

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

Vehicle Electronics & Architecture Overview

George Hamilton

Associate Director

VEA

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 2072

07 FEB 2019

VEHICLE ELECTRONICS & ARCHITECTURES OVERVIEW

Vetronics

Electrical Power Distribution & Management

Engineering Services

EMI Analysis & Test

C4ISR Integration

Systems Integration Laboratories (SILs)

VEA MOBILE DEMONSTRATOR (VMD)

Schedule & Cost

Milestones	FY16	FY17	FY18	FY19
SNR – Stakeholder Needs Development	SNR			
SRR – System Requirements Development		SFR		
SFR – Define System			CCR	
CCR – Capabilities and Concepts				10.9
IPR – In-Process Review				
VMD – Integration				vehicle
RTTR – Ready To Test				
VMD – Testing				
PTR – Product Transition				
Total Funding: \$41.79M	\$9.374M	\$12.455M	\$11.895M	\$8.067M

Problem Statement:

Combat vehicle power systems have proprietary interfaces and are limited to incorporate data & software advancements. This results in high integration costs for new technology which has to be repeated for each combat vehicle platform.

Mission:

Demonstrate on a combat vehicle a power and data architecture common across combat vehicle requirements enabling a reduction in volume and weight of current components and increased available power and bandwidth for integration of new technologies such as advanced protection, lethality and network systems.

Payoff:

- Validates architecture implementation via a system design on a relevant platform (Stryker)
- Fuel savings of > 10% w/power management
- Combat vehicles will be able to distribute significantly more electrical power enabling integration of advanced weapons, networks and protection systems.
- Reduction in volume and weight of power conversion and distribution components by 50-75% over current technology.
- Provides mature standards and specifications to support future combat & infantry vehicle modernization programs

NEXT GENERATION COMBAT VEHICLE ELECTRICAL POWER ARCHITECTURE IMPLEMENTATION

VETRONICS ARCHITECTURE

Objectives

- Mitigate implementation risk of networking onboard vehicle systems via VICTORY
- Distribute PNT information to devices and subsystems
- · Demonstrate distributed timing to client devices via VICTORY
- Demonstrate remote control of C4ISR systems via VICTORY
- Demonstrate access control using VICTORY
- Demonstrate the art of the possible in reducing SWAP

ENHANCED - VEHICLE ELECTRONICS (E-VETRONICS) OVERVIEW

Progress Program Overview Begin developing the overall E-Vetronics architecture concept Begin concept development, market research, and requirements for the Advanced Slip Ring Comms Sensors & Vision Platform High Systems Computing Speed Displays Develop Flexible I/O Architecture concept, market research, and requirements Networks Vehicle Networks Mission Processing & Mission Recorder Equipment Processing Technology Network **Electrical System Architecting** Design & Optimization **Overall Project Design** Timeline FY19 FY20 FY21 FY22 FY23 FY24 FY25 • Develop and demonstrate a military standard open Tasks Develop Architectural Concept architecture for combat vehicles to manage data, **Digital Containerization** video, and power systems to enable future combat Architecture Advanced Slip Ring Development vehicle capabilities such as advanced protection, Flexible I/O lethality and network systems. Tactical Situational Awareness Mission Package Integration • Challenges include developing a common solution Bench Level Demonstration

across vehicle platforms, developing a standard open architecture that industry will adopt, and integrating high power technologies. These challenges are difficult to solve because the solutions require a holistic view and cannot be focused on a specific platform.

E-Vetronics Vehicle Integration

Funding (BA 6.2) \$M

Funding (BA 6.3) \$M

2.3

- Gap: Cost goals
- Barrier: Low Volume for Mil Rugged Electronics
- Resolution Timing: ASAP Program Dependent

Tech Challenge 2: SiC Power Electronics

- Gap: Small Mil-Rugged Power Electronics
- Barrier: Availability and cost of power switching devices and LRUs
- Resolution Timing: ASAP Program Dependent

Tech Challenge 3: Next Generation Slip Ring

- Gap: 600VDC, coolant, CAN, 10gbps Ethernet, 3rdGen FLIR slip ring
- Barrier: No one has been funded to develop for emerging requirements
- Resolution Timing: FY21 MET-D

Opportunities for Partnership FY19/20

- SiC 120kW DC/DC converter
- SiC 1MW Power Distribution
- Next Generation Slip Ring

