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ABSTRACT2

It has long been speculated whether communication between humans and machines based on3
natural speech related cortical activity is possible. Over the past decade, studies have suggested4
that it is feasible to recognize isolated aspects of speech from neural signals, such as auditory5
features, phones or one of a few isolated words. However, until now it remained an unsolved6
challenge to decode continuously spoken speech from the neural substrate associated with7
speech and language processing. Here, we show for the first time that continuously spoken8
speech can be decoded into the expressed words from intracranial electrocorticographic (ECoG)9
recordings. Specifically, we implemented a system, which we call Brain-To-Text that models10
single phones, employs techniques from automatic speech recognition (ASR), and thereby11
transforms brain activity while speaking into the corresponding textual representation. Our12
results demonstrate that our system achieved word error rates as low as 25% and phone13
error rates below 50%. Additionally, our approach contributes to the current understanding14
of the neural basis of continuous speech production by identifying those cortical regions that15
hold substantial information about individual phones. In conclusion, the Brain-To-Text system16
described in this paper represents an important step towards human-machine communication17
based on imagined speech.18

Keywords: electrocorticography, ECoG, speech production, automatic speech recognition, brain-computer interface, speech19
decoding, pattern recognition, broadband gamma20
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1 INTRODUCTION

Communication with computers or humans by thought alone, is a fascinating concept and has long been21
a goal of the brain-computer interface (BCI) community (Wolpaw et al. (2002)). Traditional BCIs use22
motor imagery (McFarland et al. (2000)) to control a cursor or to choose between a selected number of23
options. Others use event-related potentials (ERPs) (Farwell and Donchin (1988)) or steady-state evoked24
potentials (Sutter (1992)) to spell out texts. These interfaces have made remarkable progress in the last25
years, but are still relatively slow and unintuitive. The possibility of using covert speech, i.e. imagined26
continuous speech processes recorded from the brain for human-computer communication may improve27
BCI communication speed and also increase their usability. Numerous members of the scientific28
community, including linguists, speech processing technologists, and computational neuroscientists have29
studied the basic principles of speech and analyzed its fundamental building blocks. However, the high30
complexity and agile dynamics in the brain make it challenging to investigate speech production with31
traditional neuroimaging techniques. Thus, previous work has mostly focused on isolated aspects of32
speech in the brain.33

Several recent studies have begun to take advantage of the high spatial resolution, high temporal34
resolution and high signal-to-noise ratio of signals recorded directly from the brain (electrocorticography35
(ECoG)). Several studies used ECoG to investigate the temporal and spatial dynamics of speech perception36
(Kubanek et al. (2013); Canolty et al. (2007)). Other studies highlighted the differences between37
receptive and expressive speech areas (Towle et al. (2008); Fukuda et al. (2010)). Further insights into38
the isolated repetition of phones and words has been provided in (Leuthardt et al. (2011b); Pei et al.39
(2011b)). Pasley et al. (2012) showed that auditory features of perceived speech could be reconstructed40
from brain signals. In a study with a completely paralyzed subject, Guenther et al. (2009) showed that41
brain signals from speech-related regions could be used to synthesize vowel formants. Following up on42
these results, Martin et al. (2014) decoded spectrotemporal features of overt and covert speech from43
ECoG recordings. Evidence for a neural representation of phones and phonetic features during speech44
perception was provided in Chang et al. (2010) and Mesgarani et al. (2014), but these studies did not45
investigate continuous speech production. Other studies investigated the dynamics of the general speech46
production process (Crone et al. (2001a,b)). A large number of studies have classified isolated aspects47
of speech processes for communication with or control of computers. Deng et al. (2010) decoded three48
different rhythms of imagined syllables. Neural activity during the production of isolated phones was49
used to control a one-dimensional cursor accurately (Leuthardt et al. (2011a)). Formisano et al. (2008)50
decoded isolated phones using functional magnetic resonance imaging (fMRI). Vowels and consonants51
were successfully discriminated in limited pairings in Pei et al. (2011a). Blakely et al. (2008) showed52
robust classification of four different phonemes. Other ECoG studies classified syllables (Bouchard53
and Chang (2014)) or a limited set of words (Kellis et al. (2010)). Extending this idea, the imagined54
production of isolated phones was classified in Brumberg et al. (2011). Recently, Mugler et al. (2014b)55
demonstrated the classification of a full set of phones within manually segmented boundaries during56
isolated word production.57

To make use of these promising results for BCIs based on continuous speech processes, the analysis58
and decoding of isolated aspects of speech production has to be extended to continuous and fluent speech59
processes. While relying on isolated phones or words for communication with interfaces would improve60
current BCIs drastically, communication would still not be as natural and intuitive as continuous speech.61
Furthermore, to process the content of the spoken phrases, a textual representation has to be extracted62
instead of a reconstruction of acoustic features. In our present study, we address these issues by analyzing63
and decoding brain signals during continuously produced overt speech. This enables us to reconstruct64
continuous speech into a sequence of words in textual form, which is a necessary step towards human-65
computer communication using the full repertoire of imagined speech. We refer to our procedure that66
implements this process as Brain-to-Text. Brain-to-Text implements and combines understanding from67
neuroscience and neurophysiology (suggesting the locations and brain signal features that should be68
utilized), linguistics (phone and language model concepts), and statistical signal processing and machine69
learning. Our results suggest that the brain encodes a repertoire of phonetic representations that can be70
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decoded continuously during speech production. At the same time, the neural pathways represented within71
our model offer a glimpse into the complex dynamics of the brain’s fundamental building blocks during72
speech production.73

2 MATERIAL & METHODS

2.1 SUBJECTS

Seven epileptic patients at Albany Medical Center (Albany, New York, USA) participated in this study.74
All subjects gave informed consent to participate in the study, which was approved by the Institutional75
Review Board of Albany Medical College and the Human Research Protections Office of the US Army76
Medical Research and Materiel Command. Relevant patient information is given in Figure 1.77

2.2 ELECTRODE PLACEMENT

Electrode placement was solely based on clinical needs of the patients. All subjects had electrodes78
implanted on the left hemisphere and covered relevant areas of the frontal and temporal lobes. Electrode79
grids (Ad-Tech Medical Corp., Racine, WI; PMT Corporation, Chanhassen, MN) were composed of80
platinum-iridium electrodes (4 mm in diameter, 2.3 mm exposed) embedded in silicon with an inter-81
electrode distance of 0.6-1 cm. Electrode positions were registered in a post-operative CT scan and82
co-registered with a pre-operative MRI scan. Figure 1 shows electrode positions of all 7 subjects and the83
combined electrode positions. To compare average activation patterns across subjects, we co-registered84
all electrode positions in common Talairach space. We rendered activation maps using the NeuralAct85
software package (Kubanek and Schalk (2014)).86

Figure 1. Electrode positions for all seven subjects. Captions include age (years old (y/o)) and sex87
of subjects. Electrode locations were identified in a post-operative CT and co-registered to preoperative88
MRI. Electrodes for subject 3 are on an average Talairach brain. Combined electrode placement in joint89
Talairach space for comparison of all subjects. Participant 1 (yellow), subject 2 (magenta), subject 390
(cyan), subject 5 (red), subject 6 (green) and subject 7 (blue). Participant 4 was excluded from joint91
analysis as the data did not yield sufficient activations related to speech activity (see Section 2.4).92

2.3 EXPERIMENT

We recorded brain activity during speech production of seven subjects using electrocorticographic (ECoG)93
grids that had been implanted as part of presurgical producedures preparatory to epilepsy surgery. ECoG94
provides electrical potentials measured directly on the brain surface at a high spatial and temporal95
resolution, unfiltered by skull and scalp. ECoG signals were recorded by BCI2000 (Schalk et al. (2004))96
using eight 16-channel g.USBamp biosignal amplifiers (g.tec, Graz, Austria). In addition to the electrical97
brain activity measurements, we recorded the acoustic waveform of the subjects’ speech. Participant’s98
voice data was recorded with a dynamic microphone (Samson R21s) and digitized using a dedicated99
g.USBamp in sync with the ECoG signals. The ECoG and acoustic signals were digitized at a sampling100
rate of 9600 Hz.101

During the experiment, text excerpts from historical political speeches (i.e., Gettysburg Address (Roy102
and Basler (1955)), JFK’s Inaugural Address (Kennedy (1989)), a childrens’ story (Crane et al. (1867))103
or Charmed fan-fiction (unknown (2009)) were displayed on a screen in about 1 m distance from the104
subject. The texts scrolled across the screen from right to left at a constant rate. This rate was adjusted105
to be comfortable for the subject prior to the recordings (rate of scrolling text: 42-76 words/min). During106
this procedure, subjects were familiarized with the task.107

Each subject was instructed to read the text aloud as it appeared on the screen. A session was repeated108
2 – 3 times depending on the mental and physical condition of the subjects. Table 1 summarizes data109
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recording details for every session. Since the amount of data of the individual sessions of subject 2 is very110
small, we combined all three sessions of this subject in the analysis.111

Table 1. Data recording details for every session.

Participant Session Text Number of phrases Total recording length (s)

1 1 Gettysburg address 36 279.87
2 JFK inaugural 38 326.90

2 1 Humpty Dumpty 21 129.87
2 Humpty Dumpty 21 129.07
3 Humpty Dumpty 21 126.37

3 1 Charmed fan-fiction 42 310.27
2 Charmed fan-fiction 40 310.93
3 Charmed fan-fiction 41 307.50

4 1 Gettysburg address 38 299.67
2 Gettysburg address 38 311.97

5 1 JFK inaugural 49 341.77
2 Gettysburg address 39 222.57

6 1 Gettysburg address 38 302.83

7 1 JFK inaugural 48 590.10
2 Gettysburg address 38 391.43

We cut the read-out texts of all subjects into 21 to 49 phrases, depending on the session length, along112
pauses in the audio recording. The audio recordings were phone-labeled using our in-house speech113
recognition toolkit BioKIT (Telaar et al. (2014)) (see Section 2.5). Because the audio and ECoG data114
were recorded in synchronization (see Figure 2), this procedure allowed us to identify the ECoG signals115
that were produced at the time of any given phones. Figure 2 shows the experimental setup and the phone116
labeling.117

Figure 2. Synchronized recording of ECoG and acoustic data. Acoustic data are labeled using our in-118
house decoder BioKIT, i.e. the acoustic data samples are assigned to corresponding phones. These phone119
labels are then imposed on the neural data.120

2.4 DATA PRE-SELECTION

In an initial data pre-selection, we tested whether speech activity segments could be distinguished from121
those with no speech activity in ECoG data. For this purpose, we fitted a multivariate normal distribution122
to all feature vectors (see Section 2.6 for a description of the feature extraction) containing speech activity123
derived from the acoustic data and one to feature vectors when the subject was not speaking. We then124
determined whether these models could be used to classify general speech activity above chance level,125
applying a leave-one-phrase-out validation.126
Based on this analysis, both sessions of subject 4 and session 2 of subject 5 were rejected, as they did not127
show speech related activations that could be classified significantly better than chance (t-test, p > 0.05).128
To compare against random activations without speech production, we employed the same randomization129
approach as described in Section 2.11.130

This is a provisional file, not the final typeset article 4
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2.5 PHONE LABELING

Phone labels of the acoustic recordings were created in a three-step process using an English automatic131
speech recognition (ASR) system trained on broadcast news. First, we calculated a Viterbi forced132
alignment (Huang et al. (2001)), which is the most likely sequence of phones for the acoustic data samples133
given the words in the transcribed text and the acoustic models of the ASR system. In a second step, we134
adapted the Gaussian mixture model (GMM)-based acoustic models using maximum likelihood linear135
regression (MLLR) (Gales (1998)). This adaptation was performed separately for each session to obtain136
session-dependent acoustic models specialized to the signal and speaker characteristics, which is known137
to increase ASR performance. We estimated a MLLR transformation from the phone sequence computed138
in step one and used only those segments which had a high confidence score that the segment was emitted139
by the model attributed to them. Third, we repeated the Viterbi forced alignment using each session’s140
adapted acoustic models yielding the final phone alignments. The phone labels calculated on the acoustic141
data are then imposed on the ECoG data.142

Due to the very limited amount of training data for the neural models, we reduced the amount of distinct143
phone types and grouped similar phones together for the ECoG models. The grouping was based on144
phonetic features of the phones. See Table 2 for the grouping of phones.145

Table 2. Grouping of phones. English phones are based on the International Phonetic Alphabet (IPA).

Grouped Phone IPA phones

aa A æ2
b b
ch úS S Z
eh E Ç eI
f f

hh h
ih i I
jh dZ g j
k k
l ë

m m
n n N

ow oU O
p p
r r
s s z D T
t t d

uw u U
v v
w w

Diphtongs

ow ih OI
aa ih aI
aa ow aU

2.6 FEATURE EXTRACTION

We segmented the neural signal data continuously into 50 ms intervals with an overlap of 25 ms, which146
enabled us to capture the fast cortical processes underlying phones, while being long enough to extract147
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broadband (70–170 Hz) gamma activity reliably. Each of the 50 ms intervals was labeled with the148
corresponding phone obtained from the audio phone labeling. We extracted broadband-gamma activations149
as they are known to be highly task-related for motor tasks (Miller et al. (2007)), music perception (Potes150
et al. (2012)), auditory processes (Pasley et al. (2012); Pei et al. (2011b)) and word repetition (Leuthardt151
et al. (2011b)). Broadband-gamma features were extracted from the ECoG electrical potentials as follows:152
linear trends in the raw signals were removed from each channel. The signals were down-sampled from153
9600 Hz to 600 Hz sampling rate. Channels strongly affected by noise were identified and excluded from154
further processing. Specifically, we calculated the energy in the frequency band 58-62 Hz (line noise) and155
removed channels with more noise energy than two interquartile ranges above the third quartile of the156
energy of all channels in the data set. This way, an average of 7.0 (std 6.5) channels were removed per157
subject.158

The remaining channels were re-referenced to a common average (i.e., CAR filtering). Elliptic IIR low-159
pass and high-pass filters were applied to represent broadband gamma activity in the signals. An elliptic160
IIR notch filter (118-122 Hz, filter order 13) was applied to attenuate the first harmonic of 60 Hz line161
noise, which is within the broadband gamma frequency range.162

Resulting 50 ms intervals are denoted as Xi,c(t) and consist of n samples (t ∈ [1, . . . , n]). For each163
interval i and channel c, the signal energy Ei,c was calculated and the logarithm was applied to make the164
distribution of the energy features approximately Gaussian:Ei,c = log( 1n

∑n
t=1Xi,c(t)

2). The logarithmic165
broadband gamma power of all channels were concatenated into one feature vector Ei =

[
Ei,1, . . . , Ei,d

]
.166

To integrate context information and temporal dynamics of the neural activity for each interval, we167
included neighboring intervals up to 200 ms prior to and after the current interval, similar context sizes168
have been found relevant in speech perception studies (Sahin et al. (2009)). Therefore, each feature vector169
was stacked with four feature vectors in the past and four feature vectors in the future. Stacked feature170

vectors Fi = [Ei−4, . . . , Ei, . . . , Ei+4]
> were extracted every 25 ms over the course of the recording171

sessions and the fitting phone label (ground truth from acoustic phone labeling) was associated.172

2.7 IDENTIFICATION OF DISCRIMINABILITY

The high temporal and spatial resolution of ECoG recordings allowed us to trace the temporal dynamics173
of speech production through the areas in the brain relevant for continuous natural speech production. To174
investigate such cortical regions of high relevance, we calculated the mean symmetrized Kullback-Leibler175
divergence (KL-div) among the phone models for each electrode position and at every time interval.176

The Kullback-Leibler divergence (KL-div) is a measure of the difference between two distributions P177
and Q. It can be interpreted as the amount of discriminability between the neural activity models in bits. It178
is non-symmetric and does not satisfy the triangle inequality. The KL-div can be interpreted as the amount179
of extra bits needed to code samples from P when using Q to estimate P . When both distributions P and180
Q are normal distributions with means µ0 and µ1 and covariances Σ0 and Σ1, respectively, the KL-div can181
be easily calculated as182

DKL(N0||N1) =
1

2
(tr(Σ−11 Σ0) + (µ1 − µ0)TΣ−11 (µ1 − µ0)− d− log2(

det(Σ0)

det(Σ1)
) (1)

with d being the dimensionality of the distributions. The closed-form of the KL-div enables us to calculate183
the difference between two phone models. To estimate the discriminability of a featureEi,c (log broadband184
gamma power of a particular channel and time interval) for the classification of phones, we calculate the185
mean KL-div between all pairs of phones for this particular feature. The mean between all divergences186
symmetrizes the KL-div and yields one number in bits as the estimation of the discriminability of this187
particular feature Ei,c.188
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2.8 FEATURE SELECTION

We selected features with the largest average distance between phone models based on the mean KL-189
div (cf. previous section) in the training data during each run of the leave-one-phrase-out validation.190
The number of features selected was automatically determined based on the distribution of KL-div for191
this specific run as follows: We normalized the mean KL-div values dk for every feature k by their192
average (d̂k = dk∑

k dk
). Then, we sorted the values in descending order and selected features with large193

normalized mean KL-div until the sorted sequence did not decline more than a threshold t = −0.05:194
arg maxl sort(d̂k)l − sort(d̂k)l+1 < t. The threshold value t = −0.05 corresponds to a very low decline195
in KL-div and thus reflected the point after which little additional information was present. This way, only196
the l most relevant features are selected to limit the feature space.197

Note that features are selected solely based on the Kullback-Leibler divergence in the training data and198
do not include any prior assumptions on the suitability of specific regions for phone discrimination. We199
further reduced the feature space dimensionality by linear discriminant analysis (LDA) (Haeb-Umbach200
and Ney (1992)) using the phone labels on the training data.201

2.9 ECOG PHONE MODEL TRAINING

Each phone was modeled in the extracted feature space by a normal distribution. Thus, models202
characterized the mean contribution and variance of the neural activity measured at each electrode. We203
represented the stacked cortical activity feature vectors Fi of each phone j by a model λj as a multivariate204
Gaussian probability density function p(Fi|λj) ∼ N (µj ,Σj) determined by the mean feature vectors µj205
and their diagonal variance matrix Σj calculated from training data. Gaussian models were chosen as they206
represent the underlying feature distribution suitably well. Furthermore, Gaussian models can be robustly207
calculated from a small amount of data, they are computationally very efficient and allow a closed form208
calculation of the Kullback-Leibler-Divergence.209

2.10 DECODING APPROACH

Following a common idea of modern speech recognition technology (Rabiner (1989); Schultz and210
Kirchhoff (2006)), we combined the information about the observed neural activity with statistical211
language information during the decoding process by Bayesian updating (Rabiner (1989)). Simplified,212
the process can be understood (Gales and Young (2008)) as finding the sequence of wordsW = w1 . . . wL213
which is most likely given the observed ECoG feature segmentsX = F1 . . . FT . This probability P (W |X)214
can be transformed using Bayes’ rule:215

Ŵ = arg max
W
{P (W |X)} = arg max

W
{p(X|W )P (W )} (2)

Here, the likelihood p(X|W ) is given by the ECoG phone models and P (W ) is calculated using a216
language model. The likelihood of ECoG phone models p(X|W ) given a word W is calculated by217
concatenating ECoG phone models to form words as defined in a pronunciation dictionary. Specifically,218
we employed a pronunciation dictionary containing the mapping of phone sequences to words, for219
example, describing that the word ’liberty’ comprises of the phone sequence ’/l/ /ih/ /b/ /er/ /t/ /iy/ ’.220
We constructed a minimized and determinized search graph consisting of the phone sequences for each221
recognizable word. To capture important syntactic and semantic information of language, we used a222
statistical language model (Jelinek (1997); Stolcke (2002)) that predicts the next word given the preceding223
words. In N-gram language modeling, this is done by calculating probabilities of single words and224
probabilities for predicting words given the n−1 previous words. Probabilities for single word occurrence225
(n = 1) are called uni-grams. Probabilities for the co-occurrence of two words (n = 2) are called bi-grams.226
For the Brain-to-Text system, we estimate bi-grams on the texts read by the subjects. It is important to227
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note that even though this results in very specialized models, the correctness of our results is still assured,228
as the same language models are utilized for both the real as well as for the control analyses.229

Finally, the decoding of spoken phrases from neural data X is performed by finding the word sequence230
Ŵ in the search graph that has the highest likelihood for producing the neural data with respect to the231
ECoG phone models and language information given by pronunciation dictionary and language model.232

Figure 3 illustrates the different steps of decoding continuously spoken phrases from neural data. ECoG233
signals over time are recorded at every electrode and divided into 50ms segments. For each 50 ms interval234
of recorded broadband gamma activity, stacked feature vectors are calculated (Signal processing). For235
each ECoG phone model calculated on the training data, the likelihood that this model emitted a segment236
of ECoG features can be calculated, resulting in phone likelihoods over time. Combining these Gaussian237
ECoG phone models with language information in the form of a dictionary and an n-gram language238
model, the Viterbi algorithm calculates the most likely word sequence and corresponding phone sequence.239
To visualize the decoding path, the most likely phone sequence can be shown in the phone likelihoods over240
time (red marked areas). The system outputs the decoded word sequence. Overall, the system produces a241
textual representation from the measured brain activity (see also Supplementary Video).242

Figure 3. Overview of the Brain-to-Text system: ECoG broadband gamma activities (50ms segments)243
for every electrode are recorded. Stacked broadband gamma features are calculated (Signal processing).244
Phone likelihoods over time can be calculated by evaluating all Gaussian ECoG phone models for every245
segment of ECoG features. Using ECoG phone models, a dictionary and an n-gram language model,246
phrases are decoded using the Viterbi algorithm. The most likely word sequence and corresponding phone247
sequence are calculated and the phone likelihoods over time can be displayed. Red marked areas in the248
phone likelihoods show most likely phone path. See also Supplementary video.249

2.11 EVALUATION

For the evaluation of our Brain-to-Text system, we trained neural phone models using all but one phrase250
of a recording session and decoded the remaining phrase. This evaluation process was repeated for251
each phrase in the session. Through this leave-one-phrase-out validation, we make sure that all feature252
selection, dimensionality reduction and training steps are only performed on the training data while the253
test data remains completely unseen. For comparison, we performed the decoding with randomized phone254
models. This is a baseline that quantifies how well the language model and dictionary decode phrases255
without any neural information. To obtain an estimate for chance levels in our approach, we shifted256
the training data by half its length in each iteration of the leave-one-phrase-out validation while the257
corresponding labels remained unchanged. This way, the data for the random comparison models still258
have the typical properties of ECoG broadband gamma activity, but do not correspond to the underlying259
labels. Furthermore, as the labels are not changed, prior probabilities remain the same for the random and260
the actual model case. As the shifting point is different for all iterations of the specific session, we get an261
estimate of the chance level performance for every phrase. The mean over all these results thus allows a262
robust estimation of the true chance level (randomization test).263

It is also important to bear in mind that Brain-to-Text is still at a disadvantage compared to traditional264
speech recognition systems as our data contained only several minutes of ECoG signals for each subject.265
This limited model complexity compared to traditional speech recognition systems, which are usually266
trained on thousands of hours of acoustic data and billions of words for language model training.267

We evaluated the performance of our Brain-to-Text system with different dictionary sizes. For this268
purpose, we created new dictionaries for every test phrase including the words that were actually spoken269
plus a set of randomized set of words from the full dictionary. Created dictionaries were the same for270
Brain-To-Text and randomized models to ensure that the words chosen had no influence on the comparison271
between models. The language model was limited to the words in the dictionary accordingly. This272
approach allowed us to perpetually increase the dictionary size.273
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3 RESULTS

3.1 REGIONS OF DISCRIMINABILITY

Figure 4 illustrates the spatio-temporal dynamics of the mean KL-div between the phone models on a joint274
brain surface (Talairach model (Talairach and Tournoux (1988))) for nine temporal intervals with co-275
registered electrodes of all subjects. KL-div values plotted in Figure 4 exceed 99% of the KL-div values276
with a randomized phone-alignment (data shifted by half its length while the labels remain the same).277

Figure 4. Mean Kullback-Leibler Divergences between models for every electrode position of every278
subject. Combined electrode montage of all subjects except subject 4 in common Talairach space. Heat279
maps on rendered average brain shows regions of high discriminability (red). All shown discriminability280
exceeds chance level (larger than 99% of randomized discriminabilities). The temporal course of regions281
with high discriminability between phone models shows early differences in diverse areas up to 200 ms282
before the actual phone production. Phone models show high discriminability in sensorimotor cortex 50283
ms before production and yield different models in auditory regions of the superior temporal gyrus 100284
ms after production.285

Starting 200 ms before the actual phone production, we see high KL-div values in diverse areas286
including Broca’s area, which is generally associated with speech planning (Sahin et al. (2009)).287
150 ms prior to the phone production, Broca’s area still has high KL-div scores, but additionally288
sensorimotor areas and regions in the superior temporal gyrus associated with auditory and language289
function show increasing discriminability. Subsequently, activations in Broca’s area vanish and motor290
area discriminability increases until peaking at the interval between 0 and 50 ms (which corresponds to291
the average length of phones). Discriminability increases in auditory regions until approximately 150 ms292
after phone production.293

3.2 DECODING RESULTS

For each phrase to be decoded, the most likely phone-path can be efficiently calculated using Viterbi294
decoding (Rabiner (1989)). Comparing the extracted phone labels for each feature vector with the295
baseline labels from the audio alignment, we calculate single-frame accuracies for the decoding of phones296
from continuous speech production. Reducing the size of the dictionary to 10 words, including those that297
are to be evaluated, Brain-to-Text yielded significantly higher accuracies (two-sided t-test, p < 0.05 for298
all sessions) for single phone decoding in all sessions compared to random models. Figure 5 (a) shows299
average phone recognition accuracies (green) and average random recognition accuracies (orange) for300
each session. The best session resulted in average accuracies above 50% for the correct classification of 20301
phones plus SILENCE. While all sessions resulted in significantly higher accuracies than random models,302
the results of subject 2 and subject 7 clearly outperform those of all other subjects. The outstanding303
performance of subject 7 might be explained by the high-density grid on the superior temporal gyrus.304
We further investigate the results of subject 7, session 1 (results for all other subjects and sessions can305
be found in the Supplementary Material) by investigating the confusion matrix (Figure 5 (b)) that shows306
which phones in the reference corresponded to which phones in the predicted phrase. The clearly visible307
diagonal in this confusion matrix illustrates that our approach reliably decodes the complete set of phones.308

In Brain-to-Text, we decode entire word sequences of each test phrase. Even with a small dictionary309
size, a large number of different phrases can be produced, as the number of words may vary and words310
can be arbitrarily combined. Therefore, we utilize the Word Error Rate (WER) to measure the quality of a311
decoded phrase. The word error rate (WER) between a predicted phrase and the corresponding reference312
phrase consists of the number of editing steps in terms of substitutions, deletions and insertions of words313
necessary to produce the predicted phrase from the reference, divided by the amount of words in the314
reference.315

Figure 5 (c) shows the average WER depending on dictionary size (green line). For all dictionary sizes,316
the performance is significantly better than randomized results (orange line). Significance was analyzed317
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using paired t-tests between the Word Error Rates of Brain-To-Text and the randomized models (p <318
0.001, one-sided paired t-test). With 10 words in the dictionary, 75% of all words are recognized correctly.319
The approach scales well for increasing dictionary sizes. Average phone true positive rates remain rather320
stable even when dictionary sizes increase (bars in Figure 5 (c)).321

Figure 5. Results: (A) Frame-wise accuracy for all sessions. All sessions of all subjects show322
significantly higher true positive rates for Brain-To-Text (green bars) than for the randomized models323
(orange bars). (B) Confusion matrix for subject 7, session 1. The clearly visible diagonal indicates that324
all phones are decoded reliably. (C) Word Error Rates depending on dictionary size (lines). Word error325
rates for Brain-To-Text (green line) are lower than the randomized models for all dictionary sizes. Average326
true-positive rates across phones depending on dictionary size (bars) for subject 7, session 1. Phone true327
positive rates remain relatively stable for all dictionary sizes and are always much higher for Brain-To-Text328
than for the randomized models.329

4 DISCUSSION

4.1 ECOG PHONE MODELS

Gaussian models as a generative statistical representation for log-transformed broadband gamma power330
have been found well-suited for the observed cortical activity (e.g. Gasser et al. (1982); Crone et al.331
(2001b)). These models facilitate the analysis of the spatial and temporal characteristics of each332
phone model within its 450 ms context. Note that the modeling of phones does not contradict recent333
findings of articulatory features in neural recordings during speech perception (Mesgarani et al. (2014);334
Pulvermüller et al. (2006)) and production (Bouchard et al. (2013); Lotte et al. (2015)), since multiple335
representations of the same acoustic phenomenon are likely.336

Note that only one context-independent model is trained for each phone, i.e., without consideration of337
preceding or succeeding phones due to the limited amount of data, even though effects of context have338
been shown in neural data (Mugler et al. (2014a)). While context dependent modeling is very common339
in acoustic speech recognition (Lee (1990)) and known to significantly improve recognition performance,340
it requires substantially more training data than available in our ECoG setting.341

4.2 REGIONS OF DISCRIMINABILITY

In our approach, the phone representation through Gaussian models allows for detailed analysis of cortical342
regions, which have high discriminability among the different phones over time. The cortical locations343
identified using the KL-div criterion are in agreement with those that have been identified during speech344
production and perception in isolated phoneme or word experiments (Leuthardt et al. (2011a); Canolty345
et al. (2007)). These findings extend the state-of-the-art by showing for the first time the dynamics for346
single phone discriminability and decoding during continuous speech production.347
As our experiments demand overt speech production from prompted texts, it is evident that multiple348
processes are present in the recorded neural data, including speech production, motor actions, auditory349
processing, and language understanding. By demonstrating that phones can be discriminated from each350
other, we show that such a phone-based representation is indeed a viable form of modeling cortical activity351
of continuous speech in this mixture of activation patterns.352

4.3 DECODING RESULTS

The reported phone decoding accuracies are significantly higher for Brain-to-Text than for randomized353
models in all subjects, which shows that continuous speech production can be modeled based on phone354
representations. The clearly visible diagonal in the confusion matrix Figure 5 (B) emphasizes that the355
decoding performance is based on a reliable detection of all phones and not only on a selected subset.356
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Different conditions, such as varying task performance of the subjects, and different positions and357
densities of the electrode grids, yielded highly variable decoding performances for the different subjects,358
however the low WER (see Supplementary Material) and phone true positive rates for subject 1,2 and 7359
imply the potential of Brain-to-Text for brain-computer interfaces.360

4.4 CONCLUSION

Decoding overt speech production is a necessary first step towards human-computer interaction through361
imagined speech processes.Our results show that with a limited set of words in the dictionary, Brain-362
to-Text reconstructs spoken phrases from neural data. The computational phone models in combination363
with language information make it possible to reconstruct words in unseen spoken utterances solely based364
on neural signals (see Supplementary Video). Despite the fact that the evaluations in this article have365
been performed offline, all processing steps of Brain-to-Text and the decoding approach are well suited366
for eventual real-time online application on desktop computers. The approach introduced here may have367
important implications for the design of novel brain-computer interfaces, because it may eventually allow368
people to communicate solely based on brain signals associated with natural language function and with369
scalable vocabularies.370
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