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Abstract— Analog mixed-signal (AMS) modules are typically 

custom-designed by experienced designers, despite significant 
effort over several decades devoted to automated synthesis tools. 
This custom-design process is expensive, has high time-to-market, 
and often leads to suboptimal design. As part of a DARPA-funded 
project, we are developing a new approach based on customization 
of known-good designs (KGDs) to optimally satisfy the designer’s 
intent for an AMS module, expressed in terms of specifications and 
criteria for optimization. This short paper summarizes some key 
aspects of the project which provides open-source tools capable of 
automating analog mixed-signal schematic generation for CMOS 
technologies.  

Keywords—Open-source automated analog mixed signal circuit 
design, circuit schematic optimization, automated circuit IP 
generation 

I. INTRODUCTION 
The automation of analog mixed signal schematic generation 

has remained a challenge for many years. Our approach is 
inspired by, and is a generalization of, earlier efforts that used 
very specific searches to discover new behavior. For example, [1-
3], starting with the observation that most analog circuits use a 
small number of transistors, a numerical study of all possible 
configurations of a two-transistor circuit was initiated. This 
research led to the discovery of two low-noise amplifiers, one of 
which not only provided superior performance but also showed 
for the first time that thermal noise could be canceled. In our 
view, a key aspect of this previous successful work is its narrow 
focus. Our approach also minimizes search by maximizing use of 
digital synthesis, utilizing knowledge of known-good circuit 
designs and limiting exploration of parameter space around these 
point solutions. Our research and development effort is funded by 
DARPA as part of the POSH program managed by Andreas 
Olofsson in MTO. 

II. AMS DESIGN METHODOLOGY 
A sketch of the AMS design flow is illustrated in Fig. 1. In 

step 1 architectures are automatically selected that best match 
the desired user-performance specification and robustness. The 
selection process exploits known-good designs (KGDs) from a 
searchable database, such as phase-locked loop (PLL), digital 
phase-locked loop (DLL), analog-to-digital converter (ADC), 
and digital-to-analog converter (DAC) modules and other 
circuit elements. Step 2 automatically compiles PDK 
independent module parameters that support the selected 
circuit architectures. In step 3 a fast circuit generator 
automatically finds the best combination and parameter 
settings of the modules without human in the loop. The circuit 
generator is assisted by an efficient SPICE simulator. 

Also shown in Fig. 1 is the user interface that includes 
access to a repository currently planned to be maintained by 
MOSIS.   

 
Fig. 1. AMS design flow showing 3-step process and MOSIS POSH 
repository resources all of which are planned to be open-source except those 
requiring foundry NDA. 

A. Exploration near known-good designs 
Starting with record-setting designs by our team [4-10] and 

other researchers as KGDs, we generalize module structure 
(viewing it as a set of alternative compositions of sub-modules 
from a library) and parameters (viewing associated parameter 
values as algebraic quantities to be customized). We then 
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combine machine learning with search methods to efficiently 
explore the space of possible customizations of KGDs for a 
module to obtain module design versions that optimally 
capture the designer’s intent.  

Each KGD module is a point in a space defined as a 
mapping of values from S P to values of M, where S denotes 
the structure of a circuit,  denotes the circuit’s 
parameters, and  denotes its performance 
metrics. Our objective is to start with a few KGDs, i.e., specific 
points in the S P M space, and to systematically explore a 
rich set of circuit structures and circuit parameter values to 
obtain a set of designs that efficiently meet the intent (target 
specification) of any designer, described by given values of 
performance metrics and objectives.  

(a) (b) 
Fig. 2. (a) Example ADC design template derived from KGDs via 
generalization, to enable (b) rapid creation of a design that meets each design 
specification, via specialization. This process starts with the architecture 
templates and user specifications and uses our approach to take rapid decisions 
to create a suitable ADC design. 

Significant experience embodied in KGDs is exploited by 
incorporating this knowledge into a design template which can 
be used as a starting point for customization satisfy each 
design’s unique specifications and target fabrication process. 
As shown in Fig. 2, template creation from a set of KGDs is a 
generalization of a set of points into a region. In a dual manner, 
creation of a design that meets a designers specifications from 

a design template is a specification-directed specialization. Our 
generalization guarantees that the region covered by the design 
template for each AMS component covers the range of 
specifications and fabrication technologies from which a 
designer may select. 

III. AMS CIRCUIT GENERATOR 
Fig. 3 shows the block diagram of the proposed automated 

AMS circuit generator flow. It consists of three major steps. 
The first step is to prepare the parameterized module library. 
This stage consists of breaking a KGD into smaller 
independent modules which serve as building blocks for a 
parameterized library. We then explore the relationship 
between design parameters and the performance metrics of the 
module. For example, the performance metrics of an amplifier 
module can be gain or bandwidth. Conventional AMS design 
requires a thorough design exploration through a combination 
of designer’s knowledge and intensive SPICE simulations, 
which is typically a time consuming process. In our design 
flow, we explore the possibility of deriving a sufficiently 
accurate regression model for all the modules, leading to an 
expedited parameter search process, because the computation 
requirement for using the regression model is significantly less 
in comparison to SPICE simulation. To derive the regression 
model, we first randomly generate a set of training samples via 
SPICE simulations and use them to train an Artificial Neural 
Network (ANN) based regression model. The ANN network is 
implemented in Python using open-source tensorflow, keras 
and sklearn library, and OCTAVE for post processing. 

The second step is to convert user intent into module 
specifications. AMS specifications demanded by the user are 
broken down into individual module-level constraints using the 
system design equations and user’s preferred design priorities 
such as area and power consumption. This step does require 
designer’s knowledge and is coded in Python.   

 

Fig. 3. Machine learning based automated AMS circuit generator flow. 
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The last step is final netlist generation and parameter 
optimization. Once the module library is created and user 
intention is well captured at the module level, the appropriate 
modules for each block are selected using a selection filter. We 
use a python script to read the module library and search for 
modules matching the metrics decomposed in the previous 
step. Through this process, a few candidates meeting the 
constraints are selected. They are further validated through 
SPICE simulation. If the performance is accurate enough and 
meets the target specification, the best candidate is chosen for 
generating the final netlist. Otherwise, a local optimization 
routine can be applied to fine tune the parameter around the 
selected candidate. Note that, the accuracy of the regression 
model will determine the local optimization region. This is an 
effective tradeoff between the complexity of the regression 
model and local optimization. 

IV. DESIGN EXAMPLE 
We use a VCO-Based ADC [11] as an AMS design-flow 

example. This mostly digital architecture scales well with 
feature size scaling since it uses time to quantize the input. The 
general architecture consists of an analog front-end comprising 
a High Pass Filter (HPF) and VCO followed by mostly digital 
logic which samples and processes the VCO phase between 
sampling periods. Fig. 4 shows a high-level functional diagram 

of the ADC.  
Fig. 4. VCO-Based ADC conceptual diagram. 

Having chosen the ADC type, a KGD is chosen as the 
baseline for further exploration. The block-level architecture of 
the ADC is shown in Fig. 5. The first step towards automated 
design is breaking down the architecture into smaller modules 
that are easier to model and simulate independently and at low 
computational complexities. The VCO-based ADC is 
composed of a few relatively simple analog blocks and other 
mostly digital modules making it a good proof-of-concept 
candidate.  

 
Fig. 5. Architecture of VCO-based ADC from KGD. 

The ADC in Fig. 5 has HPF and VCO analog modules. The 
digital modules are the VCO phase sampler (situated at 
boundary), Counter, and ROM bubble encoder.  

Each module is then parameterized into various design 
degrees of freedom such as device sizing, bit width, etc., to 
create a library that can be simulated with varying parameters 
to explore module performance in the required design space. 

The next step is to find the set of design ‘parameters’ and 
the set of output behavior ‘metrics’. We need to do this for 
analog modules only since digital circuit synthesis is 
sophisticated enough to generate circuits using high-level 
specifications.  

The analog blocks are parameterized as in Table. I. 
TABLE I.  CAPTURING THE INPUT AND OUTPUT OF THE MODULE 

BEHAVIORAL MODEL 

Module Design parameters Output metrics 

HPF 
Resistance 
Capacitance 

Bandwidth 
Leakage power 
Peak attenuation 

VCO 
Size of inverter 
Number of stages 
Bias voltage 

Input linear range 
Kvco, Fnominal,  
Output amplitude 
Power dissipation 

Since it is not possible to simulate the behavior of the 
modules across the entire search space, a ‘training’ set must be 
chosen that samples the design space, and the remaining space 
must be estimated using machine learning techniques. 
Currently the training sample modules are chosen randomly 
through the search space with ranges derived from KGD 
heuristics.  

TABLE II.  DESIGN PARAMETER SEARCH RANGE FOR HPF IN THE KGD 

Parameters Search range 

Resistance 
15 Ω ~ 150 Ω 
(indirectly controlled by poly resistor length and width) 

Capacitance 
142 fF ~ 4.7 pF 
(indirectly controlled by varying number of metal fingers 
(50~288)) 

Using a search range indicated in Tables II and III and a 
random sweep, 1500 training examples are created using the 
parameterized module library and their performance metrics 
are captured with SPICE simulation. 

TABLE III.  DESIGN PARAMETER SEARCH RANGE FOR VCO IN THE KGD 

Parameters Search range 
Wp (PMOS size in the unit 
inverter) 

200 nm ~ 600 nm in 100 nm steps 

Wn (NMOS size in the unit 
inverter) 200 nm ~ 600 nm in 100 nm steps 

n_fing_p (number of fingers 
in PMOS) 2 – 20 (random integer number) 

n_fing_n (number of fingers 
in NMOS) 2 – 20 (random integer number) 

Zload (load capacitance 
driven by inverter) 2 fF – 50 fF (random real number) 

Vbias (Voltage controlling 
state on PMOS) 

50 mV – 950 mV (random integer 
number) 
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The training data set enables an ANN topology to be 
developed and create an expanded module library which 
predicts the metric values for modules not present in the 
training dataset. This allows us to increase coverage of the 
search space for each module. The neural network has 6-7 
input neurons, 20 hidden-layer neurons and 3-4 output neurons.  

The neural network is trained on 90% of the data set 
generated using random samples, and its accuracy is tested 
using the remaining 10% data samples. Fig. 6a shows the 
accuracy of the trained model for the filter metric. Fig. 6b 
shows the accuracy of the model on the VCO metrics. The 
learning algorithm can also be used for studies into the 
sensitivity of the individual parameters and can yield important 
information such as critical and highly sensitive regions which 
affect the output considerably, or if two parameters are 
correlated.  

 
(a) 

 

 
(b) 

Fig. 6. (a) Training model accuracy for filter bandwidth using the Neural 
Network Regressor. (b) Training model accuracy for VCO module 
parameters. 

 

Once the regression model is derived, the remaining task is 
to find the constraints of the module metrics using the 
designer’s knowledge described in [11], which converts the 
top-level specification into module-level requirements. After 
module specifications are obtained from the high-level design 
equation breakdown, the library is searched for the candidates 
for each module of the ADC, and their compatibility is also 
checked through appropriate boundary conditions.  

The design flow is then tested for a few sample designs, 
and its performance is evaluated using complete system 
testbenches. Fig. 7 shows the parameter calculation and 
choices for various high-level specifications. 

The final performance is evaluated at both module level as 
well as entire ADC level to validate the effectiveness of our 
AMS generator.  

1. Module level measurement: The individual module 
metrics are measured to be within a reasonable range of 
the expected behavior. In the three test cases simulated, 
metrics such as filter bandwidth and KVCO are within 3% 
of the regressor predicted values.  

2. ADC level measurement: For the entire ADC, SNR 
measurement is used to characterize the noise 
performance. For the three examples tested, the SNR 
achieved for the 6, 7 and 8-bit ADCs is 42.1, 47.96, and 
41.92 dB, respectively. 
 

 
Fig. 7. Module parameters for three different top-level specifications. 

V. LOCAL OPTIMIZATION 
As indicated in Fig. 3, final netlist generation can include 

local optimization. If the objective is near a KGD, local 
optimization may be used to bypass much of the design flow 
shown in Fig. 3. Hence, this is potentially an alternative way to 
exploit a growing library of KGDs.  

However, local optimization in AMS design can involve 
multiple objectives. In multi-objective optimization (vector 
optimization) no single solution necessarily exists that 
simultaneously optimizes each objective. If the objectives are 
conflicting, infinitely many Pareto optimal solutions can occur. 
A Pareto optimal solution exist if none of the objective 
functions can be optimized without degrading the value of 
some of the other objective functions. As is well known, the 
goal then reduces to one of finding a representative class of 
Pareto optimal solutions and possibly quantifying the trade-offs 
in satisfying the different objectives [12]. 

For a given fixed CMOS circuit architecture, there are a 
finite number of different PMOS and NMOS transistors to 
optimize, 1  i  NPMOS and 1  j  NNMOS with 

. Each of the design specifications fD is a 
function from the parameter space to ℂ, i.e. 

 , 
where L is the minimum parameter for the given process 
technology file. Given user Inputs = ( , …, ), there is a 
multi-objective optimization problem, namely, 

 

where  is a convenient measure. 
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For gradient method multi-objective optimization a Pareto 
critical point is approached by , where  
is the step size and the search direction  is  

 

When k = 1, the steepest descent direction is  
and from Nesterov [13] the gradient is known to decrease at the 
rate  regardless of starting point, provided the function is 
convex and Lipschitz continuous. Solving the optimization 
problem, 

 

where  are the Lagrange multipliers with the constraint 
, giving a direction to carry out multi-objective 

Nesterov gradient descent [14-15]. A suitable cost function 
definition is 

 

which can be shown to have a convergence of , and is 
the maximum of the Lipschitz constant among all the objective 
functions . The solution of the constrained optimization 
problem is  such that 

, where Tol is a user-specified tolerance. 

In an initial proof-of-principle demonstration we have 
shown that local optimization of VCO and PLL circuits can be 
achieved using the above approach. The current 
implementation functions best if the number of parameters and 
the region of parameter search space is limited. 

VI. CONCLUSION 
In summary, we have described aspects of our approach to 

open-source automated analog mixed-signal circuit-schematic 
generation for CMOS technologies. We have found that a key 
element to success is maintaining a narrow focus. This includes 
limiting circuit architectures and maximizing use of digital 
synthesis. Also, we limit exploration of parameter space to 
regions that include known-good circuit design. Machine 
learning and a regression model is found to be an efficient and 
practical method supplemented, when appropriate, by local 
multi-objective optimization. 
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