
Automated Analog Mixed Signal IP Generator
for CMOS Technologies

Mohsen Hassanpourghadi, Qiaochu Zhang,
Praveen Sharma, Jaewon Nam, Shiyu Su,

Subhajit Chowdhury, Jagannathan Sathyamoorthy,
Walter Unglaub, Fangzhou Wang, Mike Chen,

Sandeep Gupta, Anthony Levi
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2533

Email: alevi@usc.edu

Wes Hansford
MOSIS

USC Information Sciences Institute
Marina del Rey, CA 90292-6695

Email: hansford@mosis.com

William Taylor
Office of the CTO

Global Foundries Fab8
Malta, NY 12020

Email:
william.taylor@globalfoundries.com

Abstract— Analog mixed-signal (AMS) modules are typically

custom-designed by experienced designers, despite significant
effort over several decades devoted to automated synthesis tools.
This custom-design process is expensive, has high time-to-market,
and often leads to suboptimal design. As part of a DARPA-funded
project, we are developing a new approach based on customization
of known-good designs (KGDs) to optimally satisfy the designer’s
intent for an AMS module, expressed in terms of specifications and
criteria for optimization. This short paper summarizes some key
aspects of the project which provides open-source tools capable of
automating analog mixed-signal schematic generation for CMOS
technologies.

Keywords—Open-source automated analog mixed signal circuit
design, circuit schematic optimization, automated circuit IP
generation

I. INTRODUCTION
The automation of analog mixed signal schematic generation

has remained a challenge for many years. Our approach is
inspired by, and is a generalization of, earlier efforts that used
very specific searches to discover new behavior. For example, [1-
3], starting with the observation that most analog circuits use a
small number of transistors, a numerical study of all possible
configurations of a two-transistor circuit was initiated. This
research led to the discovery of two low-noise amplifiers, one of
which not only provided superior performance but also showed
for the first time that thermal noise could be canceled. In our
view, a key aspect of this previous successful work is its narrow
focus. Our approach also minimizes search by maximizing use of
digital synthesis, utilizing knowledge of known-good circuit
designs and limiting exploration of parameter space around these
point solutions. Our research and development effort is funded by
DARPA as part of the POSH program managed by Andreas
Olofsson in MTO.

II. AMS DESIGN METHODOLOGY
A sketch of the AMS design flow is illustrated in Fig. 1. In

step 1 architectures are automatically selected that best match
the desired user-performance specification and robustness. The
selection process exploits known-good designs (KGDs) from a
searchable database, such as phase-locked loop (PLL), digital
phase-locked loop (DLL), analog-to-digital converter (ADC),
and digital-to-analog converter (DAC) modules and other
circuit elements. Step 2 automatically compiles PDK
independent module parameters that support the selected
circuit architectures. In step 3 a fast circuit generator
automatically finds the best combination and parameter
settings of the modules without human in the loop. The circuit
generator is assisted by an efficient SPICE simulator.

Also shown in Fig. 1 is the user interface that includes
access to a repository currently planned to be maintained by
MOSIS.

Fig. 1. AMS design flow showing 3-step process and MOSIS POSH
repository resources all of which are planned to be open-source except those
requiring foundry NDA.

A. Exploration near known-good designs
Starting with record-setting designs by our team [4-10] and

other researchers as KGDs, we generalize module structure
(viewing it as a set of alternative compositions of sub-modules
from a library) and parameters (viewing associated parameter
values as algebraic quantities to be customized). We then

Machine
learning

Mentor
/Cadence

AFS

Different
PDK (180 to

14nm)

Step 3: Automated POSH circuit
generator supporting all
architectures. Optimized netlist
and parameters

User
objective

specification

Mentor
/Cadence

AFS Customer
interface to

MOSIS POSH
repository

PDK
independent
netlist

Step 1: POSH architecture
selection from known-good
designs

Step 2: Parameterized modules
supporting all architectures and
technology nodes

Database
library for
ADC, DAC,
PLL, DLL

DISTRIBUTION STATEMENT: Approved for public release: distribution is
unlimited. This material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7853. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed
or implied, of AFRL and DARPA or the U.S. Government.

1027

combine machine learning with search methods to efficiently
explore the space of possible customizations of KGDs for a
module to obtain module design versions that optimally
capture the designer’s intent.

Each KGD module is a point in a space defined as a
mapping of values from S P to values of M, where S denotes
the structure of a circuit, denotes the circuit’s
parameters, and denotes its performance
metrics. Our objective is to start with a few KGDs, i.e., specific
points in the S P M space, and to systematically explore a
rich set of circuit structures and circuit parameter values to
obtain a set of designs that efficiently meet the intent (target
specification) of any designer, described by given values of
performance metrics and objectives.

(a) (b)
Fig. 2. (a) Example ADC design template derived from KGDs via
generalization, to enable (b) rapid creation of a design that meets each design
specification, via specialization. This process starts with the architecture
templates and user specifications and uses our approach to take rapid decisions
to create a suitable ADC design.

Significant experience embodied in KGDs is exploited by
incorporating this knowledge into a design template which can
be used as a starting point for customization satisfy each
design’s unique specifications and target fabrication process.
As shown in Fig. 2, template creation from a set of KGDs is a
generalization of a set of points into a region. In a dual manner,
creation of a design that meets a designers specifications from

a design template is a specification-directed specialization. Our
generalization guarantees that the region covered by the design
template for each AMS component covers the range of
specifications and fabrication technologies from which a
designer may select.

III. AMS CIRCUIT GENERATOR
Fig. 3 shows the block diagram of the proposed automated

AMS circuit generator flow. It consists of three major steps.
The first step is to prepare the parameterized module library.
This stage consists of breaking a KGD into smaller
independent modules which serve as building blocks for a
parameterized library. We then explore the relationship
between design parameters and the performance metrics of the
module. For example, the performance metrics of an amplifier
module can be gain or bandwidth. Conventional AMS design
requires a thorough design exploration through a combination
of designer’s knowledge and intensive SPICE simulations,
which is typically a time consuming process. In our design
flow, we explore the possibility of deriving a sufficiently
accurate regression model for all the modules, leading to an
expedited parameter search process, because the computation
requirement for using the regression model is significantly less
in comparison to SPICE simulation. To derive the regression
model, we first randomly generate a set of training samples via
SPICE simulations and use them to train an Artificial Neural
Network (ANN) based regression model. The ANN network is
implemented in Python using open-source tensorflow, keras
and sklearn library, and OCTAVE for post processing.

The second step is to convert user intent into module
specifications. AMS specifications demanded by the user are
broken down into individual module-level constraints using the
system design equations and user’s preferred design priorities
such as area and power consumption. This step does require
designer’s knowledge and is coded in Python.

Fig. 3. Machine learning based automated AMS circuit generator flow.

Random design
parameters

in search space

Metrics

Finer sweep in MetricsSelection
Filter2

Python

Preparation Work (Part of Module library)
Human in Loop

User Intent

Designer
Knowledge

Specifications

Module Metrics
Constraints

Priorities
(Area/Power)

Designer
Knowledge

Spice

Training dataset
Train the regression model

Final
Netlist Parameter Candidates

Spice Fi
na

l N
et

lis
t

G
en

er
at

io
n

M
od

ul
e

Li
br

ar
y

G
en

er
at

io
n

Ex
pl

or
at

io
n

us
in

g
Re

gr
es

sio
n

M
od

elSelection
Filter1

Designer’s
Priority

No Human in Loop

No Human in Loop
Database

Sorting
and /or
Local

Optimization

IP
Validation

1028

The last step is final netlist generation and parameter
optimization. Once the module library is created and user
intention is well captured at the module level, the appropriate
modules for each block are selected using a selection filter. We
use a python script to read the module library and search for
modules matching the metrics decomposed in the previous
step. Through this process, a few candidates meeting the
constraints are selected. They are further validated through
SPICE simulation. If the performance is accurate enough and
meets the target specification, the best candidate is chosen for
generating the final netlist. Otherwise, a local optimization
routine can be applied to fine tune the parameter around the
selected candidate. Note that, the accuracy of the regression
model will determine the local optimization region. This is an
effective tradeoff between the complexity of the regression
model and local optimization.

IV. DESIGN EXAMPLE
We use a VCO-Based ADC [11] as an AMS design-flow

example. This mostly digital architecture scales well with
feature size scaling since it uses time to quantize the input. The
general architecture consists of an analog front-end comprising
a High Pass Filter (HPF) and VCO followed by mostly digital
logic which samples and processes the VCO phase between
sampling periods. Fig. 4 shows a high-level functional diagram

of the ADC.
Fig. 4. VCO-Based ADC conceptual diagram.

Having chosen the ADC type, a KGD is chosen as the
baseline for further exploration. The block-level architecture of
the ADC is shown in Fig. 5. The first step towards automated
design is breaking down the architecture into smaller modules
that are easier to model and simulate independently and at low
computational complexities. The VCO-based ADC is
composed of a few relatively simple analog blocks and other
mostly digital modules making it a good proof-of-concept
candidate.

Fig. 5. Architecture of VCO-based ADC from KGD.

The ADC in Fig. 5 has HPF and VCO analog modules. The
digital modules are the VCO phase sampler (situated at
boundary), Counter, and ROM bubble encoder.

Each module is then parameterized into various design
degrees of freedom such as device sizing, bit width, etc., to
create a library that can be simulated with varying parameters
to explore module performance in the required design space.

The next step is to find the set of design ‘parameters’ and
the set of output behavior ‘metrics’. We need to do this for
analog modules only since digital circuit synthesis is
sophisticated enough to generate circuits using high-level
specifications.

The analog blocks are parameterized as in Table. I.
TABLE I. CAPTURING THE INPUT AND OUTPUT OF THE MODULE

BEHAVIORAL MODEL

Module Design parameters Output metrics

HPF
Resistance
Capacitance

Bandwidth
Leakage power
Peak attenuation

VCO
Size of inverter
Number of stages
Bias voltage

Input linear range
Kvco, Fnominal,
Output amplitude
Power dissipation

Since it is not possible to simulate the behavior of the
modules across the entire search space, a ‘training’ set must be
chosen that samples the design space, and the remaining space
must be estimated using machine learning techniques.
Currently the training sample modules are chosen randomly
through the search space with ranges derived from KGD
heuristics.

TABLE II. DESIGN PARAMETER SEARCH RANGE FOR HPF IN THE KGD

Parameters Search range

Resistance
15 Ω ~ 150 Ω
(indirectly controlled by poly resistor length and width)

Capacitance
142 fF ~ 4.7 pF
(indirectly controlled by varying number of metal fingers
(50~288))

Using a search range indicated in Tables II and III and a
random sweep, 1500 training examples are created using the
parameterized module library and their performance metrics
are captured with SPICE simulation.

TABLE III. DESIGN PARAMETER SEARCH RANGE FOR VCO IN THE KGD

Parameters Search range
Wp (PMOS size in the unit
inverter)

200 nm ~ 600 nm in 100 nm steps

Wn (NMOS size in the unit
inverter) 200 nm ~ 600 nm in 100 nm steps

n_fing_p (number of fingers
in PMOS) 2 – 20 (random integer number)

n_fing_n (number of fingers
in NMOS) 2 – 20 (random integer number)

Zload (load capacitance
driven by inverter) 2 fF – 50 fF (random real number)

Vbias (Voltage controlling
state on PMOS)

50 mV – 950 mV (random integer
number)

1029

The training data set enables an ANN topology to be
developed and create an expanded module library which
predicts the metric values for modules not present in the
training dataset. This allows us to increase coverage of the
search space for each module. The neural network has 6-7
input neurons, 20 hidden-layer neurons and 3-4 output neurons.

The neural network is trained on 90% of the data set
generated using random samples, and its accuracy is tested
using the remaining 10% data samples. Fig. 6a shows the
accuracy of the trained model for the filter metric. Fig. 6b
shows the accuracy of the model on the VCO metrics. The
learning algorithm can also be used for studies into the
sensitivity of the individual parameters and can yield important
information such as critical and highly sensitive regions which
affect the output considerably, or if two parameters are
correlated.

(a)

(b)

Fig. 6. (a) Training model accuracy for filter bandwidth using the Neural
Network Regressor. (b) Training model accuracy for VCO module
parameters.

Once the regression model is derived, the remaining task is
to find the constraints of the module metrics using the
designer’s knowledge described in [11], which converts the
top-level specification into module-level requirements. After
module specifications are obtained from the high-level design
equation breakdown, the library is searched for the candidates
for each module of the ADC, and their compatibility is also
checked through appropriate boundary conditions.

The design flow is then tested for a few sample designs,
and its performance is evaluated using complete system
testbenches. Fig. 7 shows the parameter calculation and
choices for various high-level specifications.

The final performance is evaluated at both module level as
well as entire ADC level to validate the effectiveness of our
AMS generator.

1. Module level measurement: The individual module
metrics are measured to be within a reasonable range of
the expected behavior. In the three test cases simulated,
metrics such as filter bandwidth and KVCO are within 3%
of the regressor predicted values.

2. ADC level measurement: For the entire ADC, SNR
measurement is used to characterize the noise
performance. For the three examples tested, the SNR
achieved for the 6, 7 and 8-bit ADCs is 42.1, 47.96, and
41.92 dB, respectively.

Fig. 7. Module parameters for three different top-level specifications.

V. LOCAL OPTIMIZATION
As indicated in Fig. 3, final netlist generation can include

local optimization. If the objective is near a KGD, local
optimization may be used to bypass much of the design flow
shown in Fig. 3. Hence, this is potentially an alternative way to
exploit a growing library of KGDs.

However, local optimization in AMS design can involve
multiple objectives. In multi-objective optimization (vector
optimization) no single solution necessarily exists that
simultaneously optimizes each objective. If the objectives are
conflicting, infinitely many Pareto optimal solutions can occur.
A Pareto optimal solution exist if none of the objective
functions can be optimized without degrading the value of
some of the other objective functions. As is well known, the
goal then reduces to one of finding a representative class of
Pareto optimal solutions and possibly quantifying the trade-offs
in satisfying the different objectives [12].

For a given fixed CMOS circuit architecture, there are a
finite number of different PMOS and NMOS transistors to
optimize, 1 i NPMOS and 1 j NNMOS with

. Each of the design specifications fD is a
function from the parameter space to ℂ, i.e.

 ,
where L is the minimum parameter for the given process
technology file. Given user Inputs = (, …,), there is a
multi-objective optimization problem, namely,

where is a convenient measure.

1030

For gradient method multi-objective optimization a Pareto
critical point is approached by , where
is the step size and the search direction is

When k = 1, the steepest descent direction is
and from Nesterov [13] the gradient is known to decrease at the
rate regardless of starting point, provided the function is
convex and Lipschitz continuous. Solving the optimization
problem,

where are the Lagrange multipliers with the constraint
, giving a direction to carry out multi-objective

Nesterov gradient descent [14-15]. A suitable cost function
definition is

which can be shown to have a convergence of , and is
the maximum of the Lipschitz constant among all the objective
functions . The solution of the constrained optimization
problem is such that

, where Tol is a user-specified tolerance.

In an initial proof-of-principle demonstration we have
shown that local optimization of VCO and PLL circuits can be
achieved using the above approach. The current
implementation functions best if the number of parameters and
the region of parameter search space is limited.

VI. CONCLUSION
In summary, we have described aspects of our approach to

open-source automated analog mixed-signal circuit-schematic
generation for CMOS technologies. We have found that a key
element to success is maintaining a narrow focus. This includes
limiting circuit architectures and maximizing use of digital
synthesis. Also, we limit exploration of parameter space to
regions that include known-good circuit design. Machine
learning and a regression model is found to be an efficient and
practical method supplemented, when appropriate, by local
multi-objective optimization.

ACKNOWLEDGMENT
The authors wish to acknowledge funding received from

DARPA MTO and administered by AFRL contract FA8650-
18-2-7853.

REFERENCES
[1] F. Bruccoleri, E.A.M. Klumperink, and B. Nauta, “Wideband low-noise

amplifiers exploiting thermal noise cancellation,” Springer, 2005.
[2] F. Bruccoleri, E.A.M. Klumperink, and B. Nauta, “Noise cancelling in

wideband CMOS LNAs,” IEEE International Solid-State Circuits
Conference, 2002. Digest of Technical Papers.

[3] F. Bruccoleri, E.A.M. Klumperink, and B. Nauta, “Wide-band CMOS
low-noise amplifier exploiting thermal noise canceling,” IEEE Journal
of Solid-State Circuits, vol. 39, no. 2, pp. 275-282, 2004.

[4] M. S-W. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW
Asynchronous ADC in 0.13um CMOS,” IEEE Journal of Solid State
Circuits, vol. 41, no. 12, pp. 2669-2680, 2006.

[5] C-R. Ho and M. S-W. Chen, “A Digital PLL with Feedforward Multi-
Tone Spur Cancelation Loop Achieving <-73dBc Fractional Spur and <-
110dBc Reference Spur in 65nm CMOS,” IEEE International Solid-
State Circuits Conference, pp. 190-192, 2016.

[6] J-W. Nam, M. Hassanpourghadi, A. Zhang and M. S-W. Chen, “A 12-
bit 1.6 GS/s Interleaved SAR ADC with Dual Reference Shifting and
Interpolation Achieving 17.8 fJ/conv-step in 65nm CMOS,” IEEE
Symposium on VLSI Circuits Digest of Technical Papers (2016).

[7] S. Su, , and M. S-W. Chen, “A 12b 2GS/s Dual-Rate Hybrid DAC with
Pulsed Timing-Error Pre-Distortion and In-Band Noise Cancellation
Achieving >74dBc SFDR up to 1GHz in 65nm CMOS,” IEEE
International Solid-State Circuits Conference, pp. 456-457, 2016.

[8] C. R. Ho and M. S-W. Chen, “A Digital Frequency Synthesizer with
Dither-Assisted Pulling Mitigation for Simultaneous DCO and
Reference Path Coupling,” IEEE International Solid-State Circuits
Conference, pp. 254-255, 2018.

[9] C. R. Ho and M. S-W. Chen, “A Fractional-N Digital PLL with
Background Dither Noise Cancellation Loop Achieving <-62.5dBc
Worst-Case Near-Carrier Fractional Spur in 65nm CMOS,” IEEE
International Solid-State Circuits Conference, pp. 394-395, 2018.

[10] S. Su and M. S-W. Chen, “A 16-bit 12GS/s Single/Dual-Rate DAC with
Successive Bandpass Delta-Sigma Modulator Achieving <-67dBc IM3
within DC to 6GHz Tunable Passbands,” IEEE International Solid-State
Circuits Conference, pp. 362-363, 2018.

[11] P.K. Sharma, and M. S-W. Chen, “A 6b 800MS/s 3.62mW Nyquist AC-
coupled VCO Based ADC in 65nm CMOS ,” Custom Integrated
Circuits Conference (CICC), Sep. 2013.

[12] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge
Univeristy Press, 2004.

[13] Y. Nesterov, “Introductory Lectures on Convex Optimization.” Kluwer
Academic Publishers, Dordrecht, 2004.

[14] J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria
optimization. Mathematical Methods of Operations Research, vol. 51,
pp. 479–494, 2000.

[15] J. Fliege, A. I. F. Vaz and L. N. Vicente, Complexity of gradient descent
for multiobjective optimization, Optimization Methods and Software,
2018, DOI: 10.1080/10556788.2018.1510928.

1031

