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ABSTRACT 

 Select Marine Corp Reserve is a reserve component of the United States Marine 

Corps currently composed of approximately 32,000 Marines participating in weekend 

drills and active duty training, or activated for service. The retention and recruiting 

missions of this organization require an accurate population forecast with properly fit 

prediction intervals. We use decision trees to estimate the future population and variance 

of a cohort from individual personnel records. Our algorithm provides useful forecasts 

and prediction intervals up to 12 months into the future. Despite the success of the 

algorithm, seasonality remains an issue. We recommend further study to remove 

seasonality from this algorithm. 
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EXECUTIVE SUMMARY 

The Selected Marine Corps Reserve (SMCR) encompasses approximately 32,000 

Marines. Manpower and Reserve Affairs (M&RA)- Headquarters Marine Corps requires 

accurate manpower projections to manage the training pipeline and recruiting mission, and 

to maximize end-strength. Previous projection models have exhibited shortcomings in 

accuracy or seasonality. These models have been limited to a few explanatory variables 

and unable to make full use of the wealth of data available on current Marines and recruits. 

We construct an algorithm that projects future population values with improved accuracy 

and valid prediction intervals in order to support M&RA decision making. 

The future population of the SMCR can be broken into two categories: 1) known 

individuals in the recruiting pipeline or reservists continuing in SMCR to the projected 

timeframe, and 2) individuals who do not yet exist in SMCR personnel systems but will 

access into SMCR prior to the projected timeframe. We construct a decision-tree model to 

forecast the accession and attrition of known personnel and estimate the forecast 

uncertainty. Used properly, decision trees, which fall under the category of machine–

learning techniques, provide a means for extracting information that has the most predictive 

power from SMCR personnel systems while minimizing potential noise variables. With 

these methods, we make maximum use of actionable demographic and administrative 

records available for each Marine in the population to project the future population of a 

cohort.  

We also develop a novel method to extract and calibrate the uncertainty estimates 

from the decision tree itself. We do this by estimating the binomial variance of the decision 

tree leafs and calibrating it with variance data obtaining during training. This yields 

prediction intervals that are relatively insensitive to the fit of the decision tree. While our 

results are not perfect, the algorithm adequately estimates the projection uncertainty in 

historical projection tests. This modeling capability provides improved projections for 

decision making in the areas of recruiting, retention, and budgeting. 
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I. INTRODUCTION 

A. BACKGROUND / LITERATURE REVIEW 

1. Problem History 

The Selected Marine Corps Reserve (SMCR) is the largest sub-component of the 

Marine Corps Reserve. The Reserve was formed on 29 Aug 1916 in preparation for U.S. 

involvement in World War I. Since then, U.S. Marine Corps Reservists have participated 

in every U.S. conflict, both as part of reserve units and as individual augmentees to active 

duty units. As of 2017, the SMCR was composed of approximately 32,000 Marines 

participating in weekend drill, active duty training, or activated for service. In any 

particular month, approximately 1,400 SMCR recruits are attending 13 weeks of Initial 

Active Duty Training (IADT) and varying durations of job-related training. In order to 

fully man a ready and trained pool of Marines to meet its force and budget requirements, 

Manpower and Reserve Affairs (M&RA - Headquarters Marine Corps is tasked to forecast 

the number of available Reserve Marines to support decisions related to recruiting targets, 

Initial Active Duty Training dates, bonuses, manpower budgeting, and more. An accurate 

population model is critical for all of these decisions. 

New entries into the military are termed accessions while exit from the military is 

termed attrition. M&RA employs two forecasting models to predict the evolution of SMCR 

accessions and one model to predict SMCR attrition rates. Manpower analysts combine the 

projections of the attrition model and one of the accession models to predict the aggregate 

population totals that are needed for decision making. In operational use, shortcomings 

occur in all three models. As implemented, none of the models provides prediction intervals 

to quantify their uncertainty. Based on analyst feedback, the one accession model has 

unacceptably high error rates in the spring and the other model is too inaccurate for 

operational use. Finally, the attrition model has higher error rates than is desired by M&RA. 

Due to the large uncertainties inherent in the projections, M&RA must manage the 

population levels, budgetary requirements, and recruiting goals more conservatively than 

otherwise so as not to exceed statutory or budgetary limits (S. Norton, Maj USMC-M&RA, 
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personal communication, Apr 27, 2017). M&RA requested this study to improve the 

accuracy of the aggregate forecast and allow them to manage the population with lower 

safety margins.  

The future SMCR population comes from two distinct subsets:  

• The known population, which consists of personnel who are in the 

Delayed Entry Program or are already drilling Marines. These individual 

are represented in the Marine Corps Recruiting Information Support 

System (MCRISS) or Total Force Data Warehouse (TFDW) databases 

with varying levels of detail; 

• The unknown population, which consists of personnel who are not part of 

the known population, but who will become part of the SMCR during the 

period of interest. No information on these individuals is available at the 

time of forecasting 
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Figure 1.  SMCR Accession and Attrition Process 
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Figure 1 illustrates the SMCR accession and attrition process. New recruits are 

recorded in the MCRISS database as they enter the Delayed Entry Program (DEP). They 

may attrite out of DEP or remain in it until they are accessed into Initial Active Duty 

Training (IADT). Once at IADT, their records are maintained in the Total Force Data 

Warehouse (TFDW) until their discharge from the SMCR. If they do not attrite in IADT, 

they graduate and transition to become a drilling Reservist. They remain in that group until 

they attrite, either by discharge or retirement. In addition to this process, personnel may 

transition directly from active duty into the SMCR without undergoing the training or 

recruiting process. 

2. Problem Statement 

How can the M&RA forecast models be improved? M&RA requires accurate 

forecasting to support its decision points and planning. It lacks a forecast model that has 

an acceptable level of error across multiple time-spans. The SMCR also requires reliable 

models to quantify the forecast uncertainty. 

3. Objective 

We construct an algorithm that provides improved accuracy and valid prediction 

intervals in order to forecast the evolution of accessions and attrition of the aggregate 

known population of the SMCR over future periods ranging from one to twelve months. 

Our goal is to produce a production algorithm that predicts the size of the known population 

of Marines at multiple time-scales. It is critical to M&RA decision process that we generate 

proper prediction intervals on our estimates. The final algorithm should be retrainable in a 

production environment with minimal upkeep or specialty knowledge. Finally, the 

algorithm should be able to adapt to future changes in population characteristics. 

B. SCOPE, LIMITATIONS AND ASSUMPTIONS 

The proposed algorithm performs analysis on Selected Marine Corps Reserve 

(SMCR) personnel records as extracted from current databases, with no requirement for 

manual pre-processing or cleanup. The algorithm provides the following output products: 



 

5 

• For each Marine in the current population, an estimate of the probability 

of SMCR membership at each projection horizon. 

• The forecast of the size of the visible SMCR population of the known 

cohort for each projection horizon with a 95% prediction interval. 

This study limits all predictions to the known population (the Marines listed in 

SMCR databases) at the time of the prediction. We make no provision for estimating the 

unknown population. 

C. ORGANIZATION OF THESIS 

We approach this problem sequentially. First, we generate a sequence of models to 

estimate each prediction horizon for each status group. Then we estimate the variance of 

the prediction and of the prediction errors. We then use the resulting values to predict the 

size of a validation dataset. 
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II. PREVIOUS STUDIES 

There have been many studies of general military attrition behaviors and several 

that attempt to develop SMCR-specific models. Buddin (1984) studies the factors 

influencing early attrition behavior (defined as the first six months of service). He uses a 

multivariate regression model to analyze survey from the year 1979 and personnel data of 

active duty recruits of all service branches. Buddin found a strong correlation with pre-

enlistment work history. Buddin finds that high school graduates have much lower attrition 

rates. Most importantly, Buddin finds that older recruits have higher attrition rates in the 

first six months while having lower attrition rates at the 36-month mark. 

Baykiz (2007) utilizes logistic regression to analyze attrition among military 

recruits. Baykiz finds that female recruits, unmarried recruits, recruits with no children, 

and recruits with lower AFQT scores exhibited higher attrition behaviors in this phase. 

Interestingly, Baykiz also finds enlistment that occurred late in a month incurred higher 

attrition and that high school seniors attrited more in March and April of each year. 

Emery (2010) focuses on forecasting the loss component of the SMCR end-strength 

forecast. He updates SMCR’s existing weighted moving-average model with an 

exponentially smoothed error adjustment. He applies his technique to projecting each loss 

category instead of a single aggregated population and is able to achieve slight 

improvement over the legacy model. 

Erhardt (2012) attempts to apply a Markov model to forecasting SMCR losses. 

Erhardt finds that losses exhibited significant seasonality, which prevents an annually 

aggregated model from achieving stationarity. He recommends a monthly aggregated 

Markov model in future studies. 

Dausman (2016) applies Markov models to both SMCR accessions and losses, but 

this time with more success. Dausman developed separate Markov models for each Marine 

Military Occupational Specialty (MOS) based on average and weighted-average transition 

rates. His result is the current model in use for SMCR population forecasting, but the model 
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has suffered from seasonality errors since adoption (S. Norton, Maj USMC-M&RA, 

personal communication, Apr 27, 2017). 

Based on our review of available literature, there are clear differences in the 

methodology of SMCR-specific prediction studies and general military attrition studies. 

These studies develop explanatory models that link the attributes of individual service-

members to their attrition rate. The SMCR-specific studies have focused on the aggregate 

totals of the population or sub-population to make predictions. As a result, we find that 

previous predictive modeling studies do not take full advantage of the explanatory 

variables available for individual recruits that previous analytical studies found to be 

significant. Use of such data could improve the ability of forecast models to adapt to 

changing input distributions as they influence accession and attrition rates. While we are 

not aware of any study that directly analyzed influences on SMCR individual attrition, the 

studies of active component service-members are a useful starting point in determining 

which explanatory variables an improved model might incorporate. The aggregated and 

Markovian methodologies used in previous predictive studies precluded them from 

subdividing the data by all the explanatory variables available. Such an approach would 

make the models unmanageable and more sensitive to sampling errors. As a result, the 

models did not solve seasonality issues or incorporate all relevant individual data (S. 

Norton, Maj USMC-M&RA, personal communication, Apr 27, 2017). 
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III. DATA AND METHODOLOGY 

In order to understand our approach to this modeling effort, we start with a brief 

review of the datasets available for incorporation into this model. We then discuss which 

variables survive screening and the outputs that the model is trained against. In Section 

III.C, we delve into the mathematics of our model and the complexities of determining 

prediction intervals from such a model. Finally, we demonstrate the application of the 

algorithm to our problem set. 

A. DATA SETS 

The datasets that contain SMCR Recruit and Marine records are extracted from two 

sources: the Marine Corps Recruiting Information Support System (MCRISS) and the 

Total Force Data Warehouse (TFDW). Each database is backed up on the last day of each 

month, a file that we term a “snapshot.” Each snapshot consists of approximately 16,000 

MCRISS records and 34,000 TFDW records. Arraying the snapshots across time allows us 

to profile the evolution of the records and the transitions the Marine moves through in a 

defined period. 

1. MCRISS 

The MCRISS dataset contains manually entered data on all initial recruits 

contracted for accession with SMCR. It does not contain any data on individuals pending 

transfer from active duty components to the SMCR. MCRISS has approximately 219,000 

record snapshots available from 31 Oct 2005 to 30 Sep 2017. Table 1 lists the MCRISS 

fields available from M&RA. 

Table 1.   Selected MCRISS Fields 

FIELD DESCRIPTION 
RSEQ Sequence Code associated with the month the database 

snapshot was taken 
START_WK Date of initial entry into MCRISS 
DISCHARGE_CODE Reason Code for discharge from Delayed Entry Program 
OCC_FLD Occupational Field  
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FIELD DESCRIPTION 
MOS Military Occupational Specialty 
SHIP_DATE Scheduled date for departure to Initial Active Duty Training 

(IADT) 
ENLIST_TERM Length of Initial Enlistment (Years)  
PEBD Pay Entry Base Date 
RUC Reserve Unit Code  
SPLIT_I Flag for indicate of recruit will split IADT attendance 
QSN_PIVOT_DATE Date of split IADT Training 
EDIPI Electronic Data Interchange Personal Identifier 

 

2. TFDW 

The TFDW dataset is an extract from the USMC Total Force Data Warehouse and 

is comprised of data on Marines currently in SMCR drilling Reserve and training statuses. 

At the initiation of this study, TFDW contained 4.9 million record snapshots available from 

31 OCT 2005 to 30 SEP 2017. Table 2 lists all available SMCR data resident in the TFDW. 

Table 2.   TFDW Fields 

FIELD DESCRIPTION 
SEQ Sequence ID associated with the month the 

database snapshot was taken  
DODTCPG Current Service Status 
COMPCODE Identifies SMCR Members in a mobilized 

status 
RCOMPCODE Sub-Statuses to DODTCPG 
RRECSTAT The reporting status of SMCR Members 
CIVILIAN_EDUC_LEVEL_CODE_1 Number of years of education completed 
DATE_ENLISTMENT_OR_ACCEPTANCE Date of enlistment contract 
DATE_OF_BIRTH Self-explanatory  
EAS End of Active Service (for training) 
PMOS Primary Military Occupations Specialty (MOS) 
MARITAL Marital Status  
NUMBER_OF_DEPENDENTS Number of family members  
RUC Reserve Unit Code  
DATE_INITIAL_ENTRY_RESERVE Date of entry into SMCR  
EDIPI Electronic Data Interchange Personal Identifier 
HOR_ZIP Home of Record Zip Code 
HOR_STATE Home of Record State 
HOR_CITY Home of Record City 
AFQT_SCORE Armed Forces Qualification Test score  
CBT_FITNESS_SCORE_QY Most recent Combat Fitness Test score 
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FIELD DESCRIPTION 
PHYS_FIT_SCORE_QY Most recent Physical Fitness Test score 
CURRENT_CITY Current residence City  
CURRENT_STATE Current residence State  
CURRENT_ZIP Current residence Zip Code 
MAND_DRILL_PARTIC_STOP_DT Date that a Marine’s service obligation ends 
RACE Racial self-identification 
ETHGRP Ethnic self-identification 
SEX Gender 

 

B. VARIABLES 

We divide the data attributes into two categories: an outcome variable, which we 

use to fit our model and assess errors; and explanatory variables, which provide descriptive 

information on Marines so that we may categorize them. 

1. Outcome Variable (Status Group Population) 

The TFDW DODTCPG field provides the current status of SMCR members. We 

group the DODTCPG statuses into sponsor-specified status categories. The predicted 

variable of each model is comprised of a binary encoding of one of the status groups. We 

match the status group value at a future time to a set of explanatory variables from the 

current time. We provide additional information on SMCR personnel status codes in the 

Appendix. In this study, we use the status groups listed in Table 3.  

Table 3.   Status Groups 

STATUS GROUP ASSOCIATED 
DODTCPG CODES 

DESCRIPTION 

IADT_Proj UF, UP Undergoing IADT 
SMCR_Proj SA, UQ, UX Drilling Marines 
Total_Proj SA, UQ, UX, UF, UP A superset of all Marines 
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2. Explanatory Variables 

Each explanatory variable provides information on a Marine at a given time. We 

consider all available data in the MCRISS and TFDW for suitability as explanatory 

variables, except for equal opportunity-related data fields. As stated in the goals of this 

study, part of the output of this algorithm is the probability of an individual’s future status 

(i.e., their ability to succeed or continue) with the intent that action might be taken to alter 

the outcome. However, actions taken based on equal opportunity-protected categories 

would violate regulation and practice. Omitting EO category-related predictors ensures that 

the algorithm will not violate these norms. 

In order to decrease the correlation between date variables, we subtract each data 

variable from a selected base, typically the data of the projection or the date of entry. We 

also add construct the fiscal year as an input to allow the algorithm to distinguish time-

based relationships. The constructed variables are listed in Table 4. 

Table 4.   Constructed Variables 

CONSTRUCTED 
VARIABLE 

DESCRIPTION 

Obligation_Remaining # months remaining in a Marines service obligation 
EAS_Remaining # months remaining in a Marines current training status  
TIS_Now # months since entry into SMCR 
FY The fiscal year of the current SEQ 
Month The calendar month of the current SEQ 

 

C. ALGORITHM DEVELOPMENT 

1. System Characterization 

The SMCR is a system in which Marines enter, transition through multiple states, 

and then exit the system at a future time. Two previous studies (Erhardt, 2012; Dausman, 

2016) have applied Markov processes to modeling this system with some success. 

Ultimately, the approach was of limited effectiveness because the Markov transitions were 

of limited complexity (e.g., using only a few explanatory variables) and because the 

Markov transitional probabilities are not constant with respect to time. In order to improve 
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the process, a model must allow variable complexity of status transitions to ensure that it 

considers all relevant information without overfitting the less-complex transitions, 

particularly as those relationships change over longer projection horizons. 

We model each Marine’s outcome as a Bernoulli random variable with an unknown 

probability of success. A Bernoulli random variable is similar to the outcome of a simple 

coin flip in which “heads” signifies success, but in this case, each Marine has a different 

probability of success. If a subgroup of Marines has similar probabilities, we describe the 

number of successes among them as a random variable with an approximately binomial 

distribution. In this way, we can estimate the expected value of each individual in a group, 

even though each individual only has one outcome to observe. Once we estimate the 

binomial parameter for each group, we can estimate the aggregate outcome as the sum of 

the expected values of all binomial parameters. 

A variety of modeling techniques exist that could be applied to this study. Most 

explanatory models use regression to describe variable relationships, but modeling requires 

parametric relationships between input and output that may not apply to our study data. 

Markov modeling techniques have been used in previous SMCR modeling studies, but they 

are limited by the need for relationships to remain constant over time. We also consider 

neural networks or “deep learning” techniques to be too computationally demanding for 

our purposes. Of the remaining machine learning techniques, decision trees and their 

extension, random forests, exhibit the most promise for this application. Exploratory 

testing between random forests and decision trees yields minor differences between them 

in this application. Because decision trees also allow much finer control of the complexity, 

provide more interpretability, and require significantly less computation, we select decision 

trees for implementation of our algorithm. For additional information of the other 

techniques we mention, we refer the reader to Faraway (2016).  

The idea of decision trees is to group similar cases with similar attributes and 

outcomes based on the values of their explanatory variables together into a decision node 

called a “leaf.” Some researchers have used the number of intervening branches in a tree 

as a measurement of distance between cases (Buttrey & Whitaker, 2016). Under that 

definition of distance, cases sharing the same leaf have a zero distance and are the most 
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similar to each other. Once estimated, the parameters for splitting the cases into different 

leaves provide a path to assign future cases to a leaf, with the leaf providing an estimated 

probability of success for the new case based on the average of the training data.  

2. Mathematical Relationships 

Rather than directly estimating the population level, we first categorize and 

estimate using a decision tree to induce grouping of the Marines into a binomial variable. 

The proportion of each type of outcome on a leaf provides the estimated probability of each 

Marine remaining in the population. We then sum the expected values to estimate the 

Marine population remaining at a future time. By characterizing the remaining Marine 

population as a sum of Bernoulli random variables, we can also use the known variance of 

Bernoulli random variables to produce prediction intervals that adjust to changing input 

distributions. 

Specifically, we index Marines in a cohort as m = 1…M. We define 𝑌𝑌𝑚𝑚 to be equal 

to one if Marine m is in the projected status group, and zero otherwise. Because 𝑌𝑌𝑚𝑚 is 

unobservable due to it occurring in the future, we describe it as a Bernoulli random variable 

with parameter 𝑃𝑃𝑚𝑚 = 𝑃𝑃(𝑌𝑌𝑚𝑚 = 1). The following facts are immediate: 

 ( )m mE Y P=  (1) 

 ( ) (1 )m m mVar Y P P= −  (2) 

Our goal is to predict T, the number of known Marines in the population at a future 

point, which we define as 

 
1

M

m
m

T Y
=

=∑  (3) 

Substituting, we find 

 
1 1

( ) , ( ) (1 )
M M

m m m
m m

E T P Var T P P
= =

= = −∑ ∑  (4) 

We now apply a decision tree to estimate 𝑃𝑃𝑚𝑚. The current cohort of Marines is 

assigned to leaves 1…L that are mutually exclusive and exhaustive. For Marine m, we 
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estimate 𝑃𝑃𝑚𝑚 as the proportion of successes for Marines classified in the same leaf during 

model training. Let 𝑛𝑛𝑙𝑙 denote total number of Marines classified in leaf l and let l(m) denote 

the leaf to which Marine m is assigned.. Let 𝑝𝑝1…𝑝𝑝𝐿𝐿 denote the probabilities that Marines 

assigned to their respective leaves will continue in the population. Using this notation, we 

now have 

 2

1 1

( ) , ( ) (1 )
L L

T l l T l l l
l l

E T n p Var T n p pµ σ
= =

= = = = −∑ ∑  (5) 

Implicit in Equation (5) is the assumption that the decision tree represents an 

accurate partitioning of the Marines into classes of individual that share a common 

probability of succession. We acknowledge that this assumption is not perfectly true, but 

assume that it provides a sufficiently close approximation to reality. We then would obtain 

a 95% prediction interval for T by taking 1.96T Tµ σ±  except for the fact that the 

expressions in Equation (5) depend on parameters 𝑝𝑝1…𝑝𝑝𝐿𝐿 that must be estimated from data. 

Our approach to estimation is to use a learning data set to formulate the decision tree and 

to estimate parameters; and a test data set that is independent of the learning data to form 

population forecasts. 

For each leaf, the estimated proportion of successes is subject to sampling error, 

which increases as we split each leaf into smaller child leaves. This sampling error is 

present both when the model is trained (“Learn”) and when the algorithm projects a cohort 

forward (“Test”). The sampling error causes the estimated mean value of the leaf to have 

sampling variability. The impact of this variability depends in the variance of the leaf as 

well as the number of samples on the leaf during both training ( ,l Learnn ) and forecasting (

,l Testn ). We define T̂ as an estimator for E(T) obtained by replacing true probabilities lp  

with estimates ˆ lp  in Equation (5) obtained from the training data. The variance of T̂ can 

be expressed as 

 
2
,

1 ,

ˆ( ) (1 )
L

l Test
l l

l l Learn

n
Var T p p

n=

= −∑  (6) 

We acknowledge that the splitting rules used to define leaves on the training data 

are also subject to sampling error. Given the large sample sizes involved in this study and 
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the measures taken to avoid overfitting, we assume that the impact of this error is minor 

and we therefore do not attempt to account for its effect on variance estimates. 

The prediction variance is the sum of the estimation variance induced by T̂ and the 

innovation variance induced by a new realization of T :  

 
2
,2

ˆ ,Pred,
1 1 ,

(1 ) (1 )
L L

l Test
l Test l l l lT

l l l Learn

n
n p p p p

n
σ

= =

= − + −∑ ∑  (7) 

Upon substituting estimates for the unknown probabilities from the learning data 

we obtain the estimated prediction variance: 

 
2
,2

ˆ ,Pred,
1 1 ,

ˆ ˆ ˆ ˆ ˆ(1 ) (1 )
L L

l Test
l Test l l l lT

l l l Learn

n
n p p p p

n
σ

= =

= − + −∑ ∑  (8) 

Finally, we calculate a 100(1 )%α−  prediction interval (PI) for T using 

 ˆ/2 Pred,
ˆˆ

TPI T zα σ⋅= ±  (9) 

where /2zα  is a standard normal quantile for the desired prediction interval. For example, a 

95% prediction interval uses .05α =  and .025 1.96z = . 

The estimated prediction variance 2
ˆPred,

ˆ
Tσ  is known to be biased due to model-

induced bias and the non-linearity of the binomial variance estimator. The magnitude of 

the model-induced bias is dependent on the level of fit of the component leaves of the 

decision tree. In a tree, each leaf consists of a sum of one or more binomial random 

variables. An underfit decision tree could result in each leaf representing multiple binomial 

distributions. Grouping distinct binomial distributions into one leaf would result in 2
ˆPred,

ˆ
Tσ  

being positively biased, as illustrated in Table 5. 
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Table 5.   Effect of Tree Fit on the Bias of Variance Estimates of a Binomial 
Distribution 

ORIGINAL 
DISTRIBUTION 

UNDERFIT ON SAME 
LEAF 

OVERFIT ON 
MULTIPLE 

LEAVES 
Binomial 1 

𝑝𝑝 = 0.2 
𝜎𝜎�2 = 0.16 

�̂�𝑝 = 0.3 
𝜎𝜎��2 = 0.21 

�̂�𝑝 = 0.19 
𝜎𝜎��2 = 0.1539 
�̂�𝑝 = 0.21 
𝜎𝜎��2 = 0.1659 

Binomial 2 
𝑝𝑝 = 0.4 
𝜎𝜎�2 = 0.24 

�̂�𝑝 = 0.39 
𝜎𝜎��2 = 0.2379 
�̂�𝑝 = 0.41 
𝜎𝜎��2 = 0.2419 

Actual Total 
𝑝𝑝 = 0.3 
𝜎𝜎�2 = 0.20 

Estimated Total 
�̂�𝑝 = 0.3 
𝜎𝜎��2 = 0.21 

Estimated Total 
�̂�𝑝 = 0.3 
𝜎𝜎��2 = 0.1999 

 

As Table 5 demonstrates, the variability estimate of underfit trees is positively 

biased. Conversely, overfit trees will underestimate variance. These effects occur even 

without consideration of sampling error. 

In practical application, the situation is more complex. A decision tree is composed 

of combinations of underfit and overfit leaves. This makes estimation of confidence 

intervals from classification algorithm outputs challenging. The calculated 2
ˆPred,

ˆ
Tσ  will bias 

differently for all levels of model fit or even for different input distributions acting on 

identical model fits. Our approach is to measure the level of bias for each level of fit or 

complexity and use it as a guide for selecting the proper complexity for each ensemble of 

projection horizons. 

Given our large sample sizes and that the process results in a sum, we can invoke 

the Central Limit Theorem (Ross, 2006) to assume approximate normality of errors. 

Therefore, we can express our model as 

 ( )T g x ε= +  (10) 

where ( )g x  is the model prediction, and ε is the prediction error. We can interpret ε as the 

randomness remaining after the prediction, i.e., as a residual term. In this context, the 
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variance of ε, which we denote as 𝜎𝜎𝜀𝜀2, is equivalent to 2
ˆPred,Tσ . Given that we can estimate 

𝜎𝜎𝜀𝜀2 directly during training, it is commonly used as a replacement for 2
ˆPred,Tσ . However, 

𝜎𝜎𝜀𝜀2 is only equivalent to 2
ˆPred,Tσ  for sample distributions that are similar to the training set. 

In order to make use of our training estimate with other sample distributions, we a cross-

validated estimate of the variance of ε  , which we denote 2ˆεσ    as an unbiased target to 

compare to the calculated 2
ˆPred,Tσ . The ratio of these two estimates, which we term the 

Variance Ratio (VR), performs several functions. During training, we can use the VR to 

judge the overall level of fit of the model using only the training data. During prediction, 

we can use the VR as a multiplier for our calculated  2
ˆPred,Tσ  to calibrate the result to the 

proper range. 

First, we calculate 𝜎𝜎�𝜀𝜀2 using a variation of jackknife resampling. (Tukey, 1958) 

Jackknife resampling produces a calculation of an estimated model k-times, each formed 

by excluding a random sample of the data (a fold) that encompasses a fraction of about 1/k 

of the sample. Model fit is estimated by evaluating the estimated model on the held-out 

fold using squared error as a criterion. The average of all squared errors (across all folds) 

is taken as an overall estimate of goodness-of-fit. In our variation, we fold the training data 

in a deterministic manner, along the time axis (SEQ). In addition, instead of excluding the 

fold in each iteration, we calculate our parameter for the fold only. In this way, we can 

measure the standard error of the modelled count over time and calculate the underlying 

variance of the model error, including variance induced by autocorrelation and 

distributional shifts. We set the number of folds, k, equal to the number of unique SEQ 

values. Ultimately, our algorithm provides a prediction for specific points in time, fT , 

using a set of input predictors, fx , that are processed by a model (g). For each fold, from 

1 to k; 

 ( ), 1, ,f f fT g x f Fε = − =   (11) 
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or simply, that the error of the model is the actual population size minus the predicted 

population size at time t. With fε  and its sample mean (ε ), we now obtain the estimated 

prediction variance 𝜎𝜎�𝜀𝜀2 as follows: 

 

2

12

)
 

(
ˆ

F

f
f

Fε

ε ε
σ =

−
=
∑

 (12) 

We express the Variance Ratio for the training set, derived from the prediction variance 

and the prediction standard error ( 2
LearnTSE ) obtained via Equation (8), as 

 

2

2

ˆ

Learn

TLearn
T

VR
SE

εσ=  (13) 

In the final step, we multiply the estimated standard errors of the test set by 
TLearn

VR  and a 

single scalar, β, used across all models, which is a manually estimated value that adjusts 

for the divergence between learning and test set variance. 

 

2 2
, ,

2
, 2

2
,

ˆ

ˆ

LearnTest T Test T

T Test

T Learn

SE VR

SE
SE

ε

ε

β

β

σ

σ

= ⋅

= ⋅
 (14) 

A more detailed discussion on estimation of β  is given in the following section. 

3. Complexity Tuning 

For complexity tuning, we separate the data into test and training sets, each 

comprised of the records of half the available Marines. Sensitivity testing demonstrates 

that the value of 𝜎𝜎�𝜀𝜀2 of the training and the validation sets diverge as the Variance Ratio 

decreases toward one. The estimation error (and the error variances) on test and validation 

sets diverges as a model approaches optimal fit with the learning errors being lower than 

the test errors. This is a common feature of classification algorithms. In general practice, 

the divergence is ignored and the algorithm complexity tuned to minimize validation error. 

However, a key objective of this study is to obtain accurate prediction intervals, we must 

balance model accuracy with the quality of the variance estimate. The projections of the 

individual Marine model outputs are secondary to the projection of the aggregate total and 
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the estimate of its prediction intervals. Therefore, we utilize model complexities that have 

lower than the maximum achievable prediction accuracy, but provide small and predictable 

training/test variance divergence characteristics so that a prediction interval can be more 

reliably estimated. 

Figure 2 provides an illustration of this phenomenon. In our models, we control 

model complexity with the MaxLeafs parameter, which determines how much the decision 

tree grows. As the number of tree nodes increases (horizontal axis), the validation error 

(black) tends to decrease. However, the difference in VR between training (red) and test 

(blue) sets generally increases with complexity, with training VR falling below the test VR. 

 

Figure 2.  Example of the Divergence of Variance between Training 
and Test Sets 

For each status group, the MaxLeafs parameter and a single variance scalar, β, are 

manually estimated as tuning parameters. Additionally, we limit the minimum samples 
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required in each leaf during training to 100 for IADT and 200 for all other status groups to 

ensure that 2
ˆPred,

ˆ
Tσ  remains small for likely forecast distributions. 

D. METHODOLOGY 

1. Import and Initial Formatting 

The MCRISS and TFDW datasets consist of monthly snapshots of each their 

respective databases, each contained in separate CSV files. Each snapshot contains the 

SEQ number corresponding to the month the snapshot originated. We first replace each 

EDIPI in each file with a numeric key. For each dataset, we begin data processing by 

importing each snapshot file and merging them. We merge the two datasets by matching 

the EDIPI and the SEQ/RSEQ listed in each record, producing a single table. 

2. Feature Selection 

All date fields in the initial dataset are structurally related to each other. Older 

records tend to have older dates for every field. For the model to be effectively extract 

information from the dates, we must offset each date from a basis field, as we defined in 

Table 4. Mathematically, this aligns each record to others across time. 

We screen explanatory variables in order to increase the computational efficiency 

of the model and minimize overfitting. We eliminate each explanatory variable in a step-

backwards procedure if its relative significance is below 0.02 relative to all surviving 

explanatory variables. While some of the eliminated variables may have correlation with 

the outcome, many of them are collinear with each other and redundant when used together. 

Table 6 lists the explanatory variables used in the final model. 
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Table 6.   Final Explanatory Variables 

EXPLANATORY 
VARIABLE 

ORIGIN DESCRIPTION 

DODTCPG TFDW Current service status 
RCOMPCODE TFDW Sub-statuses to DODTCPG 
Obligation_Remaining Constructed # months remaining in a Marines service obligation 
EAS_Remaining Constructed # months remaining in a Marines current training 

status  
TIS_Now Constructed # months since entry into SMCR 
FY Constructed The fiscal year of the current SEQ 

 

We group the DODTCPG field per sponsor specification and create a Boolean 

(TRUE/FALSE) field for each status group we defined in Section III.B.1 Table 3. We 

extract the Status Groups and its SEQ to use as predicted variables, but we retain the 

original DODTCPG in the explanatory variable vector. Finally, we convert all data to a 

numeric format (with missing values set to -9999) for compatibility with the Python SciKit-

Learn package (Pedregosa et al., 2018). 

3. Model Training 

We split the input dataset by individual Marines into approximately equally sized 

training and validation datasets. In a production environment, the algorithm would use all 

data for training. Model training begins by recombining our explanatory variable data, 

representing all data available on a Marine at time 𝜏𝜏 and the predicted data, representing 

the status group of the Marine at a future time 𝜏𝜏+𝜂𝜂, where 𝜂𝜂 is the number of months in 

the future the model is trained to predict. To achieve this, we offset the Status Groups 

by 𝜂𝜂 SEQ numbers. We then provide the respective predicted and explanatory variable 

fields to the SciKit-Learn Decision Tree function for training. 

Upon completion of training, we fold the training dataset by the SEQ field to create 

a time-series of inputs and outcomes. For each fold, we use the newly-create model to 

predict results, errors, and subsequently calculate VR, according to Equation (13). We then 

store each model and the model’s VR for future use. We repeat the entire process for every 

desired prediction horizon and status group. 
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4. Forecast Computation 

We obtain the estimated probability for each forecast Marine from a stored model 

and sum the expected values, as explained in Equation (4). By repeating the process with 

individual models trained for each projection horizon, we can construct a forecasted time 

series of population levels. 

We calculate 2
ˆPred,

ˆ
Tσ using Equation (8). However, as we indicate in Section III.C.2, 

there is divergence between the predictions of the training set and any forecast set. We 

correct the divergence and generate 𝜎𝜎�𝜀𝜀2 by using the VR parameter recorded for each model, 

as applied in Equation (13). We also apply the global variance scalar, β. Finally, we use 𝜎𝜎�𝜀𝜀2 

and the appropriate normal quantile to calculate the desired prediction interval. 
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IV. ANALYSIS 

In order to consider the algorithm results, we must look at three parts. First, we 

examine the IADT status group models, then the SMCR status group. Finally, we 

demonstrate the general impact of the Variance Ratio process. For testing purposes, we 

retrain the algorithm using all available data from FY06 through FY14 and catalogue the 

training errors. We then conduct hindcast projections for each SEQ from FY15 through 

FY17 and document the results. 

A. IADT STATUS GROUP 

We train the IADT status group models with a MaxLeafs parameter of 100. The 

ensemble of IADT models projects up to 12 months into the future. First, we will examine 

the variable relationships at select points in the ensemble, and then we analyze the output 

errors of the ensemble. 

1. Explanatory and Predicted Variable—Relationships 

According to the sklearn decision-tree algorithm documentation, the importance of 

an explanatory variable “is computed as the (normalized) total reduction of the criterion 

(Gini purity) brought by that feature” (Pedregosa et al., 2018). In our algorithm, we use 

Gini purity as our criterion. For each model, sklearn provides a function to extract the 

relative importance or the marginal fraction of Gini purity each variable provides. Figure 

3 shows the importance measurements for the IADT ensembles. 
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Figure 3.  IADT Explanatory Variable Relative Importance 

Explanatory variable significance varies substantially across the 13 prediction 

horizons of the IADT ensemble. While most of the prediction horizons smoothly transition 

into each other, there are several points of apparent discontinuity where the explanatory 

variable significance shifts abruptly. The remainder of this section illustrates the one, three, 

and seven-month models, as those are the points that are most dissimilar to each other in 

explanatory variable’s significance. 
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Figure 4.  IADT Predictions versus DODTCPG (One-Month Projection) 

On one-month projection horizons, DODTCPG is the dominant explanatory 

variable, owing to the high autocorrelation of a Marine’s status. Its significance drops 

abruptly by the two-month horizon. While DODTCPG is still highly significant, the 

autocorrelation for IADT statuses is less important at that point, particularly in the presence 

of Obligation Remaining as both DODTCPG and Obligation Remaining are blank for pre-

IADT Marines, so they encode much the same information. However, the lack of 

significance for Obligation Remaining in the one-month prediction indicates that once a 

Marine has begun IADT, the short term accuracy of the field is lower that the initial 

autocorrelation of the status.  
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Figure 5.  IADT Predicted by DODTCPG and Obligation Remaining 
(Three-Month Projection) 

By the three-month projection, DODTCPG has far less effect on the output when 

used alone. The most significant indicator of outcome is whether Obligation Remaining is 

blank, but only if the Marine is in a “PJ” (Individual Ready Reserve) or blank (recruiting) 

DODTCPG. If a “UF” status (IADT) is used, the predicted probability is largely insensitive 

to the presence of Obligation Remaining, but the model predicts a wider range of values if 

Obligation Remaining is present, indicating the marginal effect of less significant 

explanatory variables. 
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Figure 6.  IADT Predicted by DODTCPG and Obligation Remaining 

By the seven-month projection, “UF” and “PJ” statuses have merged into similar 

distributions, with non-blank obligations indicating reduced probabilities. The range of 

probabilities for blank obligations has also increased indicating interactions with other 

explanatory variables become significant in this case.  

The significance of Fiscal Year (FY) peaks in the seven-month model. As Figure 7 

illustrates, FY interacts with the “UQ” and “UF” statuses but is not statistically significant. 

Despite this, we choose to retain FY as an explanatory variable to ensure the models can 

adapt to future states in a production environment. If an explanatory variable relationship 

changes in the future, when retraining occurs the presence of FY allows the models to 

distinguish the break in relationships as soon as it is statistically significant and incorporate 



30 

it into the updated model. In the current dataset, this has minimal impact on the predicted 

values, but does have a noticeable impact on forecast uncertainty.  

Figure 7.  IADT Predicted by Fiscal Year (FY) (Seven-Month Projection) 

2. Output Analysis

Because we determine the estimate of probability of leaves during training, this also 

fixes its estimate of variance. The range of prediction interval values estimated in any 

particular model corresponds to the distribution of leaves the data occupies. Because of 

this, we can infer that the distribution of leaves used in hindcast mode is smaller than that 

used in training because the range of estimated prediction intervals is narrower. We find 

that the primary interaction driving the range of prediction intervals in training is the FY 

explanatory variable. Although it does not interact strongly, when it is used, it does 
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influence the variability of the leaf, either positively or negatively. As discussed in the 

previous section, FY alters the model by creating breakpoints for changes over time. For 

the hindcast of FY 14–17, the model only uses the set of leaves that include the most 

recently trained FY. This has the advantage of incorporating temporal changes as soon as 

they are significant. A disadvantage is that FY-based leaves will have smaller sample sizes 

and higher sampling errors. 

The impact of the phenomenon described in the previous paragraph is evident in 

Figure 8. The range of hindcast prediction widths is significantly narrower than in the 

training set. Most often, they follow the mean of the training set. This indicates that FY13 

is using a similar distribution of leaves as the bulk of the training set—leaves that either 

have multiple fiscal years included to minimize sampling errors or are FY insensitive. 

Figure 8.  IADT Prediction Interval Width by Projection Period 
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There are several notable exceptions. Projection models 4–6 use leaves that are in 

the top quantile or are even outliers in variance compared to the training set. Only two 

explanations are possible. Either the FY breakpoints occur very recently, likely including 

only the most recent FYs or the hindcast period has a very different distribution of data 

than the training period. 

We can see some indications of these impacts in Figure 9. All errors are scaled by 

the estimated prediction interval of the forecast. The yellow line indicates the model-

estimated 95% prediction interval while the red line represents the 𝛽𝛽 adjustment across all 

models. While the errors fall into a normal range for most of the training and hindcast 

errors, we can see higher error variance in the 18 month period from FY06-07 and both 

bias and error variance in the most recent 12 months (FY17). These outliers occur despite 

the larger estimated prediction intervals in projection models 4–6, which would reduce this 

kind of error. Given the prediction intervals calculation already accounts for the lower 

sampling error, we must conclude the FY17 data includes significant shifts in population 

or administrative processes that our algorithm is unable to anticipate. 
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Figure 9.  Training and Hindcast Errors by FY 

This type of occurrence is exactly the reason we retained FY as an explanatory 

variable. While the algorithm could never anticipate future changes in underlying data 

relationships, frequent retraining allows the algorithm to incorporate any autocorrelated 

errors into future predictions. In the test set illustrated in Figure 14, the model performs 

within 𝛽𝛽-adjusted limits for almost to 24 months with no retraining before experiencing 

consistent deviations. Indications of bias did begin to show during that period; however, 

retraining after FY 15 or even FY 16 would likely have muted or eliminated the error trend 

and kept FY 17 within tolerance. We recommend retraining the model at the end of each 

FY. While more frequent training may detect trends earlier, it may also introduce spurious 

sampling errors (and associated increase in prediction intervals widths) if the data for the 

current FY is incomplete. 

Despite the distributional drift inherent in the hindcast period, the algorithm tends 

to produce low biases across the models overall. Figure 10 demonstrates some of the 



 

34 

algorithms shortcomings. Without the 𝛽𝛽 adjustment, prediction intervals are too small for 

shorter projection periods and too large for longer-term models. While the 𝛽𝛽 adjustment 

improves the fit for the shorter period, it exacerbates it for the longer periods.  

 

Figure 10.  IADT Error by Projection Period 

Because our algorithm only forecasts the specific cohort provided as input, the 

cohort population declines as it is projected forward and attrition takes its toll. This is 

especially noticeable in the IADT status group as it is rare for Marines to remain in IADT 

for more than 6 months. It is also consistent with the effects of model fit across the range 

of projection models having markedly different underlying variances. We choose a single 

complexity for all projection models. Because the population level changes markedly over 

the range of the ensemble, it is impossible to select an optimal complexity parameter for 

the overall ensemble. Using the median of ideal model complexities tends to underfit on 
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shorter periods and overfit on longer periods. As explained in Section III.C.2, this results 

in biased estimates of variance from each model. Further research could substantially 

improve the prediction interval estimates of this algorithm by developing fitting complexity 

parameters for each projection period or by a training algorithm that is capable of 

maintaining the correct variance in each leaf individually. 

Figure 11 illustrates the results of the algorithm projected from the beginning, 

middle, and end of FY 15. The points and error bars represent the hindcasted value and 

95% prediction interval. For comparison, the line represents the actual values for that 

period. The initial hindcast from SEQ 319 (SEP 2014) falls within the 95% prediction 

intervals throughout the entire period, though the 3–6 month periods appear to be positively 

biased. The SEQ 325 (JUN 2015) hindcast appears more accurate, with only periods 2 and 

3 deviating noticeably from the median prediction. The SEQ 331 (SEP 2015) hindcast 

includes is well outside the prediction intervals for periods 4 and 5 and is negatively biased 

for most of the forecast. While significant in this example, such errors would likely be 

reduced if the algorithm were retrained prior to every FY.  
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Figure 11.  Sample IADT Hindcast Projections 

As Figure 12 illustrates, seasonality in the training set is largely under control and 

well within adjusted prediction intervals. The hindcast does show the same seasonality 

pattern indicating that the variations seen in the training period are not random. While the 

projections are mostly within the adjusted prediction intervals, a seasonal bias is apparent 

in both training and hindcast. While the prediction intervals largely encompass it, 

additional countermeasures against seasonality in IADT errors would result smaller 

prediction intervals and a more certain forecast. In the absence of another explanatory 

variable, the obvious solution is to use calendar month as an explanatory variable. We 

consider it unwise to use both FY and Month as explanatory variables simultaneously. The 

use of both may result in “memorization” (i.e., overfitting) of the specific month-years with 

the highest deviations rather than a simple adjustment of the calendar month. We 
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recommend a mean adjustment for seasonality of errors prior to variance estimation, but 

we did not implement such an approach in this algorithm. 

 

Figure 12.  IADT Errors versus Calendar Month 

B. SMCR STATUS GROUP 

We train the IADT status group models with a MaxLeafs parameter of 200. The 

ensemble of IADT models projects up to 12 months into the future. First, we will examine 

the variable relationships at select points in the ensemble, then we analyze the output errors 

of the ensemble. 

1. Explanatory and Predicted Variable—Relationships 

The importance measurements for the IADT ensemble are shown in Figure 13. 
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Figure 13.  SMCR Explanatory Variable Relative Significance 

Explanatory variable significance varies substantially across the 12 prediction 

horizons of the SMCR model set. While most of the prediction horizons smoothly 

transition into each other, there are several points of apparent discontinuity where the 

explanatory variable significance shifts abruptly. For the remainder of this section, we 

illustrate the one-, three-, and seven-month models as those are most dissimilar to each 

other in explanatory variable significance. 

In the one-month SMCR model, DODTCPG has an 82% variable importance. The 

second-most important explanatory variable is EAS Remaining. The relationship between 

EAS Remaining and SMCR status group is an almost perfect complement of the 

relationship between EAS Remaining and the IADT status group. By design, it maps the 
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phase of service that each Marine goes through and is a good explanatory variable for 

statuses that occur while in the Marine Corps Reserve. 

 

Figure 14.  SMCR Predicted by DODTCPG & EAS Remaining 
(One-Month Projection) 

The eight-month SMCR model exhibits similar relationship with the exception of 

RCOMPCODE. Figure 15 provides the results of output analysis of this explanatory 

variable. All Obligation Remaining values are insignificant with the exception of 

RCOMPCODEs “KA” and “K4,” which have significantly higher residual mean and range 

than the other codes. A “KA” RCOMPCODE indicates that a Marine has completed his or 

her initial contract obligation but remains in the SMCR while a “K4” is a post-IADT 

Marine serving his or her first contract term. The first term contract obligation is not 
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necessarily synonymous with the Obligation Remaining field as a Marine may incur other 

obligations for service by exercising certain benefits such as tuition assistance. On the other 

hand, the negative values of Obligation for a “K4” RCOMPCODE are logically invalid, 

but even these administrative errors seem to convey predictive information. While 

Obligation Remaining is the most significant explanatory variable within each 

RCOMPCODE, the remaining explanatory variables have a minor impact and cause 

clusters or multimodal structures in Figure 15. 

 

Figure 15.  SMCR Predicted by RCOMPCODE & Obligation Remaining 
(Eight-Month Projection) 



41 

2. Output Analysis

Although we model the SMCR status group in the same way that we model the 

IADT status group, the differing characteristics of the populations yield significant 

differences in the modeled results. Specifically, the SMCR status group represents nearly 

90% of the population in the dataset and has markedly different transition rates than the 

IADT status group. Over a typical twelve-month period, approximately 13% of the SMCR 

status group transitions to another group compared more than 95% of the IADT status 

group. As a result, the SMCR modeling ensemble increases and then plateaus in variance 

over time where the IADT ensemble plateaus and then declines. 

As shown in Figure 16, the range of SMCR hindcast prediction interval widths are 

rarely narrower than or vary from the means of the training set. The exception is the four- 

through seven-month models that have consistently higher means. The four-month model 

also displays a narrowing of the ranges of prediction interval widths in hindcast. For more 

detail on the implications of this behavior, we refer the reader to the discussion of Figure 

7 in Section IV.A.2.  
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Figure 16.  SMCR Prediction Interval Width by Projection Period 

In Figure 17, we observe that FY 06 and FY 17 exhibit considerable error bias in 

SMCR in a similar fashion to the IADT results. In addition, FY 11 displays significant 

uncorrected bias within the training set. The SMCR Reserve Manpower Office has 

indicated that large policy changes influenced FY 11, and the office considers it to be an 

outlier in any analysis they conduct (S. Norton, Maj USMC-M&RA, personal 

communication, Apr 10, 2018). Also, unlike the IADT hindcast, FY 15 shows significant 

differences from the training period both in terms of bias and variance. 
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Figure 17.  SMCR Training and Hindcast Errors by SEQ 

When viewed by projection period, as in Figure 18, SMCR models show much 

more consistency. Unlike IADT, there is a tendency for near-term forecasts to have smaller 

deviations from predicted intervals. We expect this as the population size does not decay 

significantly in a 12-month period, so the underlying uncertainty drives most of the 

deviation. Although the underlying variance is relatively constant across the projection 

intervals, uncertainties increase beyond month 12. Based on sensitivity tests of model 

complexity, models beyond the nine-month horizon significantly underfit at any level of 

complexity. The explanatory variables necessary to project accurately that far into the 

future are not present in the data provided. 
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Figure 18.  SMCR Error by Projection Period 

Figure 19 illustrates the final results of the algorithm projected from the beginning, 

middle, and end of FY 15. The points and error bars represent the hindcasted value and 

95% prediction interval. For comparison, the line represents the actual values for that 

period. The initial hindcast from SEQ 319 (SEP 2014) falls within the 95% prediction 

intervals throughout the entire period, with the exception of the 12-month period. The SEQ 

325 (JUN 2015) hindcast is less accurate, with a significant upward trend that exceeds the 

prediction interval for the 6–12-month projections. The SEQ 331 (SEP 2015) hindcast 

exhibits similar errors in the 6–12-month projections. Clearly, the FY 16 data distribution 

atypically in ways that bias longer-term hindcasts. Retraining the algorithm at the end of 

FY 15 would reduce these errors. 
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Figure 19.  Sample SMCR Hindcast Projections 

As Figure 20 illustrates, seasonality in the training set is largely under control and 

well within adjusted prediction intervals. While the hindcast does show seasonal variation, 

it does not resemble any pattern found in the training set and generally stays within adjusted 

prediction intervals. Given the small sample size of the hindcast, the high level of 

autocorrelation of the time series, and the lack of similar pattern in training, we attribute 

the monthly variations in SMCR errors to randomness. 
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Figure 20.  SMCR Error versus Calendar Month 

C. EFFECT OF APPLYING VARIANCE RATIOS 

A key aspect of this algorithm is the application of the Variance Ratio as a 

calibration for the variance estimate. Figure 21 illustrates the Variance Ratios calculated 

during training and used in prediction. The large values of VR for SMCR 1–4 month 

projections suggest that short-term projections of SMCR may not follow a binomial 

variance pattern or are significantly over-dispersed. Most of the remaining points are 

significantly above 1.0, indicating that large portions of these models are underfit. We 

believe that much of the underfitting it not due to the selected model complexities, but due 

to insufficient explanatory power. The exceptions are the IADT seven-month and eight-

month projections with VRs of approximately .3 indicating that these two models are 

overfit. 
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Figure 21.  Variance Ratio (VR) by Projection Horizon 

As seen in Figure 22, the calibration of estimated variance with VR has a significant 

effect. While the actual values tend to stay within the VR-adjusted prediction intervals, 

they are outside 0.95 envelope for nearly half of the raw prediction intervals. The VR 

adjustment represents a substantial improvement over the prediction intervals calculated 

solely from the leaf variance.  
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Figure 22.  Comparison of Prediction Interval Adjustments 

Figure 22 also makes apparent an unusual aspect of this dataset. The uncertainty of 

the projection in month one is relatively small, but grows increasingly uncertain through 

month four, as we expect. Beyond month four, the uncertainty declines, and by month 12, 

reaching the same level as month one. While the cohort population does decline during the 

forecast periods, the reduction in variance is far greater than a 20% population decline 

would produce. Based on the variable importance from Figure 13, we can infer that the low 

initial variability is due to the high autocorrelation of DODTCPG in the one-month 

projection. The decline in variability beyond the four-month projection is likely the result 

of explanatory variables that are predictive of a status change, but are uncertain in the 

timing. For example, if a given EAS date is only accurate to within a few months, it 

increases the uncertainty in the first few projections. For longer-term projections, the 
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uncertainty of the timing decreases as a proportion of the projection timing. Put another 

way, the explanatory variables may not have the skill to predict the specific month of a 

transition with high accuracy, but can predict the quarter of the transition much better. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This study successfully demonstrates an algorithm to model future aggregate 

statuses for the SMCR population up to 12 months in the future. Key to this is the 

estimation of accurate prediction intervals from the underlying distribution of the data. 

While there are noticeable autocorrelated trends in the algorithm residuals, they are 

correctable with periodic retraining. This study also finds a clear gap in techniques to fit 

decision trees to predicted variables that have a defined variance. This gap results in 

difficulties maintaining proper model fit across the algorithms modeling ensemble. 

We also find that many of the demographic explanatory variables significant to 

previous IADT attrition studies of the active duty population are found not to be significant 

contributors to the models in this study. This may be due to several factors. First, active 

duty populations may not be directly comparable to Reservist or SMCR populations. 

Second, by aggregating the population transitioning from IADT into the same model that 

forecasts continuation within SMCR, the IADT-specific explanatory variables do not 

achieve sufficient explanatory power relative to the SMCR explanatory variables to justify 

retention. Finally, it is possible that the demographic explanatory variables are not 

significant in the presence of the administrative explanatory variables. The administrative 

explanatory variables may encode the same information as the demographics through 

personnel selection processes. 

Of the administrative data that we find to be predictive, the status codes within 

DODTCPG and RCOMPCODE are useful for short-term forecasts. For medium to long-

term forecasts, the presence of an obligation date or an EAS date are usually more 

predictive than the dates themselves, indicating that the timing of data entry encodes some 

information on future status or continuation. 

B. POTENTIAL APPLICATIONS 

Although this study explores theoretical aspects of applying decision trees to 

variables with a defined variance, most of its practical findings are specific to the SMCR. 
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Further refinement is necessary before the techniques developed in this study could be 

applied generally and consistently. 

C. TOPICS FOR FURTHER RESEARCH 

1. Projection of the Unknown Population 

As discussed in Section I.A.1, this study was limited to forecasting the known 

population of Marines in the SMCR and MCRISS databases. Full support of SMCR 

decision making also requires a forecast of the rates of arrival of the unknown population 

given a set of recruiting policies. As any gaps are identified in the existing population in 

future months, such a model would allow M&RA to predict the impact of policies and 

mission scenarios as they work to achieve their policy objectives. 

2. Post-model Seasonality Adjustment 

As indicated in Section IV.A.2, seasonality continues to limit the accuracy of the 

algorithm. Adding month as an explanatory variable in the models would likely cause 

interaction with FY that would overfit parts of the model. One alternative is to extend the 

model by post-processing the results with a simple seasonality adjustment. 
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APPENDIX. STATUS CODES 

DODTCPG 

CODE DESCRIPTION 

PJ Individual Ready Reserve  

RE Individual Ready Reserve  

SA Selected Marine Corps Reserve (SMCR) 

SG Active Reserve (Full-Time Support)  

TB Individual Mobilization Augmentee 

UF Initial Active Duty Training (IADT) 

UP Initial Active Duty Training (IADT) 

UQ SMCR Incremental Initial Active Duty Training (IIADT) 

UX SMCR 

 

RCOMPCODE 

CODE DESCRIPTION 

K1 ENLISTED RES ON IADT AND/OR ELST 

K2 ENLISTED RES 2ND INCREMENT IADT 

K3 RES ON TEM ACDU FOR ETT OR RCT 

K4 ENLISTED RES NPS OBLIGOR 6 YR ACDU & IDT 

KA SMCR IDT 

KF IMA IDT 

K1 ENLISTED RES ON IADT AND/OR ELST 

K2 ENLISTED RES 2ND INCREMENT IADT 

K3 RES ON TEM ACDU FOR ETT OR RCT 
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