

EVE: A VIRTUAL DATA SCIENTIST (D3M/EVE)

CHARLES RIVER ANALYTICS, INC.

APRIL 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-077

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2019-077 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
PETER A. JEDRYSIK ROBERT MCHALE for
Work Unit Manager JULIE BRICHACEK

Chief, Information Systems Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

APR 2017 – JUN 2018
4. TITLE AND SUBTITLE

EVE: A VIRTUAL DATA SCIENTIST (D3M/EVE)

5a. CONTRACT NUMBER
FA8750-17-C-0120

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702E

6. AUTHOR(S)

Mukesh Dalal, Avi Pfeffer, Brad Rosenberg, Josh Serrin, Jonathan Hsu,
Alan Fern, Erich Merrill, Oregon State University, Jonathan Almeida,
Nina Zumel, PhD, Win Vector

5d. PROJECT NUMBER
D3MP

5e. TASK NUMBER
S0

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Charles River Analytics Inc.
625 Mount Auburn Street
Cambridge, MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISB DARPA/I2O
525 Brooks Road 675 N. Randolph St
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-077
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2019-1316
Date Cleared: 27 MAR 2019
13. SUPPLEMENTARY NOTES
14. ABSTRACT
Subject matter experts (SMEs) attempting to solve real-world analytic problems face several challenges due to the lack
of applied mathematics, statistics, and machine learning skills that data scientists possess. The goal of our TA2 effort
under the DARPA D3M Program was to span this gap by using novel methods and automation to enable SMEs to act as
their own data scientists. Our effort was designed to fuse data- and knowledge-driven approaches to produce a virtual
data scientist we call Eve. To translate domain-expert intent into formal representations of learning problems, we built a
problem representation system that deterministically converts TA3 inputs into computer-interpretable mathematical
expressions. To efficiently search for and compose the sequences of machine learning steps that comprise learning
plans, we built a Monte Carlo Discrepancy Search approach that explores the vast space of possible plans through
efficient modification and testing of prior related and/or successful plans. Further, we enriched these plans by
incorporating data preparation models, treating data preprocessing functions as operators to be planned in-line with
learning operators.
15. SUBJECT TERMS
Machine Learning, Data Science Optimization Planning, Decision-Making Monte-Carlo Tree Search

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
PETER A. JEDRYSIK

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

34

Table of Contents

i

1. Summary ... 1
2. Introduction .. 3

2.1 Problem Description .. 3
2.2 Technical Approach ... 4

3. Methods, Assumptions, and Procedures ... 7
3.1 Meetings and Presentations ... 7
3.2 System Architecture ... 7
3.3 Formal Modeling Layer ... 12
3.4 Search and Planning to Discover Pipelines... 14

3.4.1 Requirements Analysis for Discovery of Optimal Models 14
3.4.2 Planning and Optimization Engine ... 14
3.4.3 Integration of Eve Automated Model Composition Software 21
3.4.4 Evaluation ... 22

4. Results .. 23
4.1 Internal Testing Results ... 23
4.2 Program Evaluation ... 24

5. Conclusions.. 26
6. References .. 27
7. List of Symbols, Abbreviations, and Acronyms .. 29

ii

List of Figures

Figure 1: Eve system architecture ... 5
Figure 2: Example learning plan for bird population prediction .. 6
Figure 3: Initial Design of Eve Components .. 8
Figure 4: Year 1 Eve Architecture .. 8
Figure 5: Sequence Diagram ... 10
Figure 6: Eve Dataflow when Working with a User ... 11
Figure 7: Eve Dataflow for the NIST Evaluation ... 12
Figure 8: Depiction of the two-stage prediction architecture used in our system. 15
Figure 9: Pseudocode description of Eve's pipeline search. ... 17
Figure 10: Pseudocode describing several of the pipeline improvement policies that were evaluated.

.. 18
Figure 11: Pseudocode describing several multi-arm bandit arm selection policies that were

evaluated. ... 20
Figure 12: Plots of averaged performance vs number of pipelines evaluated for several combination

of selection and improvement policies. ... 23
Figure 13: Comparison of our system's performance "Eve" against AutoSKLearn (shown as

"AutoML") with different configurations of AutoSKLearn. ... 24

List of Tables

Table 1: Meetings and Presentations for the Eve Project ... 7
Table 2: List of primitives considered when constructing a full pipeline ... 13
Table 3: Metric Dimensions.. 22

Approved for Public Release; Distribution Unlimited.
1

1. Summary
A historical gap exists between subject matter experts (SMEs) who struggle to solve analytic

problems about the real world (e.g., cyber threat detection, sales forecasting) and data scientists
who have broader analytic capabilities in applied mathematics (e.g., machine learning and data
transformations) and the ability to apply these sophisticated techniques to a wide variety of
problem domains. The goal of the DARPA Data-Driven Discovery of Models (D3M) program is
to span the gap by providing novel methods to help SMEs solve analytics problems without the
need for a dedicated data scientist. The D3M consists of three technical areas: TA1, which
develops machine learning primitives, TA2, which uses these primitives to develop learning plans
for specific problems, and TA3, which interfaces with the user to formulate problems and present
results.

Subject matter experts (SMEs) attempting to solve real-world analytic problems face several
challenges due to the lack of applied mathematics, statistics, and machine learning skills that data
scientists possess. The goal of our TA2 effort was to span this gap by using novel methods and
automation to enable SMEs to act as their own data scientists. Current approaches to automate data
science are often data-driven exercises, failing to incorporate the SME’s domain knowledge.
Instead, our D3M effort was designed to fuse data- and knowledge-driven approaches to produce
a virtual data scientist we call Eve. To translate domain-expert intent into formal representations
of learning problems, we built a problem representation system that ingests TA3 inputs as
computer-interpretable mathematical expressions defining problems to be solved. To efficiently
search for and compose the sequences of machine learning steps that comprise learning plans, we
built a Monte Carlo Discrepancy Search approach that explores the vast space of possible plans
through efficient modification and testing of prior related and/or successful plans. Further, we
enriched these plans by incorporating data preparation models, treating data preprocessing
functions (e.g., handling missing data and dimensionality reduction) as operators to be planned in-
line with learning operators. Combined, these capabilities will allow Eve to provide SMEs with a
virtual data scientist to help address complex analytical learning problems without assistance from
professional data scientists.

Approved for Public Release; Distribution Unlimited.
2

During Year 1 of the Eve project, we:

• Designed and implemented the Eve Search Space, including representations for data
modeling primitives, composition operators, planning goals, and complex modeling
pipelines.

• Documented and refined the technical requirements to integrate with new TA1 primitives
and interface with TA3 components.

• Designed, implemented, and refined the planning and optimization component that
transforms data into models that meet SME needs, including selection and configuration
of primitives.

• Integrated the Eve automated model composition software by developing and refining
APIs for integration, integrating Eve TA2 elements in preparation for integration events,
and participating in semi-annual D3M integration events with TA1 and TA3 performers.

• Worked with SMEs and other D3M performers to exercise and evaluate the D3M toolkit’s
ability to build complex data modeling pipelines for user-specified data and outcomes of
interest.

The benefits of a complete Eve project would include the ability to fuse data- and knowledge-

driven approaches to imitate data scientists, a just-in-time mathematical ontology to construct fully
formed learning concepts, the ability to plan using a Monte-Carlo Discrepancy Search to develop
candidate solutions, and treating data preparation as a top-level planning element.

Approved for Public Release; Distribution Unlimited.
3

2. Introduction
2.1 Problem Description

A historical gap exists between subject matter experts (SMEs) who struggle to solve analytic
problems about the real world (e.g., cyber threat detection, sales forecasting) and data scientists
who have broader analytic capabilities in applied mathematics (e.g., machine learning and data
transformations) and the ability to apply these sophisticated techniques to a wide variety of
problem domains. The goal of the DARPA D3M program is to span the gap by providing novel
methods to help SMEs solve analytics problems without the need for a dedicated data scientist.

Data scientists must work with SMEs to understand their domain knowledge, explore and
process the data used to learn models, and manage the statistical and machine learning (ML)
methods used to learn them. Current approaches to automating machine learning, such as the
Automatic Statistician (Lloyd, Duvenaud, Grosse, Tenenbaum, & Ghahramani, 2014) and Auto-
WEKA (Thornton, Hutter, Hoos, & Leyton-Brown, 2013), focus on learning statistical models
from data and ignore the domain knowledge provided by the SME. Because of the complexity of
most real-world data-science problems, these methods tend to miss key relationships, find spurious
ones, and produce learned models that are not understandable by humans. Moreover, the pre-
processing that must occur before machine learning algorithms can be run relies heavily on an
SME’s domain knowledge to ensure the semantics of the SMEs problem are not altered. Our
fundamental insight is that by using a well-designed knowledge representation framework, we can
create a unified interface to the domain, data, and statistical models to take advantage of the SME’s
domain knowledge and the data to create effective machine learning models that support the
SME’s analyses. To achieve the TA2 objectives of the D3M program, we proposed to produce a
knowledge- and data-driven virtual scientist called Eve.

To develop Eve, we had to address the following two major challenges:
• Eve must efficiently search for and compose abstract plans of data preparation and machine

learning operators (high-level manipulations that must be made) to solve the specified
learning problem.

• Eve must select effective primitives to implement these operators, composing executable
plans that address both learning objectives and constraints, and the prioritized metrics
identified by the SME.

Regarding the first challenge—that Eve must efficiently search for and compose abstract
learning plans to solve the specified learning problem—we face two key sub-challenges. The first,
a planning sub-challenge, is how to select from a potentially enormous number of data preparation,
transformation, and learning operator sequences that are consistent with solving a specified
learning problem. Our approach was to use techniques from the planning and reinforcement
learning literature, such as the highly successful Monte-Carlo Tree Search (MCTS) (Browne et al.,
2012), which was used in the AlphaGo system that recently defeated a grandmaster at Go. Eve
also develops a novel form of MCTS, called Monte-Carlo Discrepancy Search, which improves
already evaluated plans by introducing discrepancies/modifications into those plans. For example,
if a plan uses polynomial interpolation as a data transformation step, a discrepancy may be to use
linear interpolation instead, but otherwise follow the current plan. To seed this learning process,
Eve draws from a library of historical plans from previous Eve applications, previous plans and
plan templates constructed by data scientists in other learning applications, and offline learned
plans from previous tools constructed by our team.

Approved for Public Release; Distribution Unlimited.
4

The second sub-challenge is how to automate data preparation that often consumes most of the
resources of typical data science projects (Zumel, Mount, & Porzak, 2014). Data scientists
understand that the choices made in preparing the data (e.g., how to represent categorical data,
how to handle missing data) can dramatically affect the performance of machine learning
components. Our approach treated all data preparation functions as operators to be planned in
conjunction with the learning operators. This enabled us to create sequences of data preparation
operators integrated with learning operators in a single framework, which is possible because of
our unified representation of the data and statistical models.

Eve’s second challenge—selecting the optimal primitives to transform initially abstract plans
into fully-specified learning programs—amounts to compiling a declarative representation of an
abstract plan into a procedural representation of how to do it (e.g., by choosing particular classifiers
or optimizing hyper-parameters). The search for specific primitives and hyperparameter values is
integrated into our planning process, using a Monte Carlo Discrepancy Search similar to the one
used to address the first challenge.

2.2 Technical Approach
Eve’s goal is to enable subject matter experts (SMEs) to solve analytic problems by enabling

them to be their own data scientists. For example, a cyber analyst may be tasked with predicting
trends in malware. This may require featurizing a database of malware, clustering the malware
into families, and learning a time series model of family-level features. A space analyst may face
different challenges, such as how to classify space objects (SOs) to enhance space situational
awareness. In this case, many algorithms may be used to resolve and correlate conflicting data
against known SOs to identify potential threats.

To automatically solve different data science problems, our technical approach was grounded
in cognitive systems engineering (CSE), advanced knowledge representation techniques,
automated planning, and machine learning. In our original plan, which included a TA3 service, we
would employ established principles for joint human-automation teaming to ensure that Eve’s
human-model interactions address and intuitively guide key user activities, including problem
characterization and refinement, process selection and editing, and model review and curation.
Second, we use advanced knowledge representation to relate and translate between the SME’s
domain model, the data, model and the learning model. Third, we frame the data science process
as a planning and optimization problem, in which we use machine learning and search algorithms
to build abstract plans of optimal operator sequences and concrete executable plans of primitives.
When our scope was revised to only include TA2, the first two parts of the plan were
deemphasized.

In our original design, Eve is organized into four process abstraction layers shown in Figure 1.
The organization manages asynchronous complexities between layers, allowing for both top-down
and bottom-up interaction, and enables plug-and-play interoperability with other performers’
components. Given a domain problem, each successive layer produces an increasingly refined
representation of the problem until such time as a machine learning plan may be executed or
additional inputs are required of the SME. Consider an ecologist who wants to predict bird
population (BP) for the upcoming August in Oregon to determine migration patterns. All four of
Eve’s layers work together and communicate closely to achieve this objective. The SME first
interacts with Eve through the Human- Model Interaction (HMI) Layer. Since this layer is specific
to TA3, we do not describe it here.

Approved for Public Release; Distribution Unlimited.
5

The Formal Modeling (FM) Layer receives the
SME’s representation from the HMI layer and
deterministically translates the information supplied into
formal mathematical expressions that can be assembled
into integrated learning problem definitions and assessed
for consistency and completeness. Benefits of the layer
include its abilities to automatically join data sets (e.g.,
weather and population data sets with different spatial
and temporal resolutions), capture relationships and
constraints (e.g., temperatures are highest and rainfall is
lowest in Oregon in August, which is most appealing to
birds), and provide heuristics to guide planning for a
solution (e.g., the relationship between temperature and
GP is linear, which can be used as an initial starting point
for search). The FM layer will guide the HMI layer’s
dialog with the SME. If the problem is not yet sufficiently
specified, the HMI layer will be guided to elicit additional
information from the SME before passing the problem
definition down another a layer for planning. It will also
communicate learning plans discovered by lower layers to the user. In doing so, it will translate
between the mathematical constructs used in those plans and the SME’s domain terms. While
largely sitting in TA3, the FM layer is also required for TA2 to represent the problems and data to
be worked on. Therefore, our effort included a limited development of the FM layer.

The Planning and Execution (P&E) Layer is responsible for searching for and composing
abstract learning plans that are consistent with the FM layer’s problem definition. These abstract
plans provide the sequences of high-level data preparation, transformation, and planning operators
that must be executed to successfully build a model addressing the problem. Operators provide a
class of functions that can be addressed using a variety of primitives. The P&E Layer holds a large
set of operators, including classes for all primitives developed by TA1 performers (e.g., imputation
of missing data, conversions, transformations, regressions, time-series models, etc.). It also holds
a library of learning plan templates that can be instantiated for problems of the appropriate type
(e.g., prediction) to produce initial plans. From there, the planner searches through different
sequences of operators to improve potential plans. For example, to impute missing rainfall data,
the planner may identify the planning sub-sequence Remove Outliers followed by Interpolate
Remaining Points. Further, to predict BP in August 2017, it may construct the sub-sequence
Regress GP Average on GP, rainfall, and temperature from previous months followed by Learn
Time Series Model of Yearly BP with monthly GP and yearly average temperature as exogenous
inputs. This plan is shown in Figure 2; note that the green elements within this plan represent the
abstract plan, while the orange elements represent concrete executable primitives for specific steps.

 The P&E layer produces multiple plans that are passed down to the next layer for selection
and configuration of specific primitives for each operator. For example, an alternative plan could
be to learn a joint dynamic Bayesian network model over BP and GP rather than separate models.

Figure 1: Eve system architecture

Approved for Public Release; Distribution Unlimited.
6

The Executable Primitives (EP) Layer chooses and refines machine learning primitives for
each data preparation and planning operator and sends them up to the P&E layer to build a concrete
(or executable) plan. In addition to selecting primitives, this layer explores and optimizes hyper-
parameter variations (e.g., the number of autoregressive and moving average terms in the
Autoregressive Moving Average (ARMA) model). The EP layer selects these primitives based on
their performance with respect to targeted user and automated metrics for evaluating predicted
model success. In the plan shown, the Remove Outlier operator may be assigned a One-
Dimensional Nearest Neighbor algorithm as its primitive and the Interpolate Remaining Points
operator may be assigned Polynomial Interpolation. For the Regression operator, Eve can select
from a variety of primitives, such as linear, support vector machine (SVM) regression, or neural
networks based on the domain of discourse, SME-specified metrics, and learned quality. In this
case, SVM Regression is selected. Lastly, the primitive selected for Learn Time Series Model is an
ARMA Model, with 2 and 1 as its chosen hyper-parameters.

Each of these plans will be effectively rated, before being posed to the SME for prioritization
and selection. The HMI layer can display this information about the expected performance of these
plans. By observing the tradeoff between these plans, the SME can choose to execute plans that
meet the requirements most important to them.

During Year 1 of our effort, we began to realize our design, focusing on the Formal Modeling
Layer, Planning and Execution Layer, and Executable Primitives Layer. For the Formal Modeling
Layer, we created a mechanism to take in problem descriptions from TA3 and to return executable
pipelines to TA3. For the Planning and Execution Layer, we developed a Monte Carlo discrepancy
search algorithm to search for appropriate pipelines. For the Executable Primitives Layer, we
ingested TA1 primitives, selected appropriate primitives to solve problems, along with
hyperparameter values, and used those primitives in the pipelines we returned to TA3.

Figure 2: Example learning plan for bird population prediction

Approved for Public Release; Distribution Unlimited.
7

3. Methods, Assumptions, and Procedures
3.1 Meetings and Presentations

Table 1 outlines the meetings and presentations held during the Eve project.

Table 1: Meetings and Presentations for the Eve Project

Meeting Name Dates Description
Internal meeting at Charles River
Analytics, Cambridge, MA

3,9,19 May 2017 Discussed Eve status updates, technical matters, and
planned next steps with the Charles River internal team

Bi-weekly Charles River/OSU Eve team
meetings, telecon

May – September 2017 Discussed Eve status updates, technical matters, and
planned next steps with the Charles River internal team
and OSU

D3M-wide collaboration meetings May – September 2017 Developed and reviewed D3M-wide requirements and
designs

Requirements and design meetings with
other performers and Government
teams, telecon

3, 10, 16, 17 May 2017 Developed and reviewed D3M-wide requirements and
designs

Collaboration with specific performers,
telecon

15 June 2017 Collaborated with Remco Chang and Dillon from Tufts

On-demand Charles River Analytics and
Win Vector Meeting, telecon

16 June 2017 Discussed Eve status updates, technical matters, and
planned next steps with the Charles River internal team
and Win Vector

Collaboration with specific performers,
telecon

23 June 2017 Collaborated with James Honaker from Harvard and Vito
D’Orazio from UT, Dallas

DARPA D3M integration event in
Arlington, VA

11 September 2017 –
11 October 2017

Held an integration discussion, and had a dry run for
evaluation

D3M Evaluation Event, Arlington, VA 29 January 2018 – 9
February 2018

Participated in evaluations of D3M systems

On-site visit at Charles River Analytics,
Cambridge, MA

18 April 2018 Held a site visit with the Sponsor, Charles River, and
OSU.

3.2 System Architecture
We designed an initial, high-level Eve architecture that allowed all components to interact with

each other using a representational state transfer (RESTful) application programming interface
(API). The components in this initial architecture are shown in Figure 3.

Approved for Public Release; Distribution Unlimited.
8

Figure 3: Initial Design of Eve Components

Within Eve, the Coordinator (C) component gets a command, builds a solution, and then
delivers it. The Primitives Manager (PM) gets a primitive discovery request, and returns a ranked
list of matches. The PM can also receive feedback on primitive quality to improve future results.
The User Manager (UM) gets the challenge problem/refinement, and returns the optimization
problem. The UM can also receive feedback on solution quality to improve future results. The
Datasets Manager (DM) gets data. The Data Store (DS) provides storage for all the Eve
components. The Planning and Optimization Engine (POE) produces ranked pipelines for a given
challenge problem and produces a full model of the given pipeline. Each component has an
interface used within Eve (API or other), a representational state transfer (RESTful) API, and a
JavaScript object notation (JSON) payload. Oval components also have an external interface.
Charles River worked on developing the blue components, and OSU the green component. We
integrated Charles River and OSU components, and extended support for TA1 and TA3 APIs. We
also integrated Eve components into two TA3 systems.

We then updated our architecture as shown in Figure 4.

Figure 4: Year 1 Eve Architecture

Approved for Public Release; Distribution Unlimited.
9

This architecture consists of two main parts: Eve and the Pipeline Optimization Engine (POE).
Eve interfaces with the rest of the D3M system, processing requests from the user via TA3,
discovering TA1 primitives, and returning them back to the user via TA3. The POE is the
component that executes the search for pipelines and hyperparameters. Eve and POE communicate
via a Zero Messaging Queue (ZMQ).

Eve receives inputs from TA3 via its gRPC server. When it receives a problem, Eve discovers
TA1 primitives using their Primitive Description Files. These discovered primitives are added to
the Primitive Library for use by POE in its search for pipelines. Eve also informs POE’s
Optimization Arbiter of the goals of the optimization, so it can decide whether to accept a particular
pipeline.

POE then goes to work. The Pipeline Generator generates pipelines using its discrepancy-based
search algorithm, whereby it tries to generate algorithms that are similar to but improve on existing
pipelines. These generated pipelines are sent back to Eve for execution and evaluation. POE uses
the results of this evaluation to choose between pipelines. All the pipelines that have been
evaluated are stored in the Evaluated Pipeline Storage. The Optimization Arbiter decides when to
stop searching and which pipeline to return.

Eve then provides the best pipeline to TA3. It also provides a service to TA3 to execute this
pipeline. Execution produces a pickled pipeline that can be saved for future use, various
bookkeeping information, and a prediction for the user’s problem. The output generator also
creates logs, as well as an executable of the pipeline that TA3 can use later.

We developed a sequence diagram depicting how interactions were implemented. This
diagram, shown in Figure 5, shows how Eve is used to define challenge problems, get and provide
datasets to the Pipeline Optimization Engine (POE), and receive a list of pipelines from the POE.

Approved for Public Release; Distribution Unlimited.
10

Figure 5: Sequence Diagram

Approved for Public Release; Distribution Unlimited.
11

Figure 6 shows Eve’s dataflow when interacting with the user.

The user works with TA3 to formulate a problem. TA3 sends details of the dataset, tasks and
subtasks to execute, a description of feature columns and prediction columns in the data, a
requested number of pipelines to generate, and one or more metrics to evaluate those pipelines.
Eve works with the POE to generate the pipelines to solve the user’s problem. Eve first configures
the POE. The POE then repeatedly searches for and generates pipelines and sends them to Eve.
Eve executes the pipelines and gives them a score according to the metrics, returning the score to
POE, which uses it to guide its search. When POE has completed its search, it sends the results
back to Eve, which returns the pipelines to the user via TA3. This completes the pipeline generation
phase. In operation, once the user has selected a pipeline, he or she will want to run it on the data
to generate results. Thus, the user sends a pipeline to test back to Eve. Eve runs it and sends
predictions back to the user.

Figure 6: Eve Dataflow when Working with a User

Approved for Public Release; Distribution Unlimited.
12

Figure 7 shows the Eve dataflow when interacting with the National Institute of Standards
and Technology (NIST) test harness for evaluation.

Most of the workflow is similar, but the interactions outside of Eve are different. At the
beginning, NIST initiates a training phase. Eve configures the POE, receives a sequence of
pipelines from POE, scores them, and finally receives a ranking of the top pipelines from POE
when the search is complete. Eve then produces the required artifacts for evaluation. The principal
artifact is an executable file implementing the top pipeline. Eve also produces logs of its work and
is also designed to produce metadata in the future. NIST then instructs Eve that a test phase has
begun, and supplies the test data. The generated executable is used to process the test data and
generate predictions. These predictions are then evaluated by NIST.

3.3 Formal Modeling Layer
During Year 1 of the Eve project, we designed and implemented the Eve Formal Modeling

Layer, including representations for data modeling primitives, composition operators, planning
goals, and complex modeling pipelines. We were active participants in TA1/2 and TA2/3 working
groups that defined the APIs between the different TAs. Based on these APIs, we defined internal
data structures to represent primitives and hyperparameter specifications coming from TA1,
planning goals and data sources coming from TA3, executable pipelines passed to TA3, as well as
the composition operators used to construct these pipelines.

As integration of the different capabilities is crucial to the success of the D3M program, we
strived throughout our time on the program to work with other performers’ components rather than
develop our own substitutes. For example, we relied on primitives provided by the program. We
developed an ability to automatically search for and discover TA1 primitives, read their metadata,
and integrate the code in our search and planning process. We could ingest the primitives and run
them dynamically. However, for the most part we had an incomplete set of primitives to solve
problems.

Figure 7: Eve Dataflow for the NIST Evaluation

Approved for Public Release; Distribution Unlimited.
13

Unfortunately, our automatic discovery of the primitives revealed a number of deficiencies and
issues with the metadata. For example, certain combinations of hyperparameters caused certain
primitives to crash, despite being legal according to the metadata. We also had incomplete
metadata, where the ranges of hyperparameters were not specified, for example, the number of
neighbors in a k-nearest neighbor search was not properly defined as an integer. The input/output
type specification was also generally inadequate and inconsistent across TA1s. For example, we
did not know the format for the array for the NumPy array. We could not fully rely on well-
annotated metadata, and planned to possibly experiment with and curate TA1 primitives ourselves
before evaluations. The unreliability of metadata about TA1 primitives presented an issue for the
program, as it was difficult to automatically search for TA1 primitives. In addition, when we
integrated with TA1 primitives, automatically searching for the primitives, we discovered and
reported bugs with the primitives that prevented them from executing correctly with
hyperparameter settings they claimed to handle. Working with other performers, we were working
towards a resolution of these issues during our time on the effort.

At some point in our development it became clear that relying on the discovery and use of
primitives from TA1 teams would be extremely risky. We then switched over to using primitives
that were from the sklearn package due to their consistency and intercompatability, with a few
manually-created internal primitives used to process some more obscure data types. Table 2 shows
the final set of primitives we used in our later system evaluations, including each primitive’s
supported problem types, number of hyperparameters, and the types used to represent those
hyperparameter values. Using these primitives was still quite challenging and required a large
engineering effort, due to the changing API and many incompatibilities discovered during our
testing, even for the sklearn primitives.

In hindsight, we believe we would have been better off to focus on using only our own internal
set of primitives from the start of the project, which is the approach used by some other teams. We
believe that our performance would have been on par with other teams in that case.

Table 2: List of primitives considered when constructing a full pipeline

Approved for Public Release; Distribution Unlimited.
14

3.4 Search and Planning to Discover Pipelines

3.4.1 Requirements Analysis for Discovery of Optimal Models
During Year 1 of the Eve project, we documented and refined the technical requirements to

integrate with new TA1 primitives and interface with TA3 components.
Win Vector provided an advisory data science workflow to use as context when designing the

Eve workflow and modeling primitives. They suggested key characteristics of primitives, tasks,
and data for the purposes of workflow sequencing, primitive search, and discovery. The TA1
primitives are still not available.

We extended the prototype to execute the following workflow (POE refers to the planning and
execution engine, while Eve below refers to the rest of the system):
1. Eve gets problem
2. Eve constructs a POE specific JSON file, with relative pathing
3. Eve starts up server
4. Eve passes JSON file to POE executable
5. POE requests pipeline run from Eve
6. Eve invokes dynamic script to run pipeline (which does data cleaning, but only run for the very

first pipeline. A flag would be set internal to Eve and we would skip data cleaning primitives
after that as rewashing so many times doesn’t make sense)

7. Eve returns score to POE
8. Repeat until time limit from config is met by POE
9. Eve parses the answers CSV file for the top 20 UUID pipelines, and constructs logs and

executables
Eve’s dataflow when interacting with the user is described in Figure 6 above, while Eve’s

dataflow for the NIST evaluation is shown in Figure 7.

3.4.2 Planning and Optimization Engine
During Year 1 of the Eve project, we designed, implemented, and refined the planning

component that transforms data into models that meet SME needs. We also designed,
implemented, and refined the optimization component that selects primitives to guide plan
execution. We combined these two components into a Planning and Optimization Engine (POE).

We refined our models based on the data on which TA2 operates. In particular, we studied
methods to process multiple different data types, such as images and text, in the same problem,
and how to combine their representations to apply a search algorithm. We also studied how to
expand our pipeline framework to pipeline graphs rather than linear pipelines. We were able to
process tabular and image data types; and handled binary and multiclass classification problems
and univariate regression problems.

3.4.2.1 Prediction Pipeline Structure
Participating in the DARPA project gave us the opportunity to build a system designed to solve

large, expensive-to-process, heterogeneous datasets representing challenging machine learning
problems. Due to the size and complexity of the target problems, our chosen approach separated
its machine learning pipeline search into two stages:

1. Encoding Pipeline. The encoding search considers different methods of transforming the

Approved for Public Release; Distribution Unlimited.
15

dataset’s raw data into a numeric vector. This can involve simple transformations like one-hot
encoding of categorical features, or more complex actions such as processing multiple types of
raw data in parallel and considering different transformations and methods for combining the
result in a semantically-appropriate way.

2. Prediction Pipeline. The search considers different prediction methods and their
parameterizations, each taking as input the vector resulting from an encoding pipeline.

Figure 8 illustrates this two-stage prediction architecture which our system must search over.
The first stage includes encoders for each type of input data (e.g. text, images, audio, vectors) and
a combination method for the encodings (e.g. concatenation). The second includes one or more
predictors and combining methods for their predictions. One of the key challenges in this search
is that it combines search over a combination of discrete and continuous/numeric choices. For
example, the choice of which encoders and prediction primitives to use are discrete choices, while
the selection of parameters used by those primitives may be either discrete or continuous.

3.4.2.2 Search Approach
Our analysis of existing autoML systems revealed that the most successful approaches can be

viewed as keeping track of individual pipelines and racing them against each other and small
variations of the tracked pipelines. While most autoML systems were not described in this way,
we decided to make that approach explicit in our system. In particular, our search approach can be
viewed as a type of discrepancy search, where we maintain a set of pipelines and iteratively apply
discrepancy operators to a selected pipeline in hopes of improving it.

Figure 8: Depiction of the two-stage prediction architecture used in our system.

Approved for Public Release; Distribution Unlimited.
16

i

To describe our approach, it is useful to distinguish between the structure and parameters of a
concrete pipeline.

• Pipeline Structure – a directed acyclic graph where the vertices are primitives and edges
indicate input-output relationships among primitives. Figure 8 shows an example of a
Pipeline Structure, noting that the nodes would normally be labeled by specific primitives
rather than generic primitives.

• Pipeline Parameters – given a pipeline structure each node primitive has an associated set
of hyperparameters associated with it. The pipeline parameters are an assignment of values
to all of those hyperparameters.

• Full Configuration – the combination of a pipeline structure and associated pipeline
parameters. A full configuration can be executed to learn a model for a given training set
and then be applied to test data.

Our goal is to identify a high-performing full configuration by searching through the enormous
space of configurations. Our high-level strategy decomposes the search into a search over
structures and then over parameters for those structures. This decomposition is motivated by the
empirical observation that often selecting the correct structure is a dominating factor in
performance and that the right structure with default parameters will typically outperform a lesser
structure with highly optimized parameters. This suggests that identifying good structures should
be a priority, with parameter optimization playing a secondary, though important, role.

Multi-Armed Bandits. More formally, we draw on the framework of Multi-Armed Bandits
(MABs) for our search approach. A classic MAB problem is defined by a finite set of arms
A = {a1, a2,…, an}, where each ai is an independent random variable with finite expected value µi.
The index of the optimal arm is thus,

i∗ = arg max µ .
i

We consider the “simple regret” variant of MAB problems where the objective is to quickly
identify an arm that has expected value close to that of ai∗. This identification is done by “pulling”
a sequence of arms, where pulling an arm ai results in observing a sample from ai. An MAB
algorithm after n pulls maintains an estimate of what it considers to be the optimal arm in. The
regret after n pulls is thus equal to:

REGRETn = µi∗ - µin

Typically, the design of MAB algorithms for simple regret aim to optimize the decrease of
REGRETn as a function of n.

In the context of our pipeline search, one could equate arms to pipelines and pulls to the
evaluation of a pipeline, which is typically a random variable due to randomness in cross-
validation runs. However, there are an enormous number of arms in this case, which requires
leveraging structure in the problem that is not usually available in atomic MAB problems. In
particular, our arms are highly structured and also have common structures among them. This led
us to develop a two stage MAB approach for pipeline search.

Two-Stage MAB for Pipeline Search. As described earlier the arms, or pipelines, can be
decomposed into structure and parameters. We thus, formulate this decomposed search approach
as a two-stage MAB problem. The first stage MAB, called the Structure MAB, selects which
pipeline structure should be improved upon next. The second stage MAB, the Component MAB,

Approved for Public Release; Distribution Unlimited.
17

then selects a ‘component’ within the selected structure. The component can be either a full vertex
of the structure (i.e. a primitive) or an individual hyperparameter of a vertex/primitive. Once a
component is selected, the approach attempts to find an improvement for that component (see
below). This two-stage selection of a component followed by optimization of the component
continues until time runs out. Pseudocode for this approach is in Figure 9, which we now describe
in further detail.

function EveSeach
Inputs:

StructurePolicy - MAB policy for structure selection
ComponentPolicy - MAB policy for component selection
N - Number of pipelines to return

Returns:
List of pipelines

History <- Empty list
StructureArms <- List containing only [RANDOM_ARM]
while termination conditions have not been met:
 SArm <- StructurePolicy(History, StructureArms)
 if SArm = RANDOM_ARM:

NewPipelines <- GenerateRandomPipelines()
else:

ComponentArms <- GetComponents(SArm.PipelineStructure)
Component <- ComponentPolicy(History, ComponentArms)
BestPipeline <- FindBestPipelineWithStructure(History, SArm.PipelineStructure)
NewPipelines <- ImprovementPolicy(History, BestPipeline, Component)

Results <- EvaluatePipelines(NewPipelines)
Update History with Results

BestPipelines <- Top N entries in History with the highest validation score

return BestPipelines

Figure 9: Pseudocode description of Eve's pipeline search.

To introduce new pipelines into the system, the first Structure MAB has a special ‘Random’
arm which forces the system to generate several random structures and evaluate those structures
based on the default parameters of the corresponding primitives. The pipeline with the best
performance among the generated ones is then returned as the result of pulling the random arm.
The ‘Random’ arm thus allows the Structure MAB to include completely new pipelines rather than
selecting among only existing structures. An MAB algorithm will tend to pull the ‘Random’ arm
if generating random pipelines appears to be improving performance more compared to pulling
arms for existing structures.

Approved for Public Release; Distribution Unlimited.
18

After an individual component is selected by pulling the Structure MAB followed by the
Component MAB, the algorithm applies an improvement operator (via the call to
ImprovementPolicy) to attempt to search for an improvement to the pipeline by modifying the
selected component several times and evaluating the performance of the modified pipelines. We
considered two different improvement operators:

• Random Assignment – randomly assign a value to the selected component based on the
type of the component.

• Bayesian Optimization (BO) – a global-optimization technique that uses predictive
modelling (typically via Gaussian Processes) to guide the selection of values to evaluate. A
complete description of BO is beyond the scope of this report, but an excellent reference is (Snoek,
Larochelle, & Adams, 2012). However, for those familiar with BO the details of our settings are
as follows. For numeric components we use a standard BO approach with a Gaussian Process
model and the Expected Improvement acquisition function. For discrete parameters we use simple
empirical distribution models for each discrete value and the Expected Improvement acquisition
function.

Figure 10 provides pseudocode for these two improvement operators.

function RandomImprovement
Inputs:
History - List of past pipeline evaluations
Pipeline - Fully-configured pipeline to improve on
Component - Component in the pipeline to focus on improving

Returns:
A list of pipelines to evaluate

for i in [1..IMPROVEMENT_LENGTH]:
Candidate <- Pipeline
Candidate[Component] <- Random assignment of legal parameter values for Component
return Candidate

function BOImprovement

Inputs:
History - List of past pipeline evaluations
Pipeline - Fully-configured pipeline to improve on
Component - Component in the pipeline to focus on improving

Returns:
A list of pipelines to evaluate

for i in [1..IMPROVEMENT_LENGTH]:
Candidate <- Pipeline
RelevantHistory <- History filtered to only include pipelines in the same family as Pipeline
Xs <- Parameter set for Component in RelevantHistory
Ys <- ValidationScore for entries in RelevantHistory
Model <- BuildGP(Xs, Ys) ;; builds a Gaussian Process model
NextXs <- OptimizeEI(Model)
Candidate[Component] <- NextXs
return Candidate

Figure 10: Pseudocode describing several of the pipeline improvement policies that were evaluated.

Approved for Public Release; Distribution Unlimited.
19

MAB Algorithm Choice. To complete the specification of our approach we need to specify
the MAB algorithm used to select among arms at each iteration. Our first approach was to select
arms for the Structure MAB via the popular UCB algorithm (Auer et al., 2002). This algorithm
maintains upper confidence bounds on each arm based on observations so far and always pull the
arm with the highest upper confidence bound. We found, however, that this approach did not
perform well in our setting and would often result in performance that was significantly worse than
random. This is in part due to the fact that UCB is designed to optimize “cumulative regret” rather
than “simple regret”. That is, UCB tries to optimize the sum of returns of all arm pulls rather than
just trying to identify the highest performing arm. This can cause UCB to be less exploratory,
which apparently was detrimental in our setting. More importantly, however, the Structure MAB
arms are not stationary distributions as assumed by UCB. That is, each pull of an arm corresponds
to selecting a structure and improving that structure based on all prior information. This means
that repeated pulls of a single structure arm will tend to result in an increasing performance profile
for that arm, rather than i.i.d. observations from a stationary distribution.

The above observation led us to consider MAB algorithms for the “improving bandits” setting
(Heidari, Kearns, & Roth, 2016), which are specifically design to handle bandits where the arms
tend to improve with the number of pulls (and eventually have performance that levels off). At a
high-level the arm pulling strategy we use for the improving bandits setting estimates the
improvement slope of each arm and uses that to decide which arm to pull next based on the
expected improvement. Figure 11 provides pseudocode for the three arm pulling strategies
considered for our Structure MAB. This includes:

• Random – select an arm uniformly at random.
• e--greedy – with probability 1 - E select the best performing arm and otherwise select a random

arm. This algorithm is known to have theoretical advantages over UCB for optimizing simple
regret (Snoek et al, 2012).

• Improving Bandit – an implementation of the improvement-bandit MAB algorithm from
(Heidari et al., 2016).

Approved for Public Release; Distribution Unlimited.
20

function RandomMABPolicy
Inputs:
History - List of past pipeline evaluations
Arms - List of available arms to pull

Returns:
The arm to pull

a <- RandomChoice(Arms)
return a

function EGreedyMABPolicy

Inputs:
History - List of past pipeline evaluations
Arms - List of available arms to pull
Epsilon - Chance to behave greedily

Returns:
The arm to pull

if Random() < Epsilon:
a <- Arm in Arms with the best averaged reward according to History

else:
a <- RandomChoice(Arms)

return a

function ImprovingBanditSlopeMABPolicy

Inputs:
History - List of past pipeline evaluations
Arms - List of available arms to pull

Returns:
The arm to pull

BestSlope <- 0
BestArm <- null
for each Arm in Arms:
ThisStructure <- Arm.PipelineStructure
MostRecent <- Latest performance of the structure ThisStructure in History
LocalBestSlope <- 0
for i in [1..MEMORY_LENGTH]:
PastScore <- ith most recent performance of the structure ThisStructure in History
LocalBestSlope <- Max(LocalBestSlope, (MostRecent - PastScore) / i)

if LocalBestSlope > BestSlope:
BestSlope <- LocalBestSlope
BestArm <- Arm

return Arm

Figure 11: Pseudocode describing several multi-arm bandit arm selection policies that were evaluated.

For the second-stage Component MAB problem we also considered this same set of bandit
algorithms. This gave us nine possible configurations of the two-stage bandit selection process,
each of which could use either one of the two improvement operators.

3.4.2.3 Extensions
Building on our framework, we extended it over the one used during the February evaluation.

The new framework separates the search over data preparation from the search over machine
learning (ML) pipelines, which can provide a better factoring of the search space. It also separates
the search over the discrete pipeline schemas and the parameters for those discrete schemas. Since
a critical aspect of data science is correct representation of the data, the data processing deserves
its own separate search and optimization step. Meanwhile, separating the choice of primitives from
hyperparameters significantly reduces the complexity of search.

We studied the issue of making search as effective as possible subject to time limits. We
proposed the following two approaches:

Approved for Public Release; Distribution Unlimited.
21

• Take the time taken to evaluate a pipeline into consideration during search and choose
pipelines that maximize the expected improvement per unit time.

• Reason about the time available when planning the search.
For example, the search algorithm might be faced with a choice between improving a current

pipeline, which is fast but has a limited ceiling, versus exploring a different part of the search
space, which is slower to yield improvements but has a higher ceiling. The second option would
only be chosen if there is enough time to search the new part of the search space thoroughly enough
to obtain improvements.

We also studied the issue of minimizing the impact of expensive pipeline evaluation during
search. We explored the following two strategies:

• Only partially evaluate candidate pipelines at first and evaluate the most promising
pipelines more fully

• Intelligent reuse computation between different evaluations in the same search process

Studying these two questions would have prepared us well for future phases where time and
resource issues could become significant.

3.4.3 Integration of Eve Automated Model Composition Software
During Year 1 of the Eve project, we integrated the Eve automated model composition

software by developing and refining APIs for integration, integrating Eve TA2 elements in
preparation for integration events, and participating in semi-annual D3M integration events with
TA1 and TA3 performers.

During the effort, we updated the API for the POE. The engine’s API was designed to consume
information from the other Eve components using the following methods:

• getProblem() returns the problem description from the User Manager
• getPrimitives(pquery) returns primitives that match pquery from the Primitives Manager
• putFeedback(p) provides feedback on p’s quality to the Primitives Manager
• definePipeline(p) allows POE to specify a pipeline and returns a unique pipeline key
• executePipeline(pk) informs the Execution Manager to execute pipeline pk
• rankPipeline(pk, i) ranks the pipeline pk as the ith pipeline
• getDataset(dquery) returns data sets that match dquery from the Datasets Manager
• putData(data) provides the key to the stored data to the Data Store
• getData(key) returns keyed data from the Data Store
The following methods get results from the POE:
• getPipelines() returns a ranked list of pipelines
• getSolution(pk) completes and returns the pkth pipeline

We integrated the POE into Eve, and also implemented the common TA1 API for use within
Eve. We updated the newest TA2-3 API and match the dynamic script to the new interface.

We redid hooks for the POE and prepared entry points for evaluation.
We converted all Scala portions of Eve to Python so it could better integrate with the Pipeline

Optimization Engine. This new Python-based Eve system did not require reloading the primitive
libraries before executing each pipeline. Therefore, the conversion to Python resulted in a much

Approved for Public Release; Distribution Unlimited.
22

faster pipeline executor. We integrated the new version of our system with the TA2-3 API used in
the February evaluation, and reimplemented support for the API.

We ran tests of the Python-based Eve system on the seed problems and generated a table of
results including reasons for failures and number of pipelines tested.

We performed a partial integration with the Purdue Modsquad TA3 system, and integrated Eve
within TA3 Kubernetes configurations.

3.4.4 Evaluation
During Year 1 of the Eve project, we worked with SMEs and other D3M performers to exercise

and evaluated the D3M toolkit’s ability to build complex data modeling pipelines for user-
specified data and outcomes of interest.

We evaluated Eve based on the three key dimensions in Table 3.

Table 3: Metric Dimensions

Dimension Example Metrics
Accuracy Performance of the models developed by Eve and the decisions/contributions made by SMEs. This is evaluated by

directly contrasting SME inputs and results with Eve with inputs and results from working with data scientists.
Specific targets include: plans, models, decisions, workflows, and problem formalizations.

Efficiency Time and cost savings introduced by Eve. This includes analyzing the time commitment required by the SME, as
well as the cost savings from removing the data scientist from the equation. This also includes efficiency
assessments of the underlying process, as well as a comparison of the number of models Eve can explore.

Complexity Complexity of the problems that Eve can address. This includes the type and specification of the problem (e.g.,
empirical science problems with complete data vs. underspecified or unresolved problems), as well as quantitative
notions of complexity (e.g., number of primitives needed; amount of data; etc.).

Approved for Public Release; Distribution Unlimited.
23

4. Results
4.1 Internal Testing Results

In addition, to program evaluations, we tested our search and planning system internally.
Interestingly, when considering different configurations, we found that there was no statistically
significant difference between using Bayesian optimization (BO) as an improvement policy and
using pure random sampling as an 'improvement' policy. This contradicts our prior experience in
using BO for difficult optimization problems, where there is almost always a significant
improvement over random. One hypothesis is that the parameter optimization problems generated
here are densely populated with solutions that are close to optimal. While time did not allow for a
detailed investigation into this, it does appear to be a reasonable explanation based on limited
experiments, where we created dense plots of some of the response surfaces corresponding to our
parameter optimization problems.

Figure 12: Plots of averaged performance vs number of pipelines evaluated for several combination

of selection and improvement policies.

Our second surprise was that we were not able to see significant improvements over the random
multi-armed bandit (MAB) strategy (at either stage) compared to the non-random strategies. The
non-random strategies did not decrease performance compared to random, which was the case for
UCB, but no consistent improvement over random was observed. Figure 12 shows the results of
several of these experiments, demonstrating the near-identical performance of different
combinations of MAB arm selection policies and improvement policies when averaged over many
independent runs. This was very surprising and led us to question whether there was a fundamental
flaw in the system.

To help assess this, we evaluated our “random bandit approach” (random arm selection
policy, random hyperparameter improvement policy) against the state-of-the-art autoML system
AutosSKLearn. We found that when we gave both systems the same amount of wall clock time
or the same number of pipelines to evaluate they were able to find pipelines with similar
performance.

Papers on AutoSKLearn and other autoML systems do not include comparisons to randomized
discrepancy searches such as ours, which is, perhaps, one reason that this phenomenon has not
been mentioned in the literature. An alternative explanation is that we were using a misconfigured
version of AutoSKLearn. However, we are able to achieve results with our distribution of
AutoSKLearn that are close to the results reported in the literature, suggesting the library was
working as intended. We also spent considerable time ourselves optimizing the AutoSKLearn
configuration.

Approved for Public Release; Distribution Unlimited.
24

Figure 13 shows an example comparison of running our approach “Eve” and AutoSKLearn
(shown as “AutoML”) on 5 benchmark datasets for 300 seconds each. We see that Eve and
AutoSKLearn are typically on par regardless of AutoSKLearn’s configuration. Interestingly we
did not observe that Metalearning or Ensembling lead to a consistent impact on the performance
of AutoSKLearn.

Figure 13: Comparison of our system's performance "Eve" against AutoSKLearn (shown as "AutoML") with

different configurations of AutoSKLearn.

For our internal evaluation, in the setting we were working in, we were essentially tied with
our state-of-the-art, and had little reason or evidence to suggest that we could continue to improve
our system's performance with the right selection or improvement policies. Our belief is that the
differences in performance would be apparent with larger or more difficult datasets, or that a large
collection of pipeline evaluation metadata could be used to effectively drive the MAB arm
selection, but we no longer have the resources to pursue that line of research.

4.2 Program Evaluation
For the program evaluation, we participated in a D3M evaluation event in February 2018. The

evaluation requirements for this event were not available prior to the evaluation, and there was no
framework or code available to test against. We redid hooks for the POE and got entry points ready
for the evaluation; integrated TA1-2 API hooks into Eve; and created a Docker container. We
packaged Eve into the Docker container (a standalone executable package) for evaluation, and ran
it according to specified commands from the Government evaluation document. We ran actual
TA1 primitives during the evaluation and Eve components ran inside a TA3 setup. We also
finalized the search procedure over pipelines for the evaluation event, which was based on a
randomized Monte-Carlo search. We worked closely with the NIST team to identify issues that
applied not only to our effort but also to other teams. In the February evaluation, we were able to
automatically discover TA1 primitives based on their metadata, ingest TA3 problems and datasets,
perform searches for pipelines, and execute those pipelines.

We also participated in an evaluation run by NIST in April 2018. We collaborated with other
performers and government teams to understand and refine the APIs for this evaluation, and

Approved for Public Release; Distribution Unlimited.
25

continued updating Eve system components to meet these requirements. We prepared a new
version of our TA2 system for the April evaluation.

We developed a set of sample primitives used in our pipeline execution engine and identified
an optimizer (SMAC) that can generate pipeline descriptions using those primitives, and created a
Docker image for evaluation. We made progress on integration among various Eve components—
integrating Eve with TA1 and TA3 systems, and building a Docker component for evaluation. We
participated in the 5-week integration event, continued to extend and integrate Eve components
into TA1 and TA3 systems, and continued to build and evaluate the Docker container for Eve.

In the NIST evaluation, Eve was able to perform some of the evaluation tasks but was unable
to perform many of them. We believe many of the difficulties resulted from the fact that we were
automatically discovering TA1 primitives, rather than using our own primitives. Unfortunately,
TA1 primitives were not yet available for some data types, so we were unable to find suitable
primitives. For other TA1 primitives, their metadata was inadequately curated and sometimes
incorrect. For example, hyperparameters that we believed to be in the legal range for the primitives
caused the primitives to crash. This made it difficult for a fully automated approach to succeed.

Approved for Public Release; Distribution Unlimited.
26

5. Conclusions
We have developed Eve, a virtual data scientist to serve the role of TA2 in the D3M system.

Eve receives problems and datasets from TA3, discovers TA1 primitives, searches for pipelines
using those primitives to solve the problem, and provides the execution of those pipelines. Tests
show that our approach has promise and demonstrates in proof of concept that the approach can
work on some problems, but significant progress is needed to produce a full working system.

We have identified curation of TA1 primitives as a critical need going forward. It is necessary
for us to understand what primitives do and how they can be used, and in particular what the valid
hyperparameter ranges are for them. A well understood and more complete set of primitives will
enable us to provide coverage for a wider range of problems in a more reliable manner.

Approved for Public Release; Distribution Unlimited.
27

6. References
Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-Time Analysis of the Multi-Armed Bandit

Problem. Machine Learning, 47, 235–256.
Balla, R. K., & Fern, A. (2009). UCT for Tactical Assault Planning in Real-Time Strategy

Games. In IJCAI (pp. 40–45).
Brochu, E., Cora, V. M., & de Freitas, N. (2010). A Tutorial on Bayesian Optimization of

Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. ArXiv:1012.2599 [Cs]. Retrieved from
http://arxiv.org/abs/1012.2599

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., …
Colton, S. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4, 1–43.

Dietterich, T., Dereszynski, E., Hutchinson, R., & Sheldon D. (2012). Machine Learning for
Computational Sustainability. Presented at the Green Computing Conference (IGCC),
International, San Jose, CA. http://doi.org/DOC: 10.1109/IGCC.2012.6322258

Heidari, H., Kearns, M., & Roth, A. (2016). Tight Policy Regret Bounds for Improving and
Decaying Bandits. (pp. 1562–1570). Presented at the IJCAI.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential Model-Based Optimization for
General Algorithm Configuration (pp. 507–523). Presented at the International Conference on
Learning and Intelligent Optimization.

King, B., Fern, A., & Hostetler, J. (2013). On Adversarial Policy Switching with Experiments in
Real-Time Strategy Games. In ICAPS.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2014). Automatic
Construction and Natural-Language Description of Nonparametric Regression Models.
ArXiv:1402.4304 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1402.4304

Mulwad, V., Finin, T., & Joshi, A. (2013). Semantic Message Passing for Generating Linked Data
from Tables (pp. 363–378). Presented at the International Semantic Web Conference.

Rahm, E., & Do, H. H. (2000). Data Cleaning: Problems and Current Approaches. IEEE Data Eng.
Bull., 23, 3–13.

Raman, V., & Hellerstein, J. M. (2001). Potter’s wheel: An Interactive Data Cleaning System. In
VLDB (Vol. 1).

Ramnandan, S. K., Mittal, A., Knoblock, C. A., & Szekely, P. (2015). Assigning Semantic Labels
to Data Sources (pp. 403–417). Presented at the European Semantic Web Conference.

Ritze, D., Lehmberg, O., & Bizer, C. (2015). Matching HTML Tables to Dbpedia. In Proceedings
of the 5th International Conference on Web Intelligence, Mining and Semantics (p. 10).

Singh, R., Rocktaschel, T., Hewitt, L., Naradowsky, J., & Riedel, S. (2015). WOLFE: An NLP-
Friendly Declarative Machine Learning Stack. In Proceedings of NAACL-HLT (pp. 61–65).

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine
learning algorithms (pp. 2951–2959). Presented at the Advances in neural information
processing systems.

http://arxiv.org/abs/1012.2599
http://doi.org/DOC
http://arxiv.org/abs/1402.4304

Approved for Public Release; Distribution Unlimited.
28

Syed, Z., Finin, T., Mulwad, V., & Joshi, A. (2010). Exploiting a Web of Semantic Data for
Interpreting Tables. In Proceedings of the Second Web Science Conference (p. 5).

Taheriyan, M., Knoblock, C. A., Szekely, P., & Ambite, J. L. (2016). Learning the Semantics of
Structured Data Sources. Web Semantics: Science, Services and Agents on the World Wide
Web, 37, 152–169.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms. In in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining
(pp. 847–855).

Wu, B., & Knoblock, C. A. (2016). Maximizing Correctness with Minimal User Effort to Learn
Data Transformations. In Proceedings of the 21st International Conference on Intelligent User
Interfaces (pp. 375–384).

Zumel, N., Mount, J., & Porzak, J. (2014). Practical Data Science in R. Shelter Island, NY:
Manning.

Approved for Public Release; Distribution Unlimited.
29

7. List of Symbols, Abbreviations, and Acronyms

ACRONYM Definition
API Application Programming Interface
ARMA Autoregressive Moving Average
CSV Comma-Separated Values
DM Datasets Manager
DS Data Store
HMI Human Machine Interface
JSON JavaScript Object Notation
MARVIN Modular Affective Reasoning-Based Versatile Introspective Architecture
ML Machine Learning
NIST National Institute of Standards and Technology
OSU Oregon State University
PCA Principal Component Analysis
PDL Pipeline Description Language
PM Primitives Manager
POE Planning and Optimization Engine
REST Representational State Transfer
RL Reinforcement Learning
SMAC Sequential Model-Based Algorithm Configuration
SME Subject Matter Expert
SVM Support Vector Machine
UM User Manager

	1. Summary
	2. Introduction
	2.1 Problem Description
	2.2 Technical Approach

	3. Methods, Assumptions, and Procedures
	3.1 Meetings and Presentations
	3.2 System Architecture
	3.3 Formal Modeling Layer
	3.4 Search and Planning to Discover Pipelines
	3.4.1 Requirements Analysis for Discovery of Optimal Models
	3.4.2 Planning and Optimization Engine
	3.4.3 Integration of Eve Automated Model Composition Software
	3.4.4 Evaluation

	4. Results
	4.1 Internal Testing Results
	4.2 Program Evaluation

	5. Conclusions
	6. References
	7. List of Symbols, Abbreviations, and Acronyms

