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1 Introduction 
Maintenance practices within the military have historically relied on two main practices, failure 
replacements, and schedule or usage based preventative maintenance replacements. However, the 
Department of Defense (DoD) mandated Condition Based Maintenance (CBM) with DoD Instruction 
4151.22[1], These instructions indicate that CBM+ shall be used as the principal consideration for selection 
of proper maintenance concepts. The implementation of CBM measures in accordance with the policy is 
required of the program managers through requirements of the Secretaries of the Military Departments 
and the Directors of the Defense Agencies. The implementation of the program should be in accordance 
with the Condition Based Maintenance Plus DoD Guidebook [2], 

The guidebook breaks down maintenance into reactive and proactive. Reactive maintenance is 
performed on items that are run to failure. Proactive maintenance is broken down further into 
preventative/scheduled maintenance or predictive maintenance. Preventative maintenance is either 
based on a schedule or based on a trigger that may lead to failure (e.g. a visual oil leak). Predictive 
maintenance is either diagnostic or prognostic. Diagnostic identifies impending failure and prognostic 
adds a prediction of remaining useful life. The DoD intends to implement CBM+ to reduce maintenance 
costs and improve the readiness of their assets. Figure 1 provides a visual representation of the planned 
DoD transition. 

A complete CBM system is comprised of seven different layers of system functionality, including: sensing, 
signal processing, condition monitoring, health assessment, prognostics, decision support, and 
presentation [3], The DoD guidebook breaks CBM down into eight infrastructure areas consisting of 
sensors, data management, condition monitoring, health assessment, analytics, decision support, human 
interfaces, and communications^]. The analytics component, typically referred to as prognostics health 
management (PHM), comprises threshold alarms and alerts, diagnostic assessments, predictive 
assessments, trend analysis and prognostics assessment, which were the focus of this project. 

From the viewpoint of need, the selection of systems for PHM is determined by considering frequency of 
failure (f) and severity (s), as depicted in Figure 2. According to this diagram, the cost of PHM development 
can be justified for systems with failures that exhibit high severity (criticality) with low frequency. From 
the viewpoint of feasibility, the selection must consider the nature of failures. For example, failures that 
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exhibit exponential failure distributions are not good candidates for PHM and are not considered viable 
for forecasting [4]. 

Figure 2: Maintenance strategies based on 
frequency and severity of failures used 
in automotive industry. 

used where physics-based approaches are 

PHM can be broken down into three types: physics-based, 
data-driven, and hybrid (which integrates elements of data- 
driven and physics based models) [5], Physics-based models 
typically require extensive data collection and the 
complexity of the models increases significantly with system 
complexity and the number of system interfaces. Data- 
driven PHM is not an all-or-nothing proposition, it can start 
with basic capabilities and gradually, over time, become 
more sophisticated [6,7]. Due to the cost of up-front physics- 
based model development, data-driven approaches can 
provide a more cost effective initial implementation option 
as long as there is opportunity to add more sophisticated 
models as the system matures. Hybrid models utilize 
physics-based models and may augment results with data- 
driven models. Additionally, data-driven approaches may be 

too expensive or difficult to implement. 

The first layer of capability within a PHM system is anomaly detection, which may not require much of 
domain-specific knowledge at the outset [8]1. The system can advance to the next layer of capability, 
diagnostics, by learning to classify the observed anomalies into different failures modes. In parallel, PHM 
can learn to forecast remaining useful life (RUL), the prognostic layer of capability, by learning from 
captured time-domain data from the point of time when the anomaly was first detected to the point of 
the final failure. In their seminal papers, Engel et al. (9) examined issues associated with RUL, while Saxena 
et al. [10] discussed metrics for evaluating PHM performance. Uckun et al. [11] compared the methods 
employed in PHM to those used in medicine and proposed next steps toward maturation of PHM as a field 
of research. 

A more recent concept, the digital twin, has been gaining interest in the PHM community. Glaessgen and 
Stargel provide an overview of the vision for the digital twin from the perspective of NASA and the U.S. 
Air Force[12], This vision includes the use of complete as-built data on assets (such as material properties 
and extensive component geometric data), sophisticated multi-scale models of system and material 
performance, and extensive histories of operational data (including usage data, performance and health 
indicators, and maintenance events) to build a highly detailed and accurate digital model that can predict 
the performance and the reliability of an individual asset based on its own service history. They group the 
capabilities of the digital twin model into four categories: high fidelity modeling and simulation, design 
and certification, situational awareness, and life prediction and extension. A major goal of the NASA and 
Air Force version of the digital twin is the ability to maintain very high operational reliability of assets, 
while carefully reducing design margins and heuristic design constraints (such as factors of safety) that 
can accumulate and contribute to over-designed and over-weight air systems. 

Condition Based Maintenance is pushing the need for advancements in prognostics, ranging from simple 
data driven models to the much more complex digital twins. Many CBM programs are focused on a single 
system, platform, or vehicle. The ability to apply common monitoring and prognostics approaches on 

1 Specifically, refer to Axiom III, which states that “Identifying the existence and location of damage can be done in 
an unsupervised learning mode, but identifying the type of damage present and the damage severity can generally only 
be done in a supervised learning mode” 

5 



different types of assets used by different military services will enable a reduction in development and 
implementation costs. 

2 Project Objectives 
Under this research effort, three platforms were selected (one each from the Army, Navy, and Marine 
Corps) for evaluation of cross-platforms PHM opportunities. Through the analysis of these platforms and 
additional background research, these major objectives were addressed: 

1. Identify immediate opportunities across multiple platforms for extracting higher-level 
information content, including PHM capabilities 

2. Evaluate the data quality and completeness across multiple platforms. Data quality includes 
assessment of missing values, temporal and value resolution, noise, consistency among different 
sources, as well as identifying missing data elements, such certain contextual information on 
environmental conditions. 

3. Identify the best practices and emerging trends employed in prognostics, across various 
application spaces, which may be applied to assets of differing requirements, architecture, and 
environments. 

4. Make specific recommendations for a prognostic development roadmap across the different 
platforms of study. Include specific recommendations for technical approaches including math 
models (Bayesian, deep learning, neural nets, etc.) and modeling and simulation approaches 
(potential applicability of digital twin). 

3 Summary of Project and Report Overview 
For this project, RIT evaluated the current CBM+ capabilities provided by existing systems on platforms 
across the Army, Marine Corps (USMC) and Navy. This evaluation included an analysis of what health and 

usage monitoring system (HUMS) data was collected and how it was stored, and an analysis of the 

maintenance data to identify areas of opportunity. Findings from these analyses were used as the basis 
for a review of immediate opportunities. The remainder of the project focused on best practices and 

emerging trends in the area of prognostics health management (PHM) and providing guidance for the 

future of CBM+, presented as a Roadmap. A summary of the research conducted and high-level results 
for each of these project components is briefly explained below, with additional detail provided in 

subsequent sections of the report. 

The platforms evaluated included the Army Family of Medium Tactical Vehicles (FMTV), the Marine Corps 
Medium Tactical Vehicle Replacement (MTVR), and the Navy Landing Platform Dock (LPD). 

Cross-platform HUMS and data storage analysis 

The evaluation of HUMS identified that the FMTV and MTVR both utilized data acquisition systems that 

collected available data bus data, which is defined by the Society of Automotive Engineers J1939 and .11708 
data specifications. For the Army FMTV CBM system, data was collected at a 1Hz frequency. On the 

MTVR, the data was stored as J1939 captures at their reporting rate. The Navy LPD utilized a completely 

different system with a more extensive signal list, but the data rate varied from around once per second 

up to 15 or more minutes. 
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Additionally, the data storage formats were different. The FMTV data was stored in the Army Bulk CBM 

Data (ABCD) format. The MTVR data was J1939 packet captures saved into files. These files were also 
parsed into Matlab files for easy processing. The LPD data was stored a comma separated value files. 

The other key difference between the FMTV and MTVR data and the LPD was that the FMTV and MTVR 
contain Diagnostic Trouble Codes (DTCs), which can point to vehicle faults. 

The major takeaway from the HUMS and data storage analysis is the difference in data frequency and 
signal counts, specifically relating to the engine subsystem, across the three platforms. These differences 

were further explored in various analyses and are documented in the Immediate Opportunities section, 
below, wherein, the impacts of data frequency relative to autoencoders and the impacts of available 
number of signals plays into the development of systems level models. 

Maintenance Analysis 

Maintenance data, consisting of fault descriptions and component replacements, was provided to RIT for 

the Army FMTV vehicles. The data was analyzed to identify components that contribute significantly to 
replacement costs. Part cost, labor cost, and frequency of replacement were all considered. The goal was 
to identify a number of components that may benefit from the implementation of monitoring and 
prognostic development. 

The Navy did not provide maintenance data, but provided HUMS datasets that were associated with select 

faults on the LPD. The dataset consisted of HUMS data up to the occurrence of an event (fault), thus 
providing some ground truth of when the fault occurred. There were three different types of faults across 

the data provided. The maintenance analysis performed on this data was simply to gain an understanding 

of the dataset; the deep dive into the application of prognostics occurred in the Immediate Opportunities 
analysis, as described below. 

From the maintenance analysis, FMTV work orders for engine replacements, transmission control 
assembly replacement, and fuel injectors were identified as faults to be investigated in the Immediate 
Opportunities analysis. Additionally, numerous components were identified as contributing significantly 
to repair costs and providing some indication of where additional monitoring should be considered. For 

the LPD, the HUMS data on some platforms was limited, so specific faults that corresponded with larger 

HUMS data sets were identified as having the most opportunity for further investigation in this research 
project. 

Immediate Opportunities 

The goal of this component of the research was to evaluate approaches that could be immediately applied 
to the faults identified in the Maintenance Analysis. As the first step toward prognostics is anomaly 

detection, significant effort was applied toward the application of autoencoders, both multi-layer 
perceptron and convolutional neural networks (NN), to multiple faults. As the data frequency varied 

between the FMTV and the LPD, the impact of frequency on autoencoders could be assessed. 

Autoencoders proved to be valid anomaly detectors for the transmission control assembly fault that was 
evaluated. Unfortunately, the engine replacements did not have enough data surrounding the fault to 

develop a model, and the autoencoder for the fuel injector faults was not sensitive enough to identify the 
actual failures with the data elements in the data set. 
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Two data modeling approaches were applied to the LPD data, an autoencoder model approach was used 

to develop condition indicators for specific faults and a systems modelling approach was used for the 

engine subsystem. The provided datasets contained overlapping faults, which impeded autoencoder 
development, reinforcing the need for ground truth in the data prior to model development. Despite 
overlapping data, an autoencoder topology was developed that identified promising condition indicators 

at the innermost layer through both visual analysis and utilization of a discriminability metric. A system 

level model was developed based on the many available signals and RlT's engineering knowledge of diesel 
engines, which provided relationships between the signals collected, allowing for the left turbo outlet 

pressure to be evaluated utilizing support vector regression. Based on the models, an anomalous region 
in the data was successfully identified. 

Best practices/Emerging Trends 

The goal of the best practices and emerging trends effort was to perform a literature review of current 

approaches and trends in PHM. The review provided an overview of the layers of PHM capability from 
anomaly detection to diagnostics and finally prognostics. Additionally, practices applied to specific related 

subsystems such as engines, gears, and electronics were explored. An additional review of related fields, 

such as medicine, was performed to identify any approaches that may be translatable to vehicles. 

From the research, three major developing trends were identified: 1) high performance computing is 
driving the next generation of PHM, 2) software flexibility is crucial as the libraries and environments 

utilized in PHM are rapidly changing, and 3) open datasets are providing significant opportunity for PHM 
development. 

Roadmap 

A "roadmap" was developed to provide future guidance for PHM, including current industry trends that 

may have significant impact. The roadmap is included here as Section 7, and begins by covering the PHM 
development ecosystem, including existing tools and environments that are helping to greatly advance 
PHM. The Python scientific computational ecosystem is the most commonly utilized and advanced 
ecosystem for PHM development. Similarly, with an open environment, the ability to link Python with 

other simulation environments is crucial. 

The concept of digital twins was reviewed to show how it relates to traditional PHM implementations. 
The digital twin concept has received significant attention over the last 5 to 10 years. However, finding a 

concrete definition of digital twin is difficult, so an attempt was made to show the various aspects that 
make up a digital twin and how PHM is a critical component (see Section 7.3). 

The Robotic Operating System (ROS) is provided as an example of a tangentially related field that may 

have impacts on future PHM systems due to advance concepts being considered as a part of the ROS 
ecosystem. In particular, with the expansion of networked sensors, edge devices, etc., ROS 2.0 provides 
inherent cybersecurity measures, which allowed the Army to select it for their next autonomous vehicle. 

Finally, a review of the current state of data storage as it relates to CBM and PHM is presented. 
Particularly, the split between business analytics and PHM development that impacts how data is stored 

and used. Apache Spark is a distributed data and processing platforms for Big Data. However, as noted, 

the Python scientific computational ecosystem is the preferred computational ecosystem for PHM. 
Therefore, although data may be stored in Spark in significantly large quantities, subsets of the data will 

likely be pulled into the HDF5 files for repeat processing during PHM development. 
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4 HUMS and Maintenance Data Evaluation 
One of the major objectives of this research was to perform a cross-platform, cross-branch analysis of the 
application of CBM+. Each branch has implemented some form of CBM+, each with differing 

characteristics and approaches. Therefore, each branch was asked to provide data for one platform for 

analysis. For the Marine Corps, the Medium Tactical Vehicle Replacement (MTVR) was selected as it had 
previously been equipped with monitoring equipment on approximately 24 vehicles, 23 of which had valid 

data as seen in section 4.1.3. Marine Corps data was provided by the Office of Naval Research. The Army 
selected the Family of Medium Tactical Vehicles (FMTV) as it was part of the Army CBM+ program 

implementation and contained the data of 597 vehicles. FMTV data was provided by the U.S. Department 
of Army's Tank & Automotive Research Development and Engineering Command (TARDEC), which was 
recently rebranded the U.S. Army Combat Capabilities Development Command (CDCC), Ground Vehicle 
Systems Center. The Navy selected six ships that consisted of guided-missile destroyers, guided-missile 
cruisers, and the landing platform dock (LPD). The Navy data was supplied by the Office of Naval Research. 

As the goal was to evaluate cross-platform potential, diesel engines were identified as common system 

across the data sets from all three military branches. The majority of the analysis was focused on the 

engines. Flowever, this reduced the Navy ship data to the two LPD platforms as they utilize diesel engines 
for propulsion, as opposed to the gas turbines used in the guided-missile destroyers and cruisers. The 
three data sets covered differing number of platforms and differing durations of data collection as shown 
in Table 1. 

Table 1 - Summary of the data extent for each dataset provided 

Dataset Number of Platforms Collection Start Date Collection End Date 

Army 597 19 Dec 2012 14 May 2014 
Marine Corps 24(23 valid) 28 April 2015 3 December 2015 
Navy 6 7 September 2016 26 July 2017 

4.1 Analysis of HUMS Data 

4.1.1 Description of the Army HUMS Data 
The Army CBM+ program implementation on HUMS on the FMTV has direct impacts on the capabilities 

of diagnostics and prognostics on the vehicles. To better understand some of the features of the HUMS 
data collection, data format, data extent, handling of special information (Diagnostic Trouble Codes), and 
summary data (STATS files) were evaluated. 

4.1.1.1 Data Format 

Army data is stored as a set of compact files in Common Data Format (CDF). It is important to emphasize 
that CDF is more than a data format -- it is a conceptual data abstraction for storing, manipulating, and 
accessing multidimensional data sets [13]. CDF is very similar to Hierarchical Data Format, version 5 

(HDF5) [14], but HDF5 is considerably more widely-used. The contents of a CDF file are "variables" and 
"attributes." Variables are represented as n-dimensional arrays. A zero-dimension array is a scalar, or 

single value, whereas a one-dimensional array resembles a vector, and a two-dimensional array resembles 
a table. Higher dimensions are possible as well. 

The other abstraction is the "attribute," which is a form of metadata. Individual variables can have 
attributes, as can the file itself. Attributes can help describe the variable (for example, the source of the 
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data or its units of measure). Attributes can also describe the entire file (these are known as "global" 
attributes) to indicate information like when the file was recorded or provide other information about the 
overall contents of the container. 

The CDF format also allows for data compression. The purpose of compression is to make the file smaller 
when storing it. Files may be compressed in one of two ways: either by compressing the entire file, or by 
compressing individual variables therein. The compression method chosen (if any) impacts both size and 
performance (specifically access speed and temporary file requirements). 

CDF performance is comparable to other binary formats. The main performance benefit of using CDF is 
realized when accessing a single variable within the file. The official library implementation, from NASA, 
uses indexes to seek to a single variable without the need to read the entire file. For very large files, this 
eliminates some of the input/output (i/O) bottleneck. Consider, for example, reading a many-gigabyte 
file over a 6 Gb/s SATA interface; with CDF you can avoid reading the entire file - the interface only 
transfers the portions of interest. 

4.1.1.2 The ABCD Layer 

The Army Bulk CBM Data (ABCD) format is a specification that defines how platform health data is stored 
in CDF files. It includes standard attribute names (including some that are mandatory) that help users 
interpret the contents of the file. It also defines semantics for handling missing values. 

Army CBM vehicle health data is tabular, but the ABCD format requires data be stored as single-dimension 
arrays. In order to use these variables as if they were tables, the variables are grouped into "organizational 
channels", as shown in Table 2 . 

Table 2: Organizational Channels in the ABCD Format 

Channel Description 

IHzData 

FaultData 

Data samples (for example, sensor readings). Values are recorded at constant intervals 
(usually once per second), and all variables are recorded at the same time. 

Diagnostic Trouble Codes. The sample time is ad-hoc, meaning new entries are 
recorded as needed. Just like sensor readings, every record includes values for every 
value. 

StartupData This channel contains basic startup/shutdown information, similar to what AFIM calls 
the "mission table", along with certain cumulative data, similar to what AHM calls 
"cumulations" 

This is accomplished by adding a string attribute to each variable, with the attribute name 
"LVL90.GEN.OrgChannelName" and a value matching one of the three channel names. 

The benefits of the ABCD format are: 
1. The activity of an entire day is grouped into a single file. This means that a single file captures the 

entire activity of one vehicle on one day. 

2. File level compression makes these files relatively compact. 

To illustrate the implementation of the ABCD format. Table 3 lists the attributes of EngSpeed signal. 
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Table 3: List of attributes of EngSpeed signal 

Attribute 

LVL00.5ENS.Meas_Location.meas_loc_site 000004260000002E 

LVL90.GEN.Fileld [4200] 

LVL90.GEN.FileSubld [3] 

LVL90.GEN.ModeNum [-1] 

LVL90.GEN.RunNum [-U 

LVL90. GEN. Data ModeName 

LVL90.GEN.OrgChannelName IHzData 

LVL90.MC.NumberOfValrdPorntsLastRecord [314] 

LVL90.MC.Description NotSet 

LVL90.MC.iD NotSet 

LVL90.MCChanNumber [42] 

LVL90.MC.OrgChanNumber [1] 

LVL90.MC.ColType [2] 

LVL90.MCColTitle EngSpeed 

LVL90.MC.ColUnits Revolutions Per Minute (RPM) 

LVL90.MC.ColKeyword EngSpeed 

LVL90.MC.CDFColType CDF_FLOAT 

LVL90.MC.AreStatsValid [1] 

LVL90.MC.Max [715.75] 

LVL90.MC.Min [688.375] 

LVL90.MC.WIean [700.0509554140127] 

LVL90.MC.RMS [700.0574196621621] 

LVL90.MC.SD [3.0132314515778784] 

LVL90.MC.PointMax [230] 

LVL90.MC.PointMin [244] 

LVL90.MC.PointAbslVlax [230] 

LVL90.MC.ColMax [nan] 

LVL90.MC.ColMin [4.1720134881979434e-308] 

LVL90.MCXolNumBins [1447821312] 

LVL90.MC.ColVarBins 



Attribute 

LVL00.SENS.Meas_Loc_Type.mi_dbJd [1] 

LVL00.SEN5.Meas_Loc_Type.ml_db_site 000003F700000001 

L V LOO. SE NS.M ea s_Loc_Ty pe. ml_ty pe_code [1] 

LVL00.SENS.Meas_Location.meas_loc_id [256] 

LVL02.ACQ.TS.offset_array_name UTC_lHz 

LVL04. FILE.Multicolumn, version [1] 

LVL04.SENS.IVIeas_Loc_A5SOC.related_mloc_id [876] 

LVL04.SENS.Meas_Loc_Assoc.related_m!oc_site 000004260000002E 

LVLIO.SENS.Missingvalue.value 2147483648 

LVL90.SENS.Eng_Unit_Type_Name Revolutions Per Minute (RPM) 

LVL90.SENS.Meas_Loc_Chr_Data. Frequency 1 

LVL90.SENS.Meas_Loc_Chr_Data.Frequency_Units Hz 

LVL90.SENS.Meas_Loc_Type.Name Speed, Rotational 

LVL90.SENS. Meas_Location.name J1939 - Engine Speed (Engine) 

LVL90.SENS.iVar EngSpeed 

4.1.1.3 Initial Analysis 

The CDF format has an application programming interface (API) for most major languages (including C, 

and Java) and allows fast access to individual signals, obviating the need to load the entire file contents 

into the memory. Thus, an analyst can load only specific signals of interest, which greatly improves the 
performance. For example, in the Python scientific ecosystem, using cdflib library, a signal with 10,000 

points loads into the computational environment of a local machine from a file stored on a server in less 

than 100 ms. 

RIT developed a simple class, armyCDF (see the listing in Figure 3), with a few utility methods, to facilitate 
the data analysis, and a visualization tool (Figure 4), enabling a quick browse through the signals across 

the vehicles and over time. 
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unport os 
unpoct tLatetune 

j*port tine 

import nunpy as ap 

import cd£lib 

class amyCDTO: 

deC _iait_(self, »elt= * Vehicle «*«! * I*, file_inde* = 0 ) : 
*alf . topFelder ■ r* . . .|vDat»\cdf\n<rV\FVr!/-Al * 
self. vekFolder = self. topFolder ♦•\\"+ireh 
self.file* m *elf.getFiles0 
self-file nane = self.files(file iadem] 

•elf.D = cdflib.CDF(self.fil«_aame) 

self-aigs — self. 0. cdf_info 0 [ ' sVanables * ) 
self, des = np,di££(cd£lib.cd£epoch.unixtine (self .D.vargetf *{rTC_lK**) . xavel ()) ) 

<4ef upda^eFolder (self« veh) : 

self . vehFolder = self.rehFolder .split (*,r5frV-Al“| (0] ♦■nfrV-Al"e"\\’,*veh 

self.file* - self.gctFilcs() 
def getVehs(self): 

returr os.listdir(self.topFolder> 
def getFiles(self) : 

subFoldess = os.listdir(self.rehFoldec) 
files = [] 

Cor subFolder ir os.listdis(sclf.TehFoldez}: 

for file_ ir. os. listdir (self .TrehFolder4"\\**■♦■subFolder) : 

files, append (self. vehFolder ♦"W1" ♦subFolder + 'W '♦£ile_) 
return (files) 

def getStarcrine(self): 
tO = cdflib.cdfepoch.breakdown(self.D.vargec('UFC^Ufs1).ravel()[0]) 

return(f*ftO(0])-{t0(1]:02d}-{t0[2]:02d) (tO[2j:02d):{tO HJ:02d}:{tO[62;02dJ") 

def getNoPts(self): 
return(len(self.D.varget(’UTC^lHs*).ravel[))) 

def getDuxstion(self); 

tU = cdflib.cdfepoch.unixtane[self.D.varget('UTC_lfts').ravel()} 
durflec = tD[-12-etJtO] 
hr * a.nt (dux3ec//3€00) 
nia^ = int((dur3ee-36C0*hr)//60] 
sec_ = int (durSec - 3€00*hr - e0*su.n_) 
return. (£’{ h.r : Q 2d }; {min :02d):(sec ;02d)<) 

def geeSignal (self, a i. gN a»e, exeludeOutlier = True): 

s = self.D.varget(srgNane).ravel() 
tLabel m self.D.varattsget(sig^ane)["LVL02.ACQ.T3.o£fsct_array_na»e*] 
sQuant = self .D. varattsget (sigNasael ['LVL90.3EM3 .Meas_loe_Type .Kaxae * ] 
sUait m self.D. varattsget (sigKajne) (’ L'/LSO .MC. ColT7nits 1 J 
t = ap.array ( [datetime, da retime (y,m,d,H,lfj 3) 

Cor (yrn, d, H,M| 3,in cdflib.edfepoch.breakdowa (self .D. varget (tLabel) . ravel ())] } 
if excludeOutlier: 

tr>-: 
r = tlscleS] 
s = s[s<le5] 

except: 

r S np.array((1) 
s = np.array([J) 

return, (t, s* sQuaat ♦ ", (■♦»T7nit4*) ■) 
def update_data (self, £ile_aame ) : 

self.D.file.close() 
self-D = cdf lib.CDF (file_aaine]| 
iel£.fil«_r.*j&e ~ £ile_naine 
self.sigs= sel£.D.cd£_info O £'aVariablcs'} 

f brj: 

t self.tit£= np. away f fdfc_i , seoondx for dt_i in np. dlff {self. Dt ,UTC_L2a ' ] 10] ) J ) 

def distance from cum (self): 

return self.D["TocVehCiat"][0][>1] - self.D£~T©tVehDlsc*3[0)£0) 
def distance_from speed (self): 

v = self . D ["VehSpeedEag’'] [OJ 
if ap.any[v>le5): 

v[v>le5} 0 

returr op.dot(v[:-1],self.dts)/3600. 
def engine_hrs (self, zya_mm = 10, £ixed_dt = False): 

ind = (self.DfEngSpeed"] [0] [;-l]>rp«_min) .nonseroO [03 
if fixed_dt: 

return lea(ind)/3600 
else: 

return, (self .dts [ind] . aum()/3600 . ) 

Figure 3: A class with a few utility methods for analysis of CDF data. 
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Figure 4: A visual interface for browsing through the signals across fleet vehicles and time. 

4.1.1.4 Data Extent 

Data extent was examined along multiple dimensions: number of vehicles, number of signals per vehicle, 

data collection span, temporal resolutions of the data, and vehicle usage activity during the collection. 
Table 4 summarizes the data extent at a high level, with the overall HUMS fleet data span, number of 
participating vehicles, number of signals on a vehicle, and the temporal resolution of the signals. 

Table 4: High-level summary of data extent 

Data range Number of Vehicles Number of Signals' Sampling Rate [Hz] 

19 Dec 2012-14 May 2014 597 115-162 1 

‘Number of signals per vehicle can vary as shown in Figure 14 The range here is based on the number of signals at the end of the data collection. 
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4.1.1.5 Recorded Vehicle Usage Activity 

The span of the data 

collection does not provide 10 
complete information. It is 08 

important to understand 
how much activity was 

captured during this time 0A 

interval. Three metrics are 
used to provide an overview 

of the fleet activity: evidence oo 

of HUMS collection for a 
given day, hours of engine 
activity, and driving distances. 

The initial assessment started by evaluating individual vehicles. Figure 5 shows the days of activity 
recorded by the HUMS system of a typical vehicle, with each elevated line indicating a day when data was 
collected by the HUMS system. 

Figure 6 expands on Table 4 and shows how many vehicles were active on a given day during the time 
span of the HUMS data collection. During the majority of the time, activity varied widely between as few 

as 10 vehicles and up to more than 300 on a single day. The subplot on the right of the graph shows a 
corresponding histogram of the occurrence of the number active vehicles 

2013-01 20133)3 20133)5 20133)7 2013-09 2013-11 20143)1 2014-03 20143)5 

Figure 5: An example vehicle activity 

Figure 6: Fleet activity during HUMS data collection, includes 73,590 active days. 
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Figure 7: Number of days in use for a given vehicle 

Figure 7 shows daily activity of individual vehicles during the data collection span. Very few vehicles 
collected more than 200 days of activity, with the mean and median activity being 106 and 100 days, 
respectively. 

4.1.1.6 Engine Activity 

A good way to describe utilization of a vehicle is a cumulative sum of the engine usage, as shown in Figure 

8. Most of the data is collected during short intervals of time, as indicated by the steps in the cumulative 
engine usage. 

Single Vehicle Activity over 82 Days 

Figure 8: Cumulative engine usage of a single vehicle during the HUMS data collection 

Figure 9 illustrates the engine usage of three different vehicles, each exhibiting different operating 
patterns. 
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Figure 9: Cumulative engine usage of three trucks during the HUMS data collection 

The fleet summary of the usage is provided in Figure 10, with the title indicating the number of the 

processed vehicles (694), the subset of vehicles with the requisite summary 

(467 vehicles with EngTotHrs), and total hours of engine on. The left subplot shows individual 
cumulative histories of the vehicles and the right subplot shows the histogram of the total engine hours, 
with a mean of 117 hours and a median of 86 hours. 

Of 694 processed vehs, 467 have 'EngTotHrs' data 
with 55057.7 of total hours driving 

800 

2r 
Q 
oi 600 £ 
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C 
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Figure 10: Fleet summary of engine usage by truck 

ifo 0 

4.1.1.7 Driving Activity 

Figure 11 shows a cumulative driving distance for a single vehicle, similar to Figure 8. There are a few 
short time intervals of significant driving, separated by much longer periods with virtually no driving. 
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Once again, there is considerable variation from vehicle to vehicle, as depicted in Figure 12, which shows 
cumulative distance travelled of four different trucks. All vehicles show the same pattern of periods of 

driving separated by longer intervals of little to no driving. 

Figure 12: Cumulative driving of four vehicles during the HUMS data collection 

Figure 13 summarizes the driving distance across the entire fleet. The fleet contained 447 vehicles with 

driving distance collected and a total of 285,929 miles of driving. The left subplot shows traces of 
cumulative driving by individual vehicles and the right subplot contains the distribution of total driving, 

with the mean and median being 639 and 440 miles, respectively. 
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Of 464 processed vehs, 447 have TotVehDist'data 
with 285929 of total miles 
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Figure 13: Fleet summary of driving by truck 

4.1.1.8 Number of Signals 
The HUMS signals are typical signals that can be found on the J1939 or J1708 databus. Within the Army 

data collection system, the number of signals collected on a vehicle can vary over time, as illustrated for 

a single vehicle in Figure 14. for simplicity and to avoid the effect of days when the vehicle is not utilized, 

the number of signals is plotted against the record of utilization (sequential file number), instead of the 
time. The black trace, associated with the left y-axis, shows the number of signals collected across the 
number of files, and the red trace, associated with the right axis, shows the change in number of signals. 

Figure 14: Signals on a single vehicle over time. 

Three of the four changes (the first, the second, and the fourth) in the number of signals suggest some 

changes in the data collection system, as the number of added/dropped signals is relatively large. The 
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third change appears to be caused by a OTC event. The changing number of signals may present a problem 
in modeling should the system stop collecting one of the signals being used for a model. It is more likely 

that the data collection system was being updated, as the availability of signals was identified and any 

future updates would only see an increase in signals. However, due diligence should be taken when 
updating the system to identify any potential impacts on existing algorithms or models. 

The naming convention for each signal identifies whether the data was collected from the J1587 databus, 

if it was not, then it is assumed the data was collected from the J1939 databus. The name of the signal 

can also be correlated directly to the databus signal specifications for J1939 and J1708. Although the data 

reporting rates for the signals is based on the specification, and for many signals is reported as many as 
10 times per second, every data signal is only stored once per second in the CDF files. For a snapshot of 
the full signal list of collected data on the FMTV, see Appendix A. 

4.1.1.9 DTC Analysis 

Table 5 shows a Pareto list (top 20) of DTCs across all of the vehicles during the entire data collection 
period. Each row represents a DTC on a specific vehicle, highlighting the most recurring DTCs. In addition 

to vehicle identification number, the table shows the associated Suspect Parameter Number (SPN), fault 
description, and the count. Figure 15 provides a graphical view of the distribution of DTCs from the data 
in the table. 

From Table 5, the DSC related entries, highlighted in blue, indicate a problem with the data collection 
system. The majority of the remaining repeated faults indicate likely sensor problems, i.e. shorted high 
or shorted low. The gray highlighted items appear to be related, with the sensor sometimes reporting 

high but valid values, and at other times appearing to change to rapidly. The red highlighted items 

represent data that may be valid, but are not typical of operational data. 
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Vehicle 

SN:Vehiclel 

SN: VehicleZ 

SN:Vehicle3 

5N:Vehicle4 

SN: Vehicles 

SN: Vehicles 

SN: Vehicles 

SN: Vehicle? 

SN: Vehicles 

SN: Vehicle9 

SN: VehiclelO 

SN: Vehicles 

SN: Vehiclell 

SN: Vehicle!? 

SN: Vehicle!3 

SN: Vehicle!4 

SN: VehiclelS 

SN: VehiclelS 

SN: Vehicle!? 

SN: VehiclelS 

Table 5: Fault counts. Top 20 recurring DTCs on a vehicle occurrence 

SPN Fault Description 

102 SAE - Boost Pressure - Voltage above normal or shorted to high source 

520196 DSC J1939 no data for 3 seconds 

105 SAE - Intake Manifold Temperature - Voltage above normal or shorted to high source 

520223 DSC Part number invalid 

102 SAE - Boost Pressure - Voltage above normal or shorted to high source 

1 SAE - Wheel Sensor ABS Axle 1 Left - Abnormal rate of change 

4 SAE - Wheel Sensor ABS Axle 2 Right - Abnormal rate of change 

231 SAE - J1939 Data Link - Abnormal update rate 

520197 DSC J170S no data for 3 seconds 

102 SAE - Boost Pressure - Voltage below normal or shorted to low source 

15 SAE - Relay Diagonal 2 - Voltage below normal or shorted to low source 

4 SAE - Wheel Sensor ABS Axle 2 Right - Data valid but below normal operational range - 

Most severe level 

103 SAE - Barometric Pressure - Voltage above normal or shorted to high source 

168 SAE - Battery Potential {Voltage) - Data valid but below normal operational range - Most 
severe level 

520223 DSC Part number invalid 

100 SAE - Engine Oil Pressure - Data valid but below normal operational range - Most severe 
level 

108 SAE - Barometric Pressure - Voltage above norma! or shorted to high source 

520197 DSC J1708 no data for 3 seconds 

4 SAE - Wheel Sensor ABS Axle 2 Right - Data valid but below normal operational range - 

Most severe level 

2 SAE - Pneumatic Control Unit (PCU) - Voltage below normal or shorted to low source 

Count 

1911 

1403 

1343 

1030 

88S 

699 

690 

606 

596 

582 

576 

547 

540 

532 

510 

503 

495 

488 

481 

477 
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Figure 15: Vehicles sort by DTC counts (top 20). 

DTCs can be very useful for development and enhancement of PHM capabilities, because they contain the 

ground truth information for impending failures. In fact, they represent a level of condition monitoring 
that is already implemented by electronic control units (ECUs), employing traditionally conservative 
thresholds to reduce false alarm problems. Furthermore, the four lamps (Malfunction Indicator Lamp 
(MIL)2, Red Stop Lamp (RSL), Amber Warning Lamp (AWL) and Protect Lamp (PL)) also contain information 

on severity of the problem. 

To get a better sense of this ground truth data, observed MIL values were examined across the fleet. Table 

6 lists the values (in both decimal and Boolean format), together with the number of instances. 

Table 6: MIL with state values and number of instances across the fleet 

State (Decimal) State (Binary) Number of instances 

0 0000 0000 10,916 

3 0000 0011 395,776 

255 1111 1111 218,847 

However, the recorded values do not map directly to the J1939 the MIL specification, which defines MIL 
as having three states as described in Table 7. 

2 Also known as "check engine light”. 
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Table 7: Fault counts. Top 20 based on occurrence 

Range Name Transmitted Value (Boolean) 

Disabled (off) 

Enabled (on) 

Error Indicator 

Not available or not installed 

00 

01 

10 

11 

Amber Warning Lamp (AWL) shows similar results as MIL (see Table 8); however, a value of 0 is never 
seen; instead, 1, 3 and 255 are seen, A likely interpretation is that 255 value is HUMS's higher-level 
indication for an unknown value. However, interpretation of the other values is difficult because they do 
not follow the standard specification. 

Table 8: AWL with state values and number of instances across the fleet 

State (Decimal) State (Boolean) Number of instances 

1 

3 

255 

0000 0001 

0000 0011 

11111111 

11,811 

394,881 

218,847 

Because DTC were considered as a valuable ground truth for the health of the vehicle, as well as an 
alternative mechanism (in addition to maintenance data) to trigger data-driven model development, it 
was important to correctly identify and interpret their content. Although information on the DTCs is 
collected, it is often associated with an AWL or MIL. The AWL and MIL are the typical feedback systems 
(check engine light) to a driver in a vehicle. However, the AWL and MIL states recorded by the HUMS 
system do not directly correlate with the specification, making their interpretation more difficult with 
regard to faults in the system. It is recommended to keep the states the same in the HUMS system as they 
are in the specification (00, 01,10, and 11). 

4.1.1.10 Stats File Data 

In addition to the daily summary file analyzed above, RIT briefly examined WSTATS files, which contain 
more succinct daily summaries of the vehicle. Interpretation of the stats signals is shown in Figure 16. 
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{HinStatSj AvgStats, MaxStats} 

Do not change 

{1,2, 84} {0,1, 13} 

Idling_MinStats_0_0_3_l_Vehicle Speed_Col0 

{Idlingj Driving} {Vehicle Speed, Engine Speed, Fuel Rate, 

Engine Oil Temperature, Engine Coolant Temperature, 

Transmission Oil Temperature, 

Transmission Out Shaft Speed, 

Injector Control Pressure, Engine Oil Pressure, 

Battery Potential Voltage, Altitude, UTC_lHz, 

Serial Number, Location} 

14 signals repeat 3 times for three different stats group for 
each of the operating conditions, viz. idling and driving. 

Figure 16: Interpretation of vehicle stat signals. 

A stat first specifies the context (whether it relates to idling or driving), then the nature of statistical 
computation (e.g. minimum, average, or maximum), and the signal it applies to (e.g. vehicles speed, 
engine speed, etc.). Fourteen signals repeat three times for three different statistical computations and 
two different contexts (driving and idling). 

'Idling_MinStats_0_0_3_l_Vehicle Speed_ColB*, <zAttrList: 
LVL00.SFNS.Meas_Location.ffleas_loc_idf 1 [CDF„INT4] 
LVL00.SENS.Meas_Location.meas_loc_site: 0000041D00000002 [CDF_CHAR] 
LVL00.SENS.Meas_Location,ml_db_id; 1 [CDF_1NT4] 
LVL00. SENS.Meas_Location. ml_db_site: 0000041D00000001 [CDF__CHAR] 
LVL00.SENS.Meas_Lacation.ml_type_code: 0 [CDF_INT4] 
LVL90,GEN.DataModeName: [CDF^CHAR] 
LVL90.GEN.Fileld: 4200 [CDF_INT4] 
LVL90.GEN.FileSubld: 3 [CDF_INT4] 
LVL90.GEN.ModeNum: -1 [CDF_INT4] 
LVL90.GEN.OrgChannelName: Idling_MinStats [CDF_CHAR] 
tVL90.GEN.RunNuin: -1 [C0F_INT4] 

LVL90,MC.AreStat sValid: 1 [CDF_INT4] 
LVL90.MC.CDFColType: 1 [CDF_INT4] 
LVL90.MC.ChanNumber: 1 [CDF_INT4] 
LVL90-MC.ColKeyword: VEHSPEEDENG [CDF_CHAR] 
LVL90.MC.ColMax: -1,0 [CDFDOUBLE] 
LVL90.MC.ColMin: -1.6 [CDF_DOUBLE] 
LVL90.MC.CalNuraBins: -1 [CDF_INT4] 
LVL90.MC.ColTitle: Vehicle Speed [CDF„CHAR] 
LVL90.MC.ColType; 2 [CDF^INT4] 
LVL90.MC.ColUnits: Miles Per Hour [CDF_CHAR] 
LVL90.MC.ColVarBins: [CDF_CHAR] 
LVL90.MC.Description: NotSet [CDF_CHAR] 
LVL90, MC .IQ.: _Natiei XCJJF_QjAB ]__ 
LVL90.MC.jMax: -999.0 [CDF_[>OUBLE] I 
LVL90.MC.|Mean: -999.0 [CDF_DOUBLE] 
LVL90. MC .flipl COF DQUBLE1_1 
LVL90.MC.Ni7mberOfValidPointsLastRecord’: 11 CDF_INt4] 
LVL90.MC.OrgChanNumber: 100 [CDF_INT4] 
LVL90. MC. Point Ab sMax: 1 [CDFJJINT4] 
LVL90,MC.PointMax: 1 [CDF_UINT4] 
LVL90.MC.PointMin: 1 [C0F_UINT4] 
LVL90.MC.RMS: 999.0 [CDF_DOUBLE] 
LVL90.MC.SD: 0.0 [CDF_DOUBLE] 

(a) 

LVL00.SENS.Meas_Location.meas_loc_id: 1 [CDF_INT4] 
LVL00.SENS.Meas_Location.meas_loc_site: 0000041D00000002 [CDF_CHAR] 
LVL00.SENS.MeasLocation.ml_db_id: 1 [CDF_INT4] 
LVL00,SENS,Meas_Location.ml_db_site: 0000041D00000001 [CDF CHAR] 

LVL60.SENS.Meas_Location.ml_type_code: 0 [CDF_INT4] 
LVL90.GEN.DataModeName: [CDF_CHAR] 
LVL90.GEN.Fileld: 4200 [CDF_INT4] 

LVL90.GEN.FileSubld: 3 [C0F_INT4] 
LVL90.GEN.ModeNum: -1 [CDF_1NT4] 
LVL90.GEN.OrgChannelName: Idling_MinStats [CDF_CHAR] 
LVL90.GEN.RunNum: -1 [CDF_INT4] 

LVL90.MC.AreStatsValid: 1 [CDF_INT4] 

LVL9B.MC.CDFColType: -1 [CDF_INT4] 
LVL90.MC.ChanNumber: 2 [CDF_INT4] 

LVL90.MC.ColKeyword: ENGSPEED [CDF_CHAR] 
LVL90.MC.ColMax: -1.0 [CDF^DOUBLE] 
LVL90.MC.ColMin: -1.0 [CDF_DOUBLE] 

LVL90.MC.ColNumBins: -1 [CDF_INT4] 
LVL90.MC.ColTitle: Engine Speed [CDF_CHAR] 
LVL90.MC.ColType: 2 [CDF_INT4] 
LVL90.MC.ColUnits: Revolutions Per Minute (RPM) [CDF_CHAR] 
LVL90.MC.ColVarBins: [CDF_CHAR] 

LVL90.MC.Description: NotSet [CDF_CHAR] 
LVL90.MC_. IDNotSet [CDF_CHAR]_ 

[LvL90rMC',Max: 683.875 "[C0F_D0UBLE3 T 
LVL90.MC.Mean: 675.9583333333334 [CDF_DOUBLE] 
|lVL90.MC.Min: 659.375 [CDFDOUBLE] 

1^9^ ."RcTNTirn&erOTValTdP’oTntsUastPTecoFd~ S' [C5F INT4] 
LVL90.MC.OrgChanNumber: 100 [CDF_INT4] 

LVL90.MC.PointAbsMax: 6 [CDF_UINT4] 
LVL90.MC.PointMax: 6 [CDF_UINT4] 
LVL90.MC.PointMin: 2 [CDF_UINT4] 
LVL90.MC.RMS: 676.0096076117064 [CDF_DOUBLE] 

LVL90.MC.SD: 9.120603963916237 [CDF_DOUBLE] 

(b) 
Figure 17: Attributes of WSTATS signals. 

The attributes for each signal are also provided, as illustrated in Figure 17. In Figure 17a, the dashed box 
within the figure shows that some of the values are not computed, or are not reliably computed, indicated 
by -999.0 value; in Figure 17b, the dashed box shows the case of reliably computed values. 
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Examples of WSTAT values are depicted in Figure 18. As shown, some WSTATS do not have meaningful 
content (Figure 18a), while others do (Figure 18b). Of 49 analyzed WSTATS files, 30 have 

ldling_MinStats_0_0_3_2 Engine Speed Coll = [-999]. For the remaining 19 files, the values were 

plausible, as depicted in Figure 19. These types of summary data elements are natural for tracking vehicle 
usage for the purpose of preventative or predictive maintenance. Due to issues with data quality, these 
signals were not used in the subsequent analyses as they could be more accurately recreated directly from 
the HUMS data. In practice, it is important to accurately calculate these within a HUMS or PHM system. 

Idling_HinStats_0_0_3_l_Vehicle Speed_Col0 [-999.] 
Idling_MinStats_0_0_3_2_Engine Speed_Coll [-999.] 
Idling_MinStats_0_0_3_3_Fuel Rate_Col2 [-999,] 

Idling MinStats 0034 Engine Oil Temperature_Col3 [-999.] 
Idling_MinStats_0_0_3_5_Engine Coolant Temperature_Col4 [-999.] 
Idling_MinStats_0_0_3_6_Transmission Oil Temperature_Cols [-999.] 
Idling_MinStats_0_0_3_7_Transmission Out Shaft Speed_Col6 [-999.] 

Idling_MinStats_0_0_3_8_Injector Control Pressure_Col7 [-999.] 
Idling_MinStats_0_0_3_9_Engine Oil Pressure_Col8 [-999.] 
Idling_HinStats_0_0_3_10_Battery Potential Voltage_Col9 [-999.] 

Idling_MinStats_0_0_3_ll_Altitude_Coll0 [-999.] 
Idling_MinStats_0_0_3_12_UTC_lHz_Colli [1392056457] 

Idling_MinStats_0_0_3_13_Serial Number_Coll2 ['10TANHFF1DS751419 ’] 
Idling_MinStats_0_0„3_14_Location_Coll3 [27761.] 

(a) 

Idling_MinStats_0_0_3_l_Vehicle Speed_ColO [0. 0. 0. 0- 0. 0.] 
Idling_MinStats 0_0_3_2 Engine Speed_Coll [672.125 659.375 682.875 679. 678.5 683.875] 

Idling_MinStats_0_0_3_3_Fuel Rate_Col2 [0.4623011 0.43588388 0.43588388 0.435883B8 0.43588388 0.43588388] 
IdlingMinStats_0_0_3_4_Engine Oil Temperature_Col3 [-999. -999. -999. -999. -999. -999.] 
TdlingMinStata 0 03 5 Engine Coolant Temperature_Col4 [ 82.4 195.8 195.8 199,4 194, 197,6] 
Idling_MinStats_0_0_3_6 Transmission Oil Temperature Col5 [ 59.7875 189.44376 192.14375 192.59375 193.04375 191.80624] 

Idling_MinStats_0_0_3_7_ Transmission Out Shaft Speed Col6 [0. 0. 0. 0. 0. 0.] 
IdlingMinStats 0 0 38 Injector Control Pressure_Col7 [1417.83 1347.646 1411.604 1417.83 1417.83 1411.604] 
Idling_MlnStats_0_03_9 Engine Oil Pressure _Col8 [16.2442 16.2442 17.98465 17.4045 17.98465 17.98465] 
Idling_MinStats_0_0_3_10_Battery Potential Voltage_Col9 [25.35 27.5 27.5 27.5 27.45 27.5 ] 

Idling Mi.nStats_0_0_3_l 1_Altitude_CollO [1917.6509 1916.3385 2387.7952 2387.4673 2423.8845. 2423.8845] 

Idling MinStats 0 0 3_12_UTC_lHz Colli [1394979204 1394989015 1394990923 1394991523 1394992374 1394993517] 

(b) 
Figure 18: Examples of WSTAT values (a) no valid computations (b) valid computations. 

O 
xz 
1 

Figure 19: Interpretation of vehicle stat signals. 
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4.1.2 Marine Corps 

4.1.2.1 Datastorage 

The Marine Corps HUMS data, provided to RIT by Pennsylvania State University (Penn State) at the request 

of ONR, consisted of 23 folders containing vehicle data, and one excel file containing meta-data about the 
vehicle folders. The excel file provided information such as vehicle serial number, the data volume in GB, 

whetherthe raw databus data was parsed, etc., and is shown below in Figure 20. One vehicle was removed 
from data collection due to vehicle problems (indicated in red in Figure 20), and did not have a vehicle 

folder in the dataset. Additionally, for further analysis, the five vehicles in yellow were excluded due to 
unknown errors experienced while attempting to load the .MAT files. 

FLW Vehicles for FE-MTVR Testing 

tt Vehicle Variant Serial # 
Assigned 

Unit 
Install Date 

Uninstall 

Date 

Data Volume 

(GB) 
Parsed 

1 MTVR1 AMK23 - Armadillo MTVRl FLW 28-Apr-15 2-Dec-15 6.11 Yes 

2 MTVR2 MK23 - Armadillo (Up with Up Armored Cab.,.} MTVR2 FLW 28-Apr-lS 2-Dec-15 6.65 Yes 

3 MTVR3 AMK23 - Armadillo MTVR3 FLW 28-Apr-15 2-Dec-15 5.12 Yes 

4 MTVR4 AMK2SA1 MTVR4 FLW 28-Apr-15 2-Dec-15 11.00 Yes 

5 MTVR5 AMK25A1 MTVRS FLW 28-Apr-15 2-Dec-15 5.07 Yes 

6 MTVR6 AMK25A1 MTVR6 FLW 28-Apr-lS 2-Dec-15 8.77 Yes 

7 MTVR7 AMK25A1 MTVR7 FLW 28-Apr-15 2-Dec-15 6.17 Yes 

8 MTVR8 AMK25A1 MTVRS FLW 28-Apr-lS 2-Dec-15 14.60 Yes 
9 MTVR9 AMK25A1 MTVRS FLW 28-Aprl5 2-Dec-15 3.00 Yes 

10 MTVR10 AMK25A1 MTVR10 FLW 28-Apr-15 2-Dec-15 9.48 Yes 

11 MTVR11 AMK25A1 MTVRll FLW 28-Apr-15 2-Dec-15 6.47 Yes 

12 MTVR12 AMK25A1 MTVR12 FLW 28-Apr-IS 2-Dec-15 7.46 Yes 

13 MTVR13 AMK25A1 MTVR13 FLW 2S-Apr-15 2-Dec-15 1.41 Yes 

14 MTVR14 AMK25A1 MTVR14 FLW 28-Apr-lS 2-Dec-15 6.27 Yes 

15 MTVR15 AMK25A1 MTVR15 FLW 28-Apr-15 2-Dec-15 13.90 Yes 

16 MTVR16 AMK25A1 MTVR16 FLW N/A N/A 

17 MTVR17 AMK25A1 MTVR17 FLW 28-Apr-15 2-Dec-15 9.27 Yes 
18 MTVR1S AMK25A1 MTVR1S FLW 28-Apr-15 2-Dec-15 12.30 Yes 

19 MTVR19 AMK25A1 MTVR19 FLW 28-Apr-15 3-Dec-15 7.92 Yes 
20 MTVR20 AMK2SA1 MTVR20 FLW 28-Apr-15 2-Dec-15 7.70 Yes 

21 MTVR21 AMK25A1 MTVR21 FLW 28-Apr-15 2-Dec-15 4,52 Yes 

22 MTVR22. AMK25A1 MTVR22 FLW 28-Apr-15 3-Dec-15 9.79 Yes 

23 MTVR23 AMK25A1 MTVR23 FLW 28-Apr-15 3-Dec-15 14.30 Yes 

24 MTVR24 AMK25A1 MTVR24 FLW 28-Apr-15 2-Dec-15 15.30 Yes 

Figure 20: Received data. 

Every vehicle folder contained two items: a sub-folder, filled with comma separated value (CSV) and MAT 
files, and a MAT file named 'Merged_Data_######.mat'. The CSV and MAT files in the subfolder were on 

the order of KBs and MBs. The CSV files contained raw databus data with file names indicating the start 

date and time of data collection. As indicated in Figure 20, all of the vehicles' databus data were parsed. 

The parsed data files (the MAT files) contain all of the data in MATLAB structures. Every CSV file had a 

corresponding MAT file with an identical file name. The 'Merged_Data_######.mat' utilized the serial 
number of the vehicle in place of the number signs. These file sizes were approximately 4-6 GBs and 
contained all the information from the separate MAT files within the sub-folder. 

4.1.2.2 Data Format 

The data in the files consisted of raw data captures from the two vehicle databuses: J1939 and J1708. The 

raw data was captured from the ECUs and contains a number of data parameters. The ECU sources were 
organized by subsystem in the vehicle and are detailed in Table 9 and Table 10. The J1939 databus 
specification defines Parameter Group Numbers (PGNs), which contain one or more Suspect Parameter 
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Numbers (SPNs), or measured variables. The J1708 databus specification defines Parameter Identifiers 

(PIDs), which are the measured variables. It should be noted that not all SPNs (signals) within a PGN may 
have been reporting, as the specification requires the entire PGN must be sent. 

Table 9: J1939 Databus Data 

Sources Source Names PGNs 

SRC_135 FMPT (unknown system, 

non-standard ID) 

PGN_65310, PGN_65311, PGN_65314 

SRC_000 Engine #1 PGN_57599, PGN_60415, PGN_60671, PGN_61183, PGN_61443, 
PGN_61444, PGN_65247, PGN_65262, PGN_65263, PGN_65265, 
PGN_65266, PGN_65270 

SRC_003 Transmission #1 PGN_61442, PGN_61445, PGN_65272, PGN_0 

5RC_011 Brakes - System Controller PGN_61441, PGN_65215, PGN_15, PGN_16, PGN_41, PGN_0 

SRC_015 Retarder - Engine PGN_61440 

SRC_016 Retarder - Driveline PGN_65275 

SRC_051 Tire Pressure Controller PGN_G1441 

Table 10: J1708 Databus Data 

Sources Source Names PID List 

MID_128 Engine #1 PID_100, PID_102, PID_105, PID_108, PID_110, 
PID121, PID_168, PID_174, PID_175, PID_183, 
PID_184, PID_185, PID_187, PID_190, PID_194, 
PID_2, PID_245, PID_70, PID_71, PID_83, PID_84, 
PID_85, PID_86, PID_89, PID_91, PID_92, PID_128, 
PID_41, PID_0 

MID_130 Transmission PID_1, PID_162, PID_163, PID_191, PID_194, 
PID_136, PID_128 

MID_136 Brakes, Power Unit PID_151, PID_168, PID_194, PID_49, PID^84 

MID_2 PID_254 

4.1.2.3 Databus Activity in Vehicle Files 

The source start times were recorded for each MAT file encountered in the unmerged file set. Databus 
activity was determined by looking for a J1939 or J1708 data structure in the file. Data collection across 

the vehicle set, and even within a single vehicle, was inconsistent. Half of the vehicles contained files 

without any databus data, and if the files contained databus data, the presence of both databases was 
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notguaranteed. The total databus activity across the 18 parsed vehicles is shown in Figure 21. The overall 

bar height shows the total number of files collected, where the red bar represents files with J1939 data 

and the blue bar represents files with J1708 data. If all of the files contained databus data, the red and 
blue bars would be of even height and there would be no gray areas within the bars. The gray areas 
represent the files that exist but do not contain databus data. 

2500 

2000 

1500 

3 1000 

500 ■ 

0 

Figure 21: Databus activity on vehicles sorted by number of files. 

Collecting a file with no databus activity at all does not necessarily represent a problem. For example, a 
maintainer may turn on the vehicle briefly to obtain the odometer reading, which may create a file with 

no data as the vehicle was turned off before data was collected. However, collection of data on only one 
databus indicates a problem with either the vehicle or the data collection system. Additionally, this 

absence of data from a databus does not appear to be a problem that occurs over a period of time and is 
then fixed. Rather it appears to come and go over the course of the data collected. To better illustrate 

this, the databus activity for two MTVRs is plotted over time in Figure 22 and Figure 23. Within each plot, 
a vehicle may have both active databuses (top line), only J1708 active (second line from top), only J1939 

active (third line from top), or no active databuses (bottom line). Each dot represents a data file and 

indicates which databuses were active for that file. The first vehicle has activity on either both databuses, 

on!yJ1939, or neitherdatabus. The second vehicle either has no databus activity at all, or both databuses 
were active. 
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Bus Activity on Vehicle 5 

Figure 22: Databus activity on a vehicle where some files only had J1939 data. 

Bus Activity on MTVR10 

Figure 23: Databus activity on a vehicle with all or no data on a given file. 

4.1.2.4 Data Timeline 

Start times for each data record were found in the MAT structures source information. End times were 
considered to be the latest time stamp indicated by any databus parameter data element. Figure 24 

provides step plots for each vehicle, where the vehicle is active (on) when the blue data is above the gray 

line, and inactive (off) when below the line. Data from the 18 vehicles covered a time range of about seven 
and a half months, between late April 2015 and early December 2015. Figure 25 shows a zoomed-in view 
of the vehicles' activity for a single day to provide better visibility to the on/off times. 
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Figure 24: Key-on/off times for all vehicles as indicated in the datafiles 

4.1.2.5 Granularity 

As the MTVR data consisted of direct Controller Area Network (CAN) packet captures, the reporting rates 
of the signals are determined by the specifications for J1939 and J1708. Within these specifications, each 

signal has a defined reporting rate, e.g. 100ms for engine RPM. Although the data is collected at the 
highest available frequency, analysis will typically require the data to be aligned to a specific timestamped 

interval, similar to what is done with the army data at 1 Hz. 
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Figure 25: Zoomed in vehicle activity on a single day 
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4,1.2.6 Data Availability 

As shown in Figure 21, each MTVR has a different number of overall data files, and contains different 
quantities of active databus data. Figure 26 provides a visual summarizing how many total hours of 
available data exists for each vehicle. 

Figure 26: Total time of available data in hours for each vehicle sorted most to least time. 

Additionally, each MTVR may contain a different number of signals that is likely dependent on the 
firmware versions of the ECUs and any additional hardware options. Figure 27 shows the number of 
signals found on each databus for all vehicles. 

Figure 27: Number of signals on databases sorted by total number of signals. 

A further breakdown of the typical signals captured across the dataset is provided in Appendix B. 

32 



4.1.3 Navy 

4.1.3.1 Datastorage 

Navy HUMS data was contained in CSV files, with a total of 1,205 files contained in 39 data folders. Each 

folder contained CSV files with raw data, with some containing additional sub-folders organized by date 

and ship. All folders had a summary excel file (Figure 28) that contain metadata; information was not 
provided to interpret the metadata, and therefore it was not used in the analysis. 

Ship# Scan Group Name Asset Name Trend Name fltags in Trend Final File Name (this needs to be standardized) 

0 SHIP004 MER1_Scan_GroupS SHIP004_GTM_2A 07Q_GTM_2A_GEP 59 

1 SHIP004 MER1_3can GroupG SHIP004_GTM_2A 071_GTM_2B_G£P 59 

2 SHIP004 MER1_Scan_Groups SHIP004_GTG_1 072_GTG_1J3EP 44 

3 SHIP004 MER1 _Scan_Groups SHIPQ04_MRG_2 073_MRG_2_GEP 36 

4 SHIP004 MER2_Scan_Groups SHIP004_GTM_1A 070_G™_1A_GEP 61 

CMAS_SHIPCl04_GTM2A_2016_10_13 

CMAS_SH!P004_GTM2A_2016J0_13 

CMAS_SHIP004_GTG1_2016_10_13 

CMAS_SHIP004_MRG2_2016_10_13 

CMAS_SHIP004_GTM_1A_2016_10_13 

Figure 28: Summary files in Navy data folders. 

The filenames had identifiers separated by underscores, with each file name starting with "CMAS", 
followed by the ship number, the specific subsystem, an optional page number for some of the 

subsystems, and a date indicating which of the 39 top folders contained the files. Figure 29 shows the 
composition of these filenames by the meta-data in their name. 

CMAS 

SHIPOOO 

SHIP001 

SHIP002 

SHIP003 

SHIP004 

SHIPOOS 
V V 

Main Reduction Gear Gas Turbine Main Engine 

MPDE1A 

MPDE1B MRG1 

MPDE2A MRG2 

MPDE2B 
'_r_ 

GTG1 

GTG2 

GTG3 

GTM1A 

GTM1B 

GTM2A 

GTM2B 

SSDG1 

SSDG2 

SSDG3 

SSDG4 

SSDG5 

pgT 

PG2 \_ 
YYYY_MM_DDJf##### | ,csv 

only for MPDE_subsystems 

Main Propulsion Diesel Engine Ship Service Diesel Generator 

Gas Turbine Generator 

Figure 29: Filename composition by file meta-data. 

Each subsystem had multiple subsystem IDs associated with them pertaining to the number of those 

subsystems in the ship. For instance, ship 0 and ship 5 contained main propulsion diesel engines with four 

engines; MPDE1A, MPDE2A, MPDE1B, and MPDE28. Ships 2, 3, and 4 contained gas turbine engines with 

four engines; GTM1A, GTM2A, GTM1B, and GTM28. This is shown in Figure 30. Ship 1 had very limited 
data and was not considered for subsequent analysis. 
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Figure 30: Subsystems of the ships by number of files with data. 

The top 39 folders were labeled with dates, as shown in Figure 29, and those dates were used to plot the 
data folders along a timeline, shown in Figure 31, to understand the data distribution. In Figure 31, the 

dots represent dates when each ship had data reported. Ship 0 reported data on 25 days, while Ship 1 

only reported data on nine days. 

Existence of ship data in FILES 
39 folders 

25 

9 

12 

23 

25 

33 

Figure 31: Data files within top folders by ship. 

Specific data elements were analyzed for each ship. Figure 32 was built by layering start and end timelines 
of the raw data for each subsystem CSV file. In this figure, the darker the line, the more the data is 

duplicated during that timeframe. As shown, almost all of the data at the beginning of the data collection 
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period contains overlapping data. Further evidence of this overlap can be seen in Figure 33. There was a 
gap of data missing between April 2017 and mid-June 2017, which is apparent in ail signals. 

SSDG5 
SSDG4 

SSDG3 
SSDG2 
SSDG1 - 

MRG2 

MRG1 - 
g MPDE2BPG2 - 

£ MPDE2BPG1 
$ MPDE2APG2- 

MPDE2APG1 ■ 
MPDE1BPG2 

MPDE1BPG1 - 
MPDE1APG2 

, MPDE1APG1- 

Top Folder - 

This subsystem 

is expanded on 
in the next slide 

Figure 32: Data files timeline by subsystem of Ship 0. 

Figure 33 shows the same plot for a single subsystem of Ship 0, the first page of one of the main propulsion 

diesel engines data (indicated with PG1). The upper section of this plot (above the title) was taken from 

Figure 32 and was further broken down to show the overlapping timelines of the CSV files separately, as 
well as which specific top folder contained the file. It is apparent from this view that the CSV files through 

January of 2017 contain the data from all previous CSV files up to that point. The overlapping data shown 

here were observed consistently across the data, i.e., there was typically significant data repetition 
between different data files. 
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MPDE1APG1 ^ t- 

Ship: SHfPOOO, Subsystem: MPDE1APG1 

Top Folders 

Figure 33: Data files timeline of a specific subsystem of Ship 0. 

The repetition shown in Figure 33 (at the subsystem level) also occurs at the signal level as shown by an 
engine speed signal in Figure 34. For a full list of the PLS signals, see Appendix C. 
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Figure 34: Data uniqueness over the top folders. 

In order to facilitate data analysis, Python code was written to consolidate all ship data into a non- 
overlapping/non-repetitive data set, as shown for engine speed in Figure 35. 



Figure 35: Concatenated unique engine speed data from ship 0. 

4.1.3.2 Granularity 

The interstitial spacing between data points was not constant. At some points, data were sampled every 

1-5 seconds. Other times, there were 10-15 minutes between measurements. Figure 36 shows the time 

between samples for engine 1A on ship 0. The x-axis is time between measurements, and the y-axis is the 
number of data points recorded after that interval. About 100 records were observed with 1 second (10° 
on x-axis) between measurements (the leftmost point in the plot). The majority of points, however, were 
spaced by approximately 10-15 minutes, indicated by the spike at around 103 seconds. The highest point 

on this plot is around 8,000 records (8 x 103 on the y-axis) that were spaced by 10 minutes (6 x 10z on the 
x-axis). This distribution of time intervals was very similar for the other engines as well. From analysis of 

the data, it was determined that higher sampling rates are utilized when data is changing more rapidly in 

order to capture transient behavior. Sampling is more infrequent when data is steady, i.e. during long 
steady state (constant speed and load) conditions typical in ships. 

SHIPOQO - MPDE1APG1 

103 - 

Sampling Intervals (s) 

Figure 36: Sampling intervals of one specific subsystem of data. 

4.1.3.3 Meta-Data Typos 

The file naming convention was previously shown in Figure 29. Flowever, a few files contained typos in 

the meta-data that were clearly different from the established format. Some filenames had extra or 

missing underscores in the name, while others were missing a 'PG1' or'PG2' tag. The number of erroneous 
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filenames was small enough (47/1,205) that they were changed by hand and recorded in a table to keep 

record of the corrections. Table 11 shows a list of corrected typos in the filenames before and after the 
fix by top folder. 

Folder 

GEP_20T61013 

GEP_20161013 

GEF_20161013 

GEP_2016t0t3 

G£P_2Q161020 

GEP_201&1121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP„20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP„20161121 

GEP_20161121 

GEP_20161121 

G6P_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_2016112t 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP_20161121 

GEP„20161121 

GEP_20161121 

GEP_20170329 

Table 11: Corrected filename typos. 
Old Filename 

CMAS_SHIPQOO_MPDE1A_PG1_2Q16_10_13_154255 CSV 

CMAS_SHIP000_MPOE2A_PG22016_10_13_154422 csv 

CMAS_SHIPOOO_MPDE2B_PG12016_10_13_154435 CSV 

CMAS_SHIP005_MPDE28_PD22016_10„13,153316 csv 

CMAS_SHIP005_MPOE1B_PD12016_10_20_105715. CSV 

CMAS_SH I P000_M PD E_ 1 A_2016_ 11 _22_091712 csv 

CM AS_ SH IPOOO_M P D E_ 1 A_2016_ 11 _22_091733. CSV 

CMAS_SHIP000_MPDE_1 B_2016_11_22_091752 csv 

CM AS_SH IP000_M P D E_ 1 B_2016„11_22_091805 CSV 

CM AS_SHIP000_M P DE_2 A_2016_ 11 _22_091828. csv 

CMAS^SHlP000_MPDE_2A_2016_ 11 ^22,091843 csv 

CMAS_SH!PQGQ_MPDE_2B_2Q 16_11_22_091909. csv 

CMAS_SH!POOO_MPDE_2B_2U 16„11 _22„091924 csv 

CMAS_SHIP005_MPDE_1A_2016_11_22_085841.CSV 

CMAS_SHtP005_MPDE_1A_20l6_11_22_085915 CSV 

CMAS_SHIP005_MPDE_1 B_2016_11_22_085939 csv 

CMAS_SHlP005_MPDE_1fl_2016_11_22_090640 csv 

CMAS_SH I P005_MPDE_2A_2016_11 _22_091044. csv 

CMAS_S HI PQ05_MP DE_2 A_2016_ 11 _22_091152 CS v 

CMAS_SHIP005_MPDE_2B_2016_11_22_091256.csv 

CMAS_SHIP005_MPDE_2B_2016_11_22_0913t5 CSV 

CMAS_SHIPOOO_MRG_1_20t6_11_22_09l942 csv 

CMAS_SHIPOOO_MRG_2_2016_11_22_092001 csv 

CMAS„SHIP005_MRG_2_2016^11„22,091423 CSV 

CMAS_SHIP005_MRG_12016_11_22_091345.CSV 

CMAS_SHIP005_SSDG J 2016,11_22_091437 csv 

CMAS,SHIP005_SSDG_22016_11_22_091504 CSV 

CMAS_3HIP005_SSDG_32016_11_22_091521 csv 

CMAS,SHIP005„SSDG_42Q16_11_22_091544 CSV 

CMAS_SHIP005_SSDG_52016_11_22_091618csv 

CMAS_SHIPOOO_MPDE1A_2016_11,22,091712 CSV 

CMAS.SH I P000_MPDE 1 A_2016_11_22_091733 CSV 

CMAS,SHIP005 MPDE2B_2016_11 _22_091256 csv 

CMAS_SHIP005_MPDE2B_2016_11_22_091315 csv 

CMAS_SHIP005,MPDE2A_2016_11_22_091044 CSV 

CMAS_SHIP005_MPDE2A_2016_T1_22_091152.csv 

CMAS_SH I P005_M POE 1 B_2016_ 11 _22_085939 CSv 

CMAS_SH I P005_M POE 1 B_20l6_11_22_0 90640 csv 

CMAS_SHIP005_MPDE 1 A_2016_11.22,085841 CSV 

CMAS_SH! P0G5_M PDE1 A_2016_11 _22_085915 CSV 

CMAS_SH f POOG_MPDE2B_2016_11_22_091909 csv 

CMAS_SH I P000_M PDE2B_2016_11 _22_091924 CSV 

CMAS.SHf POOO_M PDE2A_2 016_ 11 _22_091828. cs v 

CMAS_SHfP0OO_MPDE2A_20l6_11,22_091848 csv 

CMAS_SH1P000_MPDE 1 B_2016_11_22_091752.CSV 

CMAS_SHIP000_MPDE1B_2016J1,22_091805 CSV 

CMAS_SHIPOQO_MPDE2B_2017_03_29_093653. CSV 

New Filename 

CMAS_SHlP0O0_MPDEIA_PG1_2016_1O„13_154255 CSV 

CMAS_SHIP00O_MPDE2A_PG2_2016_10_13_154422 CSV 

CMAS_SHlPOOO_MPDE2B_PG1_2016_10_13_154435csv 

CMAS_SHIP005_MPDE2B_PG2_2016_10_13_153316. csv 

CMAS.SHI POOS _MPDE 1 B_PG 1_2016_10_20_105715. csv 

CMAS_SHIPOOO_MPDE1A_2016_t1_22_091712.csv 

CM AS_SHIPOOO_MPDE 1 A,2016_11 _22_091733-CSV 

CMAS_SHIP000_MPDE18_2016_11_22_O91752.csv 

CMAS_SHIP000_MPDE 1B_2016_11.22,091805 csv 

CMAS.SHIPOO0_MPDE2A_2016_t1_22_O91828.CSV 

CMAS_SHiP000_MPOE2A_2016_t1_22_09l843 csv 

CMAS_SHIP000_MPDE2B_2016_t1_22_091909 CSV 

CMAS_SHIPOOO_MPDE2B_2016_t1_22_091924 csv 

CMAS_SHIP005_MPDE 1A_2016_11_22_Q85S41 CSV 

CMAS_SHIP005_MPDE 1 A_2016_11_22_085915 csv 

C M AS_SH IP OOS.MPDE 1 B_2 016_11 _22_085939 CSV 

CMAS.SHI P005_MPDE 1 B_2016_11 _22_090640 csv 

CMAS_SHIP005_MPDE2A_2016_11_22_091044 CSV 

CMAS.SH I POO 5_M PDE2A_2016_ 11 _22_091152 cs v 

CMAS_SHIP005_MPDE2B_2016_11_22_091256 CSV 

CMAS_SHIP005_MPDE2B_2016_11_22.091315 csv 

CMAS_SHIP00O_MRG1.2O16_11_22_091942 CSV 

C MAS_S HI P000_M RG2_2016_ 11 _22_092001. CSV 

CMAS_SHIP005_MRG2_20l6_11_22_091423csv 

CMAS_SHIP005.MRG1_2016_11_22_091345 CSV 

CMAS_SH|P005_SSDG1_2016_11_22_091437 CSV 

CMAS_SHIP005_SSDG2_2016_11_22_091504 csv 

CMAS_SHIP005_SSDG3_2016_11_22_091521 CSV 

C M AS_SH I POO 5_SS DG4_2016_11 _22„091544 csv 

C M AS_SHI POO 6_S S DG5.2016_11 _22_091618. csv 

CMAS_SHIPOOO_MPDE 1 A_PG1_2016_11_22_0917l2.csv 

CM AS_SH IP000.M PDE 1 A_PG2_2016_11 _22_091733. CSV 

CMAS_SHIP005_MPDE2B_PG1_2016_11_22_091256 csv 

CMAS_SHIPOO5_MPDE2B_PG2_2016_11_22_O91315.CSV 

CMAS_SHIP005_MPDE2A_PG1_2016_11_22_09l044csv 

CMAS_SHIP005_MPDE2A_PG2_2016_11_22_091152.CSV 

CMAS_SHfP005_MPDE 1 B_PG1_2016_11_22_085939 csv 

CMAS_SHIP005_MPDE 1B_PG2_2016_11_22_090640 CSV 

CMAS_SHIP005_MPDE 1A_PGl_20l6_n_22_085841 csv 

CMAS_SHIP005_MPDE 1A.PG2_2016_11_22_0S5915 CSV 

CMAS_SHIPQQO_MPDE2B_PG1_2016_11_22_091909.CSv 

CMAS_SHIPOOO_MPDE2B_PG2_2016_11„22_091924 csv 

CMAS_SHIP00O_MPDE2A_PG1_2O16_11_22_091828 CSV 

CMAS_SHIP000_MPDE2A_PG2_2016_11_22_091848 CSV 

CMAS_SHIP000_MPDE 1 B_PG1_2016_11_22_091752-CSV 

CMAS.SHIPOOO.MPDE 1 B_PG2_2016_11 _22_091805 csv 

CMAS_SHI POO0_MPDE2B_PG2_2O17_Q3_29_093653 CSV 
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4.1.4 Comparative Analyses across Different Platforms 
A high-level review of the HUMS data sets is shown in Table 12. The Army CDF data format is a well- 
documented, compressible format that is suitable for collection and transfer of extensive data off the 

vehicle to a back-end data analysis system. Additional documentation of the interpretation of DTCs within 

the CDF format is necessary, however, as the format does not appear to follow the databus specification. 

The CDF files are easily read in a traditional data analysis software, such as Python, through existing 
libraries. 

Although the Navy data has significantly more engine signals, the long duration between samples makes 

modeling of the system behavior difficult. Conversely, the Army and Marine Corps data consists only of 
typical J1939 and J1708 databus signals reported by the vehicle Original Equipment Manufacturers 
(OEMs). This is a limited subset of data, but it is typically reported and stored at higher rates than the 

Navy data. Obtaining additional proprietary signal data through the OEMs, or adding selected signals to 
the HUMS system, could enhance the PHM capability of those systems. 

From a modeling perspective, the best option would be a high number of signals reported at a very 
frequent rate. Using the engine as an example system, the smaller number of signals provided by the 

FMTV and MTVR means that the ability to correlate between signals and make meaningful system level 
comparisons is reduced. However, the with the naval ship data, there are significantly more signals, but 
the ability to model some of the higher speed system dynamics is limited by the lower data sampling rates. 

Although the data collection and storage mechanisms are significantly different, the one significant piece 
of data that is enabled through all systems is the tracking of usage histories. The usage of specific 

components or subsystems (e.g. engine ortransmission) and the potential to link that information to life- 
cycle tracking is beneficial. 

Table 12 - Overview of HUMS Data sets 

Army Navy Marine 

Corps 

Comments 

Data format CDF CSV CSV/MAT The CDF format is well documented and 

provides an easily compressible format. The 

Marine Corps MAT file are easy to work with 

as the data is well structures, but the 

associated file size is too large. 

Number of 

Vehicles 

Analyze (Fleet 

size) 

447 2 IS For the Army and Marine Corps vehicles, only 

vehicles with valid data were considered. For 

the Navy data, only ships with diesel engines 

were considered. 

Total Number 

of Signals 

~141 159 ~202 The number of signals varies slightly on the 

Army and Marine Corps vehicles depending on 
what the databus is reporting and what the 

data acquisition system is set-up to record. 
The Navy list consists of signals specifically for 

the LPD and does not include the guided 

missile destroyers or cruisers. 
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Army Navy Marine 

Corps 

Comments 

Time Range of 

Data 
19 Dec 2012 - 
14 May 2014 

7 Sep 2016 - 26 Jul 
2017 

28 Apr 2015- 

3 Dec 2015 

Total Engine 
Hours Across 

the Fleet 

285,929 46,061 8,615 

Number of 

Engine Signals 

~20 ~79 "12-15 

associated 

signals 

The Naval ships have significantly more signals 

being collected for the engines (ex. exhaust 

temperatures for each cylinder). The Army 

and Marine Corps data are similar, with the 

difference in signals attributed to the Army 

data also containing a J1708 databus. 

Sampling rate 1 sec Varying, storage of 

signals ranges from 
seconds to minutes 

depending on the 

variability of the data 

itself 

~100 ms The Marine Corps data is direct capture and 

therefore is the most frequent; the loss of 

resolution in Army data is minor. The 

extended sampling times of some of the Navy 

data will impact the ability to model those 
systems. 

DTCs Exist Do not exist Exist Diagnostic Trouble Codes exist within the 

Army and Marine Corps data, but it should be 

noted that the Army data conversion of the 

codes is not intuitive. The Marine Corps DTCs 

may be converted utilizing the databus 
specification 

4.2 Analysis of Maintenance Data 
A key component of many prognostic development approaches is ground truth data. Understanding when 

a vehicle is operating normally and when the vehicle is in need of repair can aid in developing training, 
testing, and validation data sets. RIT requested maintenance data for all three of the platforms for which 

HUMS data was supplied. The Army provided maintenance data that included information of the fault, 

labor hours, and parts replaced by work order. No maintenance data was supplied for the Marine Corps 
MTVR. The Navy chose to provide HUMS data sets that were associated with specific events. In particular, 
the naval ship faults were classified as one of three types, and each data set consisted of a ship ID, a fault 

type, a fault date, and the HUMS data leading up to the date. The subsections below focus mostly on the 
FMTV, as this vehicle had maintenance work order data. The maintenance data was used to guide some 

of the follow-on data analysis investigations and identifies which systems and components most warrant 
PHM coverage. 

4.2.1 Army 

TARDEC supplied RIT with maintenance data for five families of vehicles: the Family of Medium Tactical 
Vehicles (FMTV), the Heavy Expanded Mobility Tactical Truck (HEMTT), the Heavy Equipment Transporter 

(HET), military line haul tractor (LineHaul), and the Palletized Load System (PLS). The maintenance data is 

a capture of the data collected in Global Combat Support System-Army (GCSS-Army). The data includes, 

but is not limited to, the serial number of the asset being maintained, the fault date, a description of the 
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fault, part replacement information, labor hours, and the completion date. The focus of the analysis was 
the FMTV, since HUMS data also exists for that platform. 

This project focused on Condition Based Maintenance, including Prognostics Health Management. Typical 

strategies for maintenance are based on frequency and severity of the failure, as shown in Figure 37. PHM 

is typically applied to high severity failures with a relatively low occurrence. 

Severity of failures in military ground assets is typically tied 

to the deadline status of the asset and how long the asset is 
out of service, as measured by readiness at a particular point 

in time and availability over some time interval. A deadline 
status for the maintenance event does not exist within the 

supplied TARDEC data. In previous research programs 
conducted by RIT, deadline information existed in separate 

systems that track unit readiness. Since the data was not 

available for this project, in an attempt to understand 

downtime, an evaluation of the fault date and the work 

order completion date was performed. Unfortunately, 
utilizing these dates does not provide an indication of the 
downtime as it was determined through evaluation of the 

HUMS data that the vehicles continued to operate within 
that time period. Therefore, the analysis of the maintenance events focused on cost and frequency of 
repair. 

4.2.1.1 Maintenance Data 

The maintenance data was structured into records - essentially rows of information, with a single work 
order typically consisting of multiple data records. The typical work order has a first record for initial 

inspection of the problem and a last record for final inspection. The records in between consist of a record 
per component that was replaced or operation that was performed. A simplified example is shown in 

Table 13 for a "DRIVER AND PASSAGER SIDE DOOR HANDLES DAMAGED" fault. In addition, each record 
in a work order has the same fault description, fault date, serial number, and work order number. 

Table 13 - Typical rows in a maintenance record for a work order 

Correction Narrative 

Action 

Description Part NSN Part Nomenclature 

Part 

Qty 

Total Man 

Hours 

Task 

# 
Total 

Cost 

REPLACED BOTH DOOR HANDLES 
Initial 
Inspection 0.2 1 

REPLACED BOTH DOOR HANDLES Replaced 2540013757994 LATCH.DOOR. VEHICULA 1 0.3 2 57.73 

REPLACED BOTH DOOR HANDLES Replaced 2540013757995 LATCH.DOOR, VEHICULA 1 0.3 3 51.89 

REPLACED BOTH DOOR HANDLES Replaced 5342014829230 LINKAGE CLIP 6 0.3 4 47.16 

REPLACED BOTH DOOR HANDLES Replaced 3040013757321 
ACTUATOR, 
MECHANICAL, N 1 0.3 5 43.33 

REPLACED BOTH DOOR HANDLES Replaced 3040013757322 
ACTUATOR, 
MECHANICAL, N 1 0.3 6 41.57 

REPLACED BOTH DOOR HANDLES Replaced 5305014340879 SCREW, MACHINE 6 0.3 7 0.78 

REPLACED BOTH DOOR HANDLES Replaced 3040013757397 CONNECTING LINK, RIGID 2 0.3 8 7.8 

REPLACED BOTH DOOR HANDLES Replaced 3040013756341 CONNECTING LINK. RIG 2 0.3 9 8.32 

REPLACED BOTH DOOR HANDLES Replaced 2540013763998 HANDLE. DOOR. VEHICUL 1 0.3 10 212.33 

Frequency / -* 

I.el if fail 

PHM 

Figure 37 - Maintenance Strategies based an 
frequency and severity of failures used in the 

automotive industry. 
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Correction Narrative 
Action 

Description Part NSN Part Nomenclature 
Part 
Qty 

Total Man 
Hours 

Task 
# 

Total 
Cost 

REPLACED BOTH DOOR HANDLES Replaced 2540013763999 HANDLE. DOOR, VEHICUL 1 0.3 11 250.3 

REPLACED BOTH DOOR HANDLES Replaced 5342014800093 CONTROL ROD 2 0.3 12 6.6 

REPLACED BOTH DOOR HANDLES Replaced 5342014800092 CONTROL ROD 2 0.3 13 13 84 

REPLACED BOTH DOOR HANDLES Replaced 3040013757323 
ACTUATOR. 
MECHANICAL, N 1 0.3 14 152.13 

REPLACED BOTH DOOR HANDLES Replaced 3040013776805 
ACTUATOR, 
MECHANICAL, N 1 0.3 15 139.64 

REPLACED BOTH DOOR HANDLES 
Final 
Inspection 0.3 16 

An initial analysis was performed on the data to identify the extent of the maintenance data. The focus 
of this initial analysis was to identify the date range of the data, as well as a number of work orders and 
replacement part National Stock Numbers (NSNs) ordered. In Table 14, a breakdown of the extent and 

quantity of data by family type is shown. However, the maintenance contains a number of entries where 

the work order number was entered as a form of “Not Available". Therefore, the number of distinct work 
orders includes only a single work order count for the "Not Available (N/A}" entries. In order to identify 
distinct work orders labeled as "Not Available", the combination of distinct serial numbers and fault dates 

was utilized. The counts of these work orders and how many required ordering parts is highlighted in 
orange in the table. For example, the FMTV has 956 distinct work order numbers, but one of those work 

order numbers is "Not Available". The work orders labeled as "Not Available" may be able to be further 
broken down into 713 distinct work orders utilizing an analysis of the serial number and fault date of the 
work order. Out of these work orders, 820 of the 956 work orders required parts and an additional 393 

of the N/A work orders required parts. It should be noted that information relating to the faults and 

vehicles may not be lost without a work order number; however, the analysis is further complicated 
without this information. 

Table 14 - Extent of the TARDEC Supplied Maintenance Data 

Vehicle 

Family 

First Fault 

Date 

Last Fault 

Date 

Number 

of 

Distinct 

Vehicle 

Serial #'s 

Number 

of Distinct 

Work 

Orders 

Number of 

Work Orders 

where parts 

were 

required 

Number 

of Work 

Orders 

Labeled 

N/A 

Number of 

N/A Work 

Orders where 

parts were 

required 

Number of 

Distinct 

NSNs 

ordered 

Total 

Number 

of Parts 

Ordered 

FMTV 10/26/2012 3/3/2015 521 956 820 713 393 687 5341 

HEMTT 10/22/2012 2/25/2015 674 1695 1476 1267 759 987 8296 

HET 11/14/2012 2/12/2015 87 206 184 177 84 231 881 

LineHaul 11/28/2012 2/26/2015 107 377 343 254 151 271 2468 

PLS 12/12/2012 1/14/2015 132 296 252 182 115 353 1618 

Additionally, the labor hours and parts costs were summarized by family type, as shown in Table 15. Once 
again, the totals include all work orders (including those labeled as "Not Available"). The total 
maintenance cost is computed as: 

Total Maint. Cost = Total Parts Cost + (Total Labor Hours labor rate) , 
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Similarly, the totals were computed for all N/A work orders, as well as the percentage of total cost that 

the N/A work orders represent, to show the amount of costs that are more difficult to trace. 

Table 15 - Maintenance Costs by Vehicle Family 

Vehicle 

Family 

Total 

Labor 

Hours 

Total Parts Cost Total Maint. Cost 

N/A WO 

Labor 

Hours 

N/A WO Parts 

Cost 

N/A WO Maint. 

Cost 

% of Total 

Cost on 

N/A WO 

FMTV 15279.9 $ 592,597.26 $ 1,280,192.76 3069.6 $ 135,126.86 $ 273,258.86 21.3% 

HEMTT 26657.4 $ 2,635,221.77 $ 3,834,804.77 6469.7 $ 917,665.56 $ 1,208,802.06 31.5% 

HET 3999.2 $ 425,968.18 $ 605,932.18 1049.2 $ 48,745.20 $ 95,959.20 15.8% 

LineHaul 6129.4 $ 242,814.15 $ 518,637.15 454.5 $ 45,483.10 $ 65,935.60 12.7% 

PLS 5199.8 $ 298,937.58 $ 532,928.58 590.6 $ 41,426.74 $ 68,003.74 12.8% 

Unfortunately, key usage information is missing in the maintenance data, i.e. vehicle mileage and/or 

engine hours. Without this data, it is difficult to put the costs in cost per mile context for fleet comparisons 

(across fleets or overtime). Instead, the best normalization method available is to evaluate the data based 

on the number of service years and number of vehicles represented by the work orders. In an integrated 
data environment with HUMS data, this could easily be calculated. 

Number of Days between First and Last Fault Date 
Number of Service Years =--- , 

Table 16 - Maintenance Costs across Army Vehicles 

Vehicle 

Family 

Number 

of 

Vehicles 
Number of 

Service Years 

WO per 

Vehicle per 

Year 

Parts per 

Vehicle per 

Year 

Labor Hours 

per Vehicle 

per Year 

Total Cost per 

vehicle per 

year 

FMTV 521 2.35 1.36 4.36 12.49 $ 1,046.05 

HEMTT 674 2.34 1.87 5.25 16.88 $ 2,427.79 

HET 87 2.24 1.96 4.51 20.48 $ 3,102.37 

LineHaul 107 2.24 2.62 10.27 25.52 $2,159.08 

PLS 132 2.09 1.73 5.87 18.86 $ 1,932.74 

Per the analysis in Table 16, the FMTV has the lowest cost per vehicle per year and the HET has the highest, 
almost three times the FMTV cost; no cause for this difference in apparent maintenance cost was 

identified. 

4.2,1.2 Army Maintenance Data Drill-down 

A deeper analysis of the maintenance data was performed to support inferences around high value areas 
for CBM, in particular to: 1) Identify frequent unscheduled maintenance events and 2) Identify high cost 

maintenance events. The latter can be further evaluated by total cost, high value component cost, and 

high labor cost. In order to attain the first goal, RIT needed to identify the work orders that included 
scheduled maintenance events. From a review of the data, it was determined that the Fault Description 

could be used to identify scheduled maintenance by filtering for the following search terms: "annual”, 
"ennial", ”5000", and "semi". Using these filters, the number of Work Orders containing scheduled 
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maintenance were determined, as shown in Table 17. In this analysis, scheduled maintenance is not 

considered toward implementation of a CBM program. However, scheduled maintenance activities 

should periodically be reviewed to identify areas where schedules may be modified or implantation of 
condition monitoring may be applied, i.e. oil quality monitoring vs. changes every 5,000 miles. 

Table 17 - Work Orders Containing Scheduled Maintenance 

Vehicle Family Number of Work Orders Containing 
Scheduled Maintenance 

Percentage of Total Work Orders 

Containing Scheduled Maintenance 

FMTV 386 40.4% 

HEMTT 465 27.4% 

HET 61 29.6% 

LineHaul 131 34.7% 

PLS 142 48.0% 

Interestingly, the FMTV has the lowest number of work orders per year, as well as the lowest cost per 
vehicle per year, followed by the PIS. The PIS and the FMTV have the highest percentage of scheduled 
work orders, suggesting that the cost of maintenance on the other platforms is being driven by 
unscheduled maintenance. 

For the parts and labor analysis, the full data set, as well as a dataset removing scheduled maintenance 

work orders, was analyzed. The goal of the separate analysis was to identify and remove parts that are 
typically replaced during scheduled maintenance. 

4.2.1.3 Subsystems Breakdown 

As PHM models typically relate to functional importance and failure rate/severity, it is useful to break the 
maintenance data down by system or subsystem. The data provided did not explicitly include a subsystem 

breakdown; however, the first two digits of the Functional Work Group appear to indicate the subsystem 

of the component. Table 18 shows a breakdown of the subsystems from the Functional Workgroup. All 
other two digit combinations were labeled as "Other" or N/A. Major subsystems were analyzed 
separately. 

Table 18 - Subsystem breakdown 

First Two Digits of 

Functional Work Group Subsystem 

01 Engine 

03 Fuel 

04 Exhaust 

05 Cooling 

06 Electrical 

07 Transmission 

08 Drivetrain 

09 Drivetrain 
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First Two Digits of 

Functional Work Group Subsystem 

10 Axles 

11 Axles 

12 Compressed Air 

13 Wheel Hub/Tires 

14 Steering 

15 Towing 

16 Suspension 

18 Troop Compartment 

20 Crane/Hoist/Towing 

24 Hydraulics 

33 Comms 

52 A/C 

4.2.1,4 FMTV 

As RIT only had HUMS data for the FMTV, the drill down maintenance analysis focused on the FMTV. The 
data was analyzed by subsystem, both with and without scheduled work orders and was only evaluated 

within the time range of the HUMS data (19 Dec 2012 - 14 May 2014). Each subsystem was analyzed 

separately to provide a list of top maintenance items. For the purposes of the analysis, the labor cost was 
assumed to be $45/hr. 

A quick analysis of the maintenance data was performed to identify which subsystems have the highest 

impact to cost and labor. Table 19 shows the subsystems broken down by labor hours, parts cost and 
total cost, with the systems sorted by total cost. The last column provides visibility into the degree to 

which the total cost is driven by labor for each subsystem. Further analysis included a separate analysis 

of each subsystem with a total cost over $50,000, and an additional analysis of the remaining subsystems. 

Table 19- Subsystems order by total cost of replacement 

Subsystem 

Total Labor 

Hours Total Parts Cost 

Total Cost of 

Replacements 

% of Total Cost From 

Labor 

Electrical 461.8 $ 188,141.85 $ 208,922.85 9.95% 

Other or N/A 787 $ 61,803.52 $ 97,218.52 36.43% 

Axles 330.9 $ 50,938.88 $ 65,829.38 22.62% 

Engine 233.8 $ 54,531.58 $ 65,052.58 16.17% 

Troop Compartment 357.7 $ 40,584.44 $ 56,680.94 28.40% 

Transmission 103.6 $ 45,986.03 $ 50,648.03 9.20% 

Wheel Hub/Tires 87.6 $ 46,627.98 $ 50,569.98 7.80% 

Hydraulics 138.3 $ 24,232.28 $ 30,455.78 20.43% 
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Subsystem 

Total Labor 

Hours Total Parts Cost 

Total Cost of 

Replacements 

% of Total Cost From 

Labor 

Fuel 204.1 $ 18,620.46 $ 27,804.96 33.03% 

Compressed Air 205 $ 13,879.93 $ 23,104.93 39.93% 

Comms 66.3 $ 11,823.12 $ 14,806.62 20.15% 

Cooling 67.4 $ 7,169.43 $ 10,202.43 29.73% 

Suspension 42.6 $ 6,526.92 $ 8,443.92 22.70% 

Steering 69.8 $ 4,708.58 $ 7,849.58 40.01% 

Crane/Hoist/Towing 45.9 $ 4,753.71 $ 6,819.21 30.29% 

Drivetrain 27.6 $ 1,167.78 $ 2,409.78 51.54% 

Exhaust 7.5 $ 212.05 $ 549.55 61.41% 

A/C 1.2 $ 168.15 $ 222.15 24.31% 

4.2.1.4.1 Electrical Subsystem 

The electrical subsystem is notable for both a high total parts cost and a high labor cost. 

4.2.1.4.1.1 Electrical Subsystem Analysis based on Part Cost: 

A total of 13 distinct NSN numbers were identified with a component cost over $1,000. Table 20 contains 
the five highest cost components, plus one additional component, highlighted in gray, that was included 
due to the high number of replacements. All of the 13 components over $1,000 were replaced during 
unscheduled maintenance. 

Table 20 - Electrical Subsystem parts replaced with the highest unit cost 

Part NSN Part Nomenclature 

Component 

Cost 

Total 

Work 

Orders 

Total 

Replacements 

Average Man 

Hours per w/o 

Total WO 

Cost 

5998014816794 ELECTRONIC COMPONEN $ 5,269.81 1 1 0.3 $ 5,283.31 

5998015267653 ELECTRONIC COMPONENTS $ 5,176.28 1 1 0.5 $ 5,198.78 

5998014842619 ELECTRONIC COMPONENTS $ 4,899.41 1 1 2.0 $ 4,989.41 

6110014983928 PANEL,POWER DISTRIB $ 2,374.20 1 1 3.0 $ 2,509.20 

2920015592715 GENERATOR,ENGINE ACCE $ 1,952.00 8 8 2.9 $ 16,651.00 

6115015040680 GENERATOR,ALTERNAT! $ 1,167.00 12 12 1.7 $ 14,944.50 

4.2.1.4.1.2 Electrical Subsystem Analysis based on Total Replacements across the Fleet 

The most replaced components in the electrical system are the batteries, followed by headlights and the 

generator (alternator), see Table 21. The majority of the replacements occurred during unscheduled 
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maintenance. Adding basic health/condition monitoring for these main components, i.e. batteries and 

alternator, may provide a better understanding of the failure root-causes, potential failure mitigation 
opportunities, and opportunities for prognostics. However, for the headlights, the current identification 
practices (manual) should suffice due to the lower operational severity associated with failure. 

Table 21 - Electrical Subsystem parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Total 

Number of 

Work Orders 

Total 

Number 

Replaced 

Unscheduled 

Work Orders 

Unscheduled 

Replacements 

6140014851472 BATTERY,STORAGE $ 379.03 0.4 59 214 57 206 

6140014469506 BATTERY, STORAGE $ 106,97 0.3 25 93 21 77 

6220015027312 HEADLIGHT $ 28.31 0.6 26 30 26 30 

6115015040680 GENERATOR,ALTERNATl $ 1,167.00 1.7 12 12 12 12 

6220015021852 HEADLIGHT $ 69.29 0.6 9 11 9 11 

4.2.1.4.1.3 Electrical Subsystem Analysis based on Highest Average Labor Cost 
The electrical system contained 15 different MSN numbers with average labor of two hours or more. The 

seven NSNs with three hours or more of labor are provided in Table 22. The two items highlighted in gray 

were performed while the vehicle was in for scheduled maintenance; however, these do not appear to be 
typical scheduled maintenance items. 

Table 22 - Electrical Subsystem parts replacements sorted by average labor cost 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Number of 

Work Orders 

Number of 

Replacements 

2530015597462 CABLE AND CONDUIT A 5 751.67 15.0 1 1 

6150015675977 WIRING HARNESS,BRAN $ 1,153.67 15.0 1 1 

2540015222431 CONTROL BOX,WINDSHIEL $ 314.38 5.5 1 1 

2920014604019 STARTER,ENGINE,ELECTR $ 426.00 5.2 3 3 

5935014791602 C0NNECT0R,PLU6,ELECTR $ 2.24 5.0 1 1 

6130015022579 BATTERY POWER SUPPL $ 645.04 3.5 4 4 

6110014983928 PANEL,POWER DISTRIB $ 2,374.20 3.0 1 1 

4.2.1.4.1.4 Electrical Subsystem Analysis based on Highest Total Cost (including labor) 
As previously shown in Table 19, electrical system repairs have a significant cost ($208,922.85) relative to 
other systems. Although the majority of these costs are associated with batteries, many other 

components have high total replacement costs as shown in Table 23. There are an additional 13 

components with total replacement costs over $1,000 that are not shown in Table 23. 
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Table 23 - Electrical Subsystem parts with the highest total maintenance cost 

Part NSN Part Nomenclature 

Component 

Cost 

Unscheduled 

Work Orders 

Total 

Work 

Orders 

Unscheduled 

WO Cost 

Total WO 

Cost 

6140014851472 8ATTERY,STORAGE $ 379.03 57 59 $ 82,287.68 $ 85,427.92 

2920015592715 GENERATOR,ENGINE ACCE $ 1,952.00 8 8 $ 16,651.00 $ 16,651.00 

6115015040680 GENERATOR,ALTERNATI $ 1,167.00 12 12 $ 14,944.50 $ 14,944.50 

6140014469506 BATTERY, STORAGE $ 106.97 21 25 S 9,393.19 $ 11,397.21 

5945015018715 RELAY ASSEMBLY $ 579.70 9 9 S 5,896.80 5 5,896.80 

5998014816794 ELECTRONIC COMPONEN $ 5,269.81 1 1 $ 5,283.31 $ 5,283.31 

5998015267653 
ELECTRONIC 

COMPONENTS S 5,176.28 1 1 $ 5,198.78 $ 5,198.78 

5998014842619 

ELECTRONIC 

COMPONENTS $ 4,899.41 1 1 $ 4,989.41 $ 4,989.41 

2920014873587 STARTER,ENGINE,ELECTR $ 632.19 6 6 $ 4,477.14 $ 4,477.14 

6130015022579 BATTERY POWER SUPPL $ 645.04 4 5 $ 3,201.16 $ 3,985.70 

4.2.1.4.1.5 Conclusions of the Electrical System Maintenance Analysis 

Electrical system costs are dominated by battery replacements (NSNs 6140014851472 and 
6140014469506}. At a total cost of $100,372.42 over the period of study, the cost of batteries is more 
than the cost of repairs to any other subsystem in Table 19. RIT did not receive information regarding 

how battery charge is managed on this fleet of vehicles, but previous fleet studies by RIT have shown that 

charge management plans are typically ineffective on lightly used military vehicles, and that enhancing 
charge management can significantly improve lead-acid battery life. Additionally, the alternator, starter, 

and relay assembly (6115015040680, 2920014873587, and 5945015018715) are systems worthy of 

further health monitoring and predictive maintenance consideration due to the number of replacements 
over the study period. 

4.2.1.4.2 Axles 

4.2.1.4.2.1 Axles Subsystem Analysis based on Part Cost: 

Only three axle components were identified as high cost items, as shown in Table 25. However, all three 
components were replaced during unscheduled maintenance. Although these items are high cost and 

potentially have high operational impact, further understanding of the failure root-cause, current 
maintenance procedures, and operational impacts is needed to understand whether condition monitoring 
might be warranted. 
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Table 24 - Axle subsystem parts replaced with the highest unit cost 

Part NSN Part Nomenclature 

Component 

Cost 

Total 

Work 

Orders 

Total 

Replacements 

Average 

Man 

Hours 

per w/o Total WO Cost 

2520015192773 AXLE ASSEMBLY,AUTOMOT $ 15,119.00 1 1 6.8 $ 15,425.00 

2520015048169 AXLE ASSEMBLY, AUTO MOT $ 3,658.00 2 2 5.0 $ 7,766.00 

3040013638153 SHAFT,STRAIGHT $ 749.50 1 1 4.6 S 956.50 

4.2.1.4.2.2 Axles Subsystem Analysis based on Total Replacements across the Fleet 

The majority of the high replacement components for the axles occur during scheduled maintenance, as 
shown in Table 25, with the unscheduled replacements being significantly lower. The maintenance data 

suggests that a scheduled replacement strategy is used with these components. Failure causes and 
operational impacts associated with unscheduled replacements would need to be better understood 
before considering condition monitoring. 

Table 25 - Axle subsystem parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Total 

Number of 

Work Orders 

Total 

Number 

Replaced 

Unscheduled 

Work Orders 

Unscheduled 

Replacements 

5331013921637 O-RING $ 2.36 0.1 66 1202 2 16 

5330013605252 SEAL,PLAIN ENCASED $ 41.85 0.3 88 428 5 10 

5330013607753 SEAL,PLAIN ENCASED $ 28.06 0.2 23 164 6 22 

5330013624993 SEAL,PLAIN $ 3.29 0.1 21 153 4 17 

4.2.1.4.2.3 Axles Subsystem Analysis based on Highest Average Labor Cost 
Table 26 provides the results of the axels subsystem data analysis based on average labor cost. When 

analyzing the highest labor cost items, the first three items were identical to the high unit cost items. The 
fourth item was the only other item with over three hours of labor. It should be noted that all of these 

repairs occurred during unscheduled maintenance. 

Table 26 - Axle subsystem parts replacements sorted by overage labor cost 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Number of 

Work Orders 

Number of 

Replacements 

2520015192773 AXLE ASSEMBLY,AUTOMOT $ 15,119.00 6.8 1 1 

2520015048169 AXLE ASSEMBLY, AUTO MOT 5 3,658.00 5.0 2 2 

3040013638153 SHAFT, STRAIGHT $ 749.50 4.6 1 1 

5330013623392 SEAL,NON METALLIC ROUN $ 5.32 3.4 2 3 
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4.2.1.4.2.4 Axles Subsystem Analysis based on Highest Total Cost (including labor} 
The five highest total cost items in the axle subsystem are shown in Table 27. The next highest cost item 

was significantly less expensive at $1,488. The majority of the items replaced were done so during routine 

maintenance, with the two axle assemblies (NSNs 2520015192773 and 2520015048169) being the 
exceptions. These two axle assemblies were also the most expensive unscheduled maintenance repairs. 

Table 27- Axle subsystem parts with the highest total maintenance cost 

Part MSN Part Nomenclature 

Component 

Cost 

Unschedule 

d Work 

Orders 

Total 

Work 

Order 

s 

Unscheduled 

WO Cost 

Total WO 

Cost 

5330013605252 SEAL,PLAIN ENCASED $ 41.85 5 88 $ 1,320.19 $ 23,235.30 

2520015192773 
AXLE 
ASSEMBLY,AUTOMOT $ 15,119.00 1 1 $ 15,425.00 $ 15,425.00 

2520015048169 

AXLE 

ASSEMBLY, AUTO MOT $ 3,658.00 2 2 $ 7,766.00 $ 7,766.00 

5331013921637 O-RING $ 2.36 2 66 $ 194.10 $ 6,405.22 

5330013607753 SEAL.PLAIN ENCASED $ 28.06 6 23 $ 1,628.96 $ 6,244.34 

4.2.1.4.2.5 Conclusions of the Axles Maintenance Analysis 

The axles have significant scheduled maintenance costs, generally associated with seals and O-rings. 
However, the axle assemblies and the straight shaft have the highest component and labor cost and are 

replaced as unscheduled maintenance. Thus, these components may be candidates to consider for 
monitoring, especially if the associated failures could lead to the vehicle being inoperative in the field. 

4.2.1.4.3 Engine 

4.2.1.4.3.1 Engine Subsystem Analysis based on Part Cost: 

An evaluation of the replacements for the engine based on part cost identified two components with a 
replacement value of over $1,000, consisting of two different diesel engine NSNs (see Table 28). 

Table 28 - Engine subsystem parts replaced with the highest unit cost 

Part N5N Part Nomenclature 

Component 

Cost 

Total 

Work 

Orders 

Total 

Replacements 

Average 

Man 

Hours per 

w/o Total WO Cost 

2815015265263 ENGINE BLOCK,DIESEl $ 32,467.00 1 1 74.0 $ 35,797.00 

2815014672373 ENGINE.DIESEL $ 17,961.00 1 1 0.5 $ 17,983.50 

The second engine is listed as only having a half hour of labor time, which would be considerably low for 

an engine swap out. A review of the work order does appear that an engine was ordered as a replacement, 

not merely listed as the item being worked on. Although only two engines were replaced, engine tuning 

may have significant labor costs, which could be an additional driver for CBM. Additionally, in modern 

vehicles like the FMTV, ECUs can be a maintenance driver. These did not show up clearly in the 
maintenance cost and frequency analysis. 
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4.2.1.4.3.2 Engine Subsystem Analysis based on Total Replacements across the Fleet 

With a snapshot of maintenance that covers approximately 1.5 years, an analysis of parts replacements 

to identify frequently replaced components may identify recurring problems. To keep the list of frequent 

items manageable, items that were replaced more than five times across the whole fleet were identified. 

Table 29 contains a list of engine system components that were replaced five or more times across the 

entire fleet of vehicles. The unscheduled work orders and replacements are a subset of the total number 
of work orders and replacements. 

Table 29 - Engine subsystem parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Total Number of 

Work Orders 

Total 

Number 

Replaced 

Unscheduled 

Work Orders 

Unscheduled 

Replacements 

2910015193768 FILTER ELEMENT,FLUID $ 13.24 1.1 62 62 21 21 

5342013825021 MOUNT,RESIL!ENT,WEA $ 37.73 2.0 17 24 12 17 

6680015689447 GAGE ROD,LIQUID LEV $ 76.39 0.5 10 10 6 6 

4.2.1.4.3.3 Engine Subsystem Analysis based on Highest Average Labor Cost 

The highest unit labor items forthe engine are summarized in Table 30. The highlighted item was the only 

item at the top of the labor hour list that was typically done during scheduled maintenance events. It 
should also be noted that only the mount (NSN# 5342013825021} had more than two unscheduled 
replacements over the 1.5 year period. 

Table 30 - Engine subsystem parts replacements sorted by average labor cost 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Number of 

Work Orders 

Number of 

Replacements 

2815015265263 ENGINE BLOCK,DIE5EL $ 32,467.00 74.0 1 1 

2520015053162 ADAPTER,ASSEMBLY FL $ 632.90 11.0 1 1 

5330010695128 GASKET S 384.71 4.3 2 2 

5305013601993 SCREW,CAP.HEXAGON H $ 0.46 4.0 1 1 

5330015138233 GASKET $ 60.66 2.8 1 1 

5342013825021 MOUNT,RESILIENT,WEA $ 37.73 2.1 12 17 

4.2.1.4.3.4 Engine Subsystem Analysis based on Highest Total Cost (including labor) 

The final analysis on the engine sub-system was a breakdown of the highest total cost (parts cost + labor 
cost) across the fleet. Table 31 shows items with a total fleet cost of greater than $1,000. 
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Table 31 - Engine subsystem parts with the highest total maintenance cost 

Part NSN Part Nomenclature 
Component 
Cost 

Unscheduled 
Work Orders 

Total 
Work 

Orders 
Unscheduled 

WO Cost 
Total WO 
Cost 

2815015265263 ENGINE BLOCK,DIESEL $ 32,467.00 1 1 $ 35,797.00 $ 35,797.00 

2815014672373 ENGINE,DIESEL $ 17,961.00 1 1 $ 17,983.50 $ 17,983.50 

2910015193768 FILTER ELEMENT,FLUID $ 13.24 21 62 $ 1,011.54 $ 3,781.88 

5342013825021 MOUNT,RESILIENT,WEA $ 37.73 12 17 S 2,261.41 $ 3,043.02 

5330010695128 GASKET $ 384.71 0 2 S 0 $ 1,156.42 

2520015053162 ADAPTER,ASSEMBLY FL $ 632.90 1 1 S 1,127.90 $ 1,127.90 

4.2.1.4.3.5 Conclusions of the Engine Maintenance Analysis 

The unscheduled part replacements associated with the engine subsystem have a significant impact on 

overall engine maintenance costs. Filter replacements {MSN# 2910015193768), though less costly, occur 

relatively frequently and may be able to be monitored for performance degradation - this might allow for 
more/less frequent replacement as-needed, allowing for reduced overall maintenance cost and overall 

better engine performance. Similarly, the mounts (NSN# 5342013825021) appear to be replaced 

relatively frequently, but the operational impacts of the mount failure is not known from this analysis. If 
excessive vibration is an observed impact, the application of vibration monitoring may be capable of 
detecting the fault. 

4.2.1.4.4 Troop Compartment 

4.2.1.4.4.1 Troop Compartment Subsystem Analysis based on Part Cost: 

An evaluation of troop compartment replacements based on part cost (shown in Table 32) identified five 

components with a replacement value of over $1,000, all of which were replaced during scheduled 
maintenance. 

Table 32 - Troop compartment subsystem parts replaced with the highest unit cost 

Part NSN Part Nomenclature 
Component 
Cost 

Total Work 
Orders 

Total 
Replacements 

Average 
Man Hours 

per w/o 
Total WO 
Cost 

2510015680184 DOOR,VEHICULAR $ 3,455.55 1 1 12.5 $ 4,018.05 

5340015680723 HINGE,ACCESS DOOR $ 2,115.49 1 1 1.0 $ 2,160.49 

2510015678841 HINGE, HATCH, VEHICULAR $ 1,956.26 1 1 1.0 $ 2,001.26 

2510013743120 DOOR,VEHICULAR $ 1,755.97 2 2 1.0 $ 3,601.94 

2510015678724 SUPPORT,CAB ASSEMBLY $ 1,569.70 1 1 1.0 $ 1,614.70 

4.2.1.4.4.2 Troop Compartment Subsystem Analysis based on Total Replacements across the Fleet 

Analysis of total troop compartment replacements by component identified nine components that were 

replaced more than 10 times. However, six of the components were low cost (parts and labor) 
replacements. The remaining four items are shown in Table 33. 
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Table 33 - Troop compartment subsystem parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 
Component 
Cost 

Average 
Labor 
Hours 

Total 
Number of 
Work Orders 

Total 
Number 
Replaced 

Unscheduled 
Work Orders 

Unscheduled 
Replacements 

2540015295660 COVER,SEAT,VEHICULAR $ 82.61 ■0,6 14 18 0 0 

5342013717258 MOUNT,RESILlENT,WEA $ 11.22 1.1 8 17 8 17 

2540013741764 LATCH,DOOR,VEHICULAR $ 208.87 1.8 14 14 12 12 

2510013657152 WINDOW,VEHICULAR $ 151.11 2.0 10 11 9 10 

4.2.1.4.4.3 Troop Compartment Subsystem Analysis based on Highest Average Labor Cost 

Table 34 contains the troop compartment components with the highest average labor costs. The item 

highlighted in gray (MSN #30400015727391) was the only item replaced during scheduled maintenance. 

Table 34 - Troop compartment subsystem parts replacements sorted by average labor cost 

Part NSN Part Nomenclature 
Component 
Cost 

Average 
Labor Hours 

Number of 
Work Orders 

Number of 
Replacements 

2510015680184 DOOR,VEHICULAR S 3,455.55 12.5 1 1 

3040015727391 CYLINDER ASSEMBLY,A $ 352.46 11.0 1 1 

3040013776805 ACTUATOR,MECHANICAL,N $ 139.64 9.7 1 1 

3040013757323 ACTU ATO R, M ECH AN 1 CAL, N $ 152.13 5.1 2 2 

2590015409228 BRACKET,VEHICULAR C $ 190.60 3.0 1 1 

5340015398880 HINGE,BUTT $ 92.73 3.0 1 1 

4.2.1.4.4.4 Troop Compartment Subsystem Analysis based on Highest Total Cost (including labor) 

The troop compartment components with the highest total labor costs are shown in Table 35. There were 
an additional five components with a total cost of over $1,000 that are not shown. 
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Table 35 - Troop compartment subsystem ports with the highest total maintenance cost 

Part NSN Part Nomenclature 
Component 
Cost 

Unscheduled 
Work Orders 

Total 
Work 

Orders 
Unscheduled 

WO Cost 
Total WO 
Cost 

2540013741764 LATCH, DOOR,VEHICULAR S 208.87 12 14 $ 3,518.94 $ 4,026.68 

2510015680184 DOOR,VEHICULAR S 3,455.55 1 1 $ 4,018.05 $ 4,018.05 

2510013743120 DOOR,VEHICULAR S 1,755.97 2 2 $ 3,601.94 $ 3,601.94 

2510013657152 WINDOW/VEHICULAR $ 151.11 9 10 $ 2,456.10 $ 2,652.21 

2540013763999 HANDLE,DOOR,VEHICUL $ 250.30 8 8 $ 2,348.90 $ 2,348.90 

5340015680723 HINGE,ACCESS DOOR S 2,115.49 1 1 $ 2,160.49 $ 2,160.49 

2510015678841 HINGE.HATCH,VEHICULAR $ 1,956.26 1 1 $ 2,001.26 $ 2,001.26 

4.2.1.4.4.5 Conclusions of the Troop Compartment Maintenance Analysis 

The troop compartment was the subsystem with the fifth highest total maintenance costs. The 
components with the seven highest total costs account for $20,809. The majority of which (97%) are 

unscheduled maintenance costs. However, only the actuators have potential for monitoring, since the 
other components are mostly body components. 

4.2.1.4.5 Transmission 

4.2.1.4.5.1 Transmission Subsystem Analysis based on Part Cost: 
For the transmission, there were only four replacements with a part cost over $1,000, all of which were 

unscheduled maintenance (see Table 36). The first two components, NSNs 2520015484841 and 
252001493605 have both high part and high labor costs. 

Table 36 - Transmission subsystem parts replacements sorted by unit cost 

Part NSN Part Nomenclature 

Component 

Cost 

Total 

Work 

Order 

s 

Total 

Replacement 

s 

Average Man 

Hours per w/o 

Total WO 

Cost 

2520015484841 TRANSMISSION,MECHANIC $ 23,303.00 1 1 30.0 $ 24,653.00 

2520014936059 TRANSMISSION,HYDRAULI $ 13,416.00 1 1 31.0 $ 14,811.00 

3010014609681 CONTROL ASSEMBLY,TA $ 2,568.81 1 1 1.5 $ 2,636.31 

2520013922330 COOLER,FLUID,TRANSM $ 1,692.41 1 1 4.0 $ 1,872.41 

4.2.1.4.5.2 Transmission Subsystem Analysis based on Total Replacements across the Fleet 
After analyzing the transmission for both scheduled and unscheduled maintenance, the items with the 

most replacements were identified, as shown in Table 37. The listed valve component was only replaced 
under annual service work orders. The three other components could be considered for health 
monitoring, as they have either significant parts or labor costs. 
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Table 37 - Transmission subsystem parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Total Number of 

Work Orders 

Total 

Number 

Replaced 

Unscheduled 

Work Orders 

Unscheduled 

Replacements 

2910015127970 FILTER ELEMENT,FLUI $ 34.92 8.3 10 12 4 5 

820011513692 VALVE.VENT $ 1.33 2.3 4 12 0 0 

2520015549359 CONTROL ASSEMBLY,TR $ 582.83 3.8 4 4 4 4 

2520015392851 CONTROL ASSEMBLY,TR $ 330.47 2.7 3 3 3 3 

4.2.1.4.5.3 Transmission Subsystem Analysis based on Highest Average Labor Cost 

The three highest labor hour components are provided in Table 38, all of which cost over $500 in labor. 
All of these components were unscheduled maintenance. 

Table 38 - Transmission subsystem parts replacements sorted by average labor cost 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Number of 

Work Orders 

Number of 

Replacements 

2520014936059 TRANSMISSION,HYDRAULI $ 13,416.00 31.0 1 1 

2520015484841 TRANSMISSION, MECHANIC $ 23,303.00 30.0 1 1 

4140015069651 FAN ASSEMBLY,CENTRIFU $ 242.17 12.0 1 1 

4.2,1.4.5.4 Transmission Subsystem Analysis based on Highest Total Cost (including labor) 

The transmission subsystem consisted of six components whose total replacement costs were over $1,000 
during the 1.5 years under study, as shown in Table 39. It should be noted that all of these components 
were replaced as unscheduled maintenance. The gray shaded components would be good candidates for 

monitoring, as they are high cost items. The remaining items should be considered for monitoring based 

on their operational impacts. For example, it is possible that a fault control assembly or a leaky 
transmission cooler would render the transmission inoperable, therefore potentially warranting 

monitoring. 

Table 39 - Transmission subsystem parts with the highest total maintenance cost 

Part NSN Part Nomenclature 

Component 

Cost 

Total Work 

Orders 

Total labor 

Hours Total Cost 

2520015484841 TRANSMISSION,MECHANIC $ 23,303.00 1 30 S 24,653.00 

2520014936059 TRANSMISSION,HYDRAULI $ 13,416.00 1 31 $ 14,811.00 

3010014609681 CONTROL ASSEMBLY,TA $ 2,568.81 1 1.5 $ 2,636.31 

2520015549359 CONTROL ASSEMBLY,TR $ 582.83 4 3.8 $ 2,502.32 

2520013922330 COOLER,FLUID,TRANSM $ 1,692.41 1 4 S 1,872.41 

2520015392851 CONTROL ASSEMBLY,TR $ 330.47 3 2.7 $ 1,112.91 
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4.2.1.4.5.5 Conclusions of the Transmission Maintenance Analysis 

The two transmission assemblies (NSNs 2520014936059 and 2520015484841) dominate the analysis due 

to their high component and labor costs. Additionally^ the failure of these components would likely lead 
to operational failure and a deadlining condition. Similarly, control assemblies appear multiple times on 

the list, but the impact of their failure is unknown, indicating that further analysis of failure root-cause 
and operational implications is warranted. 

4.2.1.4.6 Wheel Hub/Tires 

4.2.1.4.6.1 Wheel Hub/Tires Analysis based on Part Cost: 

For the wheel hub/tires subsystem, there were only two replacements with a part cost over $1,000 (see 

Table 40). The second component listed in the table, in gray, had 26 total replacements, of which four 
were performed on a single maintenance order with scheduled maintenance. 

Table 40 - Wheel hub/tire parts replaced with the highest unit cost 

Part NSN Part Nomenclature 

Component 

Cost 

Total Work 

Orders 

Total 

Replacements 

Average 

Man Hours 

per w/o 

Total WO 

Cost 

253001571S8S7 WHEEL, PNEUMATICTIR $ 1,816.80 2 2 0.4 $ 3,669.60 

2530015004619 WHEEL,PNEUMATICTIRE $ 1,300.00 13 26 1.4 $ 35,424.50 

4.2JL.4.6.2 Wheel Hub/Tires Analysis based on Total Replacements across the Fleet 

Within the wheel/tire subsystem (see Table 41), the highest replacement items consisted of relatively low 
cost items, with the exception of tires. Additionally, most of the low cost items were replaced under 

scheduled maintenance work orders. 

Table 41 - Wheel hub/tire parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Total 

Number 

of Work 

Orders 

Total 

Number 

Replaced 

Unscheduled 

Work Orders 

Unscheduled 

Replacements 

5310014545553 WASHER,SEAL $ 6.57 0.1 11 84 N/A N/a 

4460012842344 FILTER ELEMENT,FLUID $ 3.24 0.2 7 40 N/A N/A 

2530015004619 
WHEEL,PNEUMATIC 

TIRE $ 1,300.00 1.4 13 26 12 22 

5310001410447 NUT,PLAIN,SINGLE BA $ 1.17 0.0 3 24 3 24 

2610013569098 

TIRE,PNEUMATIC,VEHIC 

U $ 656.10 2.0 11 12 11 12 

5310004807606 NUT PLAIN SINGLE BALL $ 1.10 0.1 1 10 N/A N/A 

4.2.1.4.6.3 Wheel Hub/Tires Analysts based on Highest Average Labor Cost 

The only item with more than two hours of labor in the wheel/tire subsystem was an O-ring, which was 
replaced only once (see Table 42). 
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Table 42 • Wheel hub/tire parts replacements sorted by average labor cost 

Part NSN Part Nomenclature 
Component 
Cost 

Average 
Labor 
Hours 

Number of 
Work Orders 

Number of 
Replacements 

5331014835079 O-RING $ 1.02 4 1 1 

4.2.1.4.6.4 Wheel Hub/Tires Analysis based on Highest Total Cost (including labor) 

The items with the highest total maintenance cost in the wheel/tire subsystem were al! tires (see Table 
43). No other items had a total cost over $1,000. 

Table 43 - Wheel hub/tire parts with the highest total maintenance cost 

Part NSN Part Nomenclature 
Component 
Cost 

Unscheduled 
Work Orders 

Total 
Work 

Orders 
Unscheduled 

WO Cost Total WO Cost 
2S30015004619 WHEEUPNEUMATIC TIRE $ 1,300.00 12 13 $ 30,053.SO $ 35,424.50 

2610013569098 TIRE,PNEUMATIC,VEHICU S 656.10 11 11 S 8,930.70 S 8,930.70 

2530015715857 WHEEL, PNEUMATIC TIR $ 1,816.80 2 2 $ 3,669.60 $ 3,669.60 

4.2.1,4.6.5 Conclusions of the Wheel Hub/Tire Maintenance Analysis 

Tires are a significant cost driver for this subsystem, accounting for 89.6% of the subsystem maintenance 
costs. Additionally, most tires were replaced on unscheduled work orders. If the vehicle has a central tire 

inflation system (CTIS), capturing the air pressure from the ECU may provide an indication of slow leaks. 
However, if the tires are suffering failure due to objects penetrating the tire, monitoring will not be able 

to provide any assistance. 

4.2.1.4.7 Other components 

4.2.1.4.7.1 Other Components Analysis Based On Part Cost: 

An additional nine components with a part cost of over $1,000 were found across the remaining 
subsystems (see Table 44). Radiators and "Envelope, power unit" (hydraulic system) were the only 
relatively high cost items in the "other" category replaced more than two times across the fleet, and all 
replacement of these items were performed as unscheduled maintenance. 
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Table 44 - Other subsystem parts replaced with the highest unit cost 

Part MSN Part Nomenclature 

Component 

Cost 

Total 

Work 

Orders 

Total 

Replacements 

Average Man 

Hours per w/o 

Total WO 

Cost 

4820015229935 V ALVE, R EG U LATIN G,S YST $ 1,121.46 2 2 0.6 $ 2,296.92 

4820013722769 VALVE, REGULATING,SY $ 1,010.26 2 2 1.4 $ 2,146.52 

2530015554681 STEERING GEAR $ 2,429.30 1 1 2.0 $ 2,429.30 

5360013757092 SPRING,LEAF $ 1,056.22 1 2 2.0 $ 2,292,44 

2930015193573 RADIATOR,ENGINE COO $ 1,490.89 4 4 5.1 $ 6,872.56 

4820015210811 VALVE, LIN EAR, DIRECTIO $ 1,602.52 1 1 2.5 $ 1,715.02 

4730015278543 MANIFOLD ASSEMBLY,H $ 1,738.21 1 1 2.0 $ 1,828.21 

4730015678670 MANIFOLD ASSEMBLY,H $ 1,704.14 1 1 10.0 $ 2,154,14 

6115015669209 ENVELOPE, POWER UNIT $ 1,170.82 8 8 4.1 $ 10,851.56 

4.2.1.4.7.2 Other Components Analysis based on Total Replacements across the Fleet 

There were a significant number of components with at least 10 replacements across the remaining 

subsystems (see Table 45). However, many of these items were parts kits, wiper blades, orfilters requiring 

typical maintenance. For those items, once scheduled maintenance is removed, there are significantly 

fewer replacements. The one item that stands out as significant due to quantity and cost is the hydraulic 
pumping unit (MSN #4320014174876). 
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Table 45 - Other subsystem parts sorted by Number of Replacements in the Fleet 

Part NSN Part Nomenclature 
Component 
Cost 

Average 
Labor 
Hours 

Total Number of 
Work Orders 

Total 
Number 
Replaced 

Unscheduled 
Work Orders 

Unscheduled 
Replacements 

4020014449193 CORD ASSEMBLY,ELASTIC S 8.75 0.3 16 47 5 11 

5340014990935 BRACKET,MULTIPLE AN $ 17.64 0.3 19 4S 12 28 

5965015337661 MICROPHONE,DYNAMIC S 6S.32 0.4 11 12 N/A N/A 

5330001721919 PACKING,PREFORMED S 0.50 0.3 27 66 16 38 

2910013606366 FILTER ELEMENT,FLUID $ 15.44 0.5 155 155 14 14 

2910014247315 FILTER ELEMENT,FLUID $ 17.54 0.5 100 100 7 7 

2940015265483 FILTER ELEMENT,INTAKE $ 135.97 D.5 31 31 3 3 

5330004770338 PACKING,PREFORMED $ 6.68 0.4 30 30 7 7 

4320014174876 PUMPING UNIT,HYDRAULI $491.69 2.3 11 12 11 12 

2540014822300 BLADE,WINDSHIELD WIPE $ 3.90 0.3 64 136 55 113 

4440015423419 PARTS KIT,AIR DRIER $ 86.47 0.9 84 84 N/A N/A 

5975010482922 STRAP,TIEDOWN,ELECT $ 0.13 0.1 29 58 29 58 

2540014540415 REFILL BLADE,WIPER $ 2.01 0.3 15 24 15 24 

2590015287507 SERVICE KIT,VEHICLE $ 573.37 8.9 24 24 2 2 

2590015336745 PARTS KIT,SPECIALIZED $ 418.15 4.S 18 18 12 12 

4730015247892 AIR DRIER AND COOLER, $354.65 1.1 16 16 3 3 

2590015336748 PARTS KIT,SPECIAUZ $581.22 5.1 15 15 6 6 

2910013757624 FILTER ELEMENT,FLUID $ 4.79 0.5 71 71 N/A N/A 

4.2.1.4.7.3 Other Components Analysis based on Highest Average Labor Cost 

Table 46 includes all repairs from the remaining subsystems with an average repair time of more than five 

hours. Although there are some significant repair times noted in the table, many of the items were 

repaired only once. The more significant, multiple repair items are highlighted. These highlighted items 
also excluded repair kits, which are typical of scheduled maintenance. Of the highlighted items, all were 

replaced under unscheduled maintenance except for one of the three reciprocating compressors. It is 
possible that the one repair was an unscheduled replacement that was performed while the vehicle was 
in for scheduled maintenance. 
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Table 46 - Other subsystem parts replacements sorted by average labor cost 

Part NSN Part Nomenclature 

Component 

Cost 

Average 

Labor 

Hours 

Number of 

Work Orders 

Number of 

Replacements 

2530013613966 CHAMBER,AIR BRAKE $ 89.49 10.0 1 1 

4310013615075 COM PRESSOR, REG PROC $ 629.00 7.8 3 3 

2930015071419 PUMP,COOLING SYSTEM,E $ 522.00 12.0 1 1 

5330015248348 GASKET $ 16.48 12.0 1 1 

2930015193573 RADIATOR,ENGINE COO $ 1,490.89 5.1 4 4 

2910014706177 INJECTOR ASSEMBLY,FUE $ 724.49 7.0 1 1 

4730015678670 MANIFOLD ASSEMBLY,H $ 1,704.14 10.0 1 1 

3040013705486 CYLINDER AS5EMBLY,ACT $ 350.26 6.0 3 3 

2590015287507 SERVICE KIT,VEHICLE $ 573.37 9.0 2 2 

2590015336748 PARTS KIT,SPECIALIZ $ 581.22 8.3 6 6 

4720010144915 HOSE.NONMETALLIC $ 0.34 6.0 1 1 

2590015336745 PARTS KIT,SPECIALIZED $ 418.15 5.5 12 12 

2590015287239 SERVICE KIT,VEHICLE $ 455.09 5.4 2 2 

4720014219712 TUBING, NON METALLIC $ 0.37 5.0 1 1 

2540013776607 BUMPER,VEHICULAR $ 395,14 5.8 1 1 

4.2.1.4.7.4 Other Components Analysis based on Highest Total Cost (including labor) 

The highest total repair cost items for the remaining subsystems can be found in Table 47. Only items 
whose total repair cost was greater than $6,000 were included. Once again, some of the parts kits made 

the list but were mostly repaired under scheduled maintenance. Therefore, the most significant cost 
items that may also have monitoring potential have been highlighted. 
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Table 47 - Other subsystem parts with the highest total maintenance cost 

Part NSN Part Nomenclature 

Component 

Cost 

Unschedule 

d Work 

Orders 

Total 

Work 

Orders 

Unscheduled 

WO Cost Total WO Cost 

5830015336139 INTERCOMMUNICATION S 618.44 5 10 $ 3,362.20 $ 6,557.90 

2930015193573 RADIATOR,ENGINE COO $ 1,490.89 4 4 S 17,983.50 $ 6,872.56 

2910015458117 INJECTOR ASSEMBLY,F S 759.62 4 4 $ 1,011.54 $ 7,466.58 

6115015669209 ENVELOPE, POWER UNIT $ 1,170.82 8 8 $ 10,851.56 $ 10,851.56 

4320014174876 

PUMPING 

UNIT.HYDRAULI $ 491.69 11 11 $ 7,151.28 $ 7,151.28 

2590015287507 SERVICE KIT,VEHICLE $ 573.37 2 24 $ 1,956.74 $ 23,386.38 

2590015336748 PARTS KIT,5PECIALIZ $ 581.22 6 15 $ 5,737.32 $ 12,183.30 

2590015336745 PARTS KIT,SPECIALIZED $ 418.15 12 18 $ 7,987.80 $ 11,194.20 

4440015423419 PARTS KIT,AIR DRIER $ 86.47 N/A 84 N/A $ 10,611.48 

2590015287508 SERVICE KIT, VEHICLE $ 616.78 N/A 10 N/A $ 9,209.80 

2590015287239 SERVICE KIT,VEHICLE $ 455.09 2 8 $ 1,396.18 $ 6,871.72 

4730015247892 AIR DRIER AND COOLER, $ 354.65 3 16 $ 1,266.45 $ 6,430.40 

4.2.1.4.7.5 Conclusions of the Maintenance Analysis of the Other Components 
From the "other component" analysis, several components stand out as candidates for health monitoring 
due to their potential for degradation and sensing. Those items are the radiator (NSN #2930015193573), 
the injector assemblies (NSN #2910015458117), the "Envelope, power unit" (NSN #6115015669209), the 

reciprocating compressor (NSN #4310013615075), the hydraulic pumping unit (NSN #4320014174876), 
and the hydraulic manifolds (NSN #4730015278543 and #4730015678670). Considering the hydraulic 
system, for example, monitoring of system pressures may also provide condition insight into components, 

such as filters. Filter type components that are replaced based on "failure" will likely be associated with 
degraded performance and potentially secondary system damage. Filter type components replacements 

based on "time" are likely suboptimal from a cost standpoint. These secondary systems should be 

considered when evaluating the potential return on investment (ROI) of adding health monitoring to other 

system components. 

4.2.1.5 Identification of Opportunities for Further Analysis on the FMTV 

Utilizing knowledge of the available HUMS data from the FMTV, the failures identified in the Army 

Maintenance data were reviewed to identify immediate opportunities for PHM analysis. The HUMS data 
for the engine, cooling, and fuel system can be considered together as the signals can be related through 

modeling. Additionally, these systems, as a group, have the most available HUMS data. Reviewing the 

engine, cooling, and fuel system maintenance data identified two engine replacements, four radiator 
replacements, and a number of injector replacements as potential opportunities for evaluation. 

Considering the available coolant related data, particularly coolant temperature and level, there is limited 

value in further investigating identification of a radiator failure. The level data may be utilized to identify 
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a decreasing coolant level, indicating a coolant leak somewhere in the system, but the data is not likely to 
lead to an indication of remaining life of a particular component, such as the radiator. 

On the other hand, the engine failures may be identifiable through an analysis of the larger engine data 

set. Two work orders identified engine replacements, 2NT520200340 and 4E6BA0419860. However, 
evaluation of the HUMS data for the associated vehicles identified that there was no relevant HUMS data 
collected near the maintenance events, as seen in Figure 38, where the gray dashed lines represent the 

occurrence of the maintenance event and the blue lines represent days with HUMS data. 
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Figure 38 - HUMS data availability near engine replacements on two separate FMTV assets, (a) and (b) 

(b) 

There were five work orders associated with fuel injector replacements that described the engine as 
running rough or knocking. The information on the work orders and the availability of HUMS data can be 
found in Table 48 and Figure 39. 
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Table 48 - Injector Replacements 

Vehicle Work Order NSN Number 

Replaced 

Availability of data 

Vehicle 1 4E6BA0311476 2910015458117 1 HUMS data exists prior to and 

after the maintenance event, 

including DTCs related to 

injectors. 

Vehicle 2 H1MAA1400207 2910015458117 6 The HUMS data set is small, 

especially after the maintenance 
event. DTCs did occur for the 
injectors prior to the event. 

Vehicle 3 2NT301300208 2910015458117 1 The HUMS data set is limited 
after the maintenance event. 

Vehicle 4 6HNK20200368 2910015458117 6 This event occurs prior to 
collection of HUMS data 

Vehicle 5 DJAAA0400515 2910015458117 1 The HUMS data set ends just 
after the maintenance event. 
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Figure 39 - HUMS Data availability near injector replacement on Vehicle 1. 

Based on the alignment of the HUMS and maintenance data, the only dear match-up occurs for the 

injector failure on vehicle 1, which was further investigated for PHM potential (details are provided in 

Section 5). 

4.2.2 Navy and Marine Corps Maintenance 
Explicit maintenance data was not provided for the Navy ships or Marine Corps MTVR. The Navy did 

provide data for a few significant failure events to guide the investigations and analysis of the HUMS data. 
Three event types (failures) were indicated in the data, identified as 19 occurrences of EVENT_TYPE=1, 28 

occurrences of EVENT_TYPE=2, and eight occurrences of EVENT_TYPE=3. The data consisted of 
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information indicating the ship, engine, time of the event, type of event, and the HUMS data leading up 
the event, which was a subset of the previously provided HUMS data. The data was presented as a file 

for each event consisting of the HUMS data preceding the event to enable data mining. These failures 
were evaluated for their PHM potential, as described in the next section. 

Although maintenance data was not provided for the USMC MTVRs, some of the insights gained from the 
maintenance analysis of the FMTV may be applicable to the MTVR. One of the major cost drivers, 
batteries, is likely to be a similar cost driver on the MTVR. Similarly, other components such as injectors, 
radiators, engines, and ECUs may show similarfailures and warrant similar monitoring approaches. 

4.2.3 Other HUMS Opportunities 

The goal of this analysis was to evaluate the maintenance data and identify areas with corresponding 

HUMS data to enable further PHM analysis. Although there are limited opportunities outlined above for 
the data received for this study, this does not mean that a PHM implementation must be narrow. The 

existing signal set may be utilized to calculate a number of usage parameters, including but not limited to: 

engine hours, engine idle hours, driving time, miles, time at or above certain temperatures (such as engine 

oil, transmission or coolant temp), or total braking duration. Additionally, contextual information should 

be gathered to ensure that operating and environmental conditions were properly captured. Condition 
indicators, and outputs of machine learning models in general (more on this in Chapter 5), respond to the 
changes in operating conditions [8], 

Additionally, simple monitoring approaches and additional sensors may be opportunistically employed to 
enhance capabilities. Table 49 provides a list of some potential PHM capabilities by subsystem, including 
the signals that may enable them. The list is directed toward engine driven vehicles, but includes 
electrical, cooling and air intake subsystems. 
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Table 49 - Additional monitoring potential 

System/subsystem Signal (Mew or existing 

sensor 

Analysis Context Potential capability 

Engine/Cooling Coolant level Existing Monitoring change rate Alert on low coolant, Alert 

on potential leaks 

Engine/Cooling Coolant temp Existing Monitor temp against 

engine load 

Identify changes in cooling 

performance over time, 

Alert on high temperatures 

Hydraulic Hydraulic 

pressure 

New Monitor against engine 

speed 

Identify changes in pump 

performance over time, 

Identify drops in pressure 

indicative of leaks 

Electrical/Battery Battery 

monitoring 

system - Voltage, 

current, state-of- 

charge 

New Monitor battery health, 

especially around vehicle 

down time 

Identify batteries that need 

to be replaced prior to the 

batteries completely dying 

Engine/Intake Turbo/boost 

pressure 

Existing Monitor pressure against 

RPM 

Identify performance 

changes over time, alert on 

low boost pressure 

Electrical/Alternator Alt. Out. Voltage 

Alt. Out. Current 

Battery Voltage 

Engine speed 

Ground Voltage 

Field Voltage 

Vibration 

Temperature 

Existing 

New 

High ground potential 

Output vs. Eng. speed 

Low/High/erratic voltage 

Motor Current Signature 

Analysis 

Vibration analysis 

Identify electrical shorts, 

Identify regulator problems. 

Identify bearing faults, 

identify low output 

Engine Oil Temperature 

Coolant Temp. 

Oil pressure 

Fuel rate 

Inst. Fuel 

economy 

Engine speed 

Pedal position 

Engine load 

Engine torque 

Injection Control 

Pressure 

Intake Manifold 

Temperature 

Exists on many 

vehicles 

Exists on some 

vehicles 

Engine speed vs oil 

Pressure 

Engine speed, pedal 

position, engine load, 

engine torque, 

injection control 

pressure, intake 

manifold temp, and 

fuel rate 

Oil temp, coolant temp, 

engine speed, and 

engine load 

Lubrication system status 

System level modeling, 

performance degradation 

Cooling system 

modeling/performance 

5 immediate PHM Opportunities 
This section explores opportunities for data-driven PHM development using the data sets described in the 

preceding sections. Because the development was data-driven, it required ground truth from 
maintenance data records. The approach was opportunistic: utilizing the significant, repeated repairs 
identified in Section 4.2 and the understanding of the data collected from the analysis performed in 

Section 4.1, the diesel engine was identified as the common subsystem across platforms for a deeper dive 
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into PHM application, The ground truth of the maintenance events combined with the specific relevant 
signals from the HUMS data enables statistical comparison of data related to normal operation, found 

well before the occurrence of the maintenance event or after the repair, to that of the onset of failure, 
found leading up to the repair. 

When evaluating the immediate potential for PHM on any of the platforms, the first level of capability is 
anomaly detection. The low-hanging-fruit opportunities were identified as HUMS data that preceded 

recurring maintenance events. Anomaly detection could be immediately tested by contrasting the normal 

operation to the data before the maintenance. This step of PHM development is discussed here in detail, 
with multiple examples. The path to the higher capability levels, viz. diagnostics and prognostics, are 
discussed in the conclusion. 

The core focus of the analysis was on anomaly detection approaches. The state of the art anomaly 

detectors, based on deep learning models and specifically on autoencoders, were considered first. These 
models are described in detail because of their wide-ranging applicability in PHM. Autoencoders based 

upon ID convolutional neural networks are introduced here for the first time for PHM applications to the 
best of our knowledge. 

A key feature of autoencoders is that they do not require data associated with faults for anomaly 
detection. This is invaluable for PHM development, where normal data comes in abundance and the fault- 

and failure-related data is scarce. However, in addition to anomaly detection, autoencoders can serve as 
data-driven generators of condition indicators. This application was first examined using Navy data and 
then further explored using a simulation. 

This section concludes with an exploratory analysis of Navy ship data, which employs domain knowledge. 

Understanding of the physics of the system informs the model about relevant relationships among signals. 
Thus, the model had less to learn from the data and the classical machine learning was sufficient. 

5.1 Autoencoders 

Traditionally, the time and effort associated with extracting effective features is the dominant activity in 

data-driven PHM. The key distinguishing factor in the success of machine learning approaches is feature 
engineering [15], which represents =90% of industrial machine learning [16], The promise of modern 

deep learning approaches is that they can develop better representations directly from data, or with 
minimum feature engineering. Neural networks applications have a rich history in PHM, with an early 

successful deployment using autoencoder topology [17] preceding the recent deep learning revolution. 

This study examined the potential of a straightforward applications of autoencoders for detecting 
anomalies in the Army HUMS data, collected on FMTV platforms (Section 4). The model was first 
developed for an engine problem (fuel injector) and later successfully applied to transmission ECU failure. 
The engine was the subsystem of choice for the PHM development, because it is a common subsystem 

for the Navy (ships) and Army assets (trucks). Although the engine model did not perform well in the 
sense that it was not able to find the anomaly, the details of its development are presented here for two 

reasons. First, the engine subsystem is of critical importance for many assets, and it was used in this work 

to illustrate model development. Second, the original engine model was modified, and successfully 
applied to a transmission subsystem, where it was able to detect an anomaly. 
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5.1.1 Preprocessing and Modeling 
The approach consisted of two main steps: data preprocessing and model training. The diagram in Figure 
40 shows the activities associated with the two main steps and their interactions. 

Preprocessing 

Identifymaintenance event(s) 

Modeling 

Identify relevant signals 

Examine data availability before and 
after the maintenance event 

Split data into three subsets: 
• Training 
• Test 
• Anomaly 

Select HUMS signals 
(and calculate any additional signals) 

Reformat the signals to fit the model 
and define the associated hyper¬ 

parameters 
V. 

Training data 

Test data 

Anomaly data 

Figure 40: Preprocessing and modeling activities and their interactions. 

The interactions between the modeling and preprocessing steps, depicted in Figure 40, suggest that a 

realistic approach to performing these analyses was to develop an end-to-end workflow and identify 
hyperparameters - the parameters changed by analysts during the iterative process of model 

development. The following sections describe these activities in more detail in the context of developing 
a specific model. 

5.1.2 Engine Data Preprocessing 
The first step in preprocessing was to select an appropriate maintenance event and relate its location in 
the context of the span of the HUMS data collection. Table 50 lists the entries of the maintenance records 

associated with the repair. The fault description was ENGINE IS KNOCKING, and the correction narrative 
was REPLACED FUEL INJECTOR. 
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Table 50: The maintenance events associated with an engine failure of interest 

Family FMTV 

Fault Date 2/7/2013 

Date Out 2/20/2013 

Fault Description ENGINE IS KNOCKING 

Correction Narrative REPLACED FUEL INJECTOR 

Maintenance Level FIELD 

Action Description Replaced 

Part NSN 2910015458117 

Part Nomenclature INJECTOR ASSEMBLY,F 

Part Quantity 1 

Total Man Hours 1.3 

Total Cost 759.62 

Figure 41 shows the extent of the HUMS data collection, with data collection indicated by the blue line 

and the maintenance event indicated by the vertical dashed gray line. The dots on the blue line signify 
days with vehicle activity that was captured in HUMS. The gray vertical dashed line indicates the 
maintenance event in February of 2013. 

10 

08 

08 

04 

02 

00 

Figure 41: Vehicle daily activities and the maintenance event related to engine failure. 

Figure 42a shows cumulative plots of number of rows of "1 Hz data" (the normal HUMS data). The 
cumulative plots were selected because they made it easier to compare how much data was available 
across the timeline of HUMS data for the specific vehicle. Note that the data horizon before the 
maintenance event was short. Because there was a relatively small amount of data before the 

maintenance event, the autoencoder model training was performed based upon the data collected after 

the engine repair. The model was trained on normal data (no fault present), because autoencoder-based 
anomaly detectors are trained to compress the input data, extracting the critical features of the system 

in the process of compression, and then reproduce the inputs in their decoding layers. Thus, models 

trained on normal data produce outputs that are consistent with normal data. Thus, if the system changes 

its behavior (due to a fault), the error signal, based on the difference between the estimated output and 

the measured output, becomes large as the discrepancies between normal behavior and fault increase. 
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Figure 42: (a) Cumulative rows of data before and after the maintenance event (b) split data into training, test, and anomaly subsets. 

Figure 42b shows how the data was split into the three subsets: training, test, and anomaly. The tacit 
assumption was that the repair would bring the vehicle back to its normal state and that no other fault 

would exist or occur after the repair that could corrupt the "normal" model. It would be preferred to have 
a few hundred days of data prior to the maintenance event in order to see if the model could track 
evolution of the damage. However, this was not possible because the maintenance eventtook place dose 

to the beginning of the HUMS data record. 

Symbols HUMS Signals 

<P FuelRate 

cae EngSpeed 

Peo EngOilPres 

T 1 ec EngCoolantTemp 

^ep EngPctTorq 

Pic InjCtIPres 

v VehSpeedEng 

Table 51 shows seven signal candidates that were sub-selected from the twenty-four engine signals, listed 
in Table 52. The sub-selection process, shown as "Identify relevant signals" in Figure 40, first excluded 

redundant signals captured on J1587, then selected signals that reasonably relate to the engine power 
generation process. During modeling iterations, signals such as different torque measures (e.g. 

EngPctTorq vs. EngDmdPctTorq) were added and removed from the list in Table 51, to investigate their 

potential to improve the model's ability to identify the fault. Because the performance of the model did 
not improve when the set of input signals from Table 51 was expanded, the final implementation 

employed just those seven signals. 
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Table 52: HUMS signals related to engine 

Engine Signals 

1 AccelPedalPos 

2 EngPctLdAtCurSpd 

3 EngPctTorq 

4 EngSpeed 

5 EngDmdPctTorq 

6 EngDesiredOpSpd 

7 EngOilPres 

8 EngRemPTOGovernorPreProgSpdCtrlSwtch 

9 EngRemPTOGovernorVarSpdCtrlSwtch 

10 EngRtdPwr 

11 EngRtdSpeed 

12 EngRetSwtch_1587 

13 EngLoad_1587 

14 EngOilPres_1587 

15 EngCoolantTemp_1587 

16 EngSpeed_1587 

17 EngCoolantTemp 

18 EngCoolantLvl_1587 

19 EngOilTemp_1587 

20 EngRetPct_1587 

21 EngRetLvlSwtch_1587 

22 EngRetarderStat_lS87 

23 FuelRate 

24 VehSpeedEng 

A daily CDF file consisted of many discontinuities, or data gaps. It is important to identify data gaps, 
because they signify different driving segments, or "missions". Otherwise, concatenating the tail data 
from one driving segment with the engine start data of the subsequent driving segment would produce 

input segments with discontinuities that could confuse the health assessment analysis. In the 
preprocessing performed here, a discontinuity was defined by any data gap longer than two seconds, 

because the analysis described in Section 4 showed that normal, continuous data is sampled at 1 Hz, but 

sometimes also at 2 Hz. This data gap was considered a hyperparameter At&reafc, whose value was set to 

two in our experiments. Figure 43 illustrates multiple signals with data gaps. It shows a part of daily data 

(contents of a single CDF file), restricted to the signals of interest. The rightmost column of subplots shows 
time-domain view of the signals; the sub-plots below the main diagonal are scatter plots between two 
signals, and the diagonal shows histogram of individual signals. Individual continuous segments are 
indicated by color. The presence of multiple colors shows that there were multiple time gaps greater than 
two seconds. This specific file had 2,323 records per signal and 25 data gaps, which produced 26 
continuous data segments. 
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Figure 43: Selected signals and their mutual relationships 

Time r [mmj 

The model topology specified some requirements for data preprocessing. Figure 44 (below) shows an 

autoencoder neural network model that was conceptualized for detecting anomalies. The input vector x 

was defined as m = 10 concatenated sub-vectors each of length n as shown in equation 1. 

—T 
X 

—T —T —T 

<P Peo 'Ip Pic V 
■T —T —r aT ~T (p6p T f out} ‘ (3) 

Based on considerations of the “minimum system dynamics" that needed to be captured in a sample, 30 
seconds was selected as the data sample length. Because the data sampling rate was Is, and because 
computations associated with deep learning are more efficient when the processor operated on vectors 
whose length is a power of 2 [18], n = 32 was used. 

The first seven signals correspond to HUMS signals listed in Table 51 and additional three were calculated 

sub-vectors. The first calculated signal was fuel consumed over the 32 point data range (<p) 

<P = f4) 

the second was engine rotation angle {9) 
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9 = /q o)e (t')dt1, 

and the third is a measure of engine power output (p0lit) 

Pout — L^eT-ep' 

Figure 44: Model configuration 

Figure 45 and Figure 46 illustrate the process of mapping the contents of the CDF files into input vectors 

for the machine learning model of Figure 44. Figure 45 shows the process of identifying continuous data 

segments (the left part of the illustration) and mapping it into a list of input segments for the model. 

Figure 46 shows the process that transposed the sub-vectors and concatenated them as prescribed by Eq. 
(3). 

As shown in Figure 40, preprocessing produced training, test, and anomaly datasets. In this 

implementation, all three datasets, together with associated metadata, were saved in a single HDF5 file. 
The sizes of the input matrices were: 

• Training size(Vtrain) = 12465x320 

• Test: size(^test) = 9243x320 

• Anomaly size(^anoma;y) = 1193x320 

The first dimension denotes the number of training samples, whereas the second dimension is the length 
of the concatenated vector (10 sub-vectors of length n = 32). 
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Figure 45: Transforming the CDF data into a file for training of the autoencoder. Step 1 of 2: identifying discontinuity in the data 
sets and breaking the continuous segments of the desired length. 

Figure 46: Transforming the CDF data into o file for training of the autoencoder. Step 2 of 2: transposing the data. 

The signals had to be normalized before they were used for the model. To avoid data snooping, offset 

and scale were computed from the training data. Refer to [19] for the discussion about data snooping 

and the problems that can arise if all data is used for normalization. Two standard types of normalization 

were considered: min-max, and Gaussian. 

Because there are m different sub-vectors that correspond to m HUMS and computed signals (m = 10 in 
this example), m offsets and scale parameters were needed; otherwise, the selected units of individual 
signals can make a single signal dominate the others. In Gaussian normalization, offsets were 
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k e {0,1,... ,jn - l}, (7) 

L (k+l)n-l 

1 V" V" 

1=1 j=kn 

and the scales were 

L Cfe+i)n-i 

°k = nL^ 1 ^ ^ (.Hj-Vkf , fc e 1}. 
i=l j=kn 

The offsets and scale normalized the inputs using the standard equation 

Xij ~ Hk 
xiJ = 

(7k 
k E (0,1,..., m — 1}. 

(8) 

(9) 

To illustrate the number of unknown parameters that are optimized during training, refer to Figure 44 
and consider just the first layer, where 320 inputs were mapped into 256 outputs via an affine 
transformation 

^256X320*320X1 + ^256X1 (10) 

before a nonlinear activation function was applied. The affine transformation needed the weight matrix 

^256x320 and the offset vector &256X1/ which together had 256x320+256 = 321x256=82,176 parameters. 
Thus, the number of parameters associated with the first layer of the network was 82,176. Extending this 
approach to the entire network (see Figure 44 for the number of neurons in layers) yielded 

321 x 128 + 129 x 64 +65 x 16+17 x 64 + 65 x 128+129 x 320=101,072 
1st layer 2nc* layer 33r layer 4th layer 5t^! layer 6th layer (71) 

This network, although not particularly deep, required nearly a quarter million training parameters. 

5.1.3 Engine model implementation 
Keras (TensorFlow) implementation was straightforward. Figure 48 lists the Keras code and the model 

summary. The model summary shows the layers and the parameters per layer (see also Figure 44 and Eq. 

(11)). Dropout was used for regularization [20]. The activation function was the commonly used rectified 
linear unit ReLU [21], defined as 

ReLU(x) = max(x, 0) (12) 

Selection of the loss function and the type of optimizer affects the model performance. Mean Squared 
Error (MSE) was used for the loss and Mean Average Error (MAE) for the metric (to compare it later to the 
loss). The selected optimizer was RMSprop [22]. 
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auto_enc = models.Sequential() 

auto_enc.add(layers.Dense(128,input_shape = (m*n,) 

,activation = "relu")) 

auto_enc.add(layers.Dropout(.1)) 

auto_enc.add(layers.Dense(64,activation = "relu">) 

auto_enc.add(layers.Dropout(.1)) 

auto_enc.add(layers.Dense(16,activation = "relu")) 

auto_enc.add(layers.Dropout(.1)} 

auto_enc.add(layers.Dense(64,activation » "relu")) 

auto_enc.add(layers.Dropout(.1)) 

auto_enc.add(layers.Dense(128,activation = "relu")) 

auto enc.add(layers.Dropout(.2)) 

auto_enc.add(layers.Dense(m*n,activation * "linear")) 

auto_enc.compile(optimizer = optimizers.RMSprop(lr=5e 

loss = losses.MSB, 

metrics = [metrics.MAE,]) 

auto_enc.summary() 

Layer (type) Output Shape Param # 

ciense_42 (Dense) (None, 128) 41088 

dropout_35 (Dropout) (None, 128) 0 

dense_43 (Dense) (None, 64) 9256 

dropout_36 (Dropout) (None, 64) 

dense_44 (Dense) (None, 16) 1040 

dropout_37 (Dropout) (None, 16) 0 

dense_45 (Dense) (None, 64) 1088 

dropout_38 (Dropout) (None, 64) 0 

dense_46 (Dense) (None, 128) 8320 

dropout_39 (Dropout) (None, 128) 0 

dense_47 (Dense) (None, 320) 41280 

Total params: 101,072 
Trainable params: 101,072 
Non-trainable params: 0 

Figure 47: Keras implementation of the model summary. 

5.1.3.1 Training 

The training is illustrated in Figure 48. The plot on the left shows the loss (MSE) during training and test 
vs. the number of epochs (passes of the training dataset through RMSprop optimizer). The plot on the 

right shows the metric (MAE) vs. the number of epochs. The test error improvement seems to level off 
significantly after about 10 epochs. It may seem surprising that the training error is higher than the 

validation error, but this is due to the fact that, using normal TensorFlow/Keras settings, dropout 
regularization was employed during training but not during validation. 

0 00175 ■ 

0 00150 • 

0 00125 ■ 

0 5 10 15 20 

Epochs 

0 S 10 IS 20 

Epochs 

Figure 48: Training and test error during model development. 

5.1.3.2 Performance Evaluation 

The model represented the data well, as illustrated in Figure 49, which shows the training data (blue 

traces) and estimated outputs (orange traces). The model output generally looked as a smoothed out 
version of the input signal, which strongly suggested that overfitting was avoided. The estimation error 

for rapidly changing signals such as fuel rate (p or engine speed u)e was higher than the error 

corresponding to slower signals like engine coolant temperature Tec. 
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Figure 49: Engine model fidelity illustrated on the subset of signals and the total MAE. 

nore convenient to look at the estimated metric MAE in the form of a histogram than in the time 

i, as shown in Figure 50. The histogram form also allowed the error comparison for the train, test, 

jmaly data. Table 53 lists the statistical summaries of the three error distributions. 
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Figure 50: Engine model fidelity illustrated on the subset of signals and the total MAE. 

Table 53: Statistical summaries of the deep learning engine model error associated with test, train, and anomaly data. 

p a max() data size 

Strain 0.028817 0.029273 0.277263 381984.0 

Stesi 0.024010 0.022408 0.380039 295776.0 

Sanomaiy 0.022310 0.021393 0.414573 381984.0 

The model error distribution associated with the anomaly data was not distinguishable from the error 
distribution associated with the training and test data, which indicated that the model was not able to 

detect the anomaly. Several model variations of were tried, but the results remained consistent. It may 
be possible that the degradation and failure information was not contained in the selected signals; 
however, all signals thought to be relevant were selected. Therefore, the conclusion is that this content is 

probably not in the HUMS data set. Since engine torque is not directly measured, the torque and power 
signals are based on a torque value calculated by the ECU, which may not be sensitive to an injector defect. 

As stated above, the diesel engine was initially selected for this analysis, as it is a common asset type 
across the Army, USMC, and Navy platforms. It still may be possible, with additional work, to develop a 

functional autoencoder based anomaly detector for injector faults; however, additional data signals would 
be required. 

5.1.4 Transmission Model 

Since the autoencoder analysis was not successful on the engine data, transmission was considered as an 
alternative system to use for the autoencoder investigation. As with the engine model development, the 

process started with analysis of maintenance data, which uncovered an event of interest, listed in Table 
54. The problem was related to the transmission ECU, with the maintenance event occurring in December 

of 2013. The data availability is shown in Figure 51 (compare this plot to that of Figure 41). 

78 



maintenance event —fr. active days 

Figure 51: Vehicle daily activities and the maintenance event related to transmission ECU failure. 

Table 54: Maintenance events of interest. 

Family FMTV 

Fault Date 12/9/2013 

Date Out 2/10/2014 

Fault Description TRANSMISSION INOPERATIVE 

Correction Narrative REPLACED TRANSMISSION ELECTRONIC CONTROL UNIT ... 

Maintenance Level FIELD 

Action Description Replaced 

Part NSN 3010014609681 

Part Nomenclature CONTROL ASSEMBLY,TA 

Part Quantity 1 

Total Man Hours 3.1 

Total Cost 2568.81 

Because there was considerably more data before the maintenance event, the training data was selected 

from the period before the maintenance event, and test data were selected after the maintenance event. 

This was a natural data split that could not be made in the previous example because the fault occurred 
very early in the observation period. The anomaly data set was chosen to be the data collected within 75 

days of the maintenance event. Figure 52 shows the data availability and the data split into train (65.1%), 
test (13.9%), and anomaly subsets (21%). 
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Figure 52: (a) Cumulative rows of data before and after the transmission maintenance event (b) split data into training, test, and anomaly 
subsets. 

The model was simplified to use just three HUMS signals: engine speed ooe, vehicle speed v, and 

transmission oil temperature Tto. listed in Table 55. These signals were selected due to the relationship 

of vehicle and engine speed to transmission gear ratio. Transmission Oil Temp was one of the few signals 

available that provide insight into transmission condition. The scatter plot of signals for a daily mission is 

shown in Figure 53. 

Table 55: HUMS signals used by the transmission model and their symbols 

Symbols HUMS Signals | 

o)e EngSpeed 
j VehSpeedEng 

Tt0 TransOilTemp 
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EngSpeed VehS peed Eng TransOitTemp 

Figure 53: Selected signals and their mutual relationships for the transmission model. 

Thus, the input vector was given as 

—T 
X = 

—T 
(x)e 

—T 
V (13) 

with the model topology shown in Figure 54, with the summary from Keras implementation. The total 
number of parameters was 41,376. 

81 



Layer (type) Output Shape Parana # 

dense_5 (Dense) (None, 128) 12416 

dropout_4 (Dropout) (None, 128) 0 

dense_6 (Dense) (None, 64) 8256 

dropout_5 (Dropout) (None, 64) 0 

dense_7 (Dense) (None, 128) 8320 

dropout_6 (Dropout) (None, 128) 0 

dense_8 (Dense) (None, 96) 12384 

Total params: 41,376 

Trainable params: 41,376 

Non-trainable params: 0 

Figure 54: Transmission dense autoencoder model with the summary from Keros 

The model fidelity for the three signals was very good, as is illustrated in Figure 55. Like the engine 

example, the blue trace signifies the data and the orange trace the model output. The figure demonstrates 

that the lossy compression of encoding does not suppress relevant information of the signals. This data 
segment was extracted from the training data, and the error comparison across the training, validation, 
and test data sets was explored next. 
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Figure 55.1 Transmission dense autoencoder mode! performance shown on a segment of training data. 
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The error distribution associated with the train, test, and anomaly data dearly showed that the anomaly 

data exhibited a tail (MAE > 0.15) that was inconsistent with the train and the test data (Figure 56). 

Table 56 lists the statistical summaries of the error distributions shown of Figure 56. 

Table 56: Statistical summaries of the deep learning engine model error associated with test, train, and anomaly data. 

A or max() data size 

6train 0.023655 0.012934 0.144762 63936.0 

ftest 0.040483 0.026620 0.197038 8320.0 

f anomaly 0.052857 0.061362 0.413776 13280.0 

Figure 57 shows these errors in the time domain. The error rises significantly before the maintenance 
event (denoted by the gray, dashed, vertical line). The time was concatenated across all driving missions, 

and the time gaps associated with no usage were deleted. Although the increase in error is obvious at the 
time of the failure, there appear to be some elevated error events prior to the fault (time = ~1100). The 
next section covers how anomaly detection may be used in decision support. 
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Figure 57: MAE over time 

5.1.5 Anomaly Interpretation 
An autoencoder anomaly detector can produce a metric that indicates an anomaly, but this metric needs 

to be interpreted by a decision support tool. To interpret the metric, RIT employed the Sequential 

Probability Ratio Test (SPRT) attributable to Abraham Wald (WW2) [23, 24], and introduced to PHM in the 
context of monitoring nuclear power plants [25] and later applied to other PHM applications, such as 
monitoring of software failures in servers [26]. 

To apply the SPRT approach, first the log-likelihood ratio of the error metric e 

(14) 

where is an MAE error sample and the operator P is probability, was computed. The probability of a 

healthy state can be readily estimated from the training data (because the training data corresponded to 

the assumed healthy state of the system). Log-normal distribution was a good fit to the error data, as 
shown in Figure 58. 

- Log-Normal Fit 

NM Training Error 

0.00 0.05 0.10 0.15 0.20 

Training Error e = MAE 

Figure 58: Estimating P(elNealthy) from the data 

The probability associated with the faulty state was not known in advance. To express the state of 

ignorance, Laplace's principle of insufficient reason and model P(eilFau[ty) was used as a uniform 
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distribution, with the upper range set to be twice the range of the input data. Figure 59 shows 
P^ilFaulty) in the same graph with P(e,|f/ea;t/iy) to facilitate comparison. 

Error e = MAE 

Figure 59: Modeled probability distributions of healthy and faulty data 

After the log-likelihood was defined, it required the lower limit (log#) and the upper limit (log/l) to be 
compared. The decision was then made as foliows: 

If ^ < logS, decided Healthy 

If log/l < decide Faulty 

If log B < ■£ < log A, continue testing (insufficient data for making the decision) 

5. 
a 150 

t 
100 

.11 1 
e so 

£ 0 O' 
o 

e^- 

Faulty 
(150 </) 

Need More Samples 
(1 s/sl50) 

Healthy 
(f<D 

The decision process is illustrated in Figure 60: the top graph shows the log-likelihood ratio over samples 

and the bottom shows the comparison to the two heuristically selected limits. This decision process, 
applied to the original problem, is shown in Figure 61. 
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Figure 60: Modeled probability distributions of healthy and faulty data 
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Figure 61: Modeled probability distributions of healthy and faulty data 

5.1.6 Model Applicability and Uses 

To test the generality of the model, the autoencoder anomaly detector was applied to the data generated 
by a different vehicle with a similar ECU failure. Figure 62 shows the data and the model outputs. The 

mode! was able to reliably identify contradictory data: MAE became large multiple times. Utilizing these 

anomalies, a human-in-thedoop was able to explain the anomalies: vehicle speed cannot be greater than 
zero while the engine speed is zero, i.e. the condition vveh > 0 and (jJeng = 0 is a contradiction in normal 

operation. The power of representation learning was demonstrated here as this condition had not been 
defined by an expert rule, but was simply learned from how the signals relate to one another during 

normal operation. A subject matter expert can easily understand the anomaly but may not have easily 
noticed a problem without the addition of an anomaly detector. 
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Figure 62: Applying anomaly detection model to a different vehicle with a transmission ECU problem. 

Demonstrating the ability of the model to detect an anomaly on an asset that was not used at all during 

training was encouraging. In this case, the model readily detected an anomaly without any adaptation of 
a model to a new asset. 

More detailed investigation was taken into peaks that appeared to be precursors to failure in the first 
example, shown in Figure 57, specifically the time t ~ 1100 min. The situation there was not as severe 

(see Figure 63), but patterns of idling engine accompanied with significant speed were detected, 
suggesting that these were very plausible intermittent precursors to failure. The degradation seemed to 
be gradual, but not monotonic, which is very common among electronics equipment [27]. This 

observation may have a potential to be converted into a physics-based condition indicator for this specific 

failure. Perhaps this approach can be used more often, even converted into a process, where anomaly 

detection is used to guide physics-based modeling by drawing attention to situations where added 
scrutiny can yield a compact condition indicator. The tentative process would consists of three steps: 1) 
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detect an anomaly using a general, autoencoder-based deep learning mode!; 2} employ domain 

knowledge to interpret the anomaly and investigate possibility for a direct classification of the anomaly 

(diagnostics); 3) formulate a physics-based model that paves the path to RUL estimation. 
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£ 
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Figure 63: Zoom into precursors to failure shown in Figure 57. The inconsistency in data is annotated in red 

5.2 Convolutional Models 

The autoencoder described above employed dense layers, which feature large number of parameters. 

This type of neural network is referred to as a Multi-Layer Perceptron (MLP). Convolutional Neural 

Networks (CNNs) are more compact than MLPs and better exploit computational advantages of Graphical 

Processing Units (GPU). In addition, the linear part of the layers of these models, as described in more 
detail in the next subsection, are based upon linear filters, which have a long tradition in modeling linear¬ 

time invariant systems. The new aspect of neural networks is that they add a nonlinearity in the form of 
activation functions after the weighted sum of linear filters, as described in more details below (see Eq. 

(16) and Figure 65). In the following subsections, the topology of these models is discussed, the models 
are demonstrated and compared to the transmission example previously modeled and MLP, and CNNs 
are applied on a new example from the Navy data set. 
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5.2.1 ID CNN Model 
The topology of a ID CNN is very similar to that of its more popular 2D CNN counterpart. Figure 64 depicts 
the basic model structure: the model is a series of repeated basic blocks. 

Input 

Output 

j- Basic encoding block 

Encoding 

■— Basic decoding block 

Decoding 

Figure 64: Basic CNN model topology 

The basic block for encoding consists of ConvlD layer and a MaxPoollD/AvgPooIlD layer, whereas the 
basic decoding block consists of ConvlD layer and an UpsamplinglD layer. ConvlD implements a series 

of functions given by Eq. (16) and depicted in Figure 65. MaxPooIlD downsamples the data by taking a 
maximum and UpsamplinglD is its nonlinear inverse (it repeats the same value multiple times). 

A ID CNN model was built as an alternative to the MLP. Here, a hidden layer unit, <pm, which is a part of 
a hidden layer 

is 

(p — \(p1... cpm ... (pM]T, 
(15) 

where fm is the activation function (e.g. ReLU), bm is the bias, hn jn are coefficients of ID digital filters, and 
* is ID convolution operator 
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(17) 

OO 

sn[k] * hnm[/t] = V s[k- i]hnit 

i = -co 

Graphical representation of Eq. (16) is shown in Figure 65. 

Figure 65: A graphical representation of a hidden unit in ID CNN. 

5.2.1.1 Data Preprocessing 

The ID CNN model employed a different input size than the MLR: MLP's input was a concatenated ID 

array (see Eq. (3) and Eq. (13)), whereas ID CNN's input sample was a 2D array, with one ID array per 
signal given by 

^nxm — 
—t -r 
ai„ v 

—7 
T. oil (18) 

The size of the 2D array is n x m, where in the present example m = 3, corresponding to three input 

signals (engine speed a)_e, vehicle speed v, and transmission oil temperature Tt0)- Each signal is 
represented by n consecutive samples, e.g. n = 64. Thus, the input sample is a 2D array of size 64x3. 

def 3egment_data_into_3d_array(d£ta_2d, 3egaent_si2fc»32): 

*’1 Take aasples cf size 'segment size1 of 2D array and stack in a new 3rd array dimension. 

For example, if the original array is (64 x 3) then it will be segnsented into (2 x 32 x 3) 

where the 2 are 2 samples of size 32x3 from the original array. 
* 11 
rem » len(data_2d) I segment_size / Get number cf points to truncate to make an even segmentation, 
print(f"Jrem} data points truncated to make equal segments") 

if rem — Os 
pass t Don't truncate data. 

else: 

data__2d - data_2d[:-rem] $ Truncate data. 
$ Set up zeros array to collect the segments along a nev 3rd axis 

segmented^data » np.zeros(shape-(len(data_2d)//segment_sizer segment_size, 3)) 

for i in range(segmented_data.shape[0]): t Iterate over the "sample" dimension fist axis). 
i Add 32-size segments to nev 3D array. 

segmented_data[i] *= data_2d[i*segment__size:i*segment_size+segment_size] 

return{segmented_data) 

Figure 66: Preprocessing for ID CNN 
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The function for preprocessing is shown in Figure 66. It builds a 3D array by stacking 2D input samples into 
a third dimension. 

A simple, shallow implementation of an autoencoder based on ID CNN in Keras is shown in Figure 67. 

This model is not deep, but it is relatively wide - the first ConvlD layer had M = 100 units (see Eq. (15)). 
Figure 68 shows the model summary and the number of parameters. The total number of parameters in 
the model is 31,403, which is comparable to 41,376 of MLP, shown in Figure 54. 

Number 

of output 

units M 

cnn - models.Sequential0 

input_data = Input(shape=(segment_size,3)) 

f Encode. J | 
x = ConvlD<100, 3, activationx'relu', padding-,'valid”) <input_data> 

x - MaxPoolinqlD(2) (x)| 

encoded <* Dropout (0.2) (x) 

# Decode. 

x » ConvlDtlOO, 3, activation-’relu', padding“"valid 

“)(encoded) 

X - UpSamplinqlDiZ)(x) 

x - Dropout(0.2)(x) 

decoded - ConvlD<3, 1, activation-’linear', padding=”valid 

•> (x) 

autoencoder • Model(input_data, decoded) 

autoencoder.compile(optimizer - optimizers.adam(lr-le-4), 

loss = losses.MSB, 

metrics « [metrics.MAE,)) 

print (autoencoder.sussnaryO) 

Filter size 

(kernel size), 
can be a tuple 

"smoothing" vers 

of convolution 

Figure 67: Keras implementation of ID CNN 

Layer (type) Output Shape Param # 

input_l (InputLayer) (None, 32, 3) 

convld_l (ConvlD) (None, 32, 100) 

max^jpoolingld^_l (MaxPoolingl (None, 16, 100) 

dropout 1 (Dropout) (None, 16, 100) 

convld_2 (ConvlD) (None, 16, 100) 

dropout_2 (Dropout) (None, 32, 100) 

convld_3 (ConvlD) (None, 32, 3) 

Total paranu: 31,403 

Trainable pararaa: 31,403 

Non-trainable params: 0 

30100 

up_3anjpllngld__l (UpSampling 1 (None, 32, 100) 

5.2.2 ID CNN Model Performance 

The CNN model performance was very 

similar to the performance of the MLP 

model. Figure 69 shows the model 

prediction overlaying the input data for 

the three signals and overall MAE. Figure 
69 shows the fidelity of the model on the 

training data. This may be compared to 
Figure 55, which illustrates the fidelity 
accomplished using an autoencoder based 
upon MLP. In both the MLP and CNN 
models, the MAE was typically less than 

0.05. In both cases, the models were 

trained on baseline data to learn normal 

behavior. Thus, when the system starts to behave abnormally, the input and predicted values will begin 

to grow apart. However, to properly train a model, it is important that baseline data include all relevant 

Figure 68: Keras ID CNN model summary 
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operating and environmental conditions to avoid situations where the model responds to the context 
changes. 

Data Prediction 

320 330 340 350 360 

Time t [mini 

370 380 390 

Figure 69: Representation capability of ID CNN 

5.3 Condition indicators using Autoencoders 

Whereas the previous sections describe the suitability of deep learning autoencoders in anomaly 
detection applications using data that may be separated into normal and anomalous behavior, the Navy 
data cannot be easily separated in such a manner. Because the Navy ship data consisted of the HUMS 
data that preceded failures, with no delineation of normal operation, the modeling approach had to be 

modified. That is, instead of training on normal data, the models were trained on an anomaly in progress 
(or incipient failure), with the objective to train the model encodings (the outputs of the middle, inner 
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layer) to be sensitive to the failure, as conceptually depicted in Figure 70. This approach was intended to 
train the Condition Indicators (CIs) associated with the event type (i.e. failure mode). 

Train models on developing failure data 

Encoding layer has the 
highest-level features (CIs) 

Figure 70; Innermost layer- the encodings - of an autoencoder trained on incipient failure are Cl candidates 

5.3.1 Data Description 
The data consisted ofthree types of events, denoted by integers 1-3. Each event signified a unique failure. 

The 55 events are summarized in Table 57. This table shows the distribution of the events across the 
engines within a ship. 

Table 57: Summary of events 

Engine Event type # Events 
1 1 8 

1 2 10 

1 3 3 

2 1 2 

2 3 3 

3 1 4 

3 3 1 

2 2 3 

3 2 6 

4 1 5 

4 2 9 

4 3 1 

The recognition that differences among ship engines and their instrumentation can be significant (see 
Section 5.5) guided the decision to start building a model for the case where the same engine on the same 
ship had experienced the same event type multiple times. 
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Table 58: Events by ship and engine. 

Hull Engine Event 

Type 

Data Start Data End # Data Rows 

A 1 1 [2013-04-18] [2013-07-01] [595] 

A 1 2 [2013-04-18] [2014-05-08] [1049] 

A 1 3 [2013-04-18] [2015-01-16] [1284] 

A 2 1 [2013-06-06] [2015-08-07] [3711] 

A 2 3 [2015-03-06] [2016-03-11] [3771] 

A 3 

3 

1 [2014-10-30] [2015-08-07] [858] 

A 3 [2014-10-30] [2016-03-11] [1241] 

B 1 1 [2013-05-03] [2013-12-13] [548] 

B 1 2 [2013-05-03, 2013-05-03] [2015-02-22, 2015-10-06] [1012, 2728] 

B 

B 

2 2 [2015-02-18] [2015-10-08] [1442] 

3 2 [2013-05-03, 2013-10-15, 

2013-12-17] 

[2013-09-03, 2015-10-08, 

2016-02-26] 

[904, 3067, 

4142] 

B 4 1 [2013-08-28, 2013-10-10, 

2013-11-02] 

[2013-12-13, 2015-08-25, 

2015-11-10] 

[1641, 2346, 

3826] 

B 4 2 [2013-05-03, 2014-03-09, 

2014-03-16] 

[2013-09-02, 2015-09-05, 

2015-10-06] 

[850, 2115, 

2903] 

C 

C 

1 

2 

3 

1 

[2014-05-16] [2015-03-28] [2188] 

[2013-05-24] [2013-09-16] [317] 

c 2 2 

2 

[2013-05-24, 2014-06-08] [2013-08-21, 2016-06-16] [243, 2478) 

c 3 [2013-05-10] [2013-08-21] [168] 

c 4 2 [2013-05-10, 2014-07-07] [2013-08-21, 2017-01-21] [203, 3201] 

c 4 3 [2013-05-10] [2013-07-31] [168] 

D 1 1 [2015-02-13, 2015-03-27, 

2015-04-26] 

[2015-07-04, 2015-08-11, 

2015-09-08] 

[3281, 3303, 

2824] 

D 1 2 [2013-05-03, 2015-04-26, 

2016-06-28] 

[2013-08-31, 2015-09-08, 

2017-01-23) 

[205, 2824, 

3958] 

D 2 3 [2013-05-02, 2013-05-02] [2015-02-17, 2016-10-12] [1718, 2881] 

D 4 2 [2013-05-02, 2015-03-24, 

2015-04-03] 

[2015-03-13, 2016-06-29, 

2016-09-13] 

[1933, 3950, 

4030] 

F 1 1 [2013-05-17, 2013-05-17, 

2016-04-12] 

[2013-11-01, 2014-01-25, 

2017-05-23] 

[529, 640, 9225] 

F 1 2 [2013-05-17, 2014-04-02, 

2015-02-05] 

[2014-01-25, 2014-10-31, 

2016-08-07] 

[640, 3092, 

4032] 

F 1 3 [2013-05-17] [2014-02-04] [654] 

F 3 1 [2013-05-16, 2016-03-09] [2014-04-10, 2017-03-07] [924, 6413] 

F 

F 

3 2 

1 

[2013-05-17, 2014-05-11] [2014-01-25, 2014-11-02] [594, 3284] 

4 [2013-05-17, 2015-04-10] [2014-01-25, 2017-03-07) [594, 6968] 

F 4 2 [2016-04-12] [2017-05-02] [7077] 

1 1 2 [2016-11-05] [2017-04-10] [10525] 

1 3 1 [2014-02-20] [2015-02-05] [1333] 

Table 58 provides a summary of the event data in a format that facilitates the selection of the events to 
build the model. All events are shown for each distinct Hull-Engine-Event Type combination. The second 

consideration was that there would be significant amount of data leading into the events. A good 

candidate was found for Hull=B, Engine=3, and Event type=2, with three occurrences (refer to the 
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highlighted row of Table 58). Furthermore, one of the three occurrences associated with this Hull-Engine- 
Event Type combination had the largest data set associated with one of the events. 

The relevant signals are listed in Table 59. The entire set of 49 signals was used as input for the 

autoencoder model. Because the sampling period was 15 minutes, capturing dynamics was not 
considered in the model. Thus, the input vector consisted of a single sample of each signal. 

Table 59: Navy engine signals. 

Signal Description No. Signals 

Bearing Temperatures 1-9 9 

Thrust Bearing Temperature 1 

Cylinder Temperatures 1-16 16 

Central Fresh Water Left Out & Right In Temperatures 2 

Crankcase Pressure 1 

Engine Speed 1 

Fuel Rack 1 

Jacket Water Cooler Out Temperature 1 

Left and Right Bank Air Temperature 2 

Left and Right Bank Air Pressure 2 

Left Bank Exhaust Temperature 1 

Left and Right Turbocharger Exhaust Temperature 2 

Left and Right Turbocharger Oil Temperature 2 

Left and Right Turbocharger Speed 2 

Right Turbocharger Air Out Pressure 1 

Lube Oil Cooler In Temperature 1 

Lube Oil Inlet Temperature 1 

Rocker Lube Oil Supply Pressure 1 

Rocker Lube Oil Supply Temperature 1 

Rocker Lube Oil Strainer Delta Pressure 1 

Total Signal Count 49 

5.3.2 Experimentally Determined Condition Indicators for Failure 

5.3.2.1 Motivation and Approach 

The middle layer of an autoencoder neural network contains the most compressed data representation 

and is referred to as codings [28]. Because they are the most efficient data representation for a given 
model, the codings outputs are considered to be good feature (or Cl) candidates [16], Data-driven PHM is 
based on the assumption that data collected before a maintenance event contains information on fault 
precursors, which evolve together with the degradation [29]. Idealized degradation is depicted in Figure 
71. 
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Figure 71 - Idealized failure degradation 

Cl candidates were selected experimentally, based on consistency among the models, because the exact 
onset of failure was unknown. Furthermore, the heuristic used to identify plausible Cl candidates was 

based on the assumption that the degradation increased as the system approached the maintenance 

event. Several different topologies of an autoencoder were run on data from a given ship, event type, and 
date, and model structure and trained weights were saved in a file. The following sections describe the 

modeling process, the choice of metric, and discuss the results. 

5.3.2.2 Modeling 

Auto-encoders were generated using Keras [30, 31], an open source Python library for modeling neural 

networks, with a TensorFlow [32] backend. In general, two models were created, each with different 
topologies (labeled Model I and Model II), and five runs of each model (sub-labeled A, B, C, D and E) were 
performed. Neural networks are inherently random in training weights, so running the same model more 
than once will return similar results, with differently learned weights. 

Figure 72 shows the amount of data collected over time for the ship (or hull) labeled "B". This event was 

identified as event type 2 on engine 3 on 02-26-2016. 

Input Data, size = (4142, 49) 

Figure 72: Hull = "B", Engine = 3, Event Type = 2, Event Date = 2016-02-26. 
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The data was prepared using min-max scaling. Model I used exponential linear unit activations with 20% 

dropout at each layer. The model utilized an 'adam' optimizer, a variation of first order stochastic gradient 

decent, which works well with large amounts of data. All signals from the supplied data were used in the 
model. 

Figure 73 shows the model topology for all runs (A, B, C, D, and E) of Model I in a summary table printed 
by Keras. Layer types are shown in the first column, followed by output shapes and the number of 

parameters to learn during training for each layer. The input size was equal to 49, the number of signals 
in the data. The first layer output increased this to 64, then reduced it down to eight at the center of the 

model. Data was fed into the model in batches of size 32, for 50 rounds (epochs) of training. The layer 
sizes (including the input layer) were 49, 64, 32, 8, 32, 64, and 49. The Keras summary table adds rows to 

display dropouts, but in training, these are applied to the dense layers above them in the table. In practice, 
dropouts are not considered layers. This model had seven layers including input, and had to learn 11,129 
parameters. 

Layer (type) Output Shape Param # 

dense_86 (Dense) (None, 64) 3260 

dropoiit_70 (Dropout) (None, 64) 0 

dense_87 (Dense) (None, 32) 2889 

dropout_71 (Dropout) (None, 32) 9 

dense_88 (Dense) (None, 8) 264 

dropout_72 (Dropout) (None, 8) 9 

dense_89 (Dense) (None, 32) 288 

dropout_73 (Dropout) (None, 32) 0 

dense_90 (Dense) (None, 64) 2112 

dropout_74 (Dropout) (None, 64) 9 

dense_91 (Dense) (None, 49) 3185 

Total params: 11,129 
Trainable params: 11,129 
Non-trainable params: 9 

Figure 73: Keras summary of Model I topology. 

The training loss was determined using MSE. MAE was considered as well, but was not used to choose 
when to stop training. This is shown in Figure 74. Training was stopped after 50 epochs, because after this 

point, the MSE no longer decreased significantly. MAE was used to visualize training error across the input 
signals and is shown in Figure 75. 
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Figure 74: Training loss via MSE and MAE. 

The model error was low enough (just above 5% on average) to consider condition indicators from the 
inner layer's encodings. 

0.20 -r 

-1-1-1-1-1-1-1-1-1---1- 
2013-12 2014-03 2014-06 2014-09 2014-12 2015-03 2015-06 2015-09 2015-12 2016-03 

Figure 75: MAE of model evaluation on training data. 

Highest Encoded Layer's Outputs 

By running the code shown in Figure 76, the model was truncated to output at the smallest layer, rather 
than pushing the data all the way through to the last layer. 

I i ^ encoding_layer_model = Model(inputs=auto_enc.inputj 
I 2 outputs=auto_enc.layers[4].output) 

3 

j 4 erscoding_output = encoding_layer_nnodel.predict(scaled_input_data) | 
print{encoding^output.shape) 

(4142, 8) 

Figure 76: Python code to extract inner layer encodings from an auto-encoder. 
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Notice the output shape (4142, 8) has eight columns, instead of 49 like the input. These eight columns are 

compressed representations of the input data. The variable encoding output allows us to look at these 

outputs to see if the Cl hypothesis is valid. The eight encodings are displayed in Figure 77. Agood condition 
indicator should vary in proportion to the known failure degradation. $1 appears to be the best indicator, 

if one exists, because it is the only coding output that appears to change in average value from the start 
to the end. Judging by-eye, the failure appears to begin at the point indicated by orange box in the figure. 
The data before that region is mostly above zero, and the data after is mostly below. The y-axis values are 
results of a series of non-linear transformation and activation on the input data and should not be 

interpreted as anything more. Of most interest is the nature of how these representations drift over time. 
This raises the question of a metric for assessing the validity of the hypothesis. 

m 1 1 ̂ -—CO ilMu-U 
-1-1-1-1--1-1-1-1- 

inn 1 1 1 1 1 1 Ttin 
1-1-1-1- -1- 

fri#n-1 --WII '4 i 
1 

Mil 
1 1 

hum-^ 
1 r 1-1-1-1—-1-1- 

man' 1 n—1-1- -1-r-1- 

—mri 
1 i i 1 -1- 

wiujl _UlULLi it 
imtin 1 

"*-1-1----1-1-1- 

muirr 
——t —mr i 

0.5 - 

^ 0.0 - 

-0.5 

0.5 - 

0.0 - 

-0.5 -l 

0.5 

^ 0.0 

-0.5 

0.5 - 

0.0 - 

-0.5 

0.5 J 

0.0 

-0.5 -l 

0.5 - 

0.0 - 

0.5 - 

0.0 

-0.5 -L 

0.5 

^ 0.0 

-0.5 

oAT ,.0^ ..cP ..\T ,,0* , .Ofo , 
^ ^ 

Figure 77: Highest encoded layer of Model l-A output. 

53.2.3 The Quantitative Metric 

The first step was to determine a metric that would accept or reject features for CIs. The metric would 
need to take into account the mean and standard deviation, and possibly minimum and maximum of the 
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output over time. This was the first heuristic of this hypothesis. When plotted, the inner layer encoding 
looked like time-series data, as shown in Figure 77. The chosen metric was a form of discriminability, d, 

which took the difference in group means, ^1( and n2> separated by a selected boundary in the data and 
divided them by the square root of the average variation of the two sides. The equation for this metric is 
shown below in Eq. (19). 

d = 

la? -f erf (19) 

By placing the boundary between each data point, d was computed for all possible boundary locations 
for signal <t)i. The highest value of discriminability shows where the two sides of the boundary are most 

different (i.e. the moment where the data changes enough to be considered incipient failure). Figure 78 
shows the results of the boundary search. The orange circles indicate where the discriminability was 

greatest. 

2013-12 2014-03 2014-06 2014-09 2014-12 2015-03 2015-06 2015-09 2015-12 2016-03 

Figure 78: Discriminability across the inner layer encoding of Model l-A, 

A margin of data (500 points) was ignored at the ends for this computation due to edge effects. Based on 

information about the failures, it was assumed that they were not the first or last data values, but rather 
somewhere in the middle of the data. This margin ignored the first and last 500 points (a small fraction of 
the data) and therefore was the second heuristic choice, making the two heuristic choices so far: 1) the 
discriminability metric, and 2) the size of the margin. 

<f>i in Figure 77 was annotated with an orange box where the system was thought to begin failing. The 
same location was computed in the boundary search, indicated by the second orange circle in Figure 78. 
Judging by the value of ~2.5, the first feature, 4>b is the best feature for a Cl. It is reasonable to assume 

failure started at the first orange circle shown in Figure 78, since there was little to no data between it 

and the second orange circle. 

As a counter-example, Figure 79 shows the worst looking feature as an indicator, of the eight inner 

encodings. The areas of interest (where the orange circles are in Figure 78) show a much lower 

discriminability, suggesting there is not a significant inflection along this encoding to adequately indicate 
the incipient failure. 
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Figure 79: Counter-example to finding good CIs in the auto-encoder's inner layer. 

Model I was re-run four more times (B, C, D, and E) to get the five versions mentioned above; features for 
Model l-B are shown in Figure 80. A few of the features, in particular <t)i and 4>4 appear to agree with the 

hypothesis that condition indicators may be developed from autoencoders that show fault precursors and 
their progression overtime. 
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Figure 80: Model l-B inner layer encodings of the input data. 

Model II was a deeper version of Model I with two extra hidden layers of size 16. Figure 81 shows the 

Keras summary of this model. Similar to Model I, min-max scaling was used for preparing the data. The 
'adam' optimizer with a learning rate of 5e-4, and 20% layer dropout were used in this model as well. The 

activation function however, was changed to hyperbolic tangent. It was important to vary some aspect of 

the auto-encoder, such as the activation functions, to compare with Model I in support of proving the 

hypothesis. The numberof training iterations (epochs) was increased to 100 and data was processed using 
the same batch size of 32. 

Layer (type) Output Shape Param # 

dense_37 (Dense) (None, 64) 3200 

dropout_31 (Dropout) (None, 64) 0 

dense_38 (Dense) (None, 32) 20S0 

dropout_32 (Dropout) (None, 32) 0 

dense_39 (Dense) (None, 16) 528 

dropout_33 (Dropout) (Hone, 16) 0 

dense_40 (Dense) (None, 8) 136 

dropout^34 (Dropout) (None, 8) 0 

dense_41 (Dense) (None, 16) 144 

dropout_35 (Dropout) (None, 16) 0 

dense_42 (Dense) (None, 32) 544 

dropout_36 (Dropout) (None, 32) 0 

dense_43 (Dense) (None, 64) 2112 

dropout_37 (Dropout) (None, 64) 0 

dense_44 (Dense) (None, 49) 3185 

Total params: 11,929 
Trainable params: 11,929 
Non-trainable params: 0 

Figure 81: Keras summary of Model II topology. 

5.3.2.4 Results Summary 

The collected CIs from each model are shown in Table 60 and Table 61 below. 
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Table 60: Model I collected CIs. 

Model Layer Sizes Best Cl Max d Start -> End 

1 - A 49-64-32-8-32-64-49 1 6/12/14 - 2/17/15 
l-B 49-64-32-8-32-64-49 1 6/13/14-2/18/15 
l-C 49-64-32-8-32-64-49 8 6/13/14 - 2/17/15 
1- D 49-64-32-8-32-64-49 6 2/21/15-8/10/15 
I — E 49-64-32-8-32-64-49 6 6/13/14 - 2/18/15 

Table 61: Model II collected CIs. 

Model Layer Sizes Best Cl Max d Start -> End 

II-A 49-64-32-16-8-16-32-64-49 8 6/13/14 - 2/18/15 

II-B 49-64-32-16-8-16-32-64-49 3 6/13/14 - 2/17/15 
II-C 49-64-32-16-8-16-32-64-49 4 6/13/14 - 2/17/15 
ll-D 49-64-32-16-8-16-32-64-49 3 6/13/14 - 2/17/15 
ll-E 49-64-32-16-8-16-32-64-49 1 6/13/14 - 2/18/15 

The CIs are visually compared, both in time and with respect to their relationship, in Figure 82. There 

were several strongly correlated features, but only one pair (ll-E, ll-D) was so strong that one of the CIs 
could be considered redundant. 
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Figure 82: Comparison among CIs 
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5.3.2,5 Additional Ship Analysis 

During evaluation of the data, it was determined that the three separate "Event Type = 2" events, which 
were specifically associated with Ship=B and Engine=3, were greatly overlapped in time. The identification 

of this overlapping event data prompted a closer temporal analyses of all of the events. As was mentioned 

previously, the Navy ship data included a series of failure event types, identified as Event 1, Event 2, and 

Event 3. As there can be significant differences between different ships (or even between different 

engines of the same type on the same ship), it was desired to identify a particular engine asset with 

multiple (preferably three or more) failures of the same type. Among the maintenance events, there were 

eight unique ship - engine - maintenance type combinations that had at least three associated 
maintenance events. The remaining combinations had two or fewer maintenance events. Figure 83shows 

these eight cases (denoted in the y-iabels); each event occurs at the end of the marked timeline. Only D- 
1-2 (ship D, engine 1, event type 2) and F-l-2 had data ranges associated with the maintenance events, 

which did not overlap other maintenance events. The identification of non-overlapping events is critical 

to ensure that the data selected as training data for an event does not contain a failure progression for a 
separate event. 

Figure 83: Data ranges associated with 8 maintenance events. 

The similar modeling approach was taken on two events on ships with separate data (D-l-2 and F-l-2), 
but the results were not as promising as the initial results described above. 

The two other data sets were chosen, because they were the only ones where each event of data was 
completely separate in time. Testing on these data sets was necessary to support the hypothesis on 

different examples. Overlapping data may return partially similar results, and therefore are not good for 

testing among different events within a ship-engine-event type. It was unclear as to whether the 
encodings extracted from these two data sets (D-l-2 and F-l-2) were Cl candidates. In the first data set 
tested (B-3-2), there was a clear notion of the encoding values drifting, which was compatible with a 

degradation. Plausible Cl candidates were not observed in these two examples (D-l-2 and F-l-2). This 
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prompted the effort described in section 5.4, where a battery simulation was created to provide an 
accessible ground truth of system degradation that could be directly compared to the extracted encodings 
for Cl determination. 

5.3.2.6 Summary of Cl Estimation from Ship Data 

The potential of autoencoders to learn the progression of failure by capturing the degradation within its 
internal representation layer was examined. Specifically, the representations consisted of the outputs of 

the encoding layers and were the highest encoded representation of the data within the model. To 
validate the consistency of these CIs, RIT ran multiple models of the same topology, and multiple models 
of similar topology, and compared the results both visually and using an objective metric based on 
discriminability. Given a boundary, which indicated the start of failure growth, the discriminability was 

defined as the difference in the means of the data distributions before and after the boundary, scaled by 
a particular form of their variances. High discriminability meant the data drifted away from its average 

position before the boundary, once failure began, and therefore was an indicator of failure growth. Initial 

results were promising, because the inner layer's outputs showed this phenomenon, and returned high 

discriminability between the data before and after the hypothesized incipient failure. However, upon 
closer examination of the temporal nature of the data, it was observed that many of the failure events 

were too close together, and therefore the associated HUMS data for the failures overlapped, preventing 

confidence in the validity of the CIs. While the attempts to apply this approach to few select non¬ 
overlapping faults did not yield compelling results, the general approach is believed to have merit; this 
judgement motivated the study in section 6.5. 

5.4 Further Study of ID CNNs 
Although the ID CNN showed promise in the evaluation of FMTV transmission, the lack of ground truth 

of the events and the operating conditions limit the validity of the models. As such, an additional study 

was performed on a simulated battery system, enabling the study of a ID CNN autoencoder, built to 
detect anomalous behavior in the system, to be conducted with ground truth knowledge of how the 

system degraded up to failure. Degradation was set in the form of changes to the battery's cell capacities. 

A driving profile in the form of current was input into the simulation, where alternating cycles of charging 
and driving with regenerative braking were present. 

5.4.1 Data Preparation 

Data from the simulation was stored in an HDF5 file. The raw data contained 36 signals including time, 
voltages, currents, resistances, and many others. Most of the signals provided from the simulation would 
not be accessible in a real scenario, so the only two signals that were used in modeling were those denoted 

Vbatt ar|d Ibatt' t*ie voltage and current that would be measured on the battery terminal. 

The simulation recorded measurements at a non-uniform rate, faster than 1Hz. There were 1,622,314 
rows of data, recorded from a simulation runtime of about 400,000 seconds. The CNN computes 

convolutions between the data and the model's convolutional filters. In 2D convolutions, this amounts to 

convolutions over fixed-distance pixels, i.e. a pixel is always one array element from its neighboring pixels. 

In the time domain, this amounts to a constant interstitial spacing, or sampling rate. A resampling function 
was created to extract integer-second measurements from the data. After resampling the data to 1Hz, it 

was truncated at 250,000 seconds. This was known to be where approximately 70% of the cell's capacity 
had degraded, and was labeled "failure". Data was split into training, testing, and anomaly sets, shown in 
Figure 84. Ten percent of the training data was used for validation to train the autoencoder. A small test 
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data set was used to confirm the model's performance as seen by the validation metric returned when 

training finished, as well as for computing decision support metrics, discussed in Section 5.4.3. The 

anomaly range covered the start of cell degradation up to where it was truncated at 70% degradation, 

labeled failure. Of the 250,000 seconds of data, the split resulted in 100,000 training points, 25,000 test 
points, and 125,000 points where the failure grew, labeled anomaly. 

j | | ■ Anomaiy ' j 

Time (s) 
Figure 84: Simulation output for voltage and current signals measured on the battery terminals. 

A close up of one charge cycle (negative current) and one driving segment (positive current with negative 
current at short regenerative breaking moments) is shown in Figure 85. 

Time (s) 
Figure 85: A closer view of charge up and driving with regenerative breaking. 

5.4.1.1 Segmenting 

The model's input data size was (256, 2), i.e., 256 seconds by 2 signals, voltage and current. This allowed 

4-5 minutes of operation for each training sample so that the model could learn dynamical relations in 
the data. This sample time was chosen based on the fact that a full charge up was about 1-2 hours, and 
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anything smaller might not capture the system's behavior as weil. Any longer and the number of training 

samples decreased. A segmenting function was created to generate these samples. Data sizes that were 

not divisible by the segment size were truncated by up to one less that of the segment size. For example, 
2D data of size (100000, 2) would be segmented into a 3D array of size (390, 256, 2) with 160 points 
discarded. Segmented, it becomes 390 samples of (256, 2) data snapshots. 

To properly split the training interval into training and validation, it needed to be segmented first, then 

split, so the randomly selected 10% for validation were whole samples of (256, 2). 

5.4.1.2 Scaling 

Most machine learning models require rescaling of data, so that one signal does not dominate another 

simply due to the units selected. In addition, machine learning models avoid large signals, especially when 
non-linear transformation are used, to avoid saturation. Data was scaled into the [0, 1] range, for each 

signal. To avoid "data snooping" (see [19] for the discussion), it was important to compute the scaling 

parameters from the training data set only, excluding validation and test data . If the validation metric was 
to be interpreted meaningfully, it could not have been included in fitting the scaling parameters. 

5.4.2 Modeling 

Several ID CNN model configurations were tested. In summary, there were a two layer with 100 filters 

model, a two layer with 10 filters model, a two layer with 3 filters model, and a three channel multi-sized 
filter model. Each is described in turn below, with results, comparisons, and effect on the decision support 
process, which is described after the first model. 

5.4.2.1 Model 1: Two Layers, 100 Filters Each 

This model consisted of one layer for encoding with a convolution, max-pooling, and 10% dropout, and 

one layer for decoding, with a convolution, up-sampling, and 10% dropout. A convolution followed by up- 
sampling is referred to as a 'de-convolution'. Figure 86 shows the code used to generate this model and 
Figure 87 shows the model summary, which gives details on layer sizes and number of parameters. In the 

Keras syntax, the argument "filters" denoted the number of convolution filters to apply to the layer. In 

convolution, the integral is computed from negative infinity to infinity, and the only non-zero terms are 
those returned when the functions overlap. This means the filter starts some time before the start of the 
signal and ends sometime after the last data point in the signal. In Tensorflow, the convolution filter does 

not do this. Instead, it moves from the start of the signal to the end without going outside the bounds of 
the signal time. In the Keras syntax, "zero-padding" is used to describe the addition of zeros to the ends 
of the data to acquire the desired output size of that layer's convolution. Based on the way Tensorflow 

computes the convolutions, it is essentially functioning more similar to true mathematical convolution to 

achieve a specific output shape. This is accomplished using the command "padding = same", which can be 

seen on line 5,10, and 13 in Figure 86. The model had 653,202 trainable parameters, shown at the bottom 
of Figure 87. The syntax "kernel_size" denoted the size of each convolution filter. 
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1 t Sha.llov-9ide Model Code. 

2 input_data = Input(3hape=isegment_size, mim_3ignal3t> 

3 

4 t Encode. 

5 x = ConvlD (filtera^lOO, Jcernel_3ize“G4, activation='relu', padding='same ') (input_data) 

6 x = MaxPoolinglD(pool size=2)(x) 

7 encoded = Dropout(rate=0.1)(x) 

8 

9 # Decode. 

10 x = ConvlD(fllter3=100, kernel_3ize=64, activation=,relu', paddlng='same')(encoded) 

11 x = UpSampllnglD(size=2)(x) 

12 x = Dropout(rate=0.1)(x) 

13 decoded = ConvlD(filters=2, kernel_3ize=l, activation^’linear1, padding='same’)(x) 

14 

15 autoencoder = Model(input_data, decoded) 

16 

17 ' autoencoder. ccirqpile (optimizer = optimizers .Adam(lr=le~3), 

18 loss = losses.MSE, 

19 . metrics = (metrics.MAE,]) 

Figure 86: Model 1 code. 

Layer (type) Output Shape Param # 

input_l (InputLayer) (None, 256, 2) 0 

convld (ConvlD) (None, 256, 100) 12900 

max_poolingld (MaxPoolinglD) (None, 128, 100) 0 

dropout (Dropout) (None, 128, 100) 0 

convld_l (ConvlD) (None, 128, 100) 640100 

up^saiaplingld (UpSampllnglD) (None, 256, 100) 0 

dropout_l (Dropout) (None, 256, 100) 0 

convld_2 (ConvlD) (None, 256, 2) 202 

Total params: 653,202 

Trainable params: 653,202 

Non-trainable params: 0 

Figure 87: Model 1 summary. 

Figure 88 shows the model loss as mean squared error for all training steps. Due to the dropout layers in 
training, the model was able to return a smaller loss on the validation data than the training data, because 

it was using all neurons during validation, and only the active neurons that did not drop out during 

training. If dropout is removed from the model, the validation loss is in fact greater than the training loss, 

but over-fitting is unregulated during training. 
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Figure 88: Training and validation mean squared error. 

5.4.2.2 Model Metric 1: Average Prediction Error across Signals 

The first choice of model metric was to compute the average scaled error of the model's prediction. This 
was done by taking the absolute difference between input and prediction for both the scaled voltage and 

current signals, and averaging their values across signals, resulting in a single error value for each time in 
the data. 

Figure 89 shows predictions (orange dotted line) plotted over the two input signals iBatt and vBa[t:, as 

well as the average scaled error for the data used in training and testing. Validation segments that were 
taken at the start can be seen scattered within the training data. 
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Figure 89: Model 1 's predictions on all data with errors. 

Figure 90 shows a close up of the test region for both voltage and current. 
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Figure 90: Close-up of model performance in test region. 

5.4.2.3 Model Metric 2: Average Filter Size N 

The second choice of model metric was the length average window, N, used to filter error. A value of N = 

60 seconds was chosen. This value controlled the values in the filtered error, which fed into the decision 
support process, explained in the following section. In practice, the process of choosing model metrics 
and decision support metrics was iterative because each choice affected each other choice of metric, and 
the overall goal was to attain a robust desired level of anomaly detection. 
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5.4.3 Decision Support Process 

5.4.3.1 Decision Support Metric 1; Filter + Threshold 

The model informed the decision support process via average scaled error of the two output signals. The 

first choice of metric for the decision support process was to take the filtered model error and compute a 
threshold above its maximum. The process was defined as follows: 

The maximum filtered error value, M, observed in both training and testing was used to determine a 

threshold, 9, by which any value of the filtered error in new data predictions greater than this threshold 

were to be considered anomalous. The threshold was determined by increasing M by a factor a, where 
a > 1, thus 

6 - aM (20) 

5.4.3.2 Decision Support Metric 2: A Value fora 

The first value to choose for the decision support process was a. The value was chosen to make 9 be 30% 
greater than M. This meant a = 1.3. Figure 91 shows how the model metrics, i.e., average scaled error 
filtered with a 60 second moving average, informed the decision support parameter M so that the 
threshold for anomaly, 9, was determined. 
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Figure 91: Decision support metrics with a = 1.3. 

5.4.3.3 Detection Horizon 

The detection horizon was defined as the length of time from the first detection of anomaly to the system 
failure. In the simulation used for Model 1, it was known that 70% of the batteries' cell capacities were 

degraded by the end of the data. This was the time in the data labeled as "failure" for this study. The 
detection horizon of this autoencoder model and decision support process was therefore the amount of 

time between the first trigger of anomaly and the end of the data. Figure 92 shows the detection horizon 
for Model 1 with the /V = 60 and a — 1.3. 
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Figure 92: Detection horizon of Model 1 with N = 60s and a = 1.3. 

5.4.4 Different Models 

The two layer model with 100 convolution filters each had 653,202 parameters to learn. A model with 
significantly less parameters, but the same detection capability would be preferred. For this reason, the 
following models were explored. The first, a copy of the two layer mode! but with 10 filters each, simply 

tested to see if a similar model with significantly less parameters to learn could achieve similar 
performance. After this, an even smaller model, identical to the first two but with 3 filters in each layer, 

was tested to see the limit of reducing parameters in this type of model. The last, a model with several 
layers, three channels in parallel and dealing with different frequencies in the data, was built to test if a 

more complex model inspired by physics and domain knowledge could outperform all two-layer models 
while maintaining a low number of parameters. 

5.4.4.1 Model 2: Two Layers 10 Filters Each 

Compared to Model 1, this model was identical in every way except the number of convolution filters in 
each layer. The number of filters was reduced from 100 in Model 1 to 10 in this model. 

The code for this model was identical to Figure 86 with the replacement of 'filters=100' with 'filters=10' 

on lines 5 and 9. Figure 93 shows the model summary with layer sizes and number of parameters. This 
model had 7,722 model parameters, two orders of magnitude less than Model 1. 
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Layer {type) Output Shape Param f 

input_l (InputLayer) (None, 256, 2} 

coiivld (ConvlD) (None, 256, 10) 1290 

lELax_poolingld (MaxPoolinglD) (None, 128, 10) 

convld_l (ConvlD) (Hone, 128, 10) 6410 

up_sainplingld (UpSampllnglD) {Hone, 256, 10) 

convld 2 (ConvlD) {Hone, 256, 2) 22 

Total params: 7,722 

Trainable params: 7,722 

Hon-trainable params: 0 

Figure 93: Model 2 summary. 

This model returned a detection horizon virtually the same as Model 1. Figure 94 shows this for Model 2, 

using the same model and decision support metrics. The detection horizon of this model was 854.5 
minutes, compared to the 849.9 minutes of Model 1. 

Figure 94: Detection horizon of Model 2 with N = 60s and a = 1.3. 

5.4.4.2 Model 2a: Two Layers 3 Filters Each 

To test the limitations of having a significantly lower number of parameters while maintaining the desired 
level of anomaly detection, Mode! 2a was created identical to Model 2, but used only 3 filters in each 

layer. Figure 95 shows the model summary. The model had 974 parameters. The detection horizon of this 
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model was 167.1 minutes (Figure 96), which was significantly closerto the failure than Model 1 or 2. Fewer 

filters were tested (1-2 in each layer) but were unable to predict current and voltage accurately, even with 

many more training steps, indicating that this model was near the limit of the ID CNN autoencoder's 
ability to inform anomaly detection at the desired level. 

Layer (type) Output Shape Paraia # 

input_l (InputLayer) (None, 256, 2) 0 

convld (ConvlD) (None, 256, 3) 387 

inax_poolingld (MaxPoolinglD) {None, 128, 3) 0 

convld_l (ConvlD) (None, 128, 3) 579 

up_saiHplingld (UpSamplinglD) (None, 256, 3) 0 

convld_2 (ConvlD) (None, 256, 2) 8 

Total params: 974 

Trainable params: 974 

Non-trainable params: 0 

Figure 95: Model 2a summary. 

Anomaly Detection 

Figure 96: Detection horizon of Model 2a (Model 2 with 3 filters) with N = 60s and a = 1.3. 

The general goal of these autoencoders was to allow for anomaly detection with minimal modeling effort 

and domain knowledge. No domain knowledge was applied to the construction of these models. To 
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demonstrate potential improvements in anomaly detection by including domain knowledge to the 
problem. Model 3 was developed. 

5A.4.3 Model 3: Three Channel Multi-Sized Filters Non-Symmetric 

This model takes the input along three channels. Each channel consists of a convolution layer with 10 

filters, max-pooling of 2, and a 10% dropout. They differ only in what Keras refers to as dilation rates. 
Dilation rate is the distance between elements in the convolution filter. A default dilation rate of 1 was 

used by all models up to this point. That meant the convolution filter passed over every point in the data. 

A dilation rate of 2 means the convolution filter passes over every other point in the data. A dilation rate 

of 3, every third, a dilation rate of 4, every fourth, and so on. Figure 97 shows the code for Model 3. It 
used the same number of filters as Model 2 since the goal was to keep the total number of model 

parameters low. The dilation rate increased for each filter. For example, filter 3 (line 12 in Figure 97) had 
a filter length of 16 with a dilation rate of 16. For an input of length 256, this filter would cover every 16th 

point and move through a total of 16 positions for the convolution. This is shown in Figure 98, which shows 
the model summary, in the size of the output of filter 3 in the row with variable name "conv_ld_2" under 
column "Output Shape". 

1 # Model 3: Three Channel Mutli-Sized Filter NonSymmetrie Model Code. 

2 input_data = Input(shape=(segment size,nuin signals)) 
3 

4 filterl = ConvlD(filters=10r kernel_size=16f dilation rate=lf activation^'relu')(input data) 

5 filterl = MaxPoolinglD(pool_3ize=2)(filterl) 

6 filterl = Dropout(rate=0.1)(filterl) 
7 

6 filter2 = ConvlD(filters=10, kernel_size=i6, dilaticn__rate=4f activation^'relu1)(input_data) 

9 filter2 = MaxPoolinglD(pool_size=2)(filter2) 

10 filter2 = Dropout(rate=0.1)(filter2) 

11 
12 filters = ConvlD(filters=10f kernel_3ize=l6, dilation_rate=l6, activation^1relu')(input data) 

13 filter3 = MaxPoolinglD(pool_size—2)(filterS) 

14 filterS = Dropout(rate=0.1)(filterS) 

15 

16 merged = Concatenate(axis=l)([filterl, filter2, filterS]) # <- encoded. 

11 

16 upsample = UpSamplinglD(size=2)(merged) 

19 

20 fully_connected = Dense(units=d.6, activation^1linear')(upsample) 

21 
22 fully_connected2 = Dense(units=4, activatiQn='linear1)(fully_connected) 

23 

24 out_filter = ConvlD(filters—2, kernel_size=61r activation='linear')(fully_connected2) 

25 

26 autoencoder = Model(input_data, out_filter) 

27 

23 autoencoder.compile(optimizer = optimizers,Adam(lr=le-3), 

29 loss — losses.MSE, 

30 metrics = [metrics .MAE, ] ) 

Figure 97: Model 3 code. 

Model 3 had several thousand less parameters than Model 2 and only a few hundred more than 2a with 
a total of 1,724. 
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Layer (type) Output Shape Param # Connected to 

input_l {InputLayerJ (None, 25€, 2) 0 

convld (ConvlD) (None, 2^1, 10) 330 input_l[0][0J 

convld_l (ConvlD) (None, 61, 10) 330 input_l[0][0] 

convld_2 (ConvlD) (None, 16, 10) 330 input_l [0] [0] 

max_jpoolingld (MaxPoolinglD) (None, 120, 10) 0 convld[0][0] 

max_jpoolingld_l (MaxPoolinglD) (None, 30, 10) 0 convld 1[0][0] 

maxjpoolingld_2 (MaxPoolinglD) (None, 8, 10) 0 convld_2 [OHO] 

dropout (Dropout) (None, 120, 10) 0 max_poolingld[0][0] 

dropout_l (Dropout) (None, 30, 10) 0 max_poolingld_l [0][0] 

dropout_2 (Dropout) (None, 8, 10) 0 max_poolingld_2[OHO] 

concatenate (Concatenate) (None, 158, 10) 0 dropout[0][0] 

dropout If0][0] 

drcpout_2[0][0] 

up_samplingld (UpSamplinglD) (None, 316, 10) 0 concatenate[0][0] 

dense (Dense) (None, 316, 16) 176 up samplingld[0][0] 

dense_l (Dense) (None, 316, 4) €8 dense[0][0] 

convld_3 (ConvlD) (None, 256, 2) 490 dense_l[0][0] 

Total params: 1,724 

Trainable params: 1,724 

Non-trainable params: 0 

Figure 98: Model 3 summary. 

Figure 99 shows the detection horizon for Model 3. It is nearly the same as Model 1 and Model 2; however, 

this model only required ~2,000 parameters. Model 3 has slightly more parameters than model 2a, yet 
has a significantly longer detection horizon (846.1 minutes vs. 167.1) and is therefore a more effective 
solution to anomaly detection. 
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Anomaly Detection 

Table_ 62: Comparing model's by architecture, model and decisionjupport metrics, and detection horizon. 

Model # Description Training 

Steps 

Number of 

Parameters 

Decision 

Support 

Parameters 

Detection 

Horizon 

(minutes) 

1 2 layers, 100 filters each 6,000 653,202 N = 60, a = 1.3 
6 = 0.0251 

849.9 

2 2 layers, 10 filters each 6,000 7,722 N = 60, a = 1.3 
0 = 0.0329 

854.5 

2a 2 layers, 3 filters each 6,000 974 N = 60, a = 1.3 
0 = 0.0326 

167.1 

3 Three channel, multi-sized 
filters, non-symmetric 

6,000 1,724 N = 60, a = 1.3 
0 = 0.173 

846.1 

5.4.5 Battery Simulation ID CNN Conclusions and Future Work 

Battery simulation was used to provide a system for analysis where the ground truth of the system 
degradation was known. The simulation was built upon a published Modelica battery module, which was 

extended to be able to model degradation. For future CBM work, simulation refinements will include an 

increase in the equivalent series resistorthat accompanies the capacity fade. The simulation improvement 
is expected to further expose the degradation to the terminal (observable) variables (voltage and current), 

which will in turn help the deep learning model to detect the degradation-in-progress. 

Even with these limitations of the simulation (the lack of dependence of the equivalent serial resistance 
on the degradation), a ID CNN autoencoder was capable of detecting the anomaly. This was achieved by 
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training the model on many samples of operation with healthy ground truth knowledge and feeding the 

model's prediction error into a decision support process to indicate when the operation is no longer 

behaving as expected. With the current simulation limitations, the deep learning investigation was 
restricted to anomaly detection based upon the prediction error. Future research, based upon higher- 
fidelity simulations, will further explore representation learning for extracting CIs. The CIs will be 

extracted from the model error as well as from the encodings, as originally intended with the battery 
simulation model. The appropriate CIs in conjunction with the degradation models may be utilized to 
develop a prognostic model. 

5.5 Exploratory Analysis of System Level Models of the Navy Ships 

The analysis of system level models of Navy ships started with a high-level domain knowledge model and 
then proceeded to develop a detector for irregular behavior of the engine system. The first task was to 
visually explore data on various sub-systems to understand which signals best characterized system 
behaviors. Overall, the data sets were smaller, which guided the decision to engineer features using 
expert knowledge and employ classical machine learning techniques. 

Classical machine learning models, supported by handcrafted features, can be used to build effective 

models. The workflow of this approach is described below. Figure 100 shows a high-level view of the signal 
modeling process. This was the pipeline followed in modeling these engine signals. 

transformations) missing values, hyper-parameters) 
noise reduction) 

Figure 100: High-level pipeline for modeling signal measurements. 

In the first stage, a subset of signals are selected for input and for output such that the input signals expose 
as much information as possible to the model for prediction or classification. This typically requires a 

combination of data exploration through visualization and domain knowledge of the subsystems. The next 

step is to consider feature extraction. Deriving features from signals using mathematical transformations 

or signal combinations (e.g. fuel consumption = fuel inlet-fuel outlet) should also be considered. The end 

goal may be anomaly detection, in which the model's features are what indicate a healthy to unhealthy 
drift in operation, or classification in which the model's features are specifically used to make decision 
boundaries for classifying new data. In any case, it is important to develop strong features that are 
appropriate for the task. For this reason, this stage is often revisited after the model evaluation. 

Mathematical transformations of these inner layer outputs may help as well. Cleaning and scaling are 
necessary in any machine learning process, like normalization, dimensionality reduction, noise reductions, 

numerical encodings of nominal variables, etc. Choice of model, selection of hyper-parameters, and 

evaluation follow the cleaning step. In Figure 100, they are all connected by arrows pointing in both 

directions, because these stages are usually done iteratively. After preparing the data for a selected 

model, it may be realized that a different algorithm fits the problem better. In this case, cleaning and 
preparation may require changes, and the model parameters would be entirely different. 
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5.5.1 System Selection and Description 

The diesel engine was selected for analysis on the Navy LPD, because it is one of the few subsystems 
present on both Navy ships and in Army trucks. The official subsystem name is Main Propulsion Diesel 

Engine (MPDE). Figure 101 shows a diagram of the MPDE and related subsystems that are included in the 
Navy HUMS data. The naming nomenclature in the Navy system is based upon the dominant subsystem, 
with the propulsion system being named MPDE. 

The MPDE subsystem had four engines, denoted 1A, 2A, IB, and 2B. The HUMS signal data consists of 

two signal subsets: PG1 and PG2. All signals within a single subset always had identical timestamps, 

whereas signals across the subsets may have a small number (~0.1%) of non-matching timestamps. The 
two subsets were first joined by interpolating the signals with inconsistent sampling. 

Subsystem 
Types 

Subsystems 

Main Propulsion Diesel Engine (MPDE) 

MPDE MRG 

{Main Propulsion 

Diesel Engine) 

MPDE1APG1 
MPDE1APG2 
MPDE1BPG1 
MPDE1BPG2 
MPDE2APG1 
MPDE2APG2 
MPDE2BPG1 
MPDE2BPG2 

(Main Reduction Gear) 

SSDG 

(Ship Seh 

Dtes*l Ge 

rke 

nerator) 

SSDGl 
SSDG2 
SSDG3 
SSDG4 
SSDG5 

Figure 101: MPDE ship subsystem breakdown. 

Figure 102 shows the signals (including both PG1 and PG2 signals) classified in the three categories: 

'pressure', 'temperature', and 'other'. Temperature and pressure measurements made up the majority of 
the data. Signals denoted by 'other' were measurements of delta-pressures, speeds, and levels. This 

layout of available signals served as a guide to develop an approximate system diagram of the engine 
subsystem as discussed below. 
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Pressure Signals 

'CFH CLR lAtlB OUT TEMP1, 

'1A THRUST BRG TEMP’, 
'1A RKR LO 5PLY TEMP ', 

’1A R T/C OIL TEMP', 
’1A R T/C EXHAUST TEMP’, 

•1A R BANK EXHAUST TEMP’, 

’1A R BANK AIR TEMP’ , 
’1A LO INLET TEMP*, 

’1A LO CLR OUT TEMP’, 
’1A LO CLR IN TEMP*, 

*1A L T/C OIL TEMP*, 
*1A L T/C EXHAUST TEMP’, 

'1A L BANK EXHAUST TEMP’, 

’1A L BANK AIR TEMP’ r 
’1A JH OUT TEMP', 

•lA JW IN TEMP*, 
’1A OH CLR OUT TEMP’ , 

•1A CYL 9 EXHAUST TEMP', 
•1A CYL 8 EXHAUST TEMP’, 

'1A CYL 7 EXHAUST TEMP', 

•IA CYL 6 EXHAUST TEMP*, 
’IA CYL 5 EXHAUST TEMP', 

■IA CYL 4 EXHAUST TEMP', 

•IA CYL 3 EXHAUST TEMP*, 

*1A CYL 2 EXHAUST TEMP', 

'IA CYL 16 EXHAUST TEMP’, 
'IA CYL 15 EXHAUST TEMP’, 

’IA CYL 14 EXHAUST TEMP’, 

* IA CYL 13 EXHAUST TEMP’, 

'IA CYL 12 EXHAUST TEMP*, 

'IA CYL 11 EXHAUST TEMP’, 

’IA CYL 10 EXHAUST TEMP*, 

*1A CYL 1 EXHAUST TEMP', 

*1A CFH RT CAC OUT TEMP’, 

’IA CFH LET CAC OUT TEMP’ 

*IA BRG 9 TEMP*, 

’ IA BRG 8 TEMP *, 
'IA BRG 7 TEMP’, 

'IA BRG 6 TEMP*, 
*1A BRG 5 TEMP’, 

*IA BRG 4 TEMP*, 

'IA BRG 3 TEMP’, 
*IA BRG 2 TEMP’, 

’IA BRG 1 TEMP1, 
* IA RKR LO TEMP*, 

’IA COMB EXH TEMP*, 

’IA CFW CLR OUTLET TEMP* 

Thrust Bearing Temp 
Roc ire r Lube Oil Supply Temp 

Right Turbo Charger Oil Temp 

Right Turbo Charger Exhaust Temp 

Right Bank Exhaust Temp 

Right Bank Air Temp 

Lubricant Oil Inlet Temp 

Lubricant Oil Cooler Out Temp 
Lubricant Oil Cooler In Temp 

Left Turbo Charger Oil Temp 
Left Turbo Charger Exhaust Temp 

Left Bank Exhaust Temp 

Left Bank Air Temp 
Jacket Hater Out Temp 

Jacket Hater In Temp 

Jacket Hater Cooler Out Temp 

Central Fresh Water Right Charge Air Cooler Out Temp 
, Central Fresh Water Right Charge Air Cooler Out Temp 

Combined (?) exhaust temp 

Central Fresh Water Cooler Outlet 

Temperature Signals 

’1A/18 CTRL AIR PRES', Control Air Pressure (not sure what this 

would be, for general control applications? Diesels may have starter 
air reqd (at 2Q-30bar) 

Rocker Arm Lube Oil Supply Pressure 

Right Turbo Air Out Pressure 

Right Bank Air Pressure 

Lube Oil Supply 2 Disch Pressure 
Lube Oil Supply 1 Disch Pressure 

Lube Oil Header Pressure 

Left Turbo Air Out Pressure 

Left Bank Air Pressure 
Jacket Hater Outlet Pressure 

Jacket Hater Inlet Pressure 

FuelOil(?) Manifold Pressure 
Exhaust Back Pressure 

Crankcase Pressure 

Rocker Lube Oil Pump Discharge Pressure 

FuelOill?) Pump Discharge Pressure 

Central Fresh Water Pump Disch Pressure 

’IA RKR LO SPLY PRES', 

1IA R T/C AIR OUT PRES’, 

*IA R BANK AIR PRES*, 

*1A LQSP 2 DISCH PRES', 

*IA LOSP 1 DISCH PRES', 

* IA LO HEADER PRES', 
*1A L T/C AIR OUT PRES’, 

* IA L BANK AIR PRES*, 
* IA JW OUTLET PRES’, 

•IA JW INLET PRESS', 

’IA FO MANIFOLD PRES', 
* IA EXH BACK PRES', 

'IA CRKC PRES’, 

*1A RKR LO PMP DIS PRES* 
’IA FO PMP DISCH PRES’, 

*IA CFW PMP DISCH PRES’ 

Other Signals 

•IA RKR LO SUMP LVL*, 

’IA RKR LO STB DP*, 
’IA R T/C SPEED’, 

*1A LO SUMP LVL', 
’IA LO CLR OIL DP', 

’IA L T/C SPEED', 

’IA FUEL SPLY FLOW', 
* IA FUEL RTN FLOW*, 

’IA FUEL RACK*, 

'IA ENGINE SPEED’, 
* IA AIR INTK FLTR DP ’, 
’IA LO STRAINER DP’, 

’IA LO FILTER DP’, 

’IA JW EXPANSION INK LVL1, 

•IA FO FILTER DP’ 

Rocker Arm Lube Oil Sump Level 

Rocher Arm Lube Oil Strainer Delta Pressure 
Right Turbo Speed 

Lube Oil Sump Level 

Lube Oil Cooler Oil Delta Pressure 

Left Turbo Speed 

Fuel rack is a mechanical device which is 

adjusted to meter flow at individual Injectors 

Air Intake Filter Delta Pressure 

Lube Oil Strainer Delta Pressure 

Lube Oil Filter Delta Pressure 

Jacket Water Expansion Tank Level 

Fuel Oil Filter Delta Pressure 

Figure 102: Engine signals on MPDE ships. 
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5.5.2 System-ievel Diagram 

The system diagram is shown below in Figure 103. The blocks in the figure represent subsystem 

components in the engine. Arrows show which components are connected by mass and energy flows, 

and the letters S (speed), P (pressure), dp (delta-pressure), and T (temperature) denote the location of 

HUMS measurements for these components or flows. For instance, oil exits the engine and flows through 
the following components: lube oil (LO) sump, LO strainer, LO pump 1 and 2, LO cooler, 10 filter, LO 

header, and finally back into the engine and the turbochargers. Oil level is measured on the LO sump, 

pressure is measured on the LO pumps and on the LO header, and delta-pressure measurements are made 
on the LO strainer, cooler and filter. 

Exhaust temperatures are measured on the right and left engine banks (Lft Bank and Rt Bank in the 

diagram) and at the exhaust of the turbochargers. Pressure measurements are made where air is directed 
back into the engine from the turbocharger. Additional signals on the engine are listed in the bottom left 

of the diagram. The turbocharger process was captured in speed, temperature, and pressure 
measurements. As an example of signal choice, oil problems could lead to unwanted friction in the 

turbocharger turbines, and may be observed in measurements of speed, which would in turn affect 
measurements on the air flow, like pressure and temperature. If an oil problem led to a turbocharger 

problem then all signals mentioned here, as well as some related to the LO pumps would be desired in 
building a model to capture the relevant subsystem. There were no direct measurements of air flow mass 

in the subsystems, which would have provided a turbocharger model with significantly more useful 

information. Thus, pressures and temperatures were considered in its place. 

Figure 103: High level system diagram of diesel engine. 

The domain knowledge captured in the system diagram and examination of the signals prompted several 
investigations. The first effort was to review data on various systems to understand which signals best 
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characterized system behaviors (and might indicate certain failures) and to look for specific anomalies 

that could be used in additional machine learning exercises. Visualizing the signals is the first step to 

analyzing the system's behavior. Irregularities in the visualized data directed further investigation. For 

example, the left and right turbocharger components were observed to operate in two states. Figure 104 
shows a scatter plot of the two signals, and Figure 105 shows stacked time series plots for those same 
signals with engine speed included. When engine speed was below 400 rpms, the right turbocharger 
remained at near-zero, low speeds (< 1,000 rpms). The right turbocharger never fully stopped as the 
turbine was always spinning, presumably due to residual airflow. These two states were considered active 

and non-active, and are better explained through investigation of the time series plot shown in Figure 
105. 

Figure 104: Engine 1A - Ship 0. Scatter plot of left turbocharger speed vs, right turbocharger speed for all available data. 

The gray regions of Figure 105 indicate areas of interest in this window of measurements. The thick 
vertical line of points in Figure 104 represents times where the right turbocharger speed was under 1,000 
rpms and corresponds to Figure 105 where the right turbocharger (1A R T/C SPEED) showed very low or 

no speed at the same time the left turbocharger (1A LT/C SPEED) was active. The highlighted gray areas 
in Figure 105 show that the right turbocharger was only active when the engine speed (bottom subplot) 
was above ~400 rpm. 
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Figure 10S: Engine lA-Ship 0. Time series plot of left and right turbo speed with engine speed for a small window of the 
available data. 

Two gray regions were expanded in Figure 106 for the same three signals. The transient points floating 
between the dark vertical and diagonal line of points in Figure 104, were those that existed between 

transitions of the activation of the right turbocharger. In Figure 106, the thin blue shade labeled 

"Transition point" was an example of this instance. The few points seen there were the points between 
the two states, right turbo pressure at 0 and right turbo pressure tracking the left turbo, of Figure 104. 
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Figure 106: Zoomed in region of right turbocharger's response to engine speed alongside left turbocharger. 
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Figure 107 shows that the left turbocharger was always tracking with engine speed, revealing that the 

right turbocharger only supported the left (main) turbocharger. The exhaust gas from the engine is the 

only force driving the compressor of the turbocharger, so exhaust temperatures and pressures are 

expected to be highly correlated with turbocharger speeds. The first subplot shows a daily correlation 
value between left turbo speed and engine speed. The second and third subplots show the same with 
larger filters. 

Pearson Correlation Coefficient 
All Data (1A L T/C SPEED) vs. {1A ENGINE SPEED) 

Figure 107: Correlation between engine speed and the left turbo charger, which is always on. 

The left turbo charger and engine speed operated together for the entire span of data. The Figure 107 
plots only show engine 1A on Ship 0. Figure 108 shows that all engines on both diesel ships behave similar 
to Ship 0 engine 1A in this regard. MPDE1B on ship 0 contained some large negative data that is obviously 
errant data. Data segments with obvious errors were not used for subsequent analysis. 
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SH1P000 

SHIP005 

Figure 108: All engines on both diesel ships show right turbocharger spinning only some of the time, and left turbocharger 
always spinning. 

As turbo outlet pressure is a function of turbo speed, it is logical to look at the functional relationship 

between these signals (pressure vs. speed was scattered for all data on ship 0- engine MPDE1A in Figure 
109). The curve suggests that other variables affect this relationship, or possibly that the turbo may be in 
different states across the range of sample times. 

Figure 109: Air out pressure vs. speed for left turbocharger. 

Figure 110 and Figure 111 show data fora narrowertime range. The yellow and blue dotted lines surround 
a grouping of points in the scatter plot (Figure 110). The corresponding points to those groups are 
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surrounded by yellow and blue dotted lines in the time series plot (Figure 111). The blue surrounded 

points correspond to lower engine speeds, and the yellow surrounded points correspond to high engine 

speeds. This explains the apparent two-mode relationship between these two signals for the left 

turbocharger. The higher mode occurs when the right turbocharger is on (second half of the third subplot 

in Figure 111), at high engine speeds. 

Figure 110: Scatter plot of left turbocharger air out pressure vs. speed. 
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1A LT/C AIR OUT PRES 

1A ENGINE SPEED 

Figure 111: Time series plot of left turbocharger speed and air out pressure, and engine speed. 

To better demonstrate this, Figure 112 shows the split in the left turbocharger's output pressure colored 

by the state of the right turbocharger's speed. It is dear that the exhaust pressure measured on the left 
turbocharger moves between the two modes depending on the right turbocharger's state. Based on the 
pressure speed characteristic, it was hypothesized that this relationship could be used to detect 
turbocharger anomalies. This relationship between the measurements made on the left turbocharger 

and the state of the right turbocharger would not have been immediately obvious, unless the observer 

was a domain expert. The above exploration exposed some of the systems properties, but for a general 

approach, the benefit of classical machine learning methods atthis level are to expose these relationships, 
in this case by learning regression boundaries. 
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Ship 0, Engine 1A 

Figure 112: Left turbocharger output pressure colored depending on the right turbocharger's speed. 

There are several different types of machine learning algorithms for modeling these types of relationships. 

One robust method is a Support Vector Machine (SVM). SVMs have some advantages over other methods 

in that they are efficient on computer memory since only the support vectors, or closest points to the 
decision boundary, are need in determining the boundary. They are robust because they use kernel spaces 
to transform the feature space (in this case of signals used to predict another signal) into a higher 

dimensional linearly separable space. The SVM can be extended from classification to regression for 

continuous space predictions. These are referred to as Support Vector Regressors (SVRs). Another 
noteworthy algorithm, which was not used here, is the Random Forest (RF). Using information gain 
calculations, the model creates a decision tree where the most informative features are closest to the top. 
RF classifiers combine many differently built decision trees and use a voting schema to determine the 

most likely prediction value. Its advantages over the SVM is that 1) there is only one parameter to tune, 

i.e., the number of trees in the forest, 2) a lower sensitivity to this one parameter, 3) it's based on 
probability functions, and 4) can be extended more easily to a multiple class output (which is not the case 

here). A shortcoming of the decision tree used in RF are that they tend to over fit the data if not properly 

monitored and trained. For this reason, the simpler option of SVR, which performed with high fidelity on 
this data, was chosen. The following model uses an SVR to predict turbocharger air output pressure. 

5.5.2 J Support Vector Regression (SVR) Model 

A Support Vector Regression (SVR) model was used to predict turbocharger exhaust air pressure based on 
input features, turbocharger speed and engine speed. Figure 113 shows where the data was split into 
training (4 months of densely populated data) and testing (7 months of less densely populated data). The 
idea was to see if the model could learn the relationship and be able to predict air output pressure later. 

Furthermore, if the model were to make incorrect predictions, either 1) the model was not sufficiently 
trained well enough on the signal relations, or 2) something changed in the system and the model was no 
longer exposed to the data it was trained on. It is paramount in anomaly detection to train on data during 

normal operations. New data that does not lend itself to accurate model predictions is thus labeled as 
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abnormal, or anomalous. Due to systems changing overtime, it is important to maintain models that have 
learned normal operation data of the system at the current time. In addition to anomaly detection, there 

is the general need to use the model trained on one engine for many different engines across the fleet 

without significant re-tuning to individual assets. For a model to be effective in this way, it must correctly 
generalize to the overall system behavior. 

The model was tested first on the left turbo for engine 1A (MPDE1A) on a specific ship denoted by "0" 

(see Figure 113). The model was subsequently tested on other engines of the same type, both those 

installed on the same ship and those installed on other ships. 
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Figure 113: Training and testing split for predicting turbocharger air out pressure from turbocharger and engine speeds on Ship 

0 engine 1A. 

The potential for re-use of models on the same subsystems in other engines was also explored. Two 
different interpretations (sensor fault and platform differences, see Section 5.5.2.1.3) of the SVR's 

predictions on this data were made in light of anomaly detectors and predictions across other engines. 

5.5.2.1.1 Testing on the Original Engine 
Testing on the original engine revealed the model accuracy was very small (~1 psi average absolute error). 

Because isolated single-point error (the green trace in the bottom subplot of Figure 114) could be high 
during transients, performing a moving average over single-point absolute errors (the red trace in the 
bottom subplot of Figure 114) yielded a more stable indicator. This figure shows the results for the whole 

span of testing data (orange section in Figure 113). The top subplots of Figure 114 show the test data in 

blue, along with the predictions in orange, which shows general agreement. 
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Figure 114: SVR Results on predicting left turbocharger air output pressure. 

Figure 115 provides a zoomed in look at the results over a narrower timeframe. The bottom subplot shows 
the absolute error between the test data and the predictions in green, the averaged error is shown in red. 
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Figure 115: Test data, predictions, and errors for the SVR on predicting left turbocharger air out pressure from January of 2017 

where prediction error was tow. 

Around July 2017 there was a spike in model error. The predicted values were about 2-5 psi lower on 
average than the measured values. 

5.5.2.1.2 Error Analysis 

In Figure 116 (an annotated copy of Figure 109), a region of points is highlighted that was not previously 
discussed in detail. 

131 



35 

Figure 116: Left turbocharger output pressure vs. speed repeated. 

These indicated points are all from after July of 2017. This is also where the model deviation begins to 

increase. Figure 117 shows three intervals of data that were evaluated by the SVR model. The green 
shaded region was designated the anomaly region based on the error spike from the initial model 
evaluation (Figure 115) and is the region from which the points indicated in Figure 116 are derived. 
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Figure 117: Turbocharger output pressure predictions for training, testing, and anomaly data. 

Figure 118 shows the absolute error of the model evaluated on each region. The anomaly region (green) 
is highly distinguished from the training region (blue) and early 2017 testing region (yellow) in this figure. 
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SHIPOOO 
Engine 1A Mode! 

Figure 118: Histograms of each region of model evaluation shows the model's ability to detect anomalous behavior. 

The model is therefore indicating a significant change in the behavior of the HUMS data. Referring to 
Figure 116, the data indicates an elevated turbo pressure when the engine is at very low rotation speeds, 
and similarly an increase in turbo pressure of about the same amount at higher engine speeds. The most 
likely explanation of this is that the sensor was out of calibration. 

From a modeling standpoint, the SVR model has shown that it can accurately model the turbo 
pressure/speed relationship. In addition, a single layer Multi-Layer Perceptron (MLP) with 8 neurons was 
trained on the same data and achieved similar results. 

5.5.2.1.3 Testing on Other Engines 

As the model was built on engine 1A of Ship 0, the next natural step was to determine the applicability of 

the model to the three remaining engines on that ship. Figure 119 shows error distributions for the 
application of the model to the other engines. 

133 



Figure 119: Engine lA's model predicting oil of Ship O's engine's left turbocharger air out pressures. 

The blue line indicates the model application to engine 1A, the engine that the model was trained on. 
Engine 1A has the lowest error alongside engine 2B, which had very similar results. Tuning a model for 

individual vehicles/subsystems is an important aspect of the digital twin concept. Applied to engines IB 

and 2A, the model has significantly higher errors. An analysis of data from engine 2A indicates a likely 
calibration error or sensor fault due to an offset of about 5 psi in data values. There is not an obvious 
explanation for the error shown above for engine IB. 

These results indicate a physical understanding of system behavior is often important to inform model 
structure and interpretation, and that relatively simple models can provide effective anomaly detectors. 

The errors shown for engine IB suggest that in some cases the norma! model must be tuned to the 

individual asset - this is in line with the digital twin strategy that suggests a unique digital twin model for 
each individual asset. 

5.6 Conclusions of the PHM Opportunity Investigation 
The PHM Opportunity Investigation uncovered the prospect of data-driven PHM development, specifically 
at the first level of PHM capability, anomaly detection, utilizing modern deep learning methods like MLP 
and ID CIMIMs as well as some classical machine learning methods, like SVR. 

The approach used for this study was based on comparing and contrasting normal operation to the 
operation associated with failure in progress, where the data was supplied by HUMS and the ground truth 

by the recorded maintenance events. The opportunities were identified by the availability of the ground 
truth of failures, which came from the analysis of maintenance data. The first such opportunity was 

related to engine fuel injector failures and an anomaly detector was developed based upon a Multi-Layer 

Perceptron autoencoder model. Unlike classical machine learning models, which require high balance 
between healthy and fault-related data, autoencoders can learn the structure of the system just based on 

the normal operation. This feature is extremely valuable in PHM, where a large amount of data on normal 
operation is readily available, but data related to failures are scarce. While the general model developed 
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for this failure mode was not able to detect anomalies ahead of the maintenance events associated with 
the engine fuel injector failure, the same model worked very well when applied to transmission ECU 

failures. Moreover, the model trained on the HUMS data from one vehicle was demonstrated to detect 
anomaly in a transmission on another vehicle with no additional tuning. 

MLPs, also referred to as dense or fully-connected neural network layers, are the first choice for new 
machine learning tasks. They were used in vision problems before CNNs and for speech recognition before 

Long-Short Term Memory (LSTM) networks. Because they are based on a set of unknown filters whose 
weights are determined during training from data, Id CNN layers have natural ability to encode dynamical 

systems. In addition, these models tend to be more compact and better exploit the computational 
advantages to GPUs. 

In addition to being useful as anomaly detectors, deep learning autoencoders have the potential to extract 

condition indicators when trained on failure-in-progress. In this case, the encodings (the outputs of the 
innermost, narrowest layer) are Cl candidates. This method was explored using Navy data that consisted 

of maintenance events accompanied by HUMS data leading into the maintenance events. RIT developed 

approaches to evaluate plausible Cl candidates, using model invariance as the criteria to distinguish 

potential degradation from spurious drifting encoding outputs: only the Cl candidates that were 
consistent across multiple models were accepted. The approach showed promise when applied to the 

first selected set of events (ship-engine-event type), but no good Cl candidates were found when the 
process was repeated on two more similar data sets. 

To explore this modeling approach further, a simulation of a physical system was developed, which 

provided direct access to the ground truth of the evolving degradation, which was not available in the 

real-world data set. The physical system was a battery stack, which was selected based upon its relevance 
to CBM and its rich internal structure, featuring non-linear relationships among its states. The simulation 
was based upon a published Modelica ESS model. The model was extended to include the degradation, 

and the terminal (physically observable) variables (voltage and current) were used as the inputs for the 

machine learning model. The first level of success was demonstrated by the ability of the model to 

perform as an anomaly detector. Multiple autoencoders were tested to identify the impact of the number 
of parameters on the detection horizon of the failure. Future work will focus on the Cl extraction, where 

the Cl candidates will be assessed using the methods developed in this project, then evaluated by 
comparing them to the actual degradation. 

After the identification of an anomaly and its classification with respect to the failure mode that caused it 

(i.e. diagnostics), the next level of capability is the damage assessment. The damage assessment can be 
either explicit, if it can be related to some ground truth, or implicit, indicating just the state that leads 

towards the failure. The implicit damage assessment is far more common. Analysis of failure progression, 
and the estimation of the future states of damage, falls in the domain of prognostics. While damage 

assessment was explored using autoencoders in the context of a specific example. More generally, the 

data-driven approach to damage assessment and prognostics based upon representation learning 

demands multiple examples of failure progression in order to learn from the data. However, while the 
large amounts of data are needed for learning of the general representation, tuning the model to learn 

degradation is expected to be faster and less demanding with respect to the data volumes. After the 
general representation is learned, the model is fine-tuned using few progressions of failure. It is 
reasonable to expect that the innermost layer - the encodings - will be good candidates for data-driven 
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CIs. The forecasting of the progression of failure still must be conditioned on the assumptions on future 
operating and environmental conditions [29]. In a similar vein, because all CIs are sensitive to the 

operating conditions [8], whether they are engineered, or data-driven, it seems plausible that the 
representation learning should be trained to infer the operating conditions in addition to CIs [33]. It is 

worth reemphasizing that the physics that describes a progression of an incipient failure, while related to 

the physics of normal operation, are distinct phenomena and that must be either 1) learned from the data 
(that consists of multiple instances), 2) characterized empirically in a form of a phenomenological model, 
or 3) supplied by physics, with empirical determination of some parameters. 

A system level model for a ship engine was developed to show how signal relationships and operating 

conditions can impact the learning of behavior over time. A classical machine learning model, the SVR, 
was built to predict output pressures on a turbocharger where different operating states, due to the 

dependent behavior of a left and right turbocharger on engine speed, were present. Classical machine 

learning methods are still indispensable when the data sets are relatively small, because deep learning 
requires large data volumes and domain knowledge can be exploited to make up for the lack of data. 

6 Best Practices and Emerging Trends 
6.1 Layers of PHM Capability: anomaly detection, diagnostics, and prognostics 
The capability within a PHM system may be broken down into three layers, as shown in Figure 120, that 

provide progressively increasing value at the cost of increased data requirements and complexity. 

Implementation of the layers of PHM may be performed over-time with increasing capability and 
sophistication [6, 7]. In general, the progression from anomaly detection, to diagnostics, to prognostics, 
gives increasing resolution and refinement to both operational and maintenance decisions. Anomaly 
detection says simply that something is wrong, but does not address the severity of potential failure, nor 
the timeliness of action required. Diagnosis adds information about what is going wrong, so that severity 

of the potential failure can be understood, as well as better guiding maintenance activity to the root cause. 
Finally, prognosis aims to give an estimate of how timely a repair or operational accommodation is - do I 

have seconds, minutes, or hours until my operation is affected. Findings from the literature review 
performed are provided below and cover the current capabilities within each of the PHS system layers, a 

review of applicable systems, an overview of activities in related fields, and the best practices identified. 
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Anomaly Detection 

Identify an abnormal or novel 

operating condition 

Diagnostics 
Determine what component is 
failing and identify the extent of 
the fault (Failure Mode) 

Prognostics 
Predict the Remaining Useful Life of 
the component 

6.2 State of PHM 
In their seminal and highly influential paper, Engel et 

at. discussed details of computing remaining useful 
life in 2000 [9]. Worden etal. introduced/undomento/ 

theorems of structural health monitoring in 2007 [8], 
which is particularly useful to identify realistic and 
achievable goals for a PHM system. 

A recent comprehensive review of state of PHM is 
provided by the Prognostics Center of Excellence at 
NASA Ames Research Center [34], 

Figure 120 - The Layers of PHM Capability 

6.2.1 Current Capabilities (and limitations) 

6.2.1.1 Anomaly Detection 

Anomaly detection can be focused on simply 

identifying a behavior as "different from normal" - 

also termed novelty detection. Anomaly detectors 

can be developed without significant physical 
understanding of system behavior, although they do 

need an understanding (through data signals) of the operational context of the system (e.g. speed, load, 
etc.). In traditional machine learning, the key distinguishing factor of the success of a project \s feature 

engineering [15], which represents ^90% of industrial machine learning development effort [16]. The 

emerging trend (since mid-2000s) is to attempt to automate this process using representation learning. 

This idea had been very successfully applied before 2000. For example, Japkowicz, Myers, and Gluck [17] 

employed an autoencoding neural network that takes a high dimensional feature vector as the input, 

compresses it via a lower-dimensional hidden layer, and reconstructs it with the output layer of the same 

dimension as the input. This solution had very impressive performance in practice. The approach has 

considerable generality: the neural net learns a lower dimensional representation of the input data. The 
neural net is trained on "normal" inputs from a machine, so when an input that represents any of a 
multiplicity of possible "fault" conditions is input to the neural net it will fail to accurately reconstruct the 

input at its output. Deviation between measured output signals and the model results is used to develop 
a measure of likelihood of the presence of anomalous behavior, and/or of degree of the anomaly. 

This model can be further enhanced using the recent advances in machine learning. The neural networks 
experienced a renaissance in the mid-2000s, when systematic approaches to deep learning architectures 
emerged [35], While it has been known for some time that, given the same number of non-linear (neural 

network) units, a deep architecture is more expressive than a shallow one [36], deep nets were difficult 

to train in the mid-1990s. That difficulty and the emergence of support vector machines [37, 38] caused 
the second crises of neural networks in the mid-1990s. The situation changed in the early 2000s when 

new training algorithms for deep nets were discovered [39, 40], The successful applications are growing 

in numbers and algorithms continue to improve [41], The key distinguishing feature of the deep networks 
are layer-wise, pre-training via an unsupervised learning algorithm, use of new, simpler activation 
functions (ReLU), and new approaches to regularization (dropout [20]). The most popular approach is to 
use the restrictive Boltzmann machine and contrastive divergence. The promise of this technology is that 
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while learning of the representation requires large amounts of data, the data required for this learning 
corresponds to "normal operations", which is more readily available [42] (as opposed to requiring sets of 

normal and abnormal training data). The layer-wise pre-training using an unsupervised scheme requires 

relatively large datasets. Typically, data corresponding to known failure conditions is orders of magnitude 

smaller in volume, and often it is not available (or too limited) making supervised learning impractical. 

Thus, the unsupervised approach described above uses available data to learn the representation of 

normal operations, which enables anomaly detection immediately, and later, as data associated with 
faults become available, the system can be expanded to more sophisticated capabilities: diagnostics 
(classification of labeled faults) and prognostics (regression of fault evolutions). State-of-the-art 

implementations of deep learning algorithms are now widely available [32, 43-45] and will be used to 
expedite the training of the initial model. Building a deeper version of an autoencoder is now feasible and 
more layers will likely improve the performance over the model used in 1990s [17, 46], 

Neural networks are black boxes, or algorithmic models, which produce eminently useful results (see 
Breiman [47] for the discussion on two cultures in statistical modeling). In fact, neural nets have recently 

outperformed other models in a number of cognition tasks [35]; however, they do not lend themselves 

to human interpretation. The price of achieving very high levels of performance is the model complexity: 

current neural networks employ enormous number of parameters. For example, Taigman [48] et al. 

trained a nine-layer network with 120 million parameters for 3D face modeling. In addition to neural nets, 
random forests [49], and boosted regression trees [50] are among algorithmic models that can be used to 

learn certain tasks or skills similar to cognition, or what is in psychology referred to as System 1 (or human 
sub-consciousness) [51]. Their successful performance must be validated on a data set separate from the 
data set used for training the model. All these models require large amount of data and considerable 
amount of validation. This project focused on deep learning and specifically anomaly detectors based on 
autoencoders because of their unique capability to learn the structure of a dynamical system from that 
data associated with normal operating conditions. 

New ideas are currently being introduced and explored in the context of deep learning, such adversarial 

learning, which corresponds to a mini-max two player game, where one (generative) model attempts to 

synthesize data that can fool the other (generative) model [52] and multimodal learning, which learns 

multiple modalities (text, image, audio) simultaneously and can later predict audio based on text and vice 
versa. This advanced paradigm in machine learning has the capability to artificially synthesize high-fidelity 

data, which is otherwise scarce. For example, the anomaly data is far less accessible than normal 
operation, and the existing datasets can be artificially expanded in this manner. 

6.2.1.2 Diagnostics 

Assuming that proper instrumentation is in place to enable a comprehensive anomaly detection, the 
anomaly detection can, in principle, lead to a purely data-driven diagnostics over time. In this proposed 
process, maintainers and other domain experts label the detected anomalies to specific faults and no¬ 

trouble-found for those that could not be related to a failure or an incipient failure. This growing data set 

of labeled anomalies can be then used to train a machine learning classifier. Furthermore, if the anomaly 
detection is based on a deep learning autoencoder, the encodings can be potentially used as features for 
the classifier. 

Classical approaches to diagnostics rely on large quantities of data that show progression from normal 

operation to failure. Vachtsevanos et Al.[53] provide an overview of the various methods of fault 
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diagnosis, including statistical classification and clustering[54, 55], data driven diagnostics[56], dynamic 

systems modeling[57], physical model-based methods[58, 59], model based reasoning[60, 61], and case 

based reasoning (CBR) [62, 63]. Diagnostics can be an important pathway to prognostics, as some of the 
prognostics methodologies first require a diagnosis of what failure(s) are thought to be developing. 

6.2.1.3 Prognostics 

Prognostics rely on an accurate assessment of the current state of health of the component or system. 

Estimation of remaining useful life (RUL) is then projected from the current condition to the failure 
threshold. Goebel et al. [29] identified four methods for reasoning about predictions of failure: 1) reliability 

analysis, using population statistics from control experiments and usage data; 2) damage accumulation, 
using specific load history and comparing it to population empirical models; 3) data analytics, using 
machine learning models and applying them on HUIVIS data; and 4) condition monitoring, using specific 

degradation models and applying them on load history. Because condition indicators depend on 
operating and environmental conditions (see Axiom IV in [8]), the degradation prognostics models are 

conditioned on assumed future operating and environmental conditions [29], State estimation methods 

(e.g. unscented Kalman filter, particle filter, hidden Markov models) are often employed for predicting 

RUL because of their ability to integrate physics-based model for prediction of future states and 

measurements for correction. Prognostics models are generally broken down into three types: physics- 
based, data-driven, and hybrid [53]. They are described in turn below. 

Physics-based models rely on a physical understanding of the degradation of the equipment, and the 
effects of operation on the mechanism of failure. Utilizing a physical damage model combined with 

measured data, predictions are made of the remaining useful life of the component or system. Crack- 
growth modeling[64] or wear modeling[65] are types of physics based prognostic models. The challenge 

in physics based modelling is that complex systems do not always lend themselves to accurate analytical 

or numerical treatment. The more complex the model becomes, the more system and material 

knowledge (and associated model parameters) are necessary, thus increasing requirements on model 

development efforts. In addition, prognostic models need deeper visibility into the system state, driving 
increased signal measurement requirements and associated parameter estimation and feature extraction. 

However, advances continue to be made that may further enable physics-based prognostics, such as the 

ability to facilitate system-level engineering solutions and collaborations by sharing models via the 
Functional Mock-up Interface (FMI) paradigm, and increasingly robust processors that can handle high 
degree of freedom analytical models. 

Data-driven prognostics are black box models that learn equipment behavior. Typical data-driven models 

may be broken down into artificial intelligence (Al) or statistical approaches. Artificial intelligence 
approaches include neural networks[66-68] and fuzzy logic[69, 70]. Gaussian process regression[71, 72], 

least squares regression[73], support vector machines[74, 75], and hidden Markov models[76, 77] are all 

types of statistical prognostic approaches. A few of the challenges related to data-driven models are: 1) 

the need for large and expensive data sets that correspond to normal operation, 2) data sets often have 

few labeled faults and even fewer progressions to failure, and 3) expensive test rig data collections may 

not always capture relevant failures. As described earlier, recent advances have been made that allow 
models to learn from normal operations without having collected specific fault data, such as 
autoencoders. 
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Finally, the last type of prognostic is a hybrid model. Hybrid models integrate elements of both physics- 

based and data-driven models. These models may be done in series or in parallel[78]. Series models 

utilize the data-driven approaches to fine-tune the parameters of the physics-based models, wherein 

parallel models perform their calculations separately and join the results to make a prediction on RUL. 
Zhou et Al.[79] present a data fusion approach that combines data driven and physics based prognostics 

to improve prognostics predictions relating to performance degradation of REM fuel cells. This hybrid 

approach utilizes the advantages of each separate approach to improve the predictions over the entire 
life of the system. The challenge with hybrid models is that they can suffer the same shortcomings as 
either physics-based or data-based prognostic models. 

6,2.1.4 Decision Support 

For decision support systems, with humans in the loop, opaqueness of algorithmic models is a significant 

deficiency. For example, it was shown above that an autoencoder error can be a good health indicator. 
However, the existence of a health indicator is not enough - a decision support layer that interprets the 

indicator is needed to make the indicator actionable. In the prior examples, simple automated reasoners, 

such as filter and threshold, or SPRT were used. For some practical implementation, more on this in 

Section 6.5, the Cl thresholds are intentionally set low to avoid false alarms and engineers are carefully 
reviewing the data and its context to assess the presence of a fault. 

As more models based on neural networks emerge, the treatment of their outputs is becoming critically 

important. There is a considerable reluctance to use the results from a black box model that cannot be 
readily interpreted, except in cases where the data-driven model has been demonstrated to work on a 
very large number of examples and with high confidence. This problem of trust without interpretation is 
at the frontier of current research in deep learning [80], 

Humans arrive at critical decisions using deductive reasoning3 or logic. This is also referred to as reasoning 

at the conscious level, or "System 2" as defined in [51]. The natural extension of explicit, reason-based 

decision-making, with full transparency and interpretability can be accomplished by Bayesian formulation. 

Bayesian formulation provides a principled approach to automate decision process in the presence of 
uncertainty and insufficient knowledge. 

It is helpful to consider the timeline of the development of this approach. The formal logic dates back to 
antiquity. It started in the fourth century BCE; Aristotle introduced syllogisms, or logical arguments, to 

arrive at rational decisions (e.g. A => 6 and B => C thus A => C). Recognition that probability is just 

"common sense reduced to calculation" was due to Laplace (circa 1814), but formal connection between 
the Bayesian view of probability was established more than a century later. While forma! logic employs 

deduction, plausible inference (an extension of logic) employs induction, Polya [81]. Cox [82, 83] captured 
the qualitative rules of the extended logic and showed that they obey the rules of Bayesian probability. 

These findings, together with earlier work of Jeffreys [84], who extended the original Laplace's objective 

priors from location parameters to scale parameters (Jeffrey priors), and Shannon's information theory 

[85] were synthesized by Jaynes [86] to form a coherent objective logical reasoning in the presence of 
uncertainty. This approach has been adopted in physics [87-90], machine learning [91, 92], information 
theory [93], and other fields. In parallel, approaches for reasoning under uncertainty with appropriate 

3 “A decision was wise, even though it lead to disastrous consequences, if the evidence at hand indicated that it was 
the best one to make; and a decision was foolish, even though it lead to the happiest possible consequences, if it was 
unreasonable to expect those consequences." -Herodotus, the fifth century BCE 
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accounting of prior belief based on individual experiences (or personal probabilities) also adopted the 

Bayesian framework [94, 95], While the probability rules are intuitive4, formulating them for practical use 

can be challenging5. Probabilistic graphical models exploit the intuitiveness of logical connections, ensure 
the coherency and consistency of the calculations, and take care of the necessary computations. The 

potential of Bayesian networks has been recognized in the 1980s [96, 97], More recently excellent 
tutorials (98, 99] and books [91, 92,100-102] have become available. This powerful method is now ready 

to be more widely deployed in cases where high-level decisions have to be made in the absence of all 
desirable information. 

The decision-support system in Bayesian framework consists of two components: computational engine, 
and static expert (domain) knowledge. They are considered below in turn. 

6.2.1.4.1 Computational Engine 

Stochastic simulation, based upon Markov Chain Monte Carlo (MCMC), has been identified as a powerful 
technique for coherent inferencing [96]. Although MCMC method dates back to 1940s [103], up until 

recently the problem with stochastic simulations was their computational requirements. Significant 
advances in semiconductor technology and associated computing devices have enabled faster 

computation, and coupled with software developments changed the situation. In the recent past there 
has been a great deal of development of software tools that enable Bayesian computations, including 
BUGS [104], JAGS [105], PyMC [106, 107], Church[108], Stan [109], lnfer.NET [110] and others. Thus, the 

first component of a Bayesian decision-support system is already available: these computational 
frameworks greatly accelerate implementation of a decision-support system, ensuring that the underlying 
computational principles are properly implemented. 

6.2.1.4.2 Static Expert Knowledge 

Although subjective, expert knowledge is extremely valuable and should be integrated into the overall 
decision-support system. It can provide statistically independent knowledge that can be fused with the 
outputs of the algorithmic systems. However, this knowledge lacks quantification. The approach to 

capture the quantification is to make the assumption of uncertainties explicit, in the form of plausibility 

distributions. For example, a domain expert can be queried for his/her belief in certain outcomes within 
certain contextual scenarios. It is important to stress that it is not necessary to fully characterize the space 
of possibilities. An attempt to be exhaustive can be paralyzing. Instead, a pragmatic approach, which 

exploits knowledge where it is available, and admits ignorance where it is missing, has the promise to be 
a good starting point for development of a decision-support system. 

6.3 Additional Literature for Selected Subsystems for Military Vehicles 
From the vehicle perspective, certain subsystems are common across all platforms and mixed vehicle 

fleets. When evaluating ground vehicles and ships, the following subsystems were identified as common 

systems that have a history of PHM research: engines, gears/gearboxes, and electrical power systems. 
Provided below are a few select papers, which contribute to or summarize PHM research in those areas. 

4 Pierre-Simon Laplace recognized the potential: "Probability theory is nothing but common sense reduced to 
calculation." 

5 Francois-Marie Arouet Voltair recognized the problem: “Common sense is not so common". In the more recent past 

Court of Appeal bans Bayesian probability http:/Avww.bailii.org/ew/cases/EWCA/Civ/2013/1 S.litml 
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6.3.1 Engines 
There is a long history for engine aircraft PHM. Rice's 1994 patent [111] describes methods for detecting 
partial and full engine failures. Xu et al. [112] described a framework for fusing data-driven with 

experience-based approaches to prognostics in the context of aircraft engines. An overview of different 
approaches to PHIVI of complex aerospace components is given by Patnaik et al. [113], He and Feng [114] 

present a fault diagnosis approach for on-line detection of diesel injection faults utilizing fuzzy pattern 

recognition on the injection pressures. Kimmich et al.[115] describe model-based approaches for fault 

detection in diesel engine intake, injection and exhaust systems utilizing residual generation semiphysical 

models and neural networks. Lebold et al. [116] present multiple approaches for fault analysis of diesel 

fuel injectors, with the goal of embedding a low computational power algorithm into the vehicle engine 

controller. Li et al. [117] provide a review of approaches to prognostics on rotating machinery, covering 
Bayesian theory models, proportional hazard models, neural network based models, support vector 

machine based models, and similarity based models. Delvecchio et al. [118] review approaches to 

monitoring internal combustion engines with vibro-acoustic signals, which includes a number of common 
faults and analysis techniques. 

6.3.2 Gears 
Of the four dominant modes of gear tooth failure (breakage, wear, pitting, and scoring), the breakage is 
the most catastrophic and occurs precipitously, with no advanced warning. From the fatigue viewpoint, 

the lifetime of a gear can has two phases: crack initiation and crack propagation [119-121]. The gear 
research community has developed many vibration-based, condition indicators (CIs), to detect these 

features and assess damage, as summarized in [122-124], To validate the performance of these CIs, 
researchers have been employing crack propagation (CP) sensors (see e.g. [125]). Typically, the crack 

propagation sensors are used to measure crack lengths on the surface of mechanical structures. A study 

focused on the analysis of signals from CP sensors implemented on spur gears considered two types of 
tests: crack propagation in a single-tooth fatigue-based tester and crack propagation in a dynamometer. 

In both cases, the CP sensors provide measurable ground truth for the level of damage. After researchers 
started seeding cracks on fatigue fixtures [126, 127], it was found that propagating cracks on a fatigue 
tester are much easier to observe than those in a gearbox. 

6.3.3 Bearings 
Reliability and failure analysis of bearings have a long history, with the early life models emerging in the 

1940s [128], A recent review of the life models of bearings is provided in [129]. The details of geometry 

and kinematics of bearings are described in [130]. The dominant causes of failure are fatigue, wear, plastic 
deformation, corrosion, brinelling, poor lubrication, faulty installation, and incorrect design [131]. Bearing 

PHM is chiefly concerned with fatigue and vibration-based CIs have been traditionally used for detection 

of incipient failures (e.g., kurtosis was first introduced in the context of bearings [132]). Detection of 

incipient failures due to different failure modes (old grease, flaws in the inner race, outer race, and a ball) 
has been investigated since the 1960s [133]. Good classical reviews of the bearing research can be found 

in [131, 134] and a recent authoritative tutorial is [135]. Traditionally, CIs were based on vibration, but 
Acoustic Emission (AE) based Cl have attracted the attention of bearings PHM in the more recent past 
[136-138], 
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6.3.4 Electronics and Electrical Power Systems 
Keller et al. [139] introduced The Aircraft Electrical Power Systems Prognostics and Health Management 

(AEPHM) program to demonstrate PHM technologies and enable CBM. The selected systems were 
electrical actuation and a fuel pump and valve. Arc fault and pump degradation were particular failure 

modes of interest. The framework was based on Bayesian network models and a probabilistic reasoner. 

De Martin et al. [140] presented physics-motivated (but data-driven) PHM for turn-to-turn shorts in 

brushless electric motors (dominant failure in flight actuators), with an interesting discussion on pre¬ 
conceived vs. better-performing features. 

For semiconductor devices, there are four main failure mechanics: electromigration (EM), hot carrier 

injection (HCI), time-dependent dielectric breakdown (TDDB), and bias temperature instability (BT!) [141, 
142]. In addition to these, total ionization dose (TID) may also play a role. Though not typically critical, 

soft errors due to radiation are also of concern for the reliability of terrestrial electronics systems (e.g. 
satellites) based on CMOS technology [143]. A comprehensive review of physics of failure-based modeling 

was provided by White and Bernstein of NASA [144], Suhir proposed improvements to Arrhenius model 
[145,146], 

Wang et al. [147] discussed future trends of reliability of power electronics, including physics of failure 
criteria of power electronics components. 

Few examples exist of successful component electronics prognostics. Changes in equivalent serial resistor 

(ESR) Resr over time is a good indicator of electrolytic capacitors [148], The reduction in the collector- 

emitter ON voltage Vce{on) was found to be an aging indicator and precursors of failure for insulated gate 

bipolar transistors (IGBTs) [149, 150], Xiong et al. [151] observed a degradation trace on VcEsat °f IGBTs. 

The system consisted of both hardware & software architecture and utilized simulation for verification. 

6.4 Learning from Related Fields 
Several other application domains require probabilistic estimates for future states. Evaluating how PHM 

is applied in related fields may enhance the capabilities on PHM relative to ground vehicles. Two areas 
that were further investigated were medicine and transportation systems. 

6.4.1 Medicine 
In the area of medicine, application of machine learning is a highly studied area due to the large number 

of available datasets (Healthdata.gov. https://www.kaggle.com. https://data.medicare.gov/. 

https://hsric.nim.nih.gov. and http://apps,who.int/gho/data/?theme=main are just a few of the many 
data repository providers). Esfandiari et al. [152] break down the activities in medicine into six "medical 

tasks": screening, diagnosis, treatment, prognosis, monitoring, and management. Data mining and 
machine learning may be applied during each of the six tasks. 

The algorithms that are used within medical data mining fall into four types: Regression, Classification, 
Clustering, and Association Rule. Some studies have been done on hybrid algorithms, but these should 
not be confused with hybrid data/physics-based models. The hybrid approaches discussed here are hybrid 
models that utilize more than one technique of machine learning/data mining. The majority of the 
literature on machine learning in medicine has been focused on classification algorithms, as seen in Table 
63. 
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Table 63 - Application of Machine Learning to Healthcare as Studied by Esfandiari et al. [152] 

Screening Diagnosis Treatment Prognosis Monitoring Management % of papers 

Regression 2 3 3 6 2 1 7% 
Classification 23 47 16 15 7 18 51% 
Clustering 3 7 4 1 4 5 10% 
Association 

Rules 4 7 5 2 4 1 9% 
Hybrid Machine 

Learning 8 33 4 5 4 3 23% 

Regression models are based on traditional statistical techniques and are most useful to studies on 

prognosis. Among classification algorithms, decision trees[153-156] are the most popular because the 
expert is able to understand the extracted information. Support vector machines and artificial neural 

networks are also popular in study, but are less favorable due to the incomprehensibility of the outputs. 
Data clustering performed using hierarchical or fuzzy clustering methods were useful in management due 

to their ability to their ability to classify gene expression. [157,158] 

Hybrid approaches are being used to increase performance and reduce the problem of 
incomprehensibility of the results. Many different models have been studied in combination: fuzzy -SVM 

and artificial neural networks[159], clustering and SVM[160], decision tree and genetic algorithms[161], 
and logistic regression and random forest[162]. Many more approaches have been studied and are 
provided in Table 64. 

Table 64: Hybrid Algorithms Utilized in Medicine 
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[163] * * 

[164] * * 

[165] * * * * 

[166] * * 

[167] * * * 

[168] * * * 

[169] * * 

[170] * * 

[161, 171] * * 

[162] * * 

[159] * * * 

[160] * * 

[172] * * * * 

Seera et. al. [172] proposes a medical classification system utilizing a hybrid approach of Fuzzy MimMax 

Neural Networks, Classification and Regression Tree and Random Forest models. As is typical of a NN, the 
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outputs are not easy for a human to interpret what the system did. Therefore, the hybrid approach is 
taken to allow the system to incrementally learn from the data (NN), explain the outputs (regression tree), 
and achieve high classification performance (RF). 

Sharaf-AI-Deen et. al. [173] proposes a hybrid Case Based Reasoning system that utilizes automated 

adaptation and reasoning rules extraction and reasoning to improve the outcomes for new cases. This 
process reduces the need for domain experts in the adaptation step of a typical CBR system. 

6.4.2 Transportation 
Traffic forecasting is a critical component of future intelligent transportation systems, yet is one of the 

more difficult predictions to make. Most predictions are not highly accurate, due to the fluctuations in 

traffic dynamics. As many models may be used to make traffic predictions, one approach is to combine 
the individual estimates, as opposed to selecting one. Granger, et Al. [174] determined that combining 
predictions performed better than any individual predictor. El Faouzi [175] provides a framework for 
combining traffic predictions into a single, improved indicator. 

Another area requiring predictions in intelligent vehicle systems is accurate position estimation. Although 
GPS has become commonplace to many in their travels, the potential for a loss of GPS signal in certain 

areas of the country still exists. When GPS is lost, the system must keep an accurate estimate of position 
utilizing inertial navigation techniques. These techniques include multi-layer perceptron and radial basis 
function neural networks[176, 177] and adaptive neuro-fuzzy techniques[178]. 

6.5 Contemporary Trends and Drivers in PHM 
As discussed in Section 1 and illustrated in Figure 2, development of PHM is appropriate for systems that 

are critical for overall operational readiness but do not fail frequently. The cost of development and 

implementation of PHM is one of the largest drivers for continuing advancement of PHM approaches. 
While more than one approach was cited in this review, PHM development is expensive irrespective of 

the approach. Key reasons for the high-costs of the development for three main methods, viz. physics- 
based, empirical, and data-driven are discussed here in turn. 

The cost of developing of physics-based models for complex electro-mechanical systems is driven by the 

sheer enormity of the endeavor: a complex system consists of multiple subsystems and components that 
require different domain expertise (and multiple expert modelers) but the overall model must be fully 

integrated because the interaction among the subsystems and components are strong and the failures 

often occur at the interfaces (e.g. most failures in aerospace occurs at the interfaces of subsystems). In 
addition to the ability of modeling normal operation of the system, the physics-based PHM requires 

separate physics-based degradation models for different failure modes. Note, however, that many 
degradation models are actually empirical in nature (e.g. Paris's law [179], Lundberg-Palmgren model 
[128], various Arrhenius models for electronics components [145, 180], etc.). When the failure 

mechanism is understood, it often needs to capture second-and higher-order effects of the models, which 
in turn requires subtle modeling techniques and high resolution models at the component level, thus 
yielding larger system-level models that are slow to run and difficult to maintain. The digital twin 
paradigm has the potential to overcome critical barriers to physics-based PHM components by distributing 

the cost of the development of physics-based models. The Functional Mock-up Units (FMU)/Functional 

Mock-up Interface paradigm (Section 7.2.3) is a promising framework for sharing the models and building 
system-level capability, further reducing PHM development costs. 
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The cost of development of empirical models is driven by the cost of physical hardware, the cost of set¬ 

up and instrumentation and the cost of specimens and the labor associated with data collection of failure 

progression. Multiple instances of failure progression are needed to develop a reliable understanding of 
the progression of failure for each failure mode. Moreover, system disassembly and reassembly - an 

indispensable parts of seeding-failure processes - invariably impart slight changes to the system, which 

can be difficult to distinguish from early degradation. Finally, the seeded faults may not be a good 

representative of the actual field failures: sometimes the anticipated failure modes do not prove to be 
dominant; other times the method of seeding the failure may not accurately represent the actual failure. 

The latter problem can be illustrated by the practices in seeding gear cracks: until recently [126, 181] 

traditional seeding of gear cracks employed wire Electrical Discharge Machining (EDM), where a gear is 

notched instead of cracked, but the crack radius is very different than the notch radius and consequently 
the cracked teeth generally propagate faster than the notched cracks of the same length. 

The cost of the data-driven approach includes initial instrumentation cost, which needs to be more 
comprehensive than some targeted PHM because this approach starts with less knowledge of the system 

failures; higher requirements for bandwidth of the communication because not just refined features but 
high-resolution raw data may be need for development of data-driven PHM modules; large data storage 

requirements and the overall system for managing the storage. The development is slow because it takes 
a long time for the right examples to emerge. The stochastic emergence of failures over time and across 
the fleet is not the same, which is the random process that generates failures is not approximately ergodic 
across the fleet. In addition, classical machine learning approaches struggled with large disk data volumes 

and small statistically relevant datasets [182], Representation learning using deep neural networks, 
discussed in Section 5.6, overcomes the problem at least in the context of anomaly detection because it 

can learn the normal behavior based upon abundantly available data associated with typical operating 
and environmental conditions. However, for the prognostics capability, the degradation models has to 

be learned, with its accompanied uncertainties, such as the uncertainty about the future operating and 
environmental conditions which affect both RUL [29] and the features (see Axiom IV of [8]). 

In spite of the high development costs, a successful development and implementation of PHM was 

demonstrated for battery health management [183] with key early contributions in the late 2000s [184, 

185] and is still attracting the interest of research (e.g. [186, 187]). While modeling and simulation was 
important (with empirical, multi-physics based, electrochemical and molecular models [188]), the key 

enabler of the development was the availability of large datasets: data associated with large number of 

charge-discharge cycles were used for time-to-discharge predictions and data associated with 
degradation of multiple battery modules for predictions of capacity fade. 

Another successful, semi-automated approach is adopted by Navair for their monitoring of the health of 
helicopters. Navair employs human-in-the-loop and a large set of CIs with conservatively set thresholds. 
These CIs intentionally produce a large number of false alarms, but the system relies on the engineers to 

interpret the CIs (and also sometimes raw data) to determine if the system has an incipient failures. This 
semi-automated system has been successful with detecting many faults, with zero false alarms. 

Prognostics Health Management encompasses a significant ecosystem, ranging from model building, data 

collection, to data management and analysis capabilities. The above research on PHM identified a few 
high level emerging trends that could be employed to enhance the application of PHM within the military. 
They are identified below and will be expanded upon in section 7. 
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1) High performance computing is impacting the breadth and depth of machine (earning capabilities. 

The application of new algorithms and approaches have been increasing as the use of cluster and 

GPU computing have evolved. Future computing systems, such as quantum computing may 
provide the next big boost in computational power. 

2) Software flexibility is crucial. The software environments, libraries and interfaces that are used in 
the PHM community have been ever evolving, so the ability to adapt is necessary. Counter to 

typical software IT control, the data scientist will need an environment where they can install, 
update and try various software and libraries without going through an extensive development 
and deployment process. 

3) The need for open datasets has been identified as crucial to the development, testing and 
comparison of PHM approaches. Within specific PHM domains, such as deep learning and medical 
health management, the availability of open datasets significantly contributes to the research, 

development, and application of new approaches. Closed datasets may have too few failures to 
be able to truly mode! the system and failure progression within the system. However, a large, 

open dataset would consolidate many failures into a single dataset, enhancing model 
development, 

7 Roadmap 
PHM development needs include both the development of PHM science, and the development of 

effective PHM systems and system architectures. A roadmap is provided here that addresses the 
development of PHM systems, including multiple different system considerations. 

7.1.1 Backdrop 
PHM is not evolving in isolation. There are several important concepts that are developing in data science, 

engineering, and in synergetic industries. These advances can be leveraged in PHM systems and foster 
their growth. 

7.1.2 Industry 4.0 
A new PHM system must recognize and embrace the rapidly changing landscape in data science, business 

analytics, and computational hardware, both at the edge and in the cloud (server side). More broadly, 

society is experiencing the fourth industrial revolution, "Industry 4.0", including additive manufacturing, 

augmented reality, autonomous robots, cyber security, high-performance computing, big data and 

analytics, simulation, and software integration, as depicted in Figure 121. Each of the elements of Industry 

4.0 have the potential to make a dramatic impact on PHM of the future. For example, additive 
manufacturing may revolutionize the way components are repairs. Augmented reality can enable 
effective domain-knowledge capture and better integration of the human in the knowledge loop. 
Development of Al technology and self-awareness of autonomous robots can translate to self-awareness 
of assets, which could include self-health-assessment. Cyber security will play an increasingly important 
role to protect data transport networks. High performance computing is already revolutionizing machine 

learning, which immediately impacts data-driven algorithms. Simulation is critical for physics-based 
modeling, and advances in software (and integration advances) will ensure effective system function. 
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Figure 121: The fundamental elements of the fourth industrial revolution. 

7.1.3 Open Source Software Environment 
With recent rapid software development, open-source environments have been adopted to broadly 

engage the scientific, software, and engineering community. For example, the statistical community has 

embraced the R package [189], robotic development was greatly accelerated by the adoption of the open- 
source platform Robotic Operating System (ROS) [190], and simulation have benefitted by growth in use 
of Modelica [191], Open-source PHM initiatives are emerging as well [192, 193], 

The Python scientific computational ecosystem, with general-purpose libraries like NumPy [194], SciPy 
[195], Pandas[196], Ipython [197], machine learning Scikit-Learn [198], and visualization libraries 
Matplotlib [199], Mayavi [200], and others, is especially promising for new development. The great 

advantage of this environment is that it can integrate well with other frameworks, including for example, 
the aforementioned R and Modelica, as illustrated in Figure 122, further enabling hybrid prognostic 

approaches. The growth and popularity of this ecosystem is further solidified as Google and Facebook 

have both selected this environment for the primary interface of their new frameworks for deep learning, 

viz. TensorFlow [32] and PyTorch [201], These frameworks were made open-source to further accelerate 

their development. Leveraging these tremendous works to build applied machine components for the 
future of PFIM systems would allow these solutions to evolve and thrive. 
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Figure 122: Open-source scientific ecosystem. 

7.1.4 Advances in Hardware 

In addition to the aforementioned advances in computational hardware, viz. Graphical Processing Units 
(GPUs) and Tensor Processing Units (TPUs), new lower-cost sensors are becoming ubiquitous, widely 
deployed, and networked into internet-of-things (IOT) applications. The new engineering field - Cyber 

Physical Systems (CPS) - is becoming engaged in a variety of complex systems from microgrids, 
transportation systems, etc. 

Micro-Electro-Mechanical Systems (MEMS) have been producing extremely low-cost inertial sensors 
commercially for decades. However, the trade-off between sensitivity and frequency bandwidth limited 

their applications in PHM to low-frequency monitoring and orientation sensing (MEMS accelerometers 

employ capacitive transducers that can measure constant acceleration). The recent advances made by 

Analog Devices, manufacturing low-cost accelerometers with bandwidth of 30 kHz, have the potential to 
bring a new paradigm shift in vibration sensing. While MEMS accelerometers are approaching the 

performance of traditional piezo accelerometers with the real potential to undercut them, piezo 
accelerometers are becoming smarter. They now facilitate integration of vibration measurements into 

HUMS through higher-level interfaces such as CAN databus and integrate more data processing features 
locally at the sensor, with preprocessing, such as Time Synchronous Averaging (TSA), built into the 
system6. 

Quantum Computing (QC), introduced in the 1980s, and studied theoretically at many universities in the 
1990s, has burst into the public's imagination only over the past few years as the first proof-of-concept 

quantum computers emerged. This new paradigm has the potential to revolutionize back-end- 

6 https:/Avww.dN tran.com/CAN-MD-Fhase-II/ 
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computations, but some known technical challenges remain, and new challenges will likely be 
encountered. 

Neuromorphic computing offers different opportunities in PHM system evolution; they are well suited for 

edge computing due to the low energy consumption. Like QC, the concept was introduced in the 1980s, 

but the field experienced a renaissance in the 2000s, with new prototypes. The computing is enabled by 
analog, digital, and mixed-signal Very Large Scale Integration (VLSI) circuits that mimic biological nervous 

system. A key feature is that the computations are asynchronous. 

Table 65 Summary of the selected advances in hardware that hove the potential to profoundly affect future PHM 

Technology Advantage Availability 

Sensors 
High-frequency MEMS Low-cost vibration sensing now 

Smart accelerometers Integrated vibration C!s now 

Computing 

Quantum computing Fast, has the potential to 

change the back-end, 

research proof-of-concept 

Near future 

Neuromorphic computing Low energy consumption, 

has the potential to drive 

computation at the edge 

First chips available 

(TrueNorth by IBM 

and Loihi by Intel) 

7.2 PHM Trends and New Development in Related Fields 
The key trends of PHM (identified in Section 6.2) are directly related to advanced development in related 
fields of study. Anomaly detection and diagnostics are connected to advances in deep learning and 
machine learning in general, with the importance of the development of open data sets for continuous 

advances and benchmarking being a major emphasis. Physics-based modeling is related to the 
development of system-simulation using the powerful new Functional-Mockup paradigm. Traditional 

PHM principles are being expanded to evaluate asset lifecycles in the form of digital twins. 

A future PHM system needs to integrate its principal capabilities, viz. anomaly detection, diagnostics 

(including sensor fault detection), and prognostics. Integration of diagnostics and prognostics has been 
advocated for some time (see e.g. [202]). However, PHM is not all-or-nothing proposition; rather, the 

capabilities can be gradually added and as the performance improves and more relevant data becomes 

available [6, 7], 

PHM systems are grouped according to the source of knowledge into three main categories [53, 203]: 1) 
data-driven, 2) physics-based, and 3) hybrid. Most practical systems are hybrid in nature. Irrespective of 
the type of model, prognostic capability is expensive to develop and is generally considered to be reserved 
for high-criticality systems with low-frequency failures. Reducing the development and deployment cost 
could allow the benefits of PHM and prognostics to be propagated to increasingly lower value hardware. 

7.2.1 Data-Driven Anomaly Detection and Diagnostics 

Because the frequency of failure mode occurrence in the field is low, it may take a long time, even with a 

large fleet, to build a statistically large data set that can be used for development of data-driven PHM 
systems. It is important to distinguish a disk-large dataset from a statistically-large dataset; the former 

refers to large quantity of data and the later large quantity of relevant and statistically independent data 
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from the problem at hand [182]. Insights in physics and, more generally, insights in domain expertise, can 

insert knowledge into the model and this knowledge can give rise to models that require less data. 

An alternative approach is to develop PHM capabilities incrementally, starting with anomaly detection [6, 

7], and progressing towards diagnostics and prognostics. This approach utilizes black-box systems, or 

algorithmic data learners [47], that include large decision trees (random forests [49] and boosted 
regression trees [50, 204]) and deep neural networks [35]. While it has been known for a long time that 

deeper neural networks are more expressive [36], the vanishing gradient problem [205] steered the 

practitioners away from more than one or two hidden layers until the renaissance in mid-2000s. However, 

Japkowicz et al. used an encoder-based deep neural network in the 1990s [17] to build a successful 
anomaly detector. Specifically, auto-encoder deep learning topology is particularly interesting from the 
PHM perspective, where operational data comes in abundance and failure data is scarce. 

7.2.2 Open Datasets 
Increasing the rate of development of prognostic algorithms would be facilitated by more benchmark and 

reference datasets. For example, the MNIST [206] data set played a significant role in the advancements 
of machine learning, including in the recent affirmation of deep neural networks [207], There are many 

datasets for machine learning development in different domains [208]. Deep learning alone has multiple 

specialized datasets, viz. vision-natural images (CIFAR [209], Pascal VOC, etc.), vision-faces, music, and 
others 7. 

This need has already been recognized by the PHM community and repositories of prognostics data exist 

[210, 211], with representation of some important systems such as lithium ion batteries and bearings. 
The availability of data for other subsystems would greatly increase the pace of development. This trend 
should be further supported in accordance to the recent acknowledgement from the National Academy 

of Sciences, which advocates for a new open science ecosystem, which includes scholarly publications 
accompanied by the analysis code and algorithms used to generate the results, and availability and 
usability of the associated data [212], 

7.2.3 Physics-Based 
Physics-based model development is an expensive and time-consuming activity. The models are domain- 

specific and difficult to generalize. Furthermore, the development is often fragmented across multiple 
analysis/simulation platforms. While mathematical formulation of physic-based models is software 

agnostic, a large portion of effort needed for a successful simulation is exerted within specific simulation 
package. Competing software environments, with the associated specialized engineering expertise, make 

co-simulation of a system, comprised of many subsystems developed by different entities, especially 
challenging. It is extremely valuable to be able to directly share models irrespective of the software 
development environment used to generate them. 

7 http://deep learn ina. net/datasets/ 

151 



FMI Tools Functional Mock-up Interface [214, 215] is enabling 
and facilitating collaborations by allowing 

sophisticated models to be shared across multiple 
organizations, even when they do not share the same 

simulation environments. FMI provides a 
standardized, open, vendor-neutral Application 

Programming Interface (API), as well as a new 

paradigm. This new paradigm was embraced by the 
designers of complex systems for system-level 

simulations. In the automotive industry, FMI has 
been employed for some time [216] and is still 

considered state-of-the art [213]. OEMs and suppliers are exchanging models using Functional Mock-up 

Units. The FMUs are being integrated in engine test benches for real drive emissions tests. Additionally, 

the FMUs are being integrated in Software-in-the-Loop and Hardware-in-the-Loop applications. 
Aerospace industries are employing this technology for real-time simulation of aircraft systems [217], The 
potential of FMU/FMI paradigm has been recognized for DOD: the National Defense Industrial Association 

(NDIA) Simulation Committee has recognized the importance of open standards and is tracking the overall 
adoption and implementation of FMI as an international standard. Many major simulation software 
systems have embraced this model exchange, including ANSVS, dSPACE, Dymola, MapleSim, 

Matlab/Simulink, Modelon, and Nl LabVIEW. Figure 123 shows the number of software packages that 

have developed FMI support: the blue trace on the left axis shows the monotonic growth of the number 
of supported tools over time; the orange trace shows the planned expansions over time. 

These physics-based models have a great potential not only for simulation of normal operation, but also 
for PHM development, especially as new platforms emerge in the future and system level simulation 
modeling, based on a variety subsystem/component FMUs becomes available. FMUs for system level 

simulation should be provided by the OEMs whenever possible, at least in the form of black box model 
that produces the responses to the defined inputs. The trade-off between model transparency and 

protection of intellectual property can affect how much detail an OEM and FMU paradigm allows the 
control of what states can be exposed to the system level simulation. FMUs for failure models, such as 

fatigue life prediction model for a specific mechanical component, are critical for full PHM development. 
These models are not always available from the OEMs and may need to be developed separately. 

Furthermore, the development of the failure models may be affected by the transparency of the FMUs 
involved in the system-level simulation. 

7.3 PHM Relation to Digital Twin 
There is considerable overlap between PHM and the concept of the digital twin. While it is generally 
understood that digital twin encompasses PHM, the boundary lines between the two are not immediately 

obvious. For example, consider a typical illustration of a digital twin of an asset, shown in Figure 124, 
where all of the attributes of the digital twin are also often used in PHM development. Before identifying 
distinctions between the concepts, it is instructive to briefly review the rapidly growing body of digital 

twin literature. 

Figure 123: The growing number of simulation packages 
with FMI capability (adapted from [213]). 
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Table 66 illustrates the diversity of research underthe digital twin umbrella. Most digital twin publications 
fall into two categories: visionary and enabling. Visionary papers often include a mockup implementation, 

while enabling papers are concerned with specific technologies, often simulations, for digital twin support. 

Table 66: Literature Search Summary 

Ref Year 

V
is

io
n

 

im
p

le
m

e
n

te
d

 

Keywords 

Digital Twin Components 

Physics-Based Models Failure Models Real Data 

[218] 2011 7 

Aircraft 

Structural Life 

Prediction 

High level requirements 

for coupled physics 

models 

Describes notionally 

fatigue crack models 

None 

[219] 2014 y 

Modeling as- 

manufactured 

geometry 

None Presents a use case for 

ductile fracture in a 

non-standardized 

material test 

specimen. 

Fracture data 

on specimen 

[220] 2016 y y 

AutomationML 

and lol device 

(FIWARE) 

AutomationML used for 

high-level models a 

valve with an actuator 

with temperature, 

battery level, and 

voltage sensor. 

None loT 

middleware 

(FIWARE) 

used to 

communicate 
data. 

[221] 2017 y y ABS (Braking) 

Reduced order models 

generated from FEA of: 

• Electromagnetics 

model of the ABS valve 

solenoid actuator 

• Magnetic wheel 

speed sensor 

• Mechanical brake 

wear 

Equation for Rate of 

Wear and a 

description of how 

missing teeth on the 

wheel sensor lead to 

abnormal ABS 

activation 

None, 

proposed as 

future work 
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[222] 2017 y y Aircraft Wing 

Gaussian process 

surrogate model to 

replace FEA to compute 

stress intensity factor K, 

and for computing crack 

growth. 

Dynamic Bayesian 

network 

Numerical 

simulations 

only. 

[223] 2017 y 
Practical 

requirements for 

twin 

All three columns covered in detailed, and philosophical vision, 

which goes deeper into asking important questions and 

demonstrating, via hypothetical scenarios related to real processes 

that happen now, practical use of the digital twin and what needs 

to change to move in that direction. 

[224] 2017 y JET divertor 

FEA in Abaqus and 

ANSYS (commercial 

codes in C++] for 3 

complementary 

applications of the JET 

divertor 

Discusses need to 

evaluate impact of 

deviation from 

nominal geometry if 

changes in divertor are 

seen. 

Temperature, 

heat flux 

[225] 2017 y 
High level 

architecture, 

business use case 

None None None 

[226] 2017 y y Farming 

None Predictive analytics for 

specific applications in 

notes below 

6 example in 

notes below 

[227] 2017 y YouTube, 

Microsoft 

Examples in video None Architecture 

for data 

collection, 

examples in 

video 

[228] 2017 y y 
Modeling 

additive 

manufacturing 

3D model for 

temperature, velocity 

fields, cooling rates, 

solidification 

parameters and deposit 

geometry. 

Authors state 

predictive model 

outside scope of 

paper, still a long way 

in future 

Laser power, 

material 

hardness, 

spacing/sizes 

Historically, before the digital twin, there were Physical Twins: in the Apollo missions, two identical space 
vehicles were built to mirror the conditions of the space vehicles during the mission. The vehicle 

remaining on Earth was referred to as the "twin" and it was used extensively for training during flight 
preparation and during flight to simulate alternatives for mission critical situations. Similarly, an Iron Bird 

is a ground-based engineering tool used in aircraft industries to incorporate, optimize, and validate vital 
aircraft systems. Increasing power of simulation technologies and physical models have led to the 

replacement of the "hardware" twins with virtual models, "digital twins". 

A simplified view of the history of digital twin is illustrated in Figure 125: the term is first introduced to 

the public in NASA's integrated technology roadmap in 2010 [229], Another key motivation forthe digital 

twin, which came in 2011, was a need for a design tool that would enable "prototype-free design" by 
using high-resolution multi-physics models [218]. In 2012, NASA the paradigm is introduced, with a formal 

definition: The digital twin is an integrated multi-physics, multi-scale, probabilistic simulation of an as- 
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build vehicle or system that uses the best available physical models, sensor updates, fleet history, etc., to 

mirror the life of its corresponding twin [230], In 2013, the digital twin became a part of the strategic 

initiative of the fourth industrial revolution [231]; the simulations aspects of Industry 4.0 and the role of 
digital twin is further examined in [232]; and considerations of human involvement are examined in [233], 

The term Digital Twin is first 
brought to the public in 

NASA's integrated 
technofogy roadmap 

Conversations between 
Tuegel (U.S. Air Force Lab), 

Emeritus (Vanderbilt 
University), former chief 

scientist of Air Force 
Research Lab, and A. R. 

Ingraffea (Cornell University) 
lead to writing a proposal for 
reengineering the structural 
life prediction process, which 
they called the Digital Twin 

Individual 
Application 

Snnulaifon Is limited to 
very •peciftc topics by 
experts, eg mechanics 

Simulation 
Tools 

Simulation rs a standard 
tool to answer 
specific design and 
•ngineering questions, 
e g. fluid dynamics. 

Simulation-based 
System Design 

Simutation aftows a sys¬ 
temic approach 1o mufli- 
leveland -disciplinary 
systems wth enhanced 
range of applications, 
e g model based 
systems engineering. 

Dtgrtal TVrin 

Simulation is a core 
functionality of systems 
by means of seamiess 
assistance along the 
entire We cycle, e.g 
supporting operation 
and service with direct 
linkage to operation 
data 

NASA publishes The Digital t 9$q+ 
Twin Paradigm for Future 
NASA and U.S. Air F orce 

Vehicles, which discussed 
concept, applications, 

advantages, and potential 
influence of Digital Twins 

19B5+ 2000+ 2015* 

gi&UaLlwm^-Tho Simulation 
Asped. discusses the role of 
Digital Twins as the next big 

step in simulation 
technology and Industry 4.0 

Final report on 
implementing the strategic 

initiative INDUSTRIE 4.0 
(Industry 4.0) 

Figure 125: History of digital twin. 

DigitafTwin: Miliaalinp 
Unpredictable. Undesirable 

Complex Systems formally 
describes human 

involvement in complex 
systems and how the Digital 

Twin concept can help 

As seen in Figure 126, PHM is concerned primarily with operations and maintenance, whereas digital twin 

encompasses the entire life cycle of an asset. The diagram distinguishes between components and 
capabilities. Capabilities provide functionality that are enabled by components. For example, a PHM data- 

driven model is a component and anomaly detection is a capability. This view is greatly simplified and 

many interactions and relations were omitted. Table 67 lists PHM and digital twin references according 
to different system capabilities. 

The significantly novel aspect of the digital twin is the recognition of individuality of an asset and related 
information that includes specific manufacturing parameters and operational and environmental history. 
In current practice, most physical models are representative of generic attributes of the product, and not 

of a particular asset. The idea of the digital twin offers the promise of capturing the as-manufactured 

state of an asset, which could be represented in the physical model, and then updating the model over 

the entire asset life cycle. A complete digital twin model would contain the asset data needed to build a 
robust prognostic model. In current practice the digital twin typically consists of a data based operational 

model, with a normative model with is specific to the serialized asset, and some tailored physical models 
to aid in assessment of remaining life, and performance and economic behavior. General Electric has 
developed demonstrations of digital twin technology through their Predix platform[234]. 
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Table 67: References by Digital Twin and PHM capabilities 

Capability Example References in PHM References in Digital Twin 

Data Acquisition On-board sensors, operational data [235], [183], [236], [237] [218], [220], [223], [224], 
[226], [227], [228] 

Environmental conditions (e.g. 
weather) 

[218], [226], [227] 

Historical operational and 
maintenance data 

[236], [237] [218], [223], [224], [226], 
[227] 

Data Processing Located on asset (edge) [235], [236], [237] [220], [224] 

Located on a computer (cloud) [237] [218], [223], [224], [226], 
[227], [228] 

Mean-time-before-failure model [235] [218], [223] 

FEA, reduced order model [235] [221], [218], [222], [227] 

Parallel programming [236] 

Anomaly detection Rule-based (e.g. fault threshold) [235] [221], [223], [227] 

Data-driven (e.g. auto-encoders) [235] 

Classification / 
Diagnosis 

Classification / clustering methods (218], [223], [226] 

Example of failure modes [235] [221], [219], [222], [223], 
[224], [227] 

Multiple failure mode models [235] [221] 

Prognostics Damage / lifing models (e.g. crack 
propagation) 

[235], [236] [218], [223], [219] 

Physical experiments 

Numerical simulations on computer [218], [219], [222], [224] 

Decision Making 
St Human Interaction 

FMEA-drives HUMS decisions [236] [228] 

Asset maintenance (e.g. scheduled 
repairs) 

[235] [223], [226], [227] 

Fleet management [218], [226], [227] 

Digital replica on computer [218], [223], [224], [226], 
[227] 

AR overlays with voice command [218], [227] 

7.4 ROS 2.0 
HUMS is becoming an integral part of military mobility platforms and its capability and level of integration 
are expected to increase in time. While initial HUMS systems were designed and built to act as non- 

intrusive, silent observers, new HUMS systems are expected to be able to send requests for information 

to other modules. As the platforms employ higher level of automation, the cybersecurity considerations 

are moving to towards the top of the requirements. US Army has identified ROS 2.0 as the integration 

framework for development of their autonomous vehicles [238], Future HUMS systems may need to be 
compatible with this paradigm. This section briefly introduces ROS and ROS 2.0. 

Robotic Operating System (ROS) is a set of software libraries and tools that facilitate building robotic 
applications. The name is a misnomer because ROS is not an operating system; instead, it is a flexible 
framework with a collection of tools. ROS facilitates collaboration and allows robots to learn from each 
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other, as discussed in [239]. ROS is developed primarily for research in Linux environment, with some 

implicit characteristics, such as existence of workstation-class computational resources on board and 
excellent network connectivity, which limits its applicability. 

ROS 2.0 is a new version of the framework, built from ground up, with the similarcapabilities that aims to 

overcome perceived limitations of ROS and extend it more broadly to broader automation needs. It 

leverages some new technologies (e.g. Distributed Data Services (DDS)), which enables building ROS-like 
middleware system using off-the-shelf libraries. Its inherent cybersecurity made it the framework of 
choice for the development of an autonomous military vehicle by the US Army. 

7.5 Data Storage 
PHM requires significant quantities of data to be collected for model training. The "big data" problem 
consists of two major facets: data storage and data processing. The identification of the appropriate data 
solution actually depends on a balance of both. Traditional Relational Database Management Systems 
(RDBMS) are good when ACID compliance (Atomicity, Consistency, Isolation and Durability) and 
transactional consistency are important. Additionally, the traditional RDBMS does not scale well to very 
large data sets, particularly when database sizes move past 1 TB. With HUMS data, the data is typically 
collected and stored, so the transactional nature and ACID compliance is not as critical. 

Another consideration is the computational framework for data management and data processing. 
Apache Spark is a current popular framework where data is distributed over a cluster of machines in a 
fault tolerant way. Spark scales well to large datasets, supports both structured and unstructured data, 
and is designed for large, distributed data processing tasks. A presentation comparing PostgreSQL vs a 1 
node and 4 node Spark system utilizing data from the Automated Characterization of Health Information 
at Large-scale Longitudinal Evidence Systems (ACHILLES) showed a significant reduction in analysis time 
on specific benchmarks.[240] Thomas Dinsmore claims that for scalable open source data science. Spark 
is the only fully integrated solution available. [241] 

Many of the analytics that Spark provides are geared toward business analytics, as much of the 
prognostics community is utilizing some form of Python, including Anaconda. The machine learning 
libraries and tools available through Python make it the tool of choice in the data science community, and 
it is growing faster than other tools, see Figure 127. 
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Figure 127 - KDNuggets Analytics Software Poll[242] 

Although Spark is listed as a machine learning software, the availability of algorithm libraries is not as 
broad as with Python. However, Spark may still have a place in performing simple analytics, such as daily 

summaries of conditions or readiness reports. Python can access the data stored in the Spark distributed 
files system, allowing for big data storage and advanced scientific computing. 

Another data format to be considered is the Hierarchical Data Format (HDF5), which is designed to store 
and organize large datasets. HDF5 can be accessed from Python and was recently incorporated into 

IMetCDF, the next version of the CDF file format. IMetCDF is essentially HDF5 with a few additional 

restrictions applied. Libraries are available for both HDF5 and NetCDF to access the data from many 

different languages: R, Perl, python. Ruby, Haskell, IVIathematica, MATLAB, IDL, Octave, C, and C++. 

In conclusion, data storage and processing requirements will differ throughout the CBM implementation. 

HUMS data, as seen in Section 4.1, is typically stored in some type of flat file format, such as ABCD. Off- 
board data may be joined into a merged, multiplatform data set in an environment like Apache Spark. 
Within Spark, typical business analytics reporting can be achieved, such as Availability reports. However, 
when performing a deep analytical dive into prognostics, retrieval of a specific subset of data relevant to 
the failure may make sense. This subset may be stored in a file based system, such as CDF or HDF5, 

allowing for rapid access and multiple trial runs over the smaller dataset. This can be seen in Figure 128, 
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which depicts the types of storage and processing being performed alongside the CBM+ Data 

Management Environments from the CBM+ Guidebook[2], 

Data Management Environments 

Strategic 

Operational < 

Tactical 

Apache 
Spark 

PHM 
Development 

Figure 128 - Data management relative to storage and processing needs 
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Appendix A: Available Signal List for the FMTV 

J1587 Signals 
EngRetSwtch_1587 

PrkBrkSwtchStaM 587 

ldleShutDwnTimerStatDriverAlertMode_1587 

VehSpeedEng_1587 

VehSpeedBrakes_1587 

PTOCtlSwt_1587 

Accel PedalPos_1587 

EngLoad_1587 

EngOilPres_1587 

BoostPres_1587 

BarPres_Eng_1587 

EngCoo!antTemp_1587 

Cylinder2EngRetStaM 587 

ATCStatusLamp_1587 

TrRgSelec_1587 

T rRgAttaM 587 

lnjCtrlPres_1587 

BatPotVEng_1587 

TransOilTemp_1587 

FuelRate_1587 

EngSpeed_1587 

TransOptShaftSpeedT rans_1587 

EngRetLvISwtchM 587 

ABS_BrkCt!_1587 

ABS_RetCont_1587 

AB S_Off R oa d S wtch_1587 

ldleShutDwnTimerStatEngShtDwn_1587 

ldleShutDwnTimerStatTimerOverride_1587 

ldleShutDwnTimerSEatTimerFunc_1587 

IdleShutDwnTimeStaM 587 

RoadSpeedLimStat_1587 

PT OSetSwitch_1587 

PTOCoastSwtch_1587 

PTOResSwtch 1587 
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J1587 Signals 
PTOStatAccelSwtchJ 587 

PTOStatBrkSwtch_1587 

PTOStatClutch S wtch_ 1587 

PTOIVlode„1587 

lntManfTemp_1587 

Cylinder3EngRetStat_1587 

CyIinder4EngRetStat_1587 

Cylinder6EngRetStat_1587 

Cyltnder8EngRetStat_1587 

EngRetarderStat_1587 

ATCBrkCtl_1587 

ATCEngCtM 587 

ATCspinOutDetection_1587 

ATCsnowMudSwtch_1587 

VDCBrkCtl_1587 

VDCEngCtrl_1587 

lnstFuelEco_1587 

Avg_FuelEco__1587 

AirlnletPres_1587 

AirlnletTemp_1587 

AmbAirT emp_1587 

EngCoolantLvM 587 

EngOilTemp_1587 

EngRetPct_1587 

ExtRngBarPres_1587 

FuelTemp_1587 

OutputTorq_1587 

PTOSetSpeed_1587 

TorqLimFact_1587 

RtdEngSpeed_1587 

RtdEngPwr_1587 

TotldlHours_1587 

TotalldleFue1Used_1587 

TotVehDist2 

TotVehHrs_1587 

TotEngHrs_1587 

TotPTOHrs_1587 

TotEngRevs_1587 

TotalFuelUsed 1587 



J1587 Signals 
TripDist_1587 

TripFuel_1587 

J1939 Signals 
RetEnableBrkAsstSwtchRetExhaust 

RetEnableShftAsstSwtchRetExhaust 

ABS_OffRoadSwtchStatTires 

ASROffRoadSwtchTire 

ASRHillHolderSwtchTire 

T ractionCtrlOverrideSwtch_Tires 

TransDrivEng 

TransTorqConvLockupEngaged 

TrShlnProg 

TrOutS haftS p 

EngPctLdAtCurSpd 

EngPctTorq 

PctEngload 

EngSpeed 

EngDmdPctTorq 

TrSelGr 

RelativeSpdFrontAxleLftWheel 

Re!ativeSpdFrontAx!eRghtWheel 

RelativeSpdRearAxlel LftWheel 

RelativeSpdRearAxlel RghtWheel 

EngDesiredOpSpd 

EngOilPres 

PT OGovernorEnableSwtch 

EngRemPTOGovernorPreProgSpdCtrlSwtch 

EngRemPTOGovernorVarSpdCtrlSwtch 

PTOGovernorSetSwtchEng 

PTOGovernorCoastDecelSwtch 

PTOGovernorResSwtch 

PTOGovernorAccelSwtch 

BrakeSwitch 

CiutchSwtch 

PTOGovernorState 

InstFuelEco 



J1939 Signals 
Ave_FuelEco 

IntManfTemp 

BatPotVEng 

ReqPctFanSpdEng 

Act_RetardPctTorqExh 

Accel Pedal Pos 

FrontAxleSpd 

InjCtIPres 

NomFrict-PtcTorq 

EngCoolantTemp 

VehSpeedEng 

FuelRate 

BoostPres 

TransOilTemp 

PitchAngleMean 

Pitch An gleStdv 

RollAngleMean 

RollAngleStdv 

altitude 

heading 

speedjnph 

unsprungMax 

unsprungMean 

unsprungMin 

unsprungStandardDev 

TotPTOHrs 

HiResTotVehDist 

TotVehDist 

TotEngHrs 

TotEngRevs 

TotalFuelUsed 

EngRtdPwr 

EngRtdSpeed 



Appendix B: Available Bus Data for the MTVR 

All J1708 Signals 
Engine #1 

Engine Oil Pressure (kPa) 

Boost Pressure (kPa) 

Intake Manifold Temperature (Degrees F} 

Barometric Pressure (kPa) 

Engine Coolant Temperature (Degrees F) 

Engine Retarder Status (Binary Bit-Mapped) 

Battery Potential (Voltage) (V) 

Fuel Temperature (Degrees F) 

Engine Oil Temperature (Degrees F) 

Fuel Rate (L/s) 

Instantaneous Fuel Economy (km/L) 

Average Fuel Economy (km/L) 

Power Takeoff Set Speed (rpm) 

Engine Speed (rpm) 

Transmitter System Diagnostic Code and Occurrence Count Table (Binary Bit-Mapped) 

Transmitter System Status (IEEE 1-byte Unsigned Integer) 

Total Vehicle Distance (km) 

Parking Brake Switch (Binary Bit-Mapped) 

Idle Shutdown Timer Status (Binary Bit-Mapped) 

Road Speed Limit Status (Binary Bit-Mapped) 

Road Speed (km/h) 

Cruise Control Status (Binary Bit-Mapped) 

Cruise Control Set Speed (IEEE 1-byte Unsigned Integer) 

Power Takeoff Status (Binary Bit-Mapped) 

Percent Accelerator Pedal Position (%) 

Percent Engine Load (%) 

Component-specific request (IEEE 1-byte Unsigned Integer) 

Cruise Control Switches Status (Binary Bit-Mapped) 

Request Parameter (IEEE 1-byte Unsigned Integer) 
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Transmission 

Invalid Data Parameter (Unknown Data Type ID) 

Transmission Range Selected (Alphanumeric) 

Transmission Range Attained (Alphanumeric) 

Transmission Output Shaft Speed (rpm) 

Transmitter System Diagnostic Code and Occurrence Count Table (Binary Bit-Mapped) 

Auxiliary Vacuum Pressure Reading (kPa) 

Component-specific request (IEEE 1-byte Unsigned Integer) 

Brakes, Power Unit 
ATC Control Status (Binary Bit-Mapped) 

Battery Potential (Voltage) (V) 

Transmitter System Diagnostic Code and Occurrence Count Table (Binary Bit-Mapped) 

ABS Control Status (Binary Bit-Mapped) 

Road Speed (km/h) 

Defined by SAEJ1708 
Data Link Escape (Variable) 

All J1939 Signals 
FMPT 
FMPT Pedal Position 

Actual Pedal Position (%) 

Modified Pedal Position (%) 

FMPT Status (Bitmap) 

FMPT Parameter 1 

Pedal Alpha Parameter (IEEE_Single) 

Pedal Fast Alpha Parameter (IEEE_Single) 

FMPT Parameter 2 

FMPTVersion (Numeric) 

Idle threshold (%) 

Clip Threshold (%) 

Velocity Threshold (km/hr) 

Boost Threshold (kPa) 

FMPTConfig (Bitmap) 
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Engine #1 

Electronic Engine Controller 2 

Road Speed Limit Status (Bitmap) 

Accelerator Pedal 1 Low idle Switch (Bitmap) 

Accelerator Pedal Kickdown Switch (Bitmap) 

Accelerator Pedal Position 1 (%) 

Percent Load At Current Speed (%) 

Remote Accelerator Pedal Position (%) 

Electronic Engine Controller 1 

Source Address of Controlling Device for Engine Control (Numeric) 

Engine Starter Mode (Bitmap) 

Engine Speed (rpm) 

Engine Demand - Percent Torque (%) 

Driver's Demand Engine (%) 

Actual Engine - Percent Torque (%) 

Engine Torque Mode (Bitmap) 

Electronic Engine Controllers 

Nominal Friction (%) 

Engine's Desired Operating Speed (rpm) 

Engine's Desired Operating Speed Asymmetry Adjustment (Numeri 

Engine Temperature 1 

Engine Coolant Temperature (deg C) 

Engine Intercooler Thermostat Opening (%) 

Fuel Temperature (deg C) 

Engine Oil Temperature 1 (deg C) 

Turbo Oil Temperature (deg C) 

Engine Intercooler Temperature (deg C) 

Engine Fluid Level/Pressure 1 

Engine Oil Pressure (kPa) 

Crankcase Pressure (kPa) 

Coolant Pressure (kPa) 

Coolant Level (%) 

Extended Crankcase Blow-by Pressure (kPa) 

Fuel Delivery Pressure (kPa) 

Engine Oil Level (%) 



Engine #1 

Cruise Control/Vehicle Speed 

Engine Shutdown Override Switch (Bitmap) 

Cruise Control Pause Switch (Bitmap) 

Cruise Control States (Bitmap) 

Cruise Control Active (Bitmap) 

Cruise Control Enable Switch (Bitmap) 

Brake Switch (Bitmap) 

Clutch Switch (Bitmap) 

Cruise Control Set Switch (Bitmap) 

Cruise Control Coast (Decelerate) Switch (Bitmap) 

Cruise Control Resume Switch (Bitmap) 

Cruise Control Accelerate Switch (Bitmap) 

Two Speed Axle Switch (Bitmap) 

Parking Brake Switch (Bitmap) 

Wheel-Based Vehicle Speed (km/h) 

Cruise Control Set Speed (km/h) 

Engine Test Mode Switch (Bitmap) 

Idle Decrement Switch (Bitmap) 

Idle Increment Switch (Bitmap) 

PTO State (Bitmap) 

Fuel Economy (Liquid) 

Fuel Rate (L/h) 

Instantaneous Fuel Economy (km/kg) 

Average Fuel Economy (km/kg) 

Throttle Position (%) 

Inlet/Exhaust Conditions 1 

Boost Pressure (kPa) 

Intake Manifold 1 Temperature (deg C) 

Air Inlet Pressure (kPa) 

Air Filter 1 Differential Pressure (kPa) 

Coolant Filter Differential Pressure (kPa) 

Exhaust Gas Temperature (deg C) 

Particulate Trap Inlet Pressure (kPa) 
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Transmission #1 
Electronic Transmission Controller 1 

Source Address of Controlling Device for Transmission Control (Numeric) 

Input Shaft Speed (rpm) 

Output Shaft Speed (rpm) 

Percent Clutch Slip (%) 

Driveline Engaged (Bitmap) 

Torque Converter Lockup Engaged (Bitmap) 

Shift In Process (Bitmap) 

Momentary Engine Overspeed Enable (Bitmap) 

Progressive Shift Disable (Bitmap) 

Electronic Transmission Controller 2 

Transmission Requested Range (per byte) 

Transmission Current Range (per byte) 

Current Gear (Numeric) 

Selected Gear (Numeric) 

Actual Gear Ratio (Numeric) 

Transmission Fluids 

Clutch Pressure (kPa) 

Transmission Oil Level (%) 

Transmission Filter Differential Pressure (kPa) 

Transmission Oil Pressure (kPa) 

Transmission Oil Temperature (deg C) 

Torque/Speed Control 1 

Requested Torque/Torque Limit (%) 

Override Control Mode (Bitmap) 

Requested Speed Control Conditions (Bitmap) 

Override Control Mode Priority (Bitmap) 

Requested Speed/Speed Limit (rpm) 
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Brakes - System Controller 
Electronic Brake Controller 1 

EBS Brake Switch (Bitmap) 

Traction Control Override Switch (Bitmap) 

ABS Fully Operational (Bitmap) 

ABS/EBS Amber Warning Signal (Powered Vehicle) (Bitmap) 

EBS Red Warning Signal (Bitmap) 

Source Address of Controlling Device for Brake Control (Numeric) 

Tractor-Mounted Trailer ABS Warning Signal (Bitmap) 

ATC/ASR Information Signal (Bitmap) 

Trailer ABS Status (Bitmap) 

Brake Pedal Position (%) 

ASR Engine Control Active (Bitmap) 

ASR Brake Control Active (Bitmap) 

Anti-Lock Braking (ABS) Active (Bitmap) 

ABS Off-road Switch (Bitmap) 

ASR Off-road Switch (Bitmap) 

ASR "Hill Holder" Switch (Bitmap) 

Remote Accelerator Enable Switch (Bitmap) 

Auxiliary Engine Shutdown Switch (Bitmap) 

Engine Derate Switch (Bitmap) 

Accelerator Interlock Switch (Bitmap) 

Engine Retarder Selection (%) 

Wheel Speed Information 

Front Axle Speed (km/h) 

Relative Speed; Front Axle, Left Wheel (km/h) 

Relative Speed; Front Axle, Right Wheel (km/h) 

Relative Speed; Rear Axle #1, Left Wheel (km/h) 

Relative Speed; Rear Axle #1, Right Wheel (km/h) 

Relative Speed; Rear Axle #2, Left Wheel (km/h) 

Relative Speed; Rear Axle #2, Right Wheel (km/h) 

Torque/Speed Control 1 

Requested Torque/Torque Limit (%) 

Override Control Mode (Bitmap) 

Requested Speed Control Conditions (Bitmap) 

Override Control Mode Priority (Bitmap) 

Requested Speed/Speed Limit (rpm) 



Retarder - Engine 
Electronic Retarder Controller 1 

Engine Coolant Load Increase (Bitmap) 

Intended Retarder Percent Torque (%) 

Source Address of Controlling Device for Retarder Control (Numeric) 

Retarder Requesting Brake Light (Numeric) 

Drivers Demand Retarder (%) 

Retarder Selection, non-engine (%) 

Actual Maximum Available Retarder (%) 

Actual Retarder (%) 

Retarder Enable - Brake Assist Switch (Bitmap) 

Retarder Enable - Shift Assist Switch (Bitmap) 

Retarder Torque Mode (Bitmap) 

Retarder - Driveline 
Retarder fluids 

Hydraulic Retarder Pressure (kPa) 

Hydraulic Retarder Oil Temperature (deg C) 

Tire Pressure Controller 
Electronic Brake Controller 1 

EBS Brake Switch (Bitmap) 

Traction Control Override Switch (Bitmap) 

ABS Fully Operational (Bitmap) 

ABS/EBS Amber Warning Signal (Powered Vehicle) (Bitmap) 

EBS Red Warning Signal (Bitmap) 

Source Address of Controlling Device for Brake Control (Numeric) 

Tractor-Mounted Trailer ABS Warning Signal (Bitmap) 

ATC/ASR Information Signal (Bitmap) 

Trailer ABS Status (Bitmap) 

Brake Pedal Position (%) 

ASR Engine Control Active (Bitmap) 

ASR Brake Control Active (Bitmap) 

Anti-Lock Braking (ABS) Active (Bitmap) 

ABS Off-road Switch (Bitmap) 

ASR Off-road Switch (Bitmap) 

ASR "Hill Holder" Switch (Bitmap) 

Remote Accelerator Enable Switch (Bitmap) 

Auxiliary Engine Shutdown Switch (Bitmap) 

Engine Derate Switch (Bitmap) 

Accelerator Interlock Switch (Bitmap) 

Engine Retarder Selection (%) 
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Appendix C: Available Signal Data for the PIS 

Main Propulsion Diesel Engine (MPDE) Signals 
Temperature Signals 

'CFW CLR 1A&1B OUT TEMP1, 
’1A THRUST BRG TEMP', 
’lARKR LOSPLY TEMP', 
'1A RT/C OIL TEMP', 
’lART/C EXHAUST TEMP', 
’1A R BANK EXHAUST TEMP', 
'1AR BANK AIR TEMP', 
'1A LO INLET TEMP', 
'1A LO CLR OUT TEMP', 
'1A LO CLR IN TEMP', 
'1ALT/C OIL TEMP', 
'1A LT/C EXHAUST TEMP’, 
'1AL BANK EXHAUST TEMP1, 
'1AL BANK AIR TEMP', 
’1AJWOUT TEMP', 
'1AJW IN TEMP', 
'1A JW CLR OUT TEMP1, 
'1A CYL 9 EXHAUST TEMP', 
'1A CYL 8 EXHAUST TEMP1, 
'1A CYL 7 EXHAUST TEMP', 
'1A CYL 6 EXHAUST TEMP', 
'1A CYL 5 EXHAUST TEMP', 
’1A CYL 4 EXHAUST TEMP', 
'1ACYL3 EXHAUST TEMP', 
'1A CYL 2 EXHAUST TEMP', 
'1A CYL 16 EXHAUST TEMP', 
'1A CYL 15 EXHAUST TEMP1, 
'1A CYL 14 EXHAUST TEMP', 
'1A CYL 13 EXHAUST TEMP', 
'1A CYL 12 EXHAUST TEMP', 
'1A CYL 11 EXHAUST TEMP1, 
'1A CYL 10 EXHAUST TEMP1, 
'1ACYL1 EXHAUST TEMP1, 
'1A CFW RT CAC OUT TEMP1, 
'1A CFW LFT CAC OUT TEMP1, 
'1A BRG 9 TEMP1, 
’1A BRG 8 TEMP', 
'1A BRG 7 TEMP’, 
'1A BRG 6 TEMP', 
'1A BRG 5 TEMP', 
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Temperature Signals 
'1A BRG 4 TEMP', 
'1ABRG3TEMP', 
’1A BRG 2 TEMP’, 
'1A BRG 1 TEMP', 
’1A RKR LO TEMP', 
'1A COMB EXH TEMP', 
'1ACFWCLR OUTLET TEMP' 

Pressure Signals 
'1A/1B CTRL AIR PRES', 
'1A RKR LO SPLY PRES’, 
'1A RT/C AIR OUT PRES', 
'1AR BANK AIR PRES', 
'1A LOSP2DISCH PRES', 
'1A LOSP 1 DISCH PRES', 
'lA LO HEADER PRES', 
'1ALT/C AIR OUT PRES1, 
'1AL BANK AIR PRES1, 
'1A JW OUTLET PRES', 
'1AJW INLET PRESS', 
'1A FO MANIFOLD PRES', 
'1A EXH BACK PRES’, 
'1ACRKCPRES', 
'1A RKR LO PMP DIS PRES', '1A FO PMP DISCH PRES', 
'1ACFW PMP DISCH PRES' 

Other Signals 
'1A RKR LO SUMP LVL', 
'1A RKR LO STR DP', 
'1A R T/C SPEED', 
'1A LO SUMP LVL', 
'1A LO CLR OIL DP', 
TA L T/C SPEED', 
'1A FUEL SPLY FLOW, 
'1A FUEL RTN FLOW, 
'1A FUEL RACK', 
'1A ENGINE SPEED', 
'1A AIR INTKFLTR DP', 
'1A LO STRAINER DP', 
'1A LO FILTER DP', 
'1A JW EXPANSION TNK LVL', 
'1A FO FILTER DP’ 



Main Reduction Gear (MRG) signals 
Temperature Signals 
'MRGl THR BRG OIL TEMP', 
'MRG1 THR BRG ASTN TEMP', 
'MRGl THR BRG AHEAD TEMP', 
'MRGl PN FWD SBD BG TEMP', 
'MRGl PN FWD PRT BG TEMP', 
'MRGl PN AFT SBD BG TEMP', 
'MRGl PN AFT PRT BG TEMP', 
'MRGl LS GR FWD BRG TEMP', 
'MRGl LS GR AFT BRG TEMP’, 
'MRGl LO SUMP TEMP’, 
'MRGl LO HDRTEMP', 
'MRGl LO CLR OUT TEMP', 
'MRGl LO CLR FW OUT TEMP' 

Pressure Signals 
'MRGl LOSP DISCH PRES’, 
'MRGl LO PMP B DISC PRES’, 
'MRGl LO PMP A DISC PRES', 
'MRGl LO HDR PRES', 
'MRGl HMRBPT2 PRES', 
'MRGl HMRB PT1 PRES', 
'MRGl CLUTCH AIR PRES' 

Other Signals 
'MRGl TN GEAR FWD BRG T\ 
'MRGl TN GEAR AFT BRG V, 

'MRGl SEC TN GEAR ENGGED1, 
'MRGl SEC TN GEAR DISENG', 
'MRGl PRI TN GEAR ENGGED', 
'MRGl PRI TN GEAR DISENG’, 
'MRGl LOSUMP LVL‘, 
'MRGl LO STR DP’ 
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Ship Service Diesel Generator (SSDG) signals 
Temperature Signals 
'SGI PHASE C STATOR TEMP', 
'SGI PHASE B STATOR TEMP', 
'SGI PHASE A STATOR TEMP1, 
'SGI FWD BRG TEMP', 
'SGI AIR COOLER OUT TEMP', 
'SGI AIR CLR INLET TEMP', 
'SGI AFT BRG TEMP', 
'D61T/C EXHAUST TEMP', 
'DG1 SW OVERBOARD TEMP1, 
'DG1 SW INJECTION TEMP', 
'DG1 LO TO COOLER TEMP', 
'DG1 LO TEMP TO ENG', 
'DG1 LO TEMP FROM ENGINE', 
'DG1JW TEMP FROM ENG1, 
'DG1 INTK AIR MANF TEMP', 
'DG1 FUEL SPLY TEMP', 
'DG1 FUEL RTN TEMP', 
'DG1 EXH MANF TEMP’, 
'DG1 CYL 8 EXHAUST TEMP1, 
'DG1CYL 7 EXHAUST TEMP1, 
'DG1 CYL 6 EXHAUST TEMP1, 
'DGl CYL 5 EXHAUST TEMP1, 
'DGl CYL 4 EXHAUST TEMP', 
'DGl CYL 3 EXHAUST TEMP1, 
'DGl CYL 2 EXHAUST TEMP1, 
’DGl CYL 1 EXHAUST TEMP1, 
’DGl COMBINED STACK TEMP', 
'DGl JW AFTCLR INLET TMP' 

Pressure Signals 
'SGI GEN LO PRES1, 
'DGl SW PRES', 
'DG1SWPMP DISCH PRES', 
'DGl LO PMP DISCH PRES', 
‘DGl LO HEADER PRES', 
'DGl LO FLTR DIFF PRES’, 
’DGl JW PUMP PRES', 
'DGl INTK AIR MANF PRES', 
'DGl FUEL PRES', 
'DGl EXH BACK PRES' 
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Other Signals 
'SGI VOLTAGE', 
'SGI POWER', 
'SGI PHASE C CURRENT, 
’SGI PHASE B CURRENT, 
'SGI PHASE A CURRENT, 
’SGI FREQUENCY', 
’DGIT/C SPEED1, 
'DG1JW EXPTKLVL', 
'DG1 GENERATOR OIL LEVEL’, 
'DG1 FUEL RACK POSITION', 
’DG1 FO FILTER DP’, 
'DG1 ENG SPEED', 
'DG1CRKC VACUUM’, 
'DG1 AFTCLR PMP DISCH P' 
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