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Abstract

As CubeSat formation flying missions relying on differential drag control become

increasingly common, additional missions based on this control must be studied. A

mission planning tool is investigated to control the relative spacing of a CubeSat for-

mation where differential drag is the sole control mechanism. System performance is

investigated under varying perturbations and a range of system parameters, including

limiting the control duty cycle. Optimal solutions based on using a pseudo spectral

numerical solver, GPOPS-II, to minimize maneuver time. This study includes the

development of a mission planning tool to work with the modeled CubeSat mission

to calculate optimal maneuvers for its mission architecture. The effects of mission

altitude, solar cycle, various maneuver sizes and formations, limited control, various

computational methods, and error checkers were evaluated. The mission planning

tool developed can properly execute all desired run parameters and options, though

it suffers from computational complexity. Pseudo spectral methods executed in Mat-

Lab were determined to be poorly suited to the problem due to memory requirements

involved. Limited duty cycle control can be applied with differential drag with varying

effectiveness dependent on mission parameters.
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LIMITED-DUTY-CYCLE SATELLITE FORMATION CONTROL VIA

DIFFERENTIAL DRAG

I. Introduction

1.1 Cube Satellites

Cube satellites or CubeSats are a relatively new and developing technology used

for new and more complex missions every year. These nano-satellites are built from

standardized 10 cm cube unit blocks of varying numbers and configurations. This

flexibility in design and small form factor offer an alternative design option for satellite

programs.

CubeSats have substantially cheaper material and development cost compared to

other satellite systems due to their reduced size and complexity. Because of this,

CubeSat programs are able to design, build, and launch missions faster than any

other satellite program, making them ideal for problems that require responsive de-

velopment. They are also an ideal solution for missions with few payload or mission

objectives, such as single component technology development, a dedicated research

experiment, or a small scale university project. This enables a slew of small scale

projects with limited budgets that would otherwise have to be integrated into an-

other larger mission with lower execution priority.

However, the small form also introduces inherent limitations. By definition, be-

cause CubeSats are less complex they are also less capable. The small form factor

and low mass budgets preclude more complicated bus architectures and limit pay-

load options and mission capabilities. More common bus support elements typically
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on larger satellites, such as redundant systems, Sun-tracking solar panels, multiple

communication options, etc., simply are not viable options for CubeSats. While one

or two complex systems could be accommodated, most components and payloads are

also reduced in scale and capabilities to fit the CubeSat form factor, reducing their

potential capabilities. This applies to everything from optical payloads, whose ge-

ometry and therefore capabilities are limited, to radar and communications payloads,

which are limited by reduced power output and lower gain values. These factors make

CubeSats a poor option for missions with high capability requirements and result in

inherently lower mission lifetime.

Despite these limitations CubeSat missions continue to become more complex and

ambitious. As the complexity and difficulty increase, CubeSat programs shift from

single satellite mission architectures to using satellite formations. This transition

enables the increased complexity requirement despite the limited nature of an indi-

vidual CubeSat. Using multiple satellites enables solutions such as synthetic aperture

to counter hardware limitations of an individual satellite and enable more advanced

optical missions. Formations and constellations of communications satellites could

provide coverage where single satellites could not. Proximity operations with Cube-

Sats enables additional payload test options.

However, formations introduce the additional problem of developing formation

keeping and maneuver solutions. Formation keeping is necessary to counter the nat-

ural orbital perturbations which would otherwise cause the relative positions to drift

apart and render the formation useless. While the formation can be established mod-

eling some of these perturbations, drag and solar wind are inherently unpredictable

and would introduce errors over time. The ability to control relative position is also

necessary to accommodate certain mission requirements. Payloads focused on prox-

imity operations, for example, would require the ability to change the formation’s

2



shape, size. Synthetic aperture missions would also require resizing to change the size

of said aperture.

1.2 Differential Drag

One useful formation keeping method is differential drag control. Differential drag

works by controlling the drag profile of all satellites in a formation to control the rel-

ative drag acceleration. This allows one or more satellites to accelerate relative to

the formation in the same manner as firing a very low thrust rocket [1], but achieving

this effect only through the use of the natural drag perturbation. This does, how-

ever, mean that the control method is dependent on the drag perturbation, which

brings with it some serious limitations. Because this control models the difference in

drag acceleration as the control thrust, the maximum possible relative acceleration is

fundamentally limited to a fraction of the drag perturbation. Since the drag force is

small enough to be considered, in most cases, a perturbation rather than a dynamic

property, its use as a control produces likewise small accelerations. This requires drag

control approaches to consider continuous control much like electric thrusters, rather

than impulsive burns. Besides magnitude, the direction of the control is constrained.

The drag force, and thus its relative acceleration, acts in the opposite direction of the

velocity vector. Drag control can only be applied opposite the velocity vector and

therefore can only affect in-plane motion, making it useless for inclination changes.

Furthermore, drag is not a consistent perturbation, and its variations affect the func-

tionality of differential drag control. Altitude, solar cycle, and atmospheric properties

all affect atmospheric density and thus the drag perturbation. Atmospheric density

can vary by several orders of magnitude between solar minimums and maximums for

the 11 year solar cycle, and it varies on a daily basis based on temperature and other

atmospheric properties. These conditions can affect control authority and make the

3



effectiveness of drag control methods depend heavily on mission launch time. This

all assumes, of course, that the mission launches into a region where drag control is

viable. Atmospheric density varies heavily on altitude and is only dense enough in

Low Earth Orbit (LEO) to provide meaningful acceleration. Most models do not ac-

count for the drag perturbation at Geosynchronous Orbit (GEO) or even at Medium

Earth Orbit (MEO) because it is so small; and the effectiveness of drag control drops

off much proportionally. This work considers altitudes from 400 km to 800 km to

avoid the problem of the drag perturbation becoming so low that other perturbations

make its use meaningless [2]. Lastly, this control will affect mission life; intentionally

increasing the drag profile will increase the rate of orbital degradation as more energy

is removed from the system.

Despite all these limitations, differential drag control remains a valuable control

method to CubeSat and small sat formation flying missions because it can preclude

the need for complex, massive, and expensive propulsion systems. Many CubeSat

missions use ride share launches to get to orbit. Ride share imparts limitations on

the secondary payloads to ensure the safety of the primary mission. One common

restriction is preventing any secondary payload from having a propulsion system. If

not outright prohibited, propulsion can also be limited from chemical thrusters to less

effective methods, such as cold gas thrusters. Since it does not require fuel, differential

drag remains a viable formation control method when propulsion cannot be imple-

mented. Furthermore, since CubeSats have fundamentally limited capacity, mass and

volume are at a premium. This also makes differential drag control valuable as it can

usually be implemented without any additional hardware, let alone the complexity of

a propulsion system. Since differential drag control only requires modifying the drag

profile, cross-sectional area normal to the flight direction, any asymmetrical satellite

with sufficient attitude control can successfully implement drag control. This is es-

4



pecially true for satellites with deployable solar panels. The ability to control panel

orientation can provide more drag control options. Because of these benefits, differ-

ential drag has been studied extensively–from Leonard et al’s work in 1989 using a

simplified model to several more modern works studying feasibility, several control

methods, and various optimal and robust control designs–all while considering several

dynamical models from linearized leader-follower formations to nonlinear non-circular

formations [3, 4, 5, 6, 7, 8].

1.3 Problem Statement

While extensive research has been completed in this area, there are still certain

aspects that have not been fully developed. One of these areas is the effect of limiting

control to specific regions of the orbit. This limited-duty-cycle control requires the

system to be discontinuous, having no control authority for the specified region of

the orbit. This is useful for missions where required satellite operations interfere

with the application of differential drag control. For example, a mission with high

power requirements would require a Sun pointing mode on the day side of an orbit.

If the same mission had fixed solar panels it was using for differential drag, control

then the system would only be controllable during eclipse. If attitude is used to

control differential drag, then this limitation extends to any subsystem or payload

operation that requires a specific attitude. This study will apply limited differential-

drag maneuvers on a model leader-follower CubeSat formation and analyze their effect

on optimal control. When in the uncontrolled region it is assumed both satellites are

in a minimum drag control profile (minimum cross-sectional area). This formation

uses a circular orbit but must contend with maneuver sizes and separation distances

up to 2000 km. Thus nonlinear relative dynamics are used to model the formation,

applying J2 and drag perturbations to both satellites. While the desired formation
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is circular, the dynamics require no such assumption, nor is out-of-plane motion

assumed to be decoupled. Other perturbations are assumed to be small enough to

ignore. Metrics used in this study will include time required for the maneuver to

complete and control authority of the system. This is both an important research

for CubeSats missions to consider, as it applies new dynamics to modeled systems

and considers applicability of drag control to implementation feasibility, and an area

previous literature has yet to consider.

To develop this problem, a mission planning tool will be developed capable of

generating all maneuver and formation keeping results presented in this document.

The tool will function as an open-loop optimal controller whose output could be ap-

plied to a real system with the same specifications as what is stated in the document.

The capabilities of this tool will be evaluated during the development of the stated

research questions:

1: How will limited-Duty-Cycle control affect the optimal differential-drag control

solution, and how will this affect mission planning?

2: Is a multi-phase pseudospectral solver suitable for solving maneuvers and for-

mations with separation up to 2000 km, and what complications arise?

In summary, CubeSats are a new technology whose complexity increases, driving

them towards formations. Due to the limitations inherent to CubeSats, differential-

drag is a useful control method. Drag control has been studied extensively, but two

less studied areas are limited control and incredibly large formations and maneuvers.

These areas are studied in this thesis through the development of a mission planing

tool. This document presents a brief overview of explored works, develops the problem

dynamics and planning tool solution algorithm, provides sample outputs and analyses

these results, and explains the impact of these results.
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II. Literature Review

2.1 Development of Differential Drag Control

The study of differential drag as a means of formation control started with Leonard’s

work in 1989 with a simple feasibility study of drag applied to the formation flight

problem [3]. They used a simplified bang-bang controller applied to a limited forma-

tion keeping problem that used feedback and a linearized unperturbed model. Their

study proved the feasibility for differential drag control to maintain a formation and

an orbit’s shape. While their results could hardly be effectively applied to actual

hardware it was instrumental for kicking off the development of the differential drag

control problem.

Since then there has been an extensive amount of work done on the differen-

tial drag control problem. This includes works that improve the feasibility analysis

originally presented. These works include Characterizing and Controlling the Effects

of Differential Drag on Satellite Formations ; an AFIT thesis by J. Wedekind that

provides a higher fidelity feasibility analysis combined with a formation control law.

Their work provides similar but more developed results to the original Leonard paper,

focusing on formation control but providing a higher fidelity model [9]. Their feasibil-

ity analysis has been further developed in works like Satellite Formation Control using

Differential Drag, a conference paper by S. Omar and Dr. Wersinger. Their work

provides a feasibility analysis using numerical simulation in AGI’s Systems Toolkit

(STK) that studies both separation control and maneuvers. These simulations in-

cluded J2 effects, a non-standard atmosphere, non-standard drag coefficients, solar

pressure, and third body gravitational forces” and focused on the CubeSat mission

type [? ]. These results, while not optimal, provide a very accurate representation of

on orbit behavior.
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Differential drag control is developed by other works such as Satellite Formation

Control Using Atmospheric Drag, AFIT thesis by B. Hajovsky [8]. Their work poses

the optimal control problem using a Linear Quadratic Regulator (LQR) to provide

feedback control of the minimum energy loss problem. While their work only used

the linear relative dynamics, no additional perturbations, and a simple exponential

atmospheric model it did provide a starting point for the development of the solu-

tion presented in the work herein. For the minimum time solution one must look

to other works, such as Rendezvous Using Differential Drag and Feedback Control,

by M. Harris et al. Their work is another example of the optimal control problem,

but uses the full nonlinear dynamics and includes J2 perturbations [6]. Their work

proves that the minimum time solution in bang-bang control for differential drag and,

similarly to Hajovsky, develops a feedback control law. While not directly applicable

to the method developed here it should be mentioned that robust control has also

been extensively developed. An example of this is Satellite Formation Control Using

Continuous Adaptive Sliding Mode Controller, a paper by H. Cho. Their work uses a

very high fidelity solution that solves the differential drag problem with robust control

of the nonlinear dynamics with uncertainties in perturbations and spacecraft proper-

ties [4]. Furthermore, it develops their robust controller while maintaining reasonable

maneuver times and control histories that resemble the optimal profile and provide

a stable solution. And finally, optimal control has been developed with a number of

numerical techniques such as pseudospectral methods. Comparison Between Analyt-

ical and Optimal Control Techniques in the Differential Drag Based Rendezvous, by

L. Dell’Elce and G. Kerschen, outlines a pseudospectral method for optimal differ-

ential drag control implemented on a model system [7]. Their work also uses model

predictive control techniques to account for an estimation of the drag control in the

effort to develop a method of practical application of differential drag. The research

8



herein represents a step towards the practical use of planned differential drag control

maneuvers.

2.2 Eclipse Limited Control

With the extensive development of the differential drag control problem there

remains some areas that have not been fully developed. One of those is applying

differential drag to practical mission architectures. This is not, however, to say no

work has been done in the area. Rendezvous Maneuvers of Multiple Spacecraft Us-

ing Differential Drag Under J2 Perturbation, by R. Bevilacqua, studies the required

control to maintain a formation of several satellites tracking a virtual chief [5]. How-

ever, their paper does not solve the optimal control problem and uses a linearized set

of dynamics assuming a circular orbit. While it successfully controls the formation,

additional work could be done to improve the optimization of said control. While

this is a potential area of development, this thesis intends to study a different area;

limited, or non-continuous, control.

The limited control case is an important area of study for differential drag to be

implemented on a practical mission architecture. Maneuvers using differential drag

can take days, weeks, or even months to complete depending on the system and

environmental conditions and the required maneuver. Many mission architectures,

however, would not be able to support a dedicated maneuver of that duration without

interruptions for anything from ground contact, payload operation, or sun pointing

for charging requirements, as is common for CubeSats. Yet despite this, there are

no known studies of limiting differential drag control. However, a comparison can

be made to low thrust maneuvers done with an eclipse region. Optimal Low Thrust

Orbit Transfers with Eclipsing, by J. Betts studies the effects of a low thrust elec-

tric thruster performing an orbit resizing maneuver while avoiding thrusting during
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eclipse [1]. While this is not directly the problem we are interested in the differential-

drag problem can be posed similarly by maneuvering during eclipse and performing

formation resizing. Their study solves for an optimal steering history attitude using

pseudospectral methods by treating the problem as having multiple phases, of drift

and control, that make up the final solution. Moreover, it shows that a similar method

should be able to provide results for the differential drag case.

2.3 Summary

The foundation for much of the work in this thesis has already been completed

through the numerous studies of differential drag. Precedent has already been set for

the dynamics required for this work, though never tested to the ranges this study is

interested in. The optimal control method has been shown to solve using pseudospec-

tral methods by several works, and as such was selected as the solver of choice for this

problem. This literature review also confirms that the application of limited-duty-

cycle differential drag control, and long maneuvers using pseudospectral methods has

not been explicitly studied before.
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III. Methodology

This optimal control method is solved using GPOPS-II and computed using a

set of full nonlinear relative dynamics of a deputy satellite to the chief satellite.

A General-Purpose MATLAB Software for Solving Multiple-Phase Optimal Control

Problems (GPOPS-II)1 is a pseudospectral optimal control solver designed around

solving Nonlinear Program (NLP) using Gaussian quadrature hp methods [10]. The

dynamics include the J2 and Drag perturbations. The full nonlinear dynamics are

required due to the interest in maneuvers and formation keeping at linear separation

distances up to 2000 km. Drag perturbation must be included due to the nature

of the problem and the J2 perturbation is required for solution accuracy due to

the duration of the maneuvers and the interest in formation keeping as the most

prevalent LEO perturbation. Atmospheric density is calculated using the Jacchia-

Roberts atmospheric model.

3.1 Problem Dynamics

3.1.1 Model Properties.

Satellite properties for this study are based around a model leader-follower mission.

For the purposes of this study a circular orbit with an inclination of 28.57° is used to

match a Cape Canaveral launch. Both the initial argument of latitude (θ) and right

ascension of the ascending node (Ω) were set to zero. Simulation start time is set to be

0101.01 UT on 01-02-2014, the year at the last solar maximum. This start time was

selected to aid computation, since computer run time varies with maneuver time, and

solar maximum provides the system with more control authority, thereby reducing

1 MATLAB®is a registered trademark of The MathWorks, Inc.
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maneuver time. The date 01-01-2014 is not used since the atmospheric model requires

at least one day of historic data.

Figure 1. Pumpkin Inc Supernova Bus

This mission models two Supernova buses designed by Pumpkin Inc. These iden-

tical satellites consist of two 6U CubeSats (as shown in Fig. 1) with deployable solar

panels along the side. When deployed, the solar panels’ front face has a surface area

of 0.2 m2 and represents the maximum surface area. The minimum surface area is

the 0.03 m2 of one 3U face. Both satellites are assumed to be the same mass, 9.567

kg. A coefficient of drag Cd of 2.2 was used. The eclipse region where the control

is allowed is defined by the umbra region at the given orbital altitude. When not

performing a differential-drag control maneuver, the satellites are assumed to be in

a minimum-control profile. This is so that each satellite has the same drag profile

during limited regions of the orbit.

3.1.2 Nonlinear Relative Dynamics.

This problem uses the full nonlinear set of relative dynamics posed in a Local

Vertical Local Horizontal (LVLH) Cartesian frame [11]. For this LVLH frame x̂

points in the same direction as the chief’s position vector r̄, ẑ points along the angular

momentum vector h̄, and ŷ is ẑ×x̂ to point along the velocity vector. These nonlinear

equations are used to ensure solution accuracy even for very large maneuvers or

formations. This equation set looks only at J2 and drag perturbations, as it considers
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only a 500 km Low Earth Orbit (LEO), where differential-drag control is viable and

other perturbations can often be ignored [12].

Dynamics development begins with the set presented in Spacecraft Formation

Flying, and confirmed with other sources, as follows [11, 13, 14]:

ẍ = 2ẏωz − x(n2
j − ω2

z) + yω̇z − zωxωz − (ζj − ζ) sin i sin θ − r(n2
j − n2) + Ax (3.1)

ÿ = −2ẋωz + 2żωx − xω̇z − y(n2
j − ω2

z − ω2
x) + zω̇x − (ζj − ζ) sin i cos θ + Ay (3.2)

z̈ = −2ẏωx − xωxωz − yω̇x − z(n2
j − ω2

x)− (ζj − ζ) cos i+ Az (3.3)

ζ =
2KJ2 sin i sin θ

r4
(3.4)

n2 =
µ

r3
j

+
KJ2

r5
j

− 5KJ2 sin i2 sin θ2

r5
j

(3.5)

KJ2 =
3J2µR

2
e

2
(3.6)

where x, y, and z are the deputy’s position relative to the chief; ωz and ωx are the

rotation of the LVLH frame; Ax, Ay, and Az are the relative acceleration on the

deputy in the appropriate direction; ζ and n are values defined for mathematical

convenience from chief gravitational acceleration; and lastly ζj and n2
j are similar

values containing deputy J2 acceleration terms defined for convenience [11].

However, in this dynamics set the development of n2 and ζ relies on assumptions

that chief orbital elements remain unperturbed by all but J2 effects. Since drag

will be applied to the chief’s orbital parameters these values had to be reverted

back to the expressions they represented when that approximation was applied. The

following equations are found once Equations 3.4 and 3.5 have been substituted in
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and simplified:

ẍ = 2ẏωz − (x+ r)(n2
j − ω2

z) + yω̇z − zωxωz − ζj sin i sin θ − r̈ + ADx (3.7)

ÿ = −2(ẋ+ ṙ)ωz+2żωx−(x+r)ω̇z−y(n2
j−ω2

z−ω2
x)+zω̇x−ζj sin i cos θ+ADy (3.8)

z̈ = −2ẏωx − (x+ r)ωxωz − yω̇x − z(n2
j − ω2

x)− ζj cos i+ ADz (3.9)

where ADx, ADy, and ADz are accelerations on the deputy only in the appropriate

directions.

These nonlinear dynamics are based on solving the solving the Lagrangian equa-

tions of relative motion, where the deputy’s kinetic and potential energy are posed in

terms of its relative coordinates and the chief satellite’s orbital parameters [11, 14, 13].

Because of the effects of the J2 perturbation, the cross-track motion is no longer decou-

pled and must be propagated and accounted for in all cases. The deputy’s potential

energy is incorporated by the ζj and nj terms, defined as follows:

ζj =
2KJ2rjZ

r5
j

(3.10)

n2
j =

µ

r3
j

+
KJ2

r5
j

−
5KJ2r

2
jZ

r7
j

(3.11)

KJ2 =
3J2µR

2
e

2
(3.12)

rj =
√

(r + x)2 + y2 + z2 (3.13)

rjZ = (r + x) sin i sin θ + y sin i cos θ + z cos i (3.14)

where Re = 6378.137 km is the Earth’s radius, J2 = 1.08262668355 ∗ 10−3, and

µ = 398600.4418 km3/s2 is Earth’s gravitational parameter. The n2
j , rjZ , and ζj

terms take into account the effect the J2 gravitational perturbation has on the deputy
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satellite’s potential energy based on rj (the deputy’s orbital radius) and express how

this affects its motion in the LVLH frame. These equations are based on LVLH and

chief orbital element parameters.

The LVLH frame’s angular velocity components about its own axes are ωx, ωy,

and ωz, respectively. ωz is fundamentally defined by the angular rotation of the chief

satellite, ωx does not exist in the unperturbed dynamics but must be accounted for

due to the J2 perturbation, and ωy does not exist as it would require the epicenter of

orbital rotation to move [11].

ωz =
h

r2
(3.15)

ω̇z = −2hṙ

r3
+
ḣ

r2
(3.16)

ωx =
rACzm

h
− KJ2 sin 2i sin θ

hr3
(3.17)

ω̇x =
ṙACzm

h
− ḣrACzm

h2
+
rȦCzm

h
+
ḣKJ2 sin 2i sin θ

h2r3

+
3ṙKJ2 sin 2i sin θ

hr4
− 2i̇KJ2 cos 2i sin θ

hr3
− θ̇KJ2 sin 2i cos θ

hr3
(3.18)

Chief orbital parameters consist of magnitude of the chief’s radius r, magnitude

of angular momentum h, right ascension of the ascending node Ω, inclination i, and

argument of latitude θ. These orbital parameters were selected over the standard

Classical Orbital Elements (COEs) to reduce computational complexity and avoid

singularities when eccentricity is zero. These orbital elements are propagated based

on the drag and J2 perturbations as follows [11, 14, 13, 15].

r̈ = − µ
r2

+
h2

r3
− KJ2(1− 3 sin2 i sin2 θ)

r4
+ ACx (3.19)
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ḣ =
−KJ2 sin2 i sin 2θ

r3
+ rACy (3.20)

Ω̇ =
−2KJ2 cos i sin2 θ

hr3
+
r sin θACz
h sin i

(3.21)

i̇ =
−KJ2 sin 2i sin 2θ

2hr3
+
r cos θACz

h
(3.22)

θ̇ =
h

r2
+ ωx cot i sin θ (3.23)

ACx,y,z refers to the combined acceleration due to drag and any lift forces on the

chief satellite in any one of the LVLH frame directions [13]. While ACz would be zero

if drag were the only perturbation, J2 causes slight z direction oscillations in velocity

captured in ωx. This velocity, along with atmospheric rotation velocity, causes the

chief to experience drag in the z direction that cannot be ignored.

Because of the Lagrangian formulation of the deputy’s dynamics in the LVLH

frame, the deputy’s motion is captured both by its position and velocity and the

chief’s position and velocity [14]. Because of this, ADx,Dy,Dz consists of only the

acceleration due to lift and drag on the deputy in the LVLH frame rather than the

relative acceleration, Ax,y,z, of both the chief and the deputy as many other works

consider it [14, 11]. Instead, the effects of the relative acceleration due to chief drag

are calculated by updating the orbital parameters from the drag perturbation. As

these parameters change, the associated relative acceleration we would expect to see

in the LVLH frame can be observed as shown in Figure 2.

This allows the chief’s parameters to be updated more accurately and is required

for formation keeping and large maneuvers, but makes the chief’s orbital parameters

dynamical states that must be propagated by the optimal control solver as they now

vary based on control and directly affect the solution.

Drag acceleration is calculated from the Earth Centered Inertial (ECI) frame

position and velocity vectors of the deputy and chief satellite. These vectors are used
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Figure 2. Comparison between the full dynamics with and without relative acceleration,
and the unperturbed nonlinear dynamics with relative acceleration

to calculate the relative velocity of both satellites to the atmosphere. This calculation

assumes a co-rotating atmosphere.

CI/lvlh =


−s(Ω)c(i)s(θ) + c(θ)c(Ω) −s(Ω)c(i)c(θ)− s(θ)c(Ω) s(Ω)s(i)

c(Ω)c(i)s(θ) + c(θ)s(Ω) c(Ω)c(i)c(θ)− s(θ)s(Ω) −c(Ω)s(i)

s(i)s(θ) s(i)c(θ) c(i)

 (3.24)

R̄chief = CI/lvlh


r

0

0

 (3.25)

V̄chief = CI/lvlh


ṙ

ωzr

0

 (3.26)
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R̄deputy = CI/lvlh


r + x

y

z

 (3.27)

V̄deputy = CI/lvlh


ṙ + ẋ− ωzy

ẏ + ωz(r + x)− ωxz

ż + ωxy

 (3.28)

V̄rel = V̄ −


0

0

We

× R̄ (3.29)

ᾱdrag =
CdρS

2m
|V̄rel|V̄rel (3.30)

where CI/lvlh is the attitude rotation matrix between the LVLH and ECI frames, s

and c are abbreviations of sin and cos, R̄ and V̄ are the inertial position and velocity

vectors of the satellite, We is the Earth’s rotation, ᾱdrag is the drag acceleration vector

for the respective satellite, m is the mass of the satellite, Cd is the coefficient of drag,

ρ is the atmospheric density, and S is the surface are perpendicular to the relative

velocity V̄rel [16, 17].

3.1.3 Atmospheric Model.

The atmospheric density is calculated using a supplemented Jacchia-Roberts model

[15, 18]. The Jacchia atmospheric model functions on calculating and integrating the

diffusion differential of the atmosphere, based primarily on temperature. It calcu-

lates the density at any given altitude by integrating from a known altitude. This

method requires calculating the exosphere temperature, inflection point temperature,

and using a known temperature and density at a base altitude. Finally, once cal-
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culated this solution is then modified based on four different atmospheric regions.

The primary addition by Roberts is using partial fraction expansion to produce an

analytical solution to the diffuse integration. This solution produced identical results

at low altitudes and was an approximation within 5% to 1% of the original solution

based on the corrective value l [19]. The method used here uses this Jacchia-Roberts

model but uses density at 125 km as a known atmospheric value rather than the 90

km standard used by the original model. The atmospheric model used here calculates

this value based on the polynomial curve fit of the Goddard Trajectory Determination

System. Similarly a more accurate l calculation is used based on a least-squares curve

fit developed for the Goddard system. Both methods developed by Draper Labora-

tory ensure a deviation of 6.7% or less from the Jacchia model [15, 18]. These changes

allow the calculation to be simplified from four regions to only the two high altitude

regions, improving computational efficiency while maintaining required accuracy.

ρ =
5∑
i=1

ρ125i

(Tx
T

)1+ai+γi( Tcorr − T
Tcorr − Tx

)γi
(3.31)

γi =
MigR

2
pole

RlTcorr

(Tcorr − Tx
Tx − T0

)( 35

64810766

)
(3.32)

ρ125i =
Mi

Avg
10

6∑
j=0

δijT
j
corr

∗ 1000 (3.33)

l =
4∑
j=0

ljT
j
corr (3.34)

Here density kg/m3 is calculated as the summation of the density contributed by

the major constituents of the upper atmosphere: N2, Ar, He, O2, O, H. Where ρ125i

is the density at 125 km of the particular constituent, Avg = 6.02257e23 is Avogadro’s

number, Tx is the inflection point temperature (K), T is the temperature at the desired

altitude (K), ai is the thermal diffusion coefficient, Tcorr is the corrected exospheric
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temperature (K), Mi is the molecular mass (g/mol), g = 9.80665 the gravitational

constant at sea level (m/s2), Rpole = 6356.766 is the Earth’s polar radius (km),

R = 8.31432 is the ideal gas constant, T0 = 183 is the temperature at 125 km (K).

The data needed for the index summations can be found in the Tables 1 and 2 [15, 18].

Table 1. Constituent Data

Index (i) Name Mi ai
1 N2 28.0134 0
2 Ar 39.948 0
3 He 4.0026 -0.38
4 O2 31.9988 0
5 O 15.9994 0
6 H 1.00797 0

Table 2. l Approximation Data

0 1 2 3 4
0.1031445e5 0.2341230e1 0.1579202e-2 -0.1252487e-5 0.2462708e-9

Table 3. Coefficients for Approximating ρ125

Index (j) 0 1 2 3 4 5 6

N2 0.109316e2 0.118678e-2 -0.167734e-5 0.142023e-8 -0.713979e-12 0.196972e-15 -0.229618e-19

Ar 0.804941e1 0.238282e-2 -0.339137e-5 0.290971e-8 -0.148170e-11 0.412760e-15 -0.483746e-19

He 0.764689e1 -0.438349e-3 0.469432e-6 -0.289489e-9 0.945199e-13 -0.127084e-16 0

O2 0.992424e1 0.160031e-2 -0.227476e-5 0.193845e-8 -0.978218e-12 0.269845e-15 -0.313181e-19

H 0.109708e2 0.611874e-4 -0.116500e-6 0.923935e-10 -0.349074e-13 0.511630e-17 0

Because helium experiences seasonal variations in density the third index term

must be corrected before it can be summed.

ρHe = ρHe10∆ log10 ρHe (3.35)

∆ log10 ρHe = 0.65
∣∣∣δs
ε

∣∣∣( sin3
(π

4
− φgdδs

2|δs|

)
− 0.35355

)
(3.36)

where ε = 23.4(π/180) is the obliquity of the ecliptic, φgd is the geodetic latitude of

the satellite, and δs is the declination of the Sun in radians.
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The second region occurs at 500 km and above. In this region the density is low

enough that hydrogen starts to have an effect and needs to be accounted for. This is

done by calculating the density of H and adding it to the density sum.

ρH = ρH500

(Tx
T

)1+aH+γH
( Tcorr − T
Tcorr − Tx

)γH
(3.37)

To use this equation the density of hydrogen at 500km is approximated using the

following equation.

ρH500 =
MH

Avg
1073.13−(39.4−5.5 log10(T500))(log10(T500)) (3.38)

where T500 is the temperature at 500 km.

The exospheric temperature Tc is the nighttime global exospheric temperature

calculated from the 10.7 cm solar flux index and is then corrected based on local

time and the geomagnetic, kp, index. This calculation takes into account both the

satellite’s and the Sun’s positions.

Tc = 379 + 3.24F̄10.7 + 1.3(F10.7 − F̄10.7) (3.39)

Tunc = Tc

(
1 + 0.3

(
sin2.2(θ) +

(
cos2.2(η)− sin2.2(θ)

)
cos3(τ/2)

))
(3.40)

η =
|φgd − δs|

2
(3.41)

θ =
|φgd + δs|

2
(3.42)

τ = LAHs − 0.64577 + 0.10472 sin(LAHs + 0.75049) (3.43)

LAHs =
rxrJ − ryrI
|rxrJ − ryrI |

cos−1

(
rxrI + ryrJ√
r2
x + r2

y

√
r2
I + r2

J

)
(3.44)
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φgd = tan−1

(
1

(1− f)2

rK√
r2
I + r2

J

)
(3.45)

δs = tan−1
( rz√

r2
x + r2

y

)
(3.46)

Tcorr = 28kp + 0.03 exp kp (3.47)

If below 200 km

Tcorr = 14kp + 0.02 exp kp (3.48)

where rx,y,z are the ECI frame elements of the Sun’s unit vector, rI,J,K are the same

for the satellite’s position vector, F10.7 is the solar flux index, and F̄10.7 is an 81 day

moving average of the solar flux index. For this thesis solar flux and geomagnetic

data was pulled from the Space Weather Prediction Center website’s data archive by

the National Oceanic and Atmospheric Administration.

The Sun’s unit vector is calculated as follows [20]:

TUT1 =
JdUT1 − 2451545

36525
(3.49)

TTDB = TUT1 (3.50)

λMS
= 280.4606184 + 36000.77005361TUT1 (3.51)

MSun = 357.5277233 + 35999.05034TTDB (3.52)

λecliptic = λMS
+ 1.914666471 sin(MSun) + 0.918994643 sin(2MSun) (3.53)

εSun = 23.439291− 0.0130042TTDB (3.54)

r̂Sun =


cos(λecliptic)

cos(εSun) sin(λecliptic)

sin(εSun) sin(λecliptic)

 (3.55)
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where Jd is the Julian date in universal time, λMS
is the mean longitude of the Sun,

MSun is the mean anomaly of the Sun, λecliptic is the ecliptic longitude of the Sun,

εSun is the obliquity of the ecliptic; all of these values are in degrees.

The approximation of universal time, TUT1, to Barycentric Dynamics time, TTDB,

is made because they differ on the scale of milliseconds, are being used on the scale

of years, and conversion is computationally intensive.

3.2 Optimal Control

3.2.1 Solver Algorithm.

Problem optimization is solved using GPOPS-II with Sparse Nonlinear Optimizer

(SNOPT) or Interior Point Optimizer (IPOPT). GPOPS-II is a pseudospectral opti-

mal control solver designed around solving Gaussian quadrature hp-adaptive methods

[10]. This method calculates approximations of the optimal control problem as con-

strained by the continuous function, containing the dynamics of the problem, and

the endpoint (cost) function. These approximations are calculated by calling SNOPT

or IPOPT, two NLP solvers. Theses problems different in how they calculate the

problem and what they are optimized for, both of these solvers were used for various

problem types to take advantage of their strengths. SNOPT is designed for a sparse

problem, where the A matrix for state space dynamics is mostly zeros; this is not

the case for this problem. It is, however, still useful as it is computationally more

efficient than IPOPT when a good initial guess can be generated. IPOPT is instead

more robust and is able to solve the optimal problem with practically no initial guess

provided (just initial and final conditions as two time dependent data points). The

output from these solvers is then compared against the required GPOPS-II tolerances

and the NLP mesh is updated based on the output and solved again. This method,
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when executed correctly, ensures solution accuracy on the mesh and, if tolerances are

set correctly, accuracy of the problem.

The solver developed in this work is designed to provide accurate solutions for

various inputs. As outlined in the flowchart shown in Figure, 3. this algorithm

automatically sets up and executes the initial guess for the GPOPS-II problem, defines

the solution bounds, sets initial and final conditions, defines mesh tolerances and

initial mesh settings, and evaluates the GPOPS-II output. It uses phases to implement

limited control and can apply an error checker that updates the initial conditions of the

problem, X0. Both of these functions occur iteratively in their respective phase and

error checker loops and will be discussed in the following sections. Its execution helps

ensure that a solution can be provided by GPOPS-II without requiring additional

analysis from the user wile accounting for several desired solution methods. Each

block’s purpose and function will be described in the following sections.

3.2.2 Algorithm Input.

The algorithm begins with defining user input. The user defines how many runs

to perform, defines constant parameters, the initial and final conditions of each run,

the desired solver methods, whether a maneuver or formation keeping is desired, and

any additional conditions the solution should use. Defining the problem’s constants

requires defining satellite properties (mass, coefficient of drag, minimum and maxi-

mum area), atmospheric data used by the atmospheric model (geomagnetic and solar

flux histories or predictions),and other constants for Earth’s properties (µ, Re, J2,

ωe, and umbra and penumbra angles). Properties are only defined for one satellite as

the solution assumes both chief and deputy satellites are identical. Initial conditions

of the problem can be given in terms of initial separation distance, initial position

and velocity of the deputy in the LVLH frame (both requiring chief orbital element
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definition), or as ECI position and velocity vectors of the chief and deputy; all three

cases define initial time. For all cases final conditions are defined by a desired sep-

aration distance, like the first input option, which assumes a circular orbit for the

desired formation without any in-plane drift. The sign on final separation distance

indicates if the final position will be along (positive) or against (negative) the LVLH

y-axis. Defining desired solver methods allow the user to trade solution accuracy

for computational efficiency. This not only defines which NLP to use but at what

level to calculate the dynamics of the problem. The dynamics can be simplified by

assuming there is no J2 perturbation, no J2 perturbation and no drag perturbation

on chief orbital parameters, or by assuming the chief orbital elements do not change

and are circular. This selection can also accompany using a constant approximate

atmospheric density rather than calculating the Jacchia-Roberts atmospheric model

at every time step. If formation keeping is set a time parameter to define the du-

ration of the formation keeping must be set, it will use the final conditions as the

desired formation keeping location, and start at the same initial conditions. Lastly,

in the input data block, additional problem conditions are defined. These conditions

include the application of limited regions, problem weighting, previous data, and an

error checker method. Limited regions are set by turning on either inertial or eclipse

only limits on control. Eclipse only maneuvers are set to use either a user defined

exclusion angle (angle from the Sun’s unit vector where maneuvers cannot occur), the

umbra region, or the penumbra region; which are calculated automatically. Inertial

limits are defined by a vector and the angle from that vector where control is limited;

several regions can be defined for a single run. Problem weighting is assumed to be

minimum time unless otherwise specified, to save computation time, and is always

minimum time for maneuvers with limited control. If specified the user can define

the weighting parameter to value either solution final time or cost. This input func-
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tions as a slider from 10 to -10, implementing near minimum time at 10 and heavily

weighting cost at -10. Cost in this case is defined as the amount of cross sectional area

used by both satellites and is defined to reduce energy loss from the system. Previous

data either loads a previous GPOPS-II output or a control history. Previous outputs

can be used as an initial guess or a first iteration of the error checker as specified. A

limited control history is applied to the dynamics of the problem and resets the initial

conditions assuming that control history had been applied to the system for its dura-

tion. If use of a control history is specified but no history is defined it assumes a brief

acceleration towards the final desired location. The error checker compares the post

processed final satellite position to the desired final position and attempts to re-run

the solution to correct this error. Doing so provides a more accurate final position

but prevents the solution from being truly optimal. The user can define the position

error that is deemed acceptable, the maximum number of iterations to use (to include

not using it at all), and if they want to use the last iteration as the guess for the next

run. The last setting is not generally recommended as it can save time but does not

always work. This usually occurs when the error checker switches to more accurate

dynamics as error is iteratively reduced. This is useful for solution methods that use

approximated dynamics as they can vary from the true propagation. All of this data

is saved in arrays and structures called by the function later when the desired run is

executed. By using this method several sets of data can be setup to run iteratively

without additional user input. As several of the potential solutions can take hours to

run this helps to avoid wasted time and effort.
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3.2.3 Parameter Definition.

Parameter definition involves converting the appropriate run’s input to initial and

final conditions required by GPOPS-II, calculating additional condition based values,

and setting the error and phase loops as appropriate.

For initial conditions this section calculates both the LVLH initial parameters of

the deputy and the initial chief orbital parameters. For the first and second initial

condition input types chief orbital parameters are calculated assuming an initial cir-

cular orbit of the specified inclination and RAAN placing the chief at the appropriate

argument of latitude. The initial angular momentum of the chief satellite is calcu-

lated from the given altitude assuming a circular orbit where ṙ = 0, unless otherwise

specified. For ECI input, chief orbital elements are directly converted. Deputy LVLH

position and velocity are calculated from the initial separation distance or ECI frame

position and velocity or set directly if using the second initial condition type. Fi-

nal conditions are set so that the deputy satellite ends on the chief’s circular orbit

at the final separation distance required. This is done so that the deputy satellite

ends in what would otherwise be a marginally stable equilibrium solution for the un-

perturbed nonlinear relative dynamics to minimize any potential drift after solution

completion. Since the algorithm is an open-loop control law intended as a ground sta-

tion maneuver planner implementing the equilibrium final condition is important to

accurately control the spacecraft’s position. The final position is calculated from the

initial orbital radius of the chief, r, the maneuver size, and accounts for the maneuver

direction, be it along or against the direction of travel.

h0 =
√
µr (3.56)

xf =
M2

size

−2r
(3.57)
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yf =
√
r2 − (r + xf )2sign(Msize) (3.58)

where h0 is initial angular velocity and Msize is the desired change in separation dis-

tance compared to the separation distance. By the definition of the LVLH frame

xf ≤ 0 for the deputy to end in the same orbit as the chief with a phasing difference.

For small maneuvers this distinction is almost negligible, being close to the linear

case, but can result in several meters or kilometers of difference for larger maneuvers,

especially those approaching 1000 km sizes. For these conditions ẋf and ẏf are both

set as zero to eliminate any in-plane relative velocity that would perturb the equilib-

rium. All other final conditions are unconstrained for the optimal control problem.

For runs where initial separation distance is defined the same method is applied to

find the deputy’s relative initial conditions, assuming it starts from the equilibrium

solution; otherwise the relative initial conditions are applied directly.

Figure 4. The location of the equilibrium path compared to the path of minimum
in-plane acceleration under J2 effects.

Unfortunately, this equilibrium solution is not a perfect solution. This location is

only in equilibrium when the formation is unperturbed. When perturbed by J2 ef-

fects there will always be an in-plane relative acceleration on the deputy. This occurs

because the path where ẍ = 0 and ÿ = 0 no longer equal one another; only providing

29



an equilibrium solution at (0,0) because ÿ is zero at all x values when y is zero. While

this acceleration is small, it will prevent any maneuver presented in this work from

maintaining its final position without formation keeping. However, this acceleration

can be minimized and its minimum point is approximated by the solution already

presented. The minimum path of acceleration follows the unperturbed equilibrium

solution very closely at low inclinations; differing only by 12 cm at a 100 km y sepa-

ration at a 28.47 degree inclination. As inclination increases and the J2 perturbation

becomes more pronounced the path of minimum acceleration differs more from the

unperturbed equilibrium and the magnitude of the minimum acceleration increases,

as shown in Figures 4 and 5. Because of this, higher inclination solutions will require

more control to apply formation keeping.

Figure 5. Magnitude of the in-plane acceleration vector as a function of position, and
a plot if its minimum values based on y location.
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Figure 6. Uncontrolled Spacecraft Motion.

These accelerations are a result of short and long period oscillations caused by J2.

Equations 3.59-3.61 define the conditions necessary to enforce an invariant relative

orbit in the presence of the J2 perturbation [21].

δλ̇ = −
( 3

2a
5/2
0

)
δa− ε

( 21

8a
9/2
0 η4

0

)(
η0(1− 3 cos2 i0) + (1− 5 cos2 i0)

)
δa

+ ε
( 3

4a
7/2
0 η5

0

)((
(9η0 + 20) cos2 i0 − (3η0 + 4)

)
δη + η0(3η0 + 5)δi sin 2i0

)
(3.59)

δġ = −ε
( 21

8a
9/2
0 η4

0

)
(1− 5 cos2 i0)δa

+ ε
( 3

4a
7/2
0 η4

0

)(
(5η0 sin 2i0)δi− 4(1− 5 cos2 i0)δη

)
(3.60)

δϕ̇ = −ε
( 21

4a
9/2
0 η4

0

)
cos i0δa− ε

( 3

2a
7/2
0 η5

0

)
(4δη cos i0 + η0δi sin i0) (3.61)

η =
√

1− e2 (3.62)

where δλ̇, δġ, and δϕ̇ are argument of latitude, radial, and cross-track drift rates;

e0, a0, and i0 are initial eccentricity, semi-major axis, and inclination of the chief;
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and δe, δa, and δi are the deputy orbit’s differences from the chief parameters. Since

the solution starts in the same orbit as the chief δi, δa, and δη are all initially zero,

meeting the requirements of these equations to have an invariant orbit. Acceleration

is calculated despite this and so must be attributed to long and short osculating

motion caused by J2 [15]. This is reinforced by observing the uncontrolled system

behavior. The acceleration creates long period oscillations that last for approximately

46 days, for the cases presented here, and trace the equilibrium solution to the inverse

matching separation and back, as shown in Figure 6. This oscillation time does not

vary regardless of the initial separation distance, behaving much like a pendulum

who’s acceleration depends on distance from the chief. Furthermore, the acceleration

and oscillatory motion disappears completely when the J2 variable is zeroed. This

means that for formations that only need to be at separation distance occasionally

the system could be allowed to drift; and that small formations will have smaller

relative velocity build up. However, cases studied here assumed formations needed to

maintain the separation indefinitely. This equilibrium solution will also degrade with

time. For the final conditions there will be some small δi, but it is assumed to be

small enough to ignore and continue using the stated equilibrium solution. Inclination

control requires cross-track control which is not possible with drag [22]; therefore as

δi increases additional accelerations will plague the system in the stated equilibrium

solution. This issue is ignored as it cannot be controlled, runs presented here all

started at δi = 0 but built up some small variation during the execution.
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Figure 7. Component In-Plane Accelerations

Additional values calculated by this section are the umbra and penumbra Sun

angles and the weights on time and control when used. The exclusion angle for

eclipse limited maneuvers is calculated based on the chief’s initial orbital radius as

follows; depending on if umbra or penumbra angle was desired.

SUNumbra = π − Re

r0

(π
2
− αu

)
+ αu (3.63)

SUNpenumbra = π − Re

r0

(π
2

+ αu
)
− αu (3.64)

where SUN is the respective control exclusion angle, αu = 0.26411888°is the angle of

the Earth’s umbra, r0 in the initial chief’s orbital radius, and Re is the Earth’s radius

[15]. Weights for time and control are set from the single slider variable defined in

user input. This scales the input (-10 to 10) to a weight for both parameters from

1 to 1,000,000 linearly where positive values of the slider are associated with weight

on final time. At input 0 both final time and control weights are 1, and whatever

weight is not being valued stays at one. This scale was selected to allow set weights to

produce nearly identical results as a minimum time solution, and also use minimum

control only solutions. Due to the nature of the problem (that solution drift allows
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for lower control if more time is allowed to the solution) it is not recommended to use

a full minimum control solution.

Last in this block, the phase and error loops are initialized. The error loop and

phase loops clear the GPOPS-II setup structure here before the rest of the calculation

on each run to prevent indexing errors in the structure. Both loops are while loops

which will continue until their conditions are met. If either parameter was not set to

run the loops will automatically end after one iteration. The error loop only iterates

after post processing if the error checker was set for that run, setting the error met

condition to true if it was turned off, and contains the phase loop process. It only

updates the initial conditions of the problem assuming a section of the control history

from the previous GPOPS-II run was applied to the problem dynamics. If a limited

control region is set, the solution algorithm has to follow a modified procedure to

account for the use of phases. GPOPS-II phases allow several sets of dynamics to be

used and solved for simultaneously; and are used for those solutions which require

regions without any control authority. This allows the controller to use distinct phases

for eclipse and Sun-lit regions for the eclipse only control case, and any other limited

regions as required by other cases. Within illuminated and inertial limited regions

each satellite’s projected area is modeled as the minimum value, which for all cases

in this thesis is 0.03 m2.

Using phases is important as directly removing control from the dynamics during

the illuminated phases causes computational difficulties in GPOPS-II. This is because

changing the control in these regions has no effect on the cost function and an accurate

control history cannot be solved for. Unfortunately, GPOPS-II cannot handle an

unknown number of phases. Each phase functions as its own smaller NLP and so

for each the bounds, dynamics, initial guess, and even the mesh tolerances used

by GPOPS-II must be set. GPOPS-II requires two distinct data points to provide
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a solution or its gradient calculator does not work. Since each phase is a smaller

GPOPS-II solution set this means each phase must occur for a finite amount of

time or the solution cannot solve. Therefore the solver cannot determine the correct

number of phases and they must be determined by the solution algorithm. Because

neither the optimal number of phases nor maneuver duration is known a priori this

is done by using a phase loop. Initially low number of phases are set from the initial

guess then as the algorithm determines it needs more phases the following sections

are run iteratively using the new set number of phases calculated in post processing.

Defining parameters from input initializes the number of phases to zero so that they

can be set from the initial guess on the first iteration and be updated later.

3.2.4 Initial Guess.

The initial guess generation is an important component of the algorithm as it

generates data used to set the problem bounds, initial guess, mesh setup, and phases.

The initial guess for this problem uses a propagation of the dynamics in ode45, a

fourth-order Runge-Kutta numerical integrator for MatLab, using a rough bang-bang

feedback control law. This propagation uses the same start times and initial con-

ditions as the optimal solution using a full set of the dynamics and supporting pa-

rameters, such as the Jacchia-Roberts atmospheric model. The feedback control law

assumes a bang-bang control law expected for minimum time control problems.

This law’s switching is based on the deputy’s distance from the initial relative

position, the size and direction of the maneuver, and the relative energy state of the

two satellites. First this law evaluates the relative initial energy of the satellites, if

it is not equal it sets the control of that satellite with a higher state to max. This

difference in energy occurs when one satellite would drift relative to another and the

law allows the excess energy to bleed off the offending satellite. This is done to mimic

35



initial separation control where the satellites have an initial drift, and is tailored to

y-direction drift. Once the satellites have equivalent energy, evaluated at each time

step, the law switches to maneuver control after reseting initial separation to the

current location. From there it sets control to move the satellite in the direction of

the final conditions; for a positive maneuver (along the velocity vector) the deputy is

set to max. This switches to deceleration once either Equations 3.65 or 3.66 becomes

false,

(Msize/2)Cg > y − y0 (3.65)

(Msize/2)Cg < y − y0 (3.66)

where Equation 3.64 applies to positive maneuvers and Equation 3.65 negative ones.

This switch slows the relative velocity as the final conditions are approached. In these

equations y0 and Msize are both reset from the end of the energy balancing phase to

maintain the same final conditions when y0 switches to the separation that exists at

the end of that phase. This ensures the spacecraft move the right direction once drift

is eliminated, regardless of the drift direction. The term Cg is a constant scaling term

used to tweak the switching to better fit the required results. This is set so that the

switching always causes the solution to overshoot the intended target rather than slow

down and come up short. While this does not matter for the GPOPS-II initial guess

much it has an impact on bound definition and defining final time appropriately. This

value is set to 1.5 heuristically so that the overshoot is achieved for large maneuvers;

small maneuvers work with either 1 or 1.5. This control law is scaled by the weighting

on control versus final time. This is set so that the maximum control is scaled linearly

towards the minimum control as the weighting shifts from the minimum time to the

minimum control weighting. This means that while the switching still occurs under

the same conditions the solution will take longer as it has less control authority.
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Two problems that occur with this method of evaluation are the undefined final

time and if the energy difference drift is useful. To account for this the propagation is

run iteratively to search for the appropriate final time and evaluate when the satellites’

energy balances. This search is a key function of the initial guess as the time bounds

need to vary greatly depending on the time of year, altitude, and maneuver size

of the run and final time is not known a priori. Once each ode45 propagation is

completed control and energy state histories are calculated and evaluated along with

final conditions to detect if the final separation distance has been passed while in

the correct energy state. During this iterative search the point where satellite energy

becomes equivalent is evaluated based on distance to the final point to determine

if it is necessary for the maneuver. It is necessary in those cases where the energy

difference causes the solution to overshoot the final separation. If energy cancellation

was not required to accurately perform the maneuver that feature is turned off and

the drift accumulated during the cancellation is recorded. This distance is then

used to update the maneuver size the switching control law considers; so that if the

maneuver starts with momentum towards the final point the control law treats it

as if its already completed some acceleration portion of a longer maneuver. If the

final position and energy conditions are not met propagation time is increased and

the initial guess is calculated again. Propagation time is set initially at 1000 seconds

and increases by 1000 until 10000 where it increases by 10000; this is repeated at

each order of magnitude. This method allows an appropriate propagation time to be

determined in a timely manner without requesting too much propagation time, which

can generate accuracy issues in ode45 and take a long time to compute.

For large maneuvers (1 km and larger) the final propagation condition is only that

the energy state is satisfied and the final position has been passed. Small maneuvers

are propagated further to allow at least one encirclement of the final point. This
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encirclement helps alleviate instabilities and naturally occurs when the switching law

is propagated further through time. This behavior better mimics optimal control for

small maneuvers as the deputy may be too close to the final location to get there

without circling the in-plane position several times due to low control authority.

This is set to only generate one encirclement and works for data presented here.

Highly constrained cases could be encountered which would require more than one

encirclement in the initial guess but are not considered here.

Once the loop is termination conditions are met an index for when these conditions

are met is recorded. This ensures a solution that required 10456 seconds terminates

at 10456 seconds rater than the 20000 seconds it was set to run for, as the data would

not be appropriate. Finally, this guess generation also computes a propagation for

the same time duration but assuming inverse initial conditions and maneuver size.

This is done to accurately generate bound data regardless of which satellite spends

more time accelerating. This is particularly important for the chief satellite as its

orbital elements only degrade if it accelerates. For formation keeping the control law

is set to zero and the system is allowed to drift. This process assumes the system

starts in an equilibrium solution and should stay relatively stationary.

To implement limited control the initial guess accounts for where control is not

allowed by defining the cross sectional area in those regions. In doing so it keeps

track of when the solution is limited during guess generation. This data can then be

used to determine the initial phase condition, limited or control, and the number of

phases. For the first iteration of phases the initial guess generation remains otherwise

unchanged since its used to set the initial phase number. In determining the initial

number of phases it is important to underestimate the number of phases. If too many

phases are set, the solution will not solve optimally; rather, it will either provide a

non-optimal solution to provide enough time for all the phase switches to occur or
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it may not solve at all. Since the initial guess is designed to take less time than

the optimal solution, by overshooting the final destination instead of fully slowing

down, these conditions are already met and can proceed without alteration. How-

ever, following iterations must propagate long enough to encounter the set number of

phases. This is important since accurate phase switching times improve computation

time of the optimal solution. To do this the final time search conditions are changed

to terminate the initial guess only if both the previous conditions are met and the

appropriate number of phases have occurred. Both the guess propagation check and

index determination are changed. The index is defined to include all of the data for

the last phase even if it passes the final conditions. This prevents the last phase’s

initial guess from being sparse.

If an initial guess is defined by the user from either loaded GPOPS-II output or the

error iterations (using the last run as a guess) the initial guess propagation process

is ignored on the first phase iteration of the first and subsequent error iterations

respectively. Additional phases require the propagation to be run as usual due to

ensure the phase switching requirements are represented. This section also generates

the propagation for the loaded control history, if set. If no control history is provided

the assumed generated control is either a brief acceleration in the direction of travel

(less than half the time of the generated guess) or is the applied control to cancel

energy (if it was determined to be necessary). This propagation is recorded, initial

conditions reset, and the initial guess calculated again from the new conditions.

3.2.5 GPOPS-II Bounds and Guess Definition.

For GPOPS-II to run upper and lower bounds on time, states, control, and any

integrals must be set. Bounds on states must be set for initial, final, and continuous

conditions for every phase. Therefore to set the problem bounds the number of
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phases must be determined first. To ensure the solution is feasible the final phase

must be set to a control phase. This allows GPOPS-II to ignore the remaining eclipse

regions that should have otherwise occurred to provide a solution. To ensure this

condition is met the initial phase determination uses the phase count from the initial

guess but subtracts a phase if it would have ended in a limited control phase. Initial

and final states are easy to set by defining the upper and lower bound variables as

the same value, that of the required condition for that state variable; they remain

simple for phases as initial and final conditions only apply to the first and last phases

respectively; initial and final conditions on other phases match the general state

bounds. Control bounds are defined as the maximum and minimum control, the

maximum and minimum relative surface area of the satellite. For phases in limited

regions control bounds are set to minimum control only. For the general state bounds

and final time the bounds must be set to not interfere with the solution. This requires

setting the bound large enough that the solution is not inhibited but no too large

as it can increase mesh size and solution computation time. To do this the bounds

are set based on how much each state variable changed during the initial guess. This

calculation determines the maximum absolute difference between the initial state

variable and its maximum and minimum propagated values for both the standard

and inverse propagation. This delta value it then multiplied by a scaling constant

and differenced from the initial conditions to define the state variable’s upper and

lower bounds. The chief radius variable’s minimum is also constrained by the radius

of the earth, and is set to whichever is larger to avoid computational errors. Final time

simply uses the initial guesses final time scaled by a multiplier. When weighting is

required on control, or formation keeping is requested, an integral must be calculated

in the continuous function to add up the used control. Integral bounds must be set

in this case; for the weight integral the upper bound is set to maximum control over
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the duration of the time bound, and the minimum is zero. The formation keeping

integral’s minimum is zero, the maximum bound is set from the maximum possible

separation defined by the state bounds. The scale value of the variables must be

equal to or larger than that for time to account for any additional movement during

the unpropagated extra time interval. The time scale should be set to at least two

to ensure the optimal control has enough time to slow an overshoot initial guess.

Heuristically a time and state multipliers of 3 and 3 were determined to fit best.

Small maneuvers have a circular optimal path in the relative frame and could hit the

boundaries when the state multiplier was set lower. Formation keeping only uses a

state multiplier of 100; this was required since the problem can either remain relatively

stationary or incur significant drift depending on the desired location. Since phases

are used this section must also set the GPOPS-II event functions. This problem

governs its phases by imposing three event functions. First, the phases must be

continuous–that is, the final conditions of one phase must equal the initial conditions

of the subsequent phase. Second, a phase must last for a finite period of time. Third,

phase boundaries must occur as the satellite formation is passing into or out of the

limited regions as defined by the region vector(s) and the exclusion angle(s), to include

eclipse.

Similarly to setting the bounds an initial guess must be set for each individual

phase. To do this the generated guess is segmented based on whether or not the

propagation was in an a limited region. Foe example, this assigns all generated data

until the first limit is reached, or exited, to the first phase. This repeats so that every

time a new region is reached that segment of the propagation is assigned to the next

phase’s initial guess. This continues until the set number of phases are reached. Once

this happens the remaining data is set for the final phase regardless of propagated

regions. In setting the guess the maximum number of oscillations during that guess
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is calculated for every state. This records every time the numerical derivative of each

state changes sign. This information is used by the initialization block to calculate

the initial mesh and improves solution run time by defining enough mesh intervals

to account for periodic variables. This works because hp methods only converge

exponentially when increasing collocation points where there are already enough mesh

intervals to make each interval relatively flat [10]. This oscillation counting is done

for each separate phases’ initial guess and applies mesh settings separately for each

phase as well.

3.2.6 GPOPS-II Initialization and Execution.

GPOPS-II initialization and execution defines the mesh settings, passes in auxil-

iary data, build the GPOPS-II setup structure, and excretes the problem. Auxiliary

data allows the atmospheric data, constants, phase data, weightings, and limited re-

gion data to be passed into GPOPS-II. Mesh settings define a tolerance of at least

1e-4 for most cases but uses 1e-6 for small maneuvers where full dynamics accuracy

is requested. Tighter tolerances than this do not usually provide higher levels of

accuracy but do require much more time to solve, and anything lower compromises

solution validity. This solver uses the hp-PattersonRao mesh update method, the

default setting, with a 60 iteration max, 4 initial co-location points, and 10 maximum

co-location points [10]. Initial mesh intervals are set as eight times the number of

recorded oscillations or a base minimum, whichever is higher. The minimum is 20

or 80 depending on if the low or high mesh tolerance is set. It takes a long time

for GPOPS-II standard mesh update methods to generate enough mesh intervals

to handle the accuracy required for the several periodic state variables. The lower

limit ensures accuracy for small maneuvers where position tolerance replaces peri-

odic states as the driving requirement interval requirement. This mesh setup also
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defines finer meshes at the beginning and end of the solution where it approaches

final and initial conditions making it more susceptible to errors. These two ends

contain as many intervals as the standard mesh at a 1/64 size. The number scales

with the standard mesh interval number to ensure enough of the solution endpoints

are covered by the finer mesh. 1/64th size was determined heuristically as GPOPS-II

mesh update doubled the end mesh intervals up to six times before required accuracy

was met for standard condition cases. This initial mesh setting is usually enough to

provide a viable solution on the first, or first few, mesh(s) cutting down run time

significantly. Other settings of note are “sparceCD” for the derivative supplier with

a “sparceNaN” dependency, “automatic-guessUpdate” as the scaling method, and

“RPM-Differentiation” for the mesh method. “sparceNaN” requires the continuous

function to accept NaN input variables to calculate correctly. The scaling selected,

“automatic-guessUpdate”, sets the problem scaling from the initial guess and updates

the scaling based on the solution solved on each mesh. This allows the problem to

handle large state variables for the chief orbital elements and small relative separation

variables at the same time. It also scales the problem when maneuvers become large.

This section also defines the continuous and endpoint functions, setting the dy-

namics and cost function. The endpoint function defines the cost function and phase

bounds through event functions. Selecting different event functions (as appropriate

for the run conditions) allows different cost functions to be used.

J = tf (3.67)

J = wttf + wc

∫ tf

0

(S2
c + S2

d)dt (3.68)

J = wc

∫ tf

0

(S2
c + S2

d)dt+ wt

∫ tf

0

(
(x− xf )2 + (y − yf )2 + wv(ẋ

2 + ẏ2)
)
dt (3.69)
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Equation 3.66 is the standard cost function and Equation 3.67 the only used when

weighting is requested. Here Sc and Sc are the surface area of the chief and deputy

respectively, wc and wt are the minimum time and control weights. Equation 3.68 is

used for formation keeping. Here the time weight is used instead for final position

(as it is set as a counter to the control weight and time is not a control factor).

This cost function sets cost as the distance from the final position and the in-plane

relative velocity. It is designed to try and provide a relatively stationary solution.

wv is a weighting on velocity set to account for the differences in magnitude between

the variables; and account for how much velocity or position matter to the user.

Implementing phases requires a change in the endpoint function to include the event

function evaluations and an alteration to the standard cost function. Due to tolerances

in solution approximation, SNOPT may encounter numerical difficulties; and IPOPT

encounters computational inefficiencies compared to methods of the same duration

without any phases. These problems can be mitigated by introducing the dynamics

error on the phase boundaries into the cost function heavily weighted.

J = tf + 1000

PN−1∑
j=1

δx(j) + δẋ(j) + δyf (j) + δẏf (j) (3.70)

δv(j) = (vf (j)− v0(j + 1))2 (3.71)

where PN is the number of phases and vf (j) and v0(j) are the final and initial values

of variable v (dummy variable for x, ẋ, etc.) for the jth phase. The weight was heuris-

tically determined to be 1000; this value works well for the final times encountered

in this paper and was not changed based on the number of phases. As more phases

are implemented this term will be effectively weighted higher as the summation in-

creases, as it approaches zero this has little impact on the solution final cost. This

ensures that any solution that would violate the first event function is not optimal
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and reduces numerical difficulties without changing the final solution. Unfortunately,

this does not eliminate all numerical difficulties for SNOPT when using more than

a few phases; frequently requiring IPOPT despite its longer computation time. This

cost function also ignores the minimum control term. This change was done to reduce

computation time and avoid potential numerical difficulties. Since control is weighted

very little in comparison to the event function component it could be approximated

as having zero effect, causing the same problems phases were designed to avoid. For

similar reasons the formation keeping cases also had to be calculated using IPOPT;

in that SNOPT could not solve the solution accurately. Though in these cases it is

due to an initial guess which is too different from the optimal solution rather than

phase errors.

Continuous function definition allows different sets of dynamics to be used as

defined by user input. These follow all combinations of dynamic simplification and

drag approximation outlined in user input. Separate continuous functions are also

defined for phases, though this is only in program syntax which is unnecessary if using

only one phase (but increases computation time). The first approximation, that J2

does not influence the system, is simple to implement as it sets the KJ2 terms to zero.

This also simplifies the n2
j terms and eliminates the ζj terms from Equations 3.6-3.8.

ẍ = 2ẏωz − (x+ r)(n2
j − ω2

z) + yω̇z − zωxωz − r̈ + ADx (3.72)

ÿ = −2(ẋ+ ṙ)ωz + 2żωx − (x+ r)ω̇z − y(n2
j − ω2

z − ω2
x) + zω̇x + ADy (3.73)

z̈ = −2ẏωx − (x+ r)ωxωz − yω̇x − z(n2
j − ω2

x) + ADz (3.74)

n2
j =

µ

r3
j

(3.75)

ωx =
rACzm

h
(3.76)
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ω̇x =
ṙACzm

h
− ḣrACzm

h2
+
rȦCzm

h
(3.77)

r̈ = − µ
r2

+
h2

r3
+ ACx (3.78)

ḣ = rACy (3.79)

Ω̇ =
r sin θACz
h sin i

(3.80)

i̇ =
r cos θACz

h
(3.81)

Other than these effects on the relative and chief parameter dynamics the problem

remains the same. Removing drag from the chief parameter dynamics removes all AC

terms from the chief orbital parameters, making them all constant with the exception

of r̈ and θ̇; ωx also becomes constant as zero.

ẍ = 2ẏωz − (x+ r)(n2
j − ω2

z) + yω̇z − r̈ + Ax (3.82)

ÿ = −2(ẋ+ ṙ)ωz − (x+ r)ω̇z − y(n2
j − ω2

z) + Ay (3.83)

z̈ = −zn2
j + Az (3.84)

r̈ = − µ
r2

+
h2

r3
(3.85)

θ̇ =
h

r2
(3.86)

Here the relative drag acceleration is used again since drag on the chief is no longer

propagated in its parameter dynamics. The last dynamics approximation is that the

chief has a circular orbit and is not affected by perturbations. Using this approxima-

tion r and θ̇ are now constant and h is no longer used for the dynamics.

ẍ =
−µ(r + x)

((r + x)2 + y2 + z2)3/2
+
µ

r2
+ 2ωzẏ + xω2

z + Ax (3.87)
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ÿ =
−µy

((r + x)2 + y2 + z2)3/2
− 2ωzẋ+ yω2

z + Ay (3.88)

z̈ =
−µz

((r + x)2 + y2 + z2)3/2
− 2ωzẋ+ yω2

z + Ay (3.89)

Using this approximation the relative dynamics regress to the nonlinear dynamics of

the LVLH frame which are used to define the HCW equations [21]. Once again the

cross-track motion is decoupled from the in-plane dynamics. The last approximation

is using an approximation for atmospheric density. To do this an average density is

calculated from the density calculated in the initial guess. Using the density history

generated from the position and time history of the initial guess allows a more accurate

approximation of density than a time static model, such as the exponential density

model. This method lets the continuous function avoid evaluating the Jacchia-Roberts

model at every time step but still use a density that is close to the values model

evaluation would generate. As is longer maneuvers mean the average density will be

more inaccurate at any given time.

3.2.7 Post Processing.

In post processing identical and true dynamics are propagated, the phases are

evaluated, and the error is evaluated; once all of the phase and error loops are evalu-

ated the data is saved for each run iteration and as a set once every run is completed.

Once GPOPS-II output is generated the control history is propagated to ensure so-

lution accuracy. This is done both for an identical set of dynamics as the chosen

continuous function and for the full set of dynamics. This is done to ensure GPOPS-

II is generating a solution accurately and that the system is behaving as desired. This

propagation is completed using ode45 and runs for the duration of the maneuver. To

allow high accuracy solutions even with large data sets the propagation is broken up

into manageable chunks. Starting from the GPOPS-II initial conditions 500 interval
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blocks of time and control history are used to propagate the dynamics. The final

conditions of the last propagation become the initial conditions of the next. This

continues until the entire time and control history is used and the data is resembled

into a single set. In validation it is important to ensure GPOPS-II generated enough

data and that ode45 has high enough propagation tolerances. If the control history

is accurate but sparse it can’t be propagated accurately and the problem dynamics

are sensitive and a false propagation is easy to produce.

In post processing the number of phases the solution should have encountered

is calculated from the ode45 control history propagation. This value is compared

against the number of used phases. If the true number of phases the exceeded number

of phases the phase number is updated. This is done to ensure the final phase is still

control, but rather than subtracting a phase an additional phase is added. Since

we know GPOPS-II solved a minimum time solution there was no way to complete

the maneuver faster, therefore if it would have terminated in a limited phase it will

require the next control phase. It also prevents the solution from being stuck at

almost solving in the current number of phases but trailing slightly into a limited

region (subtraction in this case leads to an infinite loop). The updated phase number

is recorded and the solution is run again. This process happens iteratively until the

number of phases GPOPS-II uses matches the propagated output’s phase count.

The Error Checker can operate in two modes as determined by the user. In

method one it evaluates the rectangular position error of the final in plane relative

position and velocity. It compares the true output to the desired final conditions.

If the position accuracy is worse than the desired maximum accuracy another error

iteration will be used. This process involves saving a section of the true propagated

output and control history and resetting the initial conditions to the final conditions

of this section. This treats the saved section as if it is a control history applied to the
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system. This section is set as the time interval at the last time the relative position

was five times the evaluated error. This allows the system enough time to correct

the errors since the larger it is the more time it requires to correct. If the error is

larger than 1 km the first half of the propagation is used. If the error is less than

1 km the next run are set to the full dynamics if approximated dynamics or density

were used before. Once the error loop is satisfied, by either meeting the requested

accuracy or reaching the maximum number of iterations, the total propagation history

is resembled from the saved iterations. This method is designed to be used with the

approximated versions of the dynamics by correcting for error incurred during those

methods.

The second method uses set time intervals to determine when to cut the prop-

agated data and run again. This method is more computationally intensive and

requires more user management to work well; but can provide more efficient maneu-

vers by correcting error sooner and more often. These methods allow high accuracy

solutions to be generated from long maneuvers. The longer the maneuver is the more

error build up there is in the solution. This alleviates that by iteratively solving

smaller maneuvers with initial conditions closer to the final position. By definition,

however, this output is not an optimal solution since it is correcting errors. This

mimics applying a section of the optimal control history to the system, monitoring

real world position, and recalculating the maneuver from the new conditions; thus

proving the tool is capable of this calculation.

3.3 Summary

This problem is set up modeling a real system. Nonlinear LVLH dynamics are

used accounting for the J2 and drag perturbations on both satellites. This allows

drag to be modeled on each satellite individually rather than using relative drag.
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The Jacchia-Roberts atmospheric model is used for accuracy and computational ease

compared to other high-fidelity models; and this density is applied assuming a co-

rotating atmosphere. The solver algorithm is complex and designed to handle multiple

inputs. These are defined in the input block, parameter definition converts input into

the proper form and initializes loops, initial guess generates data used by the rest of

the problem using ode45 propagation, bound definition sets GPOPS-II bounds and

phase data while sorting the initial guess, initialization selects the dynamics and cost

function and runs GPOPS-II, post processing evaluates the output for accuracy, loop

conditions are checked, and finally data is saved. Sample data generated by this solver

algorithm is presented in the following section.
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IV. Implementation and Analysis

4.1 Resizing Maneuvers

All results presented here represent minimum time maneuvers for a formation at

500 km altitude conducted at solar max using no assumptions in the dynamics; unless

otherwise stated.

Figure 8. 1 m Maneuver

Figure 9. 10 m Maneuver
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All minimum time results produced bang-bang control histories despite being able

to choose the control. This indicates that there are no points during the maneuver

where the dynamics are so insensitive to control that it cannot improve the cost

function. This bang bang control shows variation dependent on when the maneuver

starts, such as the deviation shown in Figure 10, associated with the atmospheric

model and modeled changes in density.

Figure 10. 100 m Maneuver

Figure 11. 1 km Maneuver
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Figures 8 through 12 show the calculated optimal control history, the output

generated by GPOPS-II, and the control history propagated by ode45 to match the

full nonlinear dynamics used to solve the optimal solution. All generated solutions

retain some error due to the nature of the numerical approximation used by GPOPS-

II. This error affects the larger solutions more when measuring the physical error in

final in-plane location, but has a higher percentage effect on the smaller maneuvers.

This can be seen in Figure 8 and results from the small maneuvers dependence on

small changes in the dynamics.

Figure 12. 7 km Maneuver

As the size of the maneuver increases the in-plane trajectory changes. For small

maneuvers this trajectory bows out in the beginning and end as the deputy satellite

initially decreases its energy to drop into a lower orbit and accelerate relative to the

chief; this process is inverted at the end of the maneuver. This affect is still present

for the larger maneuvers but has a less visible impact on trajectory shape as the sheer

size of the maneuver increases. More importantly, as the maneuver duration increases

the relative dynamics become affected by orbital period. Since orbital period at this

altitude is 5677 seconds the 1 km maneuver should proceed over 5.7 orbits, and the 7

km solution should take 13.7. As seen from Figures 11 and 12 this coincides with the
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number of oscillations in the relative trajectory. Lastly, as maneuver size increases

the control history changes from a rapid switching profile to approximating a single

switching law, like what is used for the initial guess.

Figure 13. Maneuver Time vs Size

Figure 14. Figure 13 on a log scale

From Figures 13 and 14 we can infer that maneuver size and time are related

by a square root power. This relationship can be explained by the acceleration in

the problem. Though a maneuver doubles the time to complete it does not because
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the spacecraft can build up more speed and complete the maneuver faster. This is

possible because of the continuous relative acceleration on the problem.

4.2 Approximated Dynamics

Figure 15. 1 m and 10 m Maneuvers with Assumptions

Figure 16. 100 m and 1 km Maneuvers with Assumptions

Figures 15 and 16 show the difference in trajectories and accuracy of the final

state when comparing the raw GPOPS-II output and post processing propagation

of dynamics assuming no J2 perturbations and using a constant density. Constant
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densities used here were calculated as an average of the Jacchia-Roberts density over

the duration of the initial guess. The density used in the 1 m maneuver was 1.2535 ∗

10−12kg/m3 during which the density varies from 1.6102 ∗ 10−12kg/m3 to 7.2020 ∗

10−13kg/m3. Despite the obvious error this approximation introduces into the system

the density is still much closer to the true value than a lower fidelity model; such as

the exponential model which would set ρ = 6.9670 ∗ 10−13kg/m3.

Table 4. Maneuver Final Position Error

Maneuver Size Full Dynamics Percent No J2 Percent Constant ρ Percent

1 m 1.0333e-5 1.03 1.3932e-4 13.9 1.3750e-3 137

10 m 3.8673e-5 0.39 1.4977e-3 15.0 3.7855e-3 37.9

100 m 7.7016e-4 0.77 1.2531e-2 12.5 2.1871e-2 21.9

1 km 3.2543e-4 0.03 1.1195e-1 11.2 1.2955e-1 13.0

As the maneuver’s duration increases the constant density assumption has less of a

detrimental effect on the problem. This is likely because the duration of the problem

allows it to even out where small maneuvers are affected easily by the differences.

The removal of J2 however seems to introduce a relatively constant error between

10% and 20% of the final position. These results validate the need for including the

J2 perturbation in the solution dynamics even at relatively small separation distances.

4.3 Error Checker

As stated by previous sections there are inherent errors in the solution due to

GPOPS-II mesh tolerances, the number of collocation points, and the accuracy of the

dynamics themselves. The errors inherent to GPOPS-II are usually small, relative

to the problem, but the error in simplified versions of the dynamics can be quite

large. Despite this there is an interest in using these dynamics because they are much

easier to compute and can solve longer solutions when GPOPS-II begins to run into
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computational problems with the more accurate dynamics sets. To account for this

error the discussed error checker is applied to the problem.

Figure 17. 1 km Error Checked Solution and Iterations

Figure 18. 10 km Error Checked Solution

Figures 17, 18, and 19 show the results from the error checker being applied

to solutions using circular orbit, no J2, no drag on the chief, and constant density

approximations. These results show the first error checker method which makes

corrections based on final position error. These plots show how each iteration of

the solution provides a more accurate final position, but trades off maneuver time
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as the solution now takes additional time to correct the error. The optimal 1 km

maneuver using the full dynamics requires 32290 seconds to complete, compared to

the error checked version’s 35761 seconds. This is a 10.7% increase in maneuver time

which can be seen as a loss of optimality.

Figure 19. 10 km Error Checked Solution’s Iterations

The alternative to this method, the interval error correction, is shown in Figures

20 and 21. This method assumes there will be error and attempts to correct it by

recalculating the solution from new initial conditions at set intervals. In doing so

it can provide a more accurate solution than if the deviation was ignored. Each

iteration of this method uses the same assumptions as the first rather than switching

to higher fidelity dynamics like the error correcting method. This method solves

faster for individual solutions but can take longer to calculate if a small interval is

set. In general this method will provide a solution with a better maneuver time

than the error checker but at either an increased final position error or additional

computations depending on the size of the time interval.
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Table 5. Maneuver Final Position Error

Correction 1 km Error (km) Maneuver Time (s) 10 km Error (km) Maneuver Time (s)

Original 0.1015 31710 0.7704 98850

Interval 0.0170 57230 0.1720 94980

2nd 0.0077 35660 0.1161 126000

3rd 1.217e-04 35761 0.0048 141400

4th NA NA 9.568e-04 149700

Figure 20. 1 km Maneuver with Interval Error Correction, every 10000 seconds

Figure 21. 10 km Maneuver with Interval Error Correction, every 20000 seconds
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4.4 Initial Separation Control

Figure 22. 1 cm/s Initial Separation Condition

Initial separation conditions were studied to evaluate the effects of deployer error

on this model system and show the capability to control cases with non-zero velocity.

These cases were run as maneuvers with an initial y direction separation of 10 cm and

initial velocity in the positive y direction. Cases studying initial separation control

produced results that were very similar to the formation resizing maneuvers. The

only major difference in these cases is a long initial control phase to slow the relative

motion of the two satellites. In slowing the motion it was found that the relative drift

was only canceled out once the energy state of both satellites had been balanced.

Once the drift was brought under control the motion and control history behaves

as if it was a maneuver from the location where the drift was canceled. This shows

that the initial separation control is difficult to control only in the same way large

maneuvers are difficult to control.
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Figure 23. 10 cm/s Initial Separation Condition

The higher the initial separation velocity the more drift will be incurred and

the longer the maneuver will take to complete. Similarly to the maneuver cases

larger drift cases produce higher errors and become more computationally intensive

to solve. To counter this approximated versions of the dynamics can be used to

reduce computational demands and compute larger separation velocities, such as the

case presented in Figure 23 which uses constant density and assumes a circular orbit.

Figure 24. 10 cm/s Initial Separation Condition with an Error Checker Applied
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Unfortunately, these assumptions introduce more error into the system as GPOPS-

II is no longer solving the problem will all information, and therefore solving for an

optimal solution to a similar but wrong problem. To counter this the error checkers

can be applied to eliminate the error at the cost of optimality in maneuver final time.

The error checker displayed in Figure 24 shows the final position corrector method.

Figure 25. Initial Separation Velocity vs Maximum Separation During Maneuver

The initial separation problem is highly susceptible to differences in relative ve-

locity. This is shown in Figure 25 which recored the maximum distance the deputy

drifted from the chief when actively trying to counter the initial velocity difference.

For these cases differences of 50 cm/s, approximately the worst case velocity differ-

ence due to the deployer expected for this mission, proved difficult to solve and drifted

more than 100 km. Though it could not be run, at a 1 m/s initial separation a 910

km drift is expected under the same conditions as the presented data. This was cal-

culated by propagating a deputy maximum drag profile to mimic the initial portion

of control and balance energy.
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4.5 Formation Keeping

Figure 26. 100 m Formation Keeping for 10000s

Figure 27. 100 km Formation Keeping for 10000s

Formation keeping was conducted to investigate how close the satellite system

can stay to the equilibrium solution given J2 and drag perturbations. Formations are

all maintained on the near equilibrium path described in section 3.2.3 at the desired

separation. As the desired formation separation increases the forces imparted by the

J2 perturbation increase. As a result of increased perturbation acceleration compared
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to the maximum drag acceleration the formation looses its formation keeping effec-

tiveness. This can be seen in Figures 26 and 27 where the larger formation location

must use more control to maintain its position. As a result the formation’s precision

is reduced the larger the separation becomes. As shown in Figure 28 this distance

grows to be 2.75 km at a 2000 km separation.

Figure 28. Formation Keeping Max Drift vs Location

4.6 Altitude Effects

Figure 29. 10 m Maneuver at a 400km Altitude
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Figure 30. 10 m Maneuver at a 800km Altitude

As altitude increases the atmospheric density drops off exponentially. Because the

differential drag control problem relies on this density for acceleration the problem’s

control authority also drops off exponentially. This is demonstrated in Figure 31; as

control authority drops maneuver time increases due to the lower relative acceleration.

This affect is also carried over to the relative trajectory. As control authority increases

or decreases the relative trajectory of a maneuver will resemble the trajectory of its

smaller or larger counterpart respectively. This means maneuver trajectory is not

a function of maneuver size but rather the system’s control authority, how much

acceleration it can generate, in comparison to the maneuver.
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Figure 31. Maneuver Time vs Altitude

4.7 Solar Cycle Effects

Figure 32. 10 m Maneuver at Solar Minimum

Besides altitude solar activity can also impact atmospheric density in LEO by

several orders of magnitude. Changes in density due to solar activity produce the

same general effects on the maneuver that changes in altitude have. However, since

the magnitude of solar activity in not guaranteed, or predictable over the 11 year

solar cycle, it can be difficult to properly take into account.
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Figure 33. Maneuver Time vs Start Time

To accurately take this data into account an accurate atmospheric model, like the

Jacchia-Roberts model, needs to be used in conjunction with an accurate prediction

of solar weather. Failure to do so could easily lead to inaccuracies like those shown

in Figures 15 and 16.

4.8 Implementing Limited Control

Figure 34. 10 m Maneuver without limits

Figures 34 and 35 depict a simulated maneuver in which the deputy achieved a

separation distance of 10 meters using only differential drag control. The minimum-
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Figure 35. Eclipse Limited 10 m Maneuver

time solution allowing control throughout the orbit (Figure 34) required 4980 s, or

1.38 hr. However, restricting control maneuvers to eclipse periods only (Figure 35)

required 6502 s, or 1.81 hr, a 31% increase. Figures 4 and 5 depict the same simulation

executed for a 100 m maneuver. This time the continuous control case (Figure 36)

required 10490 s, or 2.91 hr; and the eclipse limited case (Figure 37) required 17845

s, or 4.96 hr, a 70% increase. This indicates that as the maneuver size increases, the

effects of limiting the control are more pronounced.

Figure 36. 100 m Maneuver without limits
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Figure 37. Eclipse Limited 100 m Maneuver

Furthermore all control histories resemble bang-bang control for all phases. This

was expected from the continuous cases and proves the minimum number of phases

was used. All control histories for both data sets were validated by propagating the

control history using ode45. As expected, the optimal solution for the eclipse limited

maneuvers is to allow drifting to occur during the day side of the maneuver allowing

the satellite to build up speed and thereby reduce the maneuver time. Interestingly,

the process of slowing the relative velocity takes longer than building it up. This

likely results from the solver attempting not to overshoot the final destination, and

having to wait for a final control phase to slow the solution down.

Figure 38. Limit Region Size vs 10 m Maneuver Time
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Table 6. Data for Figure 38

Limit Angle Time s Control Phases

0° 4980 1

10° 5054 2

20° 5165 2

30° 5291 2

40° 5431 2

50° 5584 2

60° 5749 2

70° 5927 2

80° 6120 2

90° 6344 2

100° 6568 2

110° 6789 2

120° 7004 2

130° 7198 2

140° 7372 2

150° 7640 2

160° 12850 3

A data set was calculated that varied the control region’s size, rather than use the

eclipse region, to study the effects of decreasing the region where control was possible.

This data is recorded in Figure 6 and Table 1 and used the same initial conditions as

the first few runs. This data set mimicked previous runs in that all control histories

are bang-bang control, the only difference being where the switching occurs. Here

linear increases in the limit angle (the angle from the sun that defines where control

cannot occur), decreasing the control region, resulted in a nearly linear increase in

maneuver time for the generated data. This trend continues until the region becomes

very limited where maneuver time increases much faster.

The nearly linear region is caused by drifting, where the satellite can build up

relative acceleration and continue to move towards its destination due to that drift.

In these cases reducing the control region only had the effect of slightly reducing
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the maximum possible acceleration in each control phase. This slowed the maneuver

down but affected the maneuver time but at a percentage less than the equivalent

reduction in control region. A 50% reduction in the control region between 0° and

90° only increased maneuver time by 27%. The large jump in maneuver time at high

limit angles occurs because the system no longer has enough control authority to

maneuver the satellite in only two control phases, like in the 150° case, and had to

include a third control phase. Between the 150° and 160° cases, a control region size

reduction of 33%, the maneuver time increases by 68%. These jumps in maneuver

time from requiring another control phase may also explain why the 100 m maneuver

had a larger increase in maneuver time; it took 4 control regions rather than the two,

an in the 10 m case. It is expected that further limiting the control region would

reach a point where the maneuver could no longer be achieved. This would occur

only when perturbations on the system cause a greater change in velocity during the

limited regions than the system can produce in the control regions. Perturbations in

this case include drag, since it isn’t being controlled, and other un-modeled forces to

include higher orders of Earth’s oblateness, third body effects, and solar wind. At

this point the drift would be negated or unpredictable and the system would become

uncontrollable. This point could not be reached in a hypothetical system without any

perturbations in the limited regions, though as the control region size approached zero

maneuver time would approach infinity.

4.9 Summary

Results comparing maneuver size, dynamics being used, error checker methods,

initial separation velocity, atmospheric conditions, and limited region size were gen-

erated. These results help characterize the responsiveness and capabilities of this

system, provide insight into the capabilities of the mission planing tool, and provide
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data pertaining to the research questions. From this data we can begin to draw

conclusions from the research.
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V. Conclusions and Recommendations

5.1 Review

This thesis developed a mission planning tool capable of providing accurate ma-

neuvers for various mission parameters. Though designed with a single mission in

mind it is capable of operating at several altitudes, mission orbits, start times, and

control weights, as well as performing maneuvers of various sizes. In developing this

tool it studied the effects of limited-duty-cycle differential drag control, the effects of

operating at different altitudes, operating in solar minimum vs solar maximum, and

the effects on accuracy of using the Jacchia-Roberts atmospheric model and account-

ing for the J2 perturbation. Despite this, the tool does have limitations.

5.2 Tool Evaluation

GPOPS-II is a poor fit for this problem. There is a fundamental limitation in the

amount of data GPOPS can handle as a MatLab based function and a limit on how

fast it can complete mesh iterations. This is driven by IPOPT and SNOPT, where

when large sets of data are required by the problem they slow down significantly

as they begin to run into problems with the maximum alloted memory. This may

stem from a MatLab design limitation where the program has difficulty handling very

large sets of data or some other source. It is possible these settings could be fixed

by setting parameters for SNOPT and IPOPT; but these cannot be set through the

GPOPS-II interface. As this problem requires meter level accuracy in propagation for

maneuvers on the scale of 1000 km, it fundamentally requires a lot of data. Future

research on this problem may be better suited to a different solver tool or program

environment, as the current one limits the operational envelope where the solver can

provide accurate timely results. Maneuver sizes presented in this work are limited to
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7 km because maneuvers larger than this size could not be calculated in a reasonable

amount of time. A 7 km maneuver only takes 14.8 minutes to solve on a computer with

a 4.01 GHz processor and 32 GB of RAM, but the computation time for manuvers

8 km and larger was prohibitive. These solutions could only be calculated using

simplified dynamics, such as the results presented in the error checker methods. But

as discussed, these are either inaccurate or a less than optimal solution. This means

that the developed tool in its current state has a very small operating window. This

window is defined by the control authority compared to maneuver size; as control

authority decreases and maneuver size increases, the borders of the operating envelope

are reached. Large separations, high altitudes, and large relative initial velocities all

can cause computational problems. This is compounded if the satellite has high mass,

low surface area, or a low Cd; is operating in solar minimum; or must meet limited

control maneuvers.

5.3 Potential Future Research

A potential solution alternative is for the tool to be rewritten to operate using

a different pseudospectral solver in a different coding language. This would help

alleviate the run time problem encountered with the current setup; and pseudospectral

methods have been shown to work with much more efficiency in different coding

languages. There is no reason the current method should not be able to calculate

up to 2000 km maneuvers other than the computational difficulties involved with

requesting several thousand data points from the NLP solver. While this would fix

many problems and allow much faster development once completed, it would require

all of the code to be rebuilt. In doing so, problem dynamics, cost functions, phase

boundaries (keep-out region logic), and initial guess calculation could be maintained.

But differences in variable input would have to be accounted for and problem scaling
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may have to be developed, as the current method relies on the GPOPS-II automatic

scaling of the problem.

The problem could be further developed by applying differential lift dynamics to

the tool. Besides providing more control authority, it could enable it to solve the cross-

track problem. This would entail developing a model for spacecraft material prop-

erties, modifying control to use two angles per satellite (rather than cross-sectional

area), and redefining initial conditions, final conditions, and the initial guess. The

only similarity would be that the dynamics are already built. This process would take

a while and then the effectiveness of differential lift would have to be analyzed as it

may prove to be negligible to the overall system. For this problem a brief analysis

shows lift forces that are an order of magnitude less than the drag forces. While

small, this force still has the potential to improve system control authority. This

development represents an additional research question to be developed at some later

date.

This tool could also be improved to use more than two satellites, that may not be

identical, in a formation where a circular orbit may not be desired. These are three

assumptions present in the current work that could easily change for future missions.

No changes to the fundamental dynamics would be required but keeping track of

multiple satellites would require propagating multiple relative satellites; therefore

adding six additional states per satellite. The initial and final conditions would also

need to change as they are currently hard coded to assume a circular orbit at the

desired final location. Enabling these kinds of features in the tool would allow its

continued use beyond the current mission.
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5.4 Conclusion

It is important for program mission planning to understand the effects various

mission conditions have on the functionality of differential-drag control. This study

offers a glimpse into the effects of mission limitations on maneuver time and on con-

trol authority. First, as maneuver sizes and mission limitations vary, the duration of

mission maneuvers can vary drastically. Maneuver time increases could be relatively

low if only a few number of control phases are required for limited maneuvers. Or

maneuver time could jump dramatically if the control authority (maximum possible

change to velocity) from an individual control phase becomes insufficient, requiring

more phases to be used and waiting for those phases to occur. Second, due to limited

region drift, system control authority is not lost until the control regions become very

small. It is important to note that phase control authority is relative to the maneuver

size and atmospheric conditions. This means limited regions have different effects on

maneuvers of different sizes, done at different altitudes, and with different start times

(solar cycle effects). As any one of these metrics reduces control authority of the sys-

tem, finding an optimal solution becomes much more computationally intensive and

the optimal maneuver takes much more time to complete. Finally, once the desired

separation becomes too large a stable formation can no longer be maintained due to

long period J2 drift. While a novel concept, the effects of limiting the differential

drag control to only limited times throughout the orbit is an important problem for

CubeSats to consider and overcome.
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Appendix A. Data Tables

Figure 39. Sample Solution Algorithm Output
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