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ABSTRACT 

 This thesis investigates the feasibility of using Costas frequency shift transmission 

waveforms to generate spotlight Synthetic Aperture Radar (SAR) images. A spotlight 

SAR image formation algorithm is used to evaluate the radar returns from scenes 

containing multiple point scatterers. Two-dimensional imagery is used to investigate the 

sidelobe effects. The peak sidelobe ratio (in dB) is determined from the one-dimensional 

slices in both the down-range and cross-range dimensions. Three unique Costas 

frequency shift sequence lengths are used in the investigation, N = 15, 100, and 150. 

 Results of this investigation show that Costas frequency shift sequences are 

practical for the formation of spotlight SAR images. The autocorrelation sidelobe levels 

resulting from the Costas waveform are reduced with an increasing sequence length, 

providing an improved peak-to-sidelobe ratio. Image scenes with multiple neighboring 

scatterers are interrogated. Results show a spotlight SAR image peak-to-sidelobe ratio of 

– 20 dB, – 40 dB, and – 44 dB for N = 15, 100, and 150, respectively, thus offering the 

potential for producing high-quality spotlight SAR imagery while maintaining the 

strategic advantages of low probability of intercept. 
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I. INTRODUCTION 

A. SYNTHETIC APERTURE RADAR 

Synthetic Aperture Radar (SAR) imaging utilizes radar signals to generate two-

dimensional and three-dimensional images. The advantage of SAR over optical imaging is 

that is does not require a light source, and it can easily penetrate clouds or foliage which 

would obscure a target from an optical sensor [1]. SAR imaging can easily generate images 

with sub-meter resolution. SAR imaging is used extensively in science and military 

applications. In this introduction, we present an overview of SAR with a brief history of 

SAR. 

Forming an image with a radar requires a narrow beam for fine cross-range 

resolution. The size of the beam on the ground grows as the range from the platform to the 

image area increases, making it difficult to use a real-aperture system for imaging. In a 

radar-imaging system, the ground area illuminated by an antenna is a function of the 

antenna beamwidth and the distance of the antenna to the region being imaged. The wider 

the antenna beamwidth or greater the distance between the radar system and the ground, 

the larger the imaged area as shown in Figure 1 [2]. Reflections off all targets within the 

illuminated area are returned to the radar system, making it impossible for a real-aperture 

system to discern individual targets. Detection of individual targets can only be 

accomplished by improving the resolution of the radar system by reducing the beamwidth. 

Reducing the beamwidth of a real-aperture system is accomplished by increasing the size 

of the antenna; however, the goal of obtaining image resolutions in the meter range requires 

that the size of the antenna to be several kilometers long, which is impossible for most 

applications which use aircraft or satellites for imaging [2].   

The alternative to using a very large real aperture to obtain very fine image 

resolutions is to use a synthetic aperture. Synthetic Aperture Radar systems provide high 

resolution imagery through the use of an antenna with a much wider beamwidth.   
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Figure 1. Forming an Image with a Radar Requires a Narrow Beam for Fine 
Cross-Range Resolution. Adapted from [1].   

A synthetic aperture uses a standard-sized real aperture and captures several returns 

from an area to be imaged as the radar moves past the area. The phase data of each radar 

return is saved to build a phase history. This phase history is processed through a range-

Doppler algorithm to develop an image that is much higher in resolution than is possible 

using only the real-beam radar data without the range Doppler algorithm processing. 

B. SAR IMAGING HISTORY 

In the early 1950s, Carl Wiley, working for the Goodyear Corporation, determined 

that the Doppler shifts of a series of pulses transmitted from a moving real-aperture radar 

could be analyzed to generate a better along-track resolution [1]. This formed the basis for 

what is today known as Synthetic Aperture Radar. Development in SAR continued from 

the 1950s through the 1970s primarily in military and industrial corporations such as 
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Goodyear, Hughes, and Westinghouse. The first acknowledged SAR system was the U.S. 

Army AN/UPD-1 mounted in a Beechcraft. The system was developed in the 1960s in 

coordination with the University of Michigan. This system led to a version fitted onto an 

F-4 and used in Vietnam and was the beginning of SAR system usage by the military [3]. 

In the mid-1970s engineers at the Jet Propulsion Laboratory (JPL) joined with 

National Aeronautics and Space Administration (NASA) engineers and the National 

Oceanic and Atmospheric Administration (NOAA) engineers to begin work on a new 

space-based SAR for monitoring the world’s oceans. The result was the first non-military 

SAR system named SEASAT [4]. SEASAT operated for several months in 1978 until it 

experienced a critical failure. SEASAT represented a major milestone in the SAR 

development because it was the first to use digital processing of the phase data to generate 

images. 

Prior SAR systems used data recorded on film with optical processing to analyze 

the phase data and generate images. To keep the optical systems that performed the Fourier 

transforms to a manageable size, the data was recorded on 35 mm film; however, at this 

size the patterns on the film prevented image focusing due to diffraction effects. This 

limitation drove the desire for a digital approach that was successfully answered by 

MacDonald Dettwiler (MDA), a Canadian aerospace company, in 1978 [4]. The digital 

processor developed by MDA was used in SEASAT. The resulting images had much better 

resolution than the images generated through the optical processing method, but the higher 

resolution came at the expense of processing time. A few seconds of collected data took 

several hours of processing to generate an image. 

C. COSTAS WAVEFORMS 

The selection of waveform for a radar system is very important, and the SAR 

system is no different. Two key concepts in the selection of the waveform are the waveform 

bandwidth and the detection range. Bandwidth of the waveform drives the resolution of a 

radar system. Higher bandwidth waveforms result in better range resolution [5].   

The traditional radar generates a pulse of radio frequency (RF) energy and uses the 

elapsed time between the transmission of the pulse and the reception of received energy 



 4 

reflected off a distant target to determine the distance to the target [1]. A radar that uses a 

short pulse width (high bandwidth) is able to distinguish two closely spaced targets, 

whereas a radar with a longer pulse width (lower bandwidth) receives overlapping pulses 

from the two targets which make it impossible to measure exact range to the trailing 

target [5]. The range at which the radar is required to operate drives the amount of 

transmitter power required. From the radar-range equation we can see that the received 

power from a target decays as the forth power of the range to the target; therefore, the 

amount of required power increases significantly for a radar pulse to be effective at long 

ranges [5]. The high transmit power complicates the design of the system. The higher 

power requires a larger power source, more cooling, more volume, and thus, is more 

expensive to design, build, and operate. The large transmit power also makes a radar system 

easier to detect. For military applications where stealth is the ultimate advantage, a high-

power radar is not acceptable.   

A method for overcoming the high power requirements of traditional radar while 

also achieving very high bandwidths is through pulse compression waveforms [6]. Pulse 

compression involves the modulating of a long pulse and then the use of a matched filter 

on the received pulse. The result of matched filtering is a pulse that is compressed in time 

but increased in power as shown in Figure 2. A pulse compression waveform results in a 

high range resolution due to the high bandwidth of the signal, while the pulse compression 

gain allows for lower transmit power [7]. 

The two primary methods for modulating a pulse for use in pulse compression are 

phase modulation and frequency modulation. There are a number of phase modulation 

schemes: a) binary-phase codes, such as Barker codes, and b) poly-phase codes, such as 

Frank codes, Tn codes, and Pn codes [8]. Costas codes are a popular frequency modulation 

scheme. 
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Figure 2. The Matched Filtering Process 

Costas codes are named after John P. Costas, who published a report on their 

existence in 1965. Costas codes can be envisioned as points within a square grid 

checkerboard where each row or column contains only one point, and distances between 

each pair of dots are distinct. The unique relationships between the values within the Costas 

code result in a near ideal thumbtack auto-ambiguity function as shown in Figure 3 [8]. 

 

Figure 3. The Ambiguity Function of a Length-25 Costas Code  
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D. PREVIOUS WORKS 

In this thesis, we build upon prior investigations of low probability of intercept 

(LPI) waveform applicability to SAR imaging. Giusti and Martorella [9] have used LPI 

Frequency-Modulated Continuous Wave (FMCW) waveforms in order to generate Inverse 

SAR (ISAR) images. In [10] and [11], Garren, Pace, and Romero investigated phase-shift 

keying (PSK) SAR techniques via the use of P3 and Frank codes. In [12] Lang extended 

the investigation of PSK techniques to include P1, P2 and P4 codes. The investigation of 

LPI waveforms for SAR imaging was extended to include frequency-hopping waveforms 

in [13], which forms the basis for this thesis. Costas-coded waveforms, which are another 

type of LPI waveform, are investigated in this thesis for applicability to form spotlight-

mode SAR [1], [2], [14]–[16] images of a stationary scene.  

E. RESEARCH OBJECTIVES AND APPROACH 

The primary objective of this thesis is to determine the viability of using frequency 

diverse Costas-coded transmission waveforms in order to generate SAR images. A focus 

of the suitability of frequency-hopping waveforms for generation of SAR images is the 

impact of sidelobes. SAR images are degraded by either an excessive number of sidelobes 

or high sidelobe levels relative to the main lobe; therefore, the investigation of the sidelobe 

structure of Costas coded waveforms is a focus of this thesis. The expected benefit of this 

analysis is a demonstration of the overall viability of using LPI Costas waveforms in 

forming SAR imagery. 

The overall approach is this analysis is to use simulated Costas waveforms in order 

to generate the expected radar return data based upon idealized point scattering centers 

placed in the scene. These simulated radar returns are ingested within an actual SAR image 

formation algorithm in order to determine the effectiveness of using Costas waveforms to 

generate useful SAR imagery. We look at the sidelobe effects, both in the two-dimensional 

(2D) imagery as well as one-dimensional (1D) slices in both the down-range and cross-

range direction. It is necessary to confirm that the resulting sidelobes near main scattering 

centers are sufficiently low so as to avoid interfering with closely-spaced neighboring 

scattering centers. Costas waveforms of varying code length are used in the generation of 
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SAR images through MATLAB simulation. It is also important to confirm that this 

approach is viable for much longer Costas sequences, which will likely be required for a 

real imaging system. The resulting images are analyzed by extracting parameters to 

quantify the quality of the image.  

F. THESIS OUTLINE 

In Chapter II, the principles of SAR are presented to include the theory of spotlight 

mode SAR and the processing algorithms used to generate images. In Chapter III, the 

methodology of the SAR simulation and the setup of the simulation are presented. The 

simulation results are presented and analyzed in Chapter IV to show the correlation 

between the Costas sequence length and the autocorrelation side lobe levels. A summary 

of the thesis is presented in Chapter V along with recommendations for future work. 
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II. TECHNICAL BACKGROUND 

A. PRINCIPLES OF SYNTHETIC APERTURE RADAR  

Side-looking radar can be used to generate images by flying an aircraft past the area 

to be imaged [1], [2]. As the aircraft proceeds along the flight path, the radar transmits 

pulses of RF energy which are reflected off the image area and returned to the radar. Each 

pulse of RF energy is transmitted at a different point along the flight path, and the antenna 

beam width is illuminating a different area on the ground. The two dimensions of a SAR 

image are the cross-range direction, which is the direction parallel to the flight path of the 

aircraft, and the range direction, which is perpendicular to the flight path of the aircraft. 

Each pulse is received and processed using standard radar processing. This provides 

the data for the range direction [1]. A long pulse, when modulated, is used with pulse-

compression techniques to improve range resolution while keeping transmit power 

requirements low. If the beam width is sufficiently small such that the cross-range 

resolution meets the image requirements, then this processing is all that is required [2]. 

This is the operation of a real-aperture system. As seen in Figure 4, a real-aperture system 

uses standard radar processing to generate range information and uses multiple collections 

along the flight path to generate the cross-range component of the two-dimensional image. 

A real aperture imaging system is limited in cross-range resolution by the beamwidth of 

the aperture. Each radar pulse must be transmitted from a location that is greater than the 

size of the beam on the ground 

In the real-aperture system, the cross-range resolution is based on the horizontal 

angular beam width of the antenna and the range of the aircraft from the location being 

imaged as given by 

crW R R
D
λβ  = =  

 
 ,                                            (1) 

where R  is the range between the aircraft and imaging area, β  is the nominal angular 

width of an antenna in radians, the wavelength λ  divided by the horizontal width of the 

antenna D [2].   
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Figure 4. Image Formation Using the Real Aperture Imaging System 

As an example, a system with a frequency of 3 GHz (0.1 m wavelength) and a 1.0-

m antenna operating at a range of 50 km, from (1) has a cross-range resolution of 

( )3 0.150 10 5000 m
1

crW R R
D
λβ    = = = × =   

   
.                       (2) 

Clearly, a cross-range resolution of 5.0 km does not provide sufficient resolution to 

generate images useful in tactical military applications.   

The methods for improving cross-range resolution of a real-aperture system are to 

reduce the range of the aircraft to the imaging location, reduce the wavelength, or increase 

the size of the antenna. Reducing the range is not feasible for satellite or most military 

applications. Wavelength is constrained by many other parameters such as propagation 

effects and manufacturing capabilities, and an antenna large enough to provide 1.0-m 

resolution requires an aircraft 5000-m long. The limits of the real-aperture system are 

obvious.  



 11 

SAR employs digital processing techniques to synthesize a much larger aperture 

than the size of the real aperture. As the aircraft moves past the imaged area, each radar 

collection provides data at different locations. It is the distance along the flight path that 

makes the synthetic aperture. The size of the imaged area is the width of the ground beam 

pattern since this is the distance that a point is within the beam along all points of the flight 

path. This means that the SAR system operates better with a smaller antenna as opposed to 

the larger antenna requirement of a real-aperture system. This leads to the smaller the 

antenna on the SAR system, the larger the imaged area, and the finer the cross-range 

resolution [17]. Using this method a synthetic aperture of several kilometers can be 

obtained, resulting in much finer cross-range resolution.   

There are two major modes used in SAR: strip-map SAR and spotlight SAR as 

illustrated in Figure 5. Both modes use side-looking radars to image an area. In strip-map 

SAR, the antenna-pointing angle is fixed, and the beam of the radar passes over the imaged 

area as the aircraft flies over. In spot-light SAR, the antenna is steered to maintain the beam 

over the imaged area. The spotlight mode SAR is preferred when the area to be imaged is 

a small patch [1]. Under this condition, the spotlight mode SAR requires fewer pulses to 

image the area and allows for a larger antenna, which can provide more gain to make the 

overall system design easier. In this thesis, we focus on spotlight mode SAR, which is now 

described in more detail. 

SAR systems must transmit consecutive waveforms at a spatial interval 

corresponding to one-half of the antenna beam-width to prevent aliasing due to under 

sampling [1], [2]. An example of the spotlight-mode geometry is shown in Figure 6. In 

strip-map SAR, a large number of pulses are required to image a small area. In Figure 6, 

the aircraft is traveling at 5 m/s, operating at a range of 70 km from the imaged area, travels 

a distance of 3.18 km, and images an area 1.0 km square. The system operates at a 

frequency of 10 GHz (0.03 m wavelength), and a 0.33 m resolution is desired. Geometry 

can be used to calculate the angular beam-width of 0.82 degrees, resulting in an antenna 

width of 2.1 m. To prevent undersampling, the radar must transmit consecutive waveforms 

at a spatial interval of one-half of the antenna beam-width, which corresponds to a distance 
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along the synthetic aperture of 1.05 m. Taking the aircraft velocity into account, we see 

that the pulse-repetition frequency (PRF) must be at least 4.76 kHz. 

 

Figure 5. Two Primary Modes of SAR Are Spotlight SAR (above) and Strip 
Map SAR (below). Adapted from [2]. 
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Figure 6. Pulse Collection in Strip-Map SAR. Adapted from [2]. 

B. SPOTLIGHT-MODE DATA COLLECTION 

The collection of phase history data occurs in three-dimensional space, and the data 

must be translated into a two-dimensional image. In this section, we discuss the theory and 

process for transforming data collected in two-dimensional space into a two-dimensional 

image. 

Phase data collected by the moving aircraft is represented on a slant plane. The slant 

plane dimensions are 'X  and 'Y . The spatial coordinate 'Y  represents the slant-range 

spatial frequencies, and 'X  is orthogonal to 'Y  and lying in the plane. The angle ψ  is the 

angle of the imaged area to the aircraft with respect to the ground. The angle θ is the squint 

angle and is measured from the imaging area to the aircraft with respect to the direction of 

travel. To form a ground plane image, these slant dimensions must be projected onto the 
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ground plane. Several key relationships in the slant-plane are summarized in the following 

equations [2]. 

The range resolution is 

'
2

' 2y
c

c
Y B
πρ

  = =   ∆   
,                              (3) 

where c  is the speed-of-light and cB  is the bandwidth of the signal. The range resolution 

can be no better than / 4λ  since the radar can never have a bandwidth that exceeds twice 

the center frequency. The cross-range resolution is 

           x'
2

' 2X
π λρ

θ
   = =   ∆ ∆   

.                                                 (4) 

The minimum sampling interval in the 'X  dimension required to build an image of 

diameter 2 L  without aliasing is given by 

 2'
2

X
L
πδ  =  

 
,                                                           (5) 

which results in the corresponding angular sampling interval of 

 '
2 / 2(2 )

X
L

δ λδθ
π λ

 = = 
 

.                                                    (6) 

The along-track sampling interval in meters can be calculated as 

 
2(2 ) 2

R DA R
L

λδ δθ= = = ,                                                   (7) 

where D  is the width of the antenna that illuminates a ground region of 2L  diameter. 

When the slant-plane is projected onto the ground plane, the range resolution becomes  

 2
2 cosy

c

c
Y B
πρ

ψ
= =
∆

,                                                    (8) 

where ψ  is the angle of the imaged area to the aircraft with respect to the ground. The 

cross-range resolution then becomes 

2
2x X

π λρ
θ

= =
∆ ∆

.                                                         (9) 
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The cross-range resolution does not change between the slant-plane and ground plane. The 

range resolution is scaled by a factor of cosψ  when projected onto the ground plane. 

The maximum dimensions of an area that can be imaged can be determined [1]. For 

the cross-range dimension, the maximum length of the image is a function of the slow-time 

sampling (the radar PRF given as xN ), the change in angle per pulse repetition interval 

(PRI), and the wavelength of the signal: 

 
2

x
x

ND λ
θ

=
∆

.                                                            (10) 

For the range direction, the maximum length of the image is a function of sampling in the 

fast-time, given as yN , and the bandwidth of the waveform: 

 
2

y
y

cN
D

B
= .                                                            (11) 

C. SQUINT ANGLE 

The angle from the imaging area to the aircraft with respect to the direction of travel 

is called the squint angle. The topic of squint angle is briefly discussed here because it does 

have an impact on the resulting image, but the simulations executed for this thesis are all 

centered on a broadside collection. 

When the center of the imaged area is perpendicular to the synthetic aperture, the 

geometry is termed broadside. If the collecting platform position is prior to the broadside 

geometry, then the collection is a forward squint. After the platform has passed, the 

broadside geometry the collections are back squint, as shown in Figure 7. 

D. THE RANGE DOPPLER ALGORITHM 

The processing of phase-history data into an image is done with the Range Doppler 

Algorithm (RDA). The RDA uses Fourier transforms, typically via Fast Fourier Transform 

(FFT), in the range and cross-range dimensions to form an image from the phase history 

data [18]. A diagram of the RDA is shown in Figure 8. 



 16 

 

Figure 7. Forward and Back Squint in Strip-Map SAR. Adapted from [2]. 

The first process in the RDA is the processing of the phase data in the range 

dimension. Pulse compression is performed through matched filtering via convolution. The 

received signal is processed through an FFT in the range dimension to convert to the time 

domain. The signal in the range dimension is convolved with the conjugate, time-reversed 

version of the transmitted signal. The output of the convolution process is the pulse 

compressed signal in the range dimension. 

The resulting signal is processed through an inverse Fourier Transform via the 

Inverse Fast Fourier Transform (IFFT) to convert the signal back into the frequency domain 

in the range dimension. It is possible to take this output and perform a two-dimensional 



 17 

FFT to generate an interim image, but without the polar-to-rectilinear processing, the image 

is typically distorted [2], [18].   

 

Figure 8. Block Diagram of the Range Doppler Algorithm 

The next step is the polar-to-rectilinear transformation, after which a windowing 

function can be applied. Finally, a two-dimensional FFT is performed to convert both range 

and cross-range to the time domain, which forms the final image.     

E. POLAR-TO-RECTANGULAR CONVERSION 

The phase history data collected in the spotlight SAR mode is polar formatted. The 

key processing that occurs during the RDA is the FFT; however, the FFT requires 

uniformly spaced data on a rectangular grid; therefore, to utilize the processing efficiency 

of the FFT, the phase history data must be converted from its inherent polar format to a 

rectangular format [2].  
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The process for converting from polar to rectangular is a two-step process. The first 

step is range interpolation as shown in Figure 9. The samples on the radial lines are 

interpolated onto a trapezoidal grid. After this interpolation step, the samples remain on the 

radial lines (cross-range is still polar). The samples are now interpolated onto the 

rectangular grid for the range dimension and referred to as keystone samples.  

 

Figure 9. Conversion of Polar Samples to Keystone Samples. Adapted from [2]. 

The second step is the cross-range interpolation as shown in Figure 10. The 

keystone sampled data are interpolated on the final rectangular grid. The process of 

breaking the polar-to-rectangular conversion into two steps simplifies the process into two 

nearly identical interpolation steps. 

 

Polar Samples
Keystone Samples
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Figure 10. Sampling of Keystone Samples onto the Final Rectangular Grid. 
Adapted from [2]. 

F. PRINCIPLES OF COSTAS-CODED WAVEFORMS 

Parts of this section were previously published in Proc. of the IEEE Radar 
Conference, 2017 [13].1  

Costas coding is a method for generating waveforms that use frequency-shift 

keying (FSK) or frequency hopping. Costas codes are a highly optimized set of codes that, 

when used with matched filtering, produces high compression values with low sidelobes 

[8], [19]. The Costas coded waveforms examined in this thesis are Costas-coded pulses 

                                                 
1 Reprinted, with permission, from Z. Wagner, D. Garren, and P. Pace, “SAR imagery via frequency shift 
keying Costas coding,” in Proc. of the IEEE Radar Conference, Seattle, WA 2017.  This publication is a 
work of the U.S. government as defined in Title 17, United States Code, Section 101. Copyright protection 
is not available for this work in the United States. IEEE will claim and protect its copyright in international 
jurisdictions where permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works. 

 

Rectangular  Samples
Keystone Samples
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transmitted at a fixed PRI. Each pulse of length 'τ  is divided into N subpulses of equal 

duration 1τ . Each subpulse is at a different frequency. The time-bandwidth product for a 

Costas code is 

 2'f Nτ∆ =  .                                                         (12) 

The pulse compression ratio for a Costas code, which is the ratio of the uncompressed pulse 

width to the compressed pulse width, is given by 

PCR N= .                                          (13) 

An example Costas-coded pulse with a Costas sequence with sequence length six is shown 

in Figure 11.   

 

Figure 11. A Six-Sequence Costas-Coded Pulse 

The sequence of the frequencies is set by the Costas sequence. The key feature of 

the Costas code is that each frequency is used only once during the code. This can be 

visualized as an N  by N matrix. The columns are indexed as 0,1, 2,..., 1i N= − , and the 

rows are indexed as 0,1, 2,..., 1j N= − . Each row represents a subpulse, and each column 

represents a frequency. A dot in a particular box indicates the frequency of that particular 

subpulse. The frequency matrix for a six-level Costas code is shown in Figure 12. The 

Costas sequence represents an index that is a multiplier to a base frequency to obtain the 

individual sequence frequencies. 
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Figure 12. A Binary Time-Frequency Matrix for Costas Sequence {1,2,5,4,6,3} 

Another key feature of the Costas code is that time and frequency shifted copies of 

the matrix produce only one coincidence at most outside of the origin. This is because the 

matrix has only one entry per row and column and the distances between each pair of dots 

are distinct [8], [19]. This results in the low sidelobe performance ideal for radar 

applications. This concept is shown in Figure 13. As the frequency matrix with the white 

squares is shifted in time and frequency, there is only one square containing both a circle 

and a square within this matrix. This property of Costas codes results in the near ideal 

thumbtack auto-ambiguity function [8].   

A key condition of the Costas code is the orthogonality requirement, meaning that 

there is no overlap between the sub-channels. Orthogonality is satisfied by 

1 1Nτ = .                                                              (14) 

For a given subpulse duration 1τ , the frequency-hopping separation is the inverse of 1τ . 

For the example waveform given above, a subpulse duration of 10.0 ns requires a 

frequency-hopping separation of 100 MHz.   

 There are multiple methods for determining a Costas sequence, with the 

Welch construction and the Golumb construction being two of the more popular methods. 

A database of known Costas arrays by James K. Beard is available and has been extensively 

leveraged for the MATLAB simulations in this thesis [20]. 
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Figure 13. Time and Frequency Coincidence of a Six-Sequence Costas Code 

In this chapter, the principles of SAR were introduced with a focus on spotlight 

mode data collection, the type of SAR investigated in this thesis. In this chapter, the 

processing algorithms required to generate images from SAR were also discussed. These 

processing algorithms form the foundation of the SAR simulations which are discussed in 

the next chapter.  
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III. SIMULATION METHODOLOGY 

For this thesis, several Costas waveforms are used to characterize their performance 

with SAR. To isolate the impact of a particular parameter on the formation of a SAR image, 

only a single variable is modified at a time. This design of experiments methodology 

provides excellent characterization of the waveforms; however, it increases the amount of 

time required to perform the characterization and, therefore, limits the degrees-of-freedom 

examined. The parameters of the Costas waveforms that were characterized were the 

Costas code sequence length and the subpulse period, which directly impact the waveform 

bandwidth. A complete table of the sequences used in this thesis is given in Appendix A. 

The waveform parameters used in this thesis are given in Table 1 along with some derived 

parameters. 

Table 1. List of Waveforms and Parameters 

Waveform 

Number 

Costas 

Sequence 

Length 

Costas 

Sequence 

Number 

Subpulse 

Bandwidth 

(MHz) 

Total 

Waveform 

Bandwidth 

(MHz) 

Total PW  

( sµ ) 

PRI (ms) Transmit 

Duty 

Cycle 

(%) 

1 15 1 10  150 1.5 43.5215 0.0034466 

2 15 2 10  150 1.5 43.5215 0.0034466 

3 15 3 10  150 1.5 43.5215 0.0034466 

4 15 4 10  150 1.5 43.5215 0.0034466 

5 15 5 10  150 1.5 43.5215 0.0034466 

6 100 6 1.5 150 66.6 43.4322 0.1535 

7 100 7 1.5 150 66.6 43.4322 0.1535 

8 100 8 1.5 150 66.6 43.4322 0.1535 

9 100 9 1.5 150 66.6 43.4322 0.1535 

10 100 10 1.5 150 66.6 43.4322 0.1535 

11 150 11 1 150 150 43.327 0.34541 

12 150 12 1 150 150 43.327 0.34541 

13 150 13 1 150 150 43.327 0.34541 

14 150 14 1 150 150 43.327 0.34541 

15 150 15 1 150 150 43.327 0.34541 
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A. SPOTLIGHT SAR SIMULATION SETUP 

A MATLAB simulation is used for characterizing the performances of Costas 

coded waveforms on SAR image formations. In the MATLAB simulation, the number of 

variables is constrained to keep the focus on the impact of the varying Costas waveforms. 

A list of parameters in the SAR simulation is given in Table 2. 

Table 2. SAR Simluation Parameters 

Parameter Symbol Value 

Radar Platform Velocity pV  200 m/s 

Radar Platform Height pH  6096 m 

Depression Angle ψ  13° 

Ground Range siθ  30.0 km 

Radar Center Frequency 0f   2.0 GHz 

Collection Time T  1.0 s 

Platform Direction D  1 = Right to left 

Number of Frequency Samples  NumSR  250 

Number of Waveforms NumSCR  250 

 

The spotlight SAR MATLAB simulation is configured as two components. The 

first component is the code that generates the images from several inputs. The code 

segments used in the simulation are given in Table 3 along with a brief description.   
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Table 3. Primary Modules Used in the Simulation of SAR Images 

 

The core spotlight SAR algorithm is nested in several looping structures. The 

looping structures provide a mechanism to automate generation and data collection of the 

SAR images. There are three primary loops. The first, most outer, loop is the scattering 

center position loop. This loop generates scattering trajectories based on the loop index. 

Function Overview 

Run_SAR_Extract_One_Sim

ulated_Chip_V2.m 

Top-level routine to generate SAR images. This routine is a 

modified version of the code generated by Professor Garren. 

Executes the RDA on the specified scattering centers and 

generates images. 

Simulator_Generator_Scatt

ering_Trajectories1.m 

Specifies the scattering centers to be used in the scene. Scene 

index is passed in from the top-level routine and returns an array 

of scattering center trajectories. 

Simulator_Get_Radar_Sens

or_Parameters.m 

Specifies radar parameters including range, elevation, squint 

angle, frequency, imaging duration, and speed. It reads in the 

Costas sequence, as passed-in from the top-level routine, and 

sets-up other waveform parameters. 

Plot_Image_with_Spatial_Ax

is_V2.m 

Generates SAR image from the output of the RDA. Applies FFT 

padding, if specified, to improve SAR image quality. A Hanning 

window can also be applied to the data if specified.   

Simulator_Initialize_Param

s.m 

Top level simulator parameters including Debug, sets PI and J, 

and speed of light.  

Extract_Image_Chip_V2 Called from the top-level routine. Prepares data for image 

generation. Call Plot_Image_with_Spatial_Axis_V2 for the full 

image and a “zoomed” image. 

Intialize_Global_Params.m Specifies global parameters to be used in the simulation. 

CostasFunction.m Called from the radar sensor parameters function. This is the 

Costas IQ generator from the LPI Toolbox rewritten as a  

function. The function generates a Costas waveform based on the 

parameters passed-in.   
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This allows for different scattering scenes to be simulated. In this simulation, there are two 

scattering scenes as given in Table 4. 

Table 4. Definition of Scattering Scenes 

 
 

The second loop is the Costas code sequence length. The input to this loop is a 

vector of Costas code lengths. As an example, to generate data for Costas codes of length 

3, 9, 15, 18 and 25 the vector is 

TestSequenceLengths = [3,9,15,18,25]. 
 

The third loop is the number of waveforms to simulate at each Costas code length. 

Several different waveforms at each Costas code length can be simulated by specifying a 

value greater than 1 in order to determine if the actual code has an impact on the formation 

of an image. The simulation uses the loop index as a lookup into a table of sequences. The 

lookup into the Costas code sequence table is determined by dividing the total number of 

waveforms to be simulated by the total number of sequences in the table for that particular 

Costas code length and multiplying by the index. This method selects sequences at equal 

intervals in the table and prevents the codes used in the simulation from being very similar.   

For example, there are 40 Costas code sequences of length five. The first pass 

through the loop, the index is one and the first code is always selected. The second pass 

through the loop, the index is two and the twentieth code is selected. On the last pass 

through the loop, the last code is always used. If the number of waveforms to be tested 

exceeds the number of waveforms available at that particular Costas code length, the 

simulation exits out of the loop when all Costas codes at the selected length have been 

simulated. 
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The fourth, and most inner, loop is an additional test parameter to be simulated. 

This test parameter is specified in a header, and the simulation reacts accordingly. Testing 

with the selected test parameters requires additional updates to the MATLAB code. The 

indexes of the subpulse period loop are a vector of subpulse periods to be simulated. 

The second component to the MATLAB simulation is the data reduction code. This 

code loads a specified Sequence structure, performs calculations of Peak Side Lobe Ratio 

(PSLR) and Integrated Side Lobe Ratio (ISLR), and generates range and cross-range 

profile plots.   

B. RANGE PROFILE PLOTS 

A range profile is a slice of a single range from the 2D image produced at the output 

of the SAR image algorithm. An example of a range profile for a length-15 Costas sequence 

is given in Figure 14. The x-axis is range in meters. The center of image is at 0.0 m. In this 

example, the image is 250 m in range with the center of the image at 0.0 m, the portion of 

the image closest to the sensor at −125 m, and the portion of the image farthest in range at 

+125 m. 

 

Figure 14. Example of a Ground Range Profile 
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C. CROSS-RANGE PROFILE PLOTS 

The cross-range profile plots are generated identically to range profile plots. The 

cross-range profile typically does not exhibit the variation in sidelobe structure that is 

shown in the range profile. An example of a cross-range profile plot for a length-15 Costas 

sequence is given in Figure 15. 

 

Figure 15. Example of a Ground Cross-Range Profile 

In this chapter, the setup of the SAR simulator and the key parameters within the 

simulations were presented. In the next chapter, the images from the SAR simulator for 

three different lengths of Costas sequences are presented and analyzed. 
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IV. SIMULATION RESULTS 

The simulation results are presented as a detailed analysis of a single scattering 

center position as a function of number of subpulses. Three waveforms of increasing 

subpulse length are analyzed using the MOPs outlined in the previous section, and a 

qualitative analysis is performed on the resulting image. The impact of multiple scattering 

centering centers in an image scene is then examined using the same three waveforms to 

analyze the effect of subpulse length on image quality. 

A. DETAILED SINGLE SCATTERING CENTER ANALYSIS 

1. Length-15 Costas Code 

The first single scattering center image was generated using the parameters given 

in row one of Table 1. The resultant image in Figure 16 from the length-15 Costas code 

corresponds to the case of the Table 1 point scattering center at the expected location. The 

100 dB of dynamic range within the image allows the sidelobe structure in both range and 

cross range to be clearly visible. The image slices through the scattering center in range 

and cross-range capture the sidelobe structures across the image.  

From the range profile plot in Figure 17, the position of the peak in range is as 

expected. The peak sidelobes are not well defined, as they are very near the main lobe and 

are not as pronounced as the other sidelobes further from the main lobe; however, the 

application of the near-in sidelobes yields PSL values of −28 dB on the left and −24 dB 

on the right. The sidelobe structure of the range profile is as expected. For the length-15 

Costas code waveform with a 150-MHz bandwidth, each subpulse has a 10-MHz 

bandwidth. A 10-MHz bandwidth results in a 15-m resolution. The length of the image is 

250 meters, and when divided by the 15-m resolution, we expect to see approximately 16 

lobes in the range profile, seen in Figure 17. 

The cross-range location is as expected within the cross-range plot of the length-15 

Costas code in Figure 18. There is minimal sidelobe structure in the cross-range direction. 

This is not an artifact of the FSK waveform as other types of waveforms show similar 

behavior. 
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Figure 16. Length-15 Costas Code SAR Image of a Single Scattering Center 
Using the Parameters Defined in Table 1, Row One 

 

Figure 17. Length-15 Costas Code SAR Image Range Profile Slice of a Single 
Scattering Center Using the Parameters Defined in Table 1, Row One 
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Figure 18. Length-15 Costas Code SAR Image Cross-Range Profile Slice of a 
Single Scattering Center Using the Parameters Defined in Table 1, 

Row One 

To examine the dependence of image performance on unique Costas codes, five 

unique Costas codes were run through the SAR image generator. The resultant images are 

shown in Figure 20. In all of the images, the single scattering center is clearly visible, and 

there are no major differences between the images. Closer inspection of the images reveals 

slight differences in the background generated by variations in the range sidelobe structure, 

as seen by the overlay of all five ground range profiles in Figure 19. 
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Figure 19. Overlay of Five Unique Length-15 Costas Code SAR Image Range 
Profile Slices of a Single Scattering Center Using the Parameters 

Defined in Table 1, Rows 1–5 
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Figure 20. SAR Images of a Single Scattering Center Resulting from Five Unique 
Length-15 Costas Codes Using the Parameters Defined in Table 1, 

Rows 1–5 
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2. Length-100 Costas Code 

The length-100 Costas code from row 6 in Table 1 results in the single scattering 

center image shown in Figure 21. The scattering center is located in the expected position 

within the 1.0 m resolution tolerance.   

 

Figure 21. Length-100 Costas Code SAR Image of a Single Scattering Center 
Using the Parameters Defined in Table 1, Row 6 

The range and cross-range profiles through the scattering center are shown in 

Figure 22 and Figure 23, respectively. The cross-range profile for the length-100 Costas 

code is similar to the length-15 Costas code; however, initial observation of the range 

profile appears to be distorted as there is no discernible sidelobe structure. This is the result 

of keeping the bandwidth of the waveform constant as the number of subpulses is 

increased. The length-15 Costas code analyzed previously has a subpulse length of 15.0 m. 

The length-100 Costas code waveform with a 300-MHz bandwidth has a subpulse 
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bandwidth of 3.0 MHz, which is equivalent to a resolution of 100 m; therefore, only 2.5 

lobes are expected across the length of the 250 m image. Because the scattering center is 

at 40 m, the lobes are calculated to be between −10 m to +90 m for the main lobe. A 

sidelobe starts at 90 m and extends past the end of the image. In addition, a sidelobe lies 

between −110 m to −10 m, and another sidelobe starts at −210 m and extends to −110 

m. Inspection of Figure 22 reveals that the lobes approximately start and stop at the 

expected locations by identifying changes such as discontinuities in the range profile plot. 

 

Figure 22. Length-100 Costas Code SAR Image Range Profile Slice of a Single 
Scattering Center Using the Parameters Defined in Table 1, Row 6 

Five unique Costas codes were run through the SAR image generator in order to 

examine the dependence of image performance on a unique Costas codes. The resultant 

images are shown in Figure 25. In all of the images, the single scattering center is clearly 

visible and there are no major differences between the image. Closer inspection of the 

images reveals slight differences in the background generated by variations in the range 

sidelobe structure, as seen by the overlay of all five ground range profiles in Figure 24.    
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Figure 23. Length-100 Costas Code SAR Image Range Profile Slice of a Single 
Scattering Center Using the Parameters Defined in Table 1, Row 6 

 

Figure 24. Overlay of Five Unique Length-100 Costas Code SAR Image Range 
Profile Slices for a Single Scattering Center Using the Parameters 

Defined in Table 1, Rows 6–10 
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Figure 25. SAR Images Resulting from Five Unique Length-100 Costas Codes 
for a Single Scattering Center, as Defined in Table 1, Rows 6–10 
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3. Length-150 Costas Code 

The length-150 Costas code from row 1 in Table 1 results in the single scattering 

center image shown in Figure 26. The scattering center is located in the expected position 

within the resolution tolerance.   

 

Figure 26. Length-150 Costas Code SAR Image for a Single Scattering Center 
Using the Parameters Defined in Table 1, Row 11 

The range and cross-range profiles through the scattering center are shown in 

Figure 27 and Figure 28, respectively. The cross-range profile for the length-150 Costas 

code is similar to the length-15 and length-100 Costas codes. Again, the range profile 

appears to be distorted, as there is no periodic sidelobe structure. With the length-150 

Costas code, the spacing of the sidelobes is greater than the total length of the range profile 

as a result of keeping the bandwidth of the waveform constant as the number of subpulses 

is increased. The length-150 Costas code has a 150-m resolution, which pushes most of the 

sidelobes outside of the image.   
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Figure 27. Length-150 Costas Code SAR Image Range Profile Slice for a Single 
Scattering Center Using the Parameters Defined in Table 1, Row 11 

 

Figure 28. Length-150 Costas Code SAR Image Cross-Range Profile Slice for a 
Single Scattering Center Using the Parameters Defined in Table 1, 

Row 11 

To examine the dependence of image performance on a unique Costas codes, five 

unique Costas codes were run through the SAR image generator. The resultant images are 

shown in Figure 29. In all of the images, the single scattering center is clearly visible, and 

there are no major differences between the images. Closer inspection of the images reveals 

slight differences in the background generated by variations in the range sidelobe structure, 

as seen by the overlay of all five ground range profiles in Figure 30. 
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Figure 29. SAR Images Resulting from Five Unique Length-150 Costas Codes 
for a Single Scattering Center Using the Parameters Defined in 

Table 1, Rows 11–15 
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Figure 30. Overlay of Five Unique Length-150 Costas Code SAR Image Range 
Profile Slices for a Single Scattering Center Using the Parameters 

Defined in Table 1, Rows 11–15 

4. Summary of Length-15, Length-100 and Length-150 Costas Codes for 
Generating SAR Images of a Single Scattering Center 

A comparison between SAR images generated with three different length Costas 

codes is shown in Figure 31. In all three images, the point scattering center is clearly visible 

and is in the correct location. The size of the point target is identical in all images, which 

is expected since the bandwidth of the waveform is held constant as the length of the Costas 

code is varied. 

When viewed side-by-side, the difference between the image produced with the 

length-15 Costas code in Figure 31 (a) and the length-100 and length-150 Costas codes in 

(b) and (c) are more apparent. The image produced by the length-15 Costas code has more 

visible sidelobe content than the images produced by the length-100 and length-150 Costas 

codes. The higher sidelobe levels produce stronger horizontal bands in the image which 

are less noticeable for the higher length Costas codes.   



 42 

The differences between the images produced by the length-100 and length-150 

Costas codes are subtle. Both appear to have the same amount of “black” space; although, 

the different sidelobe structures produce different background patterns in the images.   

 

Figure 31. SAR Images Produced by Three Different Length Costas Codes: a 
Length-15 Costas Code (a), a Length-100 Costas Code (b), and a 

Length-150 Costas Code (c) 
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The impact of the code length on image performance is more evident when the 

range profile slice for each is overlaid, as seen in Figure 32. The range profile slices for the 

length-100 and length-150 Costas codes show the peak produced by the scatterer is in the 

same location and has the size and shape. The sidelobe levels for the length-100 and length-

150 Costas codes are comparable. The length-15 Costas code does have a peak that is very 

close in size and shape to the higher-order Costas codes; however, the sidelobe levels for 

the length-15 Costas code are clearly larger in magnitude when compared to the length-

100 and length-150 Costas codes. 

 

Figure 32. Overlay of Three Different Length Costas Code SAR Image Range 
Profile Slices Corresponding to Lengths of 15, 100, and 150 for a 
Single Scattering Center Using the Parameters Defined in Table 1, 

Rows 1, 6 and 11 

B. DETAILED MULTIPLE SCATTERING CENTER ANALYSIS 

1. Length-15 Costas Code 

The first multiple scattering center image was generated using the parameters given 

in row 1 of Table 1. From the resultant image in Figure 33, we see that the point scattering 

centers are at the expected locations for the length-15 Costas code. The 100 dB of dynamic 
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range of the image allows the sidelobe structure in both range and cross range to be clearly 

visible. The image slices through the scattering center in range and cross-range capture the 

sidelobe structures across the image.  

 

Figure 33. Length-15 Costas Code SAR Image with Multiple Scattering Centers 
Using the Parameters Defined in Table 1, Row 1 

From the range plot in Figure 34, the positions of the four peaks in range are as 

expected. The two peaks spaced 2.0 m apart in range are clearly discernible as expected, 

due to the 1.0-m resolution. As with the single scattering center range profile, the sidelobes 

are down 20 dB or more from the peak lobe.   

The four peaks are shown in the cross-range plot in Figure 35. The lack of sidelobe 

structure in cross-range as previously observed persists in the multiple scattering center 

scenario, so it is not surprising that the two scattering centers positioned 2.0 m apart in 

cross-range are clearly visible. 
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Figure 34. Length-15 Costas Code SAR Image Range Profile Slice for Multiple 
Scattering Centers Using the Parameters Defined in Table 1, Row 1 

 

Figure 35. Length-15 Costas Code SAR Image Cross-Range Profile Slice for 
Multiple Scattering Centers Using the Parameters Defined in Table 1, 

Row 1 
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To examine the dependence of the multi-scattering center image performance on 

unique Costas codes, the five unique length-15 Costas codes used previously were executed 

through the SAR image generator. The slight differences in sidelobe structure between the 

five codes shown in the range profile of Figure 36 have no impact on the ability to detect 

the five scattering centers. The resultant images are shown in Figure 37 and reveal that the 

scattering centers are easily observable regardless of the particular code used.   

 

Figure 36. Overlay of Five Unique Length-15 Costas Code SAR Image Range 
Profile Slices for Multiple Scattering Centers Using the Parameters 

Defined in Table 1, Rows 1–5 
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Figure 37. SAR Images Resulting from Five Unique Length-15 Costas Codes for 
Multiple Scattering Centers Using the Parameters Defined in Table 1, 

Rows 1–5 
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2. Length-100 Costas Code 

The length-100 Costas code from row 6 in Table 1 results in the multiple scattering 

center image in Figure 38. The scattering centers are located in the expected positions 

within the 1.0-m resolution tolerance.   

 

Figure 38. Length-100 Costas Code SAR Image with Multiple Scattering Centers 
Using the Parameters Defined in Table 1, Row 6 

The range and cross-range profiles are shown in Figure 39 and Figure 40, 

respectively. The cross-range profile for the length-100 Costas code is similar to the length-

15 Costas code. The scattering centers that are spaced 2.0 m apart in range and cross-range 

are distinguishable, as they were in the profiles for the length-15 Costas code. The longer 

Costas code results in lower sidelobe levels and has a greater potential dynamic range for 

generating images that do not include contributions from the sidelobes. 
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Figure 39. Length-100 Costas Code SAR Image Range Profile Slice for Multiple 
Scattering Centers Using the Parameters Defined in Table 1, Row 6 

 

Figure 40. Length-100 Costas Code SAR Image Cross-Range Profile Slice for 
Multiple Scattering Centers Using the Parameters Defined in Table 1, 

Row 6 
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The five unique length-100 Costas codes used previously were executed through 

the SAR image generator in order to examine the dependence of the multi-scattering center 

image performance on unique Costas codes. The slight differences in sidelobe structure 

between the five codes shown in the range profile of Figure 41 have no impact on the ability 

to detect the five scattering centers. The resultant images are shown in Figure 42 and reveal 

that the scattering centers are easily observable regardless of the particular code used.   

 

Figure 41. Overlay of Five Unique Length-100 Costas Code SAR Image Range 
Profile Slices for Multiple Scattering Centers Using the Parameters 

Defined in Table 1, Rows 6–10 
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Figure 42. SAR Images of Five Unique Length-100 Costas Codes for Multiple 
Scattering Centers Using the Parameters Defined in Table 1, Rows 

6–10 
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3. Length-150 Costas Code 

The length-150 Costas code from row 11 in Table 1 results in the multiple scattering 

center image in Figure 43. The scattering center is located in the expected position within 

the resolution tolerance.   

 

Figure 43. Length-150 Costas Code SAR Image with Multiple Scattering Centers 
Using the Parameters Defined in Table 1, Row 11 

The range and cross-range profiles are shown in Figure 44 and Figure 45, 

respectively. The cross-range profile for the length-150 Costas code is similar to the length-

100 Costas code. The scattering centers that are spaced 2.0 m apart in range and cross-

range are distinguishable, as they were in the profiles for the length-100 Costas code. The 

longer Costas code results in lower sidelobe levels and has a greater potential dynamic 

range for generating images that do not include contributions from the sidelobes. 
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Figure 44.  Length-150 Costas Code SAR Image Range Profile Slice for Multiple 
Scattering Centers Using the Parameters Defined in Table 1, Row 11 

 

Figure 45. Length-150 Costas Code SAR Image Cross-Range Profile Slice for 
Multiple Scattering Centers Using the Parameters Defined in Table 1, 

Row 11 
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Five unique Costas codes were used to generate five images in order to confirm 

prior observations that the image quality is not dependent upon the unique Costas code 

used. A qualitative assessment of the images does not reveal any differences that affect the 

ability to clearly identify the five scattering centers. The slight differences in sidelobe 

structure between the five codes shown in the range profile of Figure 46 have no impact on 

the ability to detect the five scattering centers. The resultant images are shown in Figure 

47 and reveal that the scattering centers are easily observable regardless of code used.   

 

Figure 46. Overlay of Five Unique Length-150 Costas Code SAR Image Range 
Profile Slices for Multiple Scattering Centers Using the Parameters 

Defined in Table 1, Rows 11–15 
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Figure 47. SAR Images of Five Unique Length-150 Costas Codes for Multiple 
Scattering Centers Using the Parameters Defined in Table 1, Rows 

11–15 
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In this chapter, the images from the SAR simulations of three different length 

Costas Sequences were presented for scenes that included a single scattering center and a 

multiple scattering center. Simulation results for three unique sequences of each Costas 

sequence length were presented. In the next chapter, the conclusions from the SAR 

simulations are discussed along with recommendations for future work. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY AND CONCLUSIONS 

In this thesis, we investigated the viability of using Costas-coded transmission 

waveforms to generate Spotlight Synthetic Aperture Radar images. Costas waveforms with 

sequence lengths of 15, 100, and 150 were used as the inputs to the SAR algorithm to 

evaluate the impact of longer sequences. To minimize the number of variables evaluated, 

the bandwidth of the waveforms was held constant. The results showed that the inherently 

low side lobe levels of Costas coded waveforms resulted in SAR images with easily 

discernible scattering centers. This is true for both images with a single scattering center 

and images with multiple scattering centers that were closely spaced in both range and 

cross-range. Increasing the sequence length of the Costas waveform increases the pulse-

compression ratio of the waveform and results in images with improved peak-to-side-lobe 

ratios, yielding an effective higher dynamic range in the image. The sensitivity of the image 

fidelity due to specific sequences within specific sequence lengths was investigated but did 

not show a qualitative difference for the limited number of unique sequences simulated.   

A no characteristic of the Costas waveform is that the improvement in image at 

higher sequence levels is obtained without increasing the overall bandwidth of the 

waveform. Since bandwidth can affect the cost of a system, this gives the designer of a 

SAR system the ability to improve the image quality while maintaining a cost-effective 

bandwidth. 

The LPI nature of the Costas waveform is an additional feature that improves the 

performance of a SAR system in a contested RF environment. The wide bandwidth of the 

Costas waveform either requires a jammer to match the wide bandwidth, diluting their 

jamming power, or try to anticipate the frequency-hopping sequence to maximize the 

jammer power at the frequency of interest. This can easily be overcome by increasing the 

length of the Costas code such that it is virtually impossible for a jammer to extract the 

sequence. 
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B. FUTURE WORK 

In this thesis, we showed that Costas coded waveforms are viable for use in SAR 

imaging systems. Additional work is required to understand the limits to the maximum 

length of the Costas-coded pulse due to range migration issues.     

The longer Costas sequences have a large number of unique codes. Other work on 

Costas codes has identified some codes which are more optimal than others from a PSLR 

perspective. A next step is to identify those sequence lengths and specific codes that are 

better and quantify the improvement in SAR image quality. 

Finally, other work has investigated modified Costas signals which use a 

combination of frequency and phase modulation or an increase of the frequency separation 

between subpulses beyond the orthogonality condition. A next step is to investigate the 

applicability of these modified Costas signals to further improve the LPI nature of the 

waveform or to further reduce the PSLR for improved SAR fidelity. 
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APPENDIX A.  SPECIFIC CODES USED IN THE SIMULATIONS 
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10 100 100 ,  99 ,  97 ,  93 ,  85 ,  69 ,  37 ,  74 ,  
47 ,  94 ,  87 ,  73 ,  45 ,  90 ,  79 ,  57 ,  13 
,  26 ,  52 ,  3 ,  6 ,  12 ,  24 ,  48 ,  96 ,  
91 ,  81 ,  61 ,  21 ,  42 ,  84 ,  67 ,  33 ,  66 
,  31 ,  62 ,  23 ,  46 ,  92 ,  83 ,  65 ,  29 ,  
58 ,  15 ,  30 ,  60 ,  19 ,  38 ,  76 ,  51 ,  1 
,  2 ,  4 ,  8 ,  16 ,  32 ,  64 ,  27 ,  54 ,  7 
,  14 ,  28 ,  56 ,  11 ,  22 ,  44 ,  88 ,  75 ,  
49 ,  98 ,  95 ,  89 ,  77 ,  53 ,  5 ,  10 ,  20 
,  40 ,  80 ,  59 ,  17 ,  34 ,  68 ,  35 ,  70 ,  
39 ,  78 ,  55 ,  9 ,  18 ,  36 ,  72 ,  43 ,  86 
,  71 ,  41 ,  82 ,  63 ,  25 ,  50 

11 150 1 ,  6 ,  36 ,  65 ,  88 ,  75 ,  148 ,  133 ,  43 
,  107 ,  38 ,  77 ,  9 ,  54 ,  22 ,  132 ,  37 ,  
71 ,  124 ,  140 ,  85 ,  57 ,  40 ,  89 ,  81 ,  
33 ,  47 ,  131 ,  31 ,  35 ,  59 ,  52 ,  10 ,  
60 ,  58 ,  46 ,  125 ,  146 ,  121 ,  122 ,  128 
,  13 ,  78 ,  15 ,  90 ,  87 ,  69 ,  112 ,  68 ,  
106 ,  32 ,  41 ,  95 ,  117 ,  98 ,  135 ,  55 ,  
28 ,  17 ,  102 ,  8 ,  48 ,  137 ,  67 ,  100 ,  
147 ,  127 ,  7 ,  42 ,  101 ,  2 ,  12 ,  72 ,  
130 ,  25 ,  150 ,  145 ,  115 ,  86 ,  63 ,  76 ,  
3 ,  18 ,  108 ,  44 ,  113 ,  74 ,  142 ,  97 ,  
129 ,  19 ,  114 ,  80 ,  27 ,  11 ,  66 ,  94 ,  
111 ,  62 ,  70 ,  118 ,  104 ,  20 ,  120 ,  116 
,  92 ,  99 ,  141 ,  91 ,  93 ,  105 ,  26 ,  5 ,  
30 ,  29 ,  23 ,  138 ,  73 ,  136 ,  61 ,  64 ,  
82 ,  39 ,  83 ,  45 ,  119 ,  110 ,  56 ,  34 ,  
53 ,  16 ,  96 ,  123 ,  134 ,  49 ,  143 ,  103 ,  
14 ,  84 ,  51 ,  4 ,  24 ,  144 ,  109 ,  50 ,  
149 ,  139 ,  79 ,  21 ,  126 

12 150 36 ,  134 ,  29 ,  66 ,  145 ,  28 ,  121 ,  140 ,  
1 ,  96 ,  5 ,  27 ,  25 ,  135 ,  125 ,  71 ,  21 
,  53 ,  105 ,  114 ,  72 ,  117 ,  58 ,  132 ,  
139 ,  56 ,  91 ,  129 ,  2 ,  41 ,  10 ,  54 ,  
50 ,  119 ,  99 ,  142 ,  42 ,  106 ,  59 ,  77 ,  
144 ,  83 ,  116 ,  113 ,  127 ,  112 ,  31 ,  107 
,  4 ,  82 ,  20 ,  108 ,  100 ,  87 ,  47 ,  133 
,  84 ,  61 ,  118 ,  3 ,  137 ,  15 ,  81 ,  75 ,  
103 ,  73 ,  62 ,  63 ,  8 ,  13 ,  40 ,  65 ,  49 
,  23 ,  94 ,  115 ,  17 ,  122 ,  85 ,  6 ,  123 
,  30 ,  11 ,  150 ,  55 ,  146 ,  124 ,  126 ,  
16 ,  26 ,  80 ,  130 ,  98 ,  46 ,  37 ,  79 ,  
34 ,  93 ,  19 ,  12 ,  95 ,  60 ,  22 ,  149 ,  
110 ,  141 ,  97 ,  101 ,  32 ,  52 ,  9 ,  109 ,  
45 ,  92 ,  74 ,  7 ,  68 ,  35 ,  38 ,  24 ,  39 
,  120 ,  44 ,  147 ,  69 ,  131 ,  43 ,  51 ,  64 
,  104 ,  18 ,  67 ,  90 ,  33 ,  148 ,  14 ,  136 
,  70 ,  76 ,  48 ,  78 ,  89 ,  88 ,  143 ,  138 
,  111 ,  86 ,  102 ,  128 ,  57 
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13 150 63 ,  4 ,  41 ,  5 ,  89 ,  44 ,  149 ,  55 ,  73 
,  31 ,  129 ,  1 ,  48 ,  39 ,  60 ,  11 ,  75 ,  
127 ,  56 ,  121 ,  70 ,  38 ,  12 ,  123 ,  15 ,  
116 ,  132 ,  145 ,  14 ,  68 ,  93 ,  85 ,  3 ,  
144 ,  117 ,  29 ,  33 ,  74 ,  79 ,  17 ,  61 ,  
59 ,  114 ,  36 ,  67 ,  45 ,  46 ,  94 ,  133 ,  
42 ,  53 ,  128 ,  104 ,  9 ,  130 ,  49 ,  87 ,  
99 ,  71 ,  86 ,  51 ,  32 ,  26 ,  40 ,  108 ,  
50 ,  135 ,  138 ,  131 ,  97 ,  126 ,  8 ,  82 ,  
10 ,  27 ,  88 ,  147 ,  110 ,  146 ,  62 ,  107 ,  
2 ,  96 ,  78 ,  120 ,  22 ,  150 ,  103 ,  112 ,  
91 ,  140 ,  76 ,  24 ,  95 ,  30 ,  81 ,  113 ,  
139 ,  28 ,  136 ,  35 ,  19 ,  6 ,  137 ,  83 ,  
58 ,  66 ,  148 ,  7 ,  34 ,  122 ,  118 ,  77 ,  
72 ,  134 ,  90 ,  92 ,  37 ,  115 ,  84 ,  106 ,  
105 ,  57 ,  18 ,  109 ,  98 ,  23 ,  47 ,  142 ,  
21 ,  102 ,  64 ,  52 ,  80 ,  65 ,  100 ,  119 ,  
125 ,  111 ,  43 ,  101 ,  16 ,  13 ,  20 ,  54 ,  
25 ,  143 ,  69 ,  141 ,  124 

14 150 111 ,  41 ,  150 ,  121 ,  89 ,  80 ,  134 ,  51 ,  
39 ,  19 ,  47 ,  10 ,  40 ,  64 ,  128 ,  131 ,  
113 ,  119 ,  21 ,  99 ,  23 ,  127 ,  146 ,  90 ,  
67 ,  120 ,  78 ,  144 ,  27 ,  58 ,  143 ,  61 ,  
86 ,  43 ,  112 ,  49 ,  65 ,  101 ,  79 ,  29 ,  
30 ,  103 ,  13 ,  57 ,  17 ,  76 ,  55 ,  20 ,  7 
,  147 ,  2 ,  50 ,  12 ,  8 ,  25 ,  74 ,  60 ,  
107 ,  81 ,  138 ,  22 ,  73 ,  62 ,  141 ,  18 ,  
16 ,  108 ,  123 ,  35 ,  42 ,  34 ,  129 ,  84 ,  
145 ,  106 ,  31 ,  70 ,  9 ,  54 ,  109 ,  117 ,  
110 ,  48 ,  33 ,  91 ,  93 ,  66 ,  137 ,  148 ,  
97 ,  63 ,  6 ,  32 ,  135 ,  149 ,  100 ,  83 ,  
87 ,  125 ,  77 ,  72 ,  82 ,  95 ,  130 ,  1 ,  
92 ,  132 ,  88 ,  28 ,  105 ,  104 ,  4 ,  26 ,  
140 ,  124 ,  37 ,  118 ,  11 ,  136 ,  68 ,  133 
,  102 ,  69 ,  3 ,  45 ,  142 ,  15 ,  71 ,  52 ,  
98 ,  24 ,  96 ,  44 ,  38 ,  56 ,  53 ,  139 ,  
115 ,  85 ,  122 ,  94 ,  114 ,  126 ,  59 ,  5 ,  
14 ,  46 ,  75 ,  116 ,  36 

15 150 150 ,  145 ,  115 ,  86 ,  63 ,  76 ,  3 ,  18 ,  
108 ,  44 ,  113 ,  74 ,  142 ,  97 ,  129 ,  19 ,  
114 ,  80 ,  27 ,  11 ,  66 ,  94 ,  111 ,  62 ,  
70 ,  118 ,  104 ,  20 ,  120 ,  116 ,  92 ,  99 ,  
141 ,  91 ,  93 ,  105 ,  26 ,  5 ,  30 ,  29 ,  
23 ,  138 ,  73 ,  136 ,  61 ,  64 ,  82 ,  39 ,  
83 ,  45 ,  119 ,  110 ,  56 ,  34 ,  53 ,  16 ,  
96 ,  123 ,  134 ,  49 ,  143 ,  103 ,  14 ,  84 ,  
51 ,  4 ,  24 ,  144 ,  109 ,  50 ,  149 ,  139 ,  
79 ,  21 ,  126 ,  1 ,  6 ,  36 ,  65 ,  88 ,  75 
,  148 ,  133 ,  43 ,  107 ,  38 ,  77 ,  9 ,  54 
,  22 ,  132 ,  37 ,  71 ,  124 ,  140 ,  85 ,  57 
,  40 ,  89 ,  81 ,  33 ,  47 ,  131 ,  31 ,  35 ,  
59 ,  52 ,  10 ,  60 ,  58 ,  46 ,  125 ,  146 ,  
121 ,  122 ,  128 ,  13 ,  78 ,  15 ,  90 ,  87 ,  
69 ,  112 ,  68 ,  106 ,  32 ,  41 ,  95 ,  117 ,  
98 ,  135 ,  55 ,  28 ,  17 ,  102 ,  8 ,  48 ,  
137 ,  67 ,  100 ,  147 ,  127 ,  7 ,  42 ,  101 ,  
2 ,  12 ,  72 ,  130 ,  25 
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APPENDIX B.  CRITICAL MATLAB CODE SEGMENTS 

A. FUNCTION TO GENERATE A COSTAS WAVEFORM 

 
function [waveformWithNoise,waveformWithOutNoise] = 
CostasFunction(Costas_Props) 
% clear all; 
% clc; 
% disp(‘*******************************************’); 
% disp(‘***************COSTAS CODE ****************’); 
% disp(‘*******************************************’); 
  
%DEFAULT VARIABLE 
A = Costas_Props.A;                             % Amplitude of signal 
fs = Costas_Props.fs;                           % Sampling frequency 
SNR_dB = Costas_Props.SNR_dB;                   % Signal to noise ratio 
tp = Costas_Props.tp;                           % Sub-period (s) 
BW=Costas_Props.subPulseBandWidth;              % bandwidth (hopping 
frequency delta) 
CF=Costas_Props.CF;                                % Center Frequency 
StartFreq = Costas_Props.StartFreq; 
NumberCodePeriods=Costas_Props.NumberCodePeriods;            % Number 
of code periods 
  
seq=Costas_Props.Sequence; 
seq=seq(seq~=0); 
seq=seq-1; 
[a,length]=size(seq); 
  
seq=seq*BW; %  
  
tb=1/(fs); % Sampling period 
  
% This section generates I & Q without COSTAS phase shift and I & Q 
 with Phase shift. The signals are generated  
% five times by the outer loop. The variable ‘index’ is used to 
 generate a time vector for time domain plots.  
f3s=figure; 
f4s=figure; 
  
index=0; 
waveform_segment_prev = 0; 
numseq=NumberCodePeriods; 
totalPhaseDiscontinuities = 0; 
phaseCorrection = 1; 
%Generate the signal five times and store sequentially in corresponding 
vectors 
    for xx=1:length 
            Ntp = ceil(fs*tp); 
            ExtendedNtp=Ntp*2; 
            I_CostasSegment=A*cos(2*pi*seq(xx)*(0:ExtendedNtp)*tb); 
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            Q_CostasSegment=A*sin(2*pi*seq(xx)*(0:ExtendedNtp)*tb); 
            [waveformSegment] = I_CostasSegment+(Q_CostasSegment*1i); 
             
            if xx>1  
                waveformNoPhaseCorrection = [waveformNoPhaseCorrection  
   waveformSegment(1:Ntp)]; 
                phaseTestSegment = [waveform waveformSegment]; 
                deltaPhase=abs(phaseTestSegment(2:end)-   
   phaseTestSegment(1:end-1)); 
                deltaDeltaPhase = deltaPhase(2:end)-deltaPhase(1:end- 
   1); 
                 
                numPhaseDiscontinuities = sum(abs(deltaDeltaPhase) >  
   10e-10); 
                shiftIndex = 1; 
                bestIndex = 0; 
                halfwayIndex = 0; 
                minDeltaPhaseValue = 100; 
                while numPhaseDiscontinuities >     
   totalPhaseDiscontinuities+1 
                    shiftIndex = shiftIndex+1; 
                    if shiftIndex == (ExtendedNtp-Ntp)  
                        if halfwayIndex ~= 0 
                            bestIndex = halfwayIndex;  
                        else 
                            bestIndex = testIndex; 
                        end 
                        break 
                    end 
                     
                    waveformtest = [waveform      
    waveformSegment(shiftIndex:end)]; 
                     
                    deltaPhase=abs(waveformtest(2:end)-   
    waveformtest(1:end-1)); 
                    deltaDeltaPhase = deltaPhase(2:end)-   
    deltaPhase(1:end-1); 

if deltaPhase((xx-1)*Ntp)> deltaPhase(((xx-1)*Ntp)-    
 1) 

if deltaPhase((xx-1)*Ntp)< deltaPhase(((xx-      
1)*Ntp)+1) 

                            halfwayIndex = shiftIndex; 
                        end 
                    end 
                    if abs(deltaDeltaPhase((xx-1)*Ntp)) <      
    minDeltaPhaseValue 
                        minDeltaPhaseValue = abs(deltaDeltaPhase((xx- 
     1)*Ntp)); 
                        testIndex = shiftIndex; 
                    end 
              
                    %figure(f3s);plot(deltaPhase); 
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                    numPhaseDiscontinuities = sum(abs(deltaDeltaPhase)  
    > 10e-10); 
                end 
                 
                if bestIndex ~= 0                     
                    waveformtest = [waveform      
    waveformSegment(bestIndex:bestIndex+Ntp-1)]; 
                else 
                    waveformtest = [waveform      
    waveformSegment(shiftIndex:shiftIndex+Ntp-1)]; 
                end 
  
            else 
                waveformtest = waveformSegment(1:Ntp); 
                waveformNoPhaseCorrection = waveformSegment(1:Ntp); 
                numPhaseDiscontinuities=0; 
            end 
            totalPhaseDiscontinuities = numPhaseDiscontinuities; 
            waveform = waveformtest; 
  
    end 
for p=1:numseq %Generate the signal N times and store sequentially in 
corresponding vectors 
    waveform = [waveform waveformtest]; 
end         
  
if phaseCorrection == 0 
    waveform = waveformNoPhaseCorrection; 
end 
  
  
I = real(waveform); 
Q = imag(waveform); 
  
  
%Power Spectral Density for I with phase shift & with WGN with Signal 
to noise ratios  
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
samps_seq=b/numseq; %Samples in a sequence 
  
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with COSTAS phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with COSTAS phase shift 
QPWON=Q;             %Q with phase shift without noise 
  
% This section generates the files for analysis 
  
INP=IN’;%transpose I with noise and COSTAS phase shift for text file 
QNP=QN’;%transpose Q with noise and COSTAS phase shift for text file 
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IPWONT=IPWON’;%transpose I with phase without noise for text file 
QPWONT=QPWON’;%transpose Q with phase without noise for text file 
  
% % save results in data files 
  
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
waveformWithNoise = [I(:,1)+(Q(:,1)*1i)]; 
  
[w1,w2] = size(waveformWithNoise); 
code_length = w1/NumberCodePeriods; 
  
waveformWithOutNoise = II(1:code_length)+1i*QQ(1:code_length); 
  
option2 = 1; 
ffs=floor(fs/1e6); %sample frequency in MHz 
tpp=numel(I); %number of samples in 1 waveform 
save([‘C_’ num2str(option2) ‘_’ num2str(NumberCodePeriods) ‘_’ 
num2str(ffs) ‘_’ num2str(tpp) ‘_’ num2str(CF/1e9) ‘_’ 
num2str(BW*length/1e6) ‘_’ num2str(SNR_dB)],’I’,’Q’); 
save([‘C_’ num2str(option2) ‘_’ num2str(NumberCodePeriods) ‘_’ 
num2str(ffs) ‘_’ num2str(tpp) ‘_’ num2str(CF/1e9) ‘_’ 
num2str(BW*length/1e6) ‘_s’],’I’,’Q’); 
disp(‘ ‘); 
disp([‘Signal and noise save as :  C_’ num2str(option2) ‘_’ 
num2str(NumberCodePeriods) ‘_’ num2str(ffs) ‘_’ num2str(tpp) ‘_’ 
num2str(CF/1e9) ‘_’ num2str(BW*length/1e6) ‘_’ num2str(SNR_dB)]); 
disp([‘Signal only save as :         C_’ num2str(option2) ‘_’ 
num2str(NumberCodePeriods) ‘_’ num2str(ffs) ‘_’ num2str(tpp) ‘_’ 
num2str(CF/1e9) ‘_’ num2str(BW*length/1e6) ‘_s’]); 
disp([‘Directory:                       ‘ num2str(cd)]);  
disp([‘NOTE: Number of sequences = ‘ num2str(numseq) ‘ Samples in 
single FH sequence = ‘ num2str(samps_seq)]); 
  
figure(f3s);plot(deltaPhase); 
figure(f4s);plot(deltaDeltaPhase); 
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B. CODE SNIPPET TO PROCESS THE WAVEFORM RESPONSE AGAINST 
THE SCATTERING CENTERS 

 
    % Recreate waveform 

                [w1,w2] = size(waveform); 
                % Recreate Reference waveform 
                [CR1,CR2] = size(Correlation_Ref); 
                code_length = sensor_props.code_length; 
                  
  
                % convert ideal waveform to freq. domain 
                range_profile_matrix = ifftshift( fft( fftshift(   
   G_polar, 1 ), [], 1 ), 1 ); 
                [g1,g2] = size(G_polar); 
                received_echo = zeros((g1+w1)-1,g2); 
                Match_Filter_response = zeros((((g1+w1)-1)+CR1)-1,g2); 
                % Match_Filter_response = zeros((((g1+w1)-1)+w1)-1,g2); 
                % waveform echo that enters the receiver 
  
                for n = 1:g2 
                    received_echo(:,n) = conv(      
    range_profile_matrix(:,n), waveform ); 
                    Match_Filter_response(:,n) = conv(    
    received_echo(:,n),      
    conj(flipud(Correlation_Ref)) ); 
                end 
  
                [RE1,RE2] = size(received_echo); 
                [MF1,MF2] = size(Match_Filter_response); 
                adj_Match_Filter_response = zeros(MF1+2,MF2); 
                adj_Match_Filter_response(2:MF1+1,:)=    
   Match_Filter_response; 
                [aMF1,aMF2] = size(adj_Match_Filter_response); 
                Int_Filter_response = zeros(code_length,g2); 
  
                for n = 1:sensor_props.code_length 
                    Int_Filter_response(:,:) = ... 
        
 adj_Match_Filter_response(n*code_length+1:(n+1)*code_length,:)+..
. 
                        Int_Filter_response(:,:); 
                end 
                 [IF1,IF2] = size(Int_Filter_response); 
                if  IF1 >= g1 
                    Int_Filter_response =      
    Int_Filter_response(1:g1,1:g2); 
                else 
                    n = 0; 
                    IFL = IF1; 
                    while IF1 < g1 
                        n = n+1; 



 68 

                        adj_Int_Filter_response((n-    
      1)*(IFL)+1:n*(IFL),:) =     
      Int_Filter_response(1:(IFL),:); 
                        Int_Filter_response = adj_Int_Filter_response; 
                        [IF1,IF2] = size(Int_Filter_response); 
                    end 
                    Int_Filter_response =      
    Int_Filter_response(1:g1,1:g2); 
                end 
                [IF1,IF2] = size(Int_Filter_response); 
                G_polar = ifftshift( ifft(      
   fftshift(Int_Filter_response, 1 ), [], 1 ), 1 ); 
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