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Abstract—We present a novel paradigm called Adaptive Swarm
Intelligence (ASI) where heterogeneous devices (or “agents”)
engage in collaborative “swarm” computing for robust and
adaptive real-time operation. ASI, a paradigm inspired by the
collaborative and decentralized behavior of some systems in
nature, finds application in a myriad of scenarios, in domains
like the IoT, mobile computing and distributed systems. Exam-
ples include network cybersecurity, connected/autonomous cars,
and other types of unmanned vehicles, like “intelligent” drone
swarms. This is by no means an exhaustive list but it gives an
indication of the many and diverse domains that can benefit from
this paradigm. This paper presents a specific ASI case study for
cooperative sensor fusion in prospective connected/autonomous
vehicles, which constitutes the driving application of the IBM-led
“Efficient Programmability of Cognitive Heterogeneous Systems”
(EPOCHS) project under the DARPA DSSoC program. Due
to the magnitude of EPOCHS, we focus on one specific piece
of our project: the EPOCHS Reference Application (ERA) for
multi-vehicle sensor fusion. We show characterization results on
a x86 system that allow us to draft preliminary conclusions
about ERA’s performance characteristics and real-time needs.
The paper briefly describes EPOCHS’ roadmap and future work.

Keywords—embedded system; mobile cognition; swarm intel-
ligence; IoT

I. INTRODUCTION

“Swarm computing”, an approach inspired by the col-
laborative and decentralized behavior of some systems in
nature [1], gains particular importance in the context of the
Internet of Things (IoT). With around 80 billion connected
devices in the world by 2025 [2], the collective “intelligent”
behavior will synergistically emerge from the “swarm” of
devices and their collaboration. In this context, we consider
an exciting new computing paradigm called Adaptive Swarm
Intelligence (ASI). It refers to an envisioned future where
computing devices (or “agents”) work together collaboratively
(in swarm mode) to provide intelligent services and improve
their learning capabilities in the field. A specific example do-
main is that of connected/autonomous cars. Other application
domains include network cybersecurity, where the detection
of denial-of-service attacks is done via localized node-to-node
information exchange; unmanned aerial vehicles, for example
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for search-and-rescue operations; and resource management
(like power consumption) in many-core chips and datacenters.

ASI allows devices to exchange “knowledge” and reach
consensus in real time for a particular situation or task to solve.
This crowdsourced decision constitutes a form of automatic
data labeling that allows devices to keep updating their on-
board AI/ML models in an unsupervised manner. Leveraging
the collaborative swarm mode also reduces real-time deadline
pressures at the individual agent level, while improving overall
resilience through redundancy. As a result, ASI emerges as a
key enabler for cognitive systems that do not break in the
field, but that keep learning continuously from in-field data.
We believe that IoT solutions that do not consider swarm
operation will fall short of the level of adaptation required
to operate properly in highly-dynamic environments.

In this paper, we present a specific ASI case study for co-
operative sensor fusion in prospective connected/autonomous
vehicles, which constitutes the driving application of the IBM-
led “Efficient Programmability of Cognitive Heterogeneous
Systems” (EPOCHS) project under the DARPA DSSoC pro-
gram. We focus on the EPOCHS Reference Application (ERA)
for multi-vehicle sensor fusion and show characterization
results on a x86 system that allow us to draft preliminary
conclusions about ERA’s performance characteristics and real-
time needs.

II. THE NEED FOR ADAPTIVE SWARM INTELLIGENCE

Adaptive Swarm Intelligence (ASI) is expected to find a
breeding ground in many domains, including network cyber-
security, connected/autonomous vehicles, robotics and cyber-
physical systems in general. In the specific context of con-
nected/autonomous cars, the benefits are large: for example,
one of the most critical challenges that the automotive industry
faces these days is related to false predictions while the car
is driving and perceiving the environment. False predictions
(either false negatives or false positives) can be alleviated
through the use of arrays of sensors to build redundancy
into the self driving system. However, this approach can be
economically inefficient and not necessarily fix the problem. In
some cases, increasing the on-board sensing and computation
capabilities does not necessarily reduce the false prediction
rate by the same factor. ASI, on the other hand, can effectively
overcome this problem, since redundancy is inherent to the
vehicle swarm. Although individual cars may have a relatively
poor vision of the surrounding environment (for example,
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due to bad weather conditions or line-of-sight occlusion), the
fusion of their locally-generated “views” in real time can
result in more reliable navigation due to the reduction or
virtual elimination of false predictions as Figure 1 sketches.
The rationale behind this observation comes from the swarm
robotics domain. Previous works have shown that the success
to complete a task by a group of robots improves with
the number of robots in the swarm. For example, object
recognition accuracy increases significantly when performed
in a cooperative manner and with a relatively large number of
robots involved in the process [3]. Similarly, navigation delays
are cut down when the navigation activities are conducted co-
operatively by a robot swarm [4]. We anticipate the emergence
of a similar behavior in groups of vehicles when the proper
swarming elements are in place.
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Fig. 1: Increasing the on-board sensing and computation
capabilities does not necessarily reduce false predictions by
the same factor. ASI is expected to overcome this problem.

But why ASI now? Beginning in the 90s, chip processors
kept steadily shrinking in size and form factor while growing
in computation capabilities, driven by Moore’s law and very-
large-scale integration. This phenomenon constituted a key
enabler that sparked the mobile computing revolution. Later
on, during the 2000s, sensor technology became cheap and
pervasive. Small-scale processors alongside pervasive sensing
gave rise to the IoT boom. Today, wireless communication
technology (including 5G and dedicated short-range commu-
nication protocols) is expected to reach performance levels
that will enable ultra-fast, ultra-high-bandwidth, low-latency
wireless device-to-device connectivity. We believe that these
three key technical enablers (small-scale processors, pervasive
sensing and ultra-fast connectivity) will give rise to the ASI
revolution (Figure 2).

III. COOPERATIVE SENSOR FUSION: A CASE STUDY

The self-driving technology deployed in autonomous ve-
hicles is still in a nascent stage and far from being reliable
enough for use in real scenarios. The data feeds generated
by the on-board sensing system (including radars, lidars,
or cameras) can be erroneous in some cases, resulting in
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Fig. 2: Small-scale processors, pervasive sensing and high-
bandwidth connectivity are the key enablers for the next big
revolution: Adaptive Swarm Intelligence.

false predictions that can jeopardize the overall safety and
confidence in autonomous navigation. Recent infamous exam-
ples of this include a Tesla car that struck a tractor-trailer
in Florida in May 2016, probably due to lighting or other
imaging issues that prevented the computer from detecting the
obstruction ahead [5]. More recently, in March 2018, the self-
driving system software in an Uber vehicle failed to identify
a pedestrian [6]. Sadly, these are only two examples among
several cases that indicate that the reliability of the self-driving
software/hardware platform still requires groundbreaking ap-
proaches to reduce or eliminate false predictions.

Back-End Cloud

A BC

DSRC-Based

Cellular-Based

Fig. 3: Illustrative autonomous driving scenario where auto-
mobiles depend on reliable and fast V2V communications.

Usually, automakers use arrays of sensors to build redun-
dancy and resolve ambiguity in self driving cars. However,
increasing the number of sensors not necessarily reduces
the false prediction rate (imagine a vehicle which line-of-
sight is obstructed by another vehicle or object) and can
also result in cost-prohibitive solutions. ASI, on the other
hand, constitutes a complementary level of redundancy that
can effectively improve the robustness of the self-driving
system via multi-vehicle (cooperative) sensor fusion, as the
authors have preliminarily discussed in [7]. Specifically, we
envision a solution where cars build and exchange locally-
generated surrounding maps. Each vehicle then “fuses” its
local map with the ones received from other nearby vehicles
in real time. The surrounding map resulting from the fusion
process is expected to be more reliable due to the reduction
or virtual elimination of false predictions. In this vehicle-to-
vehicle (V2V) information exchange process, communications
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play a critical role due to the highly-dynamic nature of the real-
time scenarios of interest. Figure 3 depicts an illustrative case
study where connected vehicles interact to each other through
dedicated short-range communication (DSRC) [8] to enable
cooperative perception. The ultimate goal for a given car is
to generate reliable views of its surroundings in real time and
with the support of other nearby vehicles.

In this context, our group has been recently awarded with a
research grant from DARPA to develop a hardware-software
platform for real-time swarm-based sensor fusion in au-
tonomous vehicles. Our project called “Efficient Programma-
bility of Cognitive Heterogeneous Systems” (EPOCHS), in-
volves multi-modal sensing, local map generation, map ex-
change through vehicle-to-vehicle communication, and real-
time multi-vehicle map fusion (Figure 4). The EPOCHS plat-
form will also include a variety of novel features, like mecha-
nisms for power efficiency and reliability, a “smart” operating
system scheduler, latest generation compilation toolchains, and
methodologies for rapid chip prototyping and development.
In the next sections, we focus on one specific piece of the
EPOCHS project: the EPOCHS Reference Application (ERA)
for multi-vehicle sensor fusion.

IV. ERA: EPOCHS REFERENCE APPLICATION

The EPOCHS Reference Application (ERA) will serve as
the testbed and driving application domain for the development
of our EPOCHS methodology and associated technologies.
The chosen ERA domain implements a software platform to
enable multi-vehicle (cooperative) sensor fusion in future au-
tonomous/connected cars, using elements of computer vision,
navigation, and V2V communications. In this context, multi-
vehicle sensor fusion constitutes a concrete use case of the
broader ASI paradigm.

ERA is composed of a Sensing and Mapping Fabric —
which implements on-board multi-modal sensing, sensor data
processing, and mapping— and a Communication and Con-
sensus Fabric —in charge of V2V communications and multi-
vehicle map fusion (Figure 4). Note that the results of the Real-
Time Consensus & Fusion stage are fed to other action engine
and vehicle control blocks which are not part of ERA. The
Sensing and Mapping Fabric builds upon the Robot Operating
System (ROS) [9] to handle the environment sensing and
map creation tasks. The Communication and Consensus Fabric
uses the GNU Radio framework [10] to implement the MAC
and PHY layers of the IEEE 802.11p standard [8] for dedi-
cated short-range communications (DSRC) between vehicles.
Finally, we plan to develop custom software to implement the
inter-vehicle map fusion task. The current version of ERA
includes a subset of the functionalities depicted in Figure 4,
enough to compose an end-to-end working ERA version that
can be used by other task groups within our EPOCHS project.

A. Current ERA Version
The current ERA version 1, which was released in October

2018 as open-source code [11], implements a subset of the
functionalities presented in Figure 4 – specifically:
• Video data capturing using an on-board depth camera
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Fig. 4: Swarm-based sensor fusion in connected/autonomous
vehicles as part of our DARPA-sponsored EPOCHS project.

• Real-time generation of 2D occupancy maps using the
captured video data.

• Partial GNU Radio-based implementation of the IEEE
802.11p standard leveraging open-source software [12],
[13].

For convenience during this initial phase, we adopted
Gazebo (a 3D virtual environment for simulating complete
robot applications with detailed physics) to model the vehic-
ular environment and its physical aspects [14]. Specifically,
we mimic vehicles using the TurtleBot robot model provided
by Gazebo. This robot model can be easily configured with
a variety of built-in sensor models; in our particular case, we
equipped each TurtleBot with an on-board depth camera.

Figure 5 presents a block diagram of the currently im-
plemented functionalities and their interconnections from a
single vehicle’s (or robot’s) perspective. As described above,
Gazebo simulates the physical robotics “world” including the
sensing capabilities. The raw data provided by the modeled
depth camera is forwarded to ROS for real-time generation of
2D occupancy maps using the costmap 2d package. In this
context, a 2D occupancy map is a grid of cells centered in
the robot’s current location where each cell has an associated
state value: free, occupied, or unknown. Occupancy maps are
compressed and serialized, and encoded for DSRC/802.11p
transmission. ERA version 1 does not yet support over-the-air
communication between robots (or vehicles). Instead, the Or-
thogonal Frequency Division Multiplexing (OFDM) symbols
generated by the DSRC/802.11p transmitter are sent through a
UDP socket to a “dummy” remote agent (a simple C program)
that bounces the symbols back to the robot. The received
OFDM symbols are decoded by the DSRC/802.11p receiver,
decompressed and unserialized, and finally compared against
the originally sent map for verification purposes.

B. Performance Characterization

ERA is a relatively complex piece of software due to
the coexistence (and associated engineering challenges) of
Gazebo, ROS and GNU Radio in the same platform, and
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Fig. 5: ERA version 1 block diagram.

the programming language heterogeneity across the different
components (with blocks written in C, C++ and Python).
Therefore, it becomes imperative to define and execute a
thorough ERA performance characterization campaign to (1)
debug and ensure its proper operation, and (2) to study its
hotspots and discover potentially accelerable code portions.
At present we conduct simultaneous efforts to port and
characterize ERA on x86, ARM and POWER architectures.
This process will also include the porting of specific ERA
components (identified hotspots) to GPU and/or FPGA for
acceleration, as part of the future work.

In this section, we focus on the GNU Radio components
within ERA (leaving ROS aside for the moment) to identify the
most critical (CPU intensive) blocks in the 802.11p transceiver
(Figure 6) running on a x86 architecture. We use the Linux
perf [15] performance analysis tool, with plans to make use of
GNU Radio’s built-in performance counters [16] in the near
future. We define two GNU Radio running settings: single
instruction, multiple data (SIMD) vectorization disabled and
enabled. GNU Radio supports SIMD vectorization through
VOLK (Vector-Optimized Library of Kernels), a library of
hand-written SIMD code for different mathematical opera-
tions, introduced as a part of GNU Radio in 2010 [17]. Table I
summarizes the most important elements of our evaluation
platform.

TABLE I: x86 evaluation platform.

CPU Quad-core Intel Core i7
“Ivy Bridge” (22nm)

OS Ubuntu 16.04
SDR Framework GNU Radio 3.7.9, Volk 1.2.3
802.11p Parameters BPSK 1/2 (encoding), 10 MHz (bandwidth),

5.89 GHz (frequency)

Figure 7 shows the execution time fraction when the GNU
Radio/802.11p transceiver runs on a x86 platform without
and with SIMD vectorization (“Volk Disabled” and “Volk
Enabled”, respectively). We observe that (1) the mapper block
uses the CPU significantly more time than the rest of the
blocks, and (2) that the execution profile of this particular
802.11p implementation is not affected by SIMD vectoriza-
tion. The mapper block is not optimized to make use of SIMD
support; and given that this block governs ERA’s execution
time, vectorization does not significantly affect overall perfor-
mance. Mapper is only part of the 802.11p transmitter and,
therefore, it is not one of the most critical components to
accelerate (the transmitter does not pose high computational
demands, as the whole frame can be pre-computed before
it is streamed to the radio [13]). This block is responsible

for the generation of the MAC header and the 32-bit Cyclic
Redundancy Check (CRC) for error detection; it also takes
care of convolutional encoding, puncturing, mapping to one
of the supported complex constellations (BPSK, QPSK, 16-
QAM, or 64-QAM), and interleaving of pilot symbols. We
plan to dive deeper into the implementation of this block
to assess acceleration alternatives, including vectorization (to
leverage Volk) or GPU/FPGA acceleration (if available).

Another relevant metric is the speed at which the receiver
can process incoming samples, which is an indication of
the receiver’s real-time processing capabilities. We executed
a simple experiment varying the rate at which samples are
injected into the receiver, in order to determine the saturation
point — i.e. the moment at which the receiver cannot keep
up with the incoming sample stream. Figure 8 presents the
number of 1500-byte samples that the receiver can process
(decode) per second as a function of the number of 1500-
byte samples that are injected per second, when the transceiver
runs on a x86 platform without and with SIMD vectorization.
At first glance, we observe that the receiver’s computational
performance scales linearly with the injection rate up to 50
Hz, and it is still good enough at 100 Hz. This is probably
acceptable for any realistic real-time application in the context
of connected/autonomous vehicles.

Figures 7 and 8 also confirm that the use of Volk does not
make any difference for this particular transceiver implemen-
tation on the x86 architecture used for the evaluation. We dove
deeper into the transceiver code using Linux perf to identify
where Volk is leveraged and how frequently. As expected, only
a few GNU Radio blocks make use of it (complex to mag,
conjugate cc, fft vcc fftw, multiply cc and sync long) for
relatively short periods of time, as Table II shows.

TABLE II: GNU Radio blocks that make use of Volk kernels,
and their corresponding execution time fractions (global).

Block Volk Kernel Time
Fraction

complex to mag volk 32fc magnitude 32f u sse 0.00%
volk 32fc magnitude squared 32f u avx 0.61%

conjugate cc volk 32fc conjugate 32fc a sse3 0.00%
volk 32fc conjugate 32fc u avx 0.00%

fft vcc fftw volk 32fc 32f multiply 32fc generic 1.67%
multiply cc volk 32fc x2 multiply 32fc a avx 0.78%
sync long volk 32fc x2 dot prod 32fc a avx 0.00%

The transceiver presented in Figure 6 shows the existence of
two FFT blocks: a forward FFT in the receiver and a reverse
(inverse) one in the transmitter. They are both the same size
(64 elements). As part of the characterization process, we plan
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Fig. 6: GNU Radio-based 802.11p transceiver flowgraph [12], [13].
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Fig. 7: Execution time fraction of GNU Radio/802.11p on x86.
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to analyze the FFT blocks to determine (1) their criticality in
the performance of the 802.11p transceiver, and (2) if a single
time-multiplexed hardware FFT accelerator would suffice —
and if so, devise the most effective FFT scheduling mechanism
to make use of the single accelerator.

The performance characteristics of the 802.11p transceiver
presented so far suggest that the adopted x86 platform is
good enough to meet the real-time requirements for vehicle-
to-vehicle (V2V) communications. Given that this is not a
system intended for embedded applications, we are conducting
equivalent measurements on a low-power quad-core ARM
Cortex-A53 processor, which results will be presented in future

publications.

C. Roadmap and Future Work

Figure 9 presents a tentative timeline for the development
of ERA and the introduction of new capabilities. ERA version
1 (released in October 2018) runs on a single computer
with simulated scenarios and sensor data, and 2D occupancy
maps exchanged over UDP sockets. We are currently working
on ERA version 2, in which the simulated robots will be
decoupled across multiple (e.g. two) computer systems and
maps will be exchanged through over-the-air communica-
tion using appropriate Universal Software Radio Peripheral
(USRP) devices [18]. In version 2, we still simulate vehicles
using TurtleBot models in Gazebo. After the release of version
2 (and before the completion of version 3), we plan to augment
the robots’ sensing capabilities using convolutional neural
networks (CNNs) to detect and classify surrounding objects.
The goal is to include information about the detected objects
in the occupancy maps cells, in addition to the currently
used free, occupied and unknown state values. In other words,
occupied cells will be populated with the corresponding ob-
jects’ identities. Finally, we expect to transition to real mobile
devices (e.g. real TurtleBots or small “toy” cars) in ERA
version 3, which will preserve all the functionalities developed
in the two previous versions. As a result, version 3 will get rid
of Gazebo and, in its place, it will make use of real sensors
(e.g. cameras) for data capturing.

Another important aspect that we are looking into is secu-
rity. The current ERA version 1 is built on ROS “1”, which has
a custom-built communication protocol that is not designed
for multi-agent or safety critical systems. As a result, we are
assessing the partial or total migration from ROS “1” to ROS
“2”, the next generation ROS built with modern requirements
in mind. For example, the communication layer adopts Data
Distribution Service (DDS) [19], a standardized protocol used
in automation, military, and aerospace [20]. DDS provides
DDS-Secure, a safety extension bringing authentication, access
control, and encryption to the protocol. We are considering
a gradual transition to ROS “2”. Initially, both versions can
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exist and run side by side and communicate with each other
through ros1 bridge (each environment’s topics and services
are visible to each other through this bridge). ERA specific
code will be ported to ROS “2” (as much as the data structures
and the underlying libraries permit), while simulation code will
remain in ROS “1”.

CONCLUSIONS

We present a bio-inspired paradigm called Adaptive Swarm
Intelligence (ASI) where heterogeneous edge devices engage
in collaborative “swarm” computing for robust and adaptive
real-time operation. ASI allows swarm agents to work together
collaboratively to improve their learning capabilities, with
applications in connected/autonomous cars, network cyber-
security, unmanned aerial vehicles, and distributed resource
management in many-core chips and datacenters. As a result,
ASI emerges as a key enabler for cognitive systems that do
not break in the field, but that keep learning continuously from
in-field data.

In this context, communications play a critical role due
to the highly-dynamic nature of the real-time scenarios of
interest. This paper presents a specific ASI case study for co-
operative sensor fusion in prospective connected/autonomous
vehicles, which constitutes the driving application of the IBM-
led “Efficient Programmability of Cognitive Heterogeneous
Systems” (EPOCHS) project under the DARPA DSSoC pro-
gram. We focus on the EPOCHS Reference Application (ERA)
for multi-vehicle sensor fusion and show characterization
results on a x86 system that allow us to draft preliminary
conclusions about ERA’s performance characteristics and real-
time needs.
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