
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

UTILIZING BLOCKCHAIN TO DESIGN AN EAST/WEST
INTERFACE FOR FEDERATED SOFTWARE DEFINED

NETWORKS

by

Scott C. Tollefson

December 2018

Thesis Advisor: Geoffrey G. Xie
Second Reader: Robert Beverly

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
UTILIZING BLOCKCHAIN TO DESIGN AN EAST/WEST INTERFACE FOR
FEDERATED SOFTWARE DEFINED NETWORKS

5. FUNDING NUMBERS

6. AUTHOR(S) Scott C. Tollefson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 After many years of development, Software Defined Networks (SDN) have started to see mainstream
acceptance. Considerable work has established standards for the northbound and southbound interfaces of
SDN controllers, but much work remains on the development of an east/west protocol. In this research, we
take security, autonomy, and privacy as essential requirements for an east/west interface. We believe that the
properties of permissioned blockchains, serializability, immutability, verifiability, and smart contracts, meet
these requirements. Using Hyperledger Fabric as our blockchain protocol, we were able to develop a
proof-of-concept for an east/west protocol on the ONOS SDN platform. We demonstrate successfully
requesting a connection between separately managed SDN networks which leads to the installation of flows
and data transfer between the networks. We further evaluate the impact of network latency on Hyperledger
Fabric nodes to complete transactions; the results show a linear relationship between per hop network
latency and transaction completion time.

14. SUBJECT TERMS
blockchain, Hyperledger, networks, software defined networks, SDN, east/west interface

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

145

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

UTILIZING BLOCKCHAIN TO DESIGN AN EAST/WEST INTERFACE FOR
FEDERATED SOFTWARE DEFINED NETWORKS

Scott C. Tollefson
Lieutenant Commander, United States Navy

BS, North Dakota State University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: Geoffrey G. Xie
 Advisor

 Robert Beverly
 Second Reader

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 After many years of development, Software Defined Networks (SDN) have

started to see mainstream acceptance. Considerable work has established standards for

the northbound and southbound interfaces of SDN controllers, but much work remains on

the development of an east/west protocol. In this research, we take security, autonomy,

and privacy as essential requirements for an east/west interface. We believe that the

properties of permissioned blockchains, serializability, immutability, verifiability, and

smart contracts, meet these requirements. Using Hyperledger Fabric as our blockchain

protocol, we were able to develop a proof-of-concept for an east/west protocol on the

ONOS SDN platform. We demonstrate successfully requesting a connection between

separately managed SDN networks which leads to the installation of flows and data

transfer between the networks. We further evaluate the impact of network latency on

Hyperledger Fabric nodes to complete transactions; the results show a linear relationship

between per hop network latency and transaction completion time.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 2
1.2 Research Questions . 2
1.3 Research Contributions . 3
1.4 Thesis Organization . 3

2 Background 5
2.1 SDN . 5
2.2 Blockchains . 9
2.3 Related Work . 17

3 Design 21
3.1 Requirements . 21
3.2 Hyperledger Fabric . 22
3.3 Resource Sharing . 23
3.4 SDN Network . 24
3.5 Control Application . 24
3.6 Evaluation . 25

4 Implementation 27
4.1 Network Implementation . 27
4.2 Network Controller . 30
4.3 Hyperledger Fabric . 32

5 Evaluation and Analysis 47
5.1 Validation of Resource Sharing between SDNs 47
5.2 Performance Evaluation. 49

6 Conclusions and Future Work 61

vii

6.1 Conclusions . 61
6.2 Future Work . 63

Appendix: Network Topology, YAML Configuration, Scripts, Contract Code 67
A.1 Mininet Example . 67
A.2 Network Topology . 68
A.3 Hyperledger Network Configuration YAML. 74
A.4 Building Hyperledger Fabric . 86
A.5 Hyperledger Scripts . 97
A.6 Contract Code . 101
A.7 Control Application . 117

List of References 123

Initial Distribution List 127

viii

List of Figures

Figure 2.1 A simple OpenFlow network with two OpenFlow switches. Image
adapted from [15] . 6

Figure 2.2 OpenFlow packet processing through multiple tables. 7

Figure 2.3 North, east, west, and south interfaces on an SDN controller. . . . 8

Figure 2.4 A simple OpenFlow network built with one command usingMininet. 9

Figure 2.5 Bitcoin blocks linked by hashes. 12

Figure 2.6 An example of the steps of the Hyperledger transaction process.
Image adapted from [29]. 16

Figure 2.7 The proposed SFP message flow. Source [10]. 18

Figure 3.1 A logical east/west interface using a blockchain network. 22

Figure 3.2 Control Application . 25

Figure 4.1 Creation of an east/west interface using the Open Network Operating
System (ONOS) northbound interface and Hyperledger Fabric. . 27

Figure 4.2 A virtual test network with separately managed SDN networks con-
nected by traditional routers. 29

Figure 4.3 Image of the ONOS GUI. 30

Figure 4.4 A JSON formatted intent for the ONOS intent REST API 33

Figure 4.5 Image of the entry for network1 in the couchDB web interface. . 42

Figure 5.1 iperf transfer between virtual machine (VM) 1 and VM 4 SDN net-
works. 47

Figure 5.2 Successful use of the Control Application after a transaction. . . 48

Figure 5.3 Intent installation and transaction processing times. 49

ix

Figure 5.4 Combination of Hyperledger Fabric entities with 10 ms of network
latency. 55

Figure 5.5 Combination of Hyperledger Fabric entities with 20 ms of network
latency. 56

Figure 5.6 Hyperledger Fabric orderer with 10, 20, 40, 80, and 160 ms of
network latency. 57

Figure 5.7 Hyperledger Fabric endorsing peer with 10, 20, 40, 80, and 160 ms
of network latency. 58

Figure 5.8 Hyperledger Fabric non-endorsing peer with 10, 20, 40, 80, and 160
ms of network latency. 59

Figure 5.9 Regression analysis of Figure 5.6 (a). 60

x

List of Acronyms and Abbreviations

ACI application-centric infrastructure

API application program interface

AS autonomous system

BASH Bourne again shell

BFT Byzantine-fault tolerance

BGP Border Gateway Protocol

BST binary search tree

CFT crash fault tolerance

CLI command line interface

CO central office

CORD central office re-architected as a datacenter

DHCP Dynamic Host Configuration Protocol

DoD Department of Defense

EVM Ethereum virtual machine

GUI graphical user interface

HaaS hardware-as-a-service

IXP internet exchange point

IoT internet of things

JSON Javascript Object Notation

xi

LAN local area network

MAC Media Access Control

Mbps Megabits per second

MSP membership service provider

NoSQL non-structured query language

NPS Naval Postgraduate School

ONOS Open Network Operating System

OSPF Open Shortest Path First

PKI Public Key Infrastructure

QoS quality of service

REST representational state transfer

RFC Request For Comments

RIP Routing Information Protocol

RTT round trip time

SDK software developer’s kit

SDN software defined network

SDX software defined IXP

SFP SDN Federation Protocol

SQL Structured Query Language

TCP transmission control protocol

TSS time-stamping service

USN U.S. Navy

xii

UDP User Datagram Protocol

USG United States government

VLAN Virtual LAN

VM virtual machine

XFT cross-fault tolerance

YAML YAML Ain’t Markup Language

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

I would like to thank Dr. Geoffrey Xie and Dr. Robert Beverly for their advice, support,
and council. Their support brought clarity and focus and kept me on track to finish. Many
thanks to Dr. Xie for being flexible to all my unannounced visits to his office for guidance!

I would like to thank the members of my cohort, Garret Walton, Nick Davis,
Timberon Vanzant, and Vince Amos, for being a punching bag to my ideas and for
their engaging discussions. Finally, I want to thank my family for their flexibility
during my time at NPS.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

After many years of development, software defined networks (SDNs) is starting to see main-
stream acceptance with projects like central office re-architected as a datacenter (CORD) [1]
and Google’s B4 [2]. Early work in SDN standardized SDN and SDN-enabling protocols
on the southbound interface. Northbound interfaces have shifted to the development of
representational state transfer (REST) application program interfaces (APIs) which are used
by many of the active SDN controllers like Nox [3], OpenDaylight [4], Open Network Oper-
ating System (ONOS) [5], Ryu [6], Beacon [7], Floodlight [8], and OpenContrail [9]. The
east/west interface, which enables communication between controllers, has had some de-
velopment with protocols like SDNi and software defined IXP (SDX). Le et al. propose and
define requirements for an east/west protocol called SDN Federation Protocol (SFP) [10].
SFP needs to be efficient and scalable, make use of metric information across networks,
be autonomous and stable, and maintain privacy [10]. In this research, we take SFP’s
requirements to be essential for an east/west protocol. SFP was proposed to utilize a
publish-subscribe model to prevent the protocol from having to handle every combination
of options in the packet header [10]. The development and implementation of SFP were
left by Le et al. as future work.

Meanwhile, blockchain protocols moved from simple cryptocurrency systems to com-
plex architectures with the introduction of on-chain storage and chaincode/smart contracts.
Blockchains have found uses in financial markets, internet of things (IoT), supply chain
management, smart energy grids, etc. Only recently have blockchain protocols found use
cases in networking. Raju et al. were able to introduce a network access provisioning
for cognitive cellular networks using the blockchain protocol Ethereum. Raju et al. were
able to reduce provisioning time by up to four times, decrease network signaling traffic by
almost 40%, and reduce payment settlement by almost three times [11]. The properties
of blockchains are serializability, immutability, and verifiability without implicit trust [12].
Serializability ensures that processes take place in order ensuring the correctness of con-
current operations such as transactions. Immutability ensures that once created, objects
cannot be changed. Finally, verifiability without implicit trust means that operations can be

1

verified as correct without having to trust a single service performing the validation.

1.1 Problem Statement
In light of Le et al.’s requirements for SFP, we note that existing SDN east/west protocols
do not meet all of the requirements. Google’s B4 protocol was developed to connect data
centers connected by Google [2]. B4 was not developed to be used between separately
managed SDN networks and does not ensure privacy. The SDNi protocol was designed to
facilitate inter-SDN routing by coordinating flows and sharing path, quality of service (QoS),
bandwidth, latency, and other networking data. However, SDNi was designed to operate
between SDN networks controlled by the same operators and does not take into account
privacy [13]. Additionally, the Internet Draft for SDNi has expired [13]. SDX is another
east/west protocol and is designed to be utilized at internet exchange point (IXP)s [14]. SDX
interacts directly with Border Gateway Protocol (BGP) routers [14]. However, not all SDN
networks connect directly with BGP routers. SDX compiles policy rules to combine them
into as few rules as possible to improve efficiency. However, SDX’s inbound and outbound
policy rules are replicated to all nodes making privacy an issue.

Therefore, muchwork remains on the development of an east/west protocol. In this research,
we take security, autonomy, and privacy as essential requirements for an east/west interface,
and explore the use of permissioned blockchains to meet these requirements.

1.2 Research Questions
The requirements for SFP would make it an ideal protocol for an east/west interface, but the
development of SFP was left to future work. The properties of the blockchains would be
excellent properties to apply to an east/west interface for SDN networks. To the best of our
knowledge, no one has tried to implement a networking protocol for SDN networks using
blockchains. This research aims to answer the following question:

• Can a proof-of-concept model for an east/west protocol be developed using
blockchains to connect two separately managed SDN networks?

If a proof-of-concept can be developed we look to answer the following questions:

2

• Does the blockchain based east/west protocol meet the requirements laid out by Le et
al.? Specifically:

– Is the protocol efficient and scalable to large networks?
– Does the protocol make use of metric information across networks?
– Are sub-requests responded to quickly?
– Is the protocol autonomous and stable?
– Is the network able to keep sensitive information from another network?

• Are the properties of blockchains useful for an east/west interface?

1.3 Research Contributions
In this work, we answered our primary research question and made the following contribu-
tions:

• We were able to develop a proof-of-concept for an east/west protocol on the ONOS
SDN platform using Hyperledger Fabric. We demonstrated successfully requesting a
connection between separately managed SDN networks which lead to the installation
of data flows between networks.

• We were able to evaluate the impact of network latency and show a linear relationship
between network latency and Hyperledger Fabric transaction processing time.

• We provided suggestions for future work to further the development of the proof-of-
concept and to benchmark the Hyperledger Fabric protocol.

1.4 Thesis Organization
The remainder of this thesis is organized as follows. Chapter 2 is an introduction to SDN
networking, Mininet, and Open vSwitch. Blockchain technology is discussed starting
with the time-stamping digital files and covering Bitcoin, Ethereum, and Hyperledger
Fabric. Chapter 2 concludes by covering the related work of SFP and the benchmarking
of Hyperledger Fabric. Chapter 3 overviews the high-level design and presents the basic
components for building a proof-of-concept model. Chapter 3 continues with the high-
level design requirements for Hyperledger Fabric, resource sharing, and the test-bed SDN
network. Chapter 3 concludes with a discussion of the evaluation criteria for the proof-of-
concept model. Chapter 4 covers the implementation of the proof-of-concept. Chapter 4

3

details how the SDN network was built and how the controller is implemented. Chapter 4
continues with details of constructing the Hyperledger Fabric and the functions of contract
code. Chapter 4 concludes with details of the Control Application and its functions.
Chapter 5 demonstrates a functioning prototype and presents an analysis of Hyperledger
Fabric performance. Chapter 6 presents conclusions and future work.

4

CHAPTER 2:
Background

Chapter 2 will cover the background of the topics and components used in this thesis.
A background on Software Defined Networks and the issue of interconnecting Software
Defined Networks is presented. The next section covers a background in blockchains
including time-stamping digital document, Bitcoin, Ethereum, and Hyperledger Fabric.
The chapter concludes with a discussion on related work including the work on SFP by Le
et al. and the benchmarking of Hyperledger Fabric by Thakkar et al.

2.1 SDN
Traditional networking takes a decentralized approach to manage packets traversing the
network. Routers and switches will utilize various decentralized protocols such as Open
Shortest Path First (OSPF) and Routing Information Protocol (RIP) to determine how an
individual packet will get forwarded. Each of the different routing protocols has advantages
and disadvantages including their ability to enact policy. The decentralized nature of non-
SDN networks means there is little control over certain aspects of routing and switching
unless additional protocols or routing/switching instructions are introduced. Protocols like
Bellman-Ford and Dijkstra’s Algorithm determine for each routing device which port to put
a packet on to get it to its destination. If a network administrator wanted a packet to take
a particular path each device on the network would need to be manipulated to achieve the
result.

SDNnetworks take a different approach and utilize a centralized network control architecture
[15]. From the perspective of the SDN network controller, there are three interfaces,
the north, south, and east/west, see Figure 2.3. The southbound interface is used for
communication between the OpenFlow switches and the controller. For the OpenFlow
protocol, communication traffic on the southbound interface is defined in the OpenFlow
specification [16]. We will not cover all of the OpenFlow messages here but, we will briefly
discuss the Packet In, Packet Out, Modify-State, Flow-Removed, and Hello messages [16].

• Hello is a message used by an OpenFlow switch and the controller to set up a

5

OpenFlow Controller

OpenFlow Switch

Flow Tables

Fwd Plane

OpenFlow Switch

Flow Tables

Fwd Plane

Figure 2.1. A simple OpenFlow network with two OpenFlow switches. Image
adapted from [15]

connection between the controller and a switch.
• Packet In is a message used by an OpenFlow switch to send a packet to the controller
for processing.

• Modify-State is a message sent by the controller to an OpenFlow switch after deciding
how the packet should be handled. The OpenFlow switch will use the Modify-State
message to update the flow table of a switch.

• Packet Out is a message that contains the packet that has been sent to the controller
for processing. Packet Out is used to return a packet to the switch that the packet
originated. Once it has returned, a Packet Out message can jump directly to the action
set stage of the packet processing. A packet returned to a switch using Packet Out
will generally be output to the table for processing through the new flow entry sent in
the Modify-State message.

• Flow-Removed is a message sent to the controller by the OpenFlow switch to report
that a flow has been removed. An installed flow can be removed at the request of
the controller due to a hard timeout, such as the install duration expiring, or due to
a soft timeout, such as no matches in a specified time. The Flow-Removed message
includes the reason it was removed, the installed duration, the packet count, and byte
count. The packet count and byte count can be used by an appropriately programmed
controller to collect and display metrics about the network. To ensure time-accurate
metrics get collected, flows can be installed with short duration so that data from
Flow-Removed messages are collected more often.

6

Table
0

Action
Set = {}

Action
Set = {}

...Table
1

Table
n

Packet
In Execute

Action
Set

Packet
OutPacket

Action
Set

OpenFlow Switch

Action
Set = {}

Figure 2.2. OpenFlow Packet processing through multiple tables. Each
table has its own Action set. At each table the highest priority match will be
found, action instructions are applied, metadata is updated, and the packet
is forwarded to the next table unless the action set from the previous table
stops the process. For example, the packet is output to a port. Image
adapted from: [16]

A northbound API is used by applications and services to communicate with the manage-
ment functions of the SDN controller. There is no universal standard for the northbound
API interface but, many controller families have developed RESTAPIs for their northbound
interface [17].

Finally, the east/west Interface is used by SDN controllers to communicate between con-
trollers. East/west interfaces can be used on an internal network so multiple controllers
can replicate states for redundancy. Additionally, east/west interfaces can be used between
controllers in separate networks to negotiate traffic between networks.

2.1.1 Open vSwitch
Open vSwitch is a virtual switch created by the Linux Foundation that supports OpenFlow
protocols [18]. Open vSwitch is a production quality virtual switch used in virtualized
environments [18]. Open vSwitch can be used to create a network of virtual switches that
can be used for creating virtual SDN networks. Once Open vSwitch is installed, a switch
can be created using ovs-vsctl utility and flows can be installed using ovs-ofctl utility. Using
the Open vSwitch commands, we can emulate a full SDN network. However, creating

7

OpenFlow Controller OpenFlow Controller
East/West

OpenFlow Switch

Flow Tables

Fwd Plane

Southbound Interface:
OpenFlow

Northbound Interface:
API

Figure 2.3. North, east, west, and south interfaces on an SDN controller.

a full network using the ovs-vsctl and ovs-ofctl commands would be quite cumbersome.
Additionally, we do not have a way to simulate hosts on the network and would need to
launch virtual machines (VMs) to function as hosts.

2.1.2 Mininet
Mininet is a virtual network emulator written in python and enables the rapid prototyping
of SDN networks. Mininet makes creating Open vSwitch switches, hosts and links between
switches and hosts much easier than using Open vSwitch alone. The hosts emulated by
Mininet run a real kernel so each host has a command-line which can run any installed
application on the host machine. Mininet has built-in network topologies such as linear,
single, torus, and tree for rapid prototyping and can run custom typologies defined by the
user in a python script. After Mininet is installed a network can be built using:

sudo mn --controller=default --link tc,bw=10,delay=10ms --switch=ovs --topo=linear,5

The above command will create a network with a linear topology with five Open vSwitch
switcheswith one connected host per switch, see Figure 2.4. Each linkwill have a bandwidth
of 10Mbps and have a latency of 10ms.

A custom topology can be defined in a python file. An example adapted from [19] is shown
in Appendix A.1

8

OpenvSwitch OpenvSwitch OpenvSwitch OpenvSwitchOpenvSwitch

Default Controller

Links: 10.00Mbps, 10ms Delay

Figure 2.4. A simple OpenFlow network built with one command using
Mininet.

The code for the custom topology can be run using the command:

sudo mn --custom <path><topologyname>.py

When executed, a network will be created with three switches (lines 14-16) with two hosts
per switch (lines 19-21). Instead of the default controller, a remote controller at 172.17.0.2
listening on port 6633 is used (line 11). By using combinations of addHost, addLink,
addSwitch commands we can build any custom topology up to the limits of the virtual
machine hosting Mininet and connect the network to any available SDN controller. Once
our network is running with a controller, we can bring up a terminal for any of the hosts
and run a server or use any available command like iperf and ping to test the network
connections.

2.2 Blockchains
A blockchain is an immutable electronic ledger that records transactions. Blockchains are
used on distributed networks with no central authority or single point of failure. Nodes on
a blockchain network use various protocols to come to a consensus on the current state of
the blockchain. This section will discuss the concept of blockchains and the Bitcoin and

9

Ethereum protocols which will be used as a basis of comparison. The section will end
with a discussion of Hyperledger Fabric, a permissioned blockchain protocol that uses a
distributed trust system that does not require broadcasts of transactions to all nodes on a
network.

2.2.1 Time-Stamping Digital Documents
Haber and Stornetta created a system to time-stamp a digital document by using a time-
stamping service (TSS) [20]. A TSS takes a cryptographically secure collision-free hash
function and produces a digest of fixed length from a digital document. A date and time are
added to the digest, and the TSS digitally signs the message with a private key. A digital
signature is used to identify the signer uniquely. The message and signature can later be
verified to have been signed by the TSS by utilizing the TSS’s public key. To perform
verification that the original document was time-stamped, the document can be hashed and
the hash value matched against the hash value produced, time-stamped, and signed by the
TSS. Assuming that the hash function is computationally secure, users of the system must
depend on the TSS being a trusted service.

To ensure that the TSS can never produce a fraudulent time-stamp of a digital file, Haber and
Stornetta introduced a linking system [20]. When a client requests the TSS to time-stamp
digital file x, the client will pass (yn, IDn) where yn is the hash value of the nth digital
file and IDn is the identification of the client making the nth request. The TSS responds
with signature s = σ(Cn) where σ is the signing function and Cn is the nth certificate
containing the certificate number n, the time tn, identification of the client requesting the
signature IDn, the hash value of the nth digital file, and linking information Ln which comes
from the previous certificate. After the (n + 1)th request has been processed, the TSS
will send the client making the nth request IDn+1. Now, the client has (s, IDn+1) which is
attached/associated with file x. If the time-stamp of file x is challenged, the challenger can
verify all of the information in s, then check forward in time by checking with client IDn+1

and requesting and verifying (s′, IDn+2). Additionally, the challenger can check backward
in time by checking with client IDn−1 which is contained in Ln in s and so on. Implicit trust
of the TSS is no longer required. However, if a corrupt TSS generates fraudulent signatures,
the challenger must verify forward/backward in time far enough to detect them.

10

To avoid the use of a TSS altogether, a client can send their request for verification (yn, IDn)

to k randomly generated client IDs. The final verification of the time-stamp of document
x will be [(y, ID), (s1, s2, ..., sk)] where s j is the signature of the j th randomly selected
client. Here, each selected client is performing the work the TSS was performing. To
fake a verification, the client would need to find k clients willing to collaborate. However,
if the clients were randomly selected using a random generating function and seeding it
with y then the client cannot guarantee the selection of the k clients. If k is selected to be
sufficiently large, then even a large majority of the clients being corrupt would not guarantee
a selection of all corrupt clients. This scheme forms a distributed trust and does not require
a centralized TSS to time-stamp files.

2.2.2 Bitcoin
The person or persons known as Satoshi Nakamoto used the idea of linking time-stamps
with a distributed trust and used it to implement an electronic cash system called Bitcoin
[21]. Users of Bitcoin can send digital payment transactions from one account to another.
Without a centralized trust there needed to be a mechanism to ensure the proper ordering
of transactions. To prevent race conditions, all transactions are made public (broadcast)
and a proof-of-work system of verification and consensus was implemented [21]. Bitcoin’s
proof-of-work system starts with a genesis block which sets the initial condition of the
system. With the genesis block established, a user on the system can execute a transaction
which is broadcast to all nodes on the network. The transaction is placed into a block, which
consists of a hash of the previous block (in the case of the first transaction, the previous
block will be the genesis block), a nonce, and the transaction(s), see Figure 2.5. For a block
to be valid, the hash is required to be less than the value of the networks difficulty value [21].
If the hash of the block is not less than the difficulty, the nonce is incremented, and the block
is re-hashed [21]. Generally, a large number of hashes must be calculated before finding a
hash that meets the difficulty value, requiring a significant amount of computing resources.
The difficulty value changes over time and is based on the time it takes for 2,016 blocks to
be processed [22]. If 2,016 blocks take less than 10 minutes to process then the difficulty is
increased, and the next set of blocks will take longer to process [22]. A node on the network
that collects transactions and searches for block hashes under the value of the difficulty is
called a miner [22]. Since miners are performing work on the Bitcoin network, they are
awarded Bitcoins for being the first to find an acceptable hash value [22]. A completed

11

Previous Hash

...

Block

Transaction 1

Transaction 2

Transaction n

...

...

Nonce

Previous Hash

...

Block

Transaction 1

Transaction 2

Transaction n

Nonce

Figure 2.5. A simplification of a Bitcoin block of transactions which includes
a Nonce and the hash of the previous block. By including the previous hash,
a chain of blocks or blockchain is formed. Image adapted from [21].

block is broadcast to all nodes in the network where the transactions are verified by other
nodes on the network [21]. The block is accepted when other nodes begin to use the hash
of the block as the previous hash in the next block [21].

Nodes on the Bitcoin network can be full nodes which carry a copy of the entire blockchain
or partial nodes where they only carry part of the blockchain [22]. Bitcoin uses a consensus
method so that the longest blockchain is the most up-to-date [22]. When a new node is
connected to the network, it will request each block from its peers and verify the hash [22].
The node cannot begin to verify transactions until it has all of the blocks [22]. As of this
writing, the current size of the full blockchain for Bitcoin is 171.3 Gigabytes [23].

The probability p of finding the correct hash value from a single hash shown in equation
2.1, where D is the current difficulty of the Bitcoin network [24].

p ≈
1

D × 232 (2.1)

As of this writing, D is currently at 7, 019, 199, 231, 177 [25]. The expected number of
hashes to find a block is D232 [24]. Since the difficulty is adjusted based on a 10-minute
time frame, to calculate a correct hash in 10 minutes based on the expected value will
require 5.024 × 1019 hashes per second or 50 exa-hashes per second.

A challenger to a transaction can quickly do verification by re-hashing the block to verify
it against the difficulty. An attacker cannot change a transaction without performing the

12

computational work to produce the correct hash [21]. If an attacker wanted to modify the
results of a transaction, they would need to re-hash the block and all blocks that have come
after the block they want to modify.

2.2.3 Ethereum
The Ethereum blockchain protocol builds upon the ideas of the Bitcoin protocol by adding
contract code referred to as smart contracts, written in a Turing Complete language called
Solidity, to be executed on the Ethereum virtual machine (EVM) [26]. Smart contracts
execute state transitions on accounts. Individual accounts in Ethereum are made up of
four fields, a nonce, ether (cryptocurrency) balance, contract code, and storage space [26].
The account storage in an Ethereum account is a key/value storage which persists between
transactions.

Ethereum transactions can be initiated by account users or by a smart contracts [26].
Transactions contain a signature of the sender, a transaction value, data, and gas. Gas is
a fee that is charged for each transaction, and the execution of smart contracts requires a
gas charge per computational step [26]. Gas is used to pay for the work of processing the
transaction, incentivize miners, and to prevent infinite loops in contract code. When the gas
provided for a transaction runs out during the execution of the contract, the code will cease,
the state will revert to the state before the transaction (minus the gas).

The addition of smart contract and account storage allows Ethereum to be a platform for
some beneficial applications such as any type of financial contract, identity and reputation
systems, computation markets, and distributed file storage. As an example, a simple
messaging system can be developed where a smart contract can allow external accounts
to write messages to the storage on another account. The contract can prevent external
accounts from deleting or modifying messages but allow account owners to delete or
modify the messages that are sent. As we will see later in this work, we can use a system
like this simple messaging system to store and share information that can be used by SDN
networks to come to agreements about network connections and share metric information.

Despite the potential that Ethereum has with the introduction of account storage and smart
contracts, Ethereum suffers frommany of the same negatives as Bitcoin. Because Ethereum
uses a proof-of-work model similar to Bitcoin, it requires miners to repeatedly hash blocks

13

wasting computational resources and energy. Similarly to Bitcoin, transactions on Ethereum
are not private and are broadcast across the network [26]. However, consortium blockchains
and Private blockchains can be developed where transactions are only shared between
members. Sizeable and complex contract code would be expensive to execute because
of the Gas costs per computational step. Like Bitcoin, Ethereum nodes can be partial
or full nodes with full nodes carrying a copy of the full blockchain. The size of the
Ethereum blockchain has grown large over time and as of this writing is approximately 94
Gigabytes [27].

2.2.4 Hyperledger Fabric
Hyperledger is an open blockchain project developed under the Linux Foundation [28].
There are several frameworks under the Hyperledger project including Burrow, Fabric, Indy,
IROHA, and Sawtooth. We will focus on the Hyperledger Fabric framework because it is
the most general purpose framework. Hyperledger Fabric is a permissioned blockchain that
has improvements to privacy and scalability over the proof-of-work blockchain models [28].
Permissioned means that the identities of the users are known to a degree and membership
may be limited. Hyperledger Fabric uses smart contracts called chaincode similar to
Ethereum [28]. When a transaction takes place, the transaction data is stored in a blockchain,
and a local database called the state database is updated to reflect the current state of the
system. There are three types of entities on the network used to carry out the model:
clients, peers, and orderers [28]. Peers execute chaincode and validate transactions [28].
The orderer(s) are entities on the network that receive transactions and come to a consensus
on the order of transactions [28]. Hyperledger Fabric uses channels for the communications
between peers and orderers on a network [28]. Each channel will have a ledger and blocks
are only provided to peers with verified channel membership [28]. Using channels allows
for confidential transactions between peers and prevents off-channel peers from having to
store data for transactions for which they have no interest. A peer can be a member of
multiple different channels simultaneously.

Bitcoin and Ethereum both use an order-execute model which requires all transactions to
be processed in series to prevent race conditions and double spending [29]. Hyperledger
Fabric uses an execute-order-validate transaction model [28].

14

In the execute phase, a client initiates a transaction by sending the request for a transaction
to the peer nodes. Peers execute the transaction (i.e., execute the chaincode), check for
correctness, and endorse the transaction by signing it. Not all peers need to perform the
execute and endorsement (signing). The determination of which peers are involved in a
transaction depends on the current Endorsement Policy. The Endorsement Policy is a high-
level policy and can be in the form: Peers X, Y, and Z are required to endorse transactions
of chaincode K [28]. The endorsement policy can be tailored to the blockchain network to
create an optimal balance between security and efficiency. After endorsing a transaction,
the peers will return the transaction to the initiating client.

In the order phase, the endorsed transactions from peers are forwarded to the orderer(s) by
the initiating client [28]. The orderer(s) are entities on the network that receive transactions
and verify the order of the transactions based on the consensus. The orderer does not
have a copy of the ledger, the state database, or the chaincode [28]. By keeping the
orderer’s function as simple as possible allowedHyperledger Fabric to be the first blockchain
protocol that allows for the selection of a consensus protocol [29]. Different consensus
protocols such as Byzantine-fault tolerance (BFT), cross-fault tolerance (XFT), and crash
fault tolerance (CFT) do not perform the same in all environments [30]. Hyperledger will
allow developers to select a consensus model which best balances the security and efficiency
for the blockchain network. Once the orderer has ordered the transactions, it will create
and distribute blocks back to the peers. The distribution of blocks can be direct to peers
or via a gossip dissemination protocol. Generally, there will be few orderers and many
peers, so the gossip dissemination protocol improves scalability for large networks [29].
Hyperledger Fabric requires at least a single orderer in order to function. However, using
only one orderer would not provide fault tolerance and nodes on the network would need to
trust the orderer implicitly.

The validate stage consists of peers checking the endorsement policy and verifying keys.
Each peer on the network will receive a block from the orderer and will individually validate
the block. If the validation checks fail, the block is discarded by the peer. Hyperledger
Fabric’s blockchain ledger is an append-only blockchain, and each peer maintains a copy
of the ledger as well as a copy of the state database. When the validation by the peers
is complete, the ledger will be updated, followed by the state database. There are several
implementations of the state database possible including LevelDB and CouchDB. LevelDB

15

is used for key-value pairs, and CouchDB can also store key-value pairs as well as well as
Javascript Object Notation (JSON) formatted files.

Peer

Client

Peer Peer

Step 1:

Client

Step 2:

Step 3:

Orderer

Peer Peer Peer

Step 4:

Step 5:

Step 6:

Peer

Peer Peer PeerPeer

Chaincode Ledger Updated Ledger

Figure 2.6. An example of the steps of the Hyperledger transaction process.
Image adapted from [29].

An example of execute-order-validate process is shown in Figure 2.6. In this example, there
is assumed to be four peers and only one orderer.

• Step 1: The client makes a transaction proposal to the endorsing peers. In this
example, only 3 of the four peers are required to endorse by the Endorsement Policy.

• Step 2: The endorsing peers have a copy of the ledger and the chaincode. The peers
execute the transaction and return the simulated state change, all keys associated with
the transaction, and the metadata like the transaction ID and signature.

• Step 3: The client receives all endorsed transactions and sends them to the orderer.
• Step 4: The orderer establishes the transaction order using the consensus protocol
installed. The transaction is collected into Blocks and delivered to peers. Delivery

16

can be direct to a peer but, in large networks, there will usually be many more peers
than orderers. For large networks, the optional gossip dissemination protocol can be
used to distribute blocks.

• Step 5: Blocks are returned to all peers including the peers that did not endorse the
transaction.

• Step 6: Peers validate the block. The validation consists of checking the endorsement
policy and verifying keys. If the validation checks fail, the block is discarded. If
validation is successful, the local copy of the ledger and the state database are updated.

By utilizing the execute-order-validate method, transactions do not have to be executed in
series to prevent race conditions [29]. Peers can execute chaincode in parallel which can
significantly improve scalability.

2.3 Related Work
This thesis research is focused on investigating solutions for creating an east/west interface
for SDN networks using blockchains. In this section, we will explore the SFP proposed by
Le et al. to create an east/west interface. Once a basic proof-of-concept is developed for
creating an east/west interface using blockchains, it will be compared to the requirements
set by Le et al. for SFP. Additionally, we will discuss the work of Androulaki et al. to
benchmark the Hyperledger Fabric protocol against a Bitcoin clone and use it as a basis of
comparison.

2.3.1 SDN Federation Protocol
Le et al. [10] propose a new protocol, SFP, to create an east/west interface between SDN
networks. SFP, or a protocol like SFP, is necessary because currently utilized protocols,
like BGP, only require an IP address for destination-based forwarding. If BGP were to be
extended to accommodate SDN networking, it would require entries in the routing base for
every flow. For just the basic 5-tuple <d_IP, s_IP, s_port, d_port, protocol_ID> this can be
as large as 232 · 232 · 216 · 216 · 28 ≈ 2.02 × 1031 unique entries and every node would be
required to advertise the best route for every entry. To prevent having routing entries for
large combinations of packet headers, Le et al. propose that SFP use a pub-sub model. As
an example, Network A will first send a Packet/Flow subscription request with a metric like

17

reachability and bandwidth to Network B. Network B responds to all sub-requests it is able
or willing to route and includes the bandwidth that it can support, see Figure 2.7.

Network A Network B
-

�

Sub : Packet/Flow Space, Metrics

Pub : Packet/Flow Space, Metrics

Figure 2.7. The proposed SFP message flow. Source [10].

Le et al. define three design qualities which SFP should have [10].

• SFP should efficiently use resources across networks. SFP should be efficient and
scalable to large networks. The protocols should be able to make use of metric
information across networks, and sub-requests should be responded to quickly.

• The SFP protocol should be autonomous and stable. When all networks implement
their own policy, the conflicts in policies can lead to instabilities [31]. Universal
algorithms can improve stability but prevent the use of individual network policies.
SFP should use universal algorithms for stability but be flexible for networks to
implement individual policy as much as practicable.

• Networks should be able to control privacy. A network should be able to keep
sensitive information from another network.

Le et al. list several issues with SFP that would need to be addressed in future work [10]:

• Non-Adjacent Networks: SFP is discussed between two adjacent networks. The
exchange and negotiation of flows between non-adjacent networks would introduce
additional issues.

• Multiple Flow Queries: A domain would need to learn about the impact of multiple
flows. If flows are queried individually, a response might show bandwidth available
across a physical link. As the flows are implemented the bandwidth available will
change, and the flows will not receive the bandwidth announced in the original query.
To prevent negative impacts from individual flow requests, multiple flows should be
allowed to be subscribed concurrently. However, querying multiple flows may allow
a network to map out another network and compromise privacy.

18

• Correctness and Stability: The properties for correctness and stability need to be
developed and tested.

We recognize there is other research into SDN federations and that SFP is one line-of-effort.
This research will not attempt to implement the SFP protocol. However, we will attempt
to utilize a blockchain protocol to perform a similar function. We will investigate if the
requirements, as well as the issues Le et al. left for future work, can be addressed by utilizing
the properties of permissioned blockchains.

2.3.2 Benchmarking Hyperledger Fabric
One of the crucial properties for SFP set by Le et al. is scalability. Since this research
utilizes Hyperledger Fabric, we need to better understand if Hyperledger Fabric is scalable.
Thakkar et al. performed benchmarking on the configurable parameters of Hyperledger
Fabric [12]. The configurable parameters include block size, endorsement policy, channels,
resource allocation, state database choice, and latency. In their testing, Thakkar et al. made
several observations including [12]:

• Latency was slightly higher for a larger block size until a saturation point of 140
transactions per second was reached.

• Latency was slightly lower for larger block sizes when the transaction rate was higher
than the saturation point of 140 transactions per second.

• For a given block size X, the transaction time increased if the transaction rate was
below a specific value Y. The decrease is because the transactions must wait for
a timeout before a block is issued. If the transaction rate is above Y, an increase
in transaction rate will increase the rate that blocks are issued. Increasing the rate
that blocks are issued will increase the transaction time because of the extra block
validations.

• The transaction processing time increased linearly with the number of endorsing
peers. The majority of the time increase was due the increased time in validating
the signatures in a block. Each organization’s membership service provider (MSP)
only maintains its own organization’s signatures. Signatures for outside organization
require a request for validation from the outside organizations MSP.

• Increasing the number of channels increases the throughput and decreases latency but

19

increase the host machines CPU utilization.
• Transaction throughput was three times faster with the Go LevelDB than with the
CouchDB.

• With the CouchDB, the endorsement time and state database update time increased
with the number of lines to write in the transaction.

By combining their observations, Thakkar et al. were able to suggest and implement a
number of optimizations to increase the transaction throughput over a single channel. The
optimization leads to an increase the transactions per second from 140 to 2250 [12].

The optimizations made by Thakkar et al. will be significant when utilizing Hyperledger
Fabric as a key component of an east/west interface for SDN networks. In particular,
Thakkar et al. implemented a local cache of deserialized identities which reduced much
of the cryptographic overhead and prevented a round trip time (RTT) to each signer’s
MSP for verification [12]. However, Thakkar et al. used a fixed latency on a 3 Gbps link
when performing experiments [12]. The assumption was made that the network was not a
bottleneck and network testing of Hyperledger Fabric was left to future work [12]. In this
work, Hyperledger Fabric will be used as a networking protocol. It is important to extend
the benchmarking performed by Thakkar et al. to understand better how Hyperledger Fabric
performs at different network latencies.

20

CHAPTER 3:
Design

Chapter 3 will discuss the high-level design requirements for developing a proof-of-concept
for an east/west protocol. In addition to the requirements, we discuss Hyperledger Fabric,
resource sharing, our SDN network, and a Control Application. We conclude the chapter
with a discussion on evaluation.

3.1 Requirements
The necessary components of our proof-of-conceptwill include a network emulator, network
controller, blockchain protocol and a Control Application. On the blockchain network,
peers executing transactions form a logical connection to other peers on the network. If we
connect the peer nodes connected to a blockchain network to the northbound interface of
the controller, we form a logical east/west interface between controllers via the blockchain
network, see Figure 3.1. With this design, transactions on the network can instruct the
controller to update flows. As an example, if the network on the left side of Figure 3.1
wanted to pass traffic across or to a host on the network on the right, an arrangement for
this action can be made via contract code. Once the contract is executed, both networks can
instruct the controllers to carry out the contract.

With this design, we should be able to connect:

• Adjacent SDN networks with separately managed controllers.
• Non-adjacent SDN networks with separately managed controllers and traditional
routing between the networks.

• A series of separately managed SDN networks where traffic from one network must
pass through another network to get to the destination network.

To test this concept, we will need:

• A blockchain network with multiple peers.
• Contract code which executes transactions
• A data structure on the blockchain to share resources information between networks.

21

OpenFlow Controller

OpenFlow Switch

Flow Tables

Fwd Plane

Flow Tables

Fwd Plane

OpenFlow Controller

Flow Tables

Fwd Plane

Flow Tables

Fwd Plane

PeerLogical
Physical

OpenFlow Switch OpenFlow Switch OpenFlow Switch

Blockchain

Peer

Blockchain

Figure 3.1. A logical east/west interface using a blockchain network.

• A northbound interface on a controller for adding and withdrawing flows.
• A minimum of two connected SDN networks.
• When transactions occur on the blockchain network, appropriate instructions will be
generated and sent to the controllers northbound interface. Since forming a connection
will not be part of any existing blockchain protocol, we will need an application that
we call the Control Application to form this connection.

3.2 Hyperledger Fabric
Although a proof-of-concept could potentially be developed using Ethereum, the broadcast
of all transaction across the network would violate the privacy requirement proposed by
Le et al. Additionally, the way Ethereum operates violates the efficiency of resources
requirement. For example, all nodes on the network process the smart contracts/chaincode
and store every other node’s transactions and miners repeatedly hash blocks for consensus.

Hyperledger Fabric was selected as the blockchain protocol because of its potential to pro-
cess transactions much faster than other blockchain protocols. Hyperledger Fabric does not
need to repeatedly hash blocks and can segregate transactions to private channels. Addi-
tionally, Hyperledger Fabric’s consensus protocol can be selected for individual networks

22

allowing for a selection that is optimized for the transaction types that will be used on SDN
networks. Androulaki et al. ran tests on Hyperledger Fabric and was able to achieve 3500
transactions per second with less than one-second latency on a single channel [29]. The
actual time for transactions take to process will depend on many factors including the choice
of consensus, number of nodes, network latency, and the types and size of the transactions.

Hyperledger Fabric’s private blockchains/channels mirror the publish-subscribe structure
suggested by Le et al. When a node updates their state information via a transaction (publish)
the state is replicated to all nodes that have joined the same channel (subscribe). When a
channel is joined between two networks a genesis block is created with the initial state of
the network and populates the resource sharing data which are replicated to all nodes. Only
nodes in the endorsement policy execute the transaction chaincode, and multiple queries of
resource sharing data are handled using the local databases which are in keeping with the
efficiency of resources requirement of Le et al.

Hyperledger Fabric provides resources for rapidly prototyping a Fabric network. Bringing
the network online spawns the required elements namely the peers, clients, and orderer
running in Docker containers. To test our design, transactions will only take place on one
machine where latency between nodes is minimal and can be controlled. However, we are
still able to test the establishment of flows initiated by transactions which will establish
our proof-of-concept. A host on VM 1 will be set up to continuously send data to a host
running on the SDN network on VM 4. The Hyperledger Fabric network will be set up on
VM 4. A transaction will be initiated on the Hyperledger Fabric network on VM 4. After
the transaction has completed, the Control Application will update the SDN controller on
VM 4 from the information contained in a Hyperledger Fabric transaction and flows will be
installed. Once the flows are installed, the connection between hosts on VM 1 and VM 4
will be established.

3.3 Resource Sharing
Following the requirements of Le et al., networks need to share resource and metric in-
formation across domains. The Hyperledger Fabric blockchain allows for key-value and
JSON formatted data storage which can be used to store the resource sharing data we wish to
implement. Hyperledger Fabric’s JSON formatted non-structured query language (NoSQL)

23

database supports rich queries. As an example, rich queries cam find a network with avail-
able bandwidth above or below a specified value. Because the rich queries would prevent
repeated searches for specific search values, we will focus the design on the JSON data
structure using couchDB. For our proof-of-concept, we will focus the design on adjacent
SDN networks with separately managed controllers. To demonstrate resource sharing, we
will design the data structure to share available bandwidth and available hosts. Available
bandwidth is a useful metric for any network managing flows, and the available hosts will
be used to demonstrate connecting a network to an available compute resource.

3.4 SDN Network
To expedite development of a proof-of-concept the SDN networks will be developed in
the Mininet emulation environment. The drawback of this approach is that all networked
devices including controllers, routers, switches, hosts, peers, clients, and orderers will be
running on the same host machine. A large and complex SDN network is not necessary
for a proof-of-concept. However, a large scale network will be necessary for a complete
measure of scalability and will be left for future work.

Any SDN controller with a northbound API will function for building a proof-of-concept.
However, ONOS is a production-ready controller with a graphical user interface (GUI),
a northbound API, applications, and the intent framework. The intent framework is a
key feature because it translates high-level policies into the installation, modification, and
upkeep of flows. Adoption of ONOS is likely to increase because ONOS is a critical
component to CORD [1]. CORD is designed to replace closed-source, hardware and
software at telecommunications central office (CO)s. A Survey by IHSMarkit showed 85%
of telecommunications COs intend to implement data centers and 70% of those intending
to implement CORD [32]. ONOS uses the OpenFlow protocol, and although there are
alternatives such as Cisco’s application-centric infrastructure (ACI) there is either little
adoption or the protocol is proprietary.

3.5 Control Application
Transactions and queries in Hyperledger Fabric can be initiated using commands on Hyper-
ledger a CLI container connected to an anchor peer or on a client connected to an anchor

24

peer using the Hyperledger Fabric software developer’s kit (SDK). Intents can be installed
on the ONOS controllers using the ONOS REST API. For our prototype, we need an ap-
plication to connect the execution of a transaction to the installation of flows which we call
the Control Application. The Control Application should be notified when a transaction is
completed that requires an intent to be installed and communicate with the ONOS controller
to install the intent; see Figure 3.2.

Transaction

Transaction
CompleteInstall

Intent

Transaction
Complete

Display
GUI

Figure 3.2. Control Application concept

3.6 Evaluation
To evaluate the proof-of-concept, we will establish flows between non-adjacent SDN net-
works with separately managed controllers and traditional routing between the networks by
executing a transaction on the Hyperledger Fabric network. Once the proof-of-concept is
established, data will be gathered on transactions under different transaction arrival rates
and network latencies.

Because the Hyperledger Fabric is not fully optimized [29], BFT consensus is not complete,
and our proof-of-concept will use VMs, large-scale testing will be left to future work. Ad-
ditionally, developing a proof-of-concept for a series of separately managed SDN networks
where traffic from one network must pass through another network to get to the destination
network will require additional resource sharing and will be left for future work.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 4:
Implementation

Chapter 4 will cover the components used for developing a proof-of-concept for developing
an east/west interface using blockchains. The necessary components of the system will
include a network emulator, network controller, and a blockchain protocol. Once the SDN
test network is set up using Mininet with an ONOS controller, the blockchain protocol will
be implemented using Hyperledger Fabric. A Control Application will connect to ONOS
using the northbound interface and act as a client/application on Hyperledger Fabric, see
Figure 4.1.

Hyperledger FabricControl
Application

Northbound Interface Northbound Interface

ONOS API

Hyperledger CLI

Control
Application

Hyperledger Fabric

Logical East/West Interface

Figure 4.1. Creation of an east/west interface using the ONOS northbound
interface and Hyperledger Fabric.

4.1 Network Implementation
The network consists of the network components, protocols, and controllers. OpenFlowwas
the first choice as the southbound protocol. Although there are alternatives to OpenFlow,
many are proprietary. OpenFlow meets all of the needs of this project and is open-source
with an extensive user-base and rich documentation [15]. OpenFlow capable hardware
switches are available for expanding the research outside of virtualization. Mininet was

27

selected as the network emulator to create virtual networks that are compatible with Open-
Flow [33]. Additionally, Mininet uses Open vSwitch, which supports OpenFlow. Hosts on
Mininet can be used to emulate network traffic to other hosts running both server and client
applications and creating realistic network traffic.

There are several drawbacks when using a virtual network for testing. All components of the
network run on the resources of the machine hosting them. As the virtual networks get more
complex, more load is put on the host machine’s resources. Running multiple networks
with applications onmultiple hosts will drain computing resourcesmaking simulations slow,
and impact the blockchain network and its transactions. Taking the compute resources into
account, if the network is built with a small number of switches and hosts it can operate
below 100% capacity and still produce a realistic emulation for a proof-of-concept.

The network built for this project is shown in Figure 4.2. The test network utilizes two
separately managed SDN Networks connected by pfSense® virtual routers. All Virtual
machines are running on the same host and hypervisor (VirtualBox). Traditional routers
were included in the implementation to demonstrate connecting the SDN networks over
traditional routing infrastructure. Connecting the SDN networks using traditional routers
was done to demonstrate connecting the network over the internet. If the SDN networks
were directly connected, they can be run on a single VM with two separate controllers. To
connect the networks, all VMs are given an internal network connection in VirtualBox. The
network connection is accomplished by setting the network adapter to Internal Network in
VirtualBox and creating three separate networks, Inet1, Inet2, and Inet3. Inet1 is used to
connect VM 1 and VM 2, Inet2 connects VM 2 and VM 3, and Inet3 connects VM 3 and
VM 4. After logging into VM 1 or VM 4 the default interface, enp0s3, will be available for
the inet connection between the VMs. The Mininet network needs to be attached to enp0s3
so that network traffic running on Mininet has a connection to the internal network adapter.
The connection to enp0s3 is accomplished by using the ovs-vsctl utility in Open vSwitch
by using the command:

sudo ovs-vsctl add-port [bridge name] [interface name]

The network interface can now acquire an IP address from the pfSense router usingDynamic

28

pfSense pfSense

Virtual Machine 1 Virtual Machine 4

Virtual Machine 2 Virtual Machine 3

Figure 4.2. A virtual test network with separately managed SDN networks
connected by traditional routers.

Host Configuration Protocol (DHCP). Getting an IP can be completed by forcing the
interface to drop its default configuration and re-acquire an IP address:

sudo ifconfig enp0s3 0

sudo dhclient

The Mininet hosts are assigned a static IP address by default. The hosts can be forced to
acquire an IP from DHCP by running the same commands as above. However, acquiring an
IP on the hosts cannot happen until flows are installed because ONOS will drop all packets
by default.

The code to build the network pictured in Figure 4.2 is included in Appendix A.2. After
bringing up the network on VM 1 the same steps are repeated for VM 4.

The final piece of the network configuration is setting up the subnets between the VMs. The
subnet between VM 1 and VM 2 was selected to be 10.10.10.0/24, the subnet between the
pfSense routers (VM 2, VM 3) was selected as 20.20.20.0/30, and the subnet between VM
3 and VM 4 was selected to be 10.10.11.0/24. A static route was installed on both pfSense
routers to ensure the subnets can connect.

29

4.2 Network Controller
ONOS was selected as the network controller for this project because of the rich feature set
it offers coupled with active development and an active community of users. The ONOS
controller uses applications written in Java to perform controller functions. An instance of
an ONOS controller can run independently on a Docker container and can be clustered for
scalability and fail-over redundancy. The Docker containers allow individual controllers to
be started and shutdown independently of the other controllers in a virtual environment.
ONOS has a well designed GUI for displaying network graphs, link status, link throughput,
controller status, and node and switch status; see Figure 4.3.

Figure 4.3. Image of the ONOS GUI depicting the custom topology in 2.1.2,
depicting 3 switches with 2 hosts per switch utilizing a cluster of controllers.

The intent framework is a key feature of ONOS because it translates high-level policies
into the installation, modification, and upkeep of flows [34]. By using intents, the Control
Application needs to send a single message to ONOS from the information contained in
a Hyperledger Fabric transaction instead of translating the transaction into multiple flow
requests which need to be sent to all the active switches on the network. The intents, for
example, allow for the user to specify flows between two points on the network. The intent
framework will determine the path based on the criteria set by the user and install flows on

30

the switches to ensure the intent is met [34]. If conditions change such as a link going down
or a link exceeding a bandwidth limitation, the intent framework will select and apply flow
rules to ensure the conditions of the intent are met. These flow rule changes can include
actions such as throttle bandwidth for lower priority flows or find alternate paths. An intent
can be applied to the system using an ONOS application. When a packet arrives on a switch
and does not have a matching flow entry installed, the packet is forwarded to the controller
using the Packet In message. Once the controller receives the packet, if it matches criteria
set by the operator in the ONOS application, an intent can be created. Additionally, intents
can be installed by other programs and services using the northbound interface.

ONOS uses a REST API for the northbound interface. The API can accept a JSON
formatted message on an open socket listening on http://<controllerIP>:8181/onos/v1/. A
user or program can perform various queries or install intents, flows, vlans, and applications.
As an example, the hosts on the SDN network on VM 4 in Figure 4.2 can be queried by
sending a request to the ONOS northbound interface using the command:

curl -X GET --header 'Accept: application/json' 'http://172.17.0.2:8181/onos/v1/hosts' --user UNAME

--pass PASSWORD↪→

The response on a network with three hosts is a JSON formatted message:

{

"hosts": [

{

"id": "00:00:00:00:00:01/None",

"mac": "00:00:00:00:00:01",

"vlan": "None",

"configured": false,

"ipAddresses": ["10.10.11.101"],

"locations": [

{

"elementId": "of:0000000000000001",

"port": "1"

}

]

},

{

"id": "00:00:00:00:00:02/None",

31

http://<controller IP>:8181/onos/v1/

"mac": "00:00:00:00:00:02",

"vlan": "None",

"configured": false,

"ipAddresses": ["10.10.11.102"],

"locations": [

{

"elementId": "of:0000000000000002",

"port": "1"

}

]

},

{

"id": "00:00:00:00:00:03/None",

"mac": "00:00:00:00:00:03",

"vlan": "None",

"configured": false,

"ipAddresses": ["10.10.11.103"],

"locations": [

{

"elementId": "of:0000000000000003",

"port": "1"

}

]

}

]

}

To install an intent using the northbound interface a JSON formatted message can be sent
to the controller using a PUT request, see Figure 4.4 for an example of the intent format.

Finally, ONOS collects metrics by collecting information from Packet In, Packet Out, Flow
Mod, Flow Removed, Stats Request, and Stats Reply messages as well as system metrics
from the host machine [34]. The collection of OpenFlow messages can provide network-
wide metrics with little overhead [35].

4.3 Hyperledger Fabric
In this section, we will discuss the configuration files for Hyperledger Fabric, the installation
of the environment, contract code, and channel setup, and the implementation of the
chaincode.

32

{

"intents": [

{

"type": "HostToHostIntent",

"timeout": 1000,

"id": "0x0",

"key": "0x0",

"duration": 100,

"appId": "org.onosproject.gui",

"resources": [

"00:00:00:00:00:01/None",

"00:00:00:00:00:02/None"

],

}

]

}

Figure 4.4. A JSON formatted intent for the ONOS intent REST API. This
intent is a Host-to-Host intent and will allow the host with the MAC address
00:00:00:00:00:01 on VLAN None to communicate with the host with the
MAC address 00:00:00:00:00:02 on VLAN None. This intent will be installed
with a duration of 100 seconds.

4.3.1 Fabric Configuration
To build the proof-of-concept and test the network, a Hyperledger Fabric test network will
be created with all of the required network entities including peers, orderer, command
line interface (CLI), and state databases. In this thesis, we will use modified versions of
the Hyperledger example code provided in the install files [36]. The files include four
YAML Ain’t Markup Language (YAML) files for selecting the network and cryptographic
configurations. The YAML files function as follows:

• crypto-config.yaml shown in Appendix A.3.1, contains a list of the nodes on the
network and is used by Hyperledger Fabric’s cryptogen utility to generate certificates
for the organizations on the network. The normal process for generating keys is for an
organization to utilize theMSP system to maintain and generate keys for an individual
organization on the network [37]. For this project, we will use the cyrpto-config.yaml
and the Cryptogen utility to generate all the keys we need for testing.

• docker-compose-cli.yaml shown in Appendix A.3.2, is used to generate Docker con-
tainers for the orderer, peers, and a CLI. The containers generated with the folders
specified in the environment section (line 65) and will have access to the files of the

33

host operating system specified in the volumes section (line 80). Line 82 and 84 are
modified to point to the /thesis/chaincode/ and /thesis/scripts where new scripts and
chaincode are added to run the tests for the SDN network.

• docker-compose-couch.yaml shown in Appendix A.3.3 is used to set up Docker
containers for the couchDBwhen the couchDB option is selected as the state database.
When selected, couchDB replaces the default LevelDB (key-value) database and uses
key-values as well as JSON formatted files [38]. Using JSON formatted data allows
for creating easily readable data which can be quickly queried [38]. CouchDB uses
a B-Tree data structure that has O(log n) insert, search, and delete operations. The
couchDB Docker container’s web-enabled interface can be accessed using the port
defined on line 23 by accessing http://localhost:<port>.

• configtx.yaml shown in Appendix A.3.4 contains the profiles used by the configtxgen
tool to create configuration artifacts for orderer genesis block, channel configuration,
and anchor peers. Anchor peers are peers on the network connected to a Hyperledger
channel and able to communicate with other peers from other organizations. The
code is presented here unmodified from the source. Line 110 allows for selection of
the orderer type with solo and Kafka as currently available options.

To bring the network online, we will use the shell script byfn.sh provided in the Hyperledger
Fabric example files, see Appendix A.4.1. byfn.sh calls the cryptogen and configtxgen tools
which utilize the YAML. Line 166 of byfn.sh is commented to prevent the networking
from executing scripts/script.sh which is designed to run the Hyperledger Fabric tutorial
demonstration. The network is brought online using the command:

./byfn.sh -m up -c sdnnetwork -s couchdb

The "-m up" option calls the networUp function on line 504 of byfn.sh. networkUp
runs generateCerts, replacePrivateKey, and generageChannelArtifacts functions then runs
docker-compose passing docker-compose-cli.yaml as an argument to create the CLI con-
tainer. Additionally, because "-s couchdb" was included, docker-compose-couch.yaml is
also passed as an argument. "-c sdnnetwork" names the private channel for the network
sdnnetwork. The result of running the command is a series of Docker containers being
spawned that run the peers, orderer, CLI, and state databases. The output from bringing the

34

http://localhost:<port>

network online will be:

Creating couchdb0 ... done

Creating couchdb2 ... done

Creating couchdb1 ... done

Creating couchdb3 ... done

Creating orderer.example.com ... done

Creating peer0.org1.example.com ... done

Creating peer0.org2.example.com ... done

Creating peer1.org1.example.com ... done

Creating peer1.org2.example.com ... done

Creating cli ... done

Four peers have now been created with each peer having its own copy of the state database
(couchDB). A CLI container which is used to run commands and scripts on the network.
One orderer was created which does not have access to the state database.

To bring the network down use the command:

./byfn.sh -m down -c sdnnetwork

Once the network is up, the CLI can be accessed using the Docker command:

docker exec -it cli bash

4.3.2 Environment, Contract Code, and Channel Setup
After bringing the peers, orderer, CLI, and state databases online, we need to join the
nodes to a channel and install and instantiate the chaincode. There are five scripts adapted
from [39] that we will use to accomplish the setup.

• setclienv.sh shown in Appendix A.5.1, sets environmental variables for the channel
name and the contract code name. sdnnetwork was used for the channel and thesis-
chaincode references the file thesischaincode.go which contains a copy of the contract
code.

35

• channel-setup.sh shown in Appendix A.5.1, establishes the sdnnetwork channel and
joins all of the peers to the channel.

• install-chaincode.sh shown in Appendix A.5.1, must be called with one argument
which is the version number of the contract code. When called install-chaincode.sh
installs a copy of the contract code on the Docker containers of all peers.

• instantiate-chaincode.sh shown in Appendix A.5.1, is used to set the initial state of
the blockchain. Like install-chaincode.sh, a version number is also passed as an
argument and must refer to a matching version number of the installed chaincode.

• upgrade-chaincode.sh shown in Appendix A.5.5, is passed an argument for a version
number and is used to install an updated version of the chaincode. The version number
must not match any previously installed or upgraded version number.

The chaincode is ready to execute transactions after running:

source setclienv.sh

./channel-setup.sh

./install-chaincode.sh 1.0

./instantiate-chaincode.sh 1.0

After running the setup scripts, we are now able to execute the functions in the chaincode on
the Hyperledger Fabric network. We can now use the "peer chaincode instantiate" command
with the "-c" option which is the constructor argument. The constructor accepts a JSON
formatted string. For example, we can now pass the string ’{"Args":["init","A","10","B","20"]}’
using the instantiate command. Passing a string will call an initialize function in the
chaincode to create entries in the blockchain. The entities A and B are created, and a value
for A is set to 10, and a value for B is set to 20. The values of 10 and 20 currently have
no meaning, but we could decide that these values represent amounts of digital currency
and we have just created a crypto-currency. To proceed, we need to write the data structure
format for our resource sharing and additional functions for transactions and queries into
the chaincode.

4.3.3 Contract Code
Hyperledger fabric supports contract code written in Go and Node.js. For this project, Go
was selected over JavaScript because of familiarity with the language. The contract code

36

will consist of functions for carrying out various types of transactions and a data structure
for resource sharing. Since we selected the state database to be couchDB we will utilize a
JSON format for the data structure. In the Go language, we use a struct (structure) to define
and store the data and use marshal to convert it to a JSON format for storage. When reading
from the state database, we utilize the unmarshal function to convert a JSON string back to
our struct. The struct developed for use in our proof-of-concept is:

type network struct {

ObjectType string `json:"docType"`

Name string `json:"name"`

Address string `json:"address"`

Hosts int `json:"hosts"`

Availhosts int `json:"availhosts"`

Bandwidth float64 `json:"bandwidth"`

Balance float64 `json:"balance"`

Pricepermb float64 `json:"pricepermb"`

Tenantslice []tenant `json:"tenantslice"`

ASnum int `json:"asnum"`

ASneighbor []int `json:"asneighbor"`

TransCount int `json:"transcount"`

}

type tenant struct {

ObjectType string `json:"docType"`

StartTime int64 `json:"starttime"`

Duration int64 `json:"duration"`

Bandwidth float64 `json:"bandwidth"`

Hosts int `json:"hosts"`

SAddress []string `json:"saddress"`

TransNum int `json:"transnum"`

}

The network struct is used to store information about an individual SDN network. Critically,
the data will contain the metric information used to make decisions about requests for flows
from other networks. It consists of the following parts:

• "docType" is a string that uniquely identifies the type of object in the state database.
• "name" is a string that uniquely identifies the SDN network. In our example, the
names could be peer0.org1.example.com or peer1.org2.example.com.

• "address" is a string that contains the network IP address for the SDN network.

37

• "hosts" is an integer and stores the currently available number of hosts. hosts will
be used to set up an example where a network can advertise the number of hosts
available for use in hardware-as-a-service (HaaS).

• "availhosts" is a string that stores a boolean value true, or false if the network has
available hosts for use in HaaS.

• "bandwidth" is a double-precision floating-point used to store the total bandwidth in
Megabits per second (Mbps) that the SDN network advertises as currently available.

• "balance" is a double-precision floating-point that represents a crypto-currency bal-
ance that is used to pay for network services.

• "Pricepermb" is a double-precision floating-point that represents a cost for reserving
network bandwidth in Mbps.

• "tenantslice" is a list of tenant struct objects used to store information about networks
with active contracts. The tenant struct is defined below.

• "asnum" is an integer used to identify the autonomous system (AS)where the SDNnet-
work is a member.

• "asneighbor" is a list of integers that designated the neighbor AS’s of a network.
• "transcount" is an integer that counts the number of transactions a network has made
and uniquely identify the transactions.

At a minimum, the network struct includes information for requesting a flow for our proof-
of-concept such as the network address and that bandwidth is available. Some fields
like Pricepermb, asnum, and asneighbor were included to demonstrate additional types of
information sharing.

When a network requests services from another network, the requesting network becomes
a tenant of the hosting network. The tenant struct stores information about the contracts
from the requesting networks and consists of the following parts:

• "docType" is a string that uniquely identifies the type of object in the state database.
• "starttime" is a 64-bit integer that stores the start time of the contract as a UNIX
timestamp.

• "duration" is a 64-bit integer that designates the duration of an installed flow.
• "bandwidth" is a double-precision floating-point used to represent the supported
bandwidth in Mbps that the contract requested.

38

• "hosts" is an integer and represents the number of hosts requested in the contract.
hosts is used for a HaaS example.

• "saddress" is a list of strings. After a transaction, a flow will be establish for each
saddress.

• "transnum" is an integer that uniquely identifies the transaction.

To carry out transactions and check the system state, several functions needed to be devel-
oped. The chaincode was designed with the following functions.

• Invoke Functions:
– initNetwork takes a JSON formatted string and establishes the initial values of
an account (network) in the state database. initNetwork returns a success or
failure code.

– readNetwork takes a "name" as an argument and returns a JSON formatted string
with the current state of the requested network.

– transactionNetwork takes a string as an argument. The string includes the
requesting network name, requested network name, the number of hosts, band-
width, and duration. Because transactionNetwork uses the PutState() function
(see line 252 and 257 of Appendix A.6), it is the only function that generates
a transaction which requires endorsement, ordering, and verification. All other
functions are run locally.

– pruneTenants takes a network name as an argument and searches the tenant list
for entries that have exceeded the duration and removes them.

• Rich Query Functions: Rich Queries require couchDB as the state database and
allow the passing of a selector. The selector includes an equality/inequality
and value to query the JSON data structure. For example, the string "{"selec-
tor":{"docType":"network","hosts":{"gt":30}}}" will find the networks where the
docType matches "network" and the number of hosts is greater than 30.

– queryAvailhosts takes a string ("true", "false") as an argument and returns a list
of networks with the searched value in "availhosts"

– queryBandwidth takes an equality/inequality (gt/lt/gte/lte/eq) and a bandwidth
value and returns a list of networks that match the search criteria.

– queryPricePerMB takes an equality/inequality (gt/lt/gte/lte/eq) and a pricepermb
value and returns a list of networks that match the search criteria.

39

– queryHosts takes an equality/inequality (gt/lt/gte/lte/eq) and the number of hosts,
and returns a list of networks that match the search criteria.

• Blockchain search:
– getHistoryForNetwork passes a network name to the function stub.GetHistoryForKey().
This function performs a search of the blockchain for the transaction history for
the network named passed. Because the function performs a blockchain search,
it is not fast. The actual speed of the function will depend on the size of the
blockchain.

The full version of the contract code and its functions is presented in Appendix A.6.

4.3.4 Invoke and Transaction Tests
Before transactions can take place on the network we need to make some initial entries.
To make entries we will use the invoke command with the initNetwork function. As an
example, we will add network0 and network1 with the following command:

peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/ \

example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C

$CHANNEL_NAME -n $CC_NAME -c

'{"Args":["initNetwork","network0","10.10.10.0","10","true","3579.28","41547","7.04","0","[24,

34, 37]"]}'

↪→

↪→

↪→

↪→

↪→

peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/ \

example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C

$CHANNEL_NAME -n $CC_NAME -c

'{"Args":["initNetwork","network1","10.10.11.0","10","true","4666.25","160307","2.19","1","[32,

27, 30]"]}'

↪→

↪→

↪→

↪→

↪→

The entries can be verified using the readNetwork function. As an example, we can use
readNetwork for the network1 entry created above:

Query Result:

{

"address": "10.10.11.0",

"asneighbor": [

32,

27,

40

30

],

"asnum": 1,

"availhosts": "true",

"balance": 160307.15208333332,

"bandwidth": 4666.25,

"docType": "network",

"hosts": 10,

"name": "network1",

"pricepermb": 2.19,

"tenantslice": [],

"transcount": 1

}

2018-10-12 22:55:46.478 UTC [main] main -> INFO 003 Exiting.....

Additionally, we can view the entry in the couchDB by utilizing the web-GUI at http:
//localhost:5984/_utils/#database/mychannel_sdnnetwork/network1. See Figure 4.5.

Now that we have invoked entries for networks on VM 1 and VM 4 in Figure 4.2, we can
process a transaction. As a test, network0 will request from network1 a flow to one available
host to support two IP addresses, 10.10.11.101 and 10.10.11.102 for 25 seconds, with 10
Mbps bandwidth. The command to carry out the transaction is:

peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/ \

example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C

$CHANNEL_NAME -n $CC_NAME -c '{"Args":["transactionNetwork","network0","network1","25","10","1",

"[10.10.11.101,10.10.11.102]"]}'

↪→

↪→

↪→

↪→

The result fromnetwork1 is an updated entry in the state database, specifically the transaction
information requested shows in the tennantslice for network1:

{

"_id": "network1",

"_rev": "4-82243787d47c2e738433853ff220bee2",

"address": "10.10.11.0",

"asneighbor": [

32,

27,

30

41

http://localhost:5984/_utils/#database/mychannel_sdnnetwork/network1
http://localhost:5984/_utils/#database/mychannel_sdnnetwork/network1

Figure 4.5. Image of the entry for network1 in the couchDB web interface.

],

"asnum": 1,

"availhosts": "true",

"balance": 160307.30416666664,

"bandwidth": 4656.25,

"docType": "network",

"hosts": 9,

"name": "network1",

"pricepermb": 2.19,

"tenantslice": [

{

"bandwidth": 10,

"docType": "tenant",

"duration": 25,

"hosts": 1,

"name": "network0",

"saddress": [

"10.10.10.102",

"10.10.10.101"

42

],

"starttime": 1539386990,

"transnum": 2

}

],

"transcount": 2,

"~version": "7:0"

}

The information in the tennantslice can now be used to install an intent in ONOS that
matches the information in the transaction. Intents can be programmed to end when the
duration ends, but the blockchain state must be updated after the duration has ended. The
pruneTenants function can be executed after the duration has ended to remove any expired
transactions from the current state.

Past transactions can be viewed by searching with the blockchain by using getHistoryFor-
Network. Using getHistoryForNetwork after the invoke and one transaction returns:

[

{

"TxId": "16819e76310c5b7761ce8cc1841c903ab34879cca227f11234bf0f29c88cb0bb",

"Value": {

"docType": "network",

"name": "network1",

"address": "10.10.11.0",

"hosts": 10,

"availhosts": "true",

"bandwidth": 4666.25,

"balance": 160307,

"pricepermb": 2.19,

"tenantslice": null,

"asnum": 1,

"asneighbor": [

32,

27,

30

],

"transcount": 0

},

"Timestamp": "2018-11-01 21:58:57.68679551 +0000 UTC",

"IsDelete": "false"

},

{

"TxId": "1cc0d59d9dd525e954b6ada7c9525d1624f9d8d2800d7f88dbb5d5b69bfd4347",

"Value": {

43

"docType": "network",

"name": "network1",

"address": "10.10.11.0",

"hosts": 9,

"availhosts": "true",

"bandwidth": 4656.25,

"balance": 160307.15208333332,

"pricepermb": 2.19,

"tenantslice": [

{

"docType": "tenant",

"name": "network0",

"starttime": 1541109562,

"duration": 25,

"bandwidth": 10,

"hosts": 1,

"saddress": [

"10.10.10.104",

"10.10.10.103",

"10.10.10.102",

"10.10.10.101"

],

"daddress": [

"10.10.11.101",

"10.10.11.102",

"10.10.11.103",

"10.10.11.104"

],

"transnum": 1

}

],

"asnum": 1,

"asneighbor": [

32,

27,

30

],

"transcount": 1

},

"Timestamp": "2018-11-01 21:59:22.170521677 +0000 UTC",

"IsDelete": "false"

}

]

4.3.5 Control Application
When transactions take place on the Hyperledger Fabric Network, a process needs to take
the transaction and notify ONOS to implement an intent. To build a basic functioning

44

prototype, we will need to generate a post request in the proper format for an intent, and
transmit the intent to the ONOS REST API. ONOS post requests will only be generated
after a valid transaction has taken place on Hyperledger Fabric. The ideal method of
implementing a notification of a valid transaction would be a push from the anchor peer to
the Control Application. Developing a push notification would require modification of the
Hyperledger code base or use of an SDK and will be left for future work.

Without the ability to receive push notifications, the Control Application will need to
access the Hyperledger Fabric state database and pull the state of the network that it is
controlling. Since the Control Application needs to pull transactions after they execute, the
Control Application will be put on a loop and make pull requests repeatedly. The Control
Application can gain access to the Hyperledger state via the CLI Docker container. The
Control Application uses the unique transaction number transnum in the data structure in
Section 4.3.3 to avoid posting duplicate intents.

The code for the Control Application is listed in Appendix A.7. The main program calls the
function updateLists which calls the function queryHosts and collectHosts. queryHosts will
create a sub-process that runs the readNetwork function from the chain code and returns
the network state in JSON format. collectHosts generates a list of hosts currently being
controlled by ONOS. A GET request to the ONOS API at the address http://<ONOS_IP>:
8181/onos/v1/hosts will return a list of hosts on the network in JSON format. The hosts list
is consumed into a host class object in the Control Application for easy referencing. In the
main program, the tenant network’s transaction number is checked for previous processing.
If there is no entry to the transaction, the transaction is stored in a binary search tree (BST)
with the transaction number as the key. Finally, the processIntents function will make a
post request to the ONOS API at the address http://<ONOS_IP>:8181/onos/v1/intents with
a JSON formatted intent; see Figure 4.4 for example intent. If the post intent request is
successful, the API will return a response code 200. The ONOS intent framework will
process the intent, translate it to flow rules, and install the flow rules on all appropriate
switches.

45

http://<ONOS_ IP>:8181/onos/v1/hosts
http://<ONOS_ IP>:8181/onos/v1/hosts
http://<ONOS_IP>:8181/onos/v1/intents

THIS PAGE INTENTIONALLY LEFT BLANK

46

CHAPTER 5:
Evaluation and Analysis

In this chapter, we will show a functioning prototype of an east/west protocol using Hy-
perledger Fabric and the Control Application. Additionally, an analysis of the Hyperledger
Fabric network performance is presented.

5.1 Validation of Resource Sharing between SDNs
With the Control Application running, the transaction from Section 4.3.4, can be executed
on the network shown in Figure 4.2. After execution, the Control Application pulled the
transaction by running a query and installed a matching intent on the ONOS on VM 4. On
VM 1, iperf was set up in client mode before the transaction and on VM 4 iperf was set
up in server mode. With approximately one second of latency, the transaction processed
on Hyperledger, the transaction was pulled from the Control Application, the intent posted
from the control app, the intent framework processed the intent and installed flows, and the
data transfer from VM 1 to VM 4 initiated, see Figure 5.1. Figure 5.2 (a) shows the data
transfer on the ONOS GUI across the SDN network on VM 1 and Figure 5.2 (b) shows the
same transfer on VM 4.

Figure 5.1. iperf transfer between VM 1 and VM 4 SDN networks. VM 1 is
on the left running iperf client, and VM 4 is on the right running iperf server

47

(a) Screen capture of VM 1 ONOS GUI. VM 1 is the client for iperf and is network0 on
the blockchain.

(b) Screen capture of VM 4 ONOS GUI. VM 4 is the server for iperf and is network1 on
the blockchain.

Figure 5.2. Successful use of the Control Application on an SDN network
after a transaction. Traffic is color-coded by bandwidth with orange repre-
senting heavy usage. The data is displayed in (kilo) packets per second. The
square objects are Open vSwitch switches. The ONOS controller is running
in cluster with three instances. Each switch is color-coded to the controller
that is controlling it.

48

5.2 Performance Evaluation
Time measurements from the initiation of a transaction to its completion and the start of
data transfer varied from 1s to 2s. Timing is difficult to measure and automate because
timing code needs to execute on different machines. Since the most inefficient code is our
prototype Control Application, data was collected for Hyperledger Fabric transactions and
ONOS intent installations. Figure 5.3 (a) shows the transaction processing time for 200
transactions on Hyperledger Fabric with a Poisson arrival rate of 1 transaction per second.
The mean Hyperledger Fabric transaction processing time is 116.3 ms. The data for Figure
5.3 (a) was collecting by using by timing a transaction in the CLI container. Figure 5.3 (b)
shows the installation time for 200 intents to ONOS. The mean intent install time is 86.12
ms. The data for Figure 5.3 (b) was collected using the command "date +%s.%N" which
prints a UNIX timestamp and nanosecond. The intent was installed using curl addressed to
the ONOS REST API. Intents will be in a status "installing" until the install is completed at
which time their status is "installed". Time-stamps were collected before curl was initiated
and after the state changed to installed. The combined mean intent install and transaction
processing is 202.42 ms. Since the data transfer took between 1s to 2s to initiate, and only
approximately 202.42 is from the intent install and transaction time, the majority of the
delay is attributable to inefficiencies in the Control Application. If the Control Application
is optimized to receive push notifications instead of pulling in a loop, the total mean time
for data transfer to initiate should be slightly above 202.42 ms.

(a) Transaction processing time. (b) ONOS Intent processing time.

Figure 5.3. Intent installation and transaction processing times.

49

The time between a transaction being initiated to data transferring between the test networks
has two major contributing elements, the time for a transaction to process, and the time for
flows to be installed on the Open vSwitches. The time for transactions to be installed is
dependent on the Control Application and ONOS. Because the Control Application has
not been optimized and can be redeveloped to function with any SDN controller, the time
to install flows will not be evaluated and left to future work. Our analysis will focus on the
performance of Hyperledger Fabric to process transactions over a network. Specifically, we
will evaluate the transaction processing time for different network latencies and different
transaction arrival rates.

As discussed in section 2.3.2, the significant configurable variables for Hyperledger Fab-
ric are the block size, timeout, endorsement policy, consensus model, and choice of state
database. The block size is controlled by changing the batch size with the variables,
MaxMessageCount, AbsoluteMaxBytes, and PreferredMaxBytes shown in lines 138-151
of Appendix A.3.4. The timeout controls how long before a block is issued before Ab-
soluteMaxBytes has been issued and is controlled on line 136 of Appendix A.3.4. The
endorsement policy controls which peers sign a transaction. During block validation, the
endorsement policy is checked by all validating peers. The endorsement policy is controlled
during instantiation of the chaincode using the −P option in the instantiate or upgrade com-
mands, see Appendix A.5.4 and Appendix A.5.5. The endorsement policy can be set to use
AND, OR, and OutOf. The endorsement policy can specify an organization as well as ad-
min, member, client or peer. As an example, the policy OutOf(2, Org1.peer, Org2.member,
Org3.client) will require two of the three listed entities to endorse. Adding more entities
to the endorsement policy decreases the transaction rate [12]. The choice of consensus is
selected on line 129-130 of Appendix A.3.4. As of this writing, only the solo and Kafka
models are available with the BFT under development.

Because the peers, orderer, MSP, and clients are operating one machine in our prototype,
network latency between machines is sub-millisecond, the rate of which will depend on
CPU scheduling. To simulate a more realistic network environment and measure the impact
of network delays on transaction processing, tc (Traffic Control) was utilized. tc is a Linux
kernel packet scheduler that can control the queuing discipline of network packets on Linux
computers [40]. As an example, the interface eth0 on a Linux machine can have X ms of
latency added to outbound packets using the command:

50

tc qdisc add dev eth0 root netem delay Xms

Because the Hyperledger Fabric nodes are running on Docker containers, we used Pumba,
a network testing tool designed for Docker containers which utilize tc installed on the
containers [41]. The Pumba binary can be activated for X minutes with a Y ms delay using
the command:

./pumba_linux_amd64 netem --interface eth0 --duration X m delay --time Y <container name>

The focus of the analysis here is on the impact of network latency to transaction processing
time. The work of Thakkar et al. was primarily focused on optimizing Hyperledger Fabric
for transaction volume [12]. Our prototype for the east/west interface can only install
flows once a transaction has processed so, the transaction processing time will be the most
important metric. There are possible use cases for an east/west interface could be interested
in higher transaction volumes but, Thakkar et al. shows that the rates can be increased by
adding additional channels [12].

For the testing conducted, the default values of the configurable variableswere kept including
the JSON formatted data structure with CouchDB. By keeping the values static, we can
better isolate impacts to transaction processing time as network latency is varied. However,
the results will not show the optimal processing time of which the system is capable. To
test, we built a Hyperledger Fabric network with three organizations. Each organization will
have two peers with only one of the two being anchor peers. We generated 200 transactions
using a Poisson arrival process with an arrival rate of 1, 5, and 10 transactions per second.
The choice of these transaction rates is to represent a resource sharing scenario between data
centers. Such a scenario typically involves large workloads, flows are generally long-lived,
and as a result, transaction rates are relatively small. The start time and end time of the
transactions were recorded.

Figure 5.4 shows no delay, 10 ms of delay on the orderer, 10 ms of delay on the anchor peer
for organization 1 (p1), 10 ms delay on p1 and the orderer, 10 ms of delay on p1, p2, and

51

the orderer, and 10 ms of delay on p1, p2, p3, and the orderer. All data in Figure 5.4 use
the same Poisson arrival values. The endorsing peer for all transactions is p1. Adding 10
ms of latency reveals the following results:

• For 1 transaction per second, 10 ms to the orderer added 68.2 ms of latency to the
mean.

• For 1 transaction per second, 10 ms of latency to p1 added 175.17 ms to the mean.
• For 1 transaction per second, 10 ms of latency to both p1 and the orderer adds 229.6
ms of latency which is slightly under 243.2 ms, the sum of latency from p1 and the
orderer alone.

• For 1 transaction per second, 10 ms of latency on non-endorsing peers p2 and P3 do
not impact the transaction processing time.

• Delay on p1 is more impactful than the delay on the orderer for transaction rates of 5
and 10 transactions per second.

• Delay on non-endorsing peers does not impact transaction processing time at 5 and
10 transactions per second.

• 10 ms of delay on the orderer increases transaction processing time as the transaction
rate increases from 181.86 ms to 219.19, 217.295 ms for 5 and 10 transactions per
second respectively.

• 10 ms of delay on p1 increases transaction processing time as the transaction rate
increases from 288.82 ms to 381.81, 412.38 ms for 5 and 10 transactions per second
respectively.

Figure 5.5 shows the same test as Figure 5.4 but at 20 ms of latency. Adding 20 ms of
latency reveals the following results:

• For 1 transaction per second, 20 ms to the orderer added 109.7 ms of latency to the
mean.

• For 1 transaction per second, 20 ms of latency to p1 added 329.86 ms to the mean.
• For 1 transaction per second, 20 ms of latency to both p1 and the orderer is adds
437.835 ms of latency which is comparable to 439.56 ms, the sum of latency from
p1 and the orderer alone.

• For 1 transaction per second, 20 ms of latency on non-endorsing peers p2 and P3 do
not impact the transaction processing time.

52

• Delay on p1 is more impactful than the delay on the orderer for transaction rates of 5
and 10 transactions per second.

• Delay on non-endorsing peers does not impact transaction processing time at 5 and
10 transactions per second.

• For 20 ms of delay on the orderer, the transaction processing time increases as
the transaction rate increases from 229.32ms to 290.41, 286.44 ms for 5 and 10
transactions per second respectively.

• 10 ms of delay on p1 increases transaction processing time as the transaction rate
increases from 449.435 ms to 594.51, 640.62 ms for 5 and 10 transactions per second
respectively.

Comparing both sets of data in Figure 5.4 and Figure 5.5, the transaction processing time
slightly decreased between 5 and 10 transactions per second for both 10 and 20 ms of delay
on the orderer. The decrease can be explained by the observation of Thakkar et al. that the
transaction latency increased above and below the saturation point [12]. The transaction
processing time was strictly increasing between 5 and 10 transactions per second for both
10 and 20 ms of delay. After reviewing the container logs for 1, 5 and 10 transactions per
second, we see an increase in multiple transactions per block.

At 1 transaction per second, a sample of p1’s log shows:

Channel [sdnnetwork]: Committed block [1] with 1 transaction(s)

Channel [sdnnetwork]: Committed block [2] with 1 transaction(s)

Channel [sdnnetwork]: Committed block [2] with 1 transaction(s)

Channel [sdnnetwork]: Committed block [3] with 1 transaction(s)

Channel [sdnnetwork]: Committed block [5] with 1 transaction(s)

Channel [sdnnetwork]: Committed block [6] with 1 transaction(s)

Channel [sdnnetwork]: Committed block [7] with 1 transaction(s)

...

At 5 transactions per second, a sample of p1’s log shows:

Channel [sdnnetwork]: Committed block [1] with 3 transaction(s)

Channel [sdnnetwork]: Committed block [2] with 3 transaction(s)

Channel [sdnnetwork]: Committed block [3] with 3 transaction(s)

Channel [sdnnetwork]: Committed block [4] with 3 transaction(s)

Channel [sdnnetwork]: Committed block [5] with 2 transaction(s)

53

Channel [sdnnetwork]: Committed block [6] with 2 transaction(s)

Channel [sdnnetwork]: Committed block [7] with 2 transaction(s)

...

Combining transactions in one block will decrease the overall impact of delay on the
orderer. However, delay on p1 had a higher impact overall. Increasing the number of blocks
(1 per transaction) increases the overall number of blocks needing signature verification
by the MSP of the endorsing peer. Thakkar et al. introduced a cache of deserialized
identities which reduced cryptographic overhead and prevented a RTT for the verification
of each block significantly improving transaction rates [12]. Introducing a deserialized
identity cache will likely significantly improve transaction processing time especially as the
network latency increases.

To better see how network latency impacts the transaction processing time, different delays
were used on the orderer, p1, and p3 individually and shown in Figure 5.6, Figure 5.7,
and Figure 5.8 respectively. Regression analysis shows that transaction processing time is
linear with respect to network latency with excellent fit. As an example, regression analysis
is shown for Figure 5.6 (a) in Figure 5.9. Therefore, we can conclude that transaction
processing time increases linearly as network latency increases.

54

(a) 1 transaction per second expected arrival. (b) 5 transactions per second expected arrival.

(c) 10 transactions per second expected arrival.

Figure 5.4. A Combination of Hyperledger Fabric entities with 10 ms latency
for 1, 5, 10 transactions per second expected arrival rates.

55

(a) 1 transaction per second expected arrival. (b) 5 transactions per second expected arrival.

(c) 10 transactions per second expected arrival.

Figure 5.5. A Combination of Hyperledger Fabric entities with 20 ms of
network latency for 1, 5, 10 transactions per second expected arrival rates.

56

(a) 1 transaction per second expected arrival. (b) 5 transactions per second expected arrival.

(c) 10 transactions per second expected arrival.

Figure 5.6. Hyperledger Fabric orderer with 10, 20, 40, 80, and 160 ms of
network latency for 1, 5, 10 transactions per second expected arrival rate.

57

(a) 1 transaction per second expected arrival. (b) 5 transactions per second expected arrival.

(c) 10 transactions per second expected arrival.

Figure 5.7. Hyperledger Fabric endorsing peer with 10, 20, 40, 80, and 160
ms of network latency for 1, 5, 10 transactions per second expected arrival
rate.

58

(a) 1 transaction per second expected arrival. (b) 5 transactions per second expected arrival.

(c) 10 transactions per second expected arrival.

Figure 5.8. Hyperledger Fabric non-endorsing peer with 10, 20, 40, 80, and
160 ms of network latency for 1, 5, 10 transactions per second expected
arrival rate.

59

(a) Linear fit. (b) Residuals.

(c) Fit data.

Figure 5.9. Regression analysis of Figure 5.6 (a) with a best-fit curve
130.005 + 5.05452x.

60

CHAPTER 6:
Conclusions and Future Work

In this chapter, we present our conclusions from our implementation and evaluation and
analysis. We conclude the chapter with a discussion on future work.

6.1 Conclusions
In this research, we were able to answer our primary research question of building an SDN
east/west protocol using a Control Application and a blockchain protocol, Hyperledger Fab-
ric. Our prototype is capable of linking separately managed SDN networks, which currently
available methods are incapable of doing with assured verifiability. The properties of per-
missioned blockchains, immutability, serializability, verifiability, and chaincode, provide a
level of guarantees for security, autonomy, and privacy. For example, Le et al. point out that
determining the impacts of multiple flow requests remains a challenge for the development
of SFP [10]. By serializing the flow requests, our prototype can be extended to check metric
information before executing, making multi-flow impacts deterministic.

In Section 5.2, the impact of network latency on the orderer, endorsing peers, and non-
endorsing peers to the transaction processing time was shown. An increase in latency
caused an increase in transaction processing time with a linear relationship. The transaction
processing times on our test network for 10 ms and 20 ms of latency are approximately
400 ms and 600 ms respectively and increase slightly as the transaction rates increase. The
Hyperledger Fabric transaction processing times are significantly faster than Ethereum and
Bitcoin, but the demonstrated transaction times may not be fast enough to be a replacement
for BGP in SDN networks as Le et al. envisioned SFP to be. However, this research did
not optimize Hyperledger Fabric for transaction processing time and transaction volume
so the minimum values are unknown and will vary from network to network. For some
long-lived flows such as data center connectivity, the demonstrated transaction times would
be sufficient to connect separately managed SDN networks. Interestingly, transaction
processing time and transaction volume can be improved at the cost of CPU utilization by
increasing the number of channels [12]. Since this research shows that network latency
plays an important role in transaction processing times, Hyperledger Fabric nodes should

61

be carefully positioned to improve scalability.

The Hyperledger state database allows network entities to share metric data. Transactions
update the accounts state with available bandwidth, hosts, and other metrics. Because each
account controls the data they share and the transactions they accept, the autonomy of each
network is maintained. Chaincode can prevent the modification of account state data unless
approved by the account owner.

Le et al. state that subscription requests should be responded to in a reasonable amount
of time [10]. In our prototype, subscription requests correspond to joining a Hyperledger
Fabric channel and publications are transactions. Creating a channel between peers is a fast
operation. Joining an existing channel requires permission from the channel members and
a transfer of chaincode and prior block data. Permission granting operations are fast, but
the transfer of a large amount of prior block data is not. Alternatively, a new blockchain can
be created for including the new member to increase the speed of joining a channel. The
drawback to this is historical transaction data will not be linked to the new chain and not
available to the new member, but the original members can retain and search the old chain.
Creating a new blockchain is most useful in the case when the new subscriber wants to only
link to a subset of the existing subscribers.

The system can maintain the privacy of the information published by one network because
the information is only shared to networks on a channel and the network controls what
it publishes in its state. When a network agrees to route another network’s data, internal
network information does not need to be shared. If a network requests to connect to
a service, flow modifications can be used to hide internal network information. The
requesting network will send packets to the supporting networks published IP address and
the supporting networks internal flows can direct the packets to the service. Le et al. mention
that multiple flow requests might reveal internal network information [10]. For example, if a
network requests to connect at a specific IP address, the supporting network can agree to the
transaction and install flows internally. By agreeing, the supporting network is implicitly
stating that it can connect to the requested IP. If the requesting network makes multiple
requests, the aggregate set of requests can reveal the internal network map of the supporting
network. Since each transaction request is saved in the blockchain, the blockchain serves as
a record of the scan attempt. Since the Hyperledger Fabric is a permissioned blockchain,

62

user identity can be a requirement to join the network so the identity of the offender would
be known. Additionally, chaincode can be used enforce financial penalties, or the offending
account can be banned from the channel.

6.2 Future Work
Development of a proof-of-concept showed that an east/west interface is possible using
blockchains. However, before the system is shown to be fully viable, additional work is
needed. In this section covers suggestions for future work to further develop the concepts
in this thesis.

Thakkar et al. made optimizations to Hyperledger Fabric to improve the transaction volume
[12]. Similar work needs to be performed to find a balance between transaction processing
time and transaction volume. Some optimizations discovered by Thakkar et al. should
be implemented and fine-tuned to find a balance between transaction processing time and
transaction volume. Most importantly, the implementation of deserialized identity caching
which already significantly increases transaction volume would also reduce transaction
processing time because it saves an RTT for requesting a check, and the CPU costs of
repeated cryptographic verification. To properly perform this analysis the work should be
conducted using a hardware setup to remove the bottlenecks and artificialities of vitalization.

Le et al. require SFP to be autonomous and stable because SFP was envisioned a protocol to
replace BGP as a routing protocol. The research here did not create the prototype that can be
used to find routes between SDN networks. However, the systemwe built can be extended to
allow routing between networks bymaking adjustments to the chaincode and data structures.
We will discuss two possible methods that could allow routing between SDN network to
function. The first is to create a channel where members publish neighbor information. A
path search can determine the SDN networks needed to reach a destination and flows can be
requested from those networks via private channels between them. Stable algorithms can
be employed to find paths. The major problem with the approach is that network outages
would not be reflected in the state database and would require a transaction from a neighbor
to update neighbors. The second method is to use BGP or any other routing protocol
as a default routing system and modify flows from default when necessary. Using BGP
and adding flows to modify the default behavior is how SDX, an SDN east/west protocol,

63

functions [14]. The proof-of-concept in this research should be developed to function in
the same scenario as SDX and comparisons should be made between the protocols.

The work in this project used the solo orderer and a Control Application written in python.
The next version of the prototype should use theHyperledger Fabric SDK in the development
of the Control Application and should use push notifications when transactions complete.
BFT consensus algorithm was not available on Hyperledger Fabric during this project.
When BFT is available, it should be tested and compared to Kafka for transaction volume
and transaction processing time.

The development of a key-value structure that allows for similar functionality to the JSON
data structure used in this work will allow comparison of the Go LevelDB and CouchDB
and evaluate them for transaction processing time. Additionally, the JSON data structure
used here should be optimized to improve efficiency. Optimizing the data structure can also
reduce the size of blocks reducing storage and network resources.

In this research, we did not adequately determine if the proof-of-concept is scalable. Ac-
ceptable trade-offs between transaction processing time and transaction volume need to
be determined. For example, our use of JSON and the couchDB to demonstrate resource
sharing decreased transaction volume, increased transaction processing time, and increased
the size of blocks when compared to using simple data structures and the Go LevelDB. Ul-
timately, with the data structure we used, we will likely not be able to reach the transaction
volumes of 3500 transactions per second by Androulaki et al. [29] or the 2700 transactions
per second by Thakkar et al. [12] if the tests were run on the same equipment. The minimum
amount of resource sharing, acceptable transaction volume, and acceptable transaction pro-
cessing time can only be defined for a specific use case. Therefore, the proof-of-concept
used here should be developed and optimized for a specific use to determine its acceptability.
Additionally, we did not perform tests on the storage size of the blockchain over time. The
storage size will depend on many factors including the optimization of the resource sharing
and the expected arrival rates which will ultimately depend on the use case.

Finally, there is an opportunity to implement network security using the concepts developed
in this work. Buterin proposed using Ethereum as an identity and reputation system [26].
A similar system could be built using Hyperledger Fabric and combined with the system
developed in this work. Users on a network would register flows to their identity, and an

64

SDN controller can check flow requests against an access list before installing the flows.
Checking flows against a registered identity could provide network layer access to sensitive
computers and servers.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX: Network Topology, YAML Configuration,
Scripts, Contract Code

A.1 Mininet Example
A custom topology for building a Mininet network with three hosts and three switches.
Code adapted from [19].

1 from mininet.net import Mininet

2 from mininet.node import Controller, OVSSwitch, RemoteController

3 from mininet.cli import CLI

4 from mininet.log import setLogLevel, info

5

6 def remoteControllerNet():

7

8 net = Mininet(controller=RemoteController, switch=OVSSwitch)

9

10 info("Creating remote controller\n")

11 c1 = RemoteController('c1', ip='172.17.0.2', port=6633, protocols=["OpenFlow13"])

12 info("Creating switches\n")

13 #Add 3 switches using OpenFlow v1.3

14 s1 = net.addSwitch('s1', protocols=["OpenFlow13"])

15 s2 = net.addSwitch('s2',protocols=["OpenFlow13"])

16 s3 = net.addSwitch('s3',protocols=["OpenFlow13"])

17

18 info("Creating hosts\n")

19 hostsSwitch1 = [net.addHost('h%d' % n) for n in [1, 2]] #add hosts named h1,h2

20 hostsSwitch2 = [net.addHost('h%d' % n) for n in [3, 4]] #add hosts named h3,h4

21 hostsSwitch3 = [net.addHost('h%d' % n) for n in [5, 6]] #add hosts named h5,h6

22

23 info("Creating links\n")

24 for h in hostsSwitch1:

25 net.addLink(s1, h)

26 for h in hostsSwitch2:

27 net.addLink(s2, h)

28 for h in hostsSwitch3:

29 net.addLink(s3, h)

30 net.addLink(s1, s2)

31 net.addLink(s2, s3)

32 net.addLink(s3, s1)

33

34 info("Starting network\n")

35 net.build()

36 s1.start([c1]) #Connect switch 1 to remote controller.

67

37 s2.start([c1]) #Connect switch 1 to remote controller.

38 s3.start([c1]) #Connect switch 1 to remote controller.

39

40 info("Running CLI\n")

41 CLI(net)

42

43 if __name__ == '__main__':

44 setLogLevel('info') # output info lines on CLI

45 remoteControllerNet()

A.2 Network Topology
Mininet topology for building the network in Figure 4.2. The code is a modified version of
default.py from [42].

1 #!/usr/bin/env python

2

3 from mininet.topo import Topo

4

5 class AttMplsTopo(Topo):

6

7 def addSwitch(self, name, **opts):

8 kwargs = { 'protocols' : 'OpenFlow13' } #Selects OpenFlow 1.3 as the default protocol.

9 kwargs.update(opts)

10 return super(AttMplsTopo, self).addSwitch(name, **kwargs)

11

12 def __init__(self):

13

14 # Initialize Topology

15 Topo.__init__(self)

16

17 # Create switches

18 Core1 = self.addSwitch('s1')

19 Core2 = self.addSwitch('s2')

20 Core3 = self.addSwitch('s3')

21

22 # Create hosts

23 Core1_host1 = self.addHost('h1')

24 Core2_host2 = self.addHost('h2')

25 Core3_host3 = self.addHost('h3')

26

27

28 # Create links between switches and hosts.

29 self.addLink(Core3 , Core3_host3)

30 self.addLink(Core1 , Core1_host1)

31 self.addLink(Core2 , Core2_host2)

68

32

33

34 # Create links between hosts.

35 self.addLink(Core3 , Core1)

36 self.addLink(Core3 , Core2)

37 self.addLink(Core2 , Core1)

38

39

40 topos = { 'att': (lambda: AttMplsTopo()) }

41

42 if __name__ == '__main__':

43 from onosnet import run

44 run(AttMplsTopo())

The program default.py imports the function "run" from onosnet.py. Run is used to connect
the network topology laid out in default.py to a cluster of ONOS controllers. Because the
code uses onosnet.py it will require ONOS to be installed or be modified to run with the
default Mininet controller. The code for onosnet.py is presented here unmodified from its
source [43].

1 #!/usr/bin/python

2 import itertools

3 import os

4 import signal

5 import sys

6 from argparse import ArgumentParser

7 from subprocess import call

8 from threading import Thread

9 from time import sleep

10

11 import gratuitousArp

12 from mininet.cli import CLI

13 from mininet.examples.controlnet import MininetFacade

14 from mininet.link import TCLink

15 from mininet.log import info, output, error

16 from mininet.log import setLogLevel

17 from mininet.net import Mininet

18 from mininet.node import RemoteController, Node

19

20 ARP_PATH = gratuitousArp.__file__.replace('.pyc', '.py')

21

22 class ONOSMininet(Mininet):

23

24 def __init__(self, controllers=[], gratuitousArp=True, build=True, *args, **kwargs):

25 """Create Mininet object for ONOS.

26 controllers: List of controller IP addresses

69

27 gratuitousArp: Send an ARP from each host to aid controller's host discovery"""

28

29 # delay building for a second

30 kwargs['build'] = False

31

32 Mininet.__init__(self, *args, **kwargs)

33

34 self.gratArp = gratuitousArp

35

36 # If a controller is not provided, use list of remote controller IPs instead.

37 if 'controller' not in kwargs or not kwargs['controller']:

38 info ('*** Adding controllers\n')

39 ctrl_count = 0

40 for controllerIP in controllers:

41 self.addController('c%d' % ctrl_count, RemoteController, ip=controllerIP)

42 info(' c%d (%s)\n' % (ctrl_count, controllerIP))

43 ctrl_count = ctrl_count + 1

44

45 if self.topo and build:

46 self.build()

47

48 def start(self):

49 Mininet.start(self)

50 if self.gratArp:

51 self.waitConnected(timeout=5)

52 sleep(2)

53 info ('*** Sending a gratuitious ARP from each host\n')

54 self.gratuitousArp()

55

56 def verifyHosts(self, hosts):

57 for i in range(len(hosts)):

58 if isinstance(hosts[i], str):

59 if hosts[i] in self:

60 hosts[i] = self[hosts[i]]

61 else:

62 info('*** ERROR: %s is not a host\n' % hosts[i])

63 del hosts[i]

64 elif not isinstance(hosts[i], Node):

65 del hosts[i]

66

67 def gratuitousArp(self, hosts=[]):

68 "Send an ARP from each host to aid controller's host discovery; fallback to ping if necessary"

69 if not hosts:

70 hosts = self.hosts

71 self.verifyHosts(hosts)

72

73 for host in hosts:

74 info('%s ' % host.name)

75 info(host.cmd(ARP_PATH))

76 info ('\n')

77

78 def pingloop(self):

70

79 "Loop forever pinging the full mesh of hosts"

80 setLogLevel('error')

81 try:

82 while True:

83 self.ping()

84 finally:

85 setLogLevel('info')

86

87 def bgIperf(self, hosts=[], seconds=10):

88 self.verifyHosts(hosts)

89 servers = [host.popen("iperf -s") for host in hosts]

90

91 clients = []

92 for s, d in itertools.combinations(hosts, 2):

93 info ('%s <--> %s\n' % (s.name, d.name))

94 cmd = 'iperf -c %s -t %s -y csv' % (d.IP(), seconds)

95 p = s.popen(cmd)

96 p.s = s.name

97 p.d = d.name

98 clients.append(p)

99

100 def handler (_signum, _frame):

101 raise BackgroundException()

102 oldSignal = signal.getsignal(signal.SIGTSTP)

103 signal.signal(signal.SIGTSTP, handler)

104

105 def finish(verbose=True):

106 for c in clients:

107 out, err = c.communicate()

108 if verbose:

109 if err:

110 info(err)

111 else:

112 bw = out.split(',')[8]

113 info('%s <--> %s: %s\n' % (c.s, c.d, formatBw(bw)))

114 for s in servers:

115 s.terminate()

116

117 try:

118 info ('Press ^Z to continue in background or ^C to abort\n')

119 progress(seconds)

120 finish()

121 except KeyboardInterrupt:

122 for c in clients:

123 c.terminate()

124 for s in servers:

125 s.terminate()

126 except BackgroundException:

127 info('\n*** Continuing in background...\n')

128 t = Thread(target=finish, args=[False])

129 t.start()

130 finally:

71

131 #Disable custom background signal

132 signal.signal(signal.SIGTSTP, oldSignal)

133

134 def progress(t):

135 while t > 0:

136 sys.stdout.write('.')

137 t -= 1

138 sys.stdout.flush()

139 sleep(1)

140 print

141

142 def formatBw(bw):

143 bw = float(bw)

144 if bw > 1000:

145 bw /= 1000

146 if bw > 1000:

147 bw /= 1000

148 if bw > 1000:

149 bw /= 1000

150 return '%.2f Gbps' % bw

151 return '%.2f Mbps' % bw

152 return '%.2f Kbps' % bw

153 return '%.2f bps' % bw

154

155 class BackgroundException(Exception):

156 pass

157

158

159 def get_mn(mn):

160 if isinstance(mn, ONOSMininet):

161 return mn

162 elif isinstance(mn, MininetFacade):

163 # There's more Mininet objects instantiated (e.g. one for the control network in onos.py).

164 for net in mn.nets:

165 if isinstance(net, ONOSMininet):

166 return net

167 return None

168

169

170 def do_bgIperf(self, line):

171 args = line.split()

172 if not args:

173 output('Provide a list of hosts.\n')

174

175 #Try to parse the '-t' argument as the number of seconds

176 seconds = 10

177 for i, arg in enumerate(args):

178 if arg == '-t':

179 if i + 1 < len(args):

180 try:

181 seconds = int(args[i + 1])

182 except ValueError:

72

183 error('Could not parse number of seconds: %s', args[i+1])

184 del(args[i+1])

185 del args[i]

186

187 hosts = []

188 err = False

189 for arg in args:

190 if arg not in self.mn:

191 err = True

192 error("node '%s' not in network\n" % arg)

193 else:

194 hosts.append(self.mn[arg])

195 mn = get_mn(self.mn)

196 if "bgIperf" in dir(mn) and not err:

197 mn.bgIperf(hosts, seconds=seconds)

198 else:

199 output('Background Iperf is not supported.\n')

200

201 def do_gratuitousArp(self, line):

202 args = line.split()

203 mn = get_mn(self.mn)

204 if "gratuitousArp" in dir(mn):

205 mn.gratuitousArp(args)

206 else:

207 output('Gratuitous ARP is not supported.\n')

208

209 CLI.do_bgIperf = do_bgIperf

210 CLI.do_gratuitousArp = do_gratuitousArp

211

212 def parse_args():

213 parser = ArgumentParser(description='ONOS Mininet')

214 parser.add_argument('--cluster-size', help='Starts an ONOS cluster with the given number of

instances',↪→

215 type=int, action='store', dest='clusterSize', required=False, default=0)

216 parser.add_argument('--netcfg', help='Relative path of the JSON file to be used with netcfg',

217 type=str, action='store', dest='netcfgJson', required=False, default='')

218 parser.add_argument('ipAddrs', metavar='IP', type=str, nargs='*',

219 help='List of controller IP addresses', default=[])

220 return parser.parse_args()

221

222 def run(topo, controllers=None, link=TCLink, autoSetMacs=True):

223 if not topo:

224 print 'Need to provide a topology'

225 exit(1)

226

227 args = parse_args()

228

229 if not controllers and len(args.ipAddrs) > 0:

230 controllers = args.ipAddrs

231

232 if not controllers and args.clusterSize < 1:

233 print 'Need to provide a list of controller IPs, or define a cluster size.'

73

234 exit(1)

235

236 setLogLevel('info')

237

238 if args.clusterSize > 0:

239 if 'ONOS_ROOT' not in os.environ:

240 print "Environment var $ONOS_ROOT not set (needed to import onos.py)"

241 exit(1)

242 sys.path.append(os.environ["ONOS_ROOT"] + "/tools/dev/mininet")

243 from onos import ONOSCluster, ONOSOVSSwitch, ONOSCLI

244 controller = ONOSCluster('c0', args.clusterSize)

245 onosAddr = controller.nodes()[0].IP()

246 net = ONOSMininet(topo=topo, controller=controller, switch=ONOSOVSSwitch, link=link,

247 autoSetMacs=autoSetMacs)

248 cli = ONOSCLI

249 else:

250 onosAddr = controllers[0]

251 net = ONOSMininet(topo=topo, controllers=controllers, link=link, autoSetMacs=autoSetMacs)

252 cli = CLI

253 net.addNAT().configDefault()

254

255 #net.addBridge().configDefault()

256 net.start()

257

258 if len(args.netcfgJson) > 0:

259 if not os.path.isfile(args.netcfgJson):

260 error('*** WARNING no such netcfg file: %s\n' % args.netcfgJson)

261 else:

262 info('*** Setting netcfg: %s\n' % args.netcfgJson)

263 call(("onos-netcfg", onosAddr, args.netcfgJson))

264

265 cli(net)

266 net.stop()

A.3 Hyperledger Network Configuration YAML

A.3.1 crypto-config.yaml
crypto-config.yaml [36] is included in the first-network folder in the Hyperledger example
files. It is used to define the participants in the Hyperledger network so that Public Key
Infrastructure (PKI) keys are generated when the byfn.sh script is executed. The code is
presented here unmodified from the source.

1 # Copyright IBM Corp. All Rights Reserved.

2 #

74

3 # SPDX-License-Identifier: Apache-2.0

4 #

5

6 # ---

7 # "OrdererOrgs" - Definition of organizations managing orderer nodes

8 # ---

9 OrdererOrgs:

10 # ---

11 # Orderer

12 # ---

13 - Name: Orderer

14 Domain: example.com

15 # ---

16 # "Specs" - See PeerOrgs below for complete description

17 # ---

18 Specs:

19 - Hostname: orderer

20 # ---

21 # "PeerOrgs" - Definition of organizations managing peer nodes

22 # ---

23 PeerOrgs:

24 # ---

25 # Org1

26 # ---

27 - Name: Org1

28 Domain: org1.example.com

29 EnableNodeOUs: true

30 # ---

31 # "Specs"

32 # ---

33 # Uncomment this section to enable the explicit definition of hosts in your

34 # configuration. Most users will want to use Template, below

35 #

36 # Specs is an array of Spec entries. Each Spec entry consists of two fields:

37 # - Hostname: (Required) The desired hostname, sans the domain.

38 # - CommonName: (Optional) Specifies the template or explicit override for

39 # the CN. By default, this is the template:

40 #

41 # "{{.Hostname}}.{{.Domain}}"

42 #

43 # which obtains its values from the Spec.Hostname and

44 # Org.Domain, respectively.

45 # ---

46 # Specs:

47 # - Hostname: foo # implicitly "foo.org1.example.com"

48 # CommonName: foo27.org5.example.com # overrides Hostname-based FQDN set above

49 # - Hostname: bar

50 # - Hostname: baz

51 # ---

52 # "Template"

53 # ---

54 # Allows for the definition of 1 or more hosts that are created sequentially

75

55 # from a template. By default, this looks like "peer%d" from 0 to Count-1.

56 # You may override the number of nodes (Count), the starting index (Start)

57 # or the template used to construct the name (Hostname).

58 #

59 # Note: Template and Specs are not mutually exclusive. You may define both

60 # sections and the aggregate nodes will be created for you. Take care with

61 # name collisions

62 # ---

63 Template:

64 Count: 2

65 # Start: 5

66 # Hostname: {{.Prefix}}{{.Index}} # default

67 # ---

68 # "Users"

69 # ---

70 # Count: The number of user accounts _in addition_ to Admin

71 # ---

72 Users:

73 Count: 1

74 # ---

75 # Org2: See "Org1" for full specification

76 # ---

77 - Name: Org2

78 Domain: org2.example.com

79 EnableNodeOUs: true

80 Template:

81 Count: 2

82 Users:

83 Count: 1

A.3.2 docker-compose-cli.yaml
docker-compose-cli.yaml [36] is included in the first-network folder in the Hyperledger
example files. It is used to define the Docker containers that will each peer and order on the
network will be hosted. The code is modified from the source on lines 82 and 84 to point
to a different script and chaincode folders.

1 # Copyright IBM Corp. All Rights Reserved.

2 #

3 # SPDX-License-Identifier: Apache-2.0

4 #

5

6 version: '2'

7

8 volumes:

76

9 orderer.example.com:

10 peer0.org1.example.com:

11 peer1.org1.example.com:

12 peer0.org2.example.com:

13 peer1.org2.example.com:

14

15 networks:

16 byfn:

17

18 services:

19

20 orderer.example.com:

21 extends:

22 file: base/docker-compose-base.yaml

23 service: orderer.example.com

24 container_name: orderer.example.com

25 networks:

26 - byfn

27

28 peer0.org1.example.com:

29 container_name: peer0.org1.example.com

30 extends:

31 file: base/docker-compose-base.yaml

32 service: peer0.org1.example.com

33 networks:

34 - byfn

35

36 peer1.org1.example.com:

37 container_name: peer1.org1.example.com

38 extends:

39 file: base/docker-compose-base.yaml

40 service: peer1.org1.example.com

41 networks:

42 - byfn

43

44 peer0.org2.example.com:

45 container_name: peer0.org2.example.com

46 extends:

47 file: base/docker-compose-base.yaml

48 service: peer0.org2.example.com

49 networks:

50 - byfn

51

52 peer1.org2.example.com:

53 container_name: peer1.org2.example.com

54 extends:

55 file: base/docker-compose-base.yaml

56 service: peer1.org2.example.com

57 networks:

58 - byfn

59

60 cli:

77

61 container_name: cli

62 image: hyperledger/fabric-tools:$IMAGE_TAG

63 tty: true

64 stdin_open: true

65 environment:

66 - GOPATH=/opt/gopath

67 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

68 #- CORE_LOGGING_LEVEL=DEBUG

69 - CORE_LOGGING_LEVEL=INFO

70 - CORE_PEER_ID=cli

71 - CORE_PEER_ADDRESS=peer0.org1.example.com:7051

72 - CORE_PEER_LOCALMSPID=Org1MSP

73 - CORE_PEER_TLS_ENABLED=true

74 - CORE_PEER_TLS_CERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric \

/peer/crypto/peerOrganizations/org1.example.com/peers \

/peer0.org1.example.com/tls/server.crt

↪→

↪→

75 - CORE_PEER_TLS_KEY_FILE=/opt/gopath/src/github.com/hyperledger/fabric \

/peer/crypto/peerOrganizations/org1.example.com/peers \

/peer0.org1.example.com/tls/server.key

↪→

↪→

76 - CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric \

/peer/crypto/peerOrganizations/org1.example.com/peers \ /peer0.org1.example.com/tls/ca.crt↪→

77 - CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric \

/peer/crypto/peerOrganizations/org1.example.com/users \ /Admin@org1.example.com/msp↪→

78 working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

79 #command: /bin/bash

80 volumes:

81 - /var/run/:/host/var/run/

82 - ./../thesis/chaincode/:/opt/gopath/src/github.com/hyperledger/fabric \ /examples/chaincode/go

83 - ./crypto-config:/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

84 - ./../thesis/scripts/:/opt/gopath/src/github.com/hyperledger/fabric \ /peer/scripts/

85 - ./channel-artifacts:/opt/gopath/src/github.com/hyperledger/fabric \ /peer/channel-artifacts

86 depends_on:

87 - orderer.example.com

88 - peer0.org1.example.com

89 - peer1.org1.example.com

90 - peer0.org2.example.com

91 - peer1.org2.example.com

92 networks:

93 - byfn

A.3.3 docker-compose-couch.yaml
docker-compose-couch.yaml [36] is included in the first-network folder in the Hyperledger
example files. It is used to define the settings for a Docker container that will host the
CouchDB, NoSQL database. The code is presented here unmodified from the source.

78

1 # Copyright IBM Corp. All Rights Reserved.

2 #

3 # SPDX-License-Identifier: Apache-2.0

4 #

5

6 version: '2'

7

8 networks:

9 byfn:

10

11 services:

12 couchdb0:

13 container_name: couchdb0

14 image: hyperledger/fabric-couchdb

15 # Populate the COUCHDB_USER and COUCHDB_PASSWORD to set an admin user and password

16 # for CouchDB. This will prevent CouchDB from operating in an "Admin Party" mode.

17 environment:

18 - COUCHDB_USER=

19 - COUCHDB_PASSWORD=

20 # Comment/Uncomment the port mapping if you want to hide/expose the CouchDB service,

21 # for example map it to utilize Fauxton User Interface in dev environments.

22 ports:

23 - "5984:5984"

24 networks:

25 - byfn

26

27 peer0.org1.example.com:

28 environment:

29 - CORE_LEDGER_STATE_STATEDATABASE=CouchDB

30 - CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb0:5984

31 # The CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME and CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD

32 # provide the credentials for ledger to connect to CouchDB. The username and password must

33 # match the username and password set for the associated CouchDB.

34 - CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME=

35 - CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD=

36 depends_on:

37 - couchdb0

38

39 couchdb1:

40 container_name: couchdb1

41 image: hyperledger/fabric-couchdb

42 # Populate the COUCHDB_USER and COUCHDB_PASSWORD to set an admin user and password

43 # for CouchDB. This will prevent CouchDB from operating in an "Admin Party" mode.

44 environment:

45 - COUCHDB_USER=

46 - COUCHDB_PASSWORD=

47 # Comment/Uncomment the port mapping if you want to hide/expose the CouchDB service,

48 # for example map it to utilize Fauxton User Interface in dev environments.

49 ports:

50 - "6984:5984"

51 networks:

79

52 - byfn

53

54 peer1.org1.example.com:

55 environment:

56 - CORE_LEDGER_STATE_STATEDATABASE=CouchDB

57 - CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb1:5984

58 # The CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME and CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD

59 # provide the credentials for ledger to connect to CouchDB. The username and password must

60 # match the username and password set for the associated CouchDB.

61 - CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME=

62 - CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD=

63 depends_on:

64 - couchdb1

65

66 couchdb2:

67 container_name: couchdb2

68 image: hyperledger/fabric-couchdb

69 # Populate the COUCHDB_USER and COUCHDB_PASSWORD to set an admin user and password

70 # for CouchDB. This will prevent CouchDB from operating in an "Admin Party" mode.

71 environment:

72 - COUCHDB_USER=

73 - COUCHDB_PASSWORD=

74 # Comment/Uncomment the port mapping if you want to hide/expose the CouchDB service,

75 # for example map it to utilize Fauxton User Interface in dev environments.

76 ports:

77 - "7984:5984"

78 networks:

79 - byfn

80

81 peer0.org2.example.com:

82 environment:

83 - CORE_LEDGER_STATE_STATEDATABASE=CouchDB

84 - CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb2:5984

85 # The CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME and CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD

86 # provide the credentials for ledger to connect to CouchDB. The username and password must

87 # match the username and password set for the associated CouchDB.

88 - CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME=

89 - CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD=

90 depends_on:

91 - couchdb2

92

93 couchdb3:

94 container_name: couchdb3

95 image: hyperledger/fabric-couchdb

96 # Populate the COUCHDB_USER and COUCHDB_PASSWORD to set an admin user and password

97 # for CouchDB. This will prevent CouchDB from operating in an "Admin Party" mode.

98 environment:

99 - COUCHDB_USER=

100 - COUCHDB_PASSWORD=

101 # Comment/Uncomment the port mapping if you want to hide/expose the CouchDB service,

102 # for example map it to utilize Fauxton User Interface in dev environments.

103 ports:

80

104 - "8984:5984"

105 networks:

106 - byfn

107

108 peer1.org2.example.com:

109 environment:

110 - CORE_LEDGER_STATE_STATEDATABASE=CouchDB

111 - CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb3:5984

112 # The CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME and CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD

113 # provide the credentials for ledger to connect to CouchDB. The username and password must

114 # match the username and password set for the associated CouchDB.

115 - CORE_LEDGER_STATE_COUCHDBCONFIG_USERNAME=

116 - CORE_LEDGER_STATE_COUCHDBCONFIG_PASSWORD=

117 depends_on:

118 - couchdb3

A.3.4 configtx.yaml
configtx.yaml [36] is included in the first-network folder in the Hyperledger example files.
The profiles in configtx.yaml are used configtxgen tool to create configuration artifacts for
orderer genesis block, channel configuration, and anchor peers (peers on the network con-
nected to a Hyperledger Fabric channel and able to communicate with other organizations).
The code is presented here unmodified from the source with the exception of an Org3 MSP.
Line 110 allows for selection of the orderer type with solo and Kafka as currently available
options.

1 # Copyright IBM Corp. All Rights Reserved.

2 #

3 # SPDX-License-Identifier: Apache-2.0

4 #

5

6 ---

7 ##

8 #

9 # Profile

10 #

11 # - Different configuration profiles may be encoded here to be specified

12 # as parameters to the configtxgen tool

13 #

14 ##

15 Profiles:

16

17 TwoOrgsOrdererGenesis:

18 Capabilities:

81

19 <<: *ChannelCapabilities

20 Orderer:

21 <<: *OrdererDefaults

22 Organizations:

23 - *OrdererOrg

24 Capabilities:

25 <<: *OrdererCapabilities

26 Consortiums:

27 SampleConsortium:

28 Organizations:

29 - *Org1

30 - *Org2

31 - *Org3

32

33 TwoOrgsChannel:

34 Consortium: SampleConsortium

35 Application:

36 <<: *ApplicationDefaults

37 Organizations:

38 - *Org1

39 - *Org2

40 - *Org3

41 Capabilities:

42 <<: *ApplicationCapabilities

43

44 ##

45 #

46 # Section: Organizations

47 #

48 # - This section defines the different organizational identities which will

49 # be referenced later in the configuration.

50 #

51 ##

52 Organizations:

53

54 # SampleOrg defines an MSP using the sampleconfig. It should never be used

55 # in production but may be used as a template for other definitions

56 - &OrdererOrg

57 # DefaultOrg defines the organization which is used in the sampleconfig

58 # of the fabric.git development environment

59 Name: OrdererOrg

60

61 # ID to load the MSP definition as

62 ID: OrdererMSP

63

64 # MSPDir is the filesystem path which contains the MSP configuration

65 MSPDir: crypto-config/ordererOrganizations/example.com/msp

66

67 - &Org1

68 # DefaultOrg defines the organization which is used in the sampleconfig

69 # of the fabric.git development environment

70 Name: Org1MSP

82

71

72 # ID to load the MSP definition as

73 ID: Org1MSP

74

75 MSPDir: crypto-config/peerOrganizations/org1.example.com/msp

76

77 AnchorPeers:

78 # AnchorPeers defines the location of peers which can be used

79 # for cross org gossip communication. Note, this value is only

80 # encoded in the genesis block in the Application section context

81 - Host: peer0.org1.example.com

82 Port: 7051

83

84 - &Org2

85 # DefaultOrg defines the organization which is used in the sampleconfig

86 # of the fabric.git development environment

87 Name: Org2MSP

88

89 # ID to load the MSP definition as

90 ID: Org2MSP

91

92 MSPDir: crypto-config/peerOrganizations/org2.example.com/msp

93

94 AnchorPeers:

95 # AnchorPeers defines the location of peers which can be used

96 # for cross org gossip communication. Note, this value is only

97 # encoded in the genesis block in the Application section context

98 - Host: peer0.org2.example.com

99 Port: 7051

100

101 - &Org3

102 # DefaultOrg defines the organization which is used in the sampleconfig

103 # of the fabric.git development environment

104 Name: Org3MSP

105

106 # ID to load the MSP definition as

107 ID: Org3MSP

108

109 MSPDir: crypto-config/peerOrganizations/org3.example.com/msp

110

111 AnchorPeers:

112 # AnchorPeers defines the location of peers which can be used

113 # for cross org gossip communication. Note, this value is only

114 # encoded in the genesis block in the Application section context

115 - Host: peer0.org3.example.com

116 Port: 7051

117

118 ##

119 #

120 # SECTION: Orderer

121 #

122 # - This section defines the values to encode into a config transaction or

83

123 # genesis block for orderer related parameters

124 #

125 ##

126 Orderer: &OrdererDefaults

127

128 # Orderer Type: The orderer implementation to start

129 # Available types are "solo" and "kafka"

130 OrdererType: solo

131

132 Addresses:

133 - orderer.example.com:7050

134

135 # Batch Timeout: The amount of time to wait before creating a batch

136 BatchTimeout: 2s

137

138 # Batch Size: Controls the number of messages batched into a block

139 BatchSize:

140

141 # Max Message Count: The maximum number of messages to permit in a batch

142 MaxMessageCount: 10

143

144 # Absolute Max Bytes: The absolute maximum number of bytes allowed for

145 # the serialized messages in a batch.

146 AbsoluteMaxBytes: 99 MB

147

148 # Preferred Max Bytes: The preferred maximum number of bytes allowed for

149 # the serialized messages in a batch. A message larger than the preferred

150 # max bytes will result in a batch larger than preferred max bytes.

151 PreferredMaxBytes: 512 KB

152

153 Kafka:

154 # Brokers: A list of Kafka brokers to which the orderer connects

155 # NOTE: Use IP:port notation

156 Brokers:

157 - 127.0.0.1:9092

158

159 # Organizations is the list of orgs which are defined as participants on

160 # the orderer side of the network

161 Organizations:

162

163 ##

164 #

165 # SECTION: Application

166 #

167 # - This section defines the values to encode into a config transaction or

168 # genesis block for application related parameters

169 #

170 ##

171 Application: &ApplicationDefaults

172

173 # Organizations is the list of orgs which are defined as participants on

174 # the application side of the network

84

175 Organizations:

176

177 ##

178 #

179 # SECTION: Capabilities

180 #

181 # - This section defines the capabilities of fabric network. This is a new

182 # concept as of v1.1.0 and should not be utilized in mixed networks with

183 # v1.0.x peers and orderers. Capabilities define features which must be

184 # present in a fabric binary for that binary to safely participate in the

185 # fabric network. For instance, if a new MSP type is added, newer binaries

186 # might recognize and validate the signatures from this type, while older

187 # binaries without this support would be unable to validate those

188 # transactions. This could lead to different versions of the fabric binaries

189 # having different world states. Instead, defining a capability for a channel

190 # informs those binaries without this capability that they must cease

191 # processing transactions until they have been upgraded. For v1.0.x if any

192 # capabilities are defined (including a map with all capabilities turned off)

193 # then the v1.0.x peer will deliberately crash.

194 #

195 ##

196 Capabilities:

197 # Channel capabilities apply to both the orderers and the peers and must be

198 # supported by both. Set the value of the capability to true to require it.

199 Global: &ChannelCapabilities

200 # V1.1 for Global is a catchall flag for behavior which has been

201 # determined to be desired for all orderers and peers running v1.0.x,

202 # but the modification of which would cause incompatibilities. Users

203 # should leave this flag set to true.

204 V1_1: true

205

206 # Orderer capabilities apply only to the orderers, and may be safely

207 # manipulated without concern for upgrading peers. Set the value of the

208 # capability to true to require it.

209 Orderer: &OrdererCapabilities

210 # V1.1 for Order is a catchall flag for behavior which has been

211 # determined to be desired for all orderers running v1.0.x, but the

212 # modification of which would cause incompatibilities. Users should

213 # leave this flag set to true.

214 V1_1: true

215

216 # Application capabilities apply only to the peer network, and may be safely

217 # manipulated without concern for upgrading orderers. Set the value of the

218 # capability to true to require it.

219 Application: &ApplicationCapabilities

220 # V1.1 for Application is a catchall flag for behavior which has been

221 # determined to be desired for all peers running v1.0.x, but the

222 # modification of which would cause incompatibilities. Users should

223 # leave this flag set to true.

224 V1_1: true

85

A.4 Building Hyperledger Fabric

A.4.1 byfn.sh
byfn.sh [36] is a script used to execute the basic commands of up, down, generate, restart,
and upgrade the Hyperledger Fabric test network. byfn.sh is presented unmodified with the
exception of the addition of Org3 (Lines 427-439). The result of running ./byfn.sh up will
consume the .yaml files, generate the certificates and channels and spawn docker containers
which run the peers, clients, orderer, CLI, and state databases.

1 #!/bin/bash

2 #

3 # Copyright IBM Corp All Rights Reserved

4 #

5 # SPDX-License-Identifier: Apache-2.0

6 #

7

8 # This script will orchestrate a sample end-to-end execution of the Hyperledger

9 # Fabric network.

10 #

11 # The end-to-end verification provisions a sample Fabric network consisting of

12 # two organizations, each maintaining two peers, and a “solo” ordering service.

13 #

14 # This verification makes use of two fundamental tools, which are necessary to

15 # create a functioning transactional network with digital signature validation

16 # and access control:

17 #

18 # * cryptogen - generates the x509 certificates used to identify and

19 # authenticate the various components in the network.

20 # * configtxgen - generates the requisite configuration artifacts for orderer

21 # bootstrap and channel creation.

22 #

23 # Each tool consumes a configuration yaml file, within which we specify the topology

24 # of our network (cryptogen) and the location of our certificates for various

25 # configuration operations (configtxgen). Once the tools have been successfully run,

26 # we are able to launch our network. More detail on the tools and the structure of

27 # the network will be provided later in this document. For now, let's get going...

28

29 # prepending $PWD/../bin to PATH to ensure we are picking up the correct binaries

30 # this may be commented out to resolve installed version of tools if desired

31 export PATH=${PWD}/../bin:${PWD}:$PATH

32 export FABRIC_CFG_PATH=${PWD}

33

34 # Print the usage message

35 function printHelp () {

36 echo "Usage: "

86

37 echo " byfn.sh up|down|restart|generate|upgrade [-c <channel name>] [-t <timeout>] [-d <delay>] [-f

<docker-compose-file>] [-s <dbtype>] [-i <imagetag>]"↪→

38 echo " byfn.sh -h|--help (print this message)"

39 echo " <mode> - one of 'up', 'down', 'restart' or 'generate'"

40 echo " - 'up' - bring up the network with docker-compose up"

41 echo " - 'down' - clear the network with docker-compose down"

42 echo " - 'restart' - restart the network"

43 echo " - 'generate' - generate required certificates and genesis block"

44 echo " - 'upgrade' - upgrade the network from v1.0.x to v1.1"

45 echo " -c <channel name> - channel name to use (defaults to \"mychannel\")"

46 echo " -t <timeout> - CLI timeout duration in seconds (defaults to 10)"

47 echo " -d <delay> - delay duration in seconds (defaults to 3)"

48 echo " -f <docker-compose-file> - specify which docker-compose file use (defaults to

docker-compose-cli.yaml)"↪→

49 echo " -s <dbtype> - the database backend to use: goleveldb (default) or couchdb"

50 echo " -l <language> - the chaincode language: golang (default) or node"

51 echo " -i <imagetag> - the tag to be used to launch the network (defaults to \"latest\")"

52 echo

53 echo "Typically, one would first generate the required certificates and "

54 echo "genesis block, then bring up the network. e.g.:"

55 echo

56 echo " byfn.sh generate -c mychannel"

57 echo " byfn.sh up -c mychannel -s couchdb"

58 echo " byfn.sh up -c mychannel -s couchdb -i 1.1.0-alpha"

59 echo " byfn.sh up -l node"

60 echo " byfn.sh down -c mychannel"

61 echo " byfn.sh upgrade -c mychannel"

62 echo

63 echo "Taking all defaults:"

64 echo " byfn.sh generate"

65 echo " byfn.sh up"

66 echo " byfn.sh down"

67 }

68

69 # Ask user for confirmation to proceed

70 function askProceed () {

71 read -p "Continue? [Y/n] " ans

72 case "$ans" in

73 y|Y|"")

74 echo "proceeding ..."

75 ;;

76 n|N)

77 echo "exiting..."

78 exit 1

79 ;;

80 *)

81 echo "invalid response"

82 askProceed

83 ;;

84 esac

85 }

86

87

87 # Obtain CONTAINER_IDS and remove them

88 # TODO Might want to make this optional - could clear other containers

89 function clearContainers () {

90 CONTAINER_IDS=$(docker ps -aq)

91 if [-z "$CONTAINER_IDS" -o "$CONTAINER_IDS" == " "]; then

92 echo "---- No containers available for deletion ----"

93 else

94 docker rm -f $CONTAINER_IDS

95 fi

96 }

97

98 # Delete any images that were generated as a part of this setup

99 # specifically the following images are often left behind:

100 # TODO list generated image naming patterns

101 function removeUnwantedImages() {

102 DOCKER_IMAGE_IDS=$(docker images | grep "dev\|none\|test-vp\|peer[0-9]-" | awk '{print $3}')

103 if [-z "$DOCKER_IMAGE_IDS" -o "$DOCKER_IMAGE_IDS" == " "]; then

104 echo "---- No images available for deletion ----"

105 else

106 docker rmi -f $DOCKER_IMAGE_IDS

107 fi

108 }

109

110 # Versions of fabric known not to work with this release of first-network

111 BLACKLISTED_VERSIONS="^1\.0\. ^1\.1\.0-preview ^1\.1\.0-alpha"

112

113 # Do some basic sanity checking to make sure that the appropriate versions of fabric

114 # binaries/images are available. In the future, additional checking for the presence

115 # of go or other items could be added.

116 function checkPrereqs() {

117 # Note, we check configtxlator externally because it does not require a config file, and peer in the

118 # docker image because of FAB-8551 that makes configtxlator return 'development version' in docker

119 LOCAL_VERSION=$(configtxlator version | sed -ne 's/ Version: //p')

120 DOCKER_IMAGE_VERSION=$(docker run --rm hyperledger/fabric-tools:$IMAGETAG peer version | sed -ne 's/

Version: //p'|head -1)↪→

121

122 echo "LOCAL_VERSION=$LOCAL_VERSION"

123 echo "DOCKER_IMAGE_VERSION=$DOCKER_IMAGE_VERSION"

124

125 if ["$LOCAL_VERSION" != "$DOCKER_IMAGE_VERSION"] ; then

126 echo "=================== WARNING ==================="

127 echo " Local fabric binaries and docker images are "

128 echo " out of sync. This may cause problems. "

129 echo "==="

130 fi

131

132 for UNSUPPORTED_VERSION in $BLACKLISTED_VERSIONS ; do

133 echo "$LOCAL_VERSION" | grep -q $UNSUPPORTED_VERSION

134 if [$? -eq 0] ; then

135 echo "ERROR! Local Fabric binary version of $LOCAL_VERSION does not match this newer version of

BYFN and is unsupported. Either move to a later version of Fabric or checkout an earlier

version of fabric-samples."

↪→

↪→

88

136 exit 1

137 fi

138

139 echo "$DOCKER_IMAGE_VERSION" | grep -q $UNSUPPORTED_VERSION

140 if [$? -eq 0] ; then

141 echo "ERROR! Fabric Docker image version of $DOCKER_IMAGE_VERSION does not match this newer

version of BYFN and is unsupported. Either move to a later version of Fabric or checkout

an earlier version of fabric-samples."

↪→

↪→

142 exit 1

143 fi

144 done

145 }

146

147 # Generate the needed certificates, the genesis block and start the network.

148 function networkUp () {

149 checkPrereqs

150 # generate artifacts if they don't exist

151 if [! -d "crypto-config"]; then

152 generateCerts

153 replacePrivateKey

154 generateChannelArtifacts

155 fi

156 if ["${IF_COUCHDB}" == "couchdb"]; then

157 IMAGE_TAG=$IMAGETAG docker-compose -f $COMPOSE_FILE -f $COMPOSE_FILE_COUCH up -d 2>&1

158 else

159 IMAGE_TAG=$IMAGETAG docker-compose -f $COMPOSE_FILE up -d 2>&1

160 fi

161 if [$? -ne 0]; then

162 echo "ERROR !!!! Unable to start network"

163 exit 1

164 fi

165 # now run the end to end script

166 #docker exec cli scripts/script.sh $CHANNEL_NAME $CLI_DELAY $LANGUAGE $CLI_TIMEOUT

167 if [$? -ne 0]; then

168 echo "ERROR !!!! Test failed"

169 exit 1

170 fi

171 }

172

173 # Upgrade the network from v1.0.x to v1.1

174 # Stop the orderer and peers, backup the ledger from orderer and peers, cleanup chaincode containers

and images↪→

175 # and relaunch the orderer and peers with latest tag

176 function upgradeNetwork () {

177 docker inspect -f '{{.Config.Volumes}}' orderer.example.com |grep -q

'/var/hyperledger/production/orderer'↪→

178 if [$? -ne 0]; then

179 echo "ERROR !!!! This network does not appear to be using volumes for its ledgers, did you start

from fabric-samples >= v1.0.6?"↪→

180 exit 1

181 fi

182

89

183 LEDGERS_BACKUP=./ledgers-backup

184

185 # create ledger-backup directory

186 mkdir -p $LEDGERS_BACKUP

187

188 export IMAGE_TAG=$IMAGETAG

189 if ["${IF_COUCHDB}" == "couchdb"]; then

190 COMPOSE_FILES="-f $COMPOSE_FILE -f $COMPOSE_FILE_COUCH"

191 else

192 COMPOSE_FILES="-f $COMPOSE_FILE"

193 fi

194

195 # removing the cli container

196 docker-compose $COMPOSE_FILES stop cli

197 docker-compose $COMPOSE_FILES up -p 8081:8081 -d --no-deps cli

198

199 echo "Upgrading orderer"

200 docker-compose $COMPOSE_FILES stop orderer.example.com

201 docker cp -a orderer.example.com:/var/hyperledger/production/orderer

$LEDGERS_BACKUP/orderer.example.com↪→

202 docker-compose $COMPOSE_FILES up -d --no-deps orderer.example.com

203

204 for PEER in peer0.org1.example.com peer1.org1.example.com peer0.org2.example.com

peer1.org2.example.com; do↪→

205 echo "Upgrading peer $PEER"

206

207 # Stop the peer and backup its ledger

208 docker-compose $COMPOSE_FILES stop $PEER

209 docker cp -a $PEER:/var/hyperledger/production $LEDGERS_BACKUP/$PEER/

210

211 # Remove any old containers and images for this peer

212 CC_CONTAINERS=$(docker ps | grep dev-$PEER | awk '{print $1}')

213 if [-n "$CC_CONTAINERS"] ; then

214 docker rm -f $CC_CONTAINERS

215 fi

216 CC_IMAGES=$(docker images | grep dev-$PEER | awk '{print $1}')

217 if [-n "$CC_IMAGES"] ; then

218 docker rmi -f $CC_IMAGES

219 fi

220

221 # Start the peer again

222 docker-compose $COMPOSE_FILES up -d --no-deps $PEER

223 done

224

225 docker exec cli scripts/upgrade_to_v11.sh $CHANNEL_NAME $CLI_DELAY $LANGUAGE $CLI_TIMEOUT

226 if [$? -ne 0]; then

227 echo "ERROR !!!! Test failed"

228 exit 1

229 fi

230 }

231

232

90

233 # Tear down running network

234 function networkDown () {

235 docker-compose -f $COMPOSE_FILE -f $COMPOSE_FILE_COUCH down --volumes

236 docker-compose -f $COMPOSE_FILE down --volumes

237 # Don't remove the generated artifacts -- note, the ledgers are always removed

238 if ["$MODE" != "restart"]; then

239 # Bring down the network, deleting the volumes

240 #Delete any ledger backups

241 docker run -v $PWD:/tmp/first-network --rm hyperledger/fabric-tools:$IMAGETAG rm -Rf

/tmp/first-network/ledgers-backup↪→

242 #Cleanup the chaincode containers

243 clearContainers

244 #Cleanup images

245 removeUnwantedImages

246 # remove orderer block and other channel configuration transactions and certs

247 rm -rf channel-artifacts/*.block channel-artifacts/*.tx crypto-config

./org3-artifacts/crypto-config/ channel-artifacts/org3.json↪→

248 # remove the docker-compose yaml file that was customized to the example

249 rm -f docker-compose-e2e.yaml

250 fi

251 }

252

253 # Using docker-compose-e2e-template.yaml, replace constants with private key file names

254 # generated by the cryptogen tool and output a docker-compose.yaml specific to this

255 # configuration

256 function replacePrivateKey () {

257 # sed on MacOSX does not support -i flag with a null extension. We will use

258 # 't' for our back-up's extension and depete it at the end of the function

259 ARCH=`uname -s | grep Darwin`

260 if ["$ARCH" == "Darwin"]; then

261 OPTS="-it"

262 else

263 OPTS="-i"

264 fi

265

266 # Copy the template to the file that will be modified to add the private key

267 cp docker-compose-e2e-template.yaml docker-compose-e2e.yaml

268

269 # The next steps will replace the template's contents with the

270 # actual values of the private key file names for the two CAs.

271 CURRENT_DIR=$PWD

272 cd crypto-config/peerOrganizations/org1.example.com/ca/

273 PRIV_KEY=$(ls *_sk)

274 cd "$CURRENT_DIR"

275 sed $OPTS "s/CA1_PRIVATE_KEY/${PRIV_KEY}/g" docker-compose-e2e.yaml

276 cd crypto-config/peerOrganizations/org2.example.com/ca/

277 PRIV_KEY=$(ls *_sk)

278 cd "$CURRENT_DIR"

279 sed $OPTS "s/CA2_PRIVATE_KEY/${PRIV_KEY}/g" docker-compose-e2e.yaml

280 # If MacOSX, remove the temporary backup of the docker-compose file

281 if ["$ARCH" == "Darwin"]; then

282 rm docker-compose-e2e.yamlt

91

283 fi

284 }

285

286 # We will use the cryptogen tool to generate the cryptographic material (x509 certs)

287 # for our various network entities. The certificates are based on a standard PKI

288 # implementation where validation is achieved by reaching a common trust anchor.

289 #

290 # Cryptogen consumes a file - ``crypto-config.yaml`` - that contains the network

291 # topology and allows us to generate a library of certificates for both the

292 # Organizations and the components that belong to those Organizations. Each

293 # Organization is provisioned a unique root certificate (``ca-cert``), that binds

294 # specific components (peers and orderers) to that Org. Transactions and communications

295 # within Fabric are signed by an entity's private key (``keystore``), and then verified

296 # by means of a public key (``signcerts``). You will notice a "count" variable within

297 # this file. We use this to specify the number of peers per Organization; in our

298 # case it's two peers per Org. The rest of this template is extremely

299 # self-explanatory.

300 #

301 # After we run the tool, the certs will be parked in a folder titled ``crypto-config``.
302

303 # Generates Org certs using cryptogen tool

304 function generateCerts (){

305 which cryptogen

306 if ["$?" -ne 0]; then

307 echo "cryptogen tool not found. exiting"

308 exit 1

309 fi

310 echo

311 echo "##"

312 echo "##### Generate certificates using cryptogen tool #########"

313 echo "##"

314

315 if [-d "crypto-config"]; then

316 rm -Rf crypto-config

317 fi

318 set -x

319 cryptogen generate --config=./crypto-config.yaml

320 res=$?

321 set +x

322 if [$res -ne 0]; then

323 echo "Failed to generate certificates..."

324 exit 1

325 fi

326 echo

327 }

328

329 # The `configtxgen tool is used to create four artifacts: orderer **bootstrap

330 # block**, fabric **channel configuration transaction**, and two **anchor

331 # peer transactions** - one for each Peer Org.

332 #

333 # The orderer block is the genesis block for the ordering service, and the

334 # channel transaction file is broadcast to the orderer at channel creation

92

335 # time. The anchor peer transactions, as the name might suggest, specify each

336 # Org's anchor peer on this channel.

337 #

338 # Configtxgen consumes a file - ``configtx.yaml`` - that contains the definitions

339 # for the sample network. There are three members - one Orderer Org (``OrdererOrg``)
340 # and two Peer Orgs (``Org1`` & ``Org2``) each managing and maintaining two peer nodes.

341 # This file also specifies a consortium - ``SampleConsortium`` - consisting of our

342 # two Peer Orgs. Pay specific attention to the "Profiles" section at the top of

343 # this file. You will notice that we have two unique headers. One for the orderer genesis

344 # block - ``TwoOrgsOrdererGenesis`` - and one for our channel - ``TwoOrgsChannel``.
345 # These headers are important, as we will pass them in as arguments when we create

346 # our artifacts. This file also contains two additional specifications that are worth

347 # noting. Firstly, we specify the anchor peers for each Peer Org

348 # (``peer0.org1.example.com`` & ``peer0.org2.example.com``). Secondly, we point to

349 # the location of the MSP directory for each member, in turn allowing us to store the

350 # root certificates for each Org in the orderer genesis block. This is a critical

351 # concept. Now any network entity communicating with the ordering service can have

352 # its digital signature verified.

353 #

354 # This function will generate the crypto material and our four configuration

355 # artifacts, and subsequently output these files into the ``channel-artifacts``
356 # folder.

357 #

358 # If you receive the following warning, it can be safely ignored:

359 #

360 # [bccsp] GetDefault -> WARN 001 Before using BCCSP, please call InitFactories(). Falling back to

bootBCCSP.↪→

361 #

362 # You can ignore the logs regarding intermediate certs, we are not using them in

363 # this crypto implementation.

364

365 # Generate orderer genesis block, channel configuration transaction and

366 # anchor peer update transactions

367 function generateChannelArtifacts() {

368 which configtxgen

369 if ["$?" -ne 0]; then

370 echo "configtxgen tool not found. exiting"

371 exit 1

372 fi

373

374 echo "##"

375 echo "######### Generating Orderer Genesis block ##############"

376 echo "##"

377 # Note: For some unknown reason (at least for now) the block file can't be

378 # named orderer.genesis.block or the orderer will fail to launch!

379 set -x

380 configtxgen -profile TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/genesis.block

381 res=$?

382 set +x

383 if [$res -ne 0]; then

384 echo "Failed to generate orderer genesis block..."

385 exit 1

93

386 fi

387 echo

388 echo "###"

389 echo "### Generating channel configuration transaction 'channel.tx' ###"

390 echo "###"

391 set -x

392 configtxgen -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -channelID

$CHANNEL_NAME↪→

393 res=$?

394 set +x

395 if [$res -ne 0]; then

396 echo "Failed to generate channel configuration transaction..."

397 exit 1

398 fi

399

400 echo

401 echo "###"

402 echo "####### Generating anchor peer update for Org1MSP ##########"

403 echo "###"

404 set -x

405 configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org1MSPanchors.tx

-channelID $CHANNEL_NAME -asOrg Org1MSP↪→

406 res=$?

407 set +x

408 if [$res -ne 0]; then

409 echo "Failed to generate anchor peer update for Org1MSP..."

410 exit 1

411 fi

412

413 echo

414 echo "###"

415 echo "####### Generating anchor peer update for Org2MSP ##########"

416 echo "###"

417 set -x

418 configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate \

419 ./channel-artifacts/Org2MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org2MSP

420 res=$?

421 set +x

422 if [$res -ne 0]; then

423 echo "Failed to generate anchor peer update for Org2MSP..."

424 exit 1

425 fi

426

427 echo

428 echo "###"

429 echo "####### Generating anchor peer update for Org3MSP ##########"

430 echo "###"

431 set -x

432 configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate \

433 ./channel-artifacts/Org3MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org3MSP

434 res=$?

435 set +x

94

436 if [$res -ne 0]; then

437 echo "Failed to generate anchor peer update for Org3MSP..."

438 exit 1

439 fi

440 echo

441 }

442

443 # Obtain the OS and Architecture string that will be used to select the correct

444 # native binaries for your platform

445 OS_ARCH=$(echo "$(uname -s|tr '[:upper:]' '[:lower:]'|sed 's/mingw64_nt.*/windows/')-$(uname -m | sed

's/x86_64/amd64/g')" | awk '{print tolower($0)}')↪→

446 # timeout duration - the duration the CLI should wait for a response from

447 # another container before giving up

448 CLI_TIMEOUT=10

449 # default for delay between commands

450 CLI_DELAY=3

451 # channel name defaults to "mychannel"

452 CHANNEL_NAME="mychannel"

453 # use this as the default docker-compose yaml definition

454 COMPOSE_FILE=docker-compose-cli.yaml

455 #

456 COMPOSE_FILE_COUCH=docker-compose-couch.yaml

457 # use golang as the default language for chaincode

458 LANGUAGE=golang

459 # default image tag

460 IMAGETAG="latest"

461 # Parse commandline args

462 if ["$1" = "-m"];then # supports old usage, muscle memory is powerful!

463 shift

464 fi

465 MODE=$1;shift

466 # Determine whether starting, stopping, restarting or generating for announce

467 if ["$MODE" == "up"]; then

468 EXPMODE="Starting"

469 elif ["$MODE" == "down"]; then

470 EXPMODE="Stopping"

471 elif ["$MODE" == "restart"]; then

472 EXPMODE="Restarting"

473 elif ["$MODE" == "generate"]; then

474 EXPMODE="Generating certs and genesis block for"

475 elif ["$MODE" == "upgrade"]; then

476 EXPMODE="Upgrading the network"

477 else

478 printHelp

479 exit 1

480 fi

481

482 while getopts "h?m:c:t:d:f:s:l:i:" opt; do

483 case "$opt" in

484 h|\?)

485 printHelp

486 exit 0

95

487 ;;

488 c) CHANNEL_NAME=$OPTARG

489 ;;

490 t) CLI_TIMEOUT=$OPTARG

491 ;;

492 d) CLI_DELAY=$OPTARG

493 ;;

494 f) COMPOSE_FILE=$OPTARG

495 ;;

496 s) IF_COUCHDB=$OPTARG

497 ;;

498 l) LANGUAGE=$OPTARG

499 ;;

500 i) IMAGETAG=`uname -m`"-"$OPTARG

501 ;;

502 esac

503 done

504

505 # Announce what was requested

506

507 if ["${IF_COUCHDB}" == "couchdb"]; then

508 echo

509 echo "${EXPMODE} with channel '${CHANNEL_NAME}' and CLI timeout of '${CLI_TIMEOUT}' seconds and

CLI delay of '${CLI_DELAY}' seconds and using database '${IF_COUCHDB}'"↪→

510 else

511 echo "${EXPMODE} with channel '${CHANNEL_NAME}' and CLI timeout of '${CLI_TIMEOUT}' seconds and

CLI delay of '${CLI_DELAY}' seconds"↪→

512 fi

513 # ask for confirmation to proceed

514 askProceed

515

516 #Create the network using docker compose

517 if ["${MODE}" == "up"]; then

518 networkUp

519 elif ["${MODE}" == "down"]; then ## Clear the network

520 networkDown

521 elif ["${MODE}" == "generate"]; then ## Generate Artifacts

522 generateCerts

523 replacePrivateKey

524 generateChannelArtifacts

525 elif ["${MODE}" == "restart"]; then ## Restart the network

526 networkDown

527 networkUp

528 elif ["${MODE}" == "upgrade"]; then ## Upgrade the network from v1.0.x to v1.1

529 upgradeNetwork

530 else

531 printHelp

532 exit 1

533 fi

96

A.5 Hyperledger Scripts
The Hyperledger Fabric scripts are run on the CLI docker container that is created using
byfn.sh.

A.5.1 setclienv.sh
setclienv.sh is used to set environmental variables used in the other scripts. The code is
adapted from [39].

1 export CHANNEL_NAME=sdnnetwork

2 export CC_NAME=thesischaincode

A.5.2 channel-setup.sh
channel-setup.sh is used to create the channel named in setclienv.sh and join the peers to
the channel. The code is adapted from [39].

1 ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ \

ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/ \

tlsca.example.com-cert.pem

↪→

↪→

2

3 # Channel creation

4 echo "========== Creating channel: "$CHANNEL_NAME" =========="

5 peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ../channel-artifacts/channel.tx

--tls $CORE_PEER_TLS_ENABLED --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations \

/example.com/orderers/orderer.example.com/msp/tlscacerts/ \ tlsca.example.com-cert.pem

↪→

↪→

↪→

6

7 # peer0.org1 channel join

8 echo "========== Joining peer0.org1.example.com to channel mychannel =========="

9 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp↪→

10 export CORE_PEER_ADDRESS=peer0.org1.example.com:7051

11 export CORE_PEER_LOCALMSPID="Org1MSP"

12 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt↪→

13 peer channel join -b ${CHANNEL_NAME}.block

14 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f

../channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx --tls $CORE_PEER_TLS_ENABLED --cafile

$ORDERER_CA

↪→

↪→

15

97

16 # peer1.org1 channel join

17 echo "========== Joining peer1.org1.example.com to channel mychannel =========="

18 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp↪→

19 export CORE_PEER_ADDRESS=peer1.org1.example.com:7051

20 export CORE_PEER_LOCALMSPID="Org1MSP"

21 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/peers/peer1.org1.example.com/tls/ca.crt↪→

22 peer channel join -b ${CHANNEL_NAME}.block

23

24 # peer0.org2 channel join

25 echo "========== Joining peer0.org2.example.com to channel mychannel =========="

26 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp↪→

27 export CORE_PEER_ADDRESS=peer0.org2.example.com:7051

28 export CORE_PEER_LOCALMSPID="Org2MSP"

29 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/tls/ca.crt↪→

30 peer channel join -b ${CHANNEL_NAME}.block

31 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f

../channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx --tls $CORE_PEER_TLS_ENABLED --cafile

$ORDERER_CA

↪→

↪→

32

33 # peer1.org2 channel join

34 echo "========== Joining peer1.org2.example.com to channel mychannel =========="

35 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp↪→

36 export CORE_PEER_ADDRESS=peer1.org2.example.com:7051

37 export CORE_PEER_LOCALMSPID="Org2MSP"

38 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/tls/ca.crt↪→

39 peer channel join -b ${CHANNEL_NAME}.block

40

41 # peer0.org3 channel join

42 echo "========== Joining peer0.org3.example.com to channel mychannel =========="

43 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/users/Admin@org3.example.com/msp↪→

44 export CORE_PEER_ADDRESS=peer0.org3.example.com:7051

45 export CORE_PEER_LOCALMSPID="Org3MSP"

46 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/peers/peer1.org3.example.com/tls/ca.crt↪→

47 peer channel join -b ${CHANNEL_NAME}.block

48 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f

../channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx --tls $CORE_PEER_TLS_ENABLED --cafile

$ORDERER_CA

↪→

↪→

49

50 # peer1.org3 channel join

51 echo "========== Joining peer1.org3.example.com to channel mychannel =========="

52 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/users/Admin@org3.example.com/msp↪→

53 export CORE_PEER_ADDRESS=peer1.org3.example.com:7051

54 export CORE_PEER_LOCALMSPID="Org3MSP"

98

55 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/peers/peer1.org3.example.com/tls/ca.crt↪→

56 peer channel join -b ${CHANNEL_NAME}.block

A.5.3 install-chaincode.sh
install-chaincode.sh is used to install a copy of the chaincode (contract code) on all peers.
The code is adapted from [39].

1 echo "========== Installing chaincode on peer0.org1 =========="

2 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp↪→

3 export CORE_PEER_ADDRESS=peer0.org1.example.com:7051

4 export CORE_PEER_LOCALMSPID="Org1MSP"

5 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer\

/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt↪→

6 peer chaincode install -n $CC_NAME -v $1 -p github.com/hyperledger/fabric/examples/chaincode/go

7

8 echo "========== Installing chaincode on peer1.org1 =========="

9 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp↪→

10 export CORE_PEER_ADDRESS=peer1.org1.example.com:7051

11 export CORE_PEER_LOCALMSPID="Org1MSP"

12 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org1.example.com/peers/peer1.org1.example.com/tls/ca.crt↪→

13 peer chaincode install -n $CC_NAME -v $1 -p github.com/hyperledger/fabric/examples/chaincode/go

14

15 echo "========== Installing chaincode on peer0.org2 =========="

16 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp↪→

17 export CORE_PEER_ADDRESS=peer0.org2.example.com:7051

18 export CORE_PEER_LOCALMSPID="Org2MSP"

19 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt↪→

20 peer chaincode install -n $CC_NAME -v $1 -p github.com/hyperledger/fabric/examples/chaincode/go

21

22 echo "========== Installing chaincode on peer1.org2 =========="

23 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp↪→

24 export CORE_PEER_ADDRESS=peer1.org2.example.com:7051

25 export CORE_PEER_LOCALMSPID="Org2MSP"

26 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/tls/ca.crt↪→

27 peer chaincode install -n $CC_NAME -v $1 -p github.com/hyperledger/fabric/examples/chaincode/go

28

29 echo "========== Installing chaincode on peer0.org3 =========="

99

30 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/users/Admin@org3.example.com/msp↪→

31 export CORE_PEER_ADDRESS=peer0.org3.example.com:7051

32 export CORE_PEER_LOCALMSPID="Org3MSP"

33 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/peers/peer0.org3.example.com/tls/ca.crt↪→

34 peer chaincode install -n $CC_NAME -v $1 -p github.com/hyperledger/fabric/examples/chaincode/go

35

36 echo "========== Installing chaincode on peer1.org3 =========="

37 export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/users/Admin@org3.example.com/msp↪→

38 export CORE_PEER_ADDRESS=peer1.org3.example.com:7051

39 export CORE_PEER_LOCALMSPID="Org3MSP"

40 export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer \

/crypto/peerOrganizations/org3.example.com/peers/peer1.org3.example.com/tls/ca.crt↪→

41 peer chaincode install -n $CC_NAME -v $1 -p github.com/hyperledger/fabric/examples/chaincode/go

A.5.4 instantiate-chaincode.sh
install-chaincode.sh is used to install a copy of the chaincode (contract code) on all peers.
The code is adapted from [39].

1 echo "========== Instantiating chaincode v$1 =========="

2 peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/ \

example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C

$CHANNEL_NAME -n $CC_NAME -v $1 -c '{"Args":["init"]}' -P "OR

('Org0MSP.peer','Org1MSP.peer','Org2MSP.peer')"

↪→

↪→

↪→

↪→

A.5.5 upgrade-chaincode.sh
upgrade-chaincode.sh is used to upload a new version of contract code once the install
command has already been used. The upgrade command updates a copy of the chaincode
(contract code) on all peers. The code is adapted from [39].

1 echo "========== Upgrade chaincode to version $1 =========="

2 peer chaincode upgrade -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/ \

example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C

$CHANNEL_NAME -n $CC_NAME -c '{"Args": []}' -v $1 -P "OR ('Org1MSP.member','Org2MSP.member')"

↪→

↪→

↪→

100

A.6 Contract Code
Contract code for SDN/Hyperledger

1 /*

2 Licensed to the Apache Software Foundation (ASF) under one

3 or more contributor license agreements. See the NOTICE file

4 distributed with this work for additional information

5 regarding copyright ownership. The ASF licenses this file

6 to you under the Apache License, Version 2.0 (the

7 "License"); you may not use this file except in compliance

8 with the License. You may obtain a copy of the License at

9

10 http://www.apache.org/licenses/LICENSE-2.0

11

12 Unless required by applicable law or agreed to in writing,

13 software distributed under the License is distributed on an

14 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

15 KIND, either express or implied. See the License for the

16 specific language governing permissions and limitations

17 under the License.

18 */

19

20 package main

21

22 import (

23 "bytes"

24 "encoding/json"

25 "fmt"

26 "strconv"

27 "strings"

28 "time"

29 //"os"

30

31 "github.com/hyperledger/fabric/core/chaincode/shim"

32 pb "github.com/hyperledger/fabric/protos/peer"

33)

34

35 type SimpleChaincode struct {

36 }

37

38 type tenant struct {

39 ObjectType string `json:"docType"`

40 Name string `json:"name"`

41 StartTime int64 `json:"starttime"`

42 Duration int64 `json:"duration"`

43 Bandwidth float64 `json:"bandwidth"` //Mbps

44 Hosts int `json:"hosts"`

45 SAddress []string `json:"saddress"`

46 DAddress []string `json:"daddress"` //tagged for removal

47 TransNum int `json:"transnum"`

101

48 }

49

50 type network struct {

51 ObjectType string `json:"docType"` //docType distinguishes types of objects in state

database↪→

52 Name string `json:"name"` //unique identifier for entry

53 Address string `json:"address"` //network address of sdn network

54 Hosts int `json:"hosts"` //Total hosts

55 Availhosts string `json:"availhosts"` //Currently avaliable hosts

56 Bandwidth float64 `json:"bandwidth"` //Avaliable bandwith in Mbps

57 Balance float64 `json:"balance"` //Currency ballance of sdn network

58 Pricepermb float64 `json:"pricepermb"` //price per megabyte per hour

59 Tenantslice []tenant `json:"tenantslice"` //List of networks with contracts in execution

60 ASnum int `json:"asnum"` //AS number where the network resides

61 ASneighbor []int `json:"asneighbor"` //Neighbor AS numbers

62 TransCount int `json:"transcount"` //number of executed tranactions

63

64 }

65

66 // ===

67 // Main

68 // ===

69 func main() {

70 err := shim.Start(new(SimpleChaincode))

71 if err != nil {

72 fmt.Printf("Error starting Simple chaincode: %s", err)

73 }

74 }

75

76 // Init initializes chaincode

77 // ===========================

78 func (t *SimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response {

79 return shim.Success(nil)

80 }

81

82 // Invoke - Our entry point for Invocations

83 // ==

84 func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

85 function, args := stub.GetFunctionAndParameters()

86 fmt.Println("invoke is running " + function)

87

88 // Handles functions called with Invoike

89 if function == "initNetwork" { //create a new network

90 return t.initNetwork(stub, args)

91 } else if function == "delete" { //delete a network

92 return t.delete(stub, args)

93 } else if function == "readNetwork" { //read a network

94 return t.readNetwork(stub, args)

95 } else if function == "queryAvailhosts" { //find networks for owner X using rich query

96 return t.queryAvailhosts(stub, args)

97 } else if function == "queryNetwork" { //find networks based on an ad hoc rich query

98 return t.queryNetwork(stub, args)

102

99 } else if function == "queryBandwidth" { //get all networks that have a specified number of

bandwidth↪→

100 return t.queryBandwidth(stub, args)

101 } else if function == "queryPricePerMB" { //get all networks that have a specified price per

Megabyte↪→

102 return t.queryPricePerMB(stub, args)

103 } else if function == "queryHosts" { //get all networks that have a specified number of hosts

104 return t.queryHosts(stub, args)

105 } else if function == "transactionNetwork" { //get all networks that have a specified number of

hosts↪→

106 return t.transactionNetwork(stub, args)

107 } else if function == "getHistoryForNetwork" { //get history of values for a network

108 return t.getHistoryForNetwork(stub, args)

109

110 } else if function == "pruneTenants" { //get networks based on range query

111 return t.pruneTenants(stub, args)

112 }

113

114 fmt.Println("invoke did not find func: " + function) //error

115 return shim.Error("Received unknown function invocation")

116 }

117

118 // ==

119 // transactionNetwork - Checks that all requirements for a tranactin are met

120 // then updates all network values, adds the requesting network as tennant on

121 // the supporting network. Calculates cost and exchanges currency.

122 // ==

123 func (t *SimpleChaincode) transactionNetwork(stub shim.ChaincodeStubInterface, args []string)

pb.Response {↪→

124 var err error

125

126 // 0 1 2 3 4 5 5 6

127 // "net1","net2","dur","Bandwidth","hosts" "saddr" "smac (list)" "daddr (list)"

128 // requesting, accepting

129 if len(args) != 7 {

130 return shim.Error("Incorrect number of arguments. Expecting 7")

131 }

132

133 // ==== Input sanitation ====

134 fmt.Println("- start init network")

135 if len(args[0]) <= 0 {

136 return shim.Error("1st argument must be a non-empty string")

137 }

138 if len(args[1]) <= 0 {

139 return shim.Error("2nd argument must be a non-empty string")

140 }

141 if len(args[2]) <= 0 {

142 return shim.Error("3rd argument must be a non-empty string")

143 }

144 if len(args[3]) <= 0 {

145 return shim.Error("4th argument must be a non-empty string")

146 }

103

147 if len(args[3]) <= 0 {

148 return shim.Error("5th argument must be a non-empty string")

149 }

150 if len(args[3]) <= 0 {

151 return shim.Error("6th argument must be a non-empty string")

152 }

153 if len(args[3]) <= 0 {

154 return shim.Error("7th argument must be a non-empty string")

155 }

156

157 network1Name := args[0]

158 network2Name := args[1]

159

160 duration, err := strconv.ParseInt(args[2], 10, 64)

161 if err != nil {

162 return shim.Error("3th argument must be a numeric string")

163 }

164 if duration <= 0 {

165 return shim.Error("3rd arguement err. duration must be greater than zero")

166 }

167

168 bandwidth, err := strconv.ParseFloat(args[3], 64)

169 if err != nil {

170 return shim.Error("4th argument must be a numeric string")

171 }

172

173 hosts, err := strconv.Atoi(args[4])

174 if err != nil {

175 return shim.Error("5rd argument must be a numeric string")

176 }

177

178 TrimArg5 := args[5]

179 TrimArg5 = strings.Trim(TrimArg5, "[")

180 TrimArg5 = strings.Trim(TrimArg5, "]")

181 SAddress := strings.Split(TrimArg5, ",")

182 TrimArg6 := args[6]

183 TrimArg6 = strings.Trim(TrimArg6, "[")

184 TrimArg6 = strings.Trim(TrimArg6, "]")

185 DAddress := strings.Split(TrimArg6, ",")

186

187 //DAddressAsbytes := strings.Split(args[6], ",")

188 var jsonResp string

189 var network1JSON network

190 var network2JSON network

191

192 // ==== Unmarshal data from both networks ====

193

194 valAsbytes, err := stub.GetState(network1Name) //get the network from chaincode state

195 if err != nil {

196 jsonResp = "{\"Error\":\"Failed to get state for " + network1Name + "\"}"

197 return shim.Error(jsonResp)

198 } else if valAsbytes == nil {

104

199 jsonResp = "{\"Error\":\"Network does not exist: " + network1Name + "\"}"

200 return shim.Error(jsonResp)

201 }

202

203 err = json.Unmarshal([]byte(valAsbytes), &network1JSON)

204 if err != nil {

205 jsonResp = "{\"Error\":\"Failed to decode JSON of: " + network1Name + "\"}"

206 return shim.Error(jsonResp)

207 }

208

209 valAsbytes2, err := stub.GetState(network2Name) //get the network from chaincode state

210 if err != nil {

211 jsonResp = "{\"Error\":\"Failed to get state for " + network2Name + "\"}"

212 return shim.Error(jsonResp)

213 } else if valAsbytes == nil {

214 jsonResp = "{\"Error\":\"Network does not exist: " + network2Name + "\"}"

215 return shim.Error(jsonResp)

216 }

217 err = json.Unmarshal([]byte(valAsbytes2), &network2JSON)

218 if err != nil {

219 jsonResp = "{\"Error\":\"Failed to decode JSON of: " + network2Name + "\"}"

220 return shim.Error(jsonResp)

221 }

222

223 if network2JSON.Bandwidth < bandwidth {

224 return shim.Error("bandwidth requested exceeds capacity of " + network2JSON.Name)

225 }

226

227 if network2JSON.Hosts < hosts {

228 return shim.Error("hosts requested exceeds capacity of " + network2JSON.Name)

229 }

230 durationfloat := float64(duration)

231 cost := (network2JSON.Pricepermb * (durationfloat / 3600)) * bandwidth

232 network2JSON.Bandwidth = network2JSON.Bandwidth - bandwidth

233 network2JSON.Hosts = network2JSON.Hosts - hosts

234 network1JSON.Balance = network1JSON.Balance - cost

235 network2JSON.Balance = network2JSON.Balance + cost

236

237 objectType := "tenant"

238 uniqueid := network2JSON.TransCount + 1

239 network2JSON.TransCount += 1

240 newtenant := tenant{objectType, network1JSON.Name, time.Now().Unix(), duration, bandwidth,

hosts, SAddress, DAddress, uniqueid}↪→

241

242 tenantslice := []tenant{}

243

244 for _, item := range network2JSON.Tenantslice {

245 tenantslice = append(tenantslice, item)

246 }

247 tenantslice = append(tenantslice, newtenant)

248

249 network2JSON.Tenantslice = tenantslice

105

250

251 network1JSONasBytes, _ := json.Marshal(network1JSON)

252 err = stub.PutState(network1Name, network1JSONasBytes) //rewrite the network

253 if err != nil {

254 return shim.Error(err.Error())

255 }

256 network2JSONasBytes, _ := json.Marshal(network2JSON)

257 err = stub.PutState(network2Name, network2JSONasBytes) //rewrite the network

258 if err != nil {

259 return shim.Error(err.Error())

260 }

261

262 Results := []byte(network1JSON.Name + network2JSON.Name +

strconv.FormatFloat(network1JSON.Bandwidth, 'f', -1, 64))↪→

263 return shim.Success(Results)

264 fmt.Println("- end transaction (success)")

265 return shim.Success(nil)

266 }

267

268 // ==

269 // pruneTenants - Checks tennants of the named network to determine if Current

270 // time is > tennant start time + duratin. If so, removes the tennant from the

271 // list and restores bandwidth and host values.

272 // ==

273 func (t *SimpleChaincode) pruneTenants(stub shim.ChaincodeStubInterface, args []string) pb.Response {

274 if len(args) != 1 {

275 return shim.Error("Incorrect number of arguments. Expecting 1")

276 }

277

278 networkName := args[0]

279

280 // ==== Unmarshal data from both networks ====

281 var jsonResp string

282 var networkJSON network

283

284 valAsbytes, err := stub.GetState(networkName) //get the network from chaincode state

285 if err != nil {

286 jsonResp = "{\"Error\":\"Failed to get state for " + networkName + "\"}"

287 return shim.Error(jsonResp)

288 } else if valAsbytes == nil {

289 jsonResp = "{\"Error\":\"Network does not exist: " + networkName + "\"}"

290 return shim.Error(jsonResp)

291 }

292

293 err = json.Unmarshal([]byte(valAsbytes), &networkJSON)

294 if err != nil {

295 jsonResp = "{\"Error\":\"Failed to decode JSON of: " + networkName + "\"}"

296 return shim.Error(jsonResp)

297 }

298

299 tenantslice := []tenant{}

300 for _, item := range networkJSON.Tenantslice {

106

301 if time.Now().Unix() < item.StartTime+item.Duration {

302 tenantslice = append(tenantslice, item)

303 } else {

304 networkJSON.Bandwidth += item.Bandwidth

305 networkJSON.Hosts += item.Hosts

306 }

307 }

308

309 networkJSON.Tenantslice = tenantslice

310

311 networkJSONasBytes, _ := json.Marshal(networkJSON)

312 err = stub.PutState(networkName, networkJSONasBytes)

313 if err != nil {

314 return shim.Error(err.Error())

315 }

316

317 fmt.Println("- end prune tenants (success)")

318 return shim.Success(nil)

319 }

320

321 // ==

322 // initNetwork - create a new network, store into chaincode state

323 // ==

324 func (t *SimpleChaincode) initNetwork(stub shim.ChaincodeStubInterface, args []string) pb.Response {

325 var err error

326

327 // 0 1 2 3 4 5 6 7 8

328 // "network1", "10.0.0.1", "35", "true", "3000.0", "100000", "5.2" "23" "[22,4,12]"

329 if len(args) != 9 {

330 return shim.Error("Incorrect number of arguments. Expecting 7")

331 }

332

333 // ==== Input sanitation ====

334 fmt.Println("- start init network")

335 if len(args[0]) <= 0 {

336 return shim.Error("1st argument must be a non-empty string")

337 }

338 if len(args[1]) <= 0 {

339 return shim.Error("2nd argument must be a non-empty string")

340 }

341 if len(args[2]) <= 0 {

342 return shim.Error("3rd argument must be a non-empty string")

343 }

344 if len(args[3]) <= 0 {

345 return shim.Error("4th argument must be a non-empty string")

346 }

347 if len(args[4]) <= 0 {

348 return shim.Error("5th argument must be a non-empty string")

349 }

350 if len(args[5]) <= 0 {

351 return shim.Error("6th argument must be a non-empty string")

352 }

107

353 if len(args[6]) <= 0 {

354 return shim.Error("7th argument must be a non-empty string")

355 }

356 if len(args[7]) <= 0 {

357 return shim.Error("8th argument must be a non-empty string")

358 }

359 if len(args[8]) <= 0 {

360 return shim.Error("9th argument must be a non-empty string")

361 }

362 networkName := args[0]

363 address := strings.ToLower(args[1])

364 hosts, err := strconv.Atoi(args[2])

365 if err != nil {

366 return shim.Error("3rd argument must be a numeric string")

367 }

368 availhosts := strings.ToLower(args[3])

369 if availhosts != "true" {

370 if availhosts != "false" {

371 return shim.Error("4th argument must be string `true` or `false`")

372 }

373 }

374 bandwidth, err := strconv.ParseFloat(args[4], 64)

375 if err != nil {

376 return shim.Error("5th argument must be a numeric string")

377 }

378 balance, err := strconv.ParseFloat(args[5], 64)

379 if err != nil {

380 return shim.Error("6th argument must be a numeric string")

381 }

382 pricepermb, err := strconv.ParseFloat(args[6], 64)

383 if err != nil {

384 return shim.Error("7th argument must be a numeric string")

385 }

386 asnum, err := strconv.Atoi(args[7])

387 if err != nil {

388 return shim.Error("8rd argument must be a numeric string")

389 }

390 var asneighbor []int

391 err = json.Unmarshal([]byte(args[8]), &asneighbor)

392

393 if err != nil {

394 return shim.Error(err.Error())

395 }

396

397 var tennantslice []tenant

398

399 // ==== Check if network already exists ====

400 networkAsBytes, err := stub.GetState(networkName)

401 if err != nil {

402 return shim.Error("Failed to get network: " + err.Error())

403 } else if networkAsBytes != nil {

404 fmt.Println("This network already exists: " + networkName)

108

405 return shim.Error("This network already exists: " + networkName)

406 }

407

408 // ==== Create network object and marshal to JSON ====

409 objectType := "network"

410 var transcount int

411 transcount = 0

412 network := &network{objectType, networkName, address, hosts, availhosts, bandwidth, balance,

pricepermb, tennantslice, asnum, asneighbor, transcount}↪→

413 networkJSONasBytes, err := json.Marshal(network)

414 if err != nil {

415 return shim.Error(err.Error())

416 }

417

418 // === Save network to state ===

419 err = stub.PutState(networkName, networkJSONasBytes)

420 if err != nil {

421 return shim.Error(err.Error())

422 }

423

424 // ==== Index the network to enable avaliable hosts-based range queries,

425 // e.g. return all networks with avaliable hosts. ==== An 'index' is a normal

426 // key/value entry in state. The key is a composite key, with the elements

427 // that you want to range query on listed first. In our case, the composite

428 // key is based on indexName~availhosts~name. This will enable very efficient

429 // state range queries based on composite keys matching

430 // indexName~availhosts~* ====

431 asstr := strconv.Itoa(network.ASnum)

432 ASneighborasBytes, err := json.Marshal(network.ASneighbor)

433 if err != nil {

434 return shim.Error(err.Error())

435 }

436 ASneighborasString := string(ASneighborasBytes)

437

438 indexName := "ASnum~ASneighbor"

439 availhostsNameIndexKey, err := stub.CreateCompositeKey(indexName, []string{asstr,

ASneighborasString})↪→

440 if err != nil {

441 return shim.Error(err.Error())

442 }

443 // Save index entry to state. Only the key name is needed, no need to store

444 // a duplicate copy of the network. Note - passing a 'nil' value will

445 // effectively delete the key from state, therefore we pass null character as value

446 value := []byte{0x00}

447 stub.PutState(availhostsNameIndexKey, value)

448

449 // ==== Network saved and indexed. Return success ====

450 fmt.Println("- end init network")

451 return shim.Success(nil)

452 }

453

454 // ===

109

455 // readNetwork - read a network from chaincode state

456 // ===

457 func (t *SimpleChaincode) readNetwork(stub shim.ChaincodeStubInterface, args []string) pb.Response {

458 var name, jsonResp string

459 var err error

460

461 if len(args) != 1 {

462 return shim.Error("Incorrect number of arguments. Expecting name of the network to

query")↪→

463 }

464

465 name = args[0]

466 valAsbytes, err := stub.GetState(name) //get the network from chaincode state

467 if err != nil {

468 jsonResp = "{\"Error\":\"Failed to get state for " + name + "\"}"

469 return shim.Error(jsonResp)stub.GetHistoryForKey(networkName)

470 } else if valAsbytes == nil {

471 jsonResp = "{\"Error\":\"Network does not exist: " + name + "\"}"

472 return shim.Error(jsonResp)

473 }

474

475 return shim.Success(valAsbytes)

476 }

477

478 // ===

479 // readNetwork - Returns the shortest path from AS1 to AS2.

480 // ===

481 func (t *SimpleChaincode) ASPath(stub shim.ChaincodeStubInterface, args []string) pb.Response {

482 //var name, jsonResp string

483 var err error

484

485 if len(args) != 2 {

486 return shim.Error("Incorrect number of arguments. Expecting 2 network names to query")

487 }

488

489 // 0 1

490 // "network1", "network2"

491 if len(args) != 5 {

492 return shim.Error("Incorrect number of arguments. Expecting 5")

493 }

494

495 // ==== Input sanitation ====

496 fmt.Println("- start aspath network")

497 if len(args[0]) <= 0 {

498 return shim.Error("1st argument must be a non-empty string")

499 }

500 if len(args[1]) <= 0 {

501 return shim.Error("2nd argument must be a non-empty string")

502 }

503

504 network1Name := args[0]

505

110

506 network2Name := args[1]

507

508 var jsonResp string

509 var network1JSON network

510 var network2JSON network

511

512 valAsbytes, err := stub.GetState(network1Name) //get the network from chaincode state

513 if err != nil {

514 jsonResp = "{\"Error\":\"Failed to get state for " + network1Name + "\"}"

515 return shim.Error(jsonResp)

516 } else if valAsbytes == nil {

517 jsonResp = "{\"Error\":\"Network does not exist: " + network1Name + "\"}"

518 return shim.Error(jsonResp)

519 }

520

521 err = json.Unmarshal([]byte(valAsbytes), &network1JSON)

522 if err != nil {

523 jsonResp = "{\"Error\":\"Failed to decode JSON of: " + network1Name + "\"}"

524 return shim.Error(jsonResp)

525 }

526

527 valAsbytes2, err := stub.GetState(network2Name) //get the network from chaincode state

528 if err != nil {

529 jsonResp = "{\"Error\":\"Failed to get state for " + network2Name + "\"}"

530 return shim.Error(jsonResp)

531 } else if valAsbytes == nil {

532 jsonResp = "{\"Error\":\"Network does not exist: " + network2Name + "\"}"

533 return shim.Error(jsonResp)

534 }

535 err = json.Unmarshal([]byte(valAsbytes2), &network2JSON)

536 if err != nil {

537 jsonResp = "{\"Error\":\"Failed to decode JSON of: " + network2Name + "\"}"

538 return shim.Error(jsonResp)

539 }

540

541 return shim.Success(nil)

542 }

543

544 // ==

545 // delete - remove a network and its data from the state database

546 // ==

547 func (t *SimpleChaincode) delete(stub shim.ChaincodeStubInterface, args []string) pb.Response {

548 var jsonResp string

549 var networkJSON network

550 if len(args) != 1 {

551 return shim.Error("Incorrect number of arguments. Expecting 1")

552 }

553 networkName := args[0]

554 // to maintain the availhosts~name index, we need to read the network first and get its

availhosts↪→

555 valAsbytes, err := stub.GetState(networkName) //get the network from chaincode state

556 if err != nil {

111

557 jsonResp = "{\"Error\":\"Failed to get state for " + networkName + "\"}"

558 return shim.Error(jsonResp)

559 } else if valAsbytes == nil {

560 jsonResp = "{\"Error\":\"Network does not exist: " + networkName + "\"}"

561 return shim.Error(jsonResp)

562 }

563

564 err = json.Unmarshal([]byte(valAsbytes), &networkJSON)

565 if err != nil {

566 jsonResp = "{\"Error\":\"Failed to decode JSON of: " + networkName + "\"}"

567 return shim.Error(jsonResp)

568 }

569

570 err = stub.DelState(networkName) //remove the nework from chaincode state

571 if err != nil {

572 return shim.Error("Failed to delete state:" + err.Error())

573 }

574

575 // maintain the index

576 indexName := "availhosts~name"

577 availhostsNameIndexKey, err := stub.CreateCompositeKey(indexName,

[]string{networkJSON.Availhosts, networkJSON.Name})↪→

578 if err != nil {

579 return shim.Error(err.Error())

580 }

581

582 // Delete index entry to state.

583 err = stub.DelState(availhostsNameIndexKey)

584 if err != nil {

585 return shim.Error("Failed to delete state:" + err.Error())

586 }

587

588 return shim.Success(nil)

589 }

590

591 // ==

592 // queryAvailhosts - finds a network by name and returns its current state

593 // ==

594 func (t *SimpleChaincode) queryAvailhosts(stub shim.ChaincodeStubInterface, args []string) pb.Response

{↪→

595

596 // 0

597 // "bob"

598 if len(args) < 1 {

599 return shim.Error("Incorrect number of arguments. Expecting 1")

600 }

601

602 name := strings.ToLower(args[0])

603

604 queryString := fmt.Sprintf("{\"selector\":{\"docType\":\"network\",\"availhosts\":\"%s\"}}",

name)↪→

605

112

606 queryResults, err := getQueryResultForQueryString(stub, queryString)

607 if err != nil {

608 return shim.Error(err.Error())

609 }

610 return shim.Success(queryResults)

611 }

612

613 // ==

614 // queryBandwidth - finds a network above, below or equal to a bandwidth value.

615 // ==

616 func (t *SimpleChaincode) queryBandwidth(stub shim.ChaincodeStubInterface, args []string) pb.Response {

617

618 // 0

619 // "bob"

620 if len(args) < 2 {

621 return shim.Error("Incorrect number of arguments. Expecting 2 ex. \"gt\",\"4000\". Can

use \"lt\" - less than, \"eq\" - equal, \"ne\" - not equal, \"gte\" - greater

than equal, \"gt\" - greater than")

↪→

↪→

622 }

623

624 operator := strings.ToLower(args[0])

625 name := strings.ToLower(args[1])

626 queryString :=

fmt.Sprintf("{\"selector\":{\"docType\":\"network\",\"bandwidth\":{\"$%s\":%s}}}",

operator, name)

↪→

↪→

627 queryResults, err := getQueryResultForQueryString(stub, queryString)

628 if err != nil {

629 return shim.Error(err.Error())

630 }

631 return shim.Success(queryResults)

632 }

633

634 // ==

635 // queryPricePerMB - finds a network above, below or equal to a pricepermb value.

636 // ==

637 func (t *SimpleChaincode) queryPricePerMB(stub shim.ChaincodeStubInterface, args []string) pb.Response

{↪→

638

639 // 0

640 // "bob"

641 if len(args) < 2 {

642 return shim.Error("Incorrect number of arguments. Expecting 2 ex. \"gt\",\"4.4\". Can

use \"lt\" - less than, \"eq\" - equal, \"ne\" - not equal, \"gte\" - greater

than equal, \"gt\" - greater than")

↪→

↪→

643 }

644

645 operator := strings.ToLower(args[0])

646 name := args[1]

647 queryString :=

fmt.Sprintf("{\"selector\":{\"docType\":\"network\",\"pricepermb\":{\"$%s\":%s}}}",

operator, name)

↪→

↪→

648

113

649 queryResults, err := getQueryResultForQueryString(stub, queryString)

650 if err != nil {

651 return shim.Error(err.Error())

652 }

653 return shim.Success(queryResults)

654 }

655

656 // ==

657 // queryPricePerMB - finds a network above, below or equal to a host value.

658 // ==

659 func (t *SimpleChaincode) queryHosts(stub shim.ChaincodeStubInterface, args []string) pb.Response {

660

661 // 0

662 // "bob"

663 if len(args) < 2 {

664 return shim.Error("Incorrect number of arguments. Expecting 2 ex. \"gt\",\"35\". Can

use \"lt\" - less than, \"eq\" - equal, \"ne\" - not equal, \"gte\" - greater

than equal, \"gt\" - greater than")

↪→

↪→

665 }

666

667 operator := strings.ToLower(args[0])

668 name := strings.ToLower(args[1])

669 queryString := fmt.Sprintf("{\"selector\":{\"docType\":\"network\",\"hosts\":{\"$%s\":%s}}}",

operator, name)↪→

670

671 queryResults, err := getQueryResultForQueryString(stub, queryString)

672 if err != nil {

673 return shim.Error(err.Error())

674 }

675 return shim.Success(queryResults)

676 }

677

678 // ==

679 // queryPricePerMB - finds a network above, below or equal to a host value.

680 // ==

681 func (t *SimpleChaincode) queryNetwork(stub shim.ChaincodeStubInterface, args []string) pb.Response {

682

683 // 0

684 // "queryString"

685 if len(args) < 1 {

686 return shim.Error("Incorrect number of arguments. Expecting 1")

687 }

688

689 queryString := args[0]

690 //DELETE//return shim.Success([]byte(queryString))

691 queryResults, err := getQueryResultForQueryString(stub, queryString)

692 if err != nil {

693 return shim.Error(err.Error())

694 }

695 return shim.Success(queryResults)

696 }

697

114

698 // ==

699 // getQueryResultForQueryString executes the passed in query string.

700 // Result set is built and returned as a byte array containing the JSON results.

701 // ==

702 func getQueryResultForQueryString(stub shim.ChaincodeStubInterface, queryString string) ([]byte, error)

{↪→

703

704 fmt.Printf("- getQueryResultForQueryString queryString:\n%s\n", queryString)

705 resultsIterator, err := stub.GetQueryResult(queryString)

706 if err != nil {

707 return nil, err

708 }

709 defer resultsIterator.Close()

710

711 // buffer is a JSON array containing QueryRecords

712 var buffer bytes.Buffer

713 buffer.WriteString("[")

714

715 bArrayMemberAlreadyWritten := false

716 for resultsIterator.HasNext() {

717 queryResponse, err := resultsIterator.Next()

718 if err != nil {

719 return nil, err

720 }

721 // Add a comma before array members, suppress it for the first array member

722 if bArrayMemberAlreadyWritten == true {

723 buffer.WriteString(",")

724 }

725 buffer.WriteString("{\"Key\":")

726 buffer.WriteString("\"")

727 buffer.WriteString(queryResponse.Key)

728 buffer.WriteString("\"")

729

730 buffer.WriteString(", \"Record\":")

731 // Record is a JSON object, so we write as-is

732 buffer.WriteString(string(queryResponse.Value))

733 buffer.WriteString("}")

734 bArrayMemberAlreadyWritten = true

735 }

736 buffer.WriteString("]")

737

738 fmt.Printf("- getQueryResultForQueryString queryResult:\n%s\n", buffer.String())

739

740 return buffer.Bytes(), nil

741 }

742

743 // ==

744 // getHistoryForNetwork -Reads the blockchain for the history of the given key.

745 // ==

746 func (t *SimpleChaincode) getHistoryForNetwork(stub shim.ChaincodeStubInterface, args []string)

pb.Response {↪→

747

115

748 if len(args) < 1 {

749 return shim.Error("Incorrect number of arguments. Expecting 1")

750 }

751

752 networkName := args[0]

753

754 fmt.Printf("- start getHistoryForNetwork: %s\n", networkName)

755

756 resultsIterator, err := stub.GetHistoryForKey(networkName)

757 if err != nil {

758 return shim.Error(err.Error())

759 }

760 defer resultsIterator.Close()

761

762 // buffer is a JSON array containing historic values for the network1

763 var buffer bytes.Buffer

764 buffer.WriteString("[")

765

766 bArrayMemberAlreadyWritten := false

767 for resultsIterator.HasNext() {

768 response, err := resultsIterator.Next()

769 if err != nil {

770 return shim.Error(err.Error())

771 }

772 // Add a comma before array members, suppress it for the first array member

773 if bArrayMemberAlreadyWritten == true {

774 buffer.WriteString(",")

775 }

776 buffer.WriteString("{\"TxId\":")

777 buffer.WriteString("\"")

778 buffer.WriteString(response.TxId)

779 buffer.WriteString("\"")

780

781 buffer.WriteString(", \"Value\":")

782 // if it was a delete operation on given key, then we need to set the

783 //corresponding value null. Else, we will write the response.

784 if response.IsDelete {

785 buffer.WriteString("null")

786 } else {

787 buffer.WriteString(string(response.Value))

788 }

789

790 buffer.WriteString(", \"Timestamp\":")

791 buffer.WriteString("\"")

792 buffer.WriteString(time.Unix(response.Timestamp.Seconds,

int64(response.Timestamp.Nanos)).String())↪→

793 buffer.WriteString("\"")

794

795 buffer.WriteString(", \"IsDelete\":")

796 buffer.WriteString("\"")

797 buffer.WriteString(strconv.FormatBool(response.IsDelete))

798 buffer.WriteString("\"")

116

799

800 buffer.WriteString("}")

801 bArrayMemberAlreadyWritten = true

802 }

803 buffer.WriteString("]")

804

805 fmt.Printf("- getHistoryForNetwork returning:\n%s\n", buffer.String())

806

807 return shim.Success(buffer.Bytes())

808 }

A.7 Control Application
The control application is written in python and is used to link the Hyperledger Fabric
network and the Northbound interface of the SDN controller forming a logical East/West
interface between controllers.

1 import json

2 import subprocess

3 import re

4 import threading

5 import requests

6 import time

7

8 '''
9 ### Host Class. Store Host information after call to ONOS REST API for avaliable hosts.

10 '''
11

12

13 class Hostsclass:

14

15 def __init__(self):

16 self.mac = None

17 self.id = None

18 self.vlan = None

19 self.ipaddresses = []

20 self.locations = []

21 self.configured = bool

22 self.assigned = False

23

24 def getMac(self):

25 return self.mac

26

27 def getId(self):

28 return self.id

29

117

30 def getVlan(self):

31 return self.vlan

32

33 def getIpaddresses(self):

34 return self.ipaddresses

35

36 def getLocations(self):

37 return self.locations

38

39 def setMac(self, arg):

40 self.mac = arg

41 return

42

43 def getConfigured(self):

44 return self.configured

45

46 def getAssigned(self):

47 return self.assigned

48

49 def setId(self, arg):

50 self.id = arg

51 return

52

53 def setVlan(self, arg):

54 self.vlan = arg

55 return

56

57 def setIpaddresses(self, arg):

58 self.ipaddresses = arg

59 return

60

61 def setLocations(self, arg):

62 self.locations = arg

63 return

64

65 def setConfigured(self, arg):

66 self.configured = arg

67 return

68

69 def setAssigned(self, arg):

70 self.assigned = arg

71 return

72

73

74 '''
75 ### Node used in BST

76 '''
77

78

79 class Node:

80 def __init__(self, val):

81 self.val = val

118

82 self.leftChild = None

83 self.rightChild = None

84

85 def get(self):

86 return self.val

87

88 def set(self, val):

89 self.val = val

90

91 def getChildren(self):

92 children = []

93 if (self.leftChild != None):

94 children.append(self.leftChild)

95 if (self.rightChild != None):

96 children.append(self.rightChild)

97 return children

98

99

100 '''
101 ### BST data structure used to check if transaction has already been processed.

102 '''
103

104

105 class BST:

106 def __init__(self):

107 self.root = None

108

109 def setRoot(self, val):

110 self.root = Node(val)

111

112 def insert(self, val):

113 if (self.root is None):

114 self.setRoot(val)

115 else:

116 self.insertNode(self.root, val)

117

118 def insertNode(self, currentNode, val):

119 if (val <= currentNode.val):

120 if (currentNode.leftChild):

121 self.insertNode(currentNode.leftChild, val)

122 else:

123 currentNode.leftChild = Node(val)

124 elif (val > currentNode.val):

125 if (currentNode.rightChild):

126 self.insertNode(currentNode.rightChild, val)

127 else:

128 currentNode.rightChild = Node(val)

129

130 def find(self, val):

131 return self.findNode(self.root, val)

132

133 def findNode(self, currentNode, val):

119

134 if (currentNode is None):

135 return False

136 elif (val == currentNode.val):

137 return True

138 elif (val < currentNode.val):

139 return self.findNode(currentNode.leftChild, val)

140 else:

141 return self.findNode(currentNode.rightChild, val)

142

143

144 '''
145 ### Pretty Print JSON ###

146 '''
147

148

149 def pp_json(json_thing, sort=True, indents=4):

150 if type(json_thing) is str:

151 print(json.dumps(json.loads(json_thing), sort_keys=sort, indent=indents))

152 else:

153 print(json.dumps(json_thing, sort_keys=sort, indent=indents))

154 return None

155

156

157 '''
158 Query host from hyperledger world state.

159 '''
160

161

162 def queryHosts(networkName):

163 output = str(

164 subprocess.check_output("sudo docker exec cli scripts/c_queryhost.sh mychannel sdnnetwork " +

networkName,↪→

165 shell=True))

166 output = re.sub(r'.* {', '{', output).strip("\ n\n'")

167 jsonoutput = json.loads(output)

168 return jsonoutput

169

170

171 '''
172 Collect active hosts from ONOS.

173 '''
174

175

176 def collectHosts():

177 hosts = requests.get('http://172.17.0.2:8181/onos/v1/hosts', auth=('onos', 'rocks'))

178 hostList = []

179 for host in hosts.json()["hosts"]:

180 obj = Hostsclass()

181 obj.setVlan(host["vlan"])

182 obj.setLocations(host["locations"])

183 obj.setId(host["id"])

184 obj.setMac(host["mac"])

120

185 obj.setConfigured(host["configured"])

186 obj.setIpaddresses(host["ipAddresses"])

187 loclist = []

188 for loc in host["locations"]:

189 loclist.append([loc["elementId"], loc["port"]])

190 obj.setLocations(loclist)

191 hostList.append(obj)

192 # print(obj.getVlan(), obj.getLocations(), obj.getId(), obj.getMac(), obj.getConfigured(),

obj.getIpaddresses())↪→

193 # print(hostList)

194 return hostList

195

196

197 '''
198 Performs a check of the hyperledger World State for 'network' and the Onos Hosts.

199 '''
200

201

202 def updateLists(queryHostsList, hostObjectsList, continueUpdate, network):

203 checkForHostUpdate = 50

204 checkFrequency = 40

205 while continueUpdate[0]:

206 checkForHostUpdate += 1

207 queryHostsList[0] = queryHosts(network)

208 if checkForHostUpdate > checkFrequency:

209 hostObjectsList[0] = collectHosts()

210 checkForHostUpdate = 0

211 time.sleep(.1)

212 return

213

214

215 '''
216 Posts an intent to ONOS. Currently ONOS Requires MAC to use the intent framework.

217 Future work to update intent framwork to work via IP address. Point to Point intents will allow for IP

address.↪→

218 '''
219

220

221 def postintents(host, externalHost):

222 intentDict = {1: "HostToHostIntent", 2: ""}

223 print("host and externalHost:", host, externalHost)

224 hostdict = {}

225 print(host.getId())

226 hostdict["type"] = intentDict[1]

227 hostdict["table"] = 1

228 hostdict["appId"] = "org.onosproject.ovsdb"

229 hostdict["one"] = externalHost

230 hostdict["two"] = "00:00:00:00:00:02/None" #hardcoded for testing

231 #hostdict["two"] = host.getMac()

232 intentpost = json.dumps(hostdict)

233 pp_json(intentpost)

121

234 request_posts = requests.post('http://172.17.0.2:8181/onos/v1/intents', auth=('onos', 'rocks'),

data=intentpost)↪→

235 print("POST response;", request_posts)

236 return

237

238

239 if __name__ == "__main__":

240 network = "network1"

241 gatewaymac = "08:00:27:9B:77:37/None"

242 supportedTennants = {}

243 queryHostsList = [[]]

244 hostObjectsList = [{}]

245 continueUpdate = [True]

246 bst = BST()

247 t = threading.Thread(target=updateLists, args=(queryHostsList, hostObjectsList, continueUpdate,

network))↪→

248 t.start()

249 time.sleep(5)

250 while True:

251 time.sleep(.3)

252 for tenant in queryHostsList[0]["tenantslice"]:

253 if not bst.find(tenant["transnum"]):

254 bst.insert(tenant["transnum"])

255 print("INSERTED")

256 count = tenant["hosts"]

257 current_count = 0

258 for host in hostObjectsList[0]:

259 if not host.getAssigned():

260 host.setAssigned(True)

261 for address in tenant["saddress"]:

262 current_count += 1

263 if current_count <= count:

264 postintents(host, gatewaymac)

265 else:

266 break

267

268

269 #continueUpdate[0] = False

270 #t.join()

122

List of References

[1] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart,
G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Com-
munications Magazine, vol. 54, no. 10, pp. 96–101, October 2016.

[2] S. Jain, A. Kumar, S. M, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. W, J. Zhou,
M. Zhu, J. Zolla, U. Hölzle, S. Stuart, A. Vahdat, and G. Inc, “B4: Experience with
a globally-deployed software defined wan.”

[3] Noxrepo, “noxrepo/nox,” Feb 2014. Available: https://github.com/noxrepo/nox

[4] “Home.” Available: https://www.opendaylight.org/

[5] “Open network operating system.” Available: https://onosproject.org/

[6] “Download.” Available: https://osrg.github.io/ryu/

[7] Available: https://openflow.stanford.edu/display/Beacon/Home.html

[8] “Floodlight openflow controller -.” Available: http://www.projectfloodlight.org/
floodlight/

[9] “Opencontrail is an open source network virtualization platform for the cloud.”
Available: http://www.opencontrail.org/

[10] F. Le, C. Leet, C. Makaya, M. Rio, X. Wang+, and Y. R. Yang, “Sfp: To-
ward a scalable, efficient, stable protocol for federation of software defined
networks,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing,
Advanced Trusted Computed, Scalable Computing Communications, Cloud
Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug 2017, pp. 1–6.

[11] S. Raju, S. Boddepalli, S. Gampa, Q. Yan, and J. S. Deogun, “Identity management
using blockchain for cognitive cellular networks,” in 2017 IEEE International Con-
ference on Communications (ICC), May 2017, pp. 1–6.

[12] T. Parth, N. Senthil, and V. Balaji, “Performance benchmarking and optimizing hy-
perledger fabric blockchain platform,” arXiv:1805.11390, May 2018.

[13] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A Message Ex-
change Protocol for Software Defined Networks (SDNS) across Multiple Domains,”
Internet Requests for Comments, Internet Research Task Force, RFC, December
2012. Available: https://tools.ietf.org/html/draft-yin-sdn-sdni-00

123

https://github.com/noxrepo/nox
https://www.opendaylight.org/
https://onosproject.org/
https://osrg.github.io/ryu/
https://openflow.stanford.edu/display/Beacon/Home.html
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://www.opencontrail.org/
https://tools.ietf.org/html/draft-yin-sdn-sdni-00

[14] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster,
J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett, “Sdx: A software defined in-
ternet exchange,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562,
Aug. 2014. Available: http://doi.acm.org/10.1145/2740070.2626300

[15] P. Goransson, C. Black, and T. Culver, Software Defined Networks, 2nd ed. Burling-
ton, MA: Morgan Kaufmann, 2016.

[16] B. Pfaff, B. Lantz, B. Heller, C. Barker, C. Beckmann, D. Cohn, D. Talayco, D. Er-
ickson, D. McDysan, D. Ward, E. Crabbe, G. Gibb, G. Appenzeller, J. Tourrilhes,
J. Tonsing, J. Pettit, K. Yap, L. Poutievski, L. Vicisano, M. Casado, M. Takahashi,
M. Kobayashi, N. Yadav, N. McKeown, N. dHeureuse, P. Balland, R. Ramanathan,
R. Price, R. Sherwood, S. Das, S. Gandham, T. Yabe, Y. Yiakoumis, and Z. L.
Kis., “Openflow switch specification version 1.3.0 (wire protocol 0x04),” no. ONF
TS-006, pp. 1–106, June 2012. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf

[17] Y. I. Daradkeh, M. Aldhaifallah, D. Namiot, and M. Sneps-Sneppe, “On standards
for application level interfaces in sdn,” International Journal of Advanced Com-
puter Science and Applications, vol. 7, no. 10, 2016. Available: http://dx.doi.org/
10.14569/IJACSA.2016.071006

[18] “Open vswitch documentation¶.” Available: http://docs.openvswitch.org/en/latest/

[19] Mininet, “mininet/mininet.” Available: https://github.com/mininet/mininet/blob/
master/examples/controllers2.py

[20] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” Journal of
Cryptology, vol. 3, pp. 99–111, 1991.

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. Available:
http://www.bitcoin.org/bitcoin.pdf

[22] R. Caetano, Learning Bitcoin. Packt Publishing, 2015.

[23] “Bitcoin.com.” Available: https://charts.bitcoin.com/btc/chart/blockchain-size

[24] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,” in 25th
IET Irish Signals Systems Conference 2014 and 2014 China-Ireland International
Conference on Information and Communications Technologies (ISSC 2014/CIICT
2014), June 2014, pp. 280–285.

[25] “data.bitcoinity.org (beta version).” Available: https://data.bitcoinity.org/bitcoin/
difficulty/5y?t=l

124

http://doi.acm.org/10.1145/2740070.2626300
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
http://dx.doi.org/10.14569/IJACSA.2016.071006
http://dx.doi.org/10.14569/IJACSA.2016.071006
http://docs.openvswitch.org/en/latest/
https://github.com/mininet/mininet/blob/master/examples/controllers2.py
https://github.com/mininet/mininet/blob/master/examples/controllers2.py
http://www.bitcoin.org/bitcoin.pdf
https://charts.bitcoin.com/btc/chart/blockchain-size
https://data.bitcoinity.org/bitcoin/difficulty/5y?t=l
https://data.bitcoinity.org/bitcoin/difficulty/5y?t=l

[26] V. Buterin, “A next generation smart contract decentralized application platform,”
2013.

[27] etherscan.io, “Charts ethereum chaindata size growth (fast sync).” Available: https:
//etherscan.io/chart2/chaindatasizefast

[28] Hyperledger, “Hyperledger: Introduction¶.” Available: https://hyperledger-fabric.
readthedocs.io/en/release-1.2/whatis.html

[29] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. W. Cocco, and J. Yellick, “Hyperledger fabric: A distributed op-
erating system for permissioned blockchains,” CoRR, vol. abs/1801.10228, 2018.
Available: http://arxiv.org/abs/1801.10228

[30] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic, “Xft: Practical fault toler-
ance beyond crashes,” in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI’16). Berkeley, CA, USA: USENIX As-
sociation, 2016, pp. 485–500. Available: http://dl.acm.org/citation.cfm?id=3026877.
3026915

[31] R. Mahajan, D. Wetherall, and T. Anderson, “Towards coordinated interdomain
traffic engineering,” Proceedings of Third Workshop on Hot Topics in Networks
(HotNets-III), August 2004.

[32] M. Howard and H. Adams, “Operator survey: Smart central offices to be in 85 per-
cent of service provider networks this year - ihs technology,” Jan 2018. Available:
https://technology.ihs.com/599622/operator-survey-smart-central-offices-to-be-in-
85-percent-of-service-provider-networks-this-year

[33] Mininet. (2018). Mininet homepage. [Online]. Available: www.mininet.org. Ac-
cessed July 14, 2018.

[34] ONOS. (2018). ONOS Wiki homepage. [Online]. Available: https://wiki.
onosproject.org/display/ONOS/Wiki+Home. Accessed July 14, 2018.

[35] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha,
“Flowsense: Monitoring network utilization with zero measurement cost,” Passive
and Active Measurement Lecture Notes in Computer Science, p. 31–41, 2013.

[36] Hyperledger, “hyperledger/education,” Oct 2017. Available: https://github.com/
hyperledger/education/tree/master/LFS171x/fabric-material/basic-network

125

https://etherscan.io/chart2/chaindatasizefast
https://etherscan.io/chart2/chaindatasizefast
https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html
http://arxiv.org/abs/1801.10228
http://dl.acm.org/citation.cfm?id=3026877.3026915
http://dl.acm.org/citation.cfm?id=3026877.3026915
https://technology.ihs.com/599622/operator-survey-smart-central-offices-to-be-in-85-percent-of-service-provider-networks-this-year
https://technology.ihs.com/599622/operator-survey-smart-central-offices-to-be-in-85-percent-of-service-provider-networks-this-year
www.mininet.org
https://wiki.onosproject.org/display/ONOS/Wiki+Home
https://wiki.onosproject.org/display/ONOS/Wiki+Home
https://github.com/hyperledger/education/tree/master/LFS171x/fabric-material/basic-network
https://github.com/hyperledger/education/tree/master/LFS171x/fabric-material/basic-network

[37] “Membership service providers (msp).” Available: https://hyperledger-fabric.
readthedocs.io/en/release-1.2/msp.html

[38] “Couchdb as the state database.” Available: https://hyperledger-fabric.readthedocs.
io/en/release-1.2/couchdb_as_state_database.html

[39] “high-throughput/scripts · master · khanhtran / fabric-server.” Available: https://git.
syncfab.com/khanhtran/fabric-server/tree/master/high-throughput/scripts

[40] “Advanced traffic control.” Available: https://wiki.archlinux.org/index.php/
Advanced_traffic_control

[41] A. Ledenev, “alexei-led/pumba,” Nov 2018. Available: https://github.com/alexei-
led/pumba

[42] Opennetworkinglab, “opennetworkinglab/onos.” Available: https://github.com/
opennetworkinglab/onos/blob/master/tools/test/topos/default.py

[43] Opennetworkinglab, “opennetworkinglab/onos.” Available: https://github.com/
opennetworkinglab/onos/blob/master/tools/test/topos/onosnet.py

126

https://hyperledger-fabric.readthedocs.io/en/release-1.2/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/couchdb_as_state_database.html
https://git.syncfab.com/khanhtran/fabric-server/tree/master/high-throughput/scripts
https://git.syncfab.com/khanhtran/fabric-server/tree/master/high-throughput/scripts
https://wiki.archlinux.org/index.php/Advanced_traffic_control
https://wiki.archlinux.org/index.php/Advanced_traffic_control
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/opennetworkinglab/onos/blob/master/tools/test/topos/default.py
https://github.com/opennetworkinglab/onos/blob/master/tools/test/topos/default.py
https://github.com/opennetworkinglab/onos/blob/master/tools/test/topos/onosnet.py
https://github.com/opennetworkinglab/onos/blob/master/tools/test/topos/onosnet.py

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

127

	18Dec_Tollefson_Scott_First8
	18Dec_Tollefson_Scott FINAL LATEX
	Introduction
	Problem Statement
	Research Questions
	Research Contributions
	Thesis Organization

	Background
	SDN
	Blockchains
	Related Work

	Design
	Requirements
	Hyperledger Fabric
	Resource Sharing
	SDN Network
	Control Application
	Evaluation

	Implementation
	 Network Implementation
	Network Controller
	Hyperledger Fabric

	Evaluation and Analysis
	Validation of Resource Sharing Between SDNs
	Performance Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix: Network Topology, YAML Configuration, Scripts, Contract Code
	Mininet Example
	Network Topology
	Hyperledger Network Configuration YAML
	Building Hyperledger Fabric
	Hyperledger Scripts
	Contract Code
	Control Application

	List of References
	Initial Distribution List

