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SUMMARY

The objective of this thesis is to explore the classification of assembly code as benign

or malicious through the use of neural networks, and while building these networks, giving

consideration to the creation of malware detecting hardware. Neural networks have become

a go-to solution in many fields due to their ability to learn from an enormous number of

features. Fully entrusting security to a neural network may be unwise due to issues with

bias in training data and the ultimately unknowable nature of how the network makes a

classification. If a proficient system is achieved for low cost in terms of memory or time,

however, it could be another tool in the toolbox for fighting malware.

Our approach revolves around turning the executable bytes of code into a video for clas-

sification methods, what we call Malware As Video, while relying on minimal preprocess-

ing. We will show that a distributed convolutional network achieves the best performance

of the architectures we discuss, hinting that the temporal dependency of the input code may

not be important for classification. To do so, we will walk through the attempted architec-

tures and discuss their strengths and weaknesses before arriving to the final network.

Our best network achieves 99.96% training and 99.31% testing accuracy on a dataset

of malicious vs. benign code, with an average time to predict of ∼8.08ms. It can classify

100% of malware with a false positive rate of 13%. We also test the network in a few

distinct ways. The network achieves 98.47% accuracy on a 0-Day malware simulation.

The network was also given only partial inputs, achieving around 90% accuracy when

using only 20% of each input file on a dataset of 9 classes of malware.

We also perform pruning and quantization strategies on the distributed convolutional

network so it can be as small as possible, enabling a wider range of systems the network

could operate on. We use a novel pruning technique we call Node-Distance Pruning and

we then use Jenk’s Natural Breaks for determining quantization buckets. The network is

finally deployed to an FPGA as a proof-of-concept chip for malware detection.

xii
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CHAPTER 1

INTRODUCTION

1.1 Scope

Computers are an essential hazard to life in modern society, providing a seemingly unlim-

ited wealth of knowledge, entertainment, and risk to us all. Visiting the wrong website at

the wrong time can result in losing personal data, bank accounts being stolen, or worse,

jeopardizing one’s safety and livelihood. The never-ending arms race with malware is no

trivial matter; for consumers, for businesses, for governments, or even for hospitals [1],

which can all be the victim of indiscriminate or targeted attacks. Malware prevention be-

gins with malware detection as it is vital to know if a system has become infected. Hun-

dreds of methods for detecting malware have been developed but it is important to continue

development as each method eventually becomes antiquated.

At the same time, biologically inspired neural networks have boomed into a massively

popular area of research spanning all fields of science and technology. Their widespread

influence, spurred on by seemingly never-ending developments in the past 60 years, begs a

natural question in respect to the malware arms race: how can a neural network be used in

the fight against malware? Even more specifically, how can we safely and efficiently use a

neural network to fight malware?

The work presented here investigates the possibility of using neural networks for mal-

ware identification, with practical considerations to the size, usage, and deployment of a

neural-network-based, malware-detecting subsystem. We base our work on using the raw

executable assembly code of programs as the input to a neural network. Using assembly

code as an input allows for malware detection at the lowest possible level, where no back-

door through the operating system could be exploited, opening the possibility of a malware

1
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detecting hardware based on neural networks. Our hypothesis is that putting this limit on

the input can result in equivalent results to seminal works while enabling leaner and faster

networks.

Building a full system with an integrated malware detecting chip would require more

work than simply plugging a custom card into a motherboard so we primarily investigate

this by simulating the networks and their input. We also conduct an attempt at deploying

the most successful network to an FPGA to evaluate the feasibility of such a system.

2
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1.2 Outline

Chapter 2 first overviews some prerequisite concepts in neural networks such as their basic

elements, notation, and neural network compression. Then, a short review of seminal liter-

ature based on malware detection through bytecode is conducted, comparing major points

from these works to our own.

In Chapter 3 we discuss the methodology of obtaining data, investigating neural net-

work architectures, compressing the final network, and deploying the compressed network

to an FPGA. We will discuss our central idea, MaV, and networks that can be built off of

this input. We also introduce a novel technique, Node-Distance Pruning, which empirically

works well to slim down our network.

After discussing the methodology, Chapter 4 first presents the results of the attempted

neural network architectures to justify claims made in Chapter 3. The best neural network

is then put through a myriad of tests to evaluate its capabilities in malware detection in

comparison to seminal works.

Chapter 5 finally concludes our work, summarizing the contributions made and how

future work can expand on those contributions.

3
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CHAPTER 2

BACKGROUND

2.1 Topic Areas

We will cover some prerequisite topics in this chapter so that the reader has an understand-

ing of work we present later on.

First, we will overview concepts in malware detection and neural networks. We will

then perform a review on seminal literature concerning the classification of bytecode with

neural networks, looking at strengths and weaknesses of the various methods for later com-

parison.

2.1.1 Malware Detection

Malware detection is a vast field with a wide array of developed techniques [2, 3], and even

within the field of malware detection there is no shortage of methods that use neural net-

works, such as work using high-level features [4]. The most important concept from mal-

ware detection is that methods are largely based on one of three techniques: static analysis,

dynamic analysis, or a hybrid of the two. Static analysis uses feature of malware outside of

its execution to make a classification while dynamic analysis focuses on the features of a

program during execution to make a classification. An example of static analysis might be

analyzing the opcodes used in a candidate program, where dynamic analysis might focus

on runtime-exclusive information, such as the systems used by the program. Static anal-

ysis can often be avoided through obfuscation [5], though obfuscation counter-techniques

have been developed in tandem with attacker developments [6, 7]. Dynamic analysis is

not impervious to avoidance either [8], contributing to the never-ending race of malware

detection.

4
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All work presented in this thesis is therefore a form of static analysis, though it is

not necessarily limited to static analysis. Our datasets consist of bytecode pulled from

executables without any kind of runtime, however, it might be possible to use the live

commands run by a CPU as a replacement to the static input.

2.1.2 Overview of Neural Networks

We assume that the reader has some familiarity with the general concepts of neural net-

works, however, we will go over some important concepts here. This section is not meant

to be an encompassing work on neural networks.

A standard neuron i takes the form shown in Figure 2.1, where the neuron takes the

summation of its weights multiplied by the corresponding inputs and then applies its acti-

vation function.

Figure 2.1: Standard Neuron

Where xj represents part j of the input, wij represents the weight from xj to neuron i, bi

is the bias for neuron i, and fi represents the activation function for the neuron. Common

activation functions we will use include the sigmoid function, Rectified Linear Unit, and

hyperbolic tangent. The predicted output ŷi of neuron i given input q can then be written

as:

sqi =
n∑
j=0

wijx
q
j + bi

ŷqi = fi(s
q
i )

(2.1)

The output can also be rewritten simply as a dot product in matrix form sqi = wi ·xq+bi.

5
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A helpful way to view a neuron is a way of mapping an input feature space to a new

feature space determined by the activation function. In other words, the neuron draws a

hyperplane in the feature space. Then, using hyperbolic tangent as an example activation

function, any inputs falling on one side of the hyperplane evaluate to -1 and any inputs

falling on the other side the hyperplane evaluate to 1. The important feature of the activation

function is that it is nonlinear; if it were not, networks of neurons would simply collapse

into a linear combination of inputs.

We have been calling it neuron i to set up that many neurons can be used in tandem to

form what is called a layer with other neurons. Neurons form a layer if they are all use the

same input vector. Their outputs can then be considered as one matrix.

Neurons have become popular due to their ability to be trained in a supervised manner

with gradient descent and its variations. To train a layer of neurons, a loss function J is

necessary (also known as a fitness, objective, or error function). The loss function essen-

tially puts a number to how incorrect the neuron is given an input q. A straightforward loss

function is Mean Squared Error (MSE) from all inputs:

Jq =
1

2

l∑
i=1

(yqi − ŷ
q
i )

2 (2.2)

Where l is the number of neurons in the layer, yqi is the desired output for neuron i given

input q, and ŷqi is the actual output of the network for neuron i.

The loss function we will use is categorical crossentropy, defined as:

Jq = −
M∑
c=1

yqc log ŷ
q
c (2.3)

Where M is the number of classes, yc is the desired output class label, and ŷc is the

predicted probability from the network. Unlike MSE, this loss function will function as

a way to output probabilities for two or more classes given an input, which is especially

useful for multiclass classification. For example, there may be nine neurons in the layer for
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nine classes of data, to predict the likelihood of an input belonging to each class. Another

option might be to have only one neuron as a binary “yes” or “no” output.

With a loss function chosen, the layer of neurons then can be trained using a nonlin-

ear optimization method which is generally gradient descent. Gradient descent is a greedy

algorithm that operates by iteratively taking steps on the surface of the error function to-

wards the closest local minimum with the goal of finding the global minimum. When the

loss function is minimized, the network is getting the most predicted classes correct.

Gradient descent requires the partial derivative of the loss function to each parameter

(weigh or bias) with respect to input q. These partial derivatives can be found by repeatedly

applying the chain rule. For an arbitrary loss function J and standard neuron i given input

q:

∂Jq

∂wij
=
∂Jq

∂ŷqi
· ∂ŷ

q
i

∂sqi
· ∂ŝ

q
i

∂wij
(2.4)

Where each of these partial derivatives can then be found for the standard neuron as:

∂Jq

∂wij
=
∂Jq

∂ŷqi
· f ′i(s

q
i ) · x

q
j (2.5)

Where ∂Jq

∂ŷqi
depends on the loss function and f ′i(x) is the derivative of the activation

function. By design, both of these derivatives are generally easy to find.

To train a layer of neurons, input q is presented and the error calculated with the loss

function. Then, the partial derivative can be calculated for each weight and bias using the

equations as shown above. Gradient descent then uses those partial derivatives to take steps

towards local minimums in the loss function.

Until now, we have been discussing the structure and training of a layer of neurons

- what makes these layers so useful and popular is their ability to be stacked. A neural

network consists of multiple layer of neurons, where the output of one layer is used as

inputs to the next layer of neurons. Layers of the network that are between the input and
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output are called hidden layers.

When multiple layers of neurons are used to form a neural network, taking the partial

derivative of the loss function with respect to a parameters is less straightforward. To

do so, we use the process of backpropogation, which gains its name from the process of

propogating the error backwards from the output of the network backward to all parameters.

Backpropogation generally entails more applications of the chain rule.

Gradient descent usually occurs in Epochs, or passes through the entire dataset. Often

times data is presented in batches so the network is training on, for example, five inputs

instead of one at a time. We do not perform batch training due to limitations with the

libraries used. Many variants on gradient descent exist for different purposes and to address

various problems in training [9]. Throughout our work we generally use RMSProp, which

adjusts the learning rate while training in an attempt to avoid skipping over minima [10].

Neural networks do not need to take the form of connecting each input to each neuron.

In fact, neurons can perform virtually any operation as long as it is differentiable. Another,

popular neural network architecture is the Convolutional neural network, which borrows

2d convolution from fields like image processing. Convolution can be viewed as “sliding”

a small filter over an image of pixels. While the filter slides, every overlapping number is

multiplied and then the outputs summed to result in the final output pixel. An example is

shown in Figure 2.2.

Figure 2.2: Convolution Example

Figure 2.2 shows how the filter is multiplied by the input image and the output summed

to make the output pixel. Convolution usually results in an image smaller than the input
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image, however, the output can also be kept the same size by imagining the input image

padded with 0’s. Doing so enables deeper networks that would otherwise reduce the output

size so one value.

Implementing neural networks has been streamlined thanks to libraries built around

symbolic differentiation, linear algebra optimization, and GPU usage. Before these tools it

was necessary to calculate the error with respect to the loss function for a given parameter

manually, but with them, the error is automatically calculated using symbolic differentia-

tion. In essence, the operations are transformed into a graph composed of nodes and edges

so that the derivatives can be algorithmically determined. Optimized code can then be

created with custom linear algebra operations, reducing complexity and utilizing hardware

like GPUs (or FPGAs, which we will discuss later on).

Throughout this work, Keras is used extensively [11]. Keras makes network build-

ing and prototyping quick and painless by allowing the creation and training of a network

in a couple dozen lines of code. Many common layers are pre-defined, such as densely-

connected layers or convolutional layers. Adding custom layers or training methods is also

easy due to the open-source nature of the library and available templates in the documen-

tation. The library does not build the symbolic graphs itself, but instead can use multiple

backends, of which we use Tensorflow. Layer on we will use a different version of Tensor-

flow’s own backend, XLA [12], which we discuss in-depth in Chapter 3.

2.1.3 Convolutional, Recurrent Neural Networks

One attempted network architecture that achieved some success was that of convolutional,

recurrent neural networks. Here we will go through what it means for a network to be both

convolutional and recurrent for reference material later on. To simplify the notation, we

will no longer designate a specific input q and assume any equation given is for a given

input sample.

Recurrent neural networks have been a staple in classifying time-dependent data for
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many years. These networks can be seen as a system with feedback, or a system with

internal state, and they take many forms for many various purposes. Perhaps the most

popular recurrent neural network is the LSTM or Long Short Term Memory network, with

equations shown in 2.6.

i = σ(ht−1 · Ui + xt ·Wi)

f = σ(ht−1 · Uf + xt ·Wf )

o = σ(ht−1 · Uo + xt ·Wo)

g = tanh(ht−1 · Ug + xt ·Wg)

ct = f · ct−1 + i · g

ht = o · tanh(ct)

(2.6)

Where σ represents the sigmoid function, Wi,f,o,g and Ui,f,o,g are trainable weight vec-

tors, and ct and ht are the hidden state and output, respectively. Of course, between works,

these equations can vary and many studies have been done on the effects of adding or

removing components. We present these equations specifically as they correlate to those

shown in 2.7. LSTMs have a large number of benefits, one of the biggest being that they can

help deal with the vanishing gradient issue when training [13, 14], which enables training

on much longer time sequences.

While LSTMs are useful on their own they struggle in this particular field due to the

high dimensionality and extreme length of the sequences. Instead, convolutional neural

networks seem much more suited, especially considering the intersection with image pro-

cessing and classification. The issue with a vanilla convolutional network, however, is that

it can only accept a fixed-size input.

To get the best of both worlds we can use a recent network architecture called the Con-

vLSTM. Introduced in 2015, the ConvLSTM uses convolution in place of the dot product

for a few select operations to capture both temporal and spatial relationships in data [15].
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One neuron can be described as shown in 2.7.

i = σ(ht−1 ∗ Ui + xt ∗Wi)

f = σ(ht−1 ∗ Uf + xt ∗Wf )

o = σ(ht−1 ∗ Uo + xt ∗Wo)

g = σ(ht−1 ∗ Ug + xt ∗Wg)

ct = f · ct−1 + i · g

ht = o · tanh(ct)

(2.7)

Where σ represents the sigmoid function, Wi,f,o,g and Ui,f,o,g are trainable weight vec-

tors, and ct and ht are the hidden state and output, respectively.

Since their introduction, ConvLSTMs have found use in many applications, of which

we will now mention a few. One work uses them specifically to identify temporal relations

in gesture recognition after feature extraction with 3d convolution [16]. One ConvLSTM

network is used to predict traffic accidents and even build on the architecture by proposing

the Hetero-ConvLSTM due to challenges with their dataset [17]. More directly relating

to this work, some works use ConvLSTMs for working with sequences of images[18, 19].

Another work uses the ConvLSTM as a nested memory model and again expands on the

architecture [18]. One work actually uses a different architecture that they call Long-Term

Recurrent Convolutional Networks, however, the goal is the same as the ConvLSTM [19].

2.1.4 Neural Network Compression

Neural Networks are often times massive due to their nature, both in amount of space and

length of time required to run them. It is desirable to make a given network as small as pos-

sible through various compression methods, namely in this work pruning and quantization.

We consider compression of the utmost importance for our work as a malware-detecting

neural network is only as useful as the feasibility of its implementation.

One simple question looms over many neural network works: how big does one make
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the network? Given the unknowable nature of what features each neuron will look for in a

network, what features are even important in a many-dimensional space, or at what point

neurons become redundant, it is not easy to simply calculate how many neurons should

be in the network. Pruning neural networks is the process of removing the least active

connections or neurons in a neural network and retraining the network with the goal of

having minimal impact on the overall performance. The advantage of pruning is that there

is theoretically some unknowable optimal size of neural network per problem that might

be found after a larger network is trained and repeatedly pruned [20]. It is up for debate if

pruning a network is only useful as an architecture search in finding the optimal number of

neurons, or if pruning a trained, larger network will yield better performance in the end [21,

22]. Regardless, pruning is an important for methodically testing a neural network instead

of brute-force guessing at what size may work.

Measuring the importance of a connection or neuron in a neural network is not an easy

task, and as such, dozens of pruning methods have been developed [23, 24, 25, 26, 27,

28], ranging from simple rules-of-thumb to complex, mathematical analysis. Often times,

choosing a pruning method unfit for a network or using a pruning method too much can

break a trained network, rendering it untrainable afterwards. We observed this effect in our

own testing many times.

Alongside pruning exists the concept of network quantization. We refer to quantization

as the process of grouping the parameters of a neural network by similarity, though it can

have other meanings. For instance, in digital signal processing, it often means that every

number at every step of a transfer function or some process is put into discrete buckets

based on the range of possible numbers that may come out of that process [29]. Methods

similar to that exist for neural networks, however, we do not go that far. Instead, we only

take the weights and biases (or any other parameters) of each layer in a neural network

and group them into bins, resulting in weight sharing, similar to other works [30, 31, 32,

33]. Ideal quantization would cause no loss in performance of the network, but if there is a
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loss in performance, it is a simple matter of using more bins (or cluster centers) to increase

performance. One work compares methodologies for quantizing layers with clustering,

especially in comparison to existing matrix factorization methods [30]. Multiple works

combine both pruning and quantization in a similar way to our work to show the potential

gains that can be had [33, 31].
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2.2 Neural Networks for Classifying Executables/Assembly Instructions

Malware detection and machine learning intersect in a plethora of techniques and papers.

Our work will center around and ultimately build on what we call Malware-as-Image or

MaI, an active research area that converts the bytes of an executable into an image for

classification. Creating malware images generally consists of converting each individual

byte of an arbitrary bytecode into decimal values (ranging from 0-255) which can then be

used as pixels in an image. Parallels from this idea to image processing and classification

can then be applied. We will present some works for reference and comparison to our work,

showing the state of the art and also showing how our method carries some advantages and

disadvantages. Many methods have been developed for MaI classification and we do not

consider this an exhaustive survey. We have instead selected specific papers to illustrate

specific points in relation to our work.

Before looking at these works there are some vital points to emphasize now that dis-

tinguish our work from almost all others: minimal preprocessing and only using the .text

section of the code. Programs come at so many varying lengths that choosing how to deal

with the input becomes a problem in itself. Machine learning methods like support vector

machines or neural networks usually handle fixed size inputs (in their vanilla form), mean-

ing that the data must be processed to that fixed size. Introducing preprocessing to adjust

the input to that fixed size also introduces a few issues. Preprocessing can widen margins

for error, requires a time and space cost, and possibly even introduces security concerns if

the preprocessing is reverse-engineered by attackers. Some authors note that, depending

on the methods used, it may be possible for an attacker to figure out some way to exploit

preprocessing to hide malicious code. Our work specifically avoids preprocessing as much

as possible. To aid in cutting down the size of the input we also only use the .text section,

or what should be the actual assembly commands, of the binaries. We will discuss later on

some additional benefits of avoiding preprocessing and only using .text, however, we note
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these differences now to contrast with other works.

The earliest work we could find that relates to MaI is one that uses Self-Organizing

Maps (SOMs) to analyze Windows executables infected with malware [34]. SOMs are a

special class of neural networks that are trained in an unsupervised manner having neigh-

boring neurons connected, with the goal of projecting the input into a discrete features

space that can be observed. Ultimately, noticeable differences are found between regular

Windows code and infected code. Even further, viruses in the same family give similar

feature maps. While this approach was not used for large-scale file classification it gives

credence to the notion that there are features of malware compared to benign code that are

easily detected by a neural network.

Neural networks are by no means the only machine learning method, and other meth-

ods have shown success. In 2006, a variety of techniques were used to classify executables,

including decision trees and Support Vector Machines through boosting [35]. In the end,

decision trees obtained an Area Under Curve (AOC) of 99.6%, which is competitive to

results even now. While it achieves great performance, this work utilizes over 225 million

n-grams, however, and would face considerable challenges in implementation in compari-

son to our methods, though the authors do implement a full test of their methods on wild

malware.

In 2010, one work was able to achieve 98% accuracy in classifying around 9,500 sam-

ples of 25 classes of malware [36]. Their methods involve using feature projection into

lower dimensional space and k-NN, ultimately taking 56 seconds to classify a file (though

that time to classify was from 2010 and would likely be faster today). The authors note

possible methods of avoiding detection, like dummy bytes that are added to a file.

One work uses a feedforward network on extracted features to achieve 96.35% accuracy

on 3131 samples of 24 classes of malware [37]. Here the malware images are preprocessed

and features extracted with the Gabor+Gist descriptor so that they can be fed to a densely-

connected, feed-forward neural network. Given the extremely large number of classes,
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performance is excellent, and we reference this work to again give credence to the notion

that neural networks are able to identify features in malware, though the network comes

after heavy feature extraction.

More recent times have focused much more heavily on Convolutional Neural Networks

(CNNs). Because CNNs are able to identify spatial relationships in data and images they

are a natural choice to pair with MaI classification [38, 39, 40]. Another big player came in

the introduction of the Microsoft Malware Classification Challenge [41], which encouraged

users on Kaggle to classify over 20,000 samples of nine classes of malware. Because

of the high availability of the data and prominence of neural networks in literature, MaI

classification is experiencing high amounts of interest.

In one thesis work, the author uses a straightforward CNN to achieve 95.24% accuracy

on a test set of over 40,000 samples of malicious or benign code, followed by a residual

network to achieve 98.21% accuracy on the same samples [42]. We use this work as a com-

parison point, where again the malware images are preprocessed to the same size and the

entire file is used. The use of the residual net is an interesting comparison to the convolu-

tional net as well, where residual nets operate by “[...] instead of just hoping that deep nets

will divide stack of layers and learn desired mappings better on their own as we increase

the depth, we explicitly make a stack of layers learn the mapping” [42].

Our own earliest work obtained up to 88% accuracy on the Microsoft Malware Classi-

fication Challenge dataset [43]. The largest issue for performance in this work was that we

padded each image to the same size instead of preprocessing them. While no information

is lost in this method, large amounts of padding would inhibit performance on smaller files.

In this work, however, we introduced the idea that only the .text section was necessary for

classification. We have two more unpublished works in which we will pull from throughout

this thesis. In these works, we establish the idea of MaV, and develop network architectures

to classify binaries based on MaV [44, 45].

Kedebe and Narayanan et al. have also done substantial work in classifying malware as
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an image, with particular attention to various classification methods, autoencoders for clas-

sification, and working with the imbalanced classes in the Microsoft Malware Classification

Challenge dataset [46, 47, 48]. In particular, the authors compare various machine learning

methods for malware detection, showing that k-NN can actually achieve greater perfor-

mance to an ANN and SVM when used on malware images after Principal Component

Analysis (PCA) [47]. The authors then extend their work to using an autoencoder-based

network for classification [46], noting the possible disadvantages with PCA methods and

using only resized malware images as input. An overall performance of 99.15% accuracy

is shown alongside full confusion matrices. The authors also note that a CNN would be an

interesting area of future work. Finally, the authors combine previous methods to overcome

the problem of imbalanced classes as one class in this dataset has a disproportionately low

number of samples and was previously excluded in other works [48]. We do not address

class imbalance specifically in this work, however, it is an important problem to think about

when classifying malware.

The paper that best worked with the idea of code as an image was by one work that

uses a CNN and LSTM in an ensemble configuration [49]. Interestingly, they use the

LSTM on only the opcodes of the input and the CNN on the full input, resulting in a

maximum accuracy of 99.88% on 40,000 samples balanced equally between malicious and

benign files. As we will do ourselves, they also test the network on only the nine classes

of malicious files, resulting in 99.36% accuracy. Again, the input is the full executable

which is preprocessed to a specified length which brings up practical concerns as we have

discussed.

Researchers at Nvidia used an embedding, then a convolutional, distributed for hidden

neural network layers which fed into an ending recurrent neural network on over 2 million

input files [50] This network uses no preprocessing, unlike other methods, and the authors

point out issues with preprocessing. This network architecture most closely resembles our

own, however, the overall architecture of the distributed nature of the network is different.
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Our architecture focuses on the idea of programs as a video, which we will elaborate on

in the next chapter. The authors also note difficulties in using RNNs due to the length

of the sequence as we also found. This network architecture achieves a maximum of 94%

accuracy and 98% AUC. We also expand on this work in a few ways. The largest difference

is that we only use the assembly instructions of the executables (and no data), which cuts

down on the size of the input dramatically. We also attempt to integrate the convolution

with the RNN in the form of applying a ConvLSTM which does alleviate issues with RNNs.

Other tweaks are also made to the architecture, such as using global average pooling to

improve generalization [51]. And finally, while we are using a much smaller dataset that

likely does not represent the input as well, we achieve better overall performance.

Executable code as an image has become a hot area of research in recent years. In

many of these works the images are preprocessed before classification which might take

a large amount of time or resources in practice depending on the operations, and may be

bypassable by reverse-engineering the preprocessing. Additionally, all of the works we

have seen use the full executable file for classification. By only using the .text section of

an executable, classification can be done at a lower level in the hardware stack, with less

memory, less time, and less context of what is running.

One work that has a high amount of overlap with our own comes in the form of what the

authors call MAP, a Malware-Aware Processor [52]. In their work, the authors use logistic

regression and a densely-connected neural network with one hidden layer to identify mal-

ware in built into a soft processor. After achieving sufficient results, the authors deploy the

model to an FPGA alongside an open source x86 CPU core. Their work shows low impact

on the CPU for the malware-detecting subsystem and good performance in identifying mal-

ware. The authors also evaluate multiple types of input alongside assembly instructions,

such as memory address, architectural, and branch features. They settle on using an input

of the frequency of assembly instructions with the largest difference. Additionally, many

optimization methods are used to accelerate the FPGA neural network. The network can
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classify all malware with a 7% false positive rate with after-the-fact detection, or 94% of

malware with a 7% false positive rate with runtime detection, on a dataset of about 1,500

samples. We expand on their work by using a method that does not need adaptation for run-

time detection. The authors adapt their static method to a method that can run on arbitrary

length time series data by using an Exponentially Weighted Moving Average, ultimately

hurting performance. In comparison, our method is adaptable to live running code with no

performance loss due to the architecture. Finally, it is possible that their detection method

may be avoidable in a 0-day scenario by purposely including a ratio of useless commands

to disguise the file as benign. Such a scenario should not be detrimental to our results.
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CHAPTER 3

METHODOLOGY

3.1 Datasets

The input given to any machine learning algorithm can be as important as the algorithm

itself. A machine learning algorithm can give an output that only has limited meaning or is

possibly even useless without data that accurately reflects the conditions of what it is trying

to model. Throughout this work, the data given to the neural network models evolved as

the models did, and not every model was tested on every dataset as new information was

learned. We will therefore go through the different datasets used and then explicitly label

them to avoid any confusion.

Our largest limitation is obtaining data to use. Ideally, these samples would be obtained

by running malicious code on a system and capturing the machine code run on the CPU. It

would be extremely difficult, however, to obtain and run many thousands of malicious (or

even benign) files and capture that information. Instead, we use the bytecode of executables

under the assumption that it is a similar problem.

3.1.1 Common Dataset Elements

Before going through the various sets, there are a few distinctions that can be made across

the board. Firstly, all data used in this work will only use the .text section of the executa-

bles, which should be the actual code of the executable. There is no standard number, but

these sections are likely to be a small portion of the full size of the executable, therefore,

using only the executable commands section of the data cuts out a large portion of the

input. If a network is able to classify malware based on less information without loss of

performance it would be advantageous compared to networks that do not due to the compu-
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tational and memory savings. Additionally, we assume that if the network is to be deployed

commercially, it should be much easier and more secure to classify code based only on the

code itself rather than the code plus additional information. For example, if the network

is deployed as a process in the operating system and requires the header information of

executables it may be possible for an attacker to hack the operating system itself and trick

the network. On the other hand, if the network is directly integrated into the hardware

physically, the wiring would need to be physically altered to trick the network. Such a

deployment is left for future work, however, we argue that doing the same job with less

information is advantageous to requiring more information.

It is important to recognize that .text might contain more than assembly code, or that

assembly code can exist outside of the .text section. Malware can easily hide code through-

out the executable as a way of disguising itself from attackers. Regardless, we argue that

we find competitive results can be achieved from only using the .text section, whatever that

section may contain. Using only this section is a means to an end and would not be done in

final implementation; in practice, the goal would be to port the assembly commands about

to be run by a CPU into the network to check for malicious behavior.

Other papers we have mentioned only use the opcodes of the assembly instructions

rather than the opcodes with arguments, which we use. We empirically found that using

opcodes alone resulted in a slightly worse performance regardless of network architecture.

Of course, using only opcodes would significantly reduce the input size and time-to-predict.

To achieve the best performance we use the arguments along with the opcodes, however, it

is by no means necessary and our methods could be used either way.

Another process used for all data is randomly pooling 9 of every 10 lines of data. The

process is performed by taking every 10 lines and choosing one line to keep of the group,

then moving to the next group. Pooling is performed simply to reduce the amount of time

and memory it takes to train and predict on data, and in certain cases even improves the test-

ing performance. Unfortunately, the pooling is admittedly the largest flaw in our methodol-
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ogy, however, we see no negative difference in performance on pooled vs. unpooled data,

as will be shown in the results section. It may theoretically be possible to avoid detection

based on the random pooling but further study would have to be done. More importantly,

the random pooling would add some amount of time to preprocessing, which we often cite

as and advantage to other methods. While there would be some preprocessing involved, this

time would be minimal or unnoticeable in practice, consisting simply of one if-statement,

as opposed to other preprocessing methods that perform computation on the images.

We have looked at many works that focused on classifying malware as an image. One

distinction that is sometimes not discussed is whether each line is padded to a standard

length or if the bytes are treated as one contiguous stream of bytes. Figure 3.1 shows an

instance of padding for each line, and Figure 3.2 shows an instance of treating the code as a

contiguous block. Additionally, in 3.2, there is a chunk of padding at the end of the image,

which is used to standardize the images to either one length or a multiple of lengths as will

be explained shortly.

Figure 3.1: Malware Image with Line Padding (from [43])

Figure 3.2: Malware Image without Line Padding (from [45])

We began our network architecture search using the line-padding technique as it was
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more intuitive to use as each row of the resulting image begins with the opcode. One may

theorize that with the opcode in the same place every time, it may be easier for a neural

network to recognize the opcode patterns compared to the malware class. In practice,

however, we found that the network achieved better results without padding likely because

the padding added a substantial amount of useless information to the images.

Additionally, for some networks, the input would be too large for the system used to

handle with line padding. To combat the size of the files we imposed a maximum length

of 50,000 lines which covers a large majority of input files. This limit was imposed as a

temporary measure to begin using networks on the input files. As the network architectures

became slimmer and faster, however, we were eventually able to use all files without a line

limit. This line limit is, of course, undesirable, but important to note as it was a limitation

with the older network architectures.

At the end of this chapter, we will create a table of all datasets used that may be referred

to later on.

3.1.2 Naive Image Approach

Our first work was largely to replicate other works and expand on them slightly by only

using the .text section of code [43]. This first dataset was the most naive and consisted of

120 samples of malware from the website dasmalwerk.eu [53], and 120 samples of benign

code from the C: drive of a default windows installation, split into 160 training and 80

testing samples. The samples were then disassembled using the linux utility objdump.

Because objdump outputs the assembly code (such as add, sub, mov, etc), the code must

then be broken into tokens and assigned numbers.

The following is a section from the paper we wrote for NAECON 2018 [43]:

“Once the input is disassembled, the next step was to break up the input into arrays of

tokens so that they can be formatted for input into the network. Custom automata were

used for this process. Words such as add, sub, or eax, were separated by themselves, and
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individual characters such as +, [, or * that merit their own tokens were also separated out.

Commas were completely discarded, as were comments and whitespace. Assembly also

contains hexadecimal numbers for many purposes and unique tokens for procedure names,

both of which were all replaced with two different tokens respectively. Here is a difference

between assembly and machine code; in the latter, it would be difficult to detect such tokens

as everything is a hexadecimal number. In assembly, these tokens must be replaced so the

next step of assigning numbers to tokens can function (there are infinite permutations of

procedure names as they are arbitrary, and hex numbers can mean anything from an object

location to a real number, which introduces ambiguity). These replacements did not seem

to have a large impact on the performance of the network positively or negatively as later

results suggest using raw machine code is possible.

Following tokenization, each unique token receives a random integer value in a process

nicknamed vectorization. The total size of the vocabulary was measured at 903 unique

tokens and any newly encountered token was randomly assigned an integer between 1 and

903. A vector is created per file that is padded with 0s to all be the same size. The resultant

vector per file was 107071 lines of 25 tokens per line.”

This created the first benign vs. malicious dataset. We performed the same process on

files from the Microsoft Malware Classification Challenge dataset, resulting in a vocabulary

size of 202. For this dataset, we did impose a line limit of 50,000 lines for the work done

in [43]. The line limit in this case was not to fit the dataset in memory, but to increase

performance. Large amounts of excessive padding would inhibit performance, especially

given that the dataset is largely biased towards smaller files. Additionally, only 400 training

and 100 testing samples were used from this dataset to increase speed of training.

This technique of using objdump and then vectorizing the resultant code is complex

and hard to replicate, not to mention impractical for deploying the network. Additionally,

the malware vs. benign dataset itself is extremely limited by only being 240 samples, and

the Microsoft Classification Challenge dataset limited to only 500. Again, these datasets
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were a proof-of-concept to get the project going and have since been archived.

3.1.3 Malware as Video (MaV)

The largest issue that malware classification faces, as discussed, is the highly variable

length of the input. An input program has a minimum length of perhaps even a couple

lines, and a theoretical maximum length of infinite lines. How, then, can all programs be

classified as malicious or benign with one neural network? As discussed, nearly all methods

preprocess the input to a standard length for classification, which introduces computation

time and possible information loss.

Our work is largely based on the novel idea of formatting an unknown input code as a

video rather than an image, which we call Malware as Video or MaV for short. The format

can be easily explained as shown in Figure 3.3.

Figure 3.3: Malware Video

In Figure 3.3, we show an example malicious image being formatted as a video. Every

file is padded to be an integer multiple of the window size to ensure that it can be broken up.

We will refer to frames and windows as synonymous terms, both meaning one timestep of a

malware video with a standardized size. The analogy of malware as a video is not perfect,

as frames in a video are largely composed of similar information to the frame before. For

instance, if a man is running across the screen in a video, the background will change only

minimally. In this case, we split the code into completely different sections with no overlap.

If viewed, this malware video would look like static on a T.V. screen. Overlapping each

frame by a certain amount of lines could alleviate this discrepancy, however, we found no

25
37 

Approved for public release; distribution is unlimited. 



difference in practice when overlapping was performed as shown in the next chapter.

By far, the most used dataset for our work comes from the Microsoft Malware Classifi-

cation Challenge on Kaggle [41]. As stated in the paper, this dataset contains over 20,000

samples of nine classes of disassembled malware and has since become a benchmark for

malware classification.

We use this work for every architecture presented as our main dataset for two reasons.

Firstly, using only one dataset from one sources ensures no bias and compatibility. There

are some concerns with mixing these files with benign files for a malicious vs. benign

comparison, largely because we cannot ensure that the conditions of disassembly exactly

match that done by Microsoft. Additionally, classifying each file out of nine types of

malware can be seen as a similar, if not harder, problem to classifying a file out of two

classes, benign or malicious. We assume that some malware classes likely share features

with other malware classes in some ways, possibly more so than a blanket comparison of

malware to benign. In some cases it can be hard to call a program as benign or malicious

- some programs can be borderline at best. Therefore, while this dataset may not include

benign bytecode, it is valid to claim that a network that works on classifying this data

should also work for a benign vs. malicious dataset.

Of the files from the Microsoft Malware Classification Challenge, 10,869 had labels,

and 10,375 samples were found to have .text sections that could be extracted from the

file. Therefore, for the full dataset, 8,000 files were used for training and 2,375 were

used for testing. We did not process files that did not have extractable .text sections as

we are attempting to simulate a network that works on assembly commands from a CPU.

These methods would not work for an in-software system as an attacker could simply put

malicious code in another section. Since so few files did not have a .text section we did not

consider these to bias the results.

As discussed previously the input must be limited to files under 50,000 lines for some

networks, resulting in 8,550 total files, of which we used 6,500 training and 2,050 for
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testing.

While there are numerous advantages to only using the Microsoft Malware Classifica-

tion Challenge dataset, to ensure that the networks did indeed classify malicious vs. benign

code, we also created a dataset of 6,015 disassembled executables from Windows, obtained

from the AFRL. There are a few concerns we have with this dataset to discuss. The follow-

ing is an excerpt from a submission to [45], a yet unpublished work:

“While we are comfortable that the datasets are now fair to compare we will show those

concerns and how we addressed them. Many benign files were initially identifiable by eye

due to some certain characteristics, as in [Figure 3.4]:

Figure 3.4: First 100 lines of a benign code image

The first problem is that there seems to be a long portion of data bytes at the beginning

of many benign files that only includes one or two executable bytes. In the Microsoft

dataset, these sections are grouped to have many data bytes per line (up to 18). Next,

many lines end in the same color pixel. This is because of how we extract data from the

disassembled bytecode - once disassembled from IDA, we simply look at every line to see

if it starts with “.text”, signifying executable code. Then, we extract the hexadecimal bytes

from that line until there are no bytes left. Many of these lines end in the byte “db”, a

signal from IDA that represents the variable size (a byte) and not code. For some reason

these extra “db” tokens were never an issue in the Microsoft dataset as there is always some
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other non-hexadecimal token before them, causing them to be excluded in our extraction.

We therefore excluded the “db” at the end of any line (which is always lowercase if it is not

an actual byte in the code but added by IDA, so no innocent bytes were lost). With both of

these issues it is possible we are disassembling the data differently than Microsoft did in

the Kaggle challenge. Because the exact way that the Microsoft dataset was generated is

unknown, we present results on both datasets with the assumption that our benign files are

not, but may be, biased.”

After addressing the aforementioned issues we mixed benign and malicious samples for

a resulting dataset of 9,100 files, split into 7,500 and 1,600 training data points. The dataset

was created by randomly drawing from the malicious and benign files. Again, because

of the 50,000 line cutoff, a large number of benign files were unable to be used. A final

dataset was created of evenly mixed malicious and benign files for a total of 4,000 testing

and 1,000 benign samples.

3.1.4 Dataset Reference Table

We have mentioned many different datasets for many different purposes. To avoid confu-

sion, we will list all datasets in Table 3.1 and label them so they may be referred to later

on.

Label Dataset Source Line Pad Line Limit Train Size Test Size

1 Dasmalwerk/Windows Yes No 160 80
2 Kaggle Yes No 400 100
3 Kaggle Yes Yes 6,500 2,056
4 Kaggle/Windows Yes Yes 5,000 1,200
5 Kaggle No No 8,000 2,375
6 Kaggle/Windows No No 7,500 1,600

Table 3.1: Dataset Summary and Labels

In addition to these main datasets, there are other datasets that will be referred to later

on for a specific purpose. These are mostly based on Dataset 5, the Microsoft Malware
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Classification Challenge dataset without line padding or a line limit, and are identical in all

ways mentioned in Table 3.1. We will define them in Table 3.2.

Label Alteration

7 No Random Pooling Used
8 Frames Overlap by 17 lines
9 No Embedding Used

10 0-Day Malware (based on dataset 6)

Table 3.2: Other Datasets

Most of the datasets in 3.2 are self-explanatory, however, dataset 10 requires more

detail. Dataset 10 was based on dataset 6 but with a twist: malware specifically of class

8 was excluded from the malicious set. In this set, malicious vs. benign samples are

compared. To more thoroughly test the network we explore 0-day malware, or malware

never seen before. When making the dataset, class 8 malware was excluded. Then, after

the network was trained on this dataset, class 8 malware samples were presented, simulating

never-before-seen malware. Class 8 was chosen arbitrarily.

Figure 3.5 shows a box-and-whisker plot without outliers for both the Microsoft Mal-

ware Classification challenge dataset and the Windows dataset that we created. The Win-

dows dataset is classified under class 10. These plots represent the number of lines in the

.text section of the executables, for files that had an extractable .text section.

Figure 3.5 shows that the length of a file can vary wildly per class. Figure 3.6 shows a

version of the plot for the classes that are smaller.

From Figures 3.5 and 3.6, we notice that the Windows dataset files are, on average,

much longer than any malicious class. There is significant overlap, however, so it is un-

likely that a file could be classified based on length alone.
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Figure 3.5: Boxplot for All Classes

Figure 3.6: Figure 3.5 for Smaller Classes
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3.2 Network Architectures

Neural networks have only one constant in seminal literature: that they are in flux. With

the given input described, especially MaV, there are infinite neural network architectures

that could be attempted for classification. Here we will go through the progression of

the neural networks used as each network attempted gave rise to some insight that lead

to the next, leading to the final, time-distributed architecture. It is by no means certain

that this architecture is the final architecture for all time but it is the overall best we found

considering what we learned as the project progressed.

Perhaps the most surprising aspect we have found is that there is seemingly minimal or

no temporal dependency between windows or even individual lines of code when it comes

to classification. Intuitively, code and programs are vitally dependent on state of the code

and past results. We began by assuming that this dependency would extend to a a neural

network in that a recurrent network would perform best due to its ability to make judgments

based on past information. As will be discussed, however, we found that this is not true.

3.2.1 Common Network Elements

There are some elements that we use throughout all or nearly all neural network architec-

tures shown, namely, the beginning and ending of the networks.

The first layer of almost all neural networks is an embedding. Some other works we

have looked at using embeddings [50], which are a popular technique for framing unrelated

input data in a more meaningful context. They have proven especially useful in natural

language processing [54]. In our case, the value of any single byte does not have meaning

in itself. Unlike in a regular image or video where the RGB or gresycale value of a pixel

has inherent meaning, i.e. the intensity of a pixel or a truck being blue instead of green, the

values of the pixels in bytecode images and videos do not mean anything to an observer. For

example, the decimal value for “mov” may be 25, the value for “add” may be 100 and the
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value for “eax” may be 26, but that does not mean that “mov” is any closer or more related

to “eax” than “add”. Similarly, in natural language processing, assigning numbers to words

leads to situations where some words end up closer in value but not necessarily meaning.

The purpose of an embedding, then, is to be a mapping to find related tokens and can

represent this relation by blowing one dimension into a specified number of dimensions.

With more dimensions comes more ways for two points to be closer or further apart. The

embedding layer in Keras is a randomly initialized matrix that functions by using each

input token as the index. The index corresponds to one unique row in the matrix, which

then replaces the token. This look-up-table (LUT) itself does not have a gradient like a

neuron does, however, Tensorflow (or other automatic differentiation engines) are able to

optimize the outputs for each token. We found that using an embedding improves the

results of the network so significantly that it is absolutely necessary, especially in regards

to testing accuracy.

After some arbitrary neural network we generally use global average pooling to reduce

the number of dimensions of the output before using a densely-connected layer for the

final output. Depending on the architecture, the output of the network may be four or

five dimensions, so global average pooling can reduce that down to one dimension before

the dense layer. Global average pooling has been shown to improve generalization, or

testing accuracy, of a neural network [51]. In fact, the alternative to global average pooling

would be to use another aggregator like global max pooling or to flatten the output into one

dimension. We find that using either of these alternatives would result in a strictly worse

output or even result in a network that is extremely fragile in training.

3.2.2 Convolutional Network

Our first priority was to create a network that was similar to other works as a proof-of-

concept. The network created in [43] was therefore a standard convolutional neural network

as shown in Figure 3.7.
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Figure 3.7: Convolutional Network

The network included two sets of a convolutional layer followed by maxpooling, a

standard practice for convolutional neural networks. We find that using two convolutional

layers, not more or less, was important for the performance of the network. All values for

the size of the network were found experimentally. The network was run on two datasets,

Dataset 1 and Dataset 3. The parameters for the network for Dataset 1 are shown in Table

3.3, trained with rmsprop and categorical crossentropy.

Layer Type Number of Neurons Activation Notes

1 Embedding 100 N.A. Vocab size 256
2 Convolution 400 tanh Kernel Size 4
3 Max Pool N.A. N.A. Kernel Size 3
4 Convolution 300 tanh Kernel Size 3
5 Max Pool N.A. N.A. Kernel Size 3
6 Global Average Pool N.A. N.A. N.A.
7 Dense 9 softmax Output

Table 3.3: Convolutional Network Parameters for Dataset 1

The parameters for the network for Dataset 3 are shown in table 3.4, trained with rm-

sprop and binary crossentropy.

As will be shown in the results section, these networks left much to be desired when

it came to performance. It was a safe assumption that the cause was largely the amount

padding used. These datasets limited the input to 50,000 lines, however, the minimum

number of lines is less than 250 and the dataset is heavily biased towards smaller files. The

next step was therefore to find some way to eliminate the amount of padding without using

preprocessing, leading to MaV as previously presented in Figure 3.3.
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Layer Type Number of Neurons Activation Notes

1 Embedding 100 N.A. Vocab size 903
2 Convolution 200 tanh Kernel Size 3
3 Max Pool N.A. N.A. Kernel Size 3
4 Convolution 200 tanh Kernel Size 3
5 Max Pool N.A. N.A. Kernel Size 3
6 Global Average Pool N.A. N.A. N.A.
7 Dense 1 sigmoid Output

Table 3.4: Convolutional Network Parameters for Dataset 3

While these networks did not perform exceptionally it was significant that they were

able to make classifications at all. From this basic architecture we learned a few things:

that using only the assembly instructions may be a viable way to classify programs, that an

embedding greatly helps with performance, and that global average pooling at the end of

the network also greatly helps with performance. The remainder of our architecture search

essentially boils down to determining the best network to put between the embedding and

the global average pooling.

3.2.3 Recurrent, Convolutional Networks

Dividing up the code images into a video is straightforward, however, classifying them

can be tricky. The natural next choice for the task is the ConvLSTM from [15], which uses

convolution in tandem with a recurrent neural network architecture to capture both temporal

and spatial relationships in data. Figure 3.8 shows the architecture of a full ConvLSTM

network for MaV classification for any arbitrary hidden state.

Figure 3.8 shows two hidden, recurrent layers. When a recurrent network in Keras

has the parameter return sequences set to true, it will return the output at each timestep

instead of just the final timestep [11]. Using this parameters allows the network to project

the feature space onto a new space throughout time and not just before and after, and

enables stacking multiple recurrent layers. We found that using two layers, as in the vanilla

convolutional neural network, obtained the best performance and experienced the least
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Figure 3.8: Convolutional, Recurrent Network (from [44])

problems in training.

The ConvLSTM network was trained on Dataset 3 and Dataset 4, the datasets that

still use line padding and a line limit. All values for the size of the network were found

experimentally. The parameters for the network for Dataset 3 are shown in Table 3.5,

trained with rmsprop and categorical crossentropy.

Layer Type Number of Neurons Activation Notes

1 Embedding 100 N.A. Vocab size 903
2 Lambda N.A. N.A. For Reshaping
3 ConvLSTM 40 sigmoid Kernel Size 4
4 ConvLSTM 25 sigmoid Kernel Size 3
5 Global Average Pool N.A. N.A. N.A.
6 Dense 9 softmax Output

Table 3.5: ConvLSTM Network Parameters for Dataset 3

Layer 2 of the ConvLSTM network is a Lambda layer, a custom layer in the Keras

framework [11]. The Lambda layer can be written to any purpose. Here, the Lambda layer

is what actually reshapes the images into a video. This layer could be implemented in many

ways in practice, directly or indirectly, and the embedding does not need to come before it.

The parameters for the network for Dataset 5 were the same as that in 3.5, except that

the last layer was only one neuron with a sigmoid activation.

While the ConvLSTM network was working well, it took a large amount of time to

make a prediction. The network ultimately used for malware classification must be as fast
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and lean as possible to be usable on a wide array of systems. In an attempt to discover what

exactly was working about the network we looked at removing parts of the ConvLSTM in a

similar fashion to [14], where they looked at what parts of a LSTM are the most important.

For this dataset, however, a surprising conclusion was found: that nearly all of the recurrent

parts of the network were non-vital. Through trial and error, part after part were removed

until the equations in 3.1 were found.

ht = xt ∗Wt + bt + ht−1

yt = σ(ht)

(3.1)

Where σ represents the sigmoid function, Wi and bi are trainable weight vectors, ht is

the hidden state, and yt is the output at time t.

Eq. 3.1 shows a barely recurrent neural network that we call the MinConvRNN, or

Minimal Convolutional Recurrent Neural Network. Not meant for widespread use, the

network was made solely to investigate the theory that the recurrent part of the ConvLSTM

may not be necessary in this domain. Before discussing the MinConvRNN, we will first

derive its backpropogation equations for completeness. This section is copied from our

work done in [44].

“Backpropogation through a recurrent neural network is done through a widely-known

procedure called Backpropogation Through Time or BPTT, for short. The procedure con-

sists of unrolling the one neuron into t neurons and repeatedly applying the chain rule

for the final derivatives. For this simple network, backpropogation can be done in just a

few lines. We will start by defining all parameters in Table 3.6, for an arbitrary objective

function J .

The goal of backpropogation is to find the partial derivative of the objective function

with respect to a parameter. In this instance, ∂Jt
∂Wt

. Note that Wt for time t is a formality,

and Wi = Wj,∀(i, j) ∈ t, and the same for bi. We begin by defining the base case of t = 1

such that h0 = 0, making h1 = x1 ∗W1 + b1.
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Variable Name Purpose

xt Input at time t
ht Hidden state at time t
Wt Weight vector at time t
bt Bias vector at time t
yt Output of neuron at time t
σ Sigmoid Function
δt

∂Jt
∂yt

Jt Arbitrary Objective function value at time t

Table 3.6: MinConvRNN Backpropogation Parameters

Then, we can define the partial derivative of J with respect to Wt using the chain rule:

∂Jt
∂Wt

=
∂Jt
∂yt
· ∂yt
∂ht
· ∂ht
∂Wt

(3.2)

We can define δt to be ∂Jt
∂yt

to simplify notation as the expression will change for a

different J . We can then calculate the other terms directly as:

∂yt
∂ht

= σ′(ht) · 1

∂ht
∂Wt

=
∂xt ∗Wt

∂Wt

(3.3)

We leave ∂xt∗Wt

∂Wt
alone to simplify the expression, but we note it is computable. It is

also known commonly known that σ′(x) = ∂σ(x)
∂x

= σ(x) · (1 − σ(x)), and we will use

σ′(x) for simplification of expressions as well.

The full partial derivative at time t can then be defined as:

∂Jt
∂Wt

= δt · σ′(xt ∗Wt + bt + ht−1) ·
∂xt ∗Wt

∂Wt

(3.4)

Because Wt is the same ∀t as stated earlier, we can compute the partial derivative for
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W for n timesteps as:

∂J

∂W
=

∑
t

δt · σ′(xt ∗W + bt + ht−1) ·
∂xt ∗W
∂W

h0 = 0

t ∈ [1, 2...n]

(3.5)

For a recurrent neural network where only the output is considered, we could factor out

δt from the sum. We can also perform a similar process to find the partial derivative for b

for n timesteps as ∂J
∂b

=
∑

t δt · σ′(xt ∗W + bt + ht−1), with the same conditions.

This partial derivative does not look too dissimilar to that of a basic recurrent neuron.

The neuron is indeed recurrent in the sense that it is necessary to calculate ht−1 in order to

calculate ht, and that the gradient must be propogated starting with the initial output in the

same manner. Regardless of these equations, however, the neuron as defined in 3.1 does not

make intuitive sense. Taking the raw sum after convolution, in theory, might simply lead

to an unbounded output in the hidden state that approaches ∞ (or −∞ ) for all elements

as the number of timesteps approaches∞ , leading to all 1s (or 0s) in the output with the

sigmoid activation.”

The MinConvRNN can be compared to a basic recurrent neural network where all

weights from the hidden state are 1. This distinction effectively prevents the network from

learning any weights that relate past outputs to the present and solely works to take the

sum across all timesteps. Programs are inherently temporally dependent. In fact, they are

so temporally dependent that a program will almost certainly completely crash if one line

of code is missing. Using a recurrent neural network to classify programs is therefore a

natural choice and using the MinConvRNN seems like it disregards that information.

Despite all of these issues, we found empirical success with the MinConvRNN. In prac-

tice, the output of the final timestep was composed of 1s for only around 35% of the matrix

regardless of length, hinting that the convolution kernels were trained to pick out extremely

specific features in the data. If there was a strong temporal link it could be expected that
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the MinConvRNN would significantly underperform. Even with a much lower number of

total parameters due to the smaller hidden state, however, the MinConvRNN achieved only

a slight performance decrease. We interpret this success to mean that the temporal link

between windows of code is not important for classification.

The MinConvRNN network was trained on Dataset 3 and Dataset 5, the datasets that

still use line padding and a line limit. MinConvRNN layers were substituted directly for

the ConvLSTM layers, and we trained the MinConvRNN with the exact same number of

kernels as in 3.5 specifically to test the performance difference. We will present those

results in the next chapter.

One issue with the MinConvRNN is that there is an artifact from its recurrence in the

network, the return sequences parameter. With return sequences, the output every single

timestep is returned, meaning that the intermediate outputs returned represent a partial sum

of the full output.

Competitive results have been achieved at this point, along with the novel idea of MaV,

but ending the story at MinConvRNN does not make sense. Even though it is a simple

sum, MinConvRNN is slightly recurrent and brings baggage with it, namely that it takes a

significant amount of time to make a prediction due to the inability of recurrent networks

to be run in parallel.

3.2.4 Distributed Convolutional Network

The final class of networks attempted are that of Distributed Convolutional networks.

Learning from the MinConvRNN but ditching recurrence entirely, these networks can be

seen as taking one small, convolutional network and running it on each timestep individu-

ally. In other words, the weaknesses of the MinConvRNN due to the returning of interme-

diate outputs and inability to parallelize have been eliminated. The network architecture is

shown in Figure 3.9.

Figure 3.9 shows all of the famililar elements, including two sets of convolutional lay-
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Figure 3.9: Convolutional, Time-Distributed Network (from [45])

ers, except that the convolutional layers are now distributed. Performing this action is sim-

ple with the TimeDistributed wrapper in Keras [11]. An important aspect of the distributed

network is that it requires some aggregator at the end to turn any number of timesteps

into one output, which was previously done by the recurrent network inherently. Here we

show Global Max Pooling, which takes the maximum of each element with respect to each

timestep. Multiple aggregators were attempted, such as mean, sum, min, or combinations

of all of these, but we found max to be the best performing.

Calculating the loss for a TimeDistributed layer, and consequently the gradient, depends

on the layers after the TimeDistributed layer. In 3.9, the separate TimeDistributed layers

can be considered as one single TimeDistributed mini-network inside the larger network.

Gobal Max Pooling functions as the aggregator that comes directly after after his mini-

network, meaning the gradient from backpropogation depends on this layer. Similar to

local max-pooling, the gradient for Global Max Pooling backpropogates linearly for the

winning elements, and is set to 0 for all others. Therefore, all elements for all timesteps

have a gradient of 0 except for the winning elements, which are unmodified in the pooling

layer.

The network was trained on Datasets 5, 6, 7, 8, and 9, serving as the standard benchmark

from here on. Parameters for the network on Dataset 5 were initially based on both the

ConvLSTM network and are presented in Table 3.7.

Table 3.7 again shows a Lambda layer for reshaping, and uses a second Lambda layer

for the temporal max-pooling. Additionally, another Dense layer was added before the final
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Layer Type Number of Neurons Activation Notes

1 Embedding 100 N.A. Vocab size 256
2 Lambda N.A. N.A. For Reshaping
3 Convolution 40 tanh Kernel Size 5
4 Max Pool N.A. N.A. Kernel Size 2
5 Convolution 25 tanh Kernel Size 3
6 Max Pool N.A. N.A. Kernel Size 2
7 Lambda N.A. N.A. Temporal Maxpool
8 Global Avg. Pool N.A. N.A. N.A.
9 Dense 50 tanh N.A.

10 Dense 9 softmax Output

Table 3.7: Distributed Network Parameters for Dataset 5

output for performance. This table comes from our work in [45].

The Distributed Network architecture was a marked improvement over the previous

architectures as a culmination of the learnings from them all. As will be discussed, it

obtained identical or better performance to the best previous network, the ConvLSTM,

while also cutting the amount of time to make a prediction massively.
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3.3 Network Compression

Reducing the size and complexity of a malware-detecting neural network is of the utmost

importance so that it may be feasible for deployment. In this section, we review the methods

of pruning and quantization attempted on the Distributed Convolution network.

3.3.1 Adapting Traditional Pruning Attempts

To prune the network we first attempted to adapt some established pruning techniques to the

unique, time-distributed nature of the network. The difficulty with pruning the Distributed

Network is that it is not as straightforward as a regular feedforward network. While it is

feedforward, a small change in the network can have a massive impact as it will affect all

timesteps. Additionally, some methods of pruning use the output of a neuron given some

input, and the output of an intermediate, time-distributed layer will be of varying sizes,

so it must be aggregated in some fashion. All pruning was done by modifying a copy

of the open source library Keras Surgeon [55]. More methods were attempted than those

presented here, however, we will only present a couple of the more popular methods that

were unsuccessful.

We first attempted to use the minimum weight method by removing kernels with the

smallest magnitude [23]. The magnitude can be determined by Ct(w) = 1
|w|

∑
i

∑
j w

2
ij

where t is the frame of the input,wi is a given weight in the kernel, i and j are the dimensions

of the kernel, and |w| is the dimensionality of the weights. We found that this method would

destroy network performance even if only one neuron was moved so it was not suitable for

our network.

We also attempted a method called Average Percentage of Zeros or APoZ [56], specif-

icalyl targeted for ReLU-activated networks. We built a network with the ReLU activation

in one layer to use this method. APoZ specifically removes neurons that activate infre-

quently and therefore do not contribute largely to the network. Again, using APoZ would
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end up rendering the network untrainable, likely due to the unique nature of our network

as mentioned earlier. No adaptation was necessary for this method as it would take the

average activations of a neuron across all timesteps.

Finally, we attempted a method that attempts to measure the impact of a kernel by

using the output vector. Because our network uses max-pooling after performing con-

volution, kernels that give a low magnitude output can theoretically be removed with-

out issue. We measured the overall impact of a kernel w at a frame t can be defined as

Ct(w) =
∑

p

∑
n

∑
m |(p ∗ w)(n,m)|, where p is an input vector and n and m are the

dimensions of the output of convolution between the input and w. We found this method

the most immediately successful by not rendering the network untrainable, however, it was

only able to prune a few neurons at most.

3.3.2 Node-Distance Pruning

After experiencing unsatisfactory results with adapted pruning methods we attempted to

make a novel pruning method to address the unique nature of the network. Parts of this

section, Figure 3.10, and Algorithm 1 come from our work in [45].

The issue with the output magnitude method is that it only looks for the kernels with the

largest total output, however, it is not necessarily the largest output that matters, especially

considering the first hidden layer of the network.

Instead, it might be better to look at the uniqueness of each kernel. The goal of this

method is to build a Node-Distance graph, which measure the distance of each kernel to

each other kernel, resulting in a fully-connected graph. Figure 3.10 shows an example

Node-Distance graph.

Figure 3.10 shows an example Node-Distance graph consisting of kernels A, B, C,

and D, where the edge connecting any 2 nodes represents the distance between those two

kernels.

To build the Node-Distance graph we consider the distance between any two kernels
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Figure 3.10: Node-Distance Graph for Pruning

k1 and k2 to be determined simply by dist(k1, k2, q) = ‖(k1 ∗ q)− (k2 ∗ q)‖2, where q is

some input values propagated from previous layers. We use the 2-norm of the difference

of the outputs of the two kernels in response to an input. The 2-norm empirically worked

the best for the pruning method, however, many distance measures exist, such as cosine

similarity. Regardless of how it is measured, the goal of this operation is to find which two

kernels are the most similar to each other, in that they end up producing the most similar

output.

The neuron to prune can then be determined by taking the lowest magnitude nodes in

the graph, determined by summing the edges. The nodes with the lowest magnitude can be

considered as the node the closest to many other nodes in the graph, meaning it is the most

redundant.

The graph can be built and used as algorithm 1 shows.

To use algorithm 1, each training or testing sample must be run through the network

and the output of the desired intermediate layer captured. Then, the outputs are grouped by

the kernel that created them and fed to the algorithm.

One note to make of the algorithm is that all magnitudes of all nodes must be recalcu-

lated every time a node is marked for pruning (the reason for the outer while loop, and that

the distances must be recalculated each loop). This is because when a node is removed,

the next smallest magnitude node has the possibility of changing. Figure 3.10 is actually
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Data: K, a list of all kernel outputs in the network, and C, the number of kernels to
remove

Result: P, the kernels to remove
Initialization;
P = empty list of kernels to prune
Mag = empty list of len(K) to represent magnitude of each kernel
while len(P) <C do

for n = 0 to len(K)-1 do
for m = n+1 to len(K) do

dist = distance between K[m] and K[n]
Mag[m] += dist
Mag[n] += dist
if m in P then

Mag[m] =∞
end
if n in P then

Mag[n] =∞
end

end
end
Kernels = Mag.argsort()
Append Kernels[0] to P

end
Algorithm 1: Node-Distance Pruning Algorithm

one such case: node B has the smallest magnitude, followed by either node A or node D.

When B is removed, however, node C then becomes the smallest magnitude node. This

occurrence is extremely rare in practice, never having happened when we used the pruning

algorithm on our networks, but it is possible.

It is quite a slow algorithm. Not counting the time to get all outputs of a network,

O(Cn2) distances will be calculated. We use n = 0 to len(K-1) and m = n+1 to len(K) to

reduce the total calculations (seen as calculating only the upper triangular of an adjacency

matrix), however it is still O(Cn2), which is especially large given that calculating the

distance between two kernels is non-trivial. A small speed gain could be had by only

calculating the distance from each node to each node once, and instead of recalculating

all distances every time a node is removed, only subtract the removed distances. Doing

this, however, would require storing the full adjacency matrix, where we only store a list of
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len(K) elements, and we thought the algorithm may be less clear.

We found this algorithm to be extremely successful on our network by being able to

reduce the total number of kernels in the network significantly and never rendering the

network untrainable. Specifically, we found that the 3rd layer of the network, or the first

distributed convolutional layer, was highly redundant and pruned all the way down to 10

kernels.

The goal of this algorithm can be seen as reducing the variance in the node magni-

tudes. As the lowest magnitude nodes are removed and the remaining nodes retrained, the

magnitudes of the nodes come closer together. We found this to be empirically true. The

magnitudes of the nodes in the unpruned network with 30 kernels ranged from 27,546 to

45,172 (the size of these numbers will depend on the number of nodes in the layer and the

number of samples given to the algorithm). After pruning, the magnitudes of the nodes in

the network with 10 kernels ranged from 10,371 to 12,347, a stark decrease in how much

the magnitudes vary. Performing a larger study of this algorithm on more networks would

be worthwhile. For instance, if any standardization of the magnitudes helps, perhaps re-

moving the largest magnitude nodes (or most unique nodes) would also be helpful. Other

distance metrics could also be considered.

3.3.3 Quantization

This section is an excerpt from our yet unpublished work in [45].

Quantizing neural networks can mean multiple things, but in this context, we use it to

mean finding similar weights in neural network layers and replacing them with one shared

value. When the network is then deployed in hardware or software, only a limited number

of unique values are required. The number of elements is the same but the amount of mem-

ory required is highly compressed. Ideally, quantization causes no loss in performance.

Making a malware-detecting neural network as small as possible is again highly desired

for applications in a commercial environment where the client may not have a powerful
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computer, or even an embedded device, such as a phone. The difference between tens or

hundreds of thousands of unique weights and hundreds of unique weights may greatly af-

fect real-world applications. We apply a basic quantization method to the network to find

the smallest number of unique values required to identify malware.

Work done in [30] compares methodologies for quantizing neural networks including

using k-means clustering for creating clusters of weights, and work in [33] uses another

clustering method for weight quantization. We similarly make a simple rule of thumb

for the number of quantization bins and use a Python implementation of the Fisher-Jenks

Natural Breaks algorithm to find the bins, which acts similarly to a 1-D k-means [57]. The

number of bins is determined by taking the logarithm of the number of parameters to put in

bins. Experimentally, using this rule works well for quantization, and further reduction in

the number of bins will decrease accuracy. The algorithm can be described as shown in 2.

Data: All parameters of a given network
Result: Quantized Network
Initialization;
W = a list of each weight, kernel, and bias vector in each layer
for w in W do

V = Sort w
K = log(count(W))
breakLocs = Jenks(V, K)
Map each value in V to closest breakLoc
Replace values in W with map from V

end
Algorithm 2: Quantization Algorithm

Figure 3.11 shows an example of the weights in a layer becoming quantized. Every

weight is set to the closest break value found by the Jenks algorithm. Another way to set

the new weights might be to set every value between to breaks to be the average of the

breaks. Figure 3.11 shows an example of quantized weights, where the horizontal axis

is the set of weights, sorted by value. This format is not how distributions are normally

viewed but helps show the effect of quantization.

It can be seen in Figure 3.11 that more breakpoints are put at the beginning and end of
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Figure 3.11: Quantized Kernel Values

the set of weights because there is more variation at the beginning and end. Doing this in-

stead of evenly distributed buckets helps the quantization process keep as much information

as possible.

We will later discuss the effect of quantization on the performance of the network. One

effect to note is that quantization will have more of an impression on the ReLU network

than the Tanh network. This is because ReLU does not have an upper bound for the output

weight, while Tanh is strictly bounded between -1 and 1. Therefore, changing weights for

a Tanh neuron should not affect the performance if the neuron activates to the same inputs.

For ReLU, however, changing the weights will not only change if the neuron activates but

how much it activates, affecting the performance of the network greatly.

For the quantization it is necessary to decide the number of breaks corresponding to

quantization levels q to use. In attempt to make a generalized rule, we use q = blog10(N)c

where N is the number of unique parameters in the layer being quantized. Figure 3.11

shows the set of weights sorted by magnitude. If we view these weights as a line, they take

the shape of what looks like one period of a tangent function. In practice, regardless of the
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activation function or size of the layer, we find that the set of weights take this shape when

sorted distributed across different ranges. Therefore, we determine our quantization rule to

be based on log10 as exponentially larger layers do not seem to require exponentially more

buckets for quantization. It is, of course, easy to incorporate more buckets by using Nq

buckets, where N is some chosen integer.
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3.4 Hardware Inferencing Subsystem

The ultimate goal of this work is to have some form of malware-detecting hardware. This

section will go through how the network was deployed as a proof of concept to an FPGA.

Ultimately, deploying the distributed network is a large undertaking in itself and our goal

with this work is to prove that doing so is possible. Many optimizations to make the de-

ployed network work faster as we are only scratching the surface of what could be done.

3.4.1 Full Coprocessing System Overview

Our work has not been done in a vacuum and is part of a larger initiative to make some

kind of malware detection coprocessing system. The details of such a system - obtaining

the machine code from the processor, decoding the code into assembly, recreating the input

program, what to do with an output, and more - is work being done by others in the AFRL

research team. Namely, John Musgrave has been investigating how to interface with the

CPU and build such a system. Our work is therefore a subsystem for this initiative.

The networks we have developed are a candidate approach for the detection piece of

the system. In this case, if the input is determined as malicious, it can be further examined

by a model that reasons more in-depth about the code, such as an ACT-R model. We will

also discuss using salience as a possible way to explain what warranted a classification in

Chapter 5. The overall goal for the system is to make the ultimate decision about a program

explainable to a human observer.

Our work is easily extendable to using input from such a system. Using .text from exe-

cutables is not the exact same but should be analogous enough that a network architecture

that works for one input should be able to work for the other. Given that some system ex-

ists which hands assembly code to our system, we can design a hardware-based inferencing

subsystem to make a classification.
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3.4.2 Malware Detection Subsystem Overview

Deploying a neural network for inferencing (or training, which is out of our scope) has

become a hot topic in recent times. There are dozens of hardware efforts by companies

such as the TPU from Google [58], the Movidius Neural Compute Stick from Intel [59],

or the integrated AI processing with SenseMI by AMD [60]. Having hardware that is

purpose-built for neural networks enables their use across a wider array of devices and

not just systems with top-of-the-line GPUs. We chose to work with an FPGA to keep the

network as hardware agnostic as possible, to enable rapid prototyping, and for the open

source tools available to ensure we can make the network compatible.

It is important to note that a final malware-detecting subsystem does not have to take

the form of an FPGA and could be done with any hardware mentioned before, or could

even be done with a GPU as in simulation. Using an FPGA, however, means theoretically

not using a full operating system or a CPU - if the prediction was done with a GPU, either

a separate virtual machine would need to control the GPU, or a dedicated GPU would need

to be installed into a specific PCIe slot on the motherboard for malware classification with

CPU support. In other words, some kind of driving CPU would need to control the GPU for

loading the model, fetching inputs, and fetching parameters. Regardless of implementation,

the method would leave attack vectors open if malware was able to act quickly enough to

intercept signals between the CPU and GPU. It might be possible to solder a GPU or

other device to a PCB and hard-wire all of the aforementioned functions, however, such an

approach would be difficult to design and difficult to adjust if an update of some kind was

necessary.

Ideally, using an FPGA means it fully controls itself as it requires no bulky or possibly

penetrable operating system. In this case, the primary CPU can directly port assembly

commands, in hardware, that it is about to run or is running to the FPGA so that it may

check if they are benign. The FPGA could even be integrated directly with the CPU, which

has previously shown great promise for malware detection [52].
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An extremely generalized image of what our malware-detecting subsystem could look

like is shown in 3.12.

Figure 3.12: Malware Detecting Subsystem

The exact details of the architecture of a malware-detecting subsystem are out of the

scope of this thesis, however, Figure 3.12 shows the general idea. The input could even

vary depending on the requirements of the system - if fast enough, the system could be a

live detection system that uses an input of recreated programs from live commands run by

the processor, but if that does not work, the system could function as a gatekeeper that all

programs must pass through before executing.

The output bus could also vary. It could be a simple one-bit decision on whether to run

something, or the full 32-bit floating-point output, as the final output of the network can

be interpreted as the probability a file is malicious. The larger system could then decide

to run something in conjunction with other factors, such as how high the probability is,

how critical the program is, how critical the system is (a home PC versus industrial safety

systems), and so on.

The only requirement for our subsystem would be to have buffers for the input frames

and a running max. An arbitrary number of buffers could be used depending on how much

room they require, though the more buffers used, the faster the subsystem would be. Each

frame can be processed in parallel due to the architecture of the network. The running max
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buffer would function as a way to store output for future inputs. If not enough frame buffers

were in place for a program, the output of one pass could be stored as a running max in this

buffer, for future use (which leads to possibilities for partial file classification, as we will

discuss in the Results chapter).

Regardless of the details of the subsystem, our goal here is to evaluate FPGA deploy-

ment as an option for the neural network. For our work we used the Terasic DE1-SoC [61]

as it was most compatible with the tools we used. This FPGA is not a top-tier model, how-

ever, it was the easiest and most straightforward to use. More modern models with more

resources on-board would yield better performance.

3.4.3 LeFlow Overview

A multitude of work has also been in progress for neural network acceleration specifically

with FPGAs, for example the work done in [62] or more broadly a convolution implemen-

tation in [63]. There is also a wide array of synthesis tools to translate various types of code

into deployable Verilog [64].

We specifically utilized a tool called LeFlow that takes Tensorflow and converts it into

working Verilog [65]. LeFlow not only significantly decreases the workload of translat-

ing a neural network to Verilog, but ensures the process is repeatable and dynamic so it

may be easily redone if the network ever changes architecture. A commercial, malware-

detecting FPGA would be subject to updates as new malware comes out, so using a li-

brary like LeFlow would be vital for ensuring that the network could be quickly retrained

and deployed. Figure 3.13 shows our interpretation of how simulated neural networks are

translated to hardware.

Simulating neural nets, in our case, uses Keras as a means to build the network. Keras

uses Tensorflow as a backend (but it can use others), which compiles the code to a com-

bination of C++ and CUDA for use on a CPU or GPU. LeFlow utilizes XLA, a different

backend to Tensorflow [12]. Instead of C++ and CUDA, XLA outputs LLVM. Then, a
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Figure 3.13: Software to Hardware Translation

hardware synthesis called LegUp from the University of Toronto can take the LLVM and

compile it to Verilog [66]. We also chose LeFlow due to the open-source nature of the tool.

Due to the broad and complex nature of neural networks, it can be easy to find a niche

usecase that has not been covered by any tool. Thanks to LeFlow being on GitHub, how-

ever, we were able to examine exactly what the tool was doing and make changes where

required.

3.4.4 Deploying the Distributed Convolutional Net

The network we are deploying is unique in that it would actually be undesirable to de-

ploy the entire network. More specifically, because the network is time-distributed and

repeats the same mini-network over and over, we should instead only deploy that one mini-

network, especially because we cannot predict the number of instances needed as the file

length changes. We were able to deploy one instance and put one frame of input into

memory for classification, however, we were not able to figure out how to pipe an infinite

number of frames of input to the network. It would be necessary to write custom Verilog

for continuously accepting input from a source like the GPIO or USB. While we could not

add this functionality, we can simply extrapolate how long it takes to predict output on one

frame of input for predicting how long it would take for the average file.

There were some compatibility issues to address in generating hardware. First, Ten-
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sorflow works by building a symbolic graph of operations and thus Keras builds a graph

in Tensorflow as well. Due to extra operations that Keras performs, however, it ended up

being easier to simply recreate the network in raw Tensorflow rather than using the Keras

graph. Recreating the network is not too difficult and doing so allows for greater flexibil-

ity in ensuring compatibility, as well as the ability to discard any extraneous parts of the

network from Keras.

Issues then came in the compatibility with specific layers and Tensorflow. XLA outputs

some LLVM that cannot be interpreted by LegUp, and to solve this, LeFlow uses a custom

version of Tensorflow to put the LLVM in the format that LegUp expects. Unfortunately,

some more operations needed additional support. Thanks to the tool being open-source and

help from its creator, we were able to add support for some of these operations. We added

support to LeFlow for handling operations like reduce mean or or reduce max, which are

used for global average or global max pooling. In this instance, the fix was relatively easy,

and only consisted of finding an if-statement in the Tensorflow XLA source to turn off.

The if-statement simply turned on or off a process called vectorizing of LLVM code, which

cannot be handled by LegUp. Therefore, turning it off allowed reduce operations to be

synthesized into Verilog. The change was submitted and accepted in a pull request for the

LeFlow Github repository.

A larger issue came in the form of the embedding. On the backend, Tensorflow has

the ability to use conditionals like if-statements which are required for the Embedding.

Unfortunately, conditionals result in dead nodes, or nodes that were not taken in the condi-

tional. When these dead nodes are processed through XLA, the output is split into multiple

clusters and therefore multiple files, which cannot be handled by the toolchain. The end

result is that we were unable to use an Embedding for the network. It is likely that using an

embedding is possible through modifying the Tensorflow source more extensively.

A quick remedy used was to remove the embedding layer and keep the rest of the

network the same. The only changes to the network are to first reshape the input to be in
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the form (timesteps, rows, columns, 1), to keep the previous architecture usable, and then

to divide the input by 255. Dividing by 255 serves to scale the input between 0 and 1 for

easier training. It is important to note that removing the embedding significantly reduced

the size and complexity of the network. The full network has around 50,000 parameters or

trainable values, while the network without the embedding has around 8,000 parameters.

This severe reduction in size contributes to a faster classification time and lighter network

however, it also results in a severe decrease in performance, especially for testing accuracy.

We present the results of the network without an embedding in the next chapter. The largest

concern when it comes to deploying the network on an FPGA is fitting the model into the

relatively limited design space and memory. While the model without an embedding was

able to deploy to the FPGA it is likely that the full model would not in its raw form. Using

the full model with quantization, however, may or may not fit, and further investigation is

necessary.

After solving the aforementioned issues, we were able to deploy the network to the

FPGA. Deployment was done without the quantization of the weights as custom Verilog

would need to be written to accommodate the custom loading of weights. We were also

able to use a Phase-Locked-Loop (PLL) to increase the clock speed of the design from the

native 50MHz to 100MHz. Instructions for setting up the LeFlow and LegUp environment

are in the appendix.

Using the Distributed Network also has a massive untouched area of potential due to

the windows not being temporally dependent and using max-pooling as an aggregator. In

hardware, the window operations can be fully parallelized. We could therefore deploy as

many copies of the distributed network as possible and aggregate the results afterwards.
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CHAPTER 4

RESULTS

4.1 Network Architectures

Here we present the results curated from tests on the discussed neural network architectures

and eventual hardware deployment. Like in Chapter 3, we will separate results by architec-

ture. To cut down on simulation time and unnecessary figures we will present the results

of the Distributed Convolutional network much more in-depth than previous networks as it

achieved the best overall performance.

4.1.1 Convolutional Network

The convolutional neural network architecture operated on two datasets, Dataset 1 and

Dataset 2. All results are taken from [43] The results of the network on Dataset 1 are

shown in table 4.1.

Metric Convolutional Net

Parameter Count 630,901
Train Accuracy 95.1%
Test Accuracy 94.24%
Test Precision 95.34%

Test Recall 93.18%

Table 4.1: Convolutional Net Results on Dataset 1

The results for the network on Dataset 2 are shown in 4.2.

Metric Convolutional Net

Parameter Count 1,020,909
Train Accuracy 88%
Test Accuracy 78%

Table 4.2: Convolutional Net Results on Dataset 2
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We will not discuss these results in-depth as this network was purely made as a proof

of concept and contains certain flaws prohibiting better performance, such as line padding

and limiting the number of lines.

Our takeaway from these trials will be one important note; only using the .text section

for classification appears possible. At this point, it is not possible to distinguish if the poor

performance is due to using the .text section or if it is due to the limitations with the dataset.

Future datasets and networks shore up these weaknesses.

4.1.2 Recurrent, Convolutional Networks

In this section we present the performance of the recurrent, convolutional neural networks.

All performance is also presented in [44].

Table 4.3 shows performance of the networks on Dataset 3, the padded Kaggle dataset.

Metric ConvLSTM MinConvRNN

Parameter Count 573,634 116,951
Train Accuracy 98.35% 97.28%
Test Accuracy 98.24% 96.39%

Time to Inference ∼63.67ms ∼23.73ms

Table 4.3: Recurrent, Convolutional Net Results on Dataset 3

Table 4.4 shows the confusion matrix for the ConvLSTM network on testing data from

Dataset 3. The columns are predicted classes and rows are actual classes.

The confusion matrix in Table 4.4 shows a few interesting results. Items per class is

biased mostly towards class 3, but are not too heavily biased to the point where it becomes

a problem. Class 5 is notorious in the Microsoft Classification Challenge dataset for having

an extremely low number of samples and in our testing dataset has a total of 5 samples. The

ConvLSTM, and MinConvRNN in 4.5, was unable to correctly classify a single instance of

class 5. Another interesting note is that there seems to be a confusion between predicting

class 1 for class 8. This issue comes up later on as well, and it is extremely possible to

optimize out these confusions, even with something as simple as using weighted categorical

58
70 

Approved for public release; distribution is unlimited. 



Class 1 2 3 4 5 6 7 8 9

1 249 0 0 0 0 0 0 0 0
2 2 364 0 0 0 0 0 0 0
3 0 0 681 0 0 0 0 0 0
4 0 0 0 99 0 0 0 0 0
5 2 1 0 0 0 0 1 2 0
6 3 0 0 3 0 107 0 0 0
7 0 1 0 0 0 1 89 2 1
8 6 1 0 0 0 1 0 259 1
9 3 1 0 0 0 0 0 4 166

Table 4.4: Confusion Matrix for ConvLSTM2d Net on Testing Data from Dataset 3

crossentropy [67]. The ultimate goal of our research is classifying malicious vs. benign

code so no overt optimizations were performed specifically for multiclass classification.

We use our performance on the nine classes of malware to strengthen the case for our

self-made malicious vs. benign dataset, given that we may have accidentally biased that

dataset.

Table 4.5 shows the confusion matrix for the ConvLSTM network on testing data from

Dataset 3. The columns are predicted classes and rows are actual classes.

Class 1 2 3 4 5 6 7 8 9

1 245 0 0 0 0 0 0 2 2
2 3 356 1 0 0 2 0 3 1
3 0 0 680 0 0 0 0 1 0
4 0 0 1 98 0 0 0 0 0
5 1 0 0 1 0 1 0 2 1
6 1 0 0 4 0 105 0 2 1
7 0 1 12 0 0 1 80 0 0
8 13 2 0 1 0 0 0 252 0
9 4 1 5 1 0 1 0 2 160

Table 4.5: Confusion Matrix for MinConvRNN on Testing Data from Dataset 3

Table 4.6 shows the performance of the convolutional, recurrent networks on Dataset 4.

Performance from the recurrent, convolutional neural networks is competitive to other

methods shown in Background. When it comes to Binary vs. Malicious classification, we
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Metric ConvLSTM MinConvRNN

Parameter Count 573,634 116,951
Train Accuracy 99.78% 99.32%
Test Accuracy 99.50% 99.20%

Test Recall 99.37% 98.12%
Test Precision 99.58% 99.58%

Time to Predict ∼91.16ms ∼35.32ms

Table 4.6: Recurrent, Convolutional Net Results on Dataset 4

achieve equivalent performance to the best competing paper we reviewed, and for the Mi-

crosoft Classification dataset, we achieve competitive performance. We would like to note

the possible issues with the Binary vs. Malicious dataset as noted in the Datasets section,

however, we see the competitive performance in Table 4.3 to prove that the networks do

indeed learn from MaV.

These results are only on line-padded data, and we do not present results of these net-

works on non-line-padded data for two reasons. First, a significant difference in perfor-

mance was not found, and second, these results reflect the work performed in [44].

One important note is the comparison in performance between the ConvLSTM and

the MinConvRNN. The MinConvRNN was purposely kept to have the same number of

kernels per layers in order to keep the comparison as fair as possible. In doing this, the

ConvLSTM has a much greater number of overall trainable parameters due to its multiple

weight vectors. Even with this advantage, the performance difference is only 2% at absolute

maximum in a testing dataset, with a time-to-predict that is twice as fast. These results can

be interpreted to show that the strong temporal link in the ConvLSTM is not as important

as the actual convolution kernels.

4.1.3 Distributed Convolutional Network

In this section we present the results of the Distributed network. As the best performing

network found, it will be tested more thoroughly.

Our first set of results come from a network pruned with adapted, traditional pruning
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methods as described in chapter 3. A leaner, better performing network was obtained with

the node-distance pruning method though the pruning ultimately was used as an architec-

ture search method. The first set of results is pulled from [45].

We tested the network using both the Tanh activation function for all layers, and ReLU

on the first distributed later. We also tested using other activations, such as ELU [68] which

should speed up training and improve performance, but found no significant difference.

Table 4.7 shows the results of the network on Dataset 5. The first two columns are the

final results of networks pruned using adapted traditional methods and the final column is

a Tanh-only network pruned with the Node-Distance pruning method.

Metric Tanh Only ReLU on Layer 3 Node-Dist Pruned

Parameter Count 124,190 58,544
Train Accuracy 99.83% 99.76% 99.86%
Test Accuracy 98.61% 98.74% 98.74%
log10 Accuracy 96.17% 94.27% 97.56%
log10 Total Q 60 57

4log10 Accuracy 98.48% 98.44% 98.56%
4log10 Total Q 224 210

Time to Predict ∼2.9ms ∼3.09ms

Table 4.7: Final Distributed Network Results on Dataset 5

In Table 4.7 it can be seen that the distributed network achieved the best performance

compared to our other methods, and performance that matches other works we have shown.Furthermore,

the network pruned with the Node-Distance method achieved the best overall performance

in ever category, which can likely be explained as the network was overfitting ot the training

data less. Quantizing the network with 4log10 levels only resulted in a 0.2-0.3% decrease

in performance. Using more quantization levels would decrease degradation further.

Table 4.8 shows the confusion matrix for the Node-Distance pruned, distributed, Tanh-

only network on testing data from Dataset 5. The columns are predicted classes and rows

are actual classes.

The distributed network performed the best on the Microsoft Malware Classification
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Class 1 2 3 4 5 6 7 8 9

1 329 2 0 0 0 0 0 1 0
2 1 536 0 0 0 1 0 3 0
3 0 0 670 0 0 0 0 0 0
4 0 0 0 91 0 0 0 0 0
5 0 0 0 0 3 0 0 1 1
6 0 0 0 2 0 163 0 0 0
7 2 0 0 0 0 0 88 0 1
8 9 0 0 0 0 0 0 251 0
9 0 2 0 0 0 0 0 1 217

Table 4.8: Confusion Matrix for Node-Distance Pruned Net on Testing Data from Dataset
5

Challenge dataset overall. We note that the largest number of errors remains to be confusion

between classes 1 and 8, but this time more class 5 is placed correctly.

Table 4.9 shows the performance of the distributed network on Dataset 6, the Benign

vs. Malicious dataset without line padding.

Metric Tanh Only ReLU on Layer 3 Node-Dist Pruned

Parameter Count 94,841 55,126
Train Accuracy 99.98% 99.99% 99.96%
Test Accuracy 99.36% 99.36% 99.31%

Test Recall 99.27% 99.27% 99.75%
Test Precision 99.51% 99.51% 98.90%
log10 Accuracy 99.03% 99.20% 99.11%
log10 Total Q 54 52

Time to Predict ∼8.7ms ∼8.08ms

Table 4.9: Distributed Network Results on Dataset 6

A Receiver Operating Characteristic Curve shows the performance of a binary clas-

sification system as the threshold for classification is changed. It would be possible, for

instance, to label all files as malware and therefore have 100% accuracy in classifying mal-

ware, without being useful. The ROC curve shows the False Positive Rate with respect to

the True Positive Rate, so we can see how many false positives the classifier would produce

for a given amount of true positives. Figure 4.1 shows the ROC curve, as well as a zoomed

in version of the upper left corner.
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Figure 4.1: Final Binary Classifier ROC Curve on Test Data from Dataset 6

Figure 4.1 shows that the network can identify all malware with a False Positive Rate

of 13%, or it can identify 99.89% of malware with a False Positive Rate of 8%, which is

competitive with other methods.

K-Fold validation is a common technique used in machine learning to more thoroughly

test that the datasets chosen for testing and training are not biased. Theoretically, it is

possible to unintentionally choose the testing and training samples such that the network

achieves excellent performance. For example, if all of the testing data happens to be the

points that are easily distinguishable, perhaps in this case all of the testing points are a

specific class of malware that is easily identifiable, it leads to overly confident models.

To combat the possibility of choosing a bad training and testing split, the data is split

into k randomly chosen subsets. Then, k times, one subset is used as the testing set while

the rest of the data is used for training. A model is then trained and tested on the data and

results recorded. An example pseudocode of the algorithm is shown in 3.

To save time, instead of fully training the models we only performed 30 epochs of

training. If the models are performing well after 30 epochs we can assume that they could

be trained further to represent the results from the previous section. Table 4.10 shows the

results of a 10-fold test run, as well as epoch 30 of the network shown in Table 4.7 for

comparison.
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Data: k, the number of folds, and D, a list of samples
Result: Performance on each fold
Initialization;
foldSize = number of samples per fold, length of D / k
Randomly shuffle D
F = empty list, the list of folds
for n = 0 to k do

F.append(D[n*foldSize:(n+1)*foldSize]
end
F now contains a list of k randomly chosen folds
for n = 0 to k do

training dataset = combine folds F[:n] and F[n+1:]
testing dataset = F[n]
Train an arbitrary model on the testing and training dataset
Record results for later comparison

end
Algorithm 3: General K-Fold Algorithm

Network Training Accuracy Testing Accuracy

Epoch 30 of Fully Trained Network 99.63% 97.89%
Fold 1 99.75% 97.49%
Fold 2 99.71% 96.53%
Fold 3 99.59% 96.62%
Fold 4 99.62% 97.01%
Fold 5 99.80% 97.01%
Fold 6 99.62% 97.78%
Fold 7 99.67% 97.69%
Fold 8 99.59% 95.08%
Fold 9 99.58% 96.72%

Fold 10 99.66% 95.76%

Table 4.10: 10-Fold Validation Performance on Dataset 5 after 30 epochs

Table 4.10 shows that the performance of the various networks on the folds varies be-

tween 99.58% and 99.75% for training accuracy, and 95.08% and 97.89% for testing ac-

curacy. Again, the networks could have been trained more. Additionally, these results are

from exactly epoch 30, even if a better training or testing performance was obtained an

epoch or two earlier.

We see the similar performance across all folds as indicative that the test/training selec-

tion we used for training all networks in the previous section was not biased. Differences
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between networks is likely the result of statistical noise from randomly initialized weights,

floating point roundoffs during gradient calculations, and other various factors.
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4.2 Tests Based on Distributed Convolutional Network

In this section we detail more tests based on the Distributed Convolutional Network. We

first show a method we call early prediction, which operates by testing the performance

of the network on incomplete inputs, strengthening its practical applications. Next, we

simulate a 0-day attack, where the network faces a class of malware never seen before.

Finally, we present results of training a network on files without an embedding, without

pooling, or with window overlap to address claims made earlier in the thesis.

4.2.1 Percent of File

Given the architecture of temporally-independent frames, an interesting question can be

posed: what happens if only half of the file is given as input?

If the network is able to classify a significant number of files with only a partial input

it would enable faster predictions in practice. There is not reason to not keep track of a

running, intermediate output. When the intermediate output indicates malware the program

could be then be run with additional restrictions for safety, until it proves itself benign.

Other works have struggled specifically with adapting their method to a live detection.

These results are from our work in [45].

Figure 4.2 shows the results of running a percentage of every file through the network.

Both figures in this section are from [45].

To perform partial file classification, before the file is given to the network, it is mul-

tiplied by the percentage on the horizontal axis. If there is not enough lines to make even

one frame, it is discarded, resulting in the “jumps” in the graph as large amounts of files

can suddenly be used all at once.

To aid in interpreting results, Figure 4.3 shows an expanded view of Figure 4.2.

We see excellent performance of around 90% in classifying as low as 20% of the files.

Using 60% of the files results in an accuracy of around 95%.
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Figure 4.2: Partial File Classification on Dataset 5

Figure 4.3: Expanded View of Figure 4.2

In practice, if a file is being executed and has been marked as malicious after 60%

execution, one could therefore be reasonably confident it is malware.
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4.2.2 0-Day Malware

While a network may be able to classify malicious vs. benign files based on files it has

seen, there is a major flaw: what if a new type of malware is created, never seen before?

This would be called 0-Day malware and is a large problem for malware detecting systems.

These results are from our work in [45].

We used dataset 10 to simulate the appearance of 0-day malware to a network. To do

this, we mixed the Microsoft Malware Classification Challenge dataset and the Windows

dataset as before, but purposely excluded class 8 files from the malicious dataset. Class

8 was chosen arbitrarily. After training the network on the dataset without class 8, the

excluded files were then presented to the network as never-before trained on malware to

observe the results. Table 4.11 shows the results of the testing.

Metric Result

Train Accuracy 99.97%
Test Accuracy 99.45%

0-Day Accuracy 98.28%

Table 4.11: 0-Day Performance on Dataset 10

The network in 4.11 is the same structure as the Node-Dist Pruned network in 4.9, in

other words, the best malicious vs. benign dataset. It achieves similar performance to that

network though slightly worse, likely due to statistical noise.

The network achieved 98.47% accuracy on 522 files of class 8 malware, a class of

malware the network had never seen before. While lower than the full testing accuracy, this

performance is highly significant as it suggests one of two things (or some combination of

the two):

1. The network is identifying features within assembly code to tell if it is malicious or

benign, which can be extendend to 0-day malware

2. The dataset includes some bias, either from the format of the benign code as dis-

68
80 

Approved for public release; distribution is unlimited. 



cussed, due to the dataset only including Windows files, or due to the malicious code

classes all coming from the same source

We have discussed possible issues with the dataset before, however, given that we are

controlling for multiple factors with the dataset, we trust that the network achieves com-

petitive performance in identifying 0-day malware for at least this class. It is of course

impossible to test for all 0-day malware and more rigorous tests than this can be run, but

we see this initial result as highly promising.

4.2.3 Embedding Removal, Data Pooling Removal, and Window Overlap

Here we present some miscellaneous results in order justify earlier claims. Those claims

are:

1. Removing the embedding results in a worse but still functional network

2. Using data pooling either does not impact or improves performance

3. Using overlapping frames to more closely resemble a true video does not impact

performance

Each of these claims could warrant their own section of tests, however, we only test

each claim by training a few networks and observing the best results to not waste time or

space. All networks were kept the exact same size as the final Distributed Network size.

We used an overlap size of 15 lines for the window overlap dataset.

Table 4.12 shows the results on Dataset 7, 8, and 9.

Metric Embedding Removal Data Pooling Removal Window Overlap

Train Accuracy 97.14% 99.23% 99.85%
Test Accuracy 83.87% 98.23% 98.69%

Time to Predict ∼1.98ms ∼13.14ms ∼4.78ms

Table 4.12: Miscellaneous Results from Final Distributed Network Architecture
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Table 4.12 shows that a network without an embedding suffers especially in regards to

testing accuracy. The performance drop is unfortunate, however, the network is still useful

as a proof-of-concept for hardware deployment. The time to predict did go down with the

reduced overall size of the network.

The results for data pooling removal show worse performance in comparison to the

results from networks that use pooled data. It is unclear whether the performance hit is

within statistical noise or whether the pooling aids in training somehow. Either way, it does

not matter, as using data pooling does not decrease performance. More importantly, the

time to predict without data pooling increases to six times that without data pooling.

Finally, the results from the window overlapping dataset match results from the dataset

without window overlapping. This conclusion matches our theme that the actual order of

the windows have little or no temporal dependence. If the dataset had strong dependence,

or if extremely specific lines of code were necessary to be analyzed together, performance

would change. Instead, we see no performance difference.

70
82 

Approved for public release; distribution is unlimited. 



4.3 Hardware Deployment

As discussed in the previous chapter we were only able to deploy the network for one

frame of input code. The time it takes to make a prediction based on this frame should

be the same for any input frame, therefore, we can extrapolate the time it takes to make a

prediction on this frame to any number of frames. For our testing we used the cheapest and

most compatible FPGA to our toolchain, the Terasic DE1-SoC, an FPGA for educational

purposes. This FPGA is the most straightforward to use with LeFlow and LegUp. It is

possible to use all of the generated Verilog on a beefier and more modern FPGA, however,

it would require integration work to ensure compatibility.

We also used a PLL to increase the clock speed from the native 50MHz to 100MHz.

The board can theoretically go up to 500MHz, however, the circuit timing requirements

would not allow for a clock higher than 100MHz.

Table 4.13 shows the results of our FPGA testing on one frame of code and extrapolates

those results.

Test Number of Frames Time to Predict

FPGA Trial with clock at 100MHz 1 ∼256ms
Predicted Average per File 87 ∼22.3s

Table 4.13: FPGA Performance, Real and Extrapolated

As can be seen in Table 4.13, the extrapolated FPGA classification time unfortunately

took about 6,000x longer than the simulated network average of about ∼3.35ms without

the embedding (on the malicious vs. benign dataset). While this is a significant decrease,

we note that many operations could be vastly improved for reasons discussed before

Figure 4.4 shows the output of the FPGA after running the network.

In Figure 4.4, there are six 7-segment displays. The first display shows the output of

the network (in this case, 1, or malicious). The second display shows the output of the

global state machine, mostly for debugging and timing purposes. The next four 7-segment
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Figure 4.4: FPGA Output After Running

displays show how many miliseconds it took to get the output.

Figure 4.5 shows the output of the Quartus compilation summary.

In Figure 4.5, it can be seen that the FPGA fits the design comfortably. The network

uses about 50% of the board’s available logic resources and 69% of the board’s DSP re-

sources.

The network works quite slowly on the FPGA largely, however, there is a large amount

of room for optimizing the generated code. Many other measures could be taken, the

most important one being the parallelization of code within modules. Many operations

are done suboptimally on the FPGA due to the method of converting synchronous code

(LLVM) to asynchronous code (Veriog). LegUp offers substantial support for parallelizing

major chunks of the code, however, we did not use any as it would require editing how

Tensorflow generates LLVM. Many other optimizations are performed by the authors of
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Figure 4.5: Quartus Compilation Report

[52], who, for example, use a Look Up Table (LUT) to speed up the hyperbolic tangent

function. Hyperbolic tangent is expensive to compute so pre-storing values in a table can

save large amounts of compute time. Even these simple optimizations could save a large

amount of time for the FPGA.

Our initial results are not promising for using an FPGA for classification, however,

more work would need to be done to evaluate the usefulness of an FPGA for malware

classification. These results prove our main goal in that the network can fit into a low-

grade FPGA at all. It is possible that with more optimized code and a modern FPGA the

network may approach or exceed the same performance as the GPU performance.
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CHAPTER 5

CONCLUSION

5.1 Overview

In this thesis we have investigated the usage of neural networks for malware detection at

the assembly instruction level with considerations for hardware deployment. Other works

have obtained convincing results that neural networks can classify malware, however, these

works have distinct weaknesses in comparison to the work done here. Our main focus is

to first limit the input to only the assembly instructions and then rethink the problem from

image classification to video classification.

With the imposed limits we then explored possible network architectures for the task,

starting with a basic network and evolving that into to a convolutional, recurrent network.

Our primary novel contribution is the concept of MaV or Malware-as-Video for classifi-

cation, as we then found that the temporal component may not be strictly necessary when

classifying code. We end with the final, distributed network, which not only operates faster

and with better results but also gives multiple freebies like parallel processing or partial file

classification. The network was able to achieve convincing performance in comparison to

seminal works, largely beating some of the best works we reviewed.

With the distributed architecture we then pruned and quantized the network to better en-

able hardware acceleration. Another novel contribution is the technique of Node-Distance

pruning, which empirically worked well to slim down our network and warrants further

investigation. We also then used Jenk’s Natural Breaks for quantization. Finally, we ex-

perimented with hardware acceleration via FPGA deployment. Results from the FPGA

deployment were not stellar, taking multiple orders of magnitude longer to make a predic-

tion than the simulation system. The fact that the network fit on the FPGA at all, however,
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is a success and warrants further exploration into hardware-accelerated classification.

Regardless of what specific hardware is used, we have shown that a quick and lean

neural network for malware classification is achievable, and using such a network in a

commercial system may be viable.
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5.2 Network Efficacy and Unknowability

One concern with neural networks across all applications is that they can be hard to deci-

pher. We can discuss the math and see the performance, but ultimately, it can be unclear

what exactly the network “sees” in an input to make a classification. This concern is es-

pecially important for malware detection as it is vital to ensure the network is working in

practice.

Given the high performance margins of neural networks in this area, both in this work

and in others, it is safe to assume that there are specific features in code that networks

use to make a classification, maybe frequencies of certain opcodes, specific blocks of code

that are only used in malware, number and location of branching operations, or maybe an

undesirable feature that makes the network not practical.

In this work we make a few observations. Using an embedding is vital for performance,

which is not a big surprise. Removing, adding, or changing certain layers hinders perfor-

mance, which is interesting, but does not answer the larger question. More interestingly,

the temporal dependence between windows seems unimportant for classification. This is a

unique conclusion, however, it again raises the question of what exactly is important.

These networks may never be used in practice for classifying malware, however, look-

ing into how they work might give vital information for future malware detection methods.

One way to look at how networks use input data is to look at the networks saliency, which

usually entails taking the gradient of the network with respect to its input and feeding it

input samples [69]. Performing this operation can give a kind of heatmap for the input, as

areas with a large gradient (compared to other areas) indicate an area of sensitivity for the

network output. In other words, the network seems to be heavily using that area to make

an output decision.

There are many ways to measure saliency and doing so is an area of active research

and interest. We took the simplest measure of taking the gradient of the network with
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respect to the input and found fascinating results. We can only propogate the gradient

to the embedding layer, as it has no gradient, resulting in many gradients, one for each

dimension of the embedding. We took the mean, maximum, and minimum of each pixel,

to make a few different images, as shown in that order in Figure 5.1.

Figure 5.1: Malware Program Heatmaps

Figure 5.1 shows the original malware image, then the mean, maximum, and minimum

of the embedding gradient, from left to right. The images have clear points of a large

gradient with respect to the input for the network. The gradient in these images is very

small. For background areas, they are 0 at numerical precision, and for areas of high

activity, they reach only 3-5 magnitudes of order above 0 for numerical precision. All

heatmaps from our dataset are identical in nature. Another example shown in Figure 5.2,

which shows the heatmaps for a benign file.

These heatmaps are highly though-provoking as they so clearly indicate a small number

of high-gradient areas. What happens if we remove areas with a high gradient and replace

them with zeroes? What happens if we do so in comparison to doing the same to low

gradient areas? What happens if we boost these gradients in testing (can we enable deeper

networks)?

Most interestingly, can we map high-gradient areas to sections of code and then make

a list of sections common to malware or sections common to benign programs?

Answering all of these questions, and more, would be a substantial amount of work, but
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Figure 5.2: Benign Program Heatmaps

could lead to some amazing conclusions about what makes a file malicious. In turn, doing

so could lead to even leaner and more robust detection methods. If salience does not pan

out for some reason, there are other ways to detect feature importance. Regardless of how

it is done, it is important to find why these networks work so well. Ideally, doing so could

lead to some realizations about the nature of malware classification.
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5.3 Future work

There is a large amount of future work left to be done. Our primary recommendation would

be a massive expansion of the dataset. Issues with the benign dataset have been discussed

previously, and even within the malicious dataset alone, a more comprehensive dataset with

millions of samples would ensure robustness in the network while enabling more rigorous

testing. This thesis presents promising results, but ultimately, the testing done does not

fully model a real-world scenario given the limited scope of the datasets. One issue with

the malicious dataset comes in the form of “injected” malware, or malware that is added

to a benign piece of code. We only look at a piece of strictly malicious or strictly benign

code, however, malware can hide itself inside what should be a benign file. It would be

interesting to test if the network architectures shown could detect that malware as well.

The next area to focus on would be the network itself, given the constantly advancing

nature of neural networks. We have seen that the temporal aspect of the code seems to not

be important for classification, however, that is not a definitive answer. As discussed in the

previous section, using salience or some other means to find more information about the

input could lead to leaner and more robust detection methods.

Future work also means ultimately building a fully implemented neural network in

hardware and attempting a full system integration. Deploying the network to hardware

was the most difficult area for our research due to how deep the field of hardware for neu-

ral networks is. It is vital to have a repeatable, easily changeable, and robust system for

deployment (in other words, not hand-written Verilog) so that changes to the network do

not upend the hardware. Creating and maintaining this system, however, is a large enough

amount of work to warrant a in-depth knowledge about neural networks, Tensorflow, Ver-

ilog, FPGAs, and so on. Though this effort would not be impossible by any means it would

require a substantial amount of work. Whether this system takes the form of FPGA deploy-

ment or a GPU/CPU system is up for debate and would require further exploration. Initial
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FPGA results are not promising in terms of speed, however, it is exciting that the network

was able to fit into the chip.

Given that further testing with new datasets and architecture yields similar success to

our own, we hope that the work in this thesis provides a foundations such that a malware-

detecting co-processor could become reality.
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APPENDIX A

SYSTEM SPECIFICATIONS

At points, the time-to-predict is listed for the simulated network, which heavily depends

on the system used to run the networks. Table A.1 lists all specifications for the system in

which all tests were run.

System Model ASUS GU501GM Laptop
Processor Intel Core i7-8750H

GPU NVIDIA GeForce GTX 1060 (Laptop) - 6144 MB
Memory 16384 MB, DDR4-2666

Python Version 3.6.6
Keras Version 2.2.0

Tensorflow-gpu Version 1.8.0
Conda Version 4.5.12

Table A.1: Simulation System Specifications

The specifications for the FPGA and hardware-synthesizig software used are listed in

Table A.2 [61]. The SoC includes a dual FPGA-CPU chip. We only ever use the FPGA,

but the CPU specifications are listed.

System Model Terasic DE1-SoC
FPGA Cyclone V SoC 5CSEMA5F31C6

Processor Dual-core ARM Cortex-A9 (HPS)
Logic Elements 85,000

Embedded Memory 4,450 Kbits
FPGA SDRAM 64MB (32Mx16)
CPU SDRAM 1GB (2x256Mx16) DDR3

Quartus Version 15.0
LegUp Version 4.0

LeFlow Commit Used (no releases) 1f1ec0a

Table A.2: FPGA SoC System Specifications
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APPENDIX B

HARDWARE SYNTHESIS SETUP INSTRUCTIONS

In this section, we detail the process of synthesizing hardware from a pre-made Tensorflow

neural network file (in this case, easy example.py). We will reference a file, ”My First

FPGA,” which is documentation for synthesizing a design for the DE1-SoC. All of these

directions are subject to change per the FPGA used.

1. Download Virtualbox and LegUp VM (http://legup.eecg.utoronto.ca/getstarted.php)

(a) Give more cores to VM so it runs faster

2. Git pull LeFlow (https://github.com/danielholanda/LeFlow)

(a) Follow Tensorflow and LeFlow installation instructions (be inside /src/tensor-
flow)

(b) Follow these instructions: (https://github.com/danielholanda/LeFlow)

i. Install Tensorflow
ii. chmod +x LeFlow (inside /src)

(c) Also run pip install keras –user

3. Use export PATH=”$PATH:/path/to/dir” for LeFlow

(a) Use /home/legup/LeFlow/src/ as path to dir

4. Create Tensorflow neural net

(a) Recreate the Keras network purely in Tensorflow

(b) We have the code for our Keras network in Tensorflow on the Github page

5. At this point, should be able to generate verilog

(a) From here on, binary model.py is the file we will use as the neural network in
Tensorflow

(b) Call python binary model.py to make sure it works

(c) Call LeFlow binary model.py

(d) If you get a bunch of INFO and no ERROR, you are good and binary model files/
now exists

(e) cd into binary model files/
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(f) Run ”make p”

(g) Call quartus on command line

(h) Follow DE1 SoC documentation My First FPGA from here

i. Open top.qpf
ii. The top-level entity might be the wrong module. If it is ”top”, navigate to

Assignments −→ Settings, and assign it to DE1 SoC. If DE1 SoC does not
exist in the project, copy it from our GitHub.

iii. Click on the play button to compile

6. Connecting to board

(a) Adding Drivers

i. Must connect board −→Windows −→ VM
ii. Download drivers from Quartus in Windows

iii. Right click unrecognized device
iv. Add drivers manually
v. https://www.intel.com/content/www/us/en/programmable/downloads/software/prog-

software/121.html

(b) In Virtualbox, click on Device −→ USB −→ Altera DE1 SoC (NOT Altera - if it
just says Altera, board is having trouble connecting)

7. Follow My First FPGA section 4 for deploying to FPGA
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APPENDIX C

DE1-SOC TOP-LEVEL ENTITY MODULE

In order to display on the 7-segment displays, we edited the top-level entity to display

what we wanted. This module is originally created by LegUp for the DE1-SoC When

synthesizing hardware, the top-level entity for the main Verilog file (named the same as the

python file) should be set to this entity. If any other modules for other boards are included,

they should be deleted.

module DE1 SoC (
CLOCK 50 ,
KEY,
SW,
HEX0,
HEX1,
HEX2,
HEX3,
HEX4,
HEX5,
LEDR,

UART RXD,
UART TXD

) ;

input CLOCK 50 ;
input [ 3 : 0 ] KEY;
input [ 9 : 0 ] SW;
output [ 6 : 0 ] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5 ;
reg [ 6 : 0 ] hex0 , hex1 , hex2 , hex3 , hex4 , hex5 , hex6 , hex7 ;

i n t e g e r c l k C ou n t = 0 ;
reg clkDone = 0 ;

output [ 7 : 0 ] LEDR;
input UART RXD;
output UART TXD;

/ / w i r e c l k = CLOCK 50 ;
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wire go = ˜KEY [ 1 ] ;

wire c l k ;
wire r s t ;
b i n a r y p l l 0 0 0 2 b i n a r y p l l i n s t (

. r e f c l k ( CLOCK 50 ) , / / r e f c l k . c l k

. r s t ( r s t ) , / / r e s e t . r e s e t

. o u t c l k 0 ( c l k ) , / / o u t c l k 0 . c l k
) ;

wire r e s e t = ˜KEY [ 0 ] ;
wire s t a r t ;
wire [ 3 1 : 0 ] r e t u r n v a l ;
reg [ 3 1 : 0 ] r e t u r n v a l r e g ;
wire f i n i s h ;
wire [ 3 : 0 ] s t a t e ;

/ / h e x d i g i t s h7 ( . x ( hex7 ) , . hex LEDs (HEX7 ) ) ;
/ / h e x d i g i t s h6 ( . x ( hex6 ) , . hex LEDs (HEX6 ) ) ;
h e x d i g i t s h5 ( . x ( hex5 ) , . hex LEDs (HEX5 ) ) ;
h e x d i g i t s h4 ( . x ( hex4 ) , . hex LEDs (HEX4 ) ) ;
h e x d i g i t s h3 ( . x ( hex3 ) , . hex LEDs (HEX3 ) ) ;
h e x d i g i t s h2 ( . x ( hex2 ) , . hex LEDs (HEX2 ) ) ;
h e x d i g i t s h1 ( . x ( hex1 ) , . hex LEDs (HEX1 ) ) ;
h e x d i g i t s h0 ( . x ( hex0 ) , . hex LEDs (HEX0 ) ) ;

always @ ( ∗ ) begin
hex5 <= r e t u r n v a l r e g ;
hex4 <= y Q ;

/ / hex3 <= c l k ;
end

a s s i g n UART TXD = 1 ’ b0 ;

parameter s WAIT = 3 ’ b001 , s START = 3 ’ b010 , s EXE = 3 ’ b011 ,
s DONE = 3 ’ b100 ;

/ / s t a t e r e g i s t e r s
reg [ 3 : 0 ] y Q , Y D ;

a s s i g n LEDR [ 3 : 0 ] = y Q ;

/ / n e x t s t a t e
always @( ∗ )
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begin
case ( y Q )

s WAIT : i f ( go ) Y D = s START ; e l s e Y D = y Q ;

s START : Y D = s EXE ;

s EXE : i f ( ! f i n i s h ) Y D = s EXE ; e l s e Y D = s DONE ;

s DONE : Y D = s DONE ;

d e f a u l t : Y D = 3 ’ bxxx ;
endcase

end

/ / c u r r e n t s t a t e
always @( posedge c l k )
begin

i f ( r e s e t ) / / s y n c h r o n o u s c l e a r
y Q <= s WAIT ;

e l s e
y Q <= Y D ;

end

always @( posedge c l k )
i f ( y Q == s EXE && ( ! f i n i s h ) )

c l k C ou n t <= c l k C o u n t + 1 ;
e l s e i f ( y Q == s EXE && f i n i s h && (0 == clkDone ) ) begin

r e t u r n v a l r e g <= r e t u r n v a l ;
c lkDone <= 1 ;
hex3 <= c l k C o u n t / 100000000; / / s e c o n d s
hex2 <= c l k C o u n t / 10000000; / / hundreds o f ms
hex1 <= ( ( c l k C o u n t − hex2 ∗ 10000000) / 1 0 0 0 0 0 0 ) ;

/ / t e n s o f ms )
hex0 <= ( ( c l k C o u n t − hex2 ∗ 10000000 − hex1 ∗ 1000000) / 1 0 0 0 0 0 ) ;

/ / s i n g l e d i g i t s ms
end

e l s e i f ( y Q == s EXE && f i n i s h )
r e t u r n v a l r e g <= r e t u r n v a l ;

e l s e i f ( y Q == s DONE )
r e t u r n v a l r e g <= r e t u r n v a l r e g ;

e l s e
r e t u r n v a l r e g <= 0 ;
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a s s i g n s t a r t = ( y Q == s START ) ;

t o p t o p i n s t (
. c l k ( c l k ) ,
. r e s e t ( r e s e t ) ,
. f i n i s h ( f i n i s h ) ,
. r e t u r n v a l ( r e t u r n v a l ) ,

. s t a r t ( s t a r t )

) ;

endmodule
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