
Field Programmable Neural Array
Artificial Intelligence at the Edge

Peter Gadfort and Oluseyi A. Ayorinde
Sensors and Electron Devices Directorate

US Army Research Laboratory
Adelphi, MD 20783–1138

Email: peter.gadfort.civ@mail.mil

Melissa Bezandry and Max Yu
Department of Electrical and Computer Engineering

University of Maryland
College Park, MD 20742

Abstract—This paper will present the architecture of an Field
Programmable Neural Array (FPNA) for AI applications at
the tactical computing edge. This platform combines domain
specific accelerators for AI with a reconfiguable interconect to
permit any Deep Neural Network to be mapped into the FPNA.
The FPNA includes domain specific accelerators that perform
inference tasks with higher computing efficiency than CPUs and
GPUs, approaching that of ASICs designed specifically for AI
applications, and a reconfigurable interconnect providing the
flexibility and connectivity of an FPGA.

Keywords—artificial intelligence; machine learning; domain
specific accelerators; field programmable

I. INTRODUCTION

Conventional approaches to efficiently implementing Deep
Neural Networks (DNNs) on-chip result in relatively rigid
implementations and while these approaches achieve high
computational efficiencies[1], they do not permit system en-
gineers to change the fundamental architecture (Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN),
etc.) once the hardware has been deployed. As a result, new
network structures and varying sizes of DNNs require new
hardware to be developed and fabricated, which is costly
and not compatible with rapid deployment schedules. Field
Programmable Gate Array (FPGA) implementations of DNNs
are also possible[2], and even though they allow for greater
flexibility, they are not able to reach the efficiencies required
for Army edge computing applications. Fig. 1 shows the en-
ergy efficiency of different computing platforms, including the
proposed solution – Field Programmable Neural Array (FPNA)
– which will target a computing efficiency of 200 GOPs/W.

Many Army systems have extremely stringent size, weight,
and power (SWaP) constraints, therefore they are especially
sensitive to increases in the total power load, and thus require
low-power additions to their platforms[3], [4]. Focusing on
the most common platforms in Fig. 1, we tabulate the power
required for several different DNNs (GoogleNet, AlexNet, and
automatic speech recognition (ASR)), based on the operations
count from [5] and efficiency from [1], [6], in Table I. From
this table, it is apparent that solutions using CPUs, GPUs, and
FPGAs will require too much power to make them practical
for most edge computing applications.

DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion is unlimited.

Energy Efficiency→
Flexibility←

CPU/GPU FPGA ASICFPNA

10–100× 10–100×

accelerators flexibility

Fig. 1: Relative Computing Efficiency for AI platforms

TABLE I: Added power burden for common AI algorithms

Efficiency GoogleNet AlexNet ASR
GOPs/W 16.33 GOPs 7.33 GOPs 502.65 MOPs

CPU 5.1 3 W 1 W 98 mW
GPU 18.3 891 mW 400 mW 27 mW
FPGA 47.00 347 mW 156 mW 11 mW
ASIC 8100.00 2 mW 905 µW 62 µW
FPNA 200.00 82 mW 37 mW 3 mW

Considering a more concrete example of the 72 h mission
length requirement for the Soldier, we can compute the loss of
mission time when adding additional AI applications to their
mission. Here we will assume that GoogleNet, AlexNet, and
LeNet will all need to be performing 15 inferences per second,
causing the power to increase by 15× from Table I, and ASR
is doing 200 inferences per second. Table II shows how much
the mission time would be reduced if the Soldiers battery load
is not increased to accommodate the additional processing.
From the table, it is apparent that CPUs, GPUs, and FPGAs,
will not be able to support the mission requirements for the
Soldier. The ASIC example would be ideal as it does not
impact the Soldier mission by a noticeable amount; however,
this approach would be cost prohibitive. While the FPNA still
reduces the mission length by a few hours in some cases,
these are not likely to the cases that would be deployed on
the Soldier and ideally, the AI deployed on the Soldier would
be better tailored to their mission and the supported hardware.

TABLE II: Mission length reduction for Soldier

GoogleNet AlexNet LeNet ASR
CPU 60.4 h 50.4 h 3.3 h 49.1 h
GPU 42.7 h 28.5 h 56.8 s 27 h
FPGA 26.1 h 14.6 h 22.3 s 13.6 h
ASIC 14.2 s 6.4 s 7.8 ms 5.8 s
FPNA 8.5 h 4.1 h 5.3 s 3.7 h

568



N0

S0
W NE

S

N1

S1
W NE

S

N2

S2
W NE

S

N3

S3
W NE

S

N4

S4
W NE

S

N5

S5
W NE

S

IO
W

0 IO
E

0

IO
W

1 IO
E

1

ION0

IOS0

ION1

IOS1

ION2

IOS2

Fig. 2: Example 3×2 FPNA

L0 L1 L2 L3 Lout

t

t

M0
data0

M1
data1 data0

M2
data2 data1 data0

M3
data3 data2 data1 data0

M4
data4 data3 data2 data1

M5
data5 data4 data3 data2

Fig. 3: Data movement in FPNA fabric.

II. FIELD PROGRAMMABLE NEURAL ARRAY

This efficiency and flexibility challenge can be overcome
by borrowing interconnect fabrics from FPGAs (synapses)
and implementing dedicated accelerators (neurons) to perform
the required mathematics, resulting in the FPNA architecture.
By using a programmable fabric, composite neurons can be
created in the hardware to implement more complex functions
like the Long Short-Term Memory (LSTM) cells or cells with
larger input spaces than would be physically possible with an
individual neuron. This will open up new computing oppor-
tunities by providing the Army with a cost-effective, energy-
efficient machine learning platform, which can be deployed
with the Warfighter.

Fig. 2 shows an example of the FPNA fabric, illustrating
how the neurons and synapses are connected to each other
and how synapses are tied together with each other and with
off-chip communications. The FPNA will be moving the
data around on the chip as a pipeline, as shown in Fig. 3.
Here, each step of the data movement is described by M0...5

and each layer of neurons is described by L0...3,out. By pipe-
lining the FPNA, we can keep the neurons full of information
and better utilize the total functionality of the chip. This is a
significant departure from other solutions which rely heavily
on an external memory to provide the weights and biases. The
FPNA exclusively uses on-chip memories to store the weights

SRAM

Input

O
utput

ALU
ALU

ALU

Synapse

Weights Bias

Fig. 4: Neuron internal structure

and biases, and thus we can eliminate costly, off-chip memory
accesses.

This paper will discuss the two structures of the FPNA:
Neurons (Sec. III), which perform the necessary mathematics
to compute each layer of a DNN, and Synapses (Sec. IV),
which support the neurons and move data between them.
In Sec. V, we describe the programming of each neuron
and synapse to be able to perform machine learning (ML)
inferencing tasks.

III. NEURONS

The neuron is the computational engine in the FPNA that
performs all the required mathematics and data organization
necessary to complete the computation of a full DNN. A
diagram of the neuron is shown in Fig. 4. The inputs are fed
from outside the neuron and stored into a local memory. The
outputs are similarly stored in a local memory, and each of
these storage banks contains simple Arithmetic Logic Units
(ALUs), which can perform additions and other simple single-
cycle operations. The core of the neuron is the ALU, where
most of the complex math is performed. It primarily consists of
a set of vector/matrix multipliers and can be configured to use
different word sizes to maximize the efficiency and utilization
of the neuron. Finally, the configuration memory contains all
the preprogrammed weights and algorithm selection for the
neuron.

For reference, two networks were compiled into the FPNA
structure, LeNet and a Mathworks example speech command
network[7]. Fig. 5 shows how many individual neurons would
be required to construct that network on the FPNA. Here
we can see that if the neuron memory is too small, a large
number of neurons would be required, which would increase
the complexity of the routing in the synapses. For very large
memories, the neurons level off because a single neuron can
only perform a few tasks, so adding more memory to a given
neuron does not improve the overall network packing.

To help determine the best size of memory for each neuron,
Fig. 5 would suggest it would include approximately 2048 to
4096 words. To better evaluate this, the size of the neuron
logic and the resultant memory were combined with the data
in Fig. 5 to generate Fig. 6. This figure shows the effective
FPNA required to implement the desired network. In this case,

569



Fig. 5: Neuron count

Fig. 6: FPNA size

we are using GlobalFoundries 55lpx and would ideally build
the neurons in the valley that appears at 3072 words. At this
size the FPNA would be 2.98 mm2 and 48.38 mm2 for the
LeNet and speech networks, respectively. While this is a large
discrepancy, the FPNA is designed to be tiled together to build
a larger effective FPNA, therefore, we would be able to build
a single chip that could cover the LeNet example, and then use
16 chips to build a larger system to cover the speech network
example.

IV. SYNAPSES

The synapse is the reconfigurable interconnect block in
the FPNA, responsible for routing the data from a neuron
to other neurons. The connectivity of computational blocks
varies widely in neural network implementations, ranging
from relatively sparse connectivity in CNNs to the dense
connectivity of fully-connected layers used for classification.
As a result, the synapse needs to support varying levels of
connectivity efficiently. A diagram of the synapse is shown in

xbar

W

N

E

S

Neuron

Configuration
1 0 1 0 1

0 1 1 1 0
0 1 0 0 0

0 0 0 1 1

Fig. 7: Synapse internal structure

mode
translation

DNN mapping
neurons

Arch.

IO

place
neurons

route and
schedule
synapses

PnR
Opts.

bit
generation

Fig. 8: Programming flow

Fig. 7, which shows the cross-bar structure in the synapse and
the routing configuration table. This architecture is similar to
a Network-on-Chip (NoC); however, by recognizing that data
always moves between the same set of neurons at the same
time, the inter-block traffic can be scheduled to avoid collisions
and known ahead of time. This allows the synapses in the
FPNA to be far less complex than routing nodes in a NoC, by
removing arbitration and buffering circuitry altogether.

V. PROGRAMMING

For the FPNA to be useful, it must be programmed with the
desired, trained DNN. To make sure this step has the lowest
possible impact on utility of the FPNA, the programming
flow is similar to that of an FPGA, as illustrated in Fig. 8.
This flow takes in a trained DNN and converts the network
into smaller mathematical operations that are then mapped
into the neurons. The neurons are then placed into the FPNA
fabric, the synapses are routed and scheduled, and finally the
bit stream for that DNN is produced. This flow is modeled
after Verilog-to-Route (VTR)[8]; however, instead of FPNA
synthesis, place, and route, we do mapping, placing, and
routing.

To show some example of the flow, we ran LeNet through
the flow to build show some different aspects of the tools. Fig.
9 shows the routing heatmap of a network before annealing
the placement of neurons on the FPNA and after. Because we
start with a randomly placed mapping, annealing is necessary
to improve the routing performance of the network. Neurons

570



(a) Before anneal

(b) After anneal

Fig. 9: Impact of anneal

are first placed by minimizing the distance between neurons
within the same layer, which creates large congenstion points.
Additional annealing steps are required to help smoothe those
out. In the figure, prior to annealing (Fig. 9a) the routing
shows several hotspots which makes scheduling the synapses
difficult; however, after the annealing (Fig. 9b) step the layers
are better packed and the hotspots are reduced.

Fig. 10 shows an example of a single route for a given
neuron to all its destination neurons. While there is still work
to be done here to better pack the routes to reduce parallel
routes which block those resources from other routes, this
route shows how the programming software correctly build
the routes for the FPNA.

CONCLUSIONS

In this paper, we present a new architecture – the Field
Programmable Neural Array – for AI at the tactical edge,

Fig. 10: Example of neuron connectivity

which provides the required energy efficiency and flexibility
to allow for the deployment of AI at the tactical edge.

REFERENCES

[1] D. Shin, J. Lee, J. Lee, and H. J. Yoo, “14.2 DNPU: An 8.1TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in 2017 IEEE ISSCC, Feb 2017, pp. 240–241.

[2] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Net-
works,” in 2015 ACM/SIGDA FPGAs, 2015, pp. 161–170.

[3] “Circuit Realization at Faster Timescales (CRAFT),”
https://www.darpa.mil/attachments/ObscurationandMarking Slides.pdf,
accessed: September 24, 2018.

[4] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 203–215, Feb 2007.

[5] “Quick Start - Netscope CNN Analyzer,” https://dgschwend.github.io/
netscope, accessed: May 17, 2018.

[6] “GPU-Based Deep Learning Inference: A Performance and
Power Analysis,” https://www.nvidia.com/content/tegra/embedded-
systems/pdf/jetson tx1 whitepaper.pdf, November 2015.

[7] “Speech Command Recognition Using Deep Learning,”
https://www.mathworks.com/help/deeplearning/examples/deep-learning-
speech-recognition.html, accessed: January 10, 2019.

[8] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “Vtr 7.0: Next generation architecture and cad system for
fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2, pp. 6:1–
6:30, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2617593

571




