns to
the starting vertex? One of the earliest examples of a similar graph problem was
that of Fuler’s bridge conundrum in Konigsberg. The city of Konigsberg consisted of
four land areas separated by two branches of the river Pregel but connected by seven
bridges. Euler analyzed the challenge of finding a way to cross all the bridges exactly
once and return to the origin. This problem differs from the TSP as it seeks to travel
each arc once, and return to the starting node. However, while different, Euler’s
problem established much of the graph theory that is utilized to define problems like

the TSP. The exact origins of the TSP are not known and there are many examples of
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Figure 1. Konigsberg Bridges [1]

other similar early concepts. The first recorded use of the phrase “Traveling Salesman
Problem” occurred in 1949 by Julia Robinson in her paper On the Hamiltonian game
(a traveling salesman problem) [5]. When traditional linear programming methods
were applied to the TSP, intractability issues arose [5]. It has since been shown this
is because the TSP falls into a class of known computationaly ‘hard’ problems called
NP-Complete [6]. As a result, nontraditional methods such as heuristics are often
used when solving the TSP.

A heuristic is a “method which, on the basis of experience or judgment, seems
likely to yield a reasonable solution to the problem, but which cannot be guaranteed to
produce the mathematically optimal solution” [7]. This is the key difference between
a heuristic and an algorithm. An algorithm guarantees optimality, whereas a heuristic
does not. Heuristics have many advantages over algorithms, especially when it comes
to the class of NP-Complete problems. Evans and Zanakis [8] present a multitude
of these reasons, but considering the intractability of the TSP, the primary reason is
that while “An exact method is available. It it is computationally unattractive due

to excessive time and or storage requirements. Large real-world complex problems



may prevent an optimizer from finding an optimal or even a feasible solution within a
reasonable effort. Heuristics, on the other hand, can produce at least feasible solutions
with minimal time and storage requirements.”

Many heuristics utilize a greedy-type methodology, where the best choice accord-
ing to some predefined parameter is selected at each step of the method. An example
of a greedy-type method for the TSP is the arc-greedy constructive heuristic, where
the shortest available arc is added to the tour. However, this greedy heuristic runs
the risk of generating sub-tours. These sub-tours are disconnected tours of less than
size N (where N is the number of nodes present in the graph) that prevent a single
continuous tour from being formed. Some research has been completed to develop

methodologies that avoid sub-tours when utilizing the arc-greedy heuristic [9][10].

1.3 Research Questions

1. This paper introduces a novel sub-tour elimination methodology for the arc-
greedy heuristic that is compared to two known sub-tour elimination method-
ologies. Computational results are generated across multiple TSP instances for

each method.

2. A novel concept called Ordered-Lists is introduced which enables TSP instances
to be explored in a different space than the tour space. This concept demon-

strates some intriguing properties which we leverage in some novel meta-heuristics.

1.4 Outline

In Chapter 2, various methods used to solve the TSP are reviewed. In Chap-
ter 3, two known arc-greedy sub-tour tracking and elimination methodologies are
introduced with pseudo code, examples, and theoretical advantages. This chapter

also introduces a novel sub-tour elimination method, the Greedy Tracker. Chapter 4

4



summarizes each of these methodologies performance across different instances of the
TSP focusing on run-time comparisons and identifying run time trends due to under-
lying instance structure. In Chapter 5, a novel concept for viewing TSP instances,
Ordered-Lists, is introduced and a novel TSP meta-heuristic utilizing this concept is
proposed. In Chapter 6, results from the proposed meta-heuristic are summarized fol-
lowed by Chapter 7 where, all results are concluded with recommendations on future
research of utilizing the arc-greedy methodology on the TSP and other combinatorial

optimization problems.



II. Literature Review

In this chapter several well known algorithms and heuristics used to solve the
TSP are introduced. The chapter starts with a brief overview of NP-Hardness and is
followed by the Linear Programming formulation of the TSP, an overview of heuristic
methods, and an introduction to popular construction and meta-heuristic’s specif-
ically used on the TSP. Understanding these motivates the sub-tour elimination
methods for arc-greedy constructive heuristics as well as methodologies used in the

Ordered-List meta-heuristics introduced later in this paper.

2.1 NP-Hardness

The TSP is an NP-Complete problem [6]. NP-complete is one of the classes of
computational complexity. The other classes P, NP, and NP-hard along with their

currently understood relationships are found in Figure 2. Briefly, the class P consists

Figure 2. Computational Complexity [2]

of problems solvable in polynomial time [2], the class NP consists of problems whose
solutions can be verified in polynomial time. It is an open question if the class P is
equivalent to class NP [11]. In additions, the class NP-hard can be informally thought
of as the class of problems that are ”at least as hard as the hardest problems in NP.”

The intersection of NP-Hard problems , and NP problems is called NP-complete. No



one has yet developed an efficient method for solving large instances of NP-complete
problems to optimality [12]. The inclusion of the TSP in the set of NP-complete
problems motivates the usage of other solving techniques such as LPs with cuts and

heuristics.

2.2 LP Relaxation

The LP formulation for the the TSP as initially described by Dantzig et al [13] is

given as:

minimize 'z
subject to 0 <z, <1 for all edges e, (1)

Z(er cwvisanendofe) =2  forall cities v.

In this formulation, the decision variable x. represents the choice of including edge e in
the tour. The objective function associates a cost matrix with this decision variable,
while the constraints ensure that each edge is used at most once and that each node
has “two edges”. The authors, however, go on to discuss that this formulation is not
the actual problem they want to solve, but is instead the problem they can solve. The
formulation above is a relaxation of the actual problem which allows for a solution
containing sub-tours, as well as solutions that partially assign edges. For instance,
Figure 3 shows a allowable solution to (1), as it satisfies all constraints however it
does not produce a single continuous tour. The answer found from the relaxation is
however still useful as it provides a lower bound objective value for a TSP instance
which can then be used to grade the quality of a proposed tour found by heuristics,

or as a foundation for cutting plane algorithms.
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Figure 3. TSP Relaxation Solution
2.3 Cutting Plane Method

Research from Heller [14] and Kuhn [15] indicated it may be possible to define
beforehand a finite list of inequalities to add to the LP relaxation to exactly define the
feasible region. However, the full list of inequalities could be far too large for any linear
programming solver to handle directly. One methodology proposed by Applegate et
al [5] to utilize this list is to implement a series of iterative cuts to remove infeasible
solutions. A cut, or cutting plane, is a linear inequality that constricts the convex
hull of the feasible region. The process of adding these cuts involves solving the LP
relaxation, examining the solution to determine if it is a feasible tour, determining
which additional inequalities are necessary to break any sub-tours, adding them and
resolving the problem. This continues until a feasible, and thus optimal solution, to
the TSP is found. Iterative cutting is possible because not every inequality needs
to be added to the LP to find the optimal solution. Therefore, by solving multiple
smaller LPs and iteratively adding cutting planes to remove infeasible intermediate
tour solutions, an optimal solution can be found. However, the time to solve grows
exponentially depending on the number of cuts that may be necessary. Because of
this, a heuristic solution methodology appears to be the best way to quickly produce

good, if not optimal tours [9].
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2.4 Heuristics
The difficulties encountered in applying cutting planes motivate the usage of
heuristic methodologies to solve the TSP. The earliest recorded use of heuristics traces
all the way back to ancient Greek mathematical literature. The name heuristic comes
from the Greek verb ”heurskein” meaning ”"to find”. From then to now people have
been applying creative methodologies to solve difficult problems. As the name implies,
some of the earliest examples of the TSP were records of various Salesman discussing
the idea that more thought should be put into how they organize their journeys, or
tours, to neighboring cities. A excerpt from the Commis-Boyageur, a 1830s German
traveling salesman handbook [5], was brought to the attention of the TSP research
community by Heiner Muller-Merbach in 1983 which translated to, ”The main thing
to remember is always to visit as many localities as possible without having to touch
them twice.” This excerpt indicates that as early as the 1800s, a salesman was cog-

nizant that his routes should be planned as to minimize the number of places he visits

more than once.



There are many desired qualities that make a good heuristic. Evans and Zanakis

8] give a list of characteristics they feel defines a good heuristic:

e Simplicity,

e Reasonable core storage requirements,
e Speed,

e Accuracy,

e Robustness,

e Acceptable to multiple starting points,
e Produce multiple solutions,

e Good stopping criteria,

e Statistical estimation, and

e Interactive.

While many of these are intuitive, some may require further explanation. Because a
heuristic does not necessarily converge to the optimal solution like a algorithm, the
starting point, or initial solution, is very important. Different feasible initial solutions
start at different locations within the feasible region and can often converge to dif-
ferent local optima. By making a heuristic acceptable to multiple starting solutions,
it has a better chance to test and explore more of the feasible region. As it’s Greek
root implies, A heuristic also needs to have a good stopping mechanism to determine
when it has "found” a suitable solution. This ensures that the heuristic does not
run for a unreasonably long time searching for answers without improvement. It also
ensures the the heuristic does not stop before possibly reaching a very good set, or
neighborhood, of new solutions.

Most heuristics can be broken into three categories, construction heuristics, local-

search heuristics, and meta-heuristics. In relation to the TSP, construction heuristics

10



build a tour from scratch, local heuristics improve a given tour, and meta-heuristics
apply a combination of constructive and iterative local-search heuristics [16], of partic-
ular note is a meta heuristics ability to be interactive. Modern meta-heuristics often
include user definable elements, which allow the user to tune the meta-heuristic for
the given instance it is solving. These elements often include number of iterations,
stopping criteria, number of initial starting solutions generated, and the definition
of neighboring solutions, all of which are very important to how the meta-heuristic

performs with regards to many of Evans and Zanakis’s qualities.

2.5 Greedy-type Construction Heuristics

One of the most common construction heuristic methodologies is the greedy heuris-
tic. A greedy heuristic is one that at each step selects the best decision for a given
metric, with no regard to how such choices may effect future decisions. For the
TSP, there are three primary greedy construction heuristics; Nearest neighbor (node-

greedy), arc-greedy, and Recursive Selection.

Nearest Neighbor (node-greedy heuristic).

The nearest neighbor(NN) heuristic was first applied to the TSP in a 1954 paper
by Flood [17] but was introduced as the "next closest city method.” The process was
later refined by Dacey [18] and coined with its eventual name. The NN starts at
an arbitrary city, and successively visits the closest unvisited city. It is important
to to note that the nearest neighbor heuristic maintains a single path fragment that
originates at the predetermined starting city, and cannot be closed into a cycle until
every node has been visited. Therefore the decision of “which arc to add” is limited
to only those arcs that leave the current end node of the fragment, this yields an

algorithm run time of O(N?). Future work by Bentley [9] allowed this heuristic to

11



perform in O(N log N). This methodology allows NN to quickly create an initial tour
which avoids sub tours. However, this approach is extremely sensitive to the choice
of starting node, especially in larger instances. This sensitivity leads to a common
practice of running NN for all cities as the starting node to provide the best solution,
which is never more than ([log N] + 1)/2 times the length of the optimal tour[19].
The shortfall of this heuristic is that one can easily create examples that cause the
heuristic to produce the worst possible solution. A simple example of a scenario where

this occurs can be seen in Figure 5. If Node A is selected as the starting node, the

Figure 5. Greedy Worst Solution Example

heuristic is stuck in a situation where it constantly crosses it’s own path to connect
to the nearest node thus producing the worst possible solution for the given instance.
This is a characteristic downfall that is quite common in many greedy heuristics due

to the short term framing of the greedy decisions being made.

Arc-greedy Heuristic.

The arc-greedy heuristic was first introduced by Papadimitiou and Steiglitz [20]
as a modification of a process first seen in a 1968 paper by Steiglitz and Weiner
[21]. The heuristic is a more complex greedy-type TSP heuristic where all edges of
the graph are sorted from shortest to longest. KEdges are then added to the tour
starting with the shortest arc as long as the addition of this arc will not make it
impossible to complete a tour. Specifically, this means avoiding adding edges that

make early cycles, and also avoiding creation of vertices of degree three. This process,

12



as originally proposed, required O(N? log N) time. However, Bentley was also able to
speed up this process to O(N log N) [9] in a paper introducing his Multi-Fragment
(MF) version. This yields a similar run time to NN while maintaining a similar
worst case solution quality. Arc-greedy’s tour construction methodology causes the
heuristic to only produce a single solution for each instance where NN can arrive at
different solutions based on starting point. This is one of the shortcomings of arc-
greedy when related to NN; the failure to generate variability in the output tour. On
average though, the arc-greedy heuristic tends to outperform NN in tour quality on
a instance to instance basis[9], however there are problem instances where the arc-
greedy heuristic is significantly outperformed by NN as the scope of the arc-greedy,
considering all arcs at any instance, is inherently more greedy than NN, whose decision
is bound to a single node. Thus, the arc-greedy heuristic can create situations where
the final arcs needed to connect the various fragments into a single tour are of poor

quality.

Recursive-Selection Heuristic.

Taking the arc-greedy shortcoming into account, Okano et al [16] introduced a
new heuristic known as the Recursive-Selection Heuristic (RS). Rather than sorting
all arcs by length, the RS sorts all points by order of the distance between each
point and its nearest neighbor and iterates through the list adding points as long as
they do not create a degree of three or early cycles. Once it has iterated through
the list, if any points still have a degree of one or zero, it will resort the list with the
closest available nearest neighbors and iterate through again. No runtime performance
was given for the RS, but the RS+2-Opt meta heuristic designed by Okano steadily
outperformed the MF+42-Opt through many of the instances tested in [16]. This RS

heuristic motivates one of the central research questions of this paper “What is the

13



best way to order the greedy decisions made when solving the TSP?” It appears that

modifying the decision framework can change how well a greedy heuristic performs.

2.6 Greedy-type Construction Heuristic Modifications

Minimizing the Variance of Distance Matrix Greedy.

A recent modification to the arc based greedy heuristic utilizes work from a 1970
paper by Held and Karp [22] to produce an arbitrary real vector, 7, which transforms
the distance matrix D to D’ by stretching and manipulating the distances between
each node [10]. In general, the optimal tour of both distance matricies are the same.
This allows for the possibility of finding a vector 7 such that when the arc based greedy
heuristic is implemented on D’ a better solution is produced versus when the same
heuristic runs on D. Further research by Wang et al [10] showed that the performance
of the arc based greedy heuristic was significantly negatively correlated to the variance
of D'. This motivates the remainder of the paper, finding a vector 7 that minimizes
the variance of the distance matrix D', thus producing better greedy solutions. The
authors identify the fact that minimizing the variance of the distance matrix mitigates
a key disadvantage of the arc-based greedy heuristic; the disadvantage being that the
last few edges added are often very inefficient due to the non-forward-thinking, greedy

nature of the methodology.

Greedy with Regret.

A greedy heuristic with regret modifies a greedy heuristic so that it may recon-
sider past decisions to possibly improve the final solution. Hassin and Keinan applied
this methodology to the TSP utilizing the Cheapest Insertion Heuristic [23]. Adding
regret allows the greedy heuristic to correct one of its biggest faults, selecting the best

decision at the present moment with no regard to what happens to future moves. Has-

14



sin and Keinan create a deletion step which allows the heuristic to delete a previously

added edge to the sub-tour if it is more expensive than the current decision.

2.7 Meta-Heuristics

This section discusses three meta-heuristics that can incorporate greedy type ele-
ments into their solution methodologies. As discussed earlier, a meta-heuristic com-
bines both constructive and, sometimes multiple, local-search heuristics with tunable

elements to achieve near, if not optimal, solutions.

Simulated Annealing.

Simulated annealing (SA) is a local search type heuristic, modeled after the anneal-
ing process that occurs in metal and glass making. The heuristic was first introduced
in 1953 by Metropolis et al [24] as a numerical simulation. This heuristic was then
applied to specific combinatorial optimization problems in 1983 by Kirkpatrick et al
[24], and finally the T'SP, two years later in a paper by Cerny [25]. Additional tunable
elements and advantages were added to a later iteration by Eglese [26] who noted that
the crux of SA was the ability to tune its temperature parameters to probabilistically
accept worse solutions in order to avoid the heuristic getting stuck in a local minima.
This is accomplished by a ‘temperature’ control parameter that assigns a probability
to accepting a worse solution when considering any neighbor solution. Generally, SA
starts with a warm temperature, corresponding to a high probability of accepting
worse neighboring solutions, and cools over time. Reheating functions can be applied
so that the heuristic can climb out of local minima. The biggest weakness of SA is the
difficulty in tuning the heuristic to different instances, the proper stopping criteria,
the proper set of neighbors, and the fact that ideal heating and cooling functions can

change drastically from instance to instance.
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Genetic Algorithm.

Genetic Algorithms (GA) are modeled after the evolutionary process. This idea
was first conceived in 1950 by A.M. Turing [27]. He came up with the following list
of connections which he believed could be incorporated into a computerized process

modeling hereditary evolution.
e Structure of the child machine = hereditary material,
e Changes of the child machine = mutation,

e Natural selection = judgment of the experimenter.

D. B. Fogel [28] first applied this methodology to the TSP in 1988. The GA follows a
Darwinian ”Survival of the Fittest” type mentality by first generating a random initial
population. A percentage of the population is then selected and evolved through
mutation and/or reproduction. This continues until a set termination criterion is met
and the newly created individuals are then evaluated against a fitness parameter. A
new population is generated from individuals with a specified fitness level and the
population is once again evolved. Generally, GAs perform very well due to their
ability to explore many solutions simultaneously and identify quality schema utilizing
a concept known as intrinsic parallelism. Reeves describes schema as a “subset of a
space in which all the strings share a particular set of defined values [29]. In the case
of the TSP, schema may be tours that have a certain number of common values in a
row. For example, if we have a 10 node TSP, the group of tours that have a common
connection of 3-4-5-6 would be a schema. If those connections are efficient and occur
in many of the higher fitness population a GA identifies the string as a quality schema.
Intrinsic parallelism is the idea that information on many schemata can be processed
in parallel [30]. The difficulty of GAs in relation to the T'SP is that special precautions

have to be taken to ensure that mutations do not cause incomplete tours. Multiple
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methodologies ensuring feasibility of solutions via mutation and combinations of tours

are discussed by Merz and Freisleben [31].

2.8 Lin-Kernighan Algorithm

The Lin-Kernighan (LK) heuristic was published in 1972 [32]. Various iterative
improvements have been made to the LK since its conception, some of the most recent
advances can be found in a paper by Rego et al [6] documenting LK variants as well
as state-of-the-art data structures which play a key role in many of the improvements.
The core of this heuristic involves an adaptive k-opt swap methodology that allows

for a variable number of swaps to occur at each iteration.

2-Opt.

An example of a k-opt swap, the 2-OPT routine incrementally considers pairs
of arcs for a swap. In order to perform a thorough local search, the 2-OPT routine
increments through each node along the tour and considers all possible arc pair swaps
at that point. One methodology for performing such a swap is to replace the interme-
diate tour between two nodes with its reverse order. If the swap is shown to reduce
to total tour cost, the swap is saved (but not executed) and compared against all
other swaps in the current iteration. At the end of the iteration if an improvement
has been saved, the improved tour is executed and becomes the new tour, and the
process starts over. Generally k-Opt methodologies need to have a good starting so-
lution to be effective. One of the best starting solutions for a 2-Opt is the arc-greedy
heuristic [16]. Thus one popular methodology is the arc-greedy+2-Opt. Pseudocode

for this process can be seen in Algorithm 1.
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Algorithm 1 Arc-Greedy+2-Opt Pseudocode

1: Initialize Variables

2: Generate arc-greedy tour

3: BestCost & SaveCost = arc-greedy tour cost
4: BestTour & SaveTour = arc-greedy tour

5: while Stop <1 do

6: 1i=20

7 while i <Size-1 do

8: i=i1+41

9: j=1+1

10: while j <Size do

11: TESTtour = replace tour between ¢ and j with reverse
12: Calculate TESTtourCost

13: if TESTtourCost <BestCost then
14: BestTour = TESTtour

15: BestCost = TESTtourCost

16: end if

17: j=j+1

18: end while

19: end while
20: if BestCost <SaveCost then
21: SaveTour = BestTour
22: SaveCost = BestCost
23: else
24: Stop =1
25: end if

26: end while

Concorde.

The Concorde is a heuristic LP-type solver designed by Applegate et al [5] that
incorporates various separation routines into a primary cutting-plane loop. It orders
the routines by rough estimates of their computational requirements. Utilizing a
controller type program cuts from a routine are added to the LP relaxation and the
problem is solved. If the LP bound for the entire round of cutting planes is above a
threshold value, the round is broke off, column generation is applied, and the code
returns to the start of the loop. If the total improvement is less than the threshold,

additional cuts from the next separation routine are added and the problem is solved
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again. This continues until a total improvement bound is less than a designated

threshold.
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III. Arc-Greedy Subtour Elimination Methodologies

This chapter provides detailed explanations, examples, and pseudo-code for two
known sub-tour elimination methodologies for the arc greedy TSP constructive heuris-
tic as well as a third novel sub-tour elimination method. The arc based greedy heuris-
tic gradually constructs a TSP tour by adding to the tour the shortest arc available at
each iteration that does not cause a node to have a degree of more than 2 (see Figure
6). However, this degree constraint alone does not prevent sub-tours. The heuristic
must also verify that a tour of less than size N, a premature partial circuit, called a
sub-tour is not created. For example, consider the following tour construction utiliz-

ing an arc greedy constructive heuristic methodology on a 5 node TSP instance. After

A B CDE o
Al 0 12 19 31 22
B|- 0 1537 21
C|- - 0 5036
D - 0 20
R o

Figure 6. Greedy Subtour 1

adding the first two shortest arcs A-B and B-C, we can see from the distance matrix
that arc A-C is the next shortest and still ensures that all nodes in the graph do not
exceed a degree of 2. However, adding this arc creates a sub-tour, which would pre-
vent the heuristic from ever constructing a feasible TSP tour (see Figure 7. There are
two known methodologies for preventing sub-tours while using an arc greedy heuris-
tic, namely Bentley’s Multi-fragment method [9], and an exhaustive loop test. This
paper introduces a third novel method for eliminating sub-tours while using an arc
greedy constructive heuristic. Each of the following methodologies were reproduced

in R adhering strictly to the source descriptions and pseudocode.
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Figure 7. Greedy Subtour 2
3.1 Exhaustive Loop

The Exhaustive Loop (EL), is a methodology for preventing sub-tours while using
the arc greedy constructive heuristic. This method is not well documented in academic
literature but is often simply referenced as “the standard way.” A literature review
yielded no scholarly articles on this methodology. EL exhaustively cycles through
every edge connected to the most recently added edge. Once a edge e;; is added to
the partial tour, node ¢ will be identified as the “start node” and node j will be set
as “current node.” A trace along the current partial tour then begins. At each step
of the trace the “current node,” node j, is checked to see if it is connected to another
node £ via edge ej;, in the partial tour. If it is, then node & becomes the new “current
node.” If the trace returns back to the “start node” in under N steps. Where N is
the number of nodes in the instance, then the added edge e;; has created a sub-tour
and is an illegal edge. If no edge leaves the “current node” the addition of edge e;;
is valid and the current portion of the tour is still a fragment. Each time a edge is
added, a count is incremented and the process continues until N-1 edges have been
added upon which the last two endpoints are then connected.

When applied to the earlier example, after adding edge A-C the heuristic identifies
node A as the starting node and Node C as the current node (seen in Figure 8). The

heuristic then looks at Node C and sees it has a degree of 2 and finds the other
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Figure 8. EL Subtour 1

connected arc C-B. Node B becomes the current node and the heuristic verifies that

the current node is not the same as the start node (seen in Figure 9). Once again, the

A B CDE

Current Node
Al0 12 19 31 22

B|- 0 1537 21

c|l- - o0 5036 .
D - 020

E

_ U °
Start

Figure 9. EL Subtour 2

heuristic looks at the new current node, Node B, and identifies that it has a degree of
2 and finds the other connected arc B-A, and updates the current node to Node A.
This time when the heuristic checks the current and start node, it realizes they are the
same (Figure 10). It then sees how many edges have been added to the tour. Since
the number is less than N, the heuristic marks that a subtour has formed and that

arc C-A is not valid. Pseudocode for this methodology can be found in Algorithm 2.

Directional vs. Non-Directional.

The methodology above can be described as non-directional, where the direction
of travel for each arc does not matter during tour construction. This methodology can

only be used with symmetric TSP instances where the distance to travel from node to
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Algorithm 2 Exhaustive Loop Pseudocode

1: Initialize Variables

2: Sort edges: Shortest to Longest

3: while Nodes. Visited <Size-1 do

4: if Both nodes of current edge have degree <2 then

5: Set Start = Tail of current edge
6: Set Current = Head of current edge
7 while Continue = True do
8: if Current is Tail to Another Edge then
9: Set Next Node = Head of found edge
10: if Next Node = Start then
11: Subtour Formed — Remove Edge
12: Continue = False
13: else
14: Current = Next
15: end if
16: else
17: Continue = False
18: Set edge as part of tour
19: Nodes.Visited = Nodes.Visited + 1
20: end if
21: end while
22: end if

23: Next Edge in List
24: end while
25: Connect Hamilton Path
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Figure 10. EL Subtour 3

node is equal in both directions. This poses some computational advantages as only
n* (n+1)/2 arcs need to be initially sorted. The EL can also be modified to handle
a directional methodology which can be used on both symmetric and asymmetric
instances when the direction of the arcs is either of importance to the final solution
and /or takes different distances to travel in each direction. In this directional scenario,

all arcs of each direction n?

— n, are sorted from shortest to longest and rather than
tracking the total degree of each node, the connections are split into a T (To) and F
(From) array. Utilizing these data structures ensures that each node is only entered

once and left once ensuring a continuous direction throughout the tour.

3.2 Multi-Fragment

The Multi-Fragment heuristic described in Bentley’s [9] paper utilizes a unique
non-directional methodology for eliminating subtours by focusing only on the ends

(tails) of each tour fragment. The following structures are utilized in this methodol-

ogy:

e An array, Degree, that keeps track of each nodes degree

e An array, Tail, that keeps track of the opposite tail of each fragment

All nodes are initialized as their own tail and given a degree of zero when the heuristic

begins. As each arc is added, the tails of the nodes and fragment ends are updated.
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While Bentley’s paper and pseudocode made no mention of how to update these tails,
through testing, four possible scenarios were identified.

The first scenario is that the degree of both nodes of the added edge are 0, which
is the same as 2 nodes being connected to form a new fragment. In this case, the
heuristic sets the tail of each node equal to the node at the opposite end of the edge.
Continuing with the 5 node example, this type of update occurs when the first edge

is added. As seen in figure 11, when fragment A-B is added the tails for each node

A B CDE
Al 0 12 19 31 22
- 0153721

B

c|- - 05036

D|- - - 020 °

o
20 o ; o o

A
B
Degree C
D
E

oo o r ek
4
o,
0
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Figure 11. MF Subtour 1

simply becomes the other node, and the degree of each is incremented. With respect
to the graph, this scenario is just connecting two nodes.

The second and third scenario are fundamentally the same and occur when an
added edge has one node with a degree of 1 and the other node has a degree of zero
(for coding purposes they are separate scenarios dependent on which node node has
a degree of 0 and which node has a degree of 0). With respect to the graph, this
scenario is synonymous with a node being connected to a existing fragment. Figure
12 shows this scenario as node C is connected to the fragment made up of A and
B. Node B’s degree is updated to be blank indicating that it is in the middle of a
fragment. To update the other tail values, the heuristic must reference the tail B,
which was A, and update it to show a tail of C, and then update the tail of C to what
the tail of B previously was, or A.

The final scenario for updating the tails occurs when two fragments are being
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Figure 12. MF Subtour 2

connected by a new edge. See Figure 13, adding edge A-E utilizes a methodology

ABCODE
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Figure 13. MF Subtour 3

where the tail of each node that makes up the edge must have its tail’s tail updated to
be the value of the opposite nodes tail. So in this case, node A’s tail, which was node
C, must have its tail value updated to the tail value of node E, which is node D. The
same updating must occur in respect to the other end of the fragment. Pseudocode
for MF is included in Algorithm 3.

The description and pseudocode above depicts a non-directional methodology on
a symmetric instance for constructing TSP tours using Benteley’s MF heuristic. It is
possible to modify this methodology to function directionally on both symmetric and
asymmetric instances. To do this, the degree array would be split into a To and From

array as described when converting EL to a directional variant (see Section 3.1).
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Algorithm 3 Multi-Fragment Pseudocode

1: Initialize Variables

2: Sort edges(i,j): Shortest to Longest

3: while Nodes.Visited <Size-1 do

4: if both nodes of current edge have degree | 2 & Tail[i] is not j then

5: Add edge(i,j)

6: if Degreeli]=0 & Degree[j|=0 then

7 tempTaili = Tailli

8: tempTailj = Tail[j]

9: Tail[i] = tempTailj

10: Tail[j] = tempTaili

11: else if Degree[i]=1 & Degree[j]=0 then
12: tempTaili = Tailli]

13: Tail[tempTaili] = Taillj]

14: Tail[j] = tempTaili

15: Tail[i] = 0

16: else if Degree[i]=0 & Degree[j]=1 then
17: tempTailj = Tail[j]

18: Tail[tempTailj] = Tail[i]

19: Tail[i] = tempTailj

20: Tail[j] =0

21: else if Degreefi]=1 & Degree[j]=1 then
22: tempTaili = Tailli]

23: tempTailj = Tail[j]

24: Tail[tempTaili] = tempTailj

25: Tail[tempTaili] = tempTailj

26: Tail[i] = 0

27: Tail[j] =0

28: end if

29: Degree[i] = Degree[i] + 1

30: Degree[j] = Degreelj] + 1

31: Nodes.Visited = Nodes.Visited + 1

32: end if

33: Next Edge in List
34: end while

35: Connect Hamilton Path
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3.3 Greedy Tracker

The first original contribution this thesis makes is through the introduction of a
novel way to track the progress of the arc greedy construction heuristic, and ensure
sub-tours are not created. This new method is called the “greedy tracker” (GT). Con-
ceptually, the GT serves as a methodology to track a nodes communication with other
nodes when constructing a TSP tour. While GT can operate on both symmetric and
asymmetric instances, it is conceptually easier to visualize the GT using its directional
methodology on a symmetric instance and then generalizing the process for asymmet-
ric instances or to the non-directional methodology on symmetric instances. Because
of this, the following introduction to the G'T utilizes the directional methodology on

a symmetric matrix and is accomplished using the following structures:

e X = binary n by n matrix of z;;

F' = binary n by 1 array of f;
e T = binary n by 1 array of ¢;

e z;; = 0 if arc from 7 to j is eligible, greater than 0 if not eligible

fi = binary for whether node 7 has been left

t; = binary for whether node 7 has been entered

These structures track each move, and in doing so, prevent Hamilton cycles and sub
tours. The process by which this is accomplished can be seen in Figure 14:

The X (identity), F (From), and T (To) structures can be seen above on the left
and a distance matrix from the TSP can be seen on the right. The 1s loaded on the
diagonal of the X matrix (where i=j) signal that these moves are ineligible. Note
that the diagonal on the distance matrix has been colored red to correspondingly
show these ineligible arcs. Looking at the distance matrix it can be seen that the

shortest arc is either from A to B or vice versa, thus arc A to B is selected. The X,
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Figure 14. Greedy Tracker 1

F, and T matrices are updated with 1s to indicate this move, this is shown in Figure

15.

To
1

A B CDE A B CDE
1(AT 1 AlD 12 19 31 22
B 1 B(12 0 15 37 21
From C 1 C(19 15 O 50 36
D 1 D(31 3750 0 20
E i | E(22 213620 O

Figure 15. Greedy Tracker 2

Then, the column of the X matrix associated with the new arc is processed. Every
row where a 1 appears is combined with the From row of the created arc. Figure 16

illustrates this operation. As seen in Figure 16, since Row 2 has a 1 in the same

To
1

A B CDE A B C D E
lAlm A0 12 19 31 22
Bl1]|1 =R1+R2 B|12 0 15 37 21
From C 1 C|19 15 0 50 36
D 1 D|31 37 50 0 20
E 1 E|22 21 36 20 O

Figure 16. Greedy Tracker 3

column as our new arc, the two rows were combined so that any 1s that were in the

Row 1 are now also in Row 2. Note that for the example we only show values of 1 so
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as to not detract from their purpose of referring to an ineligible move, however in the
code the values in each row will actually be added and values of greater than 1 will
appear. For ease of reference in this example ineligible values in the distance matrix
are turned red (Figure 17). As can be seen in Figure 17, distances that correspond

To
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Figure 17. Greedy Tracker 4

with a 1 in the X matrix have been made ineligible moves. Note that any row or
column that has a 1 in the T or F arrays will also be marked as an ineligible move.
This information will be utilized in the first step of the next iteration where the
shortest available arc is identified. As seen in Figure 18, the shortest available arc
is B-C and once again the X,F, and T matrices are updated with 1s to indicate the

move. Once again the column of X associated with the “To” node of the new arc is

To

1 1
A B C D E A B C D E
11A|1 1 Al 0 12 19 31 22
11B|1 1 1 B|12 0 15 37 21
From C 1 C({19 15 0 50 36
D 1 D|31 37 50 0 20
E 1 E|22 21 36 20 O

Figure 18. Greedy Tracker 5

processed and every row where a 1 appears is combined with the “From” row of the
created arc which can be seen in Figure 19. All the distances that correspond with
a 1 in the X matrix are marked as ineligible moves in the distance matrix, as well

as any distances associated with a 1 in the T and F arrays. The resulting step can
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Figure 19. Greedy Tracker 6

be seen in Figure 20. The red in the distance matrix indicates that adding arc A-C

To
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Figure 20. Greedy Tracker 7

is no longer possible because node C already has an edge entering it. This process
thus removes the formation of the sub-tour shown earlier. The process shown above
continues to iterate until all nodes have been visited which creates a Hamiltonian
Path. The final connection to complete the tour is made using the T and F arrays as
each should have one index that is still empty. Pseudo code for this methodology is
in Algorithm 4.

This methodology can also be used on asymmetric instances as described, or
may also be modified to handle a Non-Directional methodology for symmetric TSP
instances. For this methodology, the T (To) and F (From) arrays are changed to a
Degree array similar to the one used in MF. The row addition loop must also occur
twice, once for every 1 in the column of the added edge (i, j), and once for every 1 in

the column for the opposite edge (j, i). This nuance makes the GT quite inefficient
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Algorithm 4 Greedy Tracker Pseudocode
1: Initialize Variables
2: Sort edges(i,j): Shortest to Longest
3: while Nodes.Visited <Size-1 do

4: if To[j]=0 & XMatrix[i,j]=0 then
5: Nodes.Visited + 1

6: XMatrix[i,j]=1

7 From[i]=1

8: Tolj]=1

9: for k = 1 to size do

10: if XMatrix[k,j]=1 then

11: XMatrix[k,]J=XMatrix[k,|+Xmatrix[i,]
12: end if

13: end for

14: Next Edge in List

15: end if

16: end while
17: Connect Hamilton Path

when utilized non-directionally as it doubles the computational time.

GT Improvements.

Certain adjustments to the GT methodology can be made to reduce the total
number of operations that occurs within each iteration. These adjustments involve
removing the addition of values in specific columns and rows as each node has been
left and entered. This process decreases the dimensionality of the GT as the tour is
constructed. This is possible because once a node has been entered, or left, no more
arcs may enter that node or leave that node. Therefore, it is unnecessary to track
what arcs could produce a sub-tour by entering or leaving that node. Consider the
the same 5 by 5 instance used earlier, after completing row additions after adding
arc A-B, column B can be deleted. Figure 21 shows the resulting GT and distance
matrix. As can be seen, all moves in column B, or to Node B, are in eligible because
Node B already has an arc entering it. Therefore, it is unnecessary to track and

conduct row additions in this column. When working with a non-directional instance
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Figure 21. GT Row Delete 1

a column would be deleted after the node had a degree of 2.

R struggles to re-dimensionalize matrices in an efficient fashion. Thus, modifi-
cations to this methodology were made. Breaking down the process of the row and
column delete methodology in greater detail yields the realization that only one nec-
essary value, the tail of the current fragment, is being transferred to a new node.
The GT is thus very similar to Bentley’s MF. When the diagonal is populated with
1s, the X matrix is initializing all nodes as their own tail and for the remainder of
the tour construction the tail is passed as fragments are connected. In the case of
the Directional GT only one value is passed because a directional fragment can only
reattach to itself in one direction. This is why the non-directional GT requires two
sweeps as opposed to the directional GT’s one. Consider the example below on the
modified GT. Figure 22 shows a similar initialization to the original GT with the

exception that the added arc is no longer reflected in the X matrix. After this step

To
1
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Figure 22. GT modified 1

is performed the “To” column of the arc is scanned for a 1 that coincides with an
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empty, or 0 value in the “From” array. Figure 23 shows that this occurs in row B.

The next step in the iteration is to find the value in row A that coincides with an

To
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Figure 23. GT modified 2

empty value in the “To” array. Figure 24 shows that this value occurs at A. Thus
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Figure 24. GT modified 3

the next step is to set the intersection of the column identified in the previous step to
the row identified directly before to a value of 1. In this case, the intersection of row

B and column A is set to 1 as seen in Figure 25. In this first iteration the tail of A,
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Figure 25. GT modified 4

which was itself, is passed to B, exactly as it would have been in the MF heuristic.
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This process continues until a Hamiltonian path is formed. The pseudocode for this

modified GT is in Algorithm 5.

Algorithm 5 Greedy Tracker modified Pseudocode
1: Initialize Variables

2: Sort edges(i,j): Shortest to Longest
3: while Nodes.Visited <Size-1 do

4: if To[j]=0 & XMatrix[i,j]=0 then

5: Nodes.Visited + 1

6: XMatrix|[i,j]=1

7 Fromli]=1

8: Tolj]=1

9: Row = Intersect(which(X[,j]==0,which(From==0))
10: Column = Intersect(which(X[,j]==0,which(From==0))
11: XMatrix[Row,Column]=1
12: Next Edge in List
13: end if

14: end while
15: Connect Hamilton Path

35



IV. Greedy Sub-tour Elimination Results

This section covers the TSP instances used, and testing methods employed, along
with results from all three of the sub-tour elimination methodologies demonstrated

in the prior chapter.

4.1 TSP Instances

TSP data for multiple instances and variations is available in an online library,
TSPLIB, maintained by Ruprecht-Karls-Universitat Heidelberg located in Baden-
Wurttemberg, Germany. The data from TSPLIP is available via one of two formats
in an .atsp file type. A picture of the data’s raw format for these files can be seen
in Figure 26. The first file type consists of a distance matrix containing a string
of distances from node to node for all edges in the instance. However, the file is
not properly formatted to be imported into R. To make this file type usable, the
information was saved as a text string and then processed to place the information
in matrix form. The second file type contains a series of coordinates for each node
which can be utilized to form a distance matrix. The distances for every edge can be
calculated via a euclidean distance formula (Equation 2) and placed into a distance

matrix in R.

Fuclidean Distance = \/(xl —29)% 4 (y1 — y2)? (2)

The values also must be rounded. TSPLIB provides the best known optimal tours and
scores for heuristic testing. For the purposes of this research testing was performed on
the instances seen in Table 1, where the alpha prefix is an identifier and the numerical

suffix indicates the instance size (in number of nodes).
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TSP Instances
Symmetric| Asymmetric
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4.2 Testing

Initial tests verify that each sub-tour method (MF, EL, GT, Modified GT) pro-
duced the same tour and distance for all TSP instances. These tests were conducted
with both directional and non-directional versions of codes on symmetric TSP in-
stances. In addition, the directional code versions were run on asymmetric TSP
instances. Directional and non-directional codes were tested on symmetric TSP in-
stances as they generally produce different solutions, and have different run times due
to the number of arcs that must be considered.

Once testing verified each method produced identical greedy tours; that is all direc-
tional code variants produced identical tours, and all non-directional codes produced
identical tours, the remaining testing focused on computational run-time compar-
isons. Each methodology was placed in the same arc-greedy heuristic shell so that
testing would fairly compare the speed of the three sub-tour tracking and elimination
methodologies. Bentley [9] and Wang [10] each utilized advanced computer tech-
niques (k-d trees) and additional data structures to speed up the process of finding
the next shortest arc available. However, since neither of these effect the speed of the
sub-tour tracking and elimination methodologies they were not utilized.

Speed tests were conducted utilizing the R package “microbenchmark.” This pack-
age allows testing of multiple R codes simultaneously. Microbenchmark randomly
generates run order to handle possible CPU speed fluctuation during testing. The
package also reports a variety of statistics to summarize run results. A sample of
this output is in Figure 27. Microbenchmark output the minimum, mean, median,

unit: milliseconds
expr min 1q mean  median uq max newval
EL (nd) 20.66862 34.19942 36.05064 35.22033 36.05233 69.70968 100
MF (nd) 43.48405 46.76142 48.73286 47.54998 48.37478 101.12933 100
GT (nd) 34.92552 38.35299 39.42242 39,30940 40.07714 69.35652 100
GT vM (nd) 26.95199 28.95938 30.74206 30.05586 30.76783 65.08831 100

Figure 27. Microbench Output
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and maximum run-times as well as the lower and upper quartiles. 100 iterations of
each code were run to create these summary statistics on 13 different symmetric TSP
instances and 9 asymmetric instances. Density plots of runtimes were also reported
utilizing the Microbenchmark and ggplot2 R packages, an example of which are in

Figure 28. Both symmetric and asymmetric instances were tested to determine if

GT VM (nd)- f<\/—>
GT (nd)- <>

MF (nd})-

EL (nd)- </L

30 50 100
Time [milliseconds]

Figure 28. Microbench Output Plot

symmetry effected run time.

4.3 Symmetric Instance Results

Mean run times for a variety of symmetric TSP instances utilizing each of the
methodologies can be seen in Table 2. When looking at the directional methodolo-
gies, the GT and modified GT tend to be the fastest methodologies on small instances
followed by EL and MF. Once instance size reaches around 442, MF takes over as the
fastest method for eliminating sub-tours. This largely is due to it’s linear growth in
operation count as instance size grows. For larger instances, the heuristic is conduct-
ing the same number of operations at each step. While the operations are slower for

small instances, once the problem becomes larger it proves to be the most efficient.
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Table 2. Greedy Sub-tour Methodology Run Times (Symmetric)

Milliseconds Directional Non-Directional

Instance |EL [mF laT [aTwm  [eL [MF [T [GT M
BAYS29 23.2 52.0 22,6 22.4 29.7 44.2 29.8 24.4
GR48 25.4 56.1 25.0 25.0] 30.5 46.8 33.0 25.8|
EIL51 26.7 53.2 241 24.4 32.3 50.4 34.8 28.1)
BERLIN52 26.6 53.1 24.0 24.1] 314 47.9 338.0 26.3
PR76 30.8 56.9 29.7 28.5 32.8 46.9 35.8 29.9
KROAL00 36.8 60.8 33.4 34.5 36.5 50.4 39.1 30.8|
GR120 41.9 66.5 424 43.1 40.5 52.2 44.6 34.9
CH130 48.9 70.4 45.6 43.7 43.3 52.9 45.7 35.7]
RATL95 76.8 98.6 78.0 73.6) 54.5 65.0 61.5 50.3
TS225 97.8 113.9 100.4 95.4 61.8 68.1 86.9 57.3
PMA343 193.7 193.9 193.4 177.0) 121.2 111.9 157.4 107.7,
PCB442 363.7 312.8 340.2 317.2) 177.0 166.1 253.8 180.5
PR1002 1.595(s) 1.308(s) 1.480(s) 1.374(s) 2836.3 637.3  1082.3 761.8]

We see that the modified GT and original GT tend to perform very similar for smaller
instances but once the instance size grows the elimination of the row addition opera-
tions in the modified methodology gives the modified GT a computational advantage.
The reduction in operations is still not enough to keep GT faster than MF as the
searching procure utilized by the modified GT is still a computationally demanding
process as instance size grows.

These performance trends are continued when looking at the non-directional code
variants applied to these same symmetric instances as seen on the right half of Figure
2, with the exception of the original GT. In the non-directional instance, the dual
row sweeping doubles the operations at each step, which gives the modified GT and
EL a speed advantage. However, once again MF becomes the fastest methodology

from the 442 node instance and larger.

4.4 Asymmetric Instance Results

The directional variants of each sub-tour elimination codes were also run on Asym-
metric TSP instances to compare runtimes to determine if any trends changed. The
mean runtimes are in Table 3.

There was greater variability between methods for some of the asymmetrical in-

stances. This could be due to the how the edges fluctuate in each direction which
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Table 3. Greedy Sub-tour Methodology Run Times (Asymmetric)

Milliseconds Directional

Instance |EL [MF [GT [GTvm
bri7 22,2 52.5 21.5 21.1
ry48p 24.5 539 23.2 23.2]
ftrs3 25.6 54.0 24.2 24.7
ft70 28.5 56.5 27.1 27.4
krol24p 35.9 64.4 33.1 34.6
rgh323 230.3 195.5 220.6 195.1]
rgb358 242.7 219.7 231.6 231.3
rgh403 311.9 275.2 303.2 274.5
rgb443 366.5 315.3 350.3 330.5

causes more searching to find edges to complete the tour. Prior overall trends remain,
where modified GT is competitive for small to medium sized asymmetric instances,

but MF is fastest for larger instances.

4.5 Future Improvements

The portion of the Modified GT most susceptible to computational growth is the
search to identify what tail is necessary to move. If this search process growth can be
limited, it is possible that the modified GT could outperform MF for larger instances
as well. Some possible methodologies to limit computational growth include a better
implementation of the row and column delete methodology in conjunction with a new
row and column generation methodology. Size of the search operations could also be
reduced drastically especially during the early iterations of the arc-greedy heuristic
by only generating nodes and tails as needed. This is accomplished by storing a list
of indices, call them Tnodes and Fnodes, for what arcs values are necessary for tail
storage and transfer. The following example explains this methodology using the
modified GT.

This proposed methodology starts with an empty X matrix. The To and From
arrays are populated as usual, but the values searched when a tail is being moved, is
limited to the indices contained within the subsets Tnodes and Fnodes. Therefore,

for visual purposes, only nodes within these indicies show their values in the figures,
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Tnodes={ | To[Tnodes]
Fnodes={}

A B CDE
A0 12 19 31 22
B (12 0 15 37 21
From From[Fnodes] C |19 15 0 50 36
D |31 37 50 0 20
E

22 21 36 20 0

m oo m e
_|
(=)
mo O | e

Figure 29. Proposed Future GT 1

represented as To[Tnodes| and From[Fnodes|. As with previous examples the first
arc added is arc A-B. Figure 30 shows A and B are added to Tnodes and Fnodes,
which generates a respective row and column for each to track the tail generated by

the addition of the arc. This generation technique is possible because all unconnected

Tnodes ={A,B} To[Tnodes]
Fnodes ={A,B} 1

A B A B C D E
1A A 1lAa| 1 A0 12 19 31 22
B 1B B 1 B (12 0 15 37 21
From To C From[Fnodes] C |19 15 0 50 36
D D |31 37 20 0 20
E E [22 21 36 20 O

Figure 30. Proposed Future GT 2

nodes initialize as their own tail. Utilizing the Modified Greedy Methodology any 1s
in the "To” column of the added arc that correspond with a 0 in the ”From” array
will identify what row the tail will be transferred to. This is followed by searching the
Row associated with the ”From” node of the current arc and identifying any nodes
in this row that correspond with a 0 in the To array. This step can be seen in Figure
31. Once this step is completed, both rows and columns that correspond 1s in the
“From” or “To” are deleted from the matrix and removed from the subsets Tnodes
or Fnodes(as seen in Figure 32). This process could drastically decrease the size of
each iterations search larger TSP instances. This methodology along with coding in
a more advanced computer language could help GT to maintain is performance gap

over MF in larger instances.
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Tnodes ={A,B} To[Tnodes]

Fnodes ={A,B} 1
A B A B C DE
1|a A | 1]al1 Alo 121931 22
B 1|B B|1 1 B (12 0 15 37 21
From To C From[Fnodes] c |19 15 0 50 26
D D |31 37 50 0 20
E E (22 21 36 20 O
Figure 31. Proposed Future GT 3
Tnodes ={A} To[Tnodes]
Fnodes ={B}
AB C D E
1A A Bl 1 A |0 12 19 31 22
B 1|B From[Fnodes] B |12 -D 15 37 21
From To C C |19 15 0 50 36
D D (31 37 50 0 20
E E (22 21 36 20 O

Figure 32. Proposed Future GT 4
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V. Ordered-Lists Methodology

This section introduces a novel constructive heuristic called Ordered-Greedy. This
is followed by a comparison of tour quality between the ordered-greedy output result-
ing from 1000 random generated lists, versus viewing the lists as tours. This com-
parison is performed for 13 symmetric instances, the outcome of which motivates the

development of a new meta-heuristic based on Ordered-Lists.

5.1 Ordered-Greedy Heuristic

Given the sub-tour tracking abilities of the aforementioned methodologies, there
are some interesting alterations to the arc-greedy heuristic that can be made. One
such change is to utilize one of the elements realized by the Recursive Selection heuris-
tic, where the order in which greedy decisions are made is taken into consideration.
This concept motivated the development of a novel constructive heuristic called the
Ordered-Greedy (OG) heuristic. The OG heuristic is a node-greedy heuristic that
takes as input a complete list of nodes. Starting at the top of the list, each node
is considered in turn and the available set of choices is limited to the feasible arcs
originating at that node. What differentiates the OG from NN, another node-greedy
heuristic, is that multiple fragments may exist during the tour construction.

The motivation for this heuristic is to apply a more structured approach to what
nodes should be given priority in connecting to their nearest neighbors. Nodes higher
in the list have maximum flexibility with minimal concern for node degree or sub-
tours and thus typically choose better arcs than nodes later in the list. The quality
of the solution found is heavily dependent on the order of the list.

To introduce the methodology of the OG heuristic, consider the following example.

In this example an ordered list of D,E,C,B,A has been, through some unspecified
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fashion, predetermined. This ordering of the nodes list is reflected in the matrix on
the right-side of Figure 33 whose rows are now sorted according to this list order.
The constructive heuristic now makes greedy decisions starting at the top of this list

and working down. The first greedy decision is made with respect to node D. The

To
A B C D E A B CDE
A1 D31 37 50 0 20
B 1 E|[22 21 36 20 O
From C 1 C|19 15 0 50 36
D 1 B{12 0 15 37 21
E 1 Al 0 12 19 31 22

Figure 33. Ordered-Greedy 1

greediest, or shortest arc, from node D is arc D-E as indicated above. This arc and its
associated node is tracked by the GT so that the next decision can be made. The next
decision is made with respect to node E. This is not due to node E being the head of
the previous arc added, but rather because it is second in the provided ordered list:
D.E,C,B,A. Looking at the row in the Distance matrix associated with node E along
with the GT output that captures ineligible moves (as seen in Figure 34), it can be

seen that the shortest legal arc available is arc E-B. This process continues row by

To

1
A B C D E A B C D E
A1l D|31 37 50 0 20
B 1 E|22 21 36 20 O
From C 1 C|19 15 0 50 36
1|D 1 1 B|{12 0 15 37 21
E 1 1 Al O 12 19 31 22

Figure 34. Ordered-Greedy 2

row until the final row is reached which is where the T and F arrays are scanned to
find the final legal arc as seen in Figure 35. After adding arc A-D, the resulting tour

becomes A-D-E-B-C-A which is also the optimal tour for this TSP instance. This
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1 1 1] [1
A B CDE AB CODE
Al 1111 D|31 37 50 0 20
1|8 11 1 1 E[22 21 36 20 0
From | 1jC |1 1 1 1 1 C|19 15 0 50 36
1D 1 1 B[12 0 15 37 21
1|E 1 1 1 Al0 12 19 31 22

Figure 35. Ordered-Greedy 3

result motivated the creation of the concept of a Perfect-Ordered List. Pseudocode

for the OG is in Algorithm 6.

Algorithm 6 Ordered-Greedy Pseudocode

1: Initialize Variables

2: Generate Order

3: Nodes.Visited = 0

4: while Nodes.Visited <Size-1 do
Moves = arcs leaving Order[Nodes.Visited+1]
Moves[To==True|= Inf
Moves[XMatrix[Order[Nodes.Visited+1],]]= Inf
minmove = min(Moves)
Get First index i of Moves where Moves|i|=minmove
10: Add Arc(Order[Nodes.vistied+1],i) to tour
11: Track moves with Greedy Tracker
12: Nodes.Visited = Nodes.Visited+1
13: end while
14: Connect Hamilton Path

The OG non-directional and OG directional methodologies yield the same solu-
tions because of how the OG handles connections to nodes that already have a degree
of one. If a node attempts to connect to another node with a degree of 1, the con-
nection will only be accepted if that node has already occurred in the order. This is
because if the node has not yet occurred in the order, and the connection is allowed,
the node will have a degree of 2 before its turn in the ordered-list. Thus, when its
turn does come, it would not be able to make a connection. This behavior causes the

non-directional to treat these nodes as if they were of the opposite direction, causing
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the two methodologies to produce the same solution.

5.2 Perfect-Ordered List

A perfect ordered list (POL) is simply an ordered-list which, when iterated through

using the ordered greedy heuristic described above, will yield the optimal solution.

Most, but not all, optimal solutions can be associated with a POL (the reasoning for

which is discussed later). To find whether a POL exists for a given optimal solution,

following methodology based on the GT is used.

First, initialize by identifying all arcs in the optimal solution, and the shortest

available Arc (using lowest index to break ties) for each node. Figure 36 shows the

completion of this initialization. The next step is to then identify all, so called, Tier 1

Ter A B C D E
Al 0 12 19 31 22
B|12 0 15 37 21
C|19 15 0 50 36
D|31 37 50 0 20
E|22 21 36 20 O

Min

12
12
15
20
20

Arc
A-B
B-A
C-B
D-E
E-D

To

From

m o N w >
[

Figure 36. Perfect-Order 1

nodes. These are nodes where the optimal arc is the same as the shortest arc available.

During this iteration (seen in Figure 37), the only arc in the optimal solution that

matches its shortest arc is Arc D-E.

Ter A B C D E
Al 0 12 19 31 22
B|12 0 15 37 21
C({19 15 0 50 36

1 D|31 37 50 0 20
E|22 21 36 20 O

Min
12
12
15
20
20

Opt
A-B
B-A
C-B
D-E
E-D

=
[ws]
@]
lw)
m

A
B
From C 1
D
E

Figure 37. Perfect-Order 2
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This move is updated in the GT and the distance matrix is reanalyzed to determine
the remaining shortest legal arc available for each node. The second iteration identifies
any nodes that now match their shortest available arc with the optimal solution arc.
These nodes are labeled as Tier 2 node. The intuition is that Tier 2 nodes derive their
optimal arc matches as a result of the greedy decisions made by the Tier 1 nodes. As
seen in Figure 38, the Tier 1 move effected the shortest available legal move for node

E and is marked as a Tier 2 node. This process continues until either all nodes are

To
1 1
Ter A B C D E Min Opt A B CDE
Al0 12 19 31 22 12 A-B All
B|12 0 15 37 21 12 B-A B 1 1 1
C|19 15 0 50 36 15 C-B From C 1
1 D31 37 50 0 20 1| D 1 1
2 E|22 21 36 20 O 21 E-B 1| E 1 1 1

Figure 38. Perfect-Order 3

given a Tier as seen in Figure 39 or no greediest legal arcs match their optimal arc in

an iteration. If the later occurs then no POL exists for the given optimal tour. If the

To
1 1 1
Tier A B C D E Min Opt A B C D E
4 A|0 12 19 31 22 31 A-D A1l 1
4 B|12 0 15 37 21 15 B-C B 1 1 1
3 C|19 15 0 50 36 From| 1|C|1 1
1 D|31 37 50 0 20 1| D 1 1
2 E(22 21 36 20 O 1| E 1 1 1

Figure 39. Perfect-Order 4

process does run to completion, then the order of the nodes are sorted with respect
to their Tier. In the case of the example provided, the POL would be D E,C followed
by either A,B or B A.

Order within the tiers does not effect the resulting tour, which reveals an inter-

esting insight into solving the TSP using ordered-lists. More than one ordered list
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corresponds to a single tour. Since the total number of permutations of nodes is
equal for tours and ordered lists, we can deduce that certain feasible tours cannot
be reached via the ordered list solution space. This information is cause for concern
as it leads one to question whether the optimal tour is always achievable within the
ordered list solution space. Tests on the 13 symmetric instances initially yielded POs
for only 8 of the instances. However further testing on the GR48 instance revealed
there exists multiple optimal tours. The images in Figure 40 show the difference
between two unique optimal tours, one of which (left) cannot be represented by a
Ordered List (i.e. cannot be found utilizing the OG Heuristic) and the other (right)

can be found by the OG. Similar situations may exist for the larger instances but it

N <\\4/‘/7‘ Jg\ //ﬁ\ <\\\L/‘>/ Nﬁ*\
N \ ™ S\\Lgp S
2 / TN /> T £ / T2 ST
s /7/“/ \\\ p - / = ~ ™ //” — /
% 1 /f /\% c////\( o f\% :é ° f‘ /f \>f % - uk
e LK A el | I R 2 e

Figure 40. gr48 Optimal Tours

is nontrivial to find additional optimal tours for these large instances to verify. This

line of inquiry is left as a question for future research.

5.3 Ordered-Lists vs. Tour Order

Since not all valid tours for an instance have an analog in the Ordered-List solution
space, it is important to compare solution quality of each space. Exhaustive testing
comparing all tour permutations and all ordered list permutations could only be

completed on examples smaller than 10x10. Some 5x5 test instances were generated
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by selecting the first 5 nodes, and associated distances between them, for 5 of the

symmetric and 2 of the asymmetric instances. Then each of these 5x5 instances had

one additional node added to generate the 6x6 instance and so on until the 9 by

9 instance. This provided some comparison as to how the solution space for each

instance was effected by the addition of a single node. The summary of the results

for these tests are in Table 4.

Table 4. 5 by 5 to 9 by 9 List vs. Tour Comparison

eils1 avg 131.5 116.9 155.6 131.4 191.7 156.4 209.4 162.7 241.3 174.7
max 157 124 150 157 241 196 264 213 316 239
#opt 10 16 12 B84 14 232 16 2940 18 18130
grizo avg 1526.0 1387.4 1800.0 1603.2] 2109.0 1815.7 23014 1354.4 2476.0 1981.1]
max 1756 1756 2240 1935 2645 2369 2884 2480 3267 2677
#opt 10 16| 12 B4 14 146 16 638 13 3156)
ratlas avg 105.5 93.9 142.8 109.9 192.7 141.1 246.9 168.9 309.0 193.3
max 123 123 134 163 249 202 331 258 410 310
#opt 20 20 43 96 42 488 176 3386 198 13586
TS5225 avg 5000.0 4233.3 7000.0 5422.2] 9333.3 6646.0] 12000.0 7893.8| 15000.0 9153.5
max 6000 6000 9000 B0O00| 12000 10000 16000 12000 20000 14000
#opt 40 96| 96 504 224 3082 512 21880 1152 177218
PMA343 avg 30.0 25.4 42.0 32.5 56.0 39.9 72.0 47.4 90.0 54.9
max 36 36 54 48 72 60 96 72 120 B84
#opt 40 96 96 504 224 3082 512 21880 1152| 177218
br17 avg 174.5 122.5 170.4 100.5 167.7 94.9 163.1 85.7) 163.3 B82.1]
max 245 130 274 142 274 142 290 166 295 166
#opt 20 26 48 124 56 100 128 38594 288 34316
ft70 avg 3595.5 3192.0] 4195.2 3666.4 4851.8 4237.0) 5667.9 4545.9 6488.0 5328.1]
max 4154 3662 4933 4198 5766 4935 6607 5793 7613 6378
#opt 3 32 6 B6| 7 420 8 1176 9 9504

As seen in Table 4, the Ordered-List feasible solutions outperformed Tour feasible

solutions in all measures of merit for tour quality, producing shorter average tours,

with shorter maximum tour lengths and exhibiting a higher number of occurrences

of the optimal solution. This is due to the indifference to order within tiers. So if a

PO exists, it appears that the many variants of orders makes for a higher chance of

finding an optimal solution through the use of lists.
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While it is not computationally possible to exhaustively test the feasible space of
larger instances, the spaces can be sampled to see if the trend of the ordered list space
providing generally better solutions continues. To this end, 1000 random tours were
generated for all 13 large symmetric instances and 9 asymmetric instance considered
previously and compared to the performance of solutions generated by their ordered
list counterparts. These tests results are in Table 5.

The main takeaway from these results is that in all symmetric instances the tour
generated by the random ordered-list out-performed the randomly generated string
tours. This indicates that the quality of solutions resulting from ordered-lists are
superior to their associated random tours. This is not a surprising discovery as it
is more computationally demanding to calculate a tour from an ordered list when
compared to calculating the distance associated with a random string tour. However,
the quality of the solutions of ordered-list generated tours appears to warrant this
additional time.

The results pertaining to asymmetric instances show mixed results when compar-
ing tours generated by an ordered-list and randomly generated string tours. Specif-
ically, the randomly generated string tours either performed relatively equal to or
better than ordered-lists for all four rgh instances. This may indicate that this spe-
cific instance type. The results of these tests can be seen in Table 6.

These results motivate the development of the Perfect List Random Greedy Search
(PLGRS) Meta-heuristic, which seeks to initialize an Ordered-List for a given TSP

instance and then improve the solution by making alterations to the list.

5.4 Perfect List Random Greedy Search

PLGRS is a meta-heuristic methodology that focuses on improving an instance

tour by randomly searching the ordered-list solution space. Unlike many other meta-
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Table 5. Tour Distance Comparisons (Symmetric)

Size Tour List
mean 5,985.87 2,755.86
bays29 |min 4655 2131
max 7404 3366
mean 20,983.00 7,014.35
grdg  |min 16327 5622
max 24666 8516
mean 16,151.13 590.82
eil51 |min 1292 483
max 1934 727
mean 29,880.31 11,163.22
berlins2|min 23,277 3,416
max 34,877 13,915
mean 573,383.10 | 158,281.70
pr7g  |min 480,146 133,273
max 649,969 192,408
mean 171,463.70 32,202.41
kroalQo|min 143,985 27,074
max 197,441 38,948
mean 52,195.33 10,235.26
gri20 |min 45,651 8,725
max 59,170 12,796
mean 46,382.67 9,016.88
ch130 |min 41,597 7.725
max 51,354 11,005
mean 22,737.86 3,405.78
ratl95 |min 19,752 2,933
max 25,597 3,889
mean| 1,594,118.00 | 208,465.70
15225 |min 1,461,395 185,067
max 1,717,514 232,953
mean 36,136.86 2,309.17
pma3d43 |min 32,554 2,004
max 39,631 2,705
mean 773%,500.70 79,800.80
pch442 |min 724,800 71,967
max 819,674 50,000
mean| 6,448,828.00 | 393,001.10
prioo2 [min 6,172,884 369,705
max 6,719,736 432,164

heuristic, PLGRS iteratively utilizes a constructive heuristic (OG) to improve the
solution. All variants of PLGRS operate by generating an initial tour utilizing the
Non-Directional Greedy heuristic and then deconstructing the tour to generated the
associated ordered-list. After this is completed PLGRS seeks to alter the ordered-list

to improve the solution. Three versions of PLGRS are described below.
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Table 6. Tour Distance Comparisons (Asymmetric)

Size Tour List
mean 240,77 78.07
brl7 Jmin 60 39
max 424 409
mean| 54,760.99 | 19,374.83
ryd2p |min 42,406 16,303
max 65,788 23,059
mean| 26,102,12 | 11,699.57
ft53 |min 20,825 8,812
max 29,156 14,771
mean| 72,282.37 | 46,788.40
ft70  |min 66,004 42,252
max 78,146 51,749
mean| 190,819.40 | 49,022.63
krol24p|min 163,892 42,315
max 213,777 56,054
mean 6,203.35 | 6,153.28
rgh323 |min 5,770 5,859
max 6,557 6,484
mean 6,919.96 7,182.20
rgh358 |min 6,372 G,908
max 74238 7,522
mean 7,691.37 7,967.02
rgb403 |min 7,192 7,663
max 8,073 3,286
mean 8,259.27 8,700.73
rgb443 |min 7,839 8,253
max 8,734 9,027

PLGRS - Random Swaps.

The first form of PLGRS attempts to improve tour quality by altering the as-
sociated ordered list utilizing a random swap of nodes within the order. This swap
occurs by simply selecting 2 nodes in the ordered list and swapping their indices giv-
ing each a different selection of available arcs in the OG heuristic. The total number
of iterations, and the number of swaps that occur at each iteration are tuneable pa-
rameters which allows the user to tune the heuristic to the size of the TSP instance.

Pseudocode for the Random Swap PLGRS code is in Algorithm 7.
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Algorithm 7 PLGRS - Random Swaps Pseudocode
1: M = # of iterations
2: n = # of swaps at each iteration
3: tour = Find Arc-Greedy tour
4: bestScore = score
5: bestTour = tour
6: order = Deconstruct Arc- Greedy tour to Ordered-List
T
8:
9

bestOrder = order
fori=1to M do
for j=1tondo

10: swapl = sample(size,1)

11: swap2 = sample(size,2)

12: temp = order[swap2]

13: order[swap2] = order[swapl]
14: order[swapl] = order[swap2]
15: end for

16: Ordered Greedy(order)
17: if score < bestScore then

18: bestScore = score
19: bestTour = tour
20: bestOrder = order
21: else

22: order = bestOrder
23: end if

24: end for

PLGRS - Bad Arc Targeting.

In order to attempt more educated alterations to improve an ordered list, the
Bad Arc Targeting (BAT) methodology was conceived. Wang et al [10] indicated
that generally the reason that the greedy heuristic performed poorly was due to the
final arcs added as they typically were the worst in the tour. This BAT methodology
attempts to target these arcs and move their respective nodes higher in the list to
improve the solutions. The heuristic works by starting considering only the worst arcs
in the present best solution, and then narrowing the scope of neighboring solutions
it is considering. After a user specified number of iterations with no improvement

this scope expands to include slight better arcs. If an improvement is found then the
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scope is reset to only consider the worst arcs in the current solution. The reasoning
for this methodology is the worst arcs to the solution may completely change based on
a slight alteration to the ordered list. Thus, the heuristic is greedily attempting to fix
the worst arcs first and then expanding to consider a growing number of better arcs
until another improvement is found. Arcs are identified as “Bad” utilizing tuneable

criterion that can change as the Heuristic progresses. The tuneable criterion are:

e o = rtimes min arc value for current node considered “Bad”,

start, = « value that starts search,

e change, = amount « decrease by indicated, and

intensi fy, = number of iterations with no improvement before decreasing «.

After the heuristic has generated an ordered-list from the arc-greedy tour, the mini-
mum value arc for each node is found. Bad arcs are identified using o and and the

shortest arc available for each node (Equation 3).

Bad Arc Threshold = (minimum arc value) 4+ a x (minimum arc value) — (3)

The number of bad arcs must be equal to at least 2 to ensure some variety in attempted
moves for the period until alpha is adjusted. If less than 2 arcs are considered bad
then alpha is decreased by change,. Bad arcs are randomly selected and inserted
higher into the ordered-list in an attempt to improve the solution. After a certain
number of iterations, intensi fy, with no improvement o will be reduced by change,,.
If an improvement is found, or «a has reached 0 for intensify, iterations, « is reset

to the start,. Pseudocode for this process is in Algorithm 8.
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Algorithm 8 PLGRS - Bad Arc Targeting Pseudocode

1: M = # of iterations

2: tour = Find Arc-Greedy tour

3: bestScore = score of Arc-Greedy tour

4: bestTour = tour

5. order = Deconstruct Arc- Greedy tour to Ordered-List
6: bestOrder = order

7: minvals = calculate min arc distance for all nodes

8 fori=1toM do

9 arcvals = value of current arcs for each node

10: haveArc = False

11: while haveArc = False do

12: badarc = which(arcvals > minvals + minvals*a)
13: if length(badarc) <2) OR acount > intensify, then
14: a = a — change,

15: acount=0

16: else

17: movenode = sample(badarc,1)

18: havearc = True

19: end if

20: end while

21: Move movenode to random new location in order
22: Perform Ordered Greedy (order)

23: if score < bestScore then

24: if score <bestScore then

25: « = start,,

26: acount=0

27: end if

28: bestScore = score

29: bestTour = tour

30: bestOrder = order

31: else

32: order = bestOrder

33: acount = acount + 1

34: end if

35: end for

PLGRS - Bad Arc Targeting & Good Node.

The “Good Node” methodology identifies quality candidate nodes to be moved

later in an ordered list. This methodology uses the same alpha parameters used in
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BAT but in addition to moving nodes up the list, alpha is also used to generate a list
of candidate nodes to move down in the ordered list. This is accomplished by using
Start, to generate a number of arcs within « percent length of the best available
arc for each node. Then the nodes with the greatest number of arcs within this
threshold will be considered to be swapped with one of the nodes identified by the
BAT methodology. Pseudocode for PLGRS- Bad Arc Targeting & Good Node is in
Algorithm 9.

PLGRS - ALL.

The last version of PLGRS, PLGRS - All, utilizes all the methodologies described
above and randomly selects one methodology to alter the current order at each iter-

ation. Pseudocode for PLGRS-AIl is in Algorithm 10.
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Algorithm 9 PLGRS - Bad Arc Targeting & Good Node Pseudocode

1: M = # of iterations

2: tour = Find Arc-Greedy tour
3: bestScore = score of Arc-Greedy tour
4: bestTour = tour
5. order = Deconstruct Arc- Greedy tour to Ordered-List
6: bestOrder = order
7: minvals = calculate min arc distance for all nodes
8: for p = 1 to Size do
9:  goodnodes[p] = length(which(ArcLengths[p,] < minvals[p]*(1/start,)
10: maxgood = max(goodnodes)
11: end for
12: fori=1to M do
13: arcvals = value of current arcs for each node
14: haveArc = False
15: Perform BAT to identify node to move up
16: swapl = node found by BAT
17: movenode = sample(which(goodnodes> «/start,*maxgood),1)
18: swap2 = which(order=movenode)
19: temp = order[swap2]
20: order[swap2|=order[swap1]
21: order[swapl|=temp
22: Perform Ordered Greedy (order)
23: if score < bestScore then
24: if score <bestScore then
25: « = start,,
26: acount=0
27: end if
28: bestScore = score
29: bestTour = tour
30: bestOrder = order
31: else
32: order = bestOrder
33: acount = acount + 1

34: end if
35: end for
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Algorithm 10 PLGRS - ALL Pseudocode

1: M = # of iterations

tour = Find Arc-Greedy tour

bestScore = score of Arc-Greedy tour

bestTour = tour

order = Deconstruct Arc- Greedy tour to Ordered-List

bestOrder = order

minvals = calculate min arc distance for all nodes

for p = 1 to Size do
goodnodes|p] = length(which(ArcLengths[p,] < minvals[p]*(1/start,)
maxgood = max(goodnodes)

: end for

— =
—= O

12: fori=1to M do

13: arcvals = value of current arcs for each node
14: haveArc = False

15: type = sample(3,1)

16: if type = 1 then

17: Perform PLGRS Random Swaps

18: else if type = 2 then

19: Perform PLGRS Bad Arc Targeting
20: else if type = 3 then

21: Perform PLGRS Bad Arc Targeting & Good Node
22: end if

23: Perform Ordered Greedy (order)

24: if score < bestScore then

25: if score <bestScore then

26: o = start,,

27: acount=0

28: end if

29: bestScore = score

30: bestTour = tour

31: bestOrder = order

32: else

33: order = bestOrder

34: acount = acount + 1

35: end if
36: end for
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VI. PLGRS Results

The same 13 symmetric instances introduced in section 4.1 were used to compare
all meta-heuristics. Microbenchmark was used to test each heuristic. 10 iterations
of each instance size were run, with the exception of the 1002 size instance which
was only run three times due to computational requirements. Percent deviation from
optimality for each iteration was collected as well as run-times to summarize the

performance of each heuristic.

6.1 Greedy+2-Opt Comparison

The first test was conducted comparing all three PLGRS heuristics against a
arc-greedy+2-Opt heuristic. The arc-greedy+2-opt heuristic was selected due to its
deterministic nature which causes it to always converges to the same solution. There-
fore, the arc-greedy+2-Opt does not contain features such as randomness or tuneable
elements. While each aspect can be advantageous in a heuristic methodology, if used
improperly they can also be a hindrance. Thus, the arc-greedy+2-opt gives a good
baseline computational time and final solution for which to compare the PLGRS
codes against. Since the arc-greedy+2-opt heuristic always converges to the same
solution we limited the number of iterations provided to the PLGRS code so it was
not given an advantage. If run indefinitely, most randomized meta-heuristics, while
not guaranteed to reach optimality, will approach it. Thus, by limiting the number
of iterations assigned to PLGRS, it was ensured that all heuristics found a solutions
within a similar amount of time. To accomplish this, the PLGRS - Random Swaps
code was run with varying numbers of iterations until a time close to the runtime of
the arc-greedy+2-Opt was achieved. This runtime threshold determination was ac-

complished for all instances with the exception of the Bays29 and gr48 instances, for
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which PLGRS could not run a single iteration in the time it took the arc-greedy+2-opt
to run to completion. For those instances, PLGRS was given 50 iterations. Results

for these runs are in Table 7.

Table 7. Greedy 2-Opt vs. PLGRS Comparison

% within opt Runtimes (seconds)

Instance |PLGRS RS PLGRS BAT PLGRS BATGN PLGRS ALL Greedy 20PT |PLGRS RS PLGRS BAT PLGRS BATGN PLGRS ALL  Greedy 20PT
bays29 | 7.67% 7.33% 9.16% 8.42% 6.58% 47.34(ms) 59.05(ms)  48.81(ms)  50.13(ms)  46.93(ms)
gras 16.37%  15.00% 15.87% 13.50% 14.76% | 155.14(ms) 181.84(ms) 180.33(ms} 204.53(ms) 186.26{ms)
eils1 4.46% 8.59% 11.46% 7.25% 3.99% 801.68(ms) 827.81(ms) 808.39(ms) 867.58(ms) 812.01{ms)
berlins2| 16.40%  18.95% 13.76% 11.32% 17.62% | 217.85(ms) 243.38(ms) 252.19(ms}  280.55(ms) 219.95(ms)
pr7e 9,78% 7.17% 11.33% 9.14% 26.79% | 692.57(ms) 721.6(ms) 741.53(ms} 739.92(ms) 77L.68(ms)
kroalon | 10.02%  11.58% 10.07% 10.48% 11.73% |1061.89(ms) 991.71(ms) 995.93(ms} 1053.59(ms) 1033.26(ms)
grizo 11.64% 14.75% 13.28% 13.73% 16.02% 1.59 1.60 1.65 1.68 1.75
ch130 8.97% 10.16% 8.64% 8.33% 15.24% 2.02 2.19 2.08 2.14 2.16
ratloas 10.76% 10.89% 12.44% 10.12% 5.25% 6.21 6.17 6.52 6.66 6.92
15225 4.95% 5.38% 5.19% 5.06% 5.03% 8.44 10.08 9.30 9.00 10.40
pma343 | 13.30% 16.01% 13.74% 13.23% 16.59% 37.69 36.81 37.22 37.34 37.92
pcha442 9.44% 16.89% 9.01% 9.10% 12.68% 66.25 82.54 73.19 70.42 79.95
prion2 | 7.72%  11.34% 11.92% 8.65% 15.59% 32.95(ms) 33.21(ms)  34.09(ms)  34.48{ms)  38.32(ms)

The results do not clearly indicate any heuristic being truly dominant. It appears
the most notable trend is that the PLGRS heuristics tend to perform better, relative to
the Greedy-2-Opt, as instance size grow, with the exception of instances 195 and 225.
Given that the PLGRS heuristic is an iterative constructive heuristic, each iteration
of PLGRS takes longer to complete than an iteration of the arc-greedy+2-Opt. Thus
PLGRS is able to consider significantly less iterations/solution. The advantages of
the ordered-list space, however seem to largely counteract this, thus while PLGRS

considers less solutions, they tend to be of higher quality.

6.2 Simulated Annealing Comparison

The simulated annealing comparison meta-heuristic also generates an initial greedy
tour, each iteration then considers a random 2-opt where good moves are accepted
and bad moves are probabilisticaly accepted based on a temperature function. For

these runs, SA was tested to determine a suitable number of iterations until noticeable
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stagnation began to occur the associated run time for stagnation was noted. Then
the PLGRS codes were run to determine the number of iterations associated with
this runtime threshold and were limited in testing to this number of iterations. Table

8 is a summary of the SA vs PLGRS runs.

Table 8. SA 2-Opt vs. PLGRS Comparison

% within opt Runtimes (seconds)
Instance | PLGRS RS PLGRS BAT PLGRS BATGN PLGRS ALL  3A PLGRS RS PLGRS BAT PLGRSBATGMN PLGRS ALL SA
bays29 | 2.38% 4.06% 3.37% 3.96%  0.89% |699.08(ms) 713.24{ms) 731.4({ms} 727.05{ms) 759.23(ms}
gras 3.45% B8.26% 5.09% 5.45% 2.26% 1.27 1.32 1.28 1.37 1.25
eil51 4.58% 6.83% 4.48% A.77% 2.39% 1.28 1.36 1.34 1.38 1.37
berlins2| 4.39% 5.54% 3.30% 2.21% 4.14% 3.19 3.08 3.51 3.01 2.54
prig 5.11% 6.39% 4.83% 5.08% 7.40% 3.69 3.77 3.83 3.87 3.54
kroaloo | 8.69% 10.43% 8.34% B8.86% 2.52% 4.97 a4.77 4.94 4.97 4.72
gri2o 8.95% 10.44% 9.65% 8.59%  4.29% 5.53 5.71 5.68 5.82 5.84
ch130 4.26% 7.22% 3.93% 4.71% 5.66% 7.93 8.54 8.34 8.31 8.09
ratlss 9.64% 10.20% 10.42% 8.78% 10.50% 9.16 9.59 9.86 9.69 8.83
ts5225 4.54% 5.38% 4.76% 4.72% 1.84% 12.70 13.33 12.85 12.32 12.47
pma343 | 14.33%  15.06% 13.60% 13.23%  B.26% 22.14 22.67 22.93 22.61 23.52
pcbdd2 10.73% 15.94% 9.43% 9.54% 6.89% 56.10 65.75 60.49 58.96 65.05
priooz | 13.26%  12.81% 12.70% 12.11%  6.68% | 183.57 183.65 184.29 184.88 203.92

For a majority of instances, SA demonstrated markedly lower optimality gaps then
the PLGRS codes. This issue is exacerbated by larger instances, which highlights
an issue with utilizing a iterative constructive heuristic methodology. As instance
size grows, the time for each iteration also grows with the PLGRS codes. So when
comparing PLGRS to a fast pseudo-random heuristic such as SA, and confining each
to similar run-times, PLGRS is at an extreme disadvantage. A principle factor is likely
the number of iterations each heuristic code accomplished over the fixed runtime by
instance (Table 9), as the SA employs many more iterations.

Starting at the Bays29 instance, the SA 2-Opt code completes roughly 30 times as
many iterations as the PLGRS code, and this ratio steadily rises to the 1002 instance
where SA can complete nearly 6700 times more iterations than PLGRS. Considering
the optimality gaps in this testing evidence strongly points toward searching the

Ordered-List subspace providing advantages on a per iteration basis, however the
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Table 9. SA 2-Opt vs. PLGRS Iterations Comparison

Iterations

Instance | PLGRS Codes SA
bays29 1300 40000
gras 1250 60000
eils1 1150 F0000
berlins2 2500 150000
prig 1750 180000
kroal0oo 1500 210000
ari2o 1350 265000
ch130 1700 360000
ratl9s 1100 360000
ts225 1200 500000
pma343 1020 200000
pcba42 1600 2000000
prioo2 1200 A000000

time it takes to do so severely limits the methodology’s potential.

6.3 Future Improvement

When comparing the results of each of the PLGRS variants it appears that PLGRS
- ALL generally outperformed the other two variants, although there were cases where
PLGRS-RS was the best performing methodology. This suggests some benefit in the
strategic approach of targeting bad arcs and swapping their location in an ordered-
list with arcs that have a high number of relatively good connections. However,
future research should consider the direct effects of making such moves, whether there
is a more informed way of performing such operations, and then performing those
moves computationally cheaper. With such enhancements, PLGRS could maximize
its conceptual advantages to improve the tour.

The PLGRS methodology also lends well to utilizing parallel processing which
could provide vast improvements to its computational time. If multiple lists could be
tested simultaneously at each iteration, always tracking and attempting to improve
upon the best solution, would allow PLGRS to close the iteration count gap it is
experiencing in relation to these other heuristics. This could give further motivation

for using the ordered-list space when solving the TSP.
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VII. Conclusion

As a hard combinatorial optimization problem, the TSP is often solved via heuris-
tic methodologies. One of the biggest considerations when constructing solutions is
avoiding sub-tours, or a loop of interconnected nodes that prevents a single continuous
tour amongst all cities within the instance. This paper introduced a novel sub-tour
elimination methodology for the arc-greedy heuristic that is compared to two known
sub-tour elimination methodologies. Computational results were generated across
multiple TSP instances for each method. A novel concept called Ordered-Lists was
also introduced which enables TSP instances to be explored in a different space than
the tour space. The Ordered-List tour space demonstrates some unique properties.

We propose some novel meta-heuristics that seek to utilize this new space.

7.1 Sub-tour Elimination

When utilizing an arc-greedy heuristic, additional steps must be taken to ensure
that sub-tours are avoided and resulting tour is a valid TSP solution. This paper
recognized two accepted arc-greedy sub-tour elimination methodologies, the Exhaus-
tive loop and Bentley’s Multi-fragment, and compared them to a novel methodology,
the Greedy Tracker. The comparison utilized both directional and non-directional
variants of each code on 13 symmetric TSP instances and the directional variants on
9 asymmetric instances.

The results of the comparison between each of these arc-greedy sub-tour elimi-
nation methodologies showed that the GT was the fastest tracking methodology for
small to medium sized instances. However, Bentley’s MF still maintains the compu-
tational advantage for larger instances and thus most, if not all, instances that would

be solved utilizing a heuristic methodology.
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However, these results also indicated that given a more efficient coding implemen-
tation of methodology used for the X Matrix, the GT could become the preferred
methodology for all instance sizes. For future research, the GT should be modi-
fied to handle a new row/column generation and delete technique to minimize the

computational time utilized in the searching portions of the GT.

7.2 Ordered-Lists

Any improvement upon any of these sub-tour elimination methodologies would
also provide direct computational improvement to the novel heuristic methodology,
the Ordered Greedy, which in turn would give greater efficiency to searching the
Ordered-List solution space.

While computationally more demanding than its tour list counterpart, the solution
quality advantages, as well as a possibly higher number of optimal occurrences, when
a Perfect Order exists, seems to indicated that further investigation of the space may
be worthwhile to the TSP community.

The novel meta-heuristic methodologies introduced in this paper sought to lever-
age the advantages of the Ordered list space. Testing results indicate that while at
a severe iteration disadvantage, the PLGRS methodologies benefited from using the
ordered-list space which yields a higher per iteration improvement rate. For future
research, the PLGRS methodologies could benefit from parallel processing and a more
efficient methodology for targeting what list modifications should be made. Deeper
investigation of the Ordered-List space would also be worthwhile to fully investigate

its relation to the tour order space.
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N =

Appendix A. R Code

Greedy Tracker

library (readxl)

TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test1002.csv",header
= FALSE)

#Turn it into a usable matrix

Data<-as.matrix (TSP_Data)

a = Sys.time ()

#Get the data sets size

#dim initial vars

size<-dim(Data) [1]

listarcs = matrix(0,size~2,3)

tours = matrix(0,size,size)

to = rep(0,size)

from = rep(0,size)

trails = matrix(0,size,size)

diag(trails)=1

#generate list of arcs

count = 1

for (i in 1:size) {

for (j in 1:size) {
listarcs[count ,1] = Datali,j]
listarcs [count ,2] = i
listarcs [count ,3] = j
if (i==j) {listarcs[count,1]=Inf}
count= count + 1
}

}

#sort list

listarcs = listarcs[order(listarcs[,1],decreasing = FALSE), ]

opcount=0
num.visited = 0
count = 1

#While statement
while (num.visited<size-1) {
#check all greedy tracker structures to see if current arc is valid if not loop to
next arc
if ((from[listarcs[count ,2]]==0)&&(to[listarcs[count ,3]]1==0)&&(trails[listarcs][
count ,2] ,listarcs [count ,3]1]1==0)) {
#add arc
num.visited = num.visited+1
trails[listarcs[count ,2],listarcs[count,3]]=1
tours[listarcs [count ,2],listarcs[count ,3]]=1
from[listarcs[count ,2]]=1
to[listarcs[count ,3]]=1

#greedy tracker
#find all rows with >0
listarc = which(trails[,listarcs[count ,3]]>0)
#add current row to rows with column value >0
for (i in 1:length(listarc)) {
trails[listarc[i],]l=trails[listarc[i],]+trails[listarcs[count,h2],]
opcount = opcount +1
}
}
count = count +1
}
#Connect hamilton path start to finish
tours [which(from==0) ,which(to==0)]=1

b = Sys.time ()
score=sum (tours*Data)
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60
61| print (score)
62| print (b - a)

Greedy Tracker Modified

library(readxl)

TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test1002.csv",header
= FALSE)

3| #Turn it into a usable matrix

4| Data<-as.matrix (TSP_Data)

5la = Sys.time()

6| #Get the data sets size

7|#dim initial vars

8

9

10

N =

size<-dim(Data) [1]

listarcs = matrix(0,size~2,3)
tours = matrix(0,size,size)
11| to = rep(0,size)

12| from = rep(0,size)

13| trails = matrix(0,size,size)
14| diag(trails)=1

15| #generate list of arcs

16| count = 1

17| for (i in 1:size) {

18 for (j in 1:size) {

19 listarcs [count ,1] = Datali,j]

20 listarcs [count ,2] = i

21 listarcs[count ,3] = j

22 if (i==j) {listarcs([count,1]=Inf}
23 count= count + 1

24 }

25( %}

26| #sort list

27| listarcs = listarcs[order (listarcs[,1],decreasing = FALSE), ]
28| num.visited = 0

29| count = 1

31| #While statement

32| while (num.visited<size-1) {

33 #check all greedy tracker structures to see if current arc is valid if not loop to
next arc

34 if ((from[listarcs[count ,2]1]1==0)&&(to[listarcs[count ,3]]1==0)&&(trails[listarcs][
count ,2] ,listarcs [count ,3]1]1==0)) {

35 #add arc

36 num.visited = num.visited+1

37 #trails[listarcs [count ,2],listarcs[count ,3]]=1

38 tours[listarcs [count ,2],listarcs[count,3]]=1

39 from[listarcs [count ,2]]=1

40 to[listarcs [count ,3]]=1

41

42 #greedy tracker

43

44 #add current row to rows with column value >0

45 listarc = intersect(which(trails[,listarcs[count,3]]>0),which(from==0))
46 listarc2 = intersect(which(trails[listarcs[count,2],]1>0),which(to==0))
47 #add current row to rows with column value >0

48 trails[listarc,listarc2]=1

49 }

50 count = count +1

51|}

52| #Connect hamilton path start to finish
53| tours [which (from==0) ,which(to==0)]=1

55/b = Sys.time ()
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N =

score=sum (tours*Data)

print (score)
print(b - a)

Ordered Greedy

library (readxl)
TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test7by7.csv",header
= FALSE)

#Turn it into a usable matrix
Data<-as.matrix (TSP_Data)
#Read in Dataset named Lab_Data

#Get the data sets size
size<-dim(Data) [1]
order = rep(l:size,1)

a = Sys.time()

#Initialize Variables
num.visited = 0

to = rep(0,size)

from = rep(0,size)

trails = matrix(0,size,size)
diag(trails)=1

tours = matrix(0,size,size)

#While statement
while (num.visited<size-1) {
current .distances<-Data[,order [num.visited+1]]

eligible = intersect (which(to==0) ,which(trails[order [num.visited+1],]==0))
nextTownToVisit = eligible[as.integer (wvhich(current.distances[eligible]l==min(
current.distances [eligible]) ,arr.ind = T,useNames = F)[1])]#In case of ties,

take just the first

nextTownToVisit = c(order[num.visited+1], nextTownToVisit)
trails [nextTownToVisit [1] ,nextTownToVisit [2]]=1

tours [nextTownToVisit [1] ,nextTownToVisit [2]]=1
from[nextTownToVisit [1]] = 1

to[nextTownToVisit [2]]= 1

#row addition Trails code
listarc = which(trails[,nextTownToVisit[2]]==1)
for (i in 1:length(listarc)) {
trails[listarc[i],]=trails[listarc[i],]l+trails[nextTownToVisit[1],]
}
num.visited = num.visited + 1
}
#Set last arc to finalize tour
tours [which(from==0) ,which(to==0)]1=1
score=sum (tours*Data)

tourcheck = which(tours==1,arr.ind = T,useNames = F)
tour=rep (0, size)

start = 1

current = 1

current = tourcheck[current,hb1]

count = 1

while (current!=start) {
tour [count]=current
current = tourcheck[current,b1]
count = count+1
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}

tour [count]=current

b=Sys.time ()
print (score)
print(b - a)
print (best_order)
print (tour)

PLGRS RS

TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test48.csv",header =
FALSE)

#Turn it into a usable matrix

Data<-as.matrix (TSP_Data)

#Get the data sets size
size<-dim(Data) [1]

iter = 50
startalpha =4
changealpha =.5
intensifycrit = 5

greedytour = rep(l:size,1)

HxxxxxkkkkkkPART 1: get Greedy Tour kskskskkkkokkkkkkkokkkkk

listarcs = matrix(0,sizex*x(size+1)/2,3)
tours = matrix(0,size,size)

Degree = rep(0,size)

Tail = rep(l:size)

taili=0

tailj=0

temptaili = 0

temptailj = 0

#generate list of arcs column 1 is length, column two is tail, column 3 is head

count =1

for (i in 1:size) {

for (j in i:(size))

listarcs [count ,1] Datali, j]
listarcs[count ,2] = i
listarcs [count ,3] = j
if (i==j) {listarcs[count,1]=Inf}
count= count + 1

}
}
#sort the list by length
listarcs = listarcs[order(listarcs[,1],decreasing = FALSE), ]
#initialize more variables
num.visited = 0
count = 1

#While statement (create hamilton path)
while (num.visited<size-1) {
#node leaving does not have a arc leaving and node going to does not have an arc
entering
if ((Degreel[listarcs[count,2]]<2)&&(Degreel[listarcs[count ,3]]1<2)&&(Taill[listarcsl[
count ,2]] !=listarcs[count ,3])) {
#add arc
tours[listarcs[count ,2],listarcs [count ,3]]=1
tours[listarcs [count ,3],listarcs[count ,2]]1=1
#if both are 0 degree
if ((Degree[listarcs[count ,2]]1==0)&&(Degreel[listarcs[count,3]11==0)) {

taili =Tail[listarcs[count ,2]]
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tailj =Tail[listarcs[count ,3]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs[count ,3]]=taili

} else if ((Degreel[listarcs([count ,2]]1==1)&&(Degree[listarcs[count,3]]1==0)) {

taili =Tail[listarcs[count ,2]]
Taill[taili]=Tail[listarcs[count ,3]]
Tail[listarcs[count ,3]]=taili
Tail[listarcs [count ,2]]1=0

} else if ((Degreel[listarcs([count ,2]1]1==0)&&(Degree[listarcs[count,3]]1==1)) {

tailj =Tail[listarcs [count ,3]]
Tail[tailj] =Tail[listarcs[count ,b2]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs [count ,3]]=0

} else if ((Degreellistarcs[count,2]]==1)&&(Degree[listarcs[count,3]]==1)) {

taili =Tail[listarcs[count ,2]]
tailj =Tail[listarcs[count,b3]]
Tail[tailil=tailj
Tail[tailjl=taili
Tail[listarcs[count ,2]]=0
Tail[listarcs [count ,3]]=0
}
#set start to tail and current to head
Degree[listarcs [count ,2]]=Degree[listarcs [count ,2]]+1
Degree[listarcs [count ,3]]=Degree[listarcs [count ,3]]+1
num.visited = num.visited+1
}
count = count +1
}
#connect hamilton path start to fimnish
tours [which(Degree<2) [1] ,which(Degree<2) [2]]=1
tours [which (Degree<2) [2] ,which(Degree<2) [1]]=1
score=sum (tours*Data) /2

previousnode = 0
currentnode = 1
for (j in 1:size) {
nodes = which(tours[currentnode ,]==1)
if (nodes[1]!=previousnode) {
greedytour [j] = nodes[1]
previousnode=currentnode
currentnode=nodes [1]
} else {
greedytour [j] = nodes[2]
previousnode=currentnode
currentnode=nodes [2]
}
}

TSP_Tour=greedytour

TSP_Tour = c(TSP_Tour,greedytour [1])

Greedy_Tour = matrix(0,size,1)

prev = TSP_Tour [1]

for (i in 1:size+1) {
Greedy_Tour [prev] = TSP_Tour [i]
prev = TSP_Tour [i]

}

#xkkxkkkkxk*k*kPART 2: Get Greedy Order with tieringkkkkkkkkxkkx

#Initialize Variables
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num.visited = 0

to = rep(T,size)

from = rep(T,size)

trails = matrix(T,size,size)
diag(trails)=F

tours = matrix(0,size,size)
greedloop = rep(0,size)
GreedyOrder = rep(0,size)
tiering = rep(0,size)

tier = 1

while (num.visited<size-1) {
current.distances<-Datal]
current .distances[!from] = Inf
current.distances[,!to] = Inf
current .distances=ifelse(trails==F,Inf,current.distances)
numintier = 0

#go though every node
for (i in 1:size) {
#if node hasnt been left yet
if (from[i]l==T) {
#find the min distance arcs
availmin = which(current.distances[i,]==min(current.distances[i,]) ,arr.ind =
T, useNames = F) [1]

#if only min distance arc AND same as in opt tour (this can probably just be
made availmin[1] and length removed)
if ((availmin == Greedy_Tour[i])&&((numintier+num.visited)<(size-1))) {
#update number in tier
numintier = numintier + 1

#store connection
greedloop [numintier]= i
}
}
}
#loop through connections in tier
for (j in 1:numintier) {
#Perfrorm greed tracker
trails [greedloop[j],Greedy_Tour [greedloop[jl]]=F
tours [greedloop[j],Greedy_Tour [greedloop[jl]l]l=1
from[greedloop[jl] = F
to[Greedy_Tour [greedloop[jll] = F

#row addition Trails code

for (i in 1:size) {
if (trails[i,Greedy_Tour [greedloop[jll11==F ) {
trails[i,]=trails[i,]&trails[greedloopl[j],]
}
}
num.visited = num.visited + 1

#stroe perfect ordedr 1list
GreedyOrder [num.visited] = greedloopl[j]
tiering[num.visited] = tier

}

tier = tier+1

}

#Set last arc to finalize tour

tours [which (from==T) ,which(to==T)]=1

#sometimes cause error due to looping structure
GreedyOrder [num.visited+1]=which (from==T)

tiering[num.visited+1]=tier

ok ok ok ok ok ok ok ok ok ok ok PART 3: Greedy Random Search * %k ok ok ok ok ok ok ok ok
graphvector<-matrix ()
order = GreedyOrder
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211
212
213
214
215

216

best _order = order

best_score = score

a = Sys.time()

#Number of list order swaps at each iteration
numswaps = 1

for (k in 1:iter) {
#Initialize Variables
num.visited = 0
to = rep(T,size)
from = rep(T,size)
trails = matrix(T,size,size)
diag(trails)=F
tours = matrix(0,size,size)

for (j in 1:numswaps) {
swapl = sample(size,1)
swap2 = sample(size,1)
temp = order [swap2]
order [swap2]=order [swapl]
order [swapl]l=temp

}
#While statement

while (num.visited<size-1) {
current.distances<-Data[,order [num.visited+1]]
current.distances[!to]=Inf
current .distances[!trails[order [num.visited+1],]]=1Inf
nextTownToVisit = as.integer (which(current.distances==min(current.distances),
arr.ind = T,useNames = F)[1])#In case of ties, take just the first

#current.distances.notVisited<-Datal[,order [num.visited+1]][to][trails]

#shortestDistance = min(current.distances.notVisited)
# The exclamation mark was not added in V1
#current.distances[!to] = NA #Any towns visited set to NA so they can’t be

matched in next line

#nextTownToVisit = as.integer (which(current.distances == shortestDistance) [1])
#In case of ties, take just the first

HHERBHAHAHBH AV R AR A B R B SR B RBHRHS

nextTownToVisit = c(order[num.visited+1], nextTownToVisit)

trails[nextTownToVisit [1] ,nextTownToVisit [2]]=F

tours [nextTownToVisit [1] ,nextTownToVisit [2]]=1

from[nextTownToVisit [1]] = F

to[nextTownToVisit [2]]= F

#row addition Trails code
listarc = which(trails[,nextTownToVisit [2]]==F)
for (i in 1:length(listarc)) {
trails[listarc[i],]l=trails[listarc[i],]&trails[nextTownToVisit[1],]
}
num.visited = num.visited + 1
}
#Set last arc to finalize tour
tours [which (from==T),which(to==T)]=1
score=sum (tours*Data)

if (score<=best_score) {
best_score=score
best _tour=tours
best _order=order
} else {
order = best_order
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244
245

N =

}

PLGRS BAT

TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test48.csv",header =
FALSE)

#Turn it into a usable matrix

Data<-as.matrix (TSP_Data)

#Get the data sets size
size<-dim(Data) [1]

iter = 50
startalpha =4
changealpha =.5
intensifycrit = 5
greedytour = rep(l:size,1)

HakkokkkkkkkkPART 1: get Greedy Tour kkkkokkokkokkokk ok kok ok ok kk

listarcs = matrix(0,sizex*x(size+1)/2,3)
tours = matrix(0,size,size)

Degree = rep(0,size)

Tail = rep(l:size)

taili=0

tailj=0

temptaili = 0

temptailj = 0

#generate list of arcs column 1 is length, column two is tail, column 3 is head

count = 1

for (i in 1:size) {

for (j in i:(size)) {

listarcs [count ,1]
listarcs [count ,2]
listarcs[count ,3] = j
if (i==j) {listarcs[count,1]=Inf}
count= count + 1

Datal[i,j]
i

¥
}
#sort the list by length
listarcs = listarcs[order(listarcs[,1],decreasing = FALSE), 1]
#initialize more variables
num.visited = 0
count = 1

#While statement (create hamilton path)
while (num.visited<size-1) {
#node leaving does not have a arc leaving and node going to does not have an arc
entering
if ((Degree[listarcs[count ,2]]1<2)&&(Degree[listarcs[count ,3]]1<2)&&(Tail[listarcsl[
count ,2]]!=listarcs[count ,3])) {
#add arc
tours[listarcs [count ,2],listarcs[count,3]]=1
tours[listarcs [count,3],listarcs [count ,2]]=1
#if both are 0 degree
if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]1]1==0)) {

taili =Tail[listarcs [count ,2]]
tailj =Tail[listarcs[count ,b3]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs [count ,3]]=taili
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} else if ((Degreellistarcs[count ,2]]==1)&&(Degreel[listarcs[count,3]1]1==0)) {

taili =Tail[listarcs[count ,2]]
Tail[taili]=Tail[listarcs [count ,3]]
Taill[listarcs [count ,3]]=taili
Tail[listarcs [count ,2]]=0

} else if ((Degreel[listarcs[count ,2]]1==0)&&(Degreel[listarcs[count ,3]]1==1)) {

tailj =Tail[listarcs[count ,b3]]
Tail[tailj] =Tail[listarcs[count,2]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs [count ,3]]=0

} else if ((Degreel[listarcs[count ,2]]==1)&&(Degreel[listarcs[count,3]]1==1)) {

taili =Tail[listarcs[count ,2]]
tailj =Tail[listarcs[count,3]]
Tail[taili]=tailj
Tail[tailjl=taili
Tail[listarcs [count ,2]]1=0
Tail[listarcs [count ,3]1]1=0

}

#set start to tail and current to head

Degree[listarcs [count ,2]]=Degree[listarcs[count ,2]]+1
Degree[listarcs [count ,3]]=Degree[listarcs[count ,3]]+1
num.visited = num.visited+1

}

count = count +1

}

#connect hamilton path start to finish

tours [which(Degree<2) [1] ,which(Degree<2) [2]]=1
tours [which(Degree<2) [2] ,which(Degree<2) [1]]=1
score=sum(tours*Data) /2

previousnode = 0
currentnode = 1
for (j in 1:size) {
nodes = which(tours[currentnode ,]==1)
if (nodes[1]!=previousnode) {
greedytour [j] = nodes[1]
previousnode=currentnode
currentnode=nodes [1]
} else {
greedytour [j1 = nodes[2]
previousnode=currentnode
currentnode=nodes [2]
}
}

TSP_Tour=greedytour

TSP_Tour = c(TSP_Tour,greedytour [1])

Greedy_Tour = matrix(0,size,1)

prev = TSP_Tour [1]

for (i in 1:size+1) {
Greedy_Tour [prev] = TSP_Tour[i]
prev = TSP_Tour[i]

}

#xkxkxkxxkkkkPART 2: Get Greedy Order with tieringkkkkkkkkkxx
#Initialize Variables
num.visited = 0
to = rep(T,size)
from = rep(T,size)
trails = matrix(T,size,size)
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diag(trails)=F

tours = matrix(0,size,size)

greedloop = rep(0,size)

GreedyOrder = rep(0,size)

tiering = rep(0,size)

tier = 1

while (num.visited<size-1) {
current.distances<-Datal[]

#current.distances[!from] = Inf

current .distances[,!to] = Inf
current.distances=ifelse(trails==F,Inf,current.distances)
numintier = 0

#go though every node
for (i in 1:size) {
#if node hasnt been left yet
if (from[il==T) {
#find the min distance arcs
availmin = which(current.distances[i,]==min(current.distances[i,]) ,arr.ind =
T, useNames = F) [1]
#if only min distance arc AND same as in opt tour (this can probably just be
made availmin[1] and length removed)
if ((availmin == Greedy_Tour[i])&&((numintier+num.visited)<(size-1))) {
#update number in tier
numintier = numintier + 1
#store connection
greedloop [numintier]= i
}
}
}
#loop through connections in tier
for (j in 1:numintier) {
#Perfrorm greed tracker
trails[greedloop[j],Greedy_Tour [greedloop[jl]]=F
tours [greedloop[jl,Greedy_Tour [greedloop[jl]1]=1
from[greedloop[jl] = F
to[Greedy_Tour [greedloop[jl]] = F

#row addition Trails code
for (1 in 1:size) {
if (trails[1l,Greedy_Tour[greedloop[jl]l]l==F ) {
trails[l,]=trails[l,]&trails[greedloopl[j]l,]
}
}

num.visited = num.visited + 1
#stroe perfect orded4r list
GreedyOrder [num.visited] = greedloopl[jl]
tiering[num.visited] = tier
}

tier = tier+1

}

#Set last arc to finalize tour
tours[which(from==T) ,which(to==T)]=1

#sometimes cause error due to looping structure
GreedyOrder [num.visited+1]=which(from==T)
tiering[num.visited+1]l=tier

koK kK KKK KKKk PART 3: Adaptive List * 3k ok ok ok ok ok ok ok K
#Re-Initialize Variables
graphvector<-matrix ()
order = GreedyOrder

alpha=startalpha
alphacount = 0
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best _order = order

best_score = score

a = Sys.time()

#Number of list order swaps at each iteration

minvals = rep(0,size)
badarc = rep(0,size)

for (i in 1:size) {
minval = tail(sort(Datal[i,],decreasing = F,index.return=T),2)
minvals[i] = minval$x[2]

}

for (k in 1:iter) {
#Initialize Variables

num.visited = 0

to = rep(T,size)

from = rep(T,size)

trails = matrix(T,size,size)
diag(trails)=F

arcvals = rowSums (tours*Data)
tours = matrix(0,size,size)

havearc=F

while (havearc == F) {
badarc = which(arcvals>=(minvals+minvals*alpha))

if ((length(badarc)<2) || (alphacount >= intensifycrit)){
alpha = alpha-changealpha
alphacount=0
if (alpha < 0) {alpha=startalpha}
} else {
movel = sample(badarc,1)
oldloc=which (order==movel)
if (oldloc!=1) {
havearc=T
}
}
}

newloc=sample (oldloc-1,1)

if (newloc==1) {
if (oldloc==size) {

temporder = c(movel,order[1:size-1])
order=temporder
} else {
temporder = c(movel,order)
order = c(temporder[1:(oldloc)],temporder [(oldloc+2):(size+1)])
}
} else if (oldloc==size){
temporder = c(order [1:newloc-1] ,movel,order[newloc:size])
order = c(temporder [1:(oldloc)])
} else {
temporder = c(order[l:newloc-1] ,movel,order[newloc:size])

order = c(temporder [1:(oldloc)],temporder[(oldloc+2):(size+1)])

#While statement
while (num.visited<size-1) {

current .distances<-Data[,order [num.visited+1]]

current .distances[!to]l=Inf

current.distances[!trails[order [num.visited+1],]]=Inf

nextTownToVisit = as.integer(which(current.distances==min(current.distances),
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arr.ind = T,useNames = F)[1])#In case of ties, take just the first
253
254 nextTownToVisit = c(order [num.visited+1], nextTownToVisit)
255 trails [nextTownToVisit [1] ,nextTownToVisit [2]]=F
256 tours [nextTownToVisit [1] ,nextTownToVisit [2]]=1
257 from[nextTownToVisit [1]] = F
258 to[nextTownToVisit [2]]= F
259
260 #row addition Trails code
261 listarc = which(trails[,nextTownToVisit [2]]==F)
262 for (i in 1:length(listarc)) {
263 trails[listarc[i],]=trails[listarc[i],]l&trails[nextTownToVisit [1],]
264 }
265 num.visited = num.visited + 1
266 }
267 #Set last arc to finalize tour
268 tours [which (from==T) ,which(to==T)]=1
269 score=sum(tours*Data)
270
271 if (score<=best_score) {
272 if (score<best_score) {
273 alpha=startalpha
274 alphacount=0
275 }
276 best_score=score
277 best_tour=tours
278 best_order=order
279 } else {
280 order = best_order
281 alphacount = alphacount + 1
282 }
283
284 }

PLGRS BATGN

1| TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test48.csv",header =
FALSE)

#Turn it into a usable matrix

Data<-as.matrix (TSP_Data)

2

3

4

5[ #Get the data sets size
6| size<-dim(Data) [1]
7
8
9
10

iter = 50
startalpha =4
11| changealpha =
12| intensifycrit 5

13| greedytour = rep(l:size,1)

.5

14

15| #xkkkknkkkxkPART 1: get Greedy ToUT **kkk* % kokk & kokk* 4 kokk
16

17 listarcs = matrix(0,sizex*x(size+1)/2,3)

18 tours = matrix(0,size,size)

19 Degree = rep(0,size)

20 Tail = rep(l:size)

21 taili=0

22 tailj=0

23 temptaili = 0

24 temptailj = 0

25 #generate list of arcs column 1 is length, column two is tail, column 3 is head
26 count = 1

27 for (i in 1:size) {
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for (j in i:(size))
listarcs [count ,1]
listarcs [count ,2]
listarcs [count ,3] j
if (i==j) {listarcs[count,1]=Inf}
count= count + 1

Datal[i,j]
i

}
}
#sort the list by length
listarcs = listarcs[order(listarcs[,1],decreasing = FALSE), 1]
#initialize more variables
num.visited = 0
count = 1

#While statement (create hamilton path)
while (num.visited<size-1) {
#node leaving does not have a arc leaving and node going to does not have an arc
entering
if ((Degreel[listarcs[count ,2]]1<2)&&(Degreel[listarcs[count ,3]1]1<2)&&(Taill[listarcsl[
count ,2]]!=listarcs[count ,3])) {
#add arc
tours[listarcs [count ,2],listarcs[count,3]]=1
tours[listarcs [count,3],listarcs [count ,2]]=1
#if both are 0 degree
if ((Degree[listarcs[count ,2]]==0)&&(Degree[listarcs[count ,3]1]1==0)) {

taili =Tail[listarcs [count ,2]]
tailj =Tail[listarcs[count ,b3]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs[count ,3]]=taili

} else if ((Degreel[listarcs[count,2]]==1)&&(Degreel[listarcs[count ,3]1]1==0)) {

taili =Tail[listarcs [count ,2]]
Tail[tailil=Tail[listarcs[count ,b3]]
Tail[listarcs[count ,3]]=taili
Tail[listarcs [count ,2]]1=0

} else if ((Degreel[listarcs[count,2]]==0)&&(Degreel[listarcs[count ,3]]==1)) {

tailj =Tail[listarcs[count ,3]]
Tail[tailj] =Tail[listarcs[count,2]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs [count ,3]]1=0

} else if ((Degreel[listarcs[count,2]]==1)&&(Degree[listarcs[count ,3]]==1)) {

taili =Tail[listarcs [count ,2]]
tailj =Tail[listarcs[count ,b3]]
Tail[tailil=tailj
Tail[tailj]=taili
Tail[listarcs [count ,2]]=0
Tail[listarcs [count ,3]1]=0
}
#set start to tail and current to head
Degree[listarcs [count ,2]]=Degree[listarcs [count ,2]]+1
Degree[listarcs [count ,3]]=Degree[listarcs [count ,3]]+1
num.visited = num.visited+1
¥
count = count +1
}
#connect hamilton path start to finish
tours [which (Degree<2) [1] ,which(Degree<2) [2]]=1
tours [which(Degree<2) [2] ,which(Degree<2) [1]]=1
score=sum (tours*Data) /2

previousnode = 0
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92 currentnode = 1
93 for (j in 1:size) {

94 nodes = which(tours[currentnode ,]==1)
95 if (nodes[1]!=previousnode) {
96 greedytour [j] = nodes[1]

97 previousnode=currentnode

98 currentnode=nodes [1]

99 } else {

100 greedytour [j] = nodes[2]
101 previousnode=currentnode
102 currentnode=nodes [2]

103 }

104] 3%

105

106 TSP_Tour=greedytour

107 TSP_Tour = c(TSP_Tour,greedytour [1])
108 Greedy_Tour = matrix(0,size,1)

109 prev = TSP_Tour [1]

110 for (i in 1:size+1) {

111 Greedy _Tour [prev] = TSP_Tour[i]
112 prev = TSP_Tour[i]

113 %

114

115] #xkkkxx*x%k*xPART 2: Get Greedy Order with tieringskkskkkskkskksksx
116 #Initialize Variables

117 num.visited = 0

118 to = rep(T,size)

119 from = rep(T,size)

120 trails = matrix(T,size,size)
121 diag(trails)=F
122 tours = matrix(0,size,size)

123 greedloop = rep(0,size)

124 GreedyOrder = rep(0,size)
125 tiering = rep(0,size)

126 tier = 1

127 while (num.visited<size-1) {

128 current.distances<-Datal[]

129 #current.distances[!from] = Inf

130 current.distances[,!to] = Inf

131 current.distances=ifelse (trails==F,Inf,current.distances)

132 numintier = 0

133 #go though every node

134 for (i in 1l:size) {

135 #if node hasnt been left yet

136 if (from[il==T) {

137 #find the min distance arcs

138 availmin = which(current.distances[i,]==min(current.distances([i,]),arr.ind =
T, useNames = F) [1]

139 #if only min distance arc AND same as in opt tour (this can probably just be
made availmin[1] and length removed)

140 if ((availmin == Greedy_Tour[i])&&((numintier+num.visited)<(size-1))) {

141 #update number in tier

142 numintier = numintier + 1

143 #store connection

144 greedloop [numintier]= i

145 }

146 }

147 }

148 #loop through connections in tier

149 for (j in 1:numintier) {

150 #Perfrorm greed tracker

151 trails[greedloop[j]l,Greedy_Tour [greedloop[jl]1]1=F

152 tours [greedloop[j],Greedy_Tour [greedloop[jll]=1

153 from[greedloop[jl] = F

154 to[Greedy_Tour [greedloop[jl]] = F

155
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#row addition Trails code

for (1 in 1:size) {
if (trails[1l,Greedy_Tour[greedloop[jl]l]l==F ) {
trails[l,]=trails[l,]&trails[greedloopl[j],]
}
}
num.visited = num.visited + 1
#stroe perfect ordedr 1list
GreedyOrder [num.visited] = greedloopl[j]
tiering[num.visited] = tier
}
tier = tier+1
}
#Set last arc to finalize tour
tours [which (from==T) ,which(to==T)]=1
#sometimes cause error due to looping structure
GreedyOrder [num.visited+1]=which(from==T)
tiering[num.visited+1]=tier
5k %k ok ok sk ok k ok ok Kk ok PART 3: Adaptive List sk %k ok ok k %k ok k k k
#Re-Initialize Variables
order = GreedyOrder
#tuneable parameters
numswaps=1
goodnodes = rep(0,size)
alpha=startalpha
alphacount = 0
best_order = order
best _score = score
a = Sys.time ()
#Number of list order swaps at each iteration
minvals = rep(0,size)
badarc = rep(0,size)
for (i in 1:size) {
minval = tail(sort(Datal[i,],decreasing = F,index.return=T) ,2)
minvals[i] = minval$x[2]
}
for (p in 1:size) {
goodnodes [p]l=length(which(Datal[p,]<=minvals[pl+minvals[p]l*(1/startalpha)))
}
maxgood = max(goodnodes)
HEHHHHAHBAHFRBHHHRS
for (k in 1:iter) {
#Initialize Variables
num.visited = 0
to = rep(T,size)
from = rep(T,size)
trails = matrix(T,size,size)
diag(trails)=F
arcvals = rowSums (tours*Data)
tours = matrix(0,size,size)
havearc=F
while (havearc == F) {
badarc = which(arcvals>=(minvals+minvals*alpha))
if ((length(badarc)<2)||(alphacount >= intensifycrit)){
alpha = alpha-changealpha
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222 alphacount=0

223 if (alpha < 0) {alpha=startalpha}

224 } else {

225 movel = sample (badarc,1)

226 swapl=which(order==movel)

227 havearc=T

228 }

229 }

230 move2 = sample(which(goodnodes>=alpha/startalpha*maxgood) ,1)

231 swap2 = which(order==move2)

232 temp = order [swap2]

233 order [swap2]=order [swap1l]

234 order [swapll=temp

235

236 #While statement

237 while (num.visited<size-1) {

238

239 current.distances<-Datal[,order [num.visited+1]]

240 current.distances[!to]=Inf

241 current.distances[!trails[order [num.visited+1],]]=Inf

242 nextTownToVisit = as.integer (which(current.distances==min(current.distances),
arr.ind = T,useNames = F)[1])#In case of ties, take just the first

243

244 nextTownToVisit = c(order [num.visited+1], nextTownToVisit)

245 trails [nextTownToVisit [1] ,nextTownToVisit [2]]=F

246 tours [nextTownToVisit [1],nextTownToVisit [2]]=1

247 from[nextTownToVisit [1]] = F

248 to[nextTownToVisit [2]]= F

249

250 #row addition Trails code

251 listarc = which(trails[,nextTownToVisit [2]]==F)

252 for (i in 1:length(listarc)) {

253 trails[listarc[i],]=trails[listarc[i],]&trails[nextTownToVisit [1],]

254 }

255 num.visited = num.visited + 1

256 }

257 #Set last arc to finalize tour

258 tours [which (from==T) ,which(to==T)]=1

259 score=sum(tours*Data)

260

261

262

263 if (score<=best_score) {

264 if (score<best_score) {

265 alpha=startalpha

266 alphacount=0

267 }

268 best_score=score

269 best_tour=tours

270 best_order=order

271 } else {

272 order = best_order

273 alphacount = alphacount + 1

274 }

275

276 }

277 PLGRS_BATGA[countBATGA]l=best_score

278 countBATGA =countBATGA+1

PLGRS ALL

1
2| TSP_Data <- read.csv("C:\\Users\\petar\\Documents\\R\\R Studio\\test48.csv",header =
FALSE)
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#Turn it into a usable matrix
Data<-as.matrix (TSP_Data)

#Get the data sets size
size<-dim(Data) [1]

iter = 50
startalpha =4
changealpha =.5
intensifycrit = 5
greedytour = rep(l:size,1)

HxkxxxkkkkkkPART 1: get Greedy Tour kskskskskkkokkkkkkkokkkkk

listarcs = matrix(0,sizex*x(size+1)/2,3)
tours = matrix(0,size,size)

Degree = rep(0,size)

Tail = rep(l:size)

taili=0

tailj=0

temptaili = 0

temptailj = 0

#generate list of arcs column 1 is length, column two is tail, column 3 is head

count =1
for (i in 1:size) {
for (j in i:(size))

listarcs [count ,1] Datali,j]
listarcs[count ,2] = i
listarcs [count ,3] = j
if (i==j) {listarcs[count,1]=Inf}
count= count + 1

}
}
#sort the list by length
listarcs = listarcs[order(listarcs[,1],decreasing = FALSE), ]
#initialize more variables
num.visited = 0
count = 1

#While statement (create hamilton path)
while (num.visited<size-1) {

#node leaving does not have a arc leaving and node going to does not have an arc

entering

if ((Degreel[listarcs[count,2]]<2)&&(Degreel[listarcs[count ,3]]1<2)&&(Tail[listarcsl[

count ,2]]!=listarcs[count ,3])) {
#add arc
tours[listarcs [count ,2],listarcs[count ,3]]=1
tours[listarcs [count ,3],listarcs[count ,2]]1=1
#if both are 0 degree
if ((Degreel[listarcs[count ,2]]1==0)&&(Degreel[listarcs[count ,3]11==0)) {

taili =Tail[listarcs[count ,2]]
tailj =Tail[listarcs [count,3]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs [count ,3]]=taili

} else if ((Degreellistarcs[count ,2]]==1)&&(Degreel[listarcs[count,3]1]1==0)) {

taili =Tail[listarcs[count ,2]]
Tail[taili]=Tail[listarcs [count ,3]]
Tail[listarcs [count ,3]]=taili
Tail[listarcs [count ,2]]=0

} else if ((Degreellistarcs[count ,2]]1==0)&&(Degreel[listarcs[count,3]1]1==1)) {

tailj =Tail[listarcs[count,b3]]
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Tail[tailj] =Tail[listarcs[count ,2]]
Tail[listarcs [count ,2]]=tailj
Tail[listarcs [count ,3]]=0

} else if ((Degreel[listarcs([count ,2]]1==1)&&(Degree[listarcs[count,3]]1==1)) {

taili =Tail[listarcs[count ,2]]

tailj =Tail[listarcs[count ,3]]

Tail[tailil=tailj

Tail[tailjl=taili

Tail[listarcs[count ,2]]=0

Tail[listarcs [count ,3]]=0
}
#set start to tail and current to head
Degree[listarcs [count ,2]]=Degree[listarcs[count ,2]]+1

Degree[listarcs [count ,3]]1=Degree[listarcs [count ,3]]+1
num.visited = num.visited+1

}

count = count +1

}

#connect hamilton path start to fimnish

tours [which(Degree<2) [1] ,which(Degree<2) [2]]=1
tours [which (Degree<2) [2] ,which(Degree<2) [1]1]1=1
score=sum(tours*Data) /2

previousnode = 0
currentnode = 1
for (j in 1:size) {
nodes = which(tours[currentnode ,]==1)
if (nodes[1]'!'=previousnode) {
greedytour [j] = nodes[1]
previousnode=currentnode
currentnode=nodes [1]
} else {
greedytour [j] = nodes [2]
previousnode=currentnode
currentnode=nodes [2]
}
}

TSP_Tour=greedytour

TSP_Tour = c(TSP_Tour,greedytour [1])

Greedy_Tour = matrix(0,size,1)

prev = TSP_Tour [1]

for (i in 1:size+1) {
Greedy_Tour [prev] = TSP_Tour[il]
prev = TSP_Tour [i]

}

#xkkxkkkkx*xkPART 2: Get Greedy Order with tiering*k*kkkkkxkkx*

#Initialize Variables
num.visited = 0

to = rep(T,size)

from = rep(T,size)

trails = matrix(T,size,size)
diag(trails)=F

tours = matrix(0,size,size)
greedloop = rep(0,size)
GreedyOrder = rep(0,size)
tiering = rep(0,size)

tier = 1

while (num.visited<size-1) {
current .distances<-Datal[]
#current.distances[!from] = Inf
current .distances[,!to] = Inf
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current .distances=ifelse(trails==F,Inf,current.distances)
numintier = 0
#go though every node
for (i in 1:size) {
#if node hasnt been left yet
if (from[i]l==T) {
#find the min distance arcs
availmin = which(current.distances[i,]==min(current.distances[i,]),arr.ind =
T, useNames = F) [1]
#if only min distance arc AND same as in opt tour (this can probably just be
made availmin[1] and length removed)
if ((availmin == Greedy_Tour[i])&&((numintier+num.visited)<(size-1))) {
#update number in tier
numintier = numintier + 1
#store connection
greedloop [numintier]l= i
}
}
}
#loop through connections in tier
for (j in 1:numintier) {
#Perfrorm greed tracker
trails [greedloop[j],Greedy_Tour [greedloop[jl]l]=F
tours [greedloop[j],Greedy_Tour [greedloop[jll]l=1
from[greedloop[jl] = F
to[Greedy_Tour [greedloop[jl]l] = F

#row addition Trails code
for (1 in 1:size) {
if (trails[l,Greedy_Tour [greedloop[jll1l==F ) {
trails[1l,]=trails[1,]&trails[greedloopl[j]l,]
}
}

num.visited = num.visited + 1
#stroe perfect orde4r list
GreedyOrder [num.visited] = greedloopl[j]
tiering[num.visited] = tier
}

tier = tier+1

}

#Set last arc to fimnalize tour

tours [which(from==T) ,which(to==T)]=1

#sometimes cause error due to looping structure
GreedyOrder [num.visited+1]l=which (from==T)
tiering[num.visited+1l]=tier

% ok ok ok ok ok ok ok ok ok PART 3: Adaptive List ok ok ok ok ok ok ok ok K
#Re-Initialize Variables
order = GreedyOrder

#tuneable parameters

numswaps=1

goodnodes = rep(0,size)

alpha=startalpha

alphacount = 0

best_order = order

best _score = score

a = Sys.time ()

#Number of list order swaps at each iteration

minvals = rep(0,size)
badarc = rep(0,size)
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for (i in 1:size) {
minval = tail(sort(Datal[i,],decreasing = F,index.return=T) ,2)
minvals[i] = minval$x[2]

}

for (p in 1:size) {
goodnodes [p]l=length(which(Datalp,]<=minvals[pl+minvals[p]l*(1/startalpha)))
}

maxgood = max (goodnodes)

HHEHHHAHBHHH AR B HBHS

for (k in 1:iter) {
#Initialize Variables
num.visited = 0
to = rep(T,size)
from = rep(T,size)
trails = matrix(T,size,size)
diag(trails)=F
arcvals = rowSums (tours*Data)
tours = matrix(0,size,size)

type = sample(3,1)

if (type == 1) {
havearc=F
while (havearc == F) {
badarc = which(arcvals>=(minvals+minvals*alpha))

if ((length(badarc)<2)||(alphacount >= intensifycrit)){
alpha = alpha-changealpha
alphacount=0
if (alpha < 0) {alpha=startalphal
} else {
movel = sample(badarc,1)
oldloc=which(order==movel)
if (oldloc!=1) {
havearc=T
}
}
}
newloc=sample (oldloc-1,1)
if (mewloc==1) {
if (oldloc==size) {

temporder = c(movel,order[1l:size-1])
order=temporder
} else {
temporder = c(movel,order)
order = c(temporder [1:(oldloc)],temporder [(oldloc+2):(size+1)])
}
} else if (oldloc==size){
temporder = c(order [l:newloc-1],movel,order[newloc:size])
order = c(temporder[1:(oldloc)])
} else {
temporder = c(order [1:newloc-1] ,movel,order[newloc:size])
order = c(temporder [1:(oldloc)],temporder [(oldloc+2) :(size+1)])
}
} else if (type == 2) {

for (j in 1:numswaps) {
swapl sample (size,1)
swap?2 sample (size,1)
temp = order [swap2]
order [swap2]=order [swap1]
order [swapl]l=temp
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} else if (type == 3) {
havearc=F
while (havearc == F) {
badarc = which(arcvals>=(minvals+minvals*alpha))

if ((length(badarc)<2)||(alphacount >= intensifycrit)){
alpha = alpha-changealpha
alphacount=0
if (alpha < 0) {alpha=startalphal}
} else {
movel = sample(badarc,1)
swapl=which(order==movel)
havearc=T
}
}
move2 = sample(which(goodnodes>=alpha/startalpha*maxgood) ,1)
swap2 = which(order==move2)
temp = order [swap2]
order [swap2]=order [swap1]
order [swapl]=temp

}

#While statement
while (num.visited<size-1) {

current .distances<-Data[,order [num.visited+1]]
current.distances[!to]l=Inf
current.distances[!trails[order [num.visited+1],]]=Inf

nextTownToVisit = as.integer (which(current.distances==min(current.distances),
arr.ind = T,useNames = F)[1])#In case of ties, take just the first
nextTownToVisit = c(order[num.visited+1], nextTownToVisit)

trails[nextTownToVisit [1] ,nextTownToVisit [2]]=F
tours [nextTownToVisit [1] ,nextTownToVisit [2]]=1
from[nextTownToVisit [1]] = F
to[nextTownToVisit [2]]= F

#row addition Trails code
listarc = which(trails[,nextTownToVisit [2]]==F)
for (i in 1:length(listarc)) {
trails[listarc[i],]l=trails[listarc[i],]&trails[nextTownToVisit[1],]
}
num.visited = num.visited + 1
}
#Set last arc to finalize tour
tours [which (from==T) ,which(to==T)]1=1
score=sum (tours*Data)

if (score<=best_score) {

if (score<best_score) {
alpha=startalpha
alphacount=0

}

best_score=score

best _tour=tours

best _order=order

} else {
order = best_order
alphacount = alphacount + 1
}
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