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1. Summary 
A historical gap exists between subject matter experts (SMEs) who struggle to solve analytic 

problems about the real world (e.g., cyber threat detection, sales forecasting) and data scientists 
who have broader analytic capabilities in applied mathematics (e.g., machine learning and data 
transformations) and the ability to apply these sophisticated techniques to a wide variety of 
problem domains. The goal of the DARPA Data-Driven Discovery of Models (D3M) program is 
to span the gap by providing novel methods to help SMEs solve analytics problems without the 
need for a dedicated data scientist. The D3M consists of three technical areas: TA1, which 
develops machine learning primitives, TA2, which uses these primitives to develop learning plans 
for specific problems, and TA3, which interfaces with the user to formulate problems and present 
results. 

Subject matter experts (SMEs) attempting to solve real-world analytic problems face several 
challenges due to the lack of applied mathematics, statistics, and machine learning skills that data 
scientists possess. The goal of our TA2 effort was to span this gap by using novel methods and 
automation to enable SMEs to act as their own data scientists. Current approaches to automate data 
science are often data-driven exercises, failing to incorporate the SME’s domain knowledge. 
Instead, our D3M effort was designed to fuse data- and knowledge-driven approaches to produce 
a virtual data scientist we call Eve. To translate domain-expert intent into formal representations 
of learning problems, we built a problem representation system that ingests TA3 inputs as 
computer-interpretable mathematical expressions defining problems to be solved. To efficiently 
search for and compose the sequences of machine learning steps that comprise learning plans, we 
built a Monte Carlo Discrepancy Search approach that explores the vast space of possible plans 
through efficient modification and testing of prior related and/or successful plans. Further, we 
enriched these plans by incorporating data preparation models, treating data preprocessing 
functions (e.g., handling missing data and dimensionality reduction) as operators to be planned in- 
line with learning operators. Combined, these capabilities will allow Eve to provide SMEs with a 
virtual data scientist to help address complex analytical learning problems without assistance from 
professional data scientists. 
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During Year 1 of the Eve project, we: 

• Designed and implemented the Eve Search Space, including representations for data 
modeling primitives, composition operators, planning goals, and complex modeling 
pipelines. 

• Documented and refined the technical requirements to integrate with new TA1 primitives 
and interface with TA3 components. 

• Designed, implemented, and refined the planning and optimization component that 
transforms data into models that meet SME needs, including selection and configuration 
of primitives. 

• Integrated the Eve automated model composition software by developing and refining 
APIs for integration, integrating Eve TA2 elements in preparation for integration events, 
and participating in semi-annual D3M integration events with TA1 and TA3 performers. 

• Worked with SMEs and other D3M performers to exercise and evaluate the D3M toolkit’s 
ability to build complex data modeling pipelines for user-specified data and outcomes of 
interest. 

 
The benefits of a complete Eve project would include the ability to fuse data- and knowledge- 

driven approaches to imitate data scientists, a just-in-time mathematical ontology to construct fully 
formed learning concepts, the ability to plan using a Monte-Carlo Discrepancy Search to develop 
candidate solutions, and treating data preparation as a top-level planning element. 
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2. Introduction 
2.1 Problem Description 

A historical gap exists between subject matter experts (SMEs) who struggle to solve analytic 
problems about the real world (e.g., cyber threat detection, sales forecasting) and data scientists 
who have broader analytic capabilities in applied mathematics (e.g., machine learning and data 
transformations) and the ability to apply these sophisticated techniques to a wide variety of 
problem domains. The goal of the DARPA D3M program is to span the gap by providing novel 
methods to help SMEs solve analytics problems without the need for a dedicated data scientist. 

Data scientists must work with SMEs to understand their domain knowledge, explore and 
process the data used to learn models, and manage the statistical and machine learning (ML) 
methods used to learn them. Current approaches to automating machine learning, such as the 
Automatic Statistician (Lloyd, Duvenaud, Grosse, Tenenbaum, & Ghahramani, 2014) and Auto- 
WEKA (Thornton, Hutter, Hoos, & Leyton-Brown, 2013), focus on learning statistical models 
from data and ignore the domain knowledge provided by the SME. Because of the complexity of 
most real-world data-science problems, these methods tend to miss key relationships, find spurious 
ones, and produce learned models that are not understandable by humans. Moreover, the pre- 
processing that must occur before machine learning algorithms can be run relies heavily on an 
SME’s domain knowledge to ensure the semantics of the SMEs problem are not altered. Our 
fundamental insight is that by using a well-designed knowledge representation framework, we can 
create a unified interface to the domain, data, and statistical models to take advantage of the SME’s 
domain knowledge and the data to create effective machine learning models that support the 
SME’s analyses. To achieve the TA2 objectives of the D3M program, we proposed to produce a 
knowledge- and data-driven virtual scientist called Eve. 

To develop Eve, we had to address the following two major challenges: 
• Eve must efficiently search for and compose abstract plans of data preparation and machine 

learning operators (high-level manipulations that must be made) to solve the specified 
learning problem. 

• Eve must select effective primitives to implement these operators, composing executable 
plans that address both learning objectives and constraints, and the prioritized metrics 
identified by the SME. 

Regarding the first challenge—that Eve must efficiently search for and compose abstract 
learning plans to solve the specified learning problem—we face two key sub-challenges. The first, 
a planning sub-challenge, is how to select from a potentially enormous number of data preparation, 
transformation, and learning operator sequences that are consistent with solving a specified 
learning problem. Our approach was to use techniques from the planning and reinforcement 
learning literature, such as the highly successful Monte-Carlo Tree Search (MCTS) (Browne et al., 
2012), which was used in the AlphaGo system that recently defeated a grandmaster at Go. Eve 
also develops a novel form of MCTS, called Monte-Carlo Discrepancy Search, which improves 
already evaluated plans by introducing discrepancies/modifications into those plans. For example, 
if a plan uses polynomial interpolation as a data transformation step, a discrepancy may be to use 
linear interpolation instead, but otherwise follow the current plan. To seed this learning process, 
Eve draws from a library of historical plans from previous Eve applications, previous plans and 
plan templates constructed by data scientists in other learning applications, and offline learned 
plans from previous tools constructed by our team. 
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The second sub-challenge is how to automate data preparation that often consumes most of the 
resources of typical data science projects (Zumel, Mount, & Porzak, 2014). Data scientists 
understand that the choices made in preparing the data (e.g., how to represent categorical data, 
how to handle missing data) can dramatically affect the performance of machine learning 
components. Our approach treated all data preparation functions as operators to be planned in 
conjunction with the learning operators. This enabled us to create sequences of data preparation 
operators integrated with learning operators in a single framework, which is possible because of 
our unified representation of the data and statistical models. 

Eve’s second challenge—selecting the optimal primitives to transform initially abstract plans 
into fully-specified learning programs—amounts to compiling a declarative representation of an 
abstract plan into a procedural representation of how to do it (e.g., by choosing particular classifiers 
or optimizing hyper-parameters). The search for specific primitives and hyperparameter values is 
integrated into our planning process, using a Monte Carlo Discrepancy Search similar to the one 
used to address the first challenge. 

2.2 Technical Approach 
Eve’s goal is to enable subject matter experts (SMEs) to solve analytic problems by enabling 

them to be their own data scientists. For example, a cyber analyst may be tasked with predicting 
trends in malware. This may require featurizing a database of malware, clustering the malware 
into families, and learning a time series model of family-level features. A space analyst may face 
different challenges, such as how to classify space objects (SOs) to enhance space situational 
awareness. In this case, many algorithms may be used to resolve and correlate conflicting data 
against known SOs to identify potential threats. 

To automatically solve different data science problems, our technical approach was grounded 
in cognitive systems engineering (CSE), advanced knowledge representation techniques, 
automated planning, and machine learning. In our original plan, which included a TA3 service, we 
would employ established principles for joint human-automation teaming to ensure that Eve’s 
human-model interactions address and intuitively guide key user activities, including problem 
characterization and refinement, process selection and editing, and model review and curation. 
Second, we use advanced knowledge representation to relate and translate between the SME’s 
domain model, the data, model and the learning model. Third, we frame the data science process 
as a planning and optimization problem, in which we use machine learning and search algorithms 
to build abstract plans of optimal operator sequences and concrete executable plans of primitives. 
When our scope was revised to only include TA2, the first two parts of the plan were 
deemphasized. 

In our original design, Eve is organized into four process abstraction layers shown in Figure 1. 
The organization manages asynchronous complexities between layers, allowing for both top-down 
and bottom-up interaction, and enables plug-and-play interoperability with other performers’ 
components. Given a domain problem, each successive layer produces an increasingly refined 
representation of the problem until such time as a machine learning plan may be executed or 
additional inputs are required of the SME. Consider an ecologist who wants to predict bird 
population (BP) for the upcoming August in Oregon to determine migration patterns. All four of 
Eve’s layers work together and communicate closely to achieve this objective. The SME first 
interacts with Eve through the Human- Model Interaction (HMI) Layer. Since this layer is specific 
to TA3, we do not describe it here. 



 

Approved for Public Release; Distribution Unlimited. 
5 

 

The Formal Modeling (FM) Layer receives the 
SME’s representation from the HMI layer and 
deterministically translates the information supplied into 
formal mathematical expressions that can be assembled 
into integrated learning problem definitions and assessed 
for consistency and completeness. Benefits of the layer 
include its abilities to automatically join data sets (e.g., 
weather and population data sets with different spatial 
and temporal resolutions), capture relationships and 
constraints (e.g., temperatures are highest and rainfall is 
lowest in Oregon in August, which is most appealing to 
birds), and provide heuristics to guide planning for a 
solution (e.g., the relationship between temperature and 
GP is linear, which can be used as an initial starting point 
for search). The FM layer will guide the HMI layer’s 
dialog with the SME. If the problem is not yet sufficiently 
specified, the HMI layer will be guided to elicit additional 
information from the SME before passing the problem 
definition down another a layer for planning. It will also 
communicate learning plans discovered by lower layers to the user. In doing so, it will translate 
between the mathematical constructs used in those plans and the SME’s domain terms. While 
largely sitting in TA3, the FM layer is also required for TA2 to represent the problems and data to 
be worked on. Therefore, our effort included a limited development of the FM layer. 

The Planning and Execution (P&E) Layer is responsible for searching for and composing 
abstract learning plans that are consistent with the FM layer’s problem definition. These abstract 
plans provide the sequences of high-level data preparation, transformation, and planning operators 
that must be executed to successfully build a model addressing the problem. Operators provide a 
class of functions that can be addressed using a variety of primitives. The P&E Layer holds a large 
set of operators, including classes for all primitives developed by TA1 performers (e.g., imputation 
of missing data, conversions, transformations, regressions, time-series models, etc.). It also holds 
a library of learning plan templates that can be instantiated for problems of the appropriate type 
(e.g., prediction) to produce initial plans. From there, the planner searches through different 
sequences of operators to improve potential plans. For example, to impute missing rainfall data, 
the planner may identify the planning sub-sequence Remove Outliers followed by Interpolate 
Remaining Points. Further, to predict BP in August 2017, it may construct the sub-sequence 
Regress GP Average on GP, rainfall, and temperature from previous months followed by Learn 
Time Series Model of Yearly BP with monthly GP and yearly average temperature as exogenous 
inputs. This plan is shown in Figure 2; note that the green elements within this plan represent the 
abstract plan, while the orange elements represent concrete executable primitives for specific steps. 

 The P&E layer produces multiple plans that are passed down to the next layer for selection 
and configuration of specific primitives for each operator. For example, an alternative plan could 
be to learn a joint dynamic Bayesian network model over BP and GP rather than separate models. 

 
Figure 1: Eve system architecture 
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The Executable Primitives (EP) Layer chooses and refines machine learning primitives for 
each data preparation and planning operator and sends them up to the P&E layer to build a concrete 
(or executable) plan. In addition to selecting primitives, this layer explores and optimizes hyper- 
parameter variations (e.g., the number of autoregressive and moving average terms in the 
Autoregressive Moving Average (ARMA) model). The EP layer selects these primitives based on 
their performance with respect to targeted user and automated metrics for evaluating predicted 
model success. In the plan shown, the Remove Outlier operator may be assigned a One- 
Dimensional Nearest Neighbor algorithm as its primitive and the Interpolate Remaining Points 
operator may be assigned Polynomial Interpolation. For the Regression operator, Eve can select 
from a variety of primitives, such as linear, support vector machine (SVM) regression, or neural 
networks based on the domain of discourse, SME-specified metrics, and learned quality. In this 
case, SVM Regression is selected. Lastly, the primitive selected for Learn Time Series Model is an 
ARMA Model, with 2 and 1 as its chosen hyper-parameters. 

Each of these plans will be effectively rated, before being posed to the SME for prioritization 
and selection. The HMI layer can display this information about the expected performance of these 
plans. By observing the tradeoff between these plans, the SME can choose to execute plans that 
meet the requirements most important to them. 

During Year 1 of our effort, we began to realize our design, focusing on the Formal Modeling 
Layer, Planning and Execution Layer, and Executable Primitives Layer. For the Formal Modeling 
Layer, we created a mechanism to take in problem descriptions from TA3 and to return executable 
pipelines to TA3. For the Planning and Execution Layer, we developed a Monte Carlo discrepancy 
search algorithm to search for appropriate pipelines. For the Executable Primitives Layer, we 
ingested TA1 primitives, selected appropriate primitives to solve problems, along with 
hyperparameter values, and used those primitives in the pipelines we returned to TA3. 

Figure 2: Example learning plan for bird population prediction 
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3. Methods, Assumptions, and Procedures 
3.1 Meetings and Presentations 

Table 1 outlines the meetings and presentations held during the Eve project. 
 

Table 1: Meetings and Presentations for the Eve Project 

Meeting Name Dates Description 
Internal meeting at Charles River 
Analytics, Cambridge, MA 

3,9,19 May 2017 Discussed Eve status updates, technical matters, and 
planned next steps with the Charles River internal team 

Bi-weekly Charles River/OSU Eve team 
meetings, telecon 

May – September 2017 Discussed Eve status updates, technical matters, and 
planned next steps with the Charles River internal team 
and OSU 

D3M-wide collaboration meetings May – September 2017 Developed and reviewed D3M-wide requirements and 
designs 

Requirements and design meetings with 
other performers and Government 
teams, telecon 

3, 10, 16, 17 May 2017 Developed and reviewed D3M-wide requirements and 
designs 

Collaboration with specific performers, 
telecon 

15 June 2017 Collaborated with Remco Chang and Dillon from Tufts 

On-demand Charles River Analytics and 
Win Vector Meeting, telecon 

16 June 2017 Discussed Eve status updates, technical matters, and 
planned next steps with the Charles River internal team 
and Win Vector 

Collaboration with specific performers, 
telecon 

23 June 2017 Collaborated with James Honaker from Harvard and Vito 
D’Orazio from UT, Dallas 

DARPA D3M integration event in 
Arlington, VA 

11 September 2017 – 
11 October 2017 

Held an integration discussion, and had a dry run for 
evaluation 

D3M Evaluation Event, Arlington, VA 29 January 2018 – 9 
February 2018 

Participated in evaluations of D3M systems 

On-site visit at Charles River Analytics, 
Cambridge, MA 

18 April 2018 Held a site visit with the Sponsor, Charles River, and 
OSU. 

3.2 System Architecture 
We designed an initial, high-level Eve architecture that allowed all components to interact with 

each other using a representational state transfer (RESTful) application programming interface 
(API). The components in this initial architecture are shown in Figure 3. 
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Figure 3: Initial Design of Eve Components 

Within Eve, the Coordinator (C) component gets a command, builds a solution, and then 
delivers it. The Primitives Manager (PM) gets a primitive discovery request, and returns a ranked 
list of matches. The PM can also receive feedback on primitive quality to improve future results. 
The User Manager (UM) gets the challenge problem/refinement, and returns the optimization 
problem. The UM can also receive feedback on solution quality to improve future results. The 
Datasets Manager (DM) gets data. The Data Store (DS) provides storage for all the Eve 
components. The Planning and Optimization Engine (POE) produces ranked pipelines for a given 
challenge problem and produces a full model of the given pipeline. Each component has an 
interface used within Eve (API or other), a representational state transfer (RESTful) API, and a 
JavaScript object notation (JSON) payload. Oval components also have an external interface. 
Charles River worked on developing the blue components, and OSU the green component. We 
integrated Charles River and OSU components, and extended support for TA1 and TA3 APIs. We 
also integrated Eve components into two TA3 systems. 

We then updated our architecture as shown in Figure 4. 

Figure 4: Year 1 Eve Architecture 
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This architecture consists of two main parts: Eve and the Pipeline Optimization Engine (POE). 
Eve interfaces with the rest of the D3M system, processing requests from the user via TA3, 
discovering TA1 primitives, and returning them back to the user via TA3. The POE is the 
component that executes the search for pipelines and hyperparameters. Eve and POE communicate 
via a Zero Messaging Queue (ZMQ). 

Eve receives inputs from TA3 via its gRPC server. When it receives a problem, Eve discovers 
TA1 primitives using their Primitive Description Files. These discovered primitives are added to 
the Primitive Library for use by POE in its search for pipelines. Eve also informs POE’s 
Optimization Arbiter of the goals of the optimization, so it can decide whether to accept a particular 
pipeline. 

POE then goes to work. The Pipeline Generator generates pipelines using its discrepancy-based 
search algorithm, whereby it tries to generate algorithms that are similar to but improve on existing 
pipelines. These generated pipelines are sent back to Eve for execution and evaluation. POE uses 
the results of this evaluation to choose between pipelines. All the pipelines that have been 
evaluated are stored in the Evaluated Pipeline Storage. The Optimization Arbiter decides when to 
stop searching and which pipeline to return. 

Eve then provides the best pipeline to TA3. It also provides a service to TA3 to execute this 
pipeline. Execution produces a pickled pipeline that can be saved for future use, various 
bookkeeping information, and a prediction for the user’s problem. The output generator also 
creates logs, as well as an executable of the pipeline that TA3 can use later. 

We developed a sequence diagram depicting how interactions were implemented. This 
diagram, shown in Figure 5, shows how Eve is used to define challenge problems, get and provide 
datasets to the Pipeline Optimization Engine (POE), and receive a list of pipelines from the POE.
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Figure 5: Sequence Diagram 
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Figure 6 shows Eve’s dataflow when interacting with the user. 

The user works with TA3 to formulate a problem. TA3 sends details of the dataset, tasks and 
subtasks to execute, a description of feature columns and prediction columns in the data, a 
requested number of pipelines to generate, and one or more metrics to evaluate those pipelines. 
Eve works with the POE to generate the pipelines to solve the user’s problem. Eve first configures 
the POE. The POE then repeatedly searches for and generates pipelines and sends them to Eve. 
Eve executes the pipelines and gives them a score according to the metrics, returning the score to 
POE, which uses it to guide its search. When POE has completed its search, it sends the results 
back to Eve, which returns the pipelines to the user via TA3. This completes the pipeline generation 
phase. In operation, once the user has selected a pipeline, he or she will want to run it on the data 
to generate results. Thus, the user sends a pipeline to test back to Eve. Eve runs it and sends 
predictions back to the user. 

 

Figure 6: Eve Dataflow when Working with a User 
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Figure 7 shows the Eve dataflow when interacting with the National Institute of Standards 
and Technology (NIST) test harness for evaluation. 

Most of the workflow is similar, but the interactions outside of Eve are different. At the 
beginning, NIST initiates a training phase. Eve configures the POE, receives a sequence of 
pipelines from POE, scores them, and finally receives a ranking of the top pipelines from POE 
when the search is complete. Eve then produces the required artifacts for evaluation. The principal 
artifact is an executable file implementing the top pipeline. Eve also produces logs of its work and 
is also designed to produce metadata in the future. NIST then instructs Eve that a test phase has 
begun, and supplies the test data. The generated executable is used to process the test data and 
generate predictions. These predictions are then evaluated by NIST. 

3.3 Formal Modeling Layer 
During Year 1 of the Eve project, we designed and implemented the Eve Formal Modeling 

Layer, including representations for data modeling primitives, composition operators, planning 
goals, and complex modeling pipelines. We were active participants in TA1/2 and TA2/3 working 
groups that defined the APIs between the different TAs. Based on these APIs, we defined internal 
data structures to represent primitives and hyperparameter specifications coming from TA1, 
planning goals and data sources coming from TA3, executable pipelines passed to TA3, as well as 
the composition operators used to construct these pipelines. 

As integration of the different capabilities is crucial to the success of the D3M program, we 
strived throughout our time on the program to work with other performers’ components rather than 
develop our own substitutes. For example, we relied on primitives provided by the program. We 
developed an ability to automatically search for and discover TA1 primitives, read their metadata, 
and integrate the code in our search and planning process. We could ingest the primitives and run 
them dynamically. However, for the most part we had an incomplete set of primitives to solve 
problems. 

 

Figure 7: Eve Dataflow for the NIST Evaluation 
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Unfortunately, our automatic discovery of the primitives revealed a number of deficiencies and 
issues with the metadata. For example, certain combinations of hyperparameters caused certain 
primitives to crash, despite being legal according to the metadata. We also had incomplete 
metadata, where the ranges of hyperparameters were not specified, for example, the number of 
neighbors in a k-nearest neighbor search was not properly defined as an integer. The input/output 
type specification was also generally inadequate and inconsistent across TA1s. For example, we 
did not know the format for the array for the NumPy array. We could not fully rely on well- 
annotated metadata, and planned to possibly experiment with and curate TA1 primitives ourselves 
before evaluations. The unreliability of metadata about TA1 primitives presented an issue for the 
program, as it was difficult to automatically search for TA1 primitives. In addition, when we 
integrated with TA1 primitives, automatically searching for the primitives, we discovered and 
reported bugs with the primitives that prevented them from executing correctly with 
hyperparameter settings they claimed to handle. Working with other performers, we were working 
towards a resolution of these issues during our time on the effort. 

At some point in our development it became clear that relying on the discovery and use of 
primitives from TA1 teams would be extremely risky. We then switched over to using primitives 
that were from the sklearn package due to their consistency and intercompatability, with a few 
manually-created internal primitives used to process some more obscure data types. Table 2 shows 
the final set of primitives we used in our later system evaluations, including each primitive’s 
supported problem types, number of hyperparameters, and the types used to represent those 
hyperparameter values. Using these primitives was still quite challenging and required a large 
engineering effort, due to the changing API and many incompatibilities discovered during our 
testing, even for the sklearn primitives. 

In hindsight, we believe we would have been better off to focus on using only our own internal 
set of primitives from the start of the project, which is the approach used by some other teams. We 
believe that our performance would have been on par with other teams in that case. 

 
Table 2: List of primitives considered when constructing a full pipeline 
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3.4 Search and Planning to Discover Pipelines 

3.4.1 Requirements Analysis for Discovery of Optimal Models 
During Year 1 of the Eve project, we documented and refined the technical requirements to 

integrate with new TA1 primitives and interface with TA3 components. 
Win Vector provided an advisory data science workflow to use as context when designing the 

Eve workflow and modeling primitives. They suggested key characteristics of primitives, tasks, 
and data for the purposes of workflow sequencing, primitive search, and discovery. The TA1 
primitives are still not available. 

We extended the prototype to execute the following workflow (POE refers to the planning and 
execution engine, while Eve below refers to the rest of the system): 
1. Eve gets problem 
2. Eve constructs a POE specific JSON file, with relative pathing 
3. Eve starts up server 
4. Eve passes JSON file to POE executable 
5. POE requests pipeline run from Eve 
6. Eve invokes dynamic script to run pipeline (which does data cleaning, but only run for the very 

first pipeline. A flag would be set internal to Eve and we would skip data cleaning primitives 
after that as rewashing so many times doesn’t make sense) 

7. Eve returns score to POE 
8. Repeat until time limit from config is met by POE 
9. Eve parses the answers CSV file for the top 20 UUID pipelines, and constructs logs and 

executables 
Eve’s dataflow when interacting with the user is described in Figure 6 above, while Eve’s 

dataflow for the NIST evaluation is shown in Figure 7. 

3.4.2 Planning and Optimization Engine 
During Year 1 of the Eve project, we designed, implemented, and refined the planning 

component that transforms data into models that meet SME needs. We also designed, 
implemented, and refined the optimization component that selects primitives to guide plan 
execution. We combined these two components into a Planning and Optimization Engine (POE). 

We refined our models based on the data on which TA2 operates. In particular, we studied 
methods to process multiple different data types, such as images and text, in the same problem, 
and how to combine their representations to apply a search algorithm. We also studied how to 
expand our pipeline framework to pipeline graphs rather than linear pipelines. We were able to 
process tabular and image data types; and handled binary and multiclass classification problems 
and univariate regression problems. 

3.4.2.1 Prediction Pipeline Structure 
Participating in the DARPA project gave us the opportunity to build a system designed to solve 

large, expensive-to-process, heterogeneous datasets representing challenging machine learning 
problems. Due to the size and complexity of the target problems, our chosen approach separated 
its machine learning pipeline search into two stages: 

1. Encoding Pipeline. The encoding search considers different methods of transforming the 
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dataset’s raw data into a numeric vector. This can involve simple transformations like one-hot 
encoding of categorical features, or more complex actions such as processing multiple types of 
raw data in parallel and considering different transformations and methods for combining the 
result in a semantically-appropriate way. 

2. Prediction Pipeline. The search considers different prediction methods and their 
parameterizations, each taking as input the vector resulting from an encoding pipeline. 

Figure 8 illustrates this two-stage prediction architecture which our system must search over. 
The first stage includes encoders for each type of input data (e.g. text, images, audio, vectors) and 
a combination method for the encodings (e.g. concatenation). The second includes one or more 
predictors and combining methods for their predictions. One of the key challenges in this search 
is that it combines search over a combination of discrete and continuous/numeric choices. For 
example, the choice of which encoders and prediction primitives to use are discrete choices, while 
the selection of parameters used by those primitives may be either discrete or continuous. 

3.4.2.2 Search Approach 
Our analysis of existing autoML systems revealed that the most successful approaches can be 

viewed as keeping track of individual pipelines and racing them against each other and small 
variations of the tracked pipelines. While most autoML systems were not described in this way, 
we decided to make that approach explicit in our system. In particular, our search approach can be 
viewed as a type of discrepancy search, where we maintain a set of pipelines and iteratively apply 
discrepancy operators to a selected pipeline in hopes of improving it. 
  

Figure 8: Depiction of the two-stage prediction architecture used in our system. 
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To describe our approach, it is useful to distinguish between the structure and parameters of a 
concrete pipeline. 

• Pipeline Structure – a directed acyclic graph where the vertices are primitives and edges 
indicate input-output relationships among primitives. Figure 8 shows an example of a 
Pipeline Structure, noting that the nodes would normally be labeled by specific primitives 
rather than generic primitives. 

• Pipeline Parameters – given a pipeline structure each node primitive has an associated set 
of hyperparameters associated with it. The pipeline parameters are an assignment of values 
to all of those hyperparameters. 

• Full Configuration – the combination of a pipeline structure and associated pipeline 
parameters. A full configuration can be executed to learn a model for a given training set 
and then be applied to test data. 

Our goal is to identify a high-performing full configuration by searching through the enormous 
space of configurations. Our high-level strategy decomposes the search into a search over 
structures and then over parameters for those structures. This decomposition is motivated by the 
empirical observation that often selecting the correct structure is a dominating factor in 
performance and that the right structure with default parameters will typically outperform a lesser 
structure with highly optimized parameters. This suggests that identifying good structures should 
be a priority, with parameter optimization playing a secondary, though important, role. 

Multi-Armed Bandits. More formally, we draw on the framework of Multi-Armed Bandits 
(MABs) for our search approach. A classic MAB problem is defined by a finite set of arms 
A = {a1, a2,…, an}, where each ai is an independent random variable with finite expected value µi. 
The index of the optimal arm is thus, 

i∗ = arg max µ . 
i 

We consider the “simple regret” variant of MAB problems where the objective is to quickly 
identify an arm that has expected value close to that of ai∗. This identification is done by “pulling” 
a sequence of arms, where pulling an arm ai results in observing a sample from ai. An MAB 
algorithm after n pulls maintains an estimate of what it considers to be the optimal arm in. The 
regret after n pulls is thus equal to: 

REGRETn = µi∗ - µin 

Typically, the design of MAB algorithms for simple regret aim to optimize the decrease of 
REGRETn  as a function of n. 

In the context of our pipeline search, one could equate arms to pipelines and pulls to the 
evaluation of a pipeline, which is typically a random variable due to randomness in cross- 
validation runs. However, there are an enormous number of arms in this case, which requires 
leveraging structure in the problem that is not usually available in atomic MAB problems. In 
particular, our arms are highly structured and also have common structures among them. This led 
us to develop a two stage MAB approach for pipeline search. 

Two-Stage MAB for Pipeline Search. As described earlier the arms, or pipelines, can be 
decomposed into structure and parameters. We thus, formulate this decomposed search approach 
as a two-stage MAB problem. The first stage MAB, called the Structure MAB, selects which 
pipeline structure should be improved upon next. The second stage MAB, the Component MAB, 
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then selects a ‘component’ within the selected structure. The component can be either a full vertex 
of the structure (i.e. a primitive) or an individual hyperparameter of a vertex/primitive. Once a 
component is selected, the approach attempts to find an improvement for that component (see 
below). This two-stage selection of a component followed by optimization of the component 
continues until time runs out. Pseudocode for this approach is in Figure 9, which we now describe 
in further detail. 

function EveSeach 
Inputs: 

StructurePolicy - MAB policy for structure selection  
ComponentPolicy - MAB policy for component selection  
N - Number of pipelines to return 

Returns: 
List of pipelines 

 
History <- Empty list 
StructureArms <- List containing only [RANDOM_ARM] 
while termination conditions have not been met:  
 SArm <- StructurePolicy(History, StructureArms)  
 if SArm = RANDOM_ARM: 

NewPipelines <- GenerateRandomPipelines() 
else: 

ComponentArms <- GetComponents(SArm.PipelineStructure)  
Component <- ComponentPolicy(History, ComponentArms) 
BestPipeline <- FindBestPipelineWithStructure(History, SArm.PipelineStructure) 
NewPipelines <- ImprovementPolicy(History, BestPipeline, Component) 

Results <- EvaluatePipelines(NewPipelines)  
Update History with Results 

 
BestPipelines <- Top N entries in History with the highest validation score 

 
return BestPipelines 

 

Figure 9: Pseudocode description of Eve's pipeline search. 

To introduce new pipelines into the system, the first Structure MAB has a special ‘Random’ 
arm which forces the system to generate several random structures and evaluate those structures 
based on the default parameters of the corresponding primitives. The pipeline with the best 
performance among the generated ones is then returned as the result of pulling the random arm. 
The ‘Random’ arm thus allows the Structure MAB to include completely new pipelines rather than 
selecting among only existing structures. An MAB algorithm will tend to pull the ‘Random’ arm 
if generating random pipelines appears to be improving performance more compared to pulling 
arms for existing structures. 
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After an individual component is selected by pulling the Structure MAB followed by the 
Component MAB, the algorithm applies an improvement operator (via the call to 
ImprovementPolicy) to attempt to search for an improvement to the pipeline by modifying the 
selected component several times and evaluating the performance of the modified pipelines. We 
considered two different improvement operators: 

• Random Assignment – randomly assign a value to the selected component based on the 
type of the component. 

• Bayesian Optimization (BO) – a global-optimization technique that uses predictive 
modelling (typically via Gaussian Processes) to guide the selection of values to evaluate. A 
complete description of BO is beyond the scope of this report, but an excellent reference is (Snoek, 
Larochelle, & Adams, 2012). However, for those familiar with BO the details of our settings are 
as follows. For numeric components we use a standard BO approach with a Gaussian Process 
model and the Expected Improvement acquisition function. For discrete parameters we use simple 
empirical distribution models for each discrete value and the Expected Improvement acquisition 
function. 

Figure 10 provides pseudocode for these two improvement operators. 
 

function RandomImprovement 
Inputs: 
History - List of past pipeline evaluations  
Pipeline - Fully-configured pipeline to improve on 
Component - Component in the pipeline to focus on improving  

Returns: 
A list of pipelines to evaluate 

for i in [1..IMPROVEMENT_LENGTH]: 
Candidate <- Pipeline 
Candidate[Component] <- Random assignment of legal parameter values for Component 
return Candidate 

 
function BOImprovement 

Inputs: 
History - List of past pipeline evaluations  
Pipeline - Fully-configured pipeline to improve on 
Component - Component in the pipeline to focus on improving  

Returns: 
A list of pipelines to evaluate 

for i in [1..IMPROVEMENT_LENGTH]: 
Candidate <- Pipeline 
RelevantHistory <- History filtered to only include pipelines in the same family as Pipeline 
Xs <- Parameter set for Component in RelevantHistory 
Ys <- ValidationScore for entries in RelevantHistory 
Model <- BuildGP(Xs, Ys) ;; builds a Gaussian Process model  
NextXs <- OptimizeEI(Model) 
Candidate[Component] <- NextXs 
return Candidate 

 
Figure 10: Pseudocode describing several of the pipeline improvement policies that were evaluated.
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MAB Algorithm Choice. To complete the specification of our approach we need to specify 
the MAB algorithm used to select among arms at each iteration. Our first approach was to select 
arms for the Structure MAB via the popular UCB algorithm (Auer et al., 2002). This algorithm 
maintains upper confidence bounds on each arm based on observations so far and always pull the 
arm with the highest upper confidence bound. We found, however, that this approach did not 
perform well in our setting and would often result in performance that was significantly worse than 
random. This is in part due to the fact that UCB is designed to optimize “cumulative regret” rather 
than “simple regret”. That is, UCB tries to optimize the sum of returns of all arm pulls rather than 
just trying to identify the highest performing arm. This can cause UCB to be less exploratory, 
which apparently was detrimental in our setting. More importantly, however, the Structure MAB 
arms are not stationary distributions as assumed by UCB. That is, each pull of an arm corresponds 
to selecting a structure and improving that structure based on all prior information. This means 
that repeated pulls of a single structure arm will tend to result in an increasing performance profile 
for that arm, rather than i.i.d. observations from a stationary distribution. 

The above observation led us to consider MAB algorithms for the “improving bandits” setting 
(Heidari, Kearns, & Roth, 2016), which are specifically design to handle bandits where the arms 
tend to improve with the number of pulls (and eventually have performance that levels off). At a 
high-level the arm pulling strategy we use for the improving bandits setting estimates the 
improvement slope of each arm and uses that to decide which arm to pull next based on the 
expected improvement. Figure 11 provides pseudocode for the three arm pulling strategies 
considered for our Structure MAB. This includes: 

• Random – select an arm uniformly at random. 
• e--greedy – with probability 1 - E select the best performing arm and otherwise select a random 

arm. This algorithm is known to have theoretical advantages over UCB for optimizing simple 
regret (Snoek et al, 2012). 

• Improving Bandit – an implementation of the improvement-bandit MAB algorithm from 
(Heidari et al., 2016). 
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function RandomMABPolicy 
Inputs: 
History - List of past pipeline evaluations  
Arms - List of available arms to pull 

Returns: 
The arm to pull 

a <- RandomChoice(Arms)  
return a 

 
function EGreedyMABPolicy 

Inputs: 
History - List of past pipeline evaluations  
Arms - List of available arms to pull  
Epsilon - Chance to behave greedily 

Returns: 
The arm to pull 

if Random() < Epsilon: 
a <- Arm in Arms with the best averaged reward according to History 

else: 
a <- RandomChoice(Arms)  

return a 
 
function ImprovingBanditSlopeMABPolicy 

Inputs: 
History - List of past pipeline evaluations  
Arms - List of available arms to pull 

Returns: 
The arm to pull  

BestSlope <- 0  
BestArm <- null 
for each Arm in Arms: 
ThisStructure <- Arm.PipelineStructure 
MostRecent <- Latest performance of the structure ThisStructure in History 
LocalBestSlope <- 0 
for i in [1..MEMORY_LENGTH]: 
PastScore <- ith most recent performance of the structure ThisStructure in History 
LocalBestSlope <- Max(LocalBestSlope, (MostRecent - PastScore) / i) 

if LocalBestSlope > BestSlope:  
BestSlope <- LocalBestSlope  
BestArm <- Arm 

return Arm 
 

Figure 11: Pseudocode describing several multi-arm bandit arm selection policies that were evaluated. 

For the second-stage Component MAB problem we also considered this same set of bandit 
algorithms. This gave us nine possible configurations of the two-stage bandit selection process, 
each of which could use either one of the two improvement operators. 

3.4.2.3 Extensions 
Building on our framework, we extended it over the one used during the February evaluation. 

The new framework separates the search over data preparation from the search over machine 
learning (ML) pipelines, which can provide a better factoring of the search space. It also separates 
the search over the discrete pipeline schemas and the parameters for those discrete schemas. Since 
a critical aspect of data science is correct representation of the data, the data processing deserves 
its own separate search and optimization step. Meanwhile, separating the choice of primitives from 
hyperparameters significantly reduces the complexity of search. 

We studied the issue of making search as effective as possible subject to time limits. We 
proposed the following two approaches: 
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• Take the time taken to evaluate a pipeline into consideration during search and choose 
pipelines that maximize the expected improvement per unit time. 

• Reason about the time available when planning the search. 
For example, the search algorithm might be faced with a choice between improving a current 

pipeline, which is fast but has a limited ceiling, versus exploring a different part of the search 
space, which is slower to yield improvements but has a higher ceiling. The second option would 
only be chosen if there is enough time to search the new part of the search space thoroughly enough 
to obtain improvements. 

We also studied the issue of minimizing the impact of expensive pipeline evaluation during 
search. We explored the following two strategies: 

• Only partially evaluate candidate pipelines at first and evaluate the most promising 
pipelines more fully 

• Intelligent reuse computation between different evaluations in the same search process  

Studying these two questions would have prepared us well for future phases where time and 
resource issues could become significant. 

3.4.3 Integration of Eve Automated Model Composition Software 
During Year 1 of the Eve project, we integrated the Eve automated model composition 

software by developing and refining APIs for integration, integrating Eve TA2 elements in 
preparation for integration events, and participating in semi-annual D3M integration events with 
TA1 and TA3 performers. 

During the effort, we updated the API for the POE. The engine’s API was designed to consume 
information from the other Eve components using the following methods: 

• getProblem() returns the problem description from the User Manager 
• getPrimitives(pquery) returns primitives that match pquery from the Primitives Manager 
• putFeedback(p) provides feedback on p’s quality to the Primitives Manager 
• definePipeline(p) allows POE to specify a pipeline and returns a unique pipeline key 
• executePipeline(pk) informs the Execution Manager to execute pipeline pk 
• rankPipeline(pk, i) ranks the pipeline pk as the ith pipeline 
• getDataset(dquery) returns data sets that match dquery from the Datasets Manager 
• putData(data) provides the key to the stored data to the Data Store 
• getData(key) returns keyed data from the Data Store  
The following methods get results from the POE: 
• getPipelines() returns a ranked list of pipelines 
• getSolution(pk) completes and returns the pkth pipeline 

We integrated the POE into Eve, and also implemented the common TA1 API for use within 
Eve. We updated the newest TA2-3 API and match the dynamic script to the new interface. 

We redid hooks for the POE and prepared entry points for evaluation. 
We converted all Scala portions of Eve to Python so it could better integrate with the Pipeline 

Optimization Engine. This new Python-based Eve system did not require reloading the primitive 
libraries before executing each pipeline. Therefore, the conversion to Python resulted in a much 
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faster pipeline executor. We integrated the new version of our system with the TA2-3 API used in 
the February evaluation, and reimplemented support for the API. 

We ran tests of the Python-based Eve system on the seed problems and generated a table of 
results including reasons for failures and number of pipelines tested. 

We performed a partial integration with the Purdue Modsquad TA3 system, and integrated Eve 
within TA3 Kubernetes configurations. 

3.4.4 Evaluation 
During Year 1 of the Eve project, we worked with SMEs and other D3M performers to exercise 

and evaluated the D3M toolkit’s ability to build complex data modeling pipelines for user- 
specified data and outcomes of interest. 

We evaluated Eve based on the three key dimensions in Table 3. 
 

Table 3: Metric Dimensions 

Dimension Example Metrics 
Accuracy Performance of the models developed by Eve and the decisions/contributions made by SMEs. This is evaluated by 

directly contrasting SME inputs and results with Eve with inputs and results from working with data scientists. 
Specific targets include: plans, models, decisions, workflows, and problem formalizations. 

Efficiency Time and cost savings introduced by Eve. This includes analyzing the time commitment required by the SME, as 
well as the cost savings from removing the data scientist from the equation. This also includes efficiency 
assessments of the underlying process, as well as a comparison of the number of models Eve can explore. 

Complexity Complexity of the problems that Eve can address. This includes the type and specification of the problem (e.g., 
empirical science problems with complete data vs. underspecified or unresolved problems), as well as quantitative 
notions of complexity (e.g., number of primitives needed; amount of data; etc.). 
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4. Results 
4.1 Internal Testing Results 

In addition, to program evaluations, we tested our search and planning system internally. 
Interestingly, when considering different configurations, we found that there was no statistically 
significant difference between using Bayesian optimization (BO) as an improvement policy and 
using pure random sampling as an 'improvement' policy. This contradicts our prior experience in 
using BO for difficult optimization problems, where there is almost always a significant 
improvement over random. One hypothesis is that the parameter optimization problems generated 
here are densely populated with solutions that are close to optimal. While time did not allow for a 
detailed investigation into this, it does appear to be a reasonable explanation based on limited 
experiments, where we created dense plots of some of the response surfaces corresponding to our 
parameter optimization problems. 

 
Figure 12: Plots of averaged performance vs number of pipelines evaluated for several combination 

of selection and improvement policies. 

Our second surprise was that we were not able to see significant improvements over the random 
multi-armed bandit (MAB) strategy (at either stage) compared to the non-random strategies. The 
non-random strategies did not decrease performance compared to random, which was the case for 
UCB, but no consistent improvement over random was observed. Figure 12 shows the results of 
several of these experiments, demonstrating the near-identical performance of different 
combinations of MAB arm selection policies and improvement policies when averaged over many 
independent runs. This was very surprising and led us to question whether there was a fundamental 
flaw in the system. 

To help assess this, we evaluated our “random bandit approach” (random arm selection 
policy, random hyperparameter improvement policy) against the state-of-the-art autoML system 
AutosSKLearn. We found that when we gave both systems the same amount of wall clock time 
or the same number of pipelines to evaluate they were able to find pipelines with similar 
performance. 

Papers on AutoSKLearn and other autoML systems do not include comparisons to randomized 
discrepancy searches such as ours, which is, perhaps, one reason that this phenomenon has not 
been mentioned in the literature. An alternative explanation is that we were using a misconfigured 
version of AutoSKLearn. However, we are able to achieve results with our distribution of 
AutoSKLearn that are close to the results reported in the literature, suggesting the library was 
working as intended. We also spent considerable time ourselves optimizing the AutoSKLearn 
configuration. 
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Figure 13 shows an example comparison of running our approach “Eve” and AutoSKLearn 
(shown as “AutoML”) on 5 benchmark datasets for 300 seconds each. We see that Eve and 
AutoSKLearn are typically on par regardless of AutoSKLearn’s configuration. Interestingly we 
did not observe that Metalearning or Ensembling lead to a consistent impact on the performance 
of AutoSKLearn. 

 

 
Figure 13: Comparison of our system's performance "Eve" against AutoSKLearn (shown as "AutoML") with 

different configurations of AutoSKLearn. 

For our internal evaluation, in the setting we were working in, we were essentially tied with 
our state-of-the-art, and had little reason or evidence to suggest that we could continue to improve 
our system's performance with the right selection or improvement policies. Our belief is that the 
differences in performance would be apparent with larger or more difficult datasets, or that a large 
collection of pipeline evaluation metadata could be used to effectively drive the MAB arm 
selection, but we no longer have the resources to pursue that line of research. 

4.2  Program Evaluation 
For the program evaluation, we participated in a D3M evaluation event in February 2018. The 

evaluation requirements for this event were not available prior to the evaluation, and there was no 
framework or code available to test against. We redid hooks for the POE and got entry points ready 
for the evaluation; integrated TA1-2 API hooks into Eve; and created a Docker container. We 
packaged Eve into the Docker container (a standalone executable package) for evaluation, and ran 
it according to specified commands from the Government evaluation document. We ran actual 
TA1 primitives during the evaluation and Eve components ran inside a TA3 setup. We also 
finalized the search procedure over pipelines for the evaluation event, which was based on a 
randomized Monte-Carlo search. We worked closely with the NIST team to identify issues that 
applied not only to our effort but also to other teams. In the February evaluation, we were able to 
automatically discover TA1 primitives based on their metadata, ingest TA3 problems and datasets, 
perform searches for pipelines, and execute those pipelines. 

We also participated in an evaluation run by NIST in April 2018. We collaborated with other 
performers and government teams to understand and refine the APIs for this evaluation, and 
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continued updating Eve system components to meet these requirements. We prepared a new 
version of our TA2 system for the April evaluation. 

We developed a set of sample primitives used in our pipeline execution engine and identified 
an optimizer (SMAC) that can generate pipeline descriptions using those primitives, and created a 
Docker image for evaluation. We made progress on integration among various Eve components— 
integrating Eve with TA1 and TA3 systems, and building a Docker component for evaluation. We 
participated in the 5-week integration event, continued to extend and integrate Eve components 
into TA1 and TA3 systems, and continued to build and evaluate the Docker container for Eve. 

In the NIST evaluation, Eve was able to perform some of the evaluation tasks but was unable 
to perform many of them. We believe many of the difficulties resulted from the fact that we were 
automatically discovering TA1 primitives, rather than using our own primitives. Unfortunately, 
TA1 primitives were not yet available for some data types, so we were unable to find suitable 
primitives. For other TA1 primitives, their metadata was inadequately curated and sometimes 
incorrect. For example, hyperparameters that we believed to be in the legal range for the primitives 
caused the primitives to crash. This made it difficult for a fully automated approach to succeed.
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5. Conclusions 
We have developed Eve, a virtual data scientist to serve the role of TA2 in the D3M system. 

Eve receives problems and datasets from TA3, discovers TA1 primitives, searches for pipelines 
using those primitives to solve the problem, and provides the execution of those pipelines. Tests 
show that our approach has promise and demonstrates in proof of concept that the approach can 
work on some problems, but significant progress is needed to produce a full working system. 

We have identified curation of TA1 primitives as a critical need going forward. It is necessary 
for us to understand what primitives do and how they can be used, and in particular what the valid 
hyperparameter ranges are for them. A well understood and more complete set of primitives will 
enable us to provide coverage for a wider range of problems in a more reliable manner. 
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7. List of Symbols, Abbreviations, and Acronyms 
 

ACRONYM Definition 
API Application Programming Interface 
ARMA Autoregressive Moving Average 
CSV Comma-Separated Values 
DM Datasets Manager 
DS Data Store 
HMI Human Machine Interface 
JSON JavaScript Object Notation 
MARVIN Modular Affective Reasoning-Based Versatile Introspective Architecture 
ML Machine Learning 
NIST National Institute of Standards and Technology 
OSU Oregon State University 
PCA Principal Component Analysis 
PDL Pipeline Description Language 
PM Primitives Manager 
POE Planning and Optimization Engine 
REST Representational State Transfer 
RL Reinforcement Learning 
SMAC Sequential Model-Based Algorithm Configuration 
SME Subject Matter Expert 
SVM Support Vector Machine 
UM User Manager 
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