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ABSTRACT 

 Deploying multiple autonomous systems that coordinate as a cohesive swarm on 

the battlefield is no longer science fiction. As new technologies disrupt the character of 

war, the American military is investing in algorithms to allow its drone forces to conduct 

swarm tactics across all domains. However, the current frameworks in development for 

conducting drone swarm tactics are reliant on centralized control. These frameworks limit 

the speed and flexibility of the swarm by placing an overreliance on perfect 

communication and by overtasking the centralized human controller. To overcome these 

limitations, the American Way of War should adapt; the military must explore novel 

strategic frameworks that can rapidly train drone algorithms to be effective at 

decentralized execution, thereby rebalancing the workload of the resulting 

human-autonomy teams. This thesis proposes that training decentralized swarming 

algorithms, using the synergy of wargames and machine learning techniques, provides a 

powerful framework for optimizing drone decision making. The research uses a genetic 

algorithm to iteratively play a base defense wargame to train local drone interaction rules 

for a decentralized swarm that generates a desired global behavior. The results show a 

reduction in average base damage of 78–82% (p<0.001) when comparing the mission 

effectiveness between a pre-trained and a post-trained defensive drone swarm against a 

baseline adversary. 
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I. INTRODUCTION 

Success no longer goes to the country that develops a new technology 
first, but rather to the one that better integrates it and swiftly adapts its 
way of fighting. 

—Defense Secretary James Mattis1 

A. STRATEGIC SITUATION 

The 2018 National Defense Strategy assesses that artificial intelligence (AI), 

machine learning, and autonomous systems will increasingly enable the nation “to gain 

competitive military advantages.”2 Military researchers also predict that advancements in 

these technologies will have a compounding effect across all combat domains as more 

machine autonomy on the battlefield continues to shift the underlying character of war.3 

Most notably, combatants have access to a higher quantity of expendable (yet, capable) 

autonomous hardware, combined with access to a higher quality of “smart” algorithms.4 

The confluence of these commercially-available technologies is progressing warfare into 

its next predicted evolution, where any force can now deploy a coordinated collection of 

autonomous systems (i.e., swarms), capable of mounting simultaneous, omnidirectional 

attacks, into combat.5  

                                                 
1 Colin Clark, “Mattis’ Defense Strategy Raises China to Top Threat; Allies Feature Prominently,” 

Breaking Defense, January 18, 2018, https://breakingdefense.com/2018/01/mattis-military-strategy-raises-
china-to-top-threat-allies-feature-prominently/. 

2 James Mattis, 2018 National Defense Strategy of the United States of America (Washington, DC: 
Department of Defense, 2018), 7, https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-
Defense-Strategy-Summary.pdf. 

3 Lucia Retter et al., Moral Component of Cross-Domain Conflict, RR 1505-MOD (Santa Monica, 
CA: RAND, 2016), https://www.rand.org/pubs/research_reports/RR1505.html. 

4 Jules Hurst, “Robotic Swarms in Offensive Maneuver,” Joint Force Quarterly, no. 87 (2017): 105, 
http://ndupress.ndu.edu/Publications/Article/1326017/robotic-swarms-in-offensive-maneuver/. 

5 John Arquilla and David Ronfeldt, Swarming and the Future of Conflict, DB 311-OSD (Santa 
Monica, CA: RAND, 2000), https://www.rand.org/pubs/documented_briefings/DB311.html; Dave 
Majumdar, “Who Attacked a Russian Military Base with a ‘Swarm’ Strike?” National Interest, January 12, 
2018, https://nationalinterest.org/feature/who-attacked-russian-military-base-swarm-strike-24060. 
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Already anticipating these “autonomous horizons,” the Air Force has plans to 

integrate more swarming systems into their service by teaming them with the highly 

trained decision-making skills of their Airmen. However, beyond merely integrating 

more systems for human operators to control, each service must begin to adapt its way of 

fighting to delegate more decisions to the trusted algorithms of their autonomous swarms. 

To improve trust, and thereby retain a competitive advantage, the research of this thesis 

supports that America’s military should adapt a novel Way of Swarm that focuses on 

training not only its people, but training the decision-making algorithms of the swarming 

autonomous systems, to best optimize the combined human-autonomy teams.  

Senior military leaders foreshadow that the emergence of a general AI (i.e., a 

machine with an ability to think, learn, and reason like a human)6 risks upending the very 

nature of war.7 Analysts share this outlook, and agree that the immutable nature of war, 

often described as a contest of human wills, could eventually be transcended as a contest 

dominated by AI logic.8 In 2012, these extreme predictions compelled the Department of 

Defense (DoD) to focus on general AI investments as a primary effort in its Third Offset 

strategy that aimed at gaining competitive advantages against adversaries in critical 

technologies.9 More recently, the DoD’s strategic focus in AI expanded as renewed 

investments are helping solve a growing “big data” problem.10 In 2017, the DoD created 

                                                 
6 Peter Voss, “From Narrow to General AI,” Medium, October 3, 2017, 

https://medium.com/intuitionmachine/from-narrow-to-general-ai-e21b568155b9. 
7 James Mattis, “Press Gaggle by Secretary Mattis En Route to Washington, DC,” Department of 

Defense Transcripts, February 17, 2018, https://www.defense.gov/News/Transcripts/Transcript-
View/Article/1444921/press-gaggle-by-secretary-mattis-en-route-to-washington-dc/. 

8 “Getting to Grips with Military Robotics: Autonomous Robots and Swarms Will Change the Nature 
of Warfare,” Economist, January 25, 2018, https://www.economist.com/special-report/2018/01/25/getting-
to-grips-with-military-robotics; Elsa Kania, “Battlefield Singularity: Artificial Intelligence, Military 
Revolution, and China’s Future Military Power,” Center for a New American Security, November 28, 2017, 
https://www.cnas.org/publications/reports/battlefield-singularity-artificial-intelligence-military-revolution-
and-chinas-future-military-power. 

9 Paul McLeary, “The Pentagon’s Third Offset May Be Dead, But No One Knows What Comes 
Next,” Foreign Policy, December 18, 2017, https://foreignpolicy.com/2017/12/18/the-pentagons-third-
offset-may-be-dead-but-no-one-knows-what-comes-next/. 

10 Terry Costlow, “How Big Data is Paying off for DoD,” Defense Systems, October 24, 2014, 
https://defensesystems.com/articles/2014/10/24/feature-big-data-for-defense.aspx. 

https://foreignpolicy.com/2017/12/18/the-pentagons-third-offset-may-be-dead-but-no-one-knows-what-comes-next/
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a cross-functional team, called Project Maven, that leveraged revolutionary AI programs 

to help human analysts work through overwhelming amounts of intelligence data.11 In 

2018, the DoD increased its funding for AI further, including $1.75 billion (over 7 years) 

for the formation of a Joint Artificial Intelligence Center, $93.1 million for Project 

Maven (a 580% increase from the previous year), $15 million for service-specific AI 

investments, and over $10 million for the creation of an AI commission.12 Moreover, in 

2018, the DoD announced the removal of the “experimental” status of the Defense 

Innovation Unit (formerly DIUx) in order to expand and solidify partnerships with the 

private industries in Silicon Valley that are heavily invested in AI research and 

development.13 As a whole, civilian and military investment is pushing AI advancements 

aggressively in the direction of the singularity, defined as the moment when general AI 

systems will surpass all human intelligence,14 altering every facet of war (and peace).  

To the degree that this singularity becomes reality, a fundamental shift in warfare 

may prove to be true. Until then, a continued focus on achievements in narrow AI (i.e., 

machine learning techniques)15 offers a more immediate opportunity to operationalize the 

emerging technology to tackle complex military problems. One such military problem is 

the increasing threat of autonomous drone attacks (including swarms), which presents 

challenges in the air domain that some authors have characterized as the “democratization 

of airpower.”16 Events in Syria have shown how, for the first time since 1954, American 

                                                 
11 Cheryl Pellerin, “Project Maven to Deploy Computer Algorithms to War Zone by Year’s End,” 

Department of Defense News, July 21, 2017, https://www.defense.gov/News/Article/Article/1254719/project-
maven-to-deploy-computer-algorithms-to-war-zone-by-years-end/. 

12 Jay Cassano, “Pentagon’s Artificial Intelligence Programs Get Huge Boost in Defense Budget,” 
Fast Company, August 15, 2018, https://www.fastcompany.com/90219751/pentagons-artificial-
intelligence-programs-get-huge-boost-in-defense-budget. 

13 Aaron Mehta, “Experiment Over: Pentagon’s Tech Hub Gets a Vote of Confidence,” Defense News, 
August 9, 2018, https://www.defensenews.com/pentagon/2018/08/09/experiment-over-pentagons-tech-hub-
gets-a-vote-of-confidence/. 

14 T. C., “What is the Singularity?” Economist, May 14, 2018, https://www.economist.com/the-
economist-explains/2018/05/14/what-is-the-singularity. 

15 Voss, “From Narrow to General AI,” 2017. 
16 T.X. Hammes, “The Democratization of Airpower: The Insurgent and the Drone,” War on the 

Rocks, October 18, 2016, https://warontherocks.com/2016/10/the-democratization-of-airpower-the-
insurgent-and-the-drone/. 
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forces have faced threats from the air via adversary drones.17 Non-state actors, like the 

Islamic State and Hezbollah, are employing commercial drone technology to contest 

localized air superiority.18 Similarly, state actors, like China and Russia, are investing in 

swarm technology, leveraging the use of higher quantities of cheap systems to offset an 

American qualitative advantage.19 With both non-state and state actors advancing drone 

and swarm technology to gain a competitive advantage, the American Way of War20 risks 

losing its presumption of air dominance by not adapting to new technologies.  

Moreover, as America pivots its National Security Strategy to focus on countering 

near-peer adversaries, the fight against violent extremist organizations will still require 

attention and resources.21 Operating in this complex strategic environment will require 

innovative solutions that capitalize on the decreasing costs and increasing capabilities of 

employing trained swarms of autonomous systems. As articulated by Secretary Mattis, 

technology, alone, will never ensure success in war.22 Instead, the services need a 

strategic solution to integrate and operationalize new technologies. The emergence of AI, 

machine learning, and autonomous systems is calling for a change in the American way 

of fighting, but overcoming the operational challenges to meet the growing demand for 

swarming autonomous systems requires an updated framework to better train and equip 

the emerging human-autonomy teams. 

                                                 
17 Thomas Gibbons-Neff, “ISIS Drones are Attacking U.S. Troops and Disrupting Airstrikes in 

Raqqa,” Washington Post, June 14, 2017, 
https://www.washingtonpost.com/news/checkpoint/wp/2017/06/14/isis-drones-are-attacking-u-s-troops-
and-disrupting-airstrikes-in-raqqa-officials-say. 

18 Don Rassler, “Remotely Piloted Innovation: Terrorism, Drones, and Supportive Technology,” 
Combating Terrorism Center, October 20, 2016, https://ctc.usma.edu/remotely-piloted-innovation-
terrorism-drones-and-supportive-technology/. 

19 Kania, “Battlefield Singularity,” 2017. 
20 Brian McAllister Linn, “The American Way of War Debate: An Overview,” Historically Speaking 

11, no. 5 (2010): 22–23, https://muse.jhu.edu/article/405440/summary. 
21 Aaron Mehta, “National Defense Strategy Released with Clear Priority: Stay Ahead of Russia and 

China,” Defense News, January 19, 2018, https://www.defensenews.com/breaking-
news/2018/01/19/national-defense-strategy-released-with-clear-priority-stay-ahead-of-russia-and-china/. 

22 Clark, “Mattis’ Defense Strategy,” 2018. 
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B. OPERATIONAL CHALLENGES 

The principle challenge to adapting a military force to integrate swarm warfare is 

solving the span-of-control problem for an increasing quantity of autonomous systems, 

and thereby rebalancing the workload of the human-autonomy teams.23 As a recent effort 

by the Marine Corps Warfighting Lab shows, responsively controlling individual 

decisions of large numbers of drones is beyond the cognitive capabilities of a single 

human.24 The speed, complexity, and scope required to effectively employ a large force 

of drones will make the current frameworks, which rely heavily on the human operator, 

obsolete. Therefore, in order to effectively employ drones as a swarm, the human must 

delegate more freedom of action to the collective decision-making algorithms of the 

autonomous systems. Delegating more decisions to the autonomous systems enables the 

human to focus on issues related to mission objectives, risks, and ethical concerns, 

instead of micromanaging drones’ actions in a dynamic battlespace. Although there are 

efforts focused on making the hardware, software, and interfaces for drones better at a 

tactical level, there is a gap in the research for how the military can operationalize 

decentralized mission-specific behaviors for swarms. This gap results in a human-

autonomy team that levies significant work on the human to make most of the collective 

swarming decisions and to centrally control the systems with real-time interfaces. 

An additional barrier to operationalizing this emerging technology is the ethical 

debate that centers on the application of autonomous weapons systems (AWS). The use 

of AWS has received various objections, which include views that their employment 

generates a responsibility gap, that AWS should not be used to make moral decisions 

because moral agency is not codifiable, or that even if they were determined to be moral 

                                                 
23 George Galdorisi, “Keeping Humans in the Loop,” Proceedings 141, no. 14 (2015), 

https://www.usni.org/magazines/proceedings/2015-02/keeping-humans-loop; Talya Porat, Tal Oron-Gilad, 
Michal Rottem-Hovev, and Jacob Silbiger, “Supervising and Controlling Unmanned Systems: A Multi-
phase Study with Subject Matter Experts,” Frontiers in Psychology 7 (2016): 568, 
https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00568/full. 

24 Gina Harkins, “Marines Test New Drone Swarms a Single Operator Can Control,” Military.com, 
July 23, 2018, https://www.military.com/defensetech/2018/07/23/marines-test-new-drone-swarms-single-
operator-can-control.html. 
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agents, they would be making moral decisions based on amoral motivations.25 In 2017, 

leaders within the AI community called on the United Nations to ban the development of 

AWS. Additionally, in 2018, three thousand Google employees demanded an end to the 

company’s partnership with the DoD, stating “We believe that Google should not be in 

the business of war.”26 However, as technology changes society, society generates 

defense policy that influences technology; this relationship forms a complex dynamic 

between war and society.27 For instance, in 2017, to establish acceptable limits on the 

development and use of AWS, the civilian-led office for the Under Secretary of Defense 

for Policy produced a document to guide the services as new commercial technology 

emerged.28 Therefore, although the debate is important and ongoing, it does not negate 

the necessity of utilizing the best technology to counteract threats from adversarial state 

and non-state actors. As such, this project focuses on objectively improving the strategic 

frameworks for enhancing swarms, and not focusing on their moral deliberation. 

To overcome these operational challenges within the broader strategic situation, 

this thesis focuses on the following research question: “How can wargames and machine 

learning be combined to train a decentralized swarm of autonomous systems, thereby 

enhancing the human-autonomy team?” By implementing a proof-of-concept of the 

proposed Way of Swarm, the research provides evidence that a machine learning 

program can repeatedly “self-play” a mission-specific wargame to optimize the decision-

making algorithms of an autonomous swarm to (1) achieve the desired overall mission 

objective and (2) reduce the workload of the human to overcome operational challenges.  

                                                 
25 Duncan Purves et al., “Autonomous Machines, Moral Judgment, and Acting for the Right 

Reasons,” Ethical Theory and Moral Practice 18, no. 4 (2015): 851–872, 
https://www.researchgate.net/publication/276307723_Autonomous_Machines_Moral_Judgment_and_Acti
ng_for_the_Right_Reasons. 

26 Scott Shane and Daisuke Wakabayashi, “‘The Business of War’: Google Employees Protest Work 
for the Pentagon,” New York Times, April 4, 2018, https://www.nytimes.com/2018/04/04/technology/google-
letter-ceo-pentagon-project.html. 

27 Rosa Brooks, How Everything Became War and the Military Became Everything: Tales from the 
Pentagon (New York, NY: Simon and Schuster, 2017). 

28 Department of Defense, Autonomy in Weapon Systems, DoD Directive 3000.09 (Washington, DC: 
DoD, 2017), 36, http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/300009p.pdf. 
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C. STRATEGIC FRAMEWORK: TRAINING ALGORITHMS 

An examination of factors that have led to the successful employment of military 

air forces reveals that developing a superior training program (rapid, realistic, and robust) 

has been decisive in the past.29 However, as the character of war changes, training better 

service members is no longer sufficient. In order for autonomous systems to take on more 

of the decision-making workload, the development of a superior training program is 

necessary for autonomous algorithms as well. This approach will enhance the human-

autonomy team by allowing greater decentralized execution for autonomous systems. 

Advancements in AI research have demonstrated that reinforced machine learning 

techniques are capable of playing against themselves to train algorithms that ultimately 

outperform the best human minds. Machine learning programs, such as AlphaGo Zero, 

demonstrated an ability to create novel strategies to complex strategy games, such as Go, 

which rival the strategies perfected by humans studying the game for generations.30 In 

several hours of self-play, the program learned new strategies from an empty slate, 

unbiased by the constraints of human best practices. AlphaGo Zero now sets a standard 

for what it means to “train with the best in the world,” as machine learning techniques are 

challenging the understanding for what is possible for a machine to learn and master.  

Similarly, this thesis demonstrates that a swarm of autonomous systems could 

master swarming tactics by combining machine learning principles and reinforced self-

play of mission-specific wargames in a rapid, agile, and flexible training framework. 

Ultimately, the research of this thesis supports that the proposed framework could solve 

the span-of-control problem in order to better integrate machine learning and autonomous 

systems into America’s military and successfully adapt its way of fighting. 

                                                 
29 Ralph E. Chatham, “The 20th Century Revolution in Military Training,” in Development of 

Professional Expertise: Toward Measurement of Expert Performance and Design of Optimal Learning 
Environments, ed. Ericsson KA (UK: Cambridge University Press, 2009), 27–60. 

30 David Silver et al., “Mastering the Game of Go Without Human Knowledge,” Nature 550, no. 7676 
(2017): 354, https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/. 
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D. SIGNIFICANCE OF THE RESEARCH 

Advances in AI and autonomous systems stand to change the character of war; 

this necessitates a re-evaluation of the concepts relative to training the operational force. 

The proposed Way of Swarm demonstrates promise for developing a mastered array of 

mission-specific tactics for training the DoD’s impending swarms of autonomous systems 

and enhancing the resulting human-autonomy teams. The proposed framework leverages 

the capabilities of machine learning to self-play through millions of iterations of 

wargames with a rapid, agile, and flexible process that adjusts to changing real-world 

assumptions and field-tested observations. Ultimately, training high-quality algorithms 

for the DoD’s drone swarms and teaming them with their service members will help 

America maintain a competitive advantage... just as a focus on training the best quality 

service members has been strategically decisive for the military in the past.  

The following chapters show the results of thesis research and experimentation, 

supporting the claim that the proposed framework can effectively train decentralized 

decision-making algorithms for swarms of autonomous systems. Chapter II begins by 

exploring the paradigm of swarming warfare, valuable lessons from the study of warfare, 

and current DoD efforts for developing drone swarm tactics. It concludes by examining 

advancements in machine learning and its increasing potential for training algorithms. 

Chapter III outlines the development of a custom-built model, consisting of a swarming 

wargame and a modified machine learning algorithm, that serves as a proof-of-concept 

for testing the proposed framework. Chapter IV presents the experimental design and an 

analysis of the results that evaluates the effectiveness of the custom training model. The 

analysis shows that in only several days of simulation, the machine learning technique 

was able to self-play two million iterations of the wargame, improving the success of a 

base-defense swarm of drones by nearly 80% effectiveness. Finally, Chapter V concludes 

with major findings from this thesis, relevant applications for the DoD, and the benefits 

of further research that leverages higher fidelity wargames and more advanced machine 

learning techniques to operationalize the proposed algorithm training framework. 
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II. LITERATURE REVIEW 

The encountering of swarms of autonomous systems31 and AI decision-making 

tools32 on the battlefield is no longer merely science fiction. Profitable commercial 

investments are now driving private and academic institutions to research and publish on 

both of these new technologies.33 As the National Defense Strategy emphasizes, “The 

drive to develop new technologies is relentless, expanding to more actors with lower 

barriers of entry, and moving at an accelerating speed.”34 Consequently, not only are 

these technologies continuing to disrupt the character of war, but also their associated 

active research is presenting an opportunity to reassess existing frameworks, and revise 

them, to maintain a competitive military advantage. By exploring relevant works about 

these technologies, and by assessing the current DoD-sponsored framework for training 

swarm tactics, this literature review reveals that the service-wide demand for autonomous 

systems is outpacing the ability to match inexpensive hardware with quality software for 

deploying effective autonomous swarms. Therefore, this thesis focuses on an overlooked 

area in the current literature, investigating how insights from the study of war and recent 

advancements in machine learning can help address this software gap. 

The following chapter is presented in five sections. First, the chapter explores the 

paradigm of swarming warfare, highlighting the demand and limitations of autonomous 

systems and their decision-making algorithms to execute decentralized swarm behaviors. 

Second, the chapter analyzes key lessons learned from the general study of warfare, 

including why training and mission command principles were critical factors in the past 

for integrating technology and adapting American forces to a new way of fighting. Third, 

                                                 
31 Raf Sanchez, “Russia uses Missiles and Cyber Warfare to fight off ‘Swarm of Drones’ Attacking 

Military Bases in Syria,” Telegraph, January 9, 2018, https://www.telegraph.co.uk/news/2018/01/09/russia-
fought-swarm-drones-attacking-military-bases-syria/. 

32 Mike Lynch, “AI Cyberattacks Will be Almost Impossible for Humans to Stop,” Wired, December 
28, 2017, https://www.wired.co.uk/article/ai-cyberattack-mike-lynch/. 

33 Daniel Hoadley, Artificial Intelligence and National Security, CRS Report No. R45178 
(Washington Congressional Research Service, 2018), https://fas.org/sgp/crs/natsec/R45178.pdf. 

34 Mattis, 2018 National Defense Strategy, 2018, 3. 
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the chapter covers a DoD-sponsored framework for developing swarm tactics and offers 

an assessment on its strengths and weaknesses. Fourth, the chapter presents research in 

the field of machine learning, which is revolutionizing algorithm designs for complex 

strategy games, and demonstrates a potential for training swarming algorithms. Finally, 

the chapter concludes with how the insight gained improves the proposed Way of Swarm, 

while also discussing challenges and anticipated critiques to the framework.  

A. THE VALUE OF SWARM WARFARE 

Employing a formation of relatively simple, replaceable, and independent agents 

that function as members of a formidable force is not a new tactic observed in combat.35 

As with other military tactics, nature first evolved the concepts for employing swarming 

agents in warfare through millions of years of iterative predator and prey encounters.36 In 

natural conflicts, agents of ants, bees, birds, and fish enhanced their species’ ability to 

survive in hostile environments by evolving swarming tactics for defensive and offensive 

purposes.37 Mimicking the effectiveness of these biological species, military strategists 

incorporated similar swarm tactics throughout centuries of warfare. In classical conflicts, 

agents of horse archers and mounted cavalries executed a variation of swarming tactics, 

which scholars attribute to the success of leaders such as Genghis Khan and Napoleon.38 

In future conflicts, agents of autonomous systems will continue to improve the strength of 

these tactics evolved and executed in natural and classical swarms; moreover, they will 

have the resources to employ swarms at unprecedented scales and speeds.  

In the modern context, the term autonomous system refers to “a system that can 

independently compose and select among alternative courses of action to accomplish 

                                                 
35 Andrew Sanders, “Drone Swarms,” (monograph, United States Army Command and General Staff 

College, 2017), 6–9, http://www.dtic.mil/docs/citations/AD1039921. 
36 Joel Brown and Thomas Vincent, “Organization of Predator‐Prey Communities as an Evolutionary 

Game,” Evolution 46, no. 5 (1992): 1269–1283, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-
5646.1992.tb01123.x. 

37 Simon Garnier et al., “The Biological Principles of Swarm Intelligence,” Swarm Intelligence 1, no. 
1 (2007): 3–31, https://link.springer.com/article/10.1007/s11721-007-0004-y. 

38 Sanders, “Drone Swarms,” 2017, 6. 
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goals based on its knowledge and understanding of the world, itself, and the local 

dynamic context.”39 When referring to a cohesive group of autonomous systems, the term 

swarming characterizes the “collective cooperative dynamics of a large number of 

decentralized distributed robots through the use of simple local rules.”40 Military scholars 

contend that swarming tactics composed of autonomous systems will be effective for 

combat due to a combination of resiliency and versatility.41 A swarming force is resilient 

if it has a sufficient quantity of expendable agents to sustain losses, meaning that any 

particular agent is replaceable and that no single agent is a critical vulnerability to the 

entire collective. Additionally, a swarming force is versatile if it can best decide when 

and where to rapidly transition (or “pulse”) from executing a dispersed maneuver to 

establishing a massed presence at a single position. Although a swarm can become more 

resilient with a greater quantity of autonomous systems, it does not inherently become 

more versatile, unless each agent can independently make smart local decisions that map 

to an overall mission objective without a centralized controller. 

High-performance and low-cost autonomous systems are becoming the ideal 

agents for swarming warfare. Commercially available autonomous systems, at the cost of 

a few hundred dollars each, are capable of automatic flight controls, high-definition 

imagery, speeds of 45 miles per hour, and altitudes up to 20,000 feet.42 Modified aerial 

drone designs can even reach flying speeds of 180 miles per hour.43 Compared to the cost 

of a single fighter aircraft ($100M), or military remotely piloted aircraft ($17M), a force 

                                                 
39 Andrew Ilachinski, “Artificial Intelligence and Autonomy: Opportunities and Challenges,” Center 

for Naval Analyses, 2017, https://www.cna.org/cna_files/pdf/DRM-2017-U-014796-Final.pdf. 
40 Ibid. 
41 Kathleen Giles and Kristin Giammarco, “Mission-based Architecture for Swarm Composability 

(MASC),” Procedia Computer Science 114 (2017), 
https://www.sciencedirect.com/science/article/pii/S1877050917317994. 

42 DJI, “Phantom 4 Specs,” 2017, http://www.dji.com/phantom-4/info#specs. 
43 Lisa Segarra, “This Racing Drone Just Set a Guinness World Speed Record,” Fortune, July 14, 

2017, http://fortune.com/2017/07/14/fastest-drone-guinness-world-record/. 
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could purchase and employ tens of thousands of small aerial drones on the battlefield.44 

With this expendability, losing dozens or hundreds of drones per day becomes an 

acceptable loss, thereby satisfying the desired swarming trait of resiliency.  

Despite improvements in expendable autonomous systems, the methods, and tools 

necessary for designing quality decision-making software for them to execute versatile 

swarming tactics continues to lag behind. Research highlights that while “methods exist 

to facilitate the unique design requirements of robotic swarms, no general method exists 

that maps individual rules to (desired) group behavior.”45 Thus, there is no current 

method for leveraging the military’s high quantities of low-cost systems with the quality 

of software needed to be successful. Furthermore, if each drone requires a proportional 

increase in the workload of human controllers, then there is a diminishing return for 

fielding the higher quantity swarm. In these cases, success will come down to the 

quality—not the quantity—of the swarming software. 

B. INSIGHT FROM THE PAST 

To anticipate what developing quality decision-making software might mean for 

autonomous swarms, this section examines what developing quality decision-making 

processes looked like for military forces of the past. Throughout history, the wartime 

performance of forces has, to a large degree, depended on the quality of their training; it 

was not the technology that won a battle, but how the overall force operated the hardware 

that determined the outcome.46 Historians contend that “the human in the loop is usually 

the limiting element in the combat effectiveness of the weapon… funding the weapon is 

not sufficient… we must also fund the warrior.”47 Historical analysis of aerial combat 

                                                 
44 Christopher Drew, “Lockheed Lowers Price on F-35 Fighters, After Prodding by Trump,” New 

York Times, February 3, 2017, https://www.nytimes.com/2017/02/03/business/lockheed-lowers-price-on-f-
35-fighters-after-prodding-by-trump.html; Air Force Fact Sheets, “MQ-9 Reaper,” September 23, 2015, 
http://www.af.mil/About-Us/. 

45 Ilachinski, “Artificial Intelligence and Autonomy,” 2017, xviii. 
46 Chatham, “The 20th Century Revolution in Military Training,” 2009. 
47 Ibid., 59. 



13 

provides numerous examples that support this axiom.48 The Vietnam War provides the 

most compelling of these examples, driving a revolution in military training across the 

services. Even though the Air Force led in every aspect of hardware, they suffered heavy 

losses at the hands of the North Vietnamese Air Force with only a two-to-one air-to-air 

kill ratio. Although some military historians argue that a number of conflating factors 

were to blame, others point to the significance of training by citing the success of the 

Navy’s rigorous and realistic Top Gun program, which contributed to a twelve-to-one air-

to-air kill ratio during the same timeframe.49 After the conclusion of Vietnam, both the 

Army and Air Force built on their experiences and institutionalized the concepts 

pioneered by the Navy with the development of large force combat exercises like Red 

Flag and brigade-sized training at the National Training Center.50  

Institutionalizing realistic exercises, focused on employing hardware at a tactical 

level, was one way the military leveraged the concept of wargaming to revolutionize its 

training; but the military also began to leverage computer-based wargames to train 

operational and strategic level decision making. In this context, wargames refer to 

“analytic games that simulate aspects of warfare at the tactical, operational, or strategic 

level… used to examine warfighting concepts, train and educate commanders and 

analysts, [and] explore scenarios.”51 Militaries throughout history have used wargames to 

gain insight and improve performance dating back to the 5th century B.C. with the 

Greeks playing Petteia, the 6th century A.D. with the Persians and Europeans playing 

                                                 
48Anthony H. Cordesman and Abraham R. Wagner, “The Lessons of the 1973 Arab-Israeli Conflict: 

October War,” in The Lessons of Modern War: Volume 1: The Arab-Israeli Conflict, 1973–1989, ed. 
Abraham R. Wagner (Boulder, CO: Westview Press, 1990); Rebecca Grant, “Flying Tiger, Hidden 
Dragon,” Air Force Magazine, March 2002, 70–77, 
http://www.airforcemag.com/MagazineArchive/Documents/2002/March%202002/0302tiger.pdf; Jeffrey S. 
Johnson, “Initiative in Soviet Air Force Tactics and Decision Making,” (master’s thesis, Naval 
Postgraduate School, 1986), https://calhoun.nps.edu/handle/10945/21923; William W. Momyer, “The 
Counter Air Battle (Air Superiority),” in Airpower in Three Wars [WWII, Korea, Vietnam] (Maxwell AFB, 
AL: Air University Press, 2003). 

49 Brian D. Laslie, The Air Force Way of War: U.S. Tactics and Training after Vietnam (Lexington, 
Kentucky: University Press of Kentucky, 2015). 

50 Jim Robbins, “America’s Red Army,” New York Times, April 17, 1988, 
https://www.nytimes.com/1988/04/17/magazine/americ-s-red-army.html. 

51 “Wargaming,” RAND, accessed September 20, 2018, https://www.rand.org/topics/wargaming.html. 
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Chess, or the 19th century with Prussians playing Kriegsspiel.52 More recently, the 

German and Japanese militaries used wargames in WWII before executing their 

operations in Poland and Pearl Harbor, respectively.53 Likewise, the United States used 

wargames in WWII to refine their operational strategy to counter German U-boats.54 

Today, not only are analytic wargames used to provide insight on countering threats like 

Russia,55 non-automated wargames are used to “study how people interact in military 

solutions…[and] study human decision-making.”56 Wargames provide a way to test and 

develop solutions in a low risk environment57 that utilize traditional planning methods.58  

Besides evaluating how forces trained, and integrating computer-based wargames, 

the military began to focus on ways to maximize the decision-making process of every 

serviceman. The Air Force started to train aircrews a decision-making model based on 

observing their environment, orienting possible solutions, deciding based on limited 

information, and acting to achieve a desired effect. Colonel John Boyd, a Korean War 

fighter pilot, coined this observe, orient, decide, act (OODA loop) decision-making 

                                                 
52 Roger Smith, “The Long History of Gaming in Military Training,” Simulation & Gaming no. 41 

(2010): 6–19, http://journals.sagepub.com.libproxy.nps.edu/doi/pdf/10.1177/1046878109334330. 
53 Charles Homans, “War Games: A Short History,” Foreign Policy, August 31, 2011, 

https://foreignpolicy.com/2011/08/31/war-games-a-short-history/.  
54 William Thomas, “Meta-Calculations and the Mathematics of War,” In Rational Action: The 

Sciences of Policy in Britain and America, 1940–1960, ed. Jed Buchwald (Cambridge, MA: MIT Press, 
2015), 99–102. 

55 David Shlapak, “The Russian Challenge,” PE 250-A (Santa Monica, CA: RAND, 2018), 
https://www.rand.org/pubs/perspectives/PE250.html 

56 Matthew Schehl and Khaboshi Imbukwa, “Student Wargaming Activities Address Sponsors’ Direct 
Needs,” Naval Postgraduate School, July 11, 2018, https://my.nps.edu/-/student-wargaming-activities-
address-sponsors-direct-needs. 

57 Michael Peck, “Why the Pentagon Loves War Games Again,” National Interest, May 14, 2016, 
https://nationalinterest.org/feature/why-the-pentagon-loves-war-games-again-16197; Yuna Huh Wong, 
“How can Gaming Help Test your Theory?” RAND Blog, May 18, 2016, 
https://www.rand.org/blog/2016/05/how-can-gaming-help-test-your-theory.html. 

58 Department of the Army, Military Decision-Making Process, FM 101–5 (Washington, DC: 
Department of the Army, 1997), http://www.au.af.mil/au/awc/awcgate/army/fm101-5_mdmp.pdf; 
Department of the Air Force, Risk Management (RM) Guidelines and Tools, AF Pamphlet 90–803 
(Washington, DC: Department of the Air Force, 2013), http://static.e-
publishing.af.mil/production/1/af_se/publication/afpam90-803/afpam90-803.pdf. 
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process in the 1970s.59 The Air Force leveraged this concept to “change the way it 

prepared the aircraft’s brain, its pilot, for combat.”60 Boyd taught his OODA loop model 

at the newly formed Air Force Weapons School under the premise that if a force can 

make decisions faster than an enemy force, they stand to gain a competitive advantage in 

combat.61 Additionally, the Air Force created the designed operational capability (DOC) 

statement, which leveraged Boyd’s concept of accelerating the decision-making cycle.62 

Realizing the cognitive limitations of the human pilot, DOC statements focused each Air 

Force squadron’s OODA loop on only one primary and one secondary mission, as 

opposed to general utility squadrons that were jacks of all trades, but masters of none. 

Lastly, the Air Force adopted a building-block training method that initially focused on 

basic skills and knowledge, gradually built to tactical proficiency, and finally culminated 

in a validation phase with live complex scenarios that included realistic opposing forces. 

Moreover, as the speed, complexity, and scope of military operations increased 

over the years, the services also managed to succeed in solving their span-of-control 

limitations by training and leveraging the concept of decentralized execution.63 

Historians have credited this concept as a key factor in Napoleon’s success, which 

reshaped warfare in his time, and continues to have relevance today.64 Specifically, 

decentralized execution emerged as one of the fundamental tenets of the “Air Force Way 

of War,” as it adapts to new generations of aircraft with exceptional speeds, range, and 

                                                 
59 Frans Osinga, Science, Strategy, and War: The Strategic Theory of John Boyd (London, UK: 

Routledge, 2007). 
60 Laslie, Air Force Way of War, 2015. 
61 Robert Coram, Boyd: The Fighter Pilot Who Changed the Art of War (New York, NY: Little, 

Brown and Company, 2002). 
62 Laslie, Air Force Way of War, 2015. 
63 Clint Hinote, Centralized Control and Decentralized Execution: A Catchphrase in Crisis? 

(Maxwell AFB, AL: Air Force Research Institute, 2009), 
https://permanent.access.gpo.gov/gpo23521/a550460.pdf. 

64 Antoine Bousquet, The Scientific Way of Warfare: Order and Chaos on the Battlefields of 
Modernity (London, UK: Hurst and Company, 2009); Jim Storr, “A Command Philosophy for the 
Information Age: The Continuing Relevance of Mission Command,” Defense Studies 3, no. 3 (2003): 119–
129, https://www.tandfonline.com/doi/pdf/10.1080/14702430308405081. 
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flexibility.65 All of the services now use the term mission command to embody the 

importance of maintaining decentralized execution in war.66 Mission command benefits 

forces by preserving tactical flexibility through a commander’s intent, allowing 

subordinate leaders to seize initiative by acting aggressively and thinking independently, 

to accomplish their assigned mission. 

Just as rigorous training, computer-based wargaming, faster decision making, and 

decentralized execution were critical factors in past contexts, it is reasonable to assume 

they will be critical in future contexts with swarms of autonomous systems. Researchers 

looking at future wars contend that the decisive factor in the quality of autonomous 

swarms will be the OODA-loop-like algorithms inside the hardware that will act either 

independently or in tandem with the human operators.67 In short, training humans will no 

longer be adequate for maintaining a competitive advantage. Instead, training algorithms 

will become increasingly critical to maximizing the effectiveness of the human-autonomy 

teams. Quality algorithms will enable more flexibility in the tactical environment and 

allow for decentralized execution at an unprecedented scale. Thus, as the character of war 

changes, a strategic framework that can rapidly train algorithms and can build trust and 

confidence between the human and the autonomous system holds vast potential.68 

C. FRAMEWORKS FOR TRAINING SWARM TACTICS 

The revolution in the American military training programs after the Vietnam War 

lack a fundamental component in today’s changing environment: strategies for not only 

developing operators to optimize the human decision-making process, but for training the 

autonomous systems to observe, orient, decide, and act on behalf of human-specified 

                                                 
65 Laslie, Air Force Way of War, 2015. 
66 Department of the Army, Operations, FM 3–0 (Washington, DC: Department of the Army, 2017), 

https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN6687_FM%203-
0%20C1%20Inc%20FINAL%20WEB.pdf. 

67 Peter W. Singer, Wired for War: The Robotics Revolution and Conflict in the 21st Century (New 
York, NY: Penguin Press, 2009). 

68 Ranjeev Mittu, Donald Sofge, Alan Wagner, and William Frere Lawless, Robust Intelligence and 
Trust in Autonomous Systems (Boston, MA: Springer, 2016). 
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objectives. Autonomy, implemented through refined algorithms, allows machines to 

process and multitask decision-making loops independently when assigned broad tasks 

by humans. Technology has advanced to the point where the human decision-making 

cycle could limit the overall potential of swarms of autonomous systems. Therefore, the 

DoD should continue to pursue ways to optimize the human-autonomy team that involve 

delegating more freedom of action to their swarming autonomous systems (Figure 1).69  

 

Figure 1.  Decision-Making Process for a Human-Autonomy Team70 

Efforts to enable cooperative dynamics or to engineer active swarming behaviors 

are still nascent in the military’s pursuits for autonomous systems in the air, land, and sea 

domains.71 For example, in 2015, the Office of Naval Research, under the Low-Cost 

UAV Swarming Technology (LOCUST) program, successfully controlled thirty aerial 

                                                 
69 Department of Defense, Task Force Report: The Role of Autonomy in DoD Systems (Washington, 

DC: Department of Defense, 2012), https://fas.org/irp/agency/dod/dsb/autonomy.pdf. 
70 Adapted from Osinga, Strategic Theory of John Boyd, 2007, 2; U.S. Air Force Office of the Chief 

Scientist, Autonomous Horizons, 2015, 7. 
71 Daniel Gonzales and Sarah Harting, Designing Unmanned Systems with Greater Autonomy, RR 

626-OSD (Santa Monica, CA: RAND, 2014), 
https://www.rand.org/content/dam/rand/pubs/research_reports/RR600/RR626/RAND_RR626.pdf. 
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drones autonomously over a predetermined path.72 In 2016, the program conducted its 

largest test by airdropping and controlling 103 Perdix micro-drones from an F-18 Super 

Hornet. The Perdix drones conducted low-altitude reconnaissance missions and operated 

in “small and large swarms to perform their missions.”73 Most recently, in 2018, the 

Navy added its first drone ship to the fleet, with future hopes of interconnecting multiple 

vessels as an autonomous swarm to scan the world’s oceans.74 Executing at even larger 

scales, commercial companies hold the world record for the highest number of drones 

controlled simultaneously. American and Chinese companies, such as Intel and Ehang, 

flew a thousand “light-show” quadcopter drones for marketing and entertainment value.75 

Although all of these military and commercial efforts are advancing the field of swarm 

research and application, they still face major challenges. First, they all require extensive 

man-hours to develop the swarm algorithms. Additionally, the developed algorithms are 

“static” in that they are only able to conform to pre-programmed patterns and formations. 

In other words, the swarming agents lack a robust set of individual rules that drive a 

dynamic and emergent group behavior. Lastly, they all require significant workload from 

the human operator during execution to achieve their specific objectives. 

Many working in the field of autonomous systems research have recognized the 

value of training swarms, but they have used different approaches and means to leverage 

its benefits. Some teams have taken a bottom-up approach, looking to develop complex 

                                                 
72 Kevin McCaney, “Day of the LOCUST: Navy Demonstrates Swarming UAVs,” Defense Systems, 

April 15, 2015, https://defensesystems.com/articles/2015/04/15/onr-locust-swarming-autonomous-uavs. 
73 Department of Defense, “Perdix Fact Sheet,” Accessed on February 11, 2018, 

https://dod.defense.gov/Portals/1/Documents/pubs/Perdix%20Fact%20Sheet.pdf. 
74 Joseph Trevithick, “Navy’s Sea Hunter Drone Ship Is Getting a New Owner, New Abilities, and a 

Sister,” Drive, February 6, 2018, http://www.thedrive.com/the-war-zone/18264/navys-sea-hunter-drone-
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75 Brian Barrett, “Inside the Olympics Opening Ceremony World-Record Breaking Drone Show,” 
Wired, February 9, 2018, https://www.wired.com/story/olympics-opening-ceremony-drone-show/; Jeffrey 
Lin and P.W. Singer, “China is Making 1,000-UAV Drone Swarms Now,” Popular Science, January 8, 
2018, https://www.popsci.com/china-drone-swarms. 
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emergent swarm behaviors from basic subcomponents.76 These teams have used agent-

based models to study rule sets created for groups of autonomous agents and how they 

interact with a simulation environment. Others argue that the bottom-up approach can 

“often risk failing to meet higher-level system requirements if design begins before a 

higher-level system architecture is established.”77 Instead, these researchers put forth a 

top-down approach for developing a framework of phases, tactics, plays, and basic 

algorithms that nest under a specific military mission. 

One DoD sponsored effort for training swarms through a top-down approach is 

DARPA’s Offensive Swarm-Enabled Tactics (OFFSET) program.78 OFFSET proposes to 

use a real-time game environment, and a virtual reality interface, to allow users to derive 

novel swarm tactics for autonomous systems through crowd-sourcing methods.79 By 

applying a top-down approach to swarm tactic designs,80 and by using mission-specific 

games to train, test, and employ swarming capabilities, the OFFSET framework is also 

helping to advance the field of swarm design. The program plans to pair its framework 

with baseline swarm characteristics produced by the Navy’s LOCUST program.81  

Despite the advantages of OFFSET, there are three limitations with this current 

DoD framework. First, relying on crowd-sourcing efforts may be problematic to maintain 

                                                 
76 Andrei Borshchev and Alexei Filippov, “From System Dynamics and Discrete Event to Practical 

Agent Based Modeling,” In International Conference of the System Dynamics Society (July 2004), 25–29, 
https://www.systemdynamics.org/assets/conferences/2004/SDS_2004/PAPERS/381BORSH.pdf; Ryan 
McCune, et al., “Investigations of DDDAS for Command and Control of UAV Swarms with Agent-Based 
Modeling,” In Proceedings of the 2013 Winter Simulation Conference: Making Decisions in a Complex 
World (December 2013), 1467–1478, https://ieeexplore.ieee.org/document/6721531; Mauricio Munoz, 
“Agent-based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm” 
(master’s thesis, Naval Postgraduate School, 2011), https://calhoun.nps.edu/handle/10945/5700. 

77 Giles and Giammarco, “Mission-based Architecture for Swarm Composability (MASC),” 2017. 
78 “OFFensive Swarm-Enabled Tactics (OFFSET),” DARPA, accessed September 20, 2018, 

https://www.darpa.mil/work-with-us/offensive-swarm-enabled-tactics. 
79 Alec Meden, “DARPA’s Game of Drones,” Atlantic Council, accessed October 9, 2018, 

http://artoffuturewarfare.org/2016/12/darpas-game-of-drones/. 
80 Giles and Giammarco, “Mission-based Architecture for Swarm Composability (MASC),” 2017. 
81 “DARPA Adds Two Companies to OFFSET Swarm Reconnaissance Drone Research Project,” 

Military Aerospace, May 8, 2018, https://www.militaryaerospace.com/articles/print/volume-29/issue-
4/unmanned-vehicles/darpa-adds-two-companies-to-offset-swarm-reconnaissance-drone-research-
project.html. 
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over time; the size of the “crowd” may not be sustainable as interest (and funding) in the 

project ebbs and flows. Second, as different hardware and environments are ready for 

testing, a crowd-sourcing reliant method is cumbersome to rapidly repeat in training. The 

framework would require lengthy real-time replays of all the previously generated data to 

determine what behaviors are now obsolete or what algorithms may have become better 

tactical solutions with any changes to the hardware or environmental assumptions. Third, 

OFFSET over-emphasizes the need for real-time execution of swarms.82 The framework 

uses a controlling application where drone swarms move via “point-and-click” through 

the battlespace. Not only does this approach reduce the speed and initiative of swarms in 

operations, but the real-time aspect of the application limits the ability to speed up 

repetitions to train through thousands of potential tactical scenarios in seconds.  

Understanding that there is a demand for DoD swarming systems, the importance 

of training to generate quality decision-making processes, and that there is a gap in the 

current framework for training quality algorithms, the literature review now pivots to 

research in the field of narrow AI and machine learning to present a novel solution.  

D. REVOLUTIONS IN MACHINE LEARNING 

As with the theory behind swarming tactics, the theory behind machine learning is 

also not conceptually “new.” Modeling decision making as an “artificial neural network” 

first appeared in articles in the 1950s, supported by mathematical research inspired by the 

firing of neurons in the human brain.83 Progressing from early mathematical models, 

computer scientists developed fields of study around machine learning and continue to 

improve their techniques. The combination of greater access to large networked databases 

and exponential advances in computing power, particularly graphic processing units, 

allowed for theoretical machine learning techniques, like deep learning, to become a 
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf. 



21 

reality.84 In 2015, computer scientist made substantial strides in machine learning by 

achieving human-level performance in an algorithm trained to play a wide variety of 

video games, demonstrating the technology’s potential to rapidly find game-specific 

solutions.85  

The concept of machine learning is a subset, though often cited synonymously, to 

the broader concept of AI. Machine learning describes a method to design a software 

algorithm where the person does not directly code the resulting decision-making logic.86 

Instead, the person specifies the parameter for inputs, outputs, and metrics for testing the 

results, and allows the machine to “learn” patterns through comparisons of training data. 

After sufficient iterations, the algorithm learns an optimal way to categorize or predict the 

best output given a new (untrained) input. What makes this technique powerful is that 

modern computers are able to iterate through millions of distinct algorithm configurations 

in short timespans.87 Given proper parameters, and data for training, the result of using 

machine learning will be an algorithm that can reliably accomplish a specific task.88 

Machine learning has three main techniques for training algorithms: supervised, 

unsupervised, and reinforcement learning.89 Supervised learning occurs when the 

solution has a known answer for a particular input. The software can work backward 

from known output-to-input to determine the proper weights and biases to assign to the 
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logic to get the desired results. Unsupervised learning is when there is no set result, but 

lots of data, and the programmer is relying on the software to suggest patterns in the 

datasets that may highlight hidden internal relationships. Reinforcement learning is 

teaching an agent how to solve a task in a simulated environment through trial-and-error 

and with rewards and punishments. While all machine learning techniques are useful in 

certain contexts, the emergence of reinforcement learning and its ability to train in an 

environment with little or no existing data, holds particular promise for training drone 

swarms how to operate.  

The novel approach that Google used in 2017 with its AlphaGo Zero project was 

applying the machine learning technique of reinforcement learning to a data sparse game 

environment to solve a problem of unprecedented complexity.90 In other words, the 

machine learning algorithm did not leverage an existing database of game solutions or 

previous information. Thus, with only the rules of the game, AlphaGo Zero experimented 

through self-play to accumulate generations worth of experience in the span of days and 

discover champion-level strategies. Similarly, applying machine learning techniques in 

data sparse environments related to mission-specific military wargames has the potential 

to change the character of war, specifically how future militaries will train to fight.  

E. A WAY OF SWARM: STRENGTHS AND CRITIQUES 

The combination of the existing DoD-sponsored frameworks that use wargames 

to simulate agent behaviors paired with machine learning techniques can produce a new 

framework that is rapid, flexible, and adaptive. This proposed Way of Swarm addresses 

the weakness of current drone training frameworks by incorporating the rising potential 

of machine learning and the lessons learned from the study of war. First, the combination 

of narrow AI with wargaming is rapid in execution and insulates the framework against 

the instability of crowd sourcing. The dependency on sustaining a crowd is replaced by 

                                                 
90 Silver et al., “Mastering the Game of Go Without Human Knowledge,” 2017. 
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the persistent availability of AI and cloud computing.91 Second, both the narrow AI and 

wargame are flexible and adaptive to changing assumptions, such as new hardware or 

environmental conditions. For instance, if the rules of the game of Go for some reason 

changed tomorrow (like adding a wall in the middle of the board), Google’s framework 

could rapidly be run in days to again master the updated game. In a changing world of 

warfare, this rapid response to change is critical in design. Third, this framework applies 

top-down tactics development, but it does so by allowing the narrow AI to solve local 

drone interaction rules that optimize a global mission objective.92 Hence, the framework 

preserves the principles of mission command and decentralized execution. 

Despite strengths, there are also anticipated critiques for the proposed framework. 

First, producing and combining both high fidelity wargames and cutting-edge machine 

learning algorithms requires the combination of both the private sector’s knowledge in AI 

and military subject matter experts. Unfortunately, friction around these issues has 

already occurred with nearly four-thousand Google employees demanding an end to their 

company’s partnership with the defense department over Project Maven.93 The project 

aimed to leverage narrow AI to reduce the human workload required to process, exploit, 

and disseminate collected intelligence, surveillance, and reconnaissance data. Therefore, 

to continue AI integration to enhance military projects, resolving these partnerships is a 

national imperative. 

A second expected criticism is the risk of the “black box” phenomenon94 of the 

swarm tactics produced by machine learning solutions. This phenomenon occurs when 

there is no rational explanation for the decision an algorithm makes due to the inherent 
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complexity of the machine learning technique used. The black box dilemma forces a 

balance between how much human bias to include in the swarm algorithm of the drones, 

and how much corresponding understanding is needed in the final algorithm. Ultimately, 

there is a balance in how much risk to assume. The trade-off is between low human bias 

and more decision-making flexibility, or high human bias that offers greater insight into 

why an algorithm made a particular decision, which can increase trust and confidence.  

Finally, some critics of computer-based wargames contend that the assumptions 

inherent in computer-based models will produce an unacceptable gap between theory and 

reality.95 According to their claim, this is due to the inability to capture human 

motivations like desire, commitment, passion, or will in simulation.96 Although these 

critiques hold merit, it also depends on the intended use of the wargame. Typically, the 

more specific the computer-based wargame (less generalizable), the more the model is 

representative. Proponents also counter that when researchers validate wargames with 

additional methods, such as live experimentation, their utility for prediction is stronger.97 

Therefore, tailoring the wargame to a specific mission, with a defined set of assumption, 

rather than a wide range of tasks limits the expected swarm behavior and offsets this 

weakness. Additionally, validating the swarm algorithms produced by this framework 

with tests in the field adds another way to mitigate gaps between theory and reality.  
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III. MODEL CONSTRUCTION 

SHALL WE PLAY A GAME?  
—Joshua, WarGames, 198398 

The model constructed for this thesis is a custom-built swarming wargame that is 

playable by a machine learning technique, known as a genetic algorithm, and is scalable 

for rapid training through a cloud-computing service. The wargame incorperates lessons 

learned from autonomous systems research, historic training of decentralized forces, and 

recent advancements in machine learning, and combines them into an architecture that 

focuses on producing emergent swarm behaviors. Although the custom wargame is not a 

high-fidelity or fully-featured implementation of the final Way of Swarm framework, the 

model does provide a proof-of-concept that operates at an appropriately high-level of 

abstraction to serve as a thesis research tool. The primary purpose of this tool is to 

generate quantitative data to explore the following question: “How can wargames and 

machine learning be combined to train a decentralized swarm of autonomous systems, 

thereby enhancing the human-autonomy team?” 

The following chapter is presented in four sections. First, the chapter discusses 

why the wargame was custom designed and why a genetic algorithm was selected for the 

model, as opposed to an existing high-fidelity gaming environment or a more advanced 

machine learning technique. Second, the chapter summarizes the design specifications for 

the wargame, to include the rules of the game, the layout of the gameboard, the assumed 

characteristics of the game agents, and the decision-making algorithm run by the agents. 

Third, the chapter outlines the genetic algorithm that accesses the wargame to help train 

key agent decision-making parameters for the game agents to generate swarm behaviors. 

Finally, the chapter examines the webserver that connects the wargame and the genetic 

algorithm, emphasizing how access to a scalable cloud-computing service incorperated in 

the model was essential to conduct millions of simulations for thesis research.  

                                                 
98 WarGames, directed by John Badham (Los Angeles, CA: United Artists, 1983). 
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A. WHY BUILD A CUSTOM MODEL? 

The literature review indicated that elements of decentralized mission command, 

rapid iterations through self-play, and that scalability to generate results in a data sparse 

environment are important when constructing a useful swarming training model. Initial 

efforts to find an existing industry standard wargame that was suited for pairing with 

machine learning, and also included these design elements, was unsuccessful.99 The 

closest game identified to meet the research requirements was Swarm Commander,100 

produced by a coding team at Naval Postgraduate School—a leading research facility for 

swarming autonomous systems.101 Swarm Commander allows the game user to control a 

collection of simulated drones by building logical scripts and via point-and-click user 

commands. The user moves swarms around a map and assigns them a pre-planned script 

that they execute based on a playbook that the user builds prior to playing the game.  

Although the Swarm Commander game is a constructive tool to explore swarming 

concepts, it lacks three important elements for this thesis research. First, the design of the 

game focuses on a central controller (i.e., the user) to send commands to each drone 

swarm to facilitate game play. In theory, although the decision-making algorithm of a 

centralized machine controller could replace the human with a game modification, this 

would negate the ability to research benefits associated with training decentralized drone 

agents. Second, Swarm Commander runs in a real-time environment. The real-time 

display is ideal for allowing a human user to interact and update new commands to the 

swarms during gameplay, but this design reduces the capacity for a machine learning 

technique to rapidly simulate through thousands of games per minute to test different 
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tactics. Third, the game does not include the support for distributing and coordinated 

simulations across multiple computers (or multiple processors on the same computer) to 

scale the amount of data captured simultaneously. Therefore, without finding an existing 

wargame that met all the research requirements, the thesis team built a custom wargame. 

The thesis team also used a customized adaptation of an existing machine learning 

technique for the research model. Google’s AlphaGo Zero project used deep artificial 

neural networks and a deep reinforcement learning technique to defeat world champions 

in Go, a centrally controlled strategy game (i.e., a single player decides where to place all 

the pieces for each team).102 Theoretically, the team could apply Google’s deep learning 

techniques to a swarming wargame to develop decentralized tactics. However, the deep 

learning techniques still require additional research to determine how to modify the 

neural network parameters to train a decentralized group of agents that can coordinate for 

a collective objective. In other words, the goal for training a decentralized swarm is to 

train the agents themselves (i.e., each Go piece decides where to move or place itself to 

benefit the team), rather than to train a single, central player. Additionally, since artificial 

neural networks can generate a “black-box” solution to problems, neural network 

techniques can reduce trust and confidence in final solutions.103 For these reasons, 

although artificial networks and deep learning shows promise for tackling decentralized 

swarm training in the future,104 the model for this thesis uses an adapted machine 

learning technique known as genetic algorithms. Genetic algorithms are similar to 

artificial neural networks in their evolution-inspired approach to solving optimization 

problems.105 Moreover, genetic algorithms are easier for researchers to explain in their 

execution and were more manageable to implement into the proof-of-concept wargame. 
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B. WARGAME: SWARMING AGENT-BASED MODEL 

The wargame created is a JavaScript agent-based model that simulates high-level 

decisions, actions, interactions, and resulting emergent behaviors for a swarm of friendly 

Blue Force (BLUFOR) aerial drones and a swarm of enemy Red Force (REDFOR) 

ground threats in a hypothetical base-defense scenario. The inputs to the wargame are six 

key parameters for BLUFOR agents and six key parameters for REDFOR agents that 

affect each agents’ local decision-making priorities. After the user, or machine learning 

algorithm, selects the agents’ key parameters, the game creates a stochastic scenario that 

is bound by the wargame assumptions; it then simulates five hours of a base defense 

mission in a fraction of a second. The output of the wargame is a score for much damage 

the base received and represents the effectiveness of the swarm searching algorithm. 

The wargame user interface allows a player to visualize the game environment, 

manually select the six key decision-making parameters per team, and step through the 

resulting simulations at a slower pace (Figure 2). The images on the top reflect the teams’ 

respective heatmaps, or their collectively communicated picture of the world, and the 

slider-bars on the bottom depict the key decision-making parameters selected per team. 

  

Figure 2.  Wargame Interface 
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The primary focus of the wargame is how BLUFOR drones can best communicate 

and position themselves on a gameboard to search and detect a hostile REDFOR. Since 

the focus of the research is on high-level swarm behaviors, the wargame does not model 

aspects of drone flight dynamics, terrain avoidance, or environmental hazards (e.g., wind, 

dust, darkness). Instead, the wargame models the decisions that a drone makes to 

determine its next localized move direction, or on which grid tile that agent should next 

position itself to best support the swarming mission. This move direction is a high-level 

command that enters the drone’s software for a lower-level autopilot software function 

(not modeled) to then determine how to physically maneuver the drone to the proper 

adjacent tile. Importantly, key local decision-making parameters for each team of agents 

are accessible through a machine learning technique that can then use consecutive games 

to learn what parameters optimally produce the most effective swarming behavior.  

1. Rules of the Game 

The wargame is turn-based, meaning all agents conduct their turns in order, based 

on each agent’s calculated action times. Action times depend on agents’ speeds and time  

delays for performing different actions. If two agents’ action times are the same for their 

next action, then the wargame allows simultaneous actions; this ensures impartiality, so 

that no agent always receives a first-mover or last-mover advantage during turns. A full 

turn is complete when all agents execute their simulated decisions and actions. Full turns 

take less than a second to execute in-game, but represent fifteen seconds in real time. 

The starting locations for all agents are controlled at the beginning of the game. 

All of the BLUFOR generate at the base at the start of the game. The REDFOR generate 

from randomly positioned REDFOR starting locations around the edge of the map, and 

they generate across a range of starting times (controlled by a key decision-making 

parameter). REDFOR knows where the BLUFOR base is located from the start of the 

game, but they do not get information about where BLUFOR drones will be searching. 

Additionally, BLUFOR does not have perfect knowledge of REDFOR starting locations 

or their attacking directions. For a BLUFOR agent to detect a REDFOR agent, it must 
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position itself to be flying above them (i.e., in the same tile) and pass a detection check. 

This check is stochastic and depends on several factors outlined further in Section 2. 

The top-down mission design chosen for the wargame is a base defense scenario. 

The mission objective for BLUFOR is to search and detect REDFOR, maintain a steady-

state posture around their base, and minimize the damage inflicted to the base (Figure 3). 

The drone swarm assists in providing reconnaissance around the base and helps identify 

potential threats for other (notional) friendly assets to appropriately remove from the 

gameboard. The mission objective for REDFOR is to get within shooting distance of the 

BLUFOR base (within 15 game tiles) and attack the base to inflict damage.  

 

Figure 3.  Base Defense Mission Overview106 

Each swarm earns a score at the completion of each game based on how much 

damage the base sustains. The base sustains damage when a REDFOR agent is within 

shooting range of the base, chooses to shoot the base (probabilistic), and successfully hits 

the base (probabilistic). Each successful hit does a fixed 1% damage to the base. The base 
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can never reduce its damage through repairs or regeneration. As such, the total base 

damage is a proxy variable to reflect how long it takes for BLUFOR agents to efficiently 

search and detect all the REDFOR agents on the gameboard that are an imminent threat. 

2. Gameboard 

The gameboard is a two-dimensional square grid that measures 7.6 by 7.6 miles. 

The board divides into 76 by 76 tiles (Figure 4). The satellite imagery in the background 

is a notional operating base, selected to provide the user a sense of scale. The gameboard 

does not contain terrain heights or objects (e.g., towers, buildings, trees) that might affect 

maneuverability of either force. Hence, the agents always have the option to move in any 

direction (including diagonals) or remain in their current tile. There are also no limits on 

how many BLUFOR and REDFOR can occupy the same tile location at the same time.  

  

Figure 4.  Example Gameboard 

Each gameboard tile has an assigned detection complexity score that correlates to 

the probability that a drone would be able to find, fix, and track a ground target in that tile 

(e.g., an urban or forested area is scored as a higher complexity score than open terrain). 

The benefits of including a complexity score is that it makes the gameboard asymmetric, 

due to underlying map features, enhances the realism of the scenario, and makes it more 
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challenging for BLUFOR to optimize on a single best solution for a search and detection 

tactics across the entire map. The detection complexity scores are rated as low, medium, 

or high, and are assigned manually based on a visual determination of the tile’s terrain 

composition. The combination of the tile’s detection complexity score, and whether or 

not the REDFOR is actively shooting at the BLUFOR base, generate a detection check 

scale for how likely a REDFOR will be detected by a BLUFOR flying above them. 

Additionally, each gameboard tile has an intelligence priority score that is known 

by each BLUFOR agent at the beginning of the wargame. The intelligence priority score 

corresponds to a known location where intelligence analysts predict a higher likelihood of 

detecting REDFOR (Figure 5). BLUFOR agents access the intelligence priorities score in 

their local search regions to directly influence their individual and collective search 

patterns. Since intelligence assessments are not always perfect, the intelligence priority 

score does not correlate precisely with where REDFOR attacks will originate. However, 

there is a slighltly higher probability of REDFOR starting their attacks from the higher 

intelligence priority score locations (i.e., “hotter” tiles). The scores system also allows the 

user to specificy no-fly zones (black tiles) for sensitive regions around the map, such as 

local runways, and to set the search limit boundaries for the BLUFOR agents. 

 

Figure 5.  Intelligence Priority Scores 
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3. Agent Characteristics 

Each REDFOR agent is a small enemy force that is demonstrating some form of 

hostile intent, or is conducting a hostile act, toward the BLUFOR base. They are best 

visualized as a mortar or sniper team. The REDFOR agents spawn from five locations 

around the edge of the map that correlate (weakly) to the intelligence priority score. 

REDFOR is able to detect BLUFOR agents one tile away (0.1 miles), which they can use 

to adjust the movement decisions for them and the rest of their team. All REDFOR agents 

have infinite ammunition. They have the choice to attack the base anytime they are in 

range, however shooting delays their time for taking their next action and it also increases 

their probability of detection. The chance of a REDFOR agent to successfully hit the base 

with an attack depends on their distance to the base. All successful hits on the base do 1% 

of damage. REDFOR cannot attack BLUFOR drones. 

Each BLUFOR agent is a single drone assigned to help defend the BLUFOR base. 

They are best visualized as a small and inexpensive quadcopter with an autopilot system, 

video camera, and communications hardware (Figure 6). All BLUFOR agents start at the 

base in the center of the gameboard and launch over time to establish a steady state 

launch and recover cycle. Each drone has a finite battery life and will automatically fly a 

profile back to the base to replace its battery when it reaches the limit of its battery. A 

drone battery replacement at the base takes six minutes before the drone can relaunch. 

 

Figure 6.  BLUFOR Agent Representation107 
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The majority of the baseline assumptions for the characteristics of aerial drones 

and the capabilities of hostile ground threats to a base are based on the assumptions used 

in previous research.108 The main agent characteristics are summarized in Table 1.  

Table 1.   Summary of Agent Characteristics 

Team Agent Characteristic Value 

BLUFOR 

Maximum Speed 30 miles-per-hour 

Camera Search Rate 3.5 square-feet-per-second 

Battery Life 2 hours 

Battery Replacement Time 6 minutes 

REDFOR 
Maximum Speed 6 to 12 miles-per-hour 

Maximum Attack Range 1.5 miles (e.g., mortars) 

 

The game also assumes that each drone flies with a proficient autopilot, avoids 

colliding with other drones, launches and lands by itself, communicates with all other 

drones, and uses onboard sensors to identify, fix, and track objects in the environment. 

Another key assumption, continued from previous research, is that BLUFOR are capable 

of distinguishing key features of REDFOR agents (e.g., weapons, military vehicles, etc.). 

Since the BLUFOR agents can rapidly make a determination of what activity appears 

hostile, there are no neutral agents represented in the wargame, as those (notional) neutral 

agents are already screened out. Although this is a significant assumption, the enhanced 

computer vision programs, like Project Maven, have shown this may soon be a reality.109 

Finally, data transmission between the agents is assumed to be short-range and redundant, 

and therefore inter-agent communication is never dropped, jammed, or incomplete.  

                                                 
108 Padgett, “Defensive Swarms,” 2017. 
109 Pellerin, “Project Maven,” 2017. 
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Despite similarities in agent characteristics from previous research, the proposed 

model has two important differences in its wargame design. First, it does not rely on any 

centralized controlling authorities for executing commands. This enables the model to 

explore the benefits of a decentralized and self-organizing system of drones. Second, an 

emphasis in the scenario is that BLUFOR drones are strictly in search and detect roles. 

The drones pass any potential threats to (notional) friendly assets and the REDFOR agent 

is thereby removed from the board. The scenario does not intend, nor use, the drones to 

engage in any lethal strikes against the enemy. This is a deliberate design decision to 

illustrate that, without crossing ethical barriers, there are acceptable reasons for training 

autonomous systems, such as search missions, that can directly support the warfighter. 

All game agents communicate to their teams using a decentralized technique for 

passing information that is similar to pheromone communication methods used by 

ants.110 This pheromone method enables the agents to make local decisions about 

whether to add or remove pheromones, and about whether to follow or ignore 

pheromones, that results in a global swarm behavior as the teams disperse or converge 

around the gameboard. Each agent stores an internal pheromone map, visualized as a 

heatmap, of where the higher and lower tile regions of pheromones are located (Figure 7). 

The game represents each teams’ heatmap as an overlay, where a tile that has more 

pheromones (higher priority) is darker red, and a tile that has fewer pheromones (lower 

priority) is darker blue.  

110 J. L. Deneubourg et al., “The Self-organizing Exploratory Pattern of the Argentine Ant,” Journal 
of Insect Behavior 3, no. 2 (1990): 159–168, https://link.springer.com/article/10.1007/BF01417909. 

Figure 7.  Agent Pheromone Communication Method (Heatmaps) 
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Agents update their heatmap each turn based on the communication reports they 

receive from other agents in their collective. Any agent can communicate that they have 

added or subtracted pheromones (i.e., heat) to tiles they visit due to decisions they make 

and the values they calculate based on the key decision-making parameters for each team. 

Importantly, all agents can only reference their individual construction of the collective 

heatmap; there is no single central reference map, and, in theory, individual heatmaps can 

diverge during mission execution. However, this model assumes heatmap divergence is 

negligible since each drone agent would use a secured, timestamped, and redundant 

communication method to ensure its messages transmit reliably across the entire swarm. 

4. Agent Decision-Making Algorithm

The decision-making algorithm for all game agents is based on Colonel Boyd’s 

observe, orient, decide, and act process (i.e., OODA loop). Each agent, in-turn, conducts 

an observe phase, orient phase, and decide phase of their loop based on the current state 

of their locally perceived environment. After deciding on what action to take, any agent 

that can take at least one action will simultaneously conduct the act phase of the loop.  

In the observe phase, each agent checks its internal status and its local external 

environment for changes. For BLUFOR, each agent first checks its battery state to help 

determine if it needs to return back to base. Then, all BLUFOR agents use their cameras 

and sensors to conduct a search of the single tile directly underneath where they are 

located. If there are REDFOR agents underneath, then each BLUFOR in that tile has a 

chance of detecting them. The probability of detection depends on the tile’s detection 

complexity score and whether the REDFOR agent is actively shooting at the base. For 

REDFOR, each agent first checks to see if they are within shooting range of the base. 

Then, all REDFOR agents scan all tiles adjacent to their current tile, trying to detect (i.e., 

see or hear) any BLUFOR drones. Finally, all agents from both teams reference and store 

the heat values of all their adjacent tiles (including the tile where they are located) to 

prepare them to orient the priority options for their next move directions. 
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In the orient phase, each agent builds an internal heatmap, or operational picture, 

on which adjacent tiles are higher priority for their next move direction. For BLUFOR 

agents, regions are hotter based on the gameboard’s intelligence priority scores, on a 

time-delay that incrementally adds heat to all gameboard tiles, and on drone 

communicated “starbursts” of heat (i.e., pheremone drops) that are centered around where 

REDFOR were discovered in previous turns. Regions are colder based on the chosen key 

decision-making parameter for heat removal rate that reduce the priorities of a tile for 

every agents that recently searched that tile. For REDFOR, regions with higher detection 

complexity scores and regions near the base are hotter on their heatmaps due to those 

being priority areas to shoot at the base. Areas get colder for REDFOR as they detect 

BLUFOR agents and alert others which tiles to avoid based on their observations. All 

combined, both teams observe the heat scores of all adjacent tiles, and then orient which 

tile among the nine options is the highest priority for their next move direction.  

In the decide phase, each agent determines whether to move to a higher priority 

adjacent tile (as determined by building their heatmap), remain at the same tile, or move 

to a randomly selected adjacent tile. The key decision-making parameter that controls an 

agent’s decide phase is the determined ratio of how often to explore versus exploit a 

given environmental scenario. To explore means to move in a random direction, whereas 

exploit refers to either staying at the current tile or moving to an adjacent tile based on 

which local tile has the observed highest priority (or heat) amount. Additionally, specific 

for BLUFOR agents, they will also decide whether or not to proceed directly back to base 

if they calculate their battery state is too low to continue searching. This decision to 

return to base to recharge will always override their decision to explore or exploit. 

In the act phase, each agent conducts an engage, move, and communicate action. 

For BLUFOR, the engage action is detecting REDFOR with their cameras and sending 

video information back to other (notional) friendly agents to remove REDFOR from the 

gameboard. For the REDFOR, the engage action is kinetically shooting weapons at the 

base. Agents only shoot if they are in range of the base and they decide whether or not to 

risk shooting at the base. Additionally, only 10% of the shots REDFOR decides to take 

result in damage to the base. Shooting also increases the wait time until the next action, 
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and increases probability of detection. For the move action, all agents will either wait in 

their current tile, or move to an adjacent tile, depending on the results of their decide 

phase. Finally, for the communicate action, all agents will send updates to their team that 

indicate which tiles they searched, what they detected, and whether or not to increase or 

decrease tile heat scores (and by how much) based on key decision-making parameters. 

5. Key Decision-Making Parameters 

The results of communicating and acting based on localized pieces of information 

among dozens or hundreds of drones executing hundreds of consecutive OODA loops 

forms the basis for a collective decentralized swarm. The decision-making process for the 

individual agents contains key parameters that affect how information is received, 

processed, acted upon, and further communicated to the rest of the swarm. Although a 

swarm could have hundreds of key parameters to manipulate, in demonstrating a proof-

of-concept, this wargame extracted six key decision-making parameters per team that 

dictates their local interactions and, ultimately, impacts their global behaviors (Figure 8). 

 

Figure 8.  Key Decision-Making Parameters 

For visual representation, the key six parameters chosen for both teams’ decision-

making algorithms plot in a six-sided graph referred to as a swarm’s personality polygon 

(Figure 9). The personality polygons have an axis for each key parameter that ranges 

from zero (center) to one (outside edge). Theoretically, any polygon that connects the six 
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axes is a potential solution for setting the six parameters that would generate different 

emergent swarming behaviors. Given that each parameter is adjustable up to a precision 

of three decimal places, this puts the number of possible personality polygons at 1x1018.  

  

Figure 9.  Example Parameter Polygons for BLUFOR and REDFOR 

Based on the complex interdependent feedback mechanisms between individual 

drones and their emergent swarm behaviors, it is not easy to calculate or predict the best 

values to assign all the key parameters. Also, it is not feasible for a person to guess-and-

check all combinations of possible polygons. Therefore, in order to train the swarms and 

find statistically better key parameters, the wargame was inentionally designed to allow a 

machine learning technique to systematically iterate through millions of wargames. 

The first three parameters for BLUFOR and REDFOR dictate identical decision-

making features. The explore rate parameters represent what percentage of the decisions 

an agent should make that exploits, or aligns with, the highest priorities of the collective 

(i.e., move in the direction of the hottest heatmap value), versus when to explore in a 

random direction. An agent that only exploits, would always position themselves where 

their collective heatmap was telling them was the highest priority location to move next. 

Yet, an agent that only explores, would always move randomly, and would negate all the 

efforts of the observing and orienting phases of their OODA loop. The heat regeneration 

per tick parameters represents how hot each tile should increase each turn to account for a 
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decrease in certainty that an agent sufficiently and recently searched a tile. Too high or 

too low of a regeneration rate tends to result in a heatmap that is either fully hot or fully 

cold after searching, and thus the swarm is unable to communicate any other relative 

higher or lower priority search regions. The heating/cooling rate per enemy parameters 

represents how much an agent will communicate to heat/cool a tile to its collective swarm 

when detected. All heatmap tiles range in a heat score from zero (coldest) to one (hottest) 

and an agent cannot communicate them to be hotter or colder than these values. 

Unique for BLUFOR, the heat radius parameter represents how large of a range 

(as a percentage of the assessed maximum REDFOR range) to communicate the heated 

starburst pattern. This parameter controls the distance the pheromone drop reaches, and 

influences the range that detection is likely to pull-in nearby drones to help investigate a 

region. If the radius is too large, the entire board tends to fill-up with excess pheromone. 

However, if the radius is too small, then the drones will not provide any pull to the rest of 

their swarm to direct them to leave their local exploring regions to support a globally 

hotter region with detected threats. The cooling rate on explore parameter represents how 

much heat an agent removes each turn as they search a tile. This factor reflects how 

confident an agent is that they successfully searched the tile, and how long until they 

believe another agent should return to search the tile. Finally, the explore limit parameter 

represents the furthest distance from the base that a swarm decides any agent should 

explore. The larger the limit, the more likely the swarm can detect REDFOR before they 

are within their maximum shooting range; however, a larger limit also means there is the 

more area for the swarm to search, thereby reducing the density of their search pattern. 

Unique for REDFOR, the percent spawn at main base parameter represents the 

ratio of agents that will spawn at a single staging area. The higher the percentage, the 

more likely REDFOR will attack the base from a single direction as a consolidated mass. 

The lower the percentage, the more likely REDFOR will attack from multiple directions 

with a more dispersed force. The attack frequency in range parameter represents how 

often an agent will try to attack the base if they are within their maximum shooting range. 

Although REDFOR may desire taking shots more often, as it is the only means to damage 

the base, the action of shooting also delays their subsequent action phase for the agent 
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and increases their likelihood of detection by BLUFOR agents. Finally, the max agent 

delay time parameter represents whether all agents should spawn and begin their attack 

maneuver toward the base at the same time, or whether they should spread out their 

attack over a few hours. Although attacking all at the same time increases the density of 

REDFOR for a single place and time, it can also be a weakness, since BLUFOR agents 

will tend to communicate for assistance when they detect a single REDFOR agent, thus 

drawing more drones to search in the dense regions of REDFOR. 

C. MACHINE LEARNING: GENETIC ALGORITHM 

The machine learning technique used to play the wargame is a modified version 

of a genetic algorithm. Genetic algorithms are a machine optimization technique that 

searches through an extensive range of possible solutions, referred to as genomes, using 

an evolutionary process that mimics natural selection.111 For the swarming wargame, the 

genome is composed of the six key parameters (i.e., the personality polygons) for how 

the BLUFOR and REDFOR agents will make their decisions and interact at local levels. 

A batch of many different genomes is called a population. The genetic algorithm iterates 

through an evolutionary process that uses selection, crossover, mutation, and randomness 

to systematically test old populations and create new populations of genomes (Figure 10).  

 

Figure 10.  Genetic Algorithm Cycle112 

Completing one cycle of the evolutionary process is called a generation. Every 

several generations, the top selected genomes are tested against an established baseline to 

                                                 
111 Marks and Schnabl, “Genetic Algorithms and Neural Networks,” 1999. 
112 Modified from https://www.analyticsvidhya.com/blog/2017/07/introduction-to-genetic-algorithm/. 
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compare the progress of overall genome training. As the process continues over dozens, 

hundreds, or thousands of generations, although not guaranteed, the expected trend is that 

higher scoring genomes will continue to outperform the competition and succeed at being 

selected and re-populated as the most “fit” parameters for the training environment.  

1. Hyperparameters 

Machine learning techniques rely on user defined hyperparameters, or parameters 

that influence other parameters, in order to conduct iterations of training and testing on a 

given dataset.113 For genetic algorithms, the primary hyperparameters deal with choosing 

a proper fitness function, selection criteria, crossover logic, and mutation rates. Although 

optimizing these values is, in itself, an area of active study,114 this thesis research fixed 

hyperparameters based on effective values found in past research.115 

A fitness function is the basis for how a genome is scored, and thereby influences 

which genomes are selected for further repopulation in subsequent generations of the 

evolutionary process. With the objective of this thesis to explore global swarm behaviors 

toward succeeding in a specific mission, the fitness function chosen was proportional to 

the total base damage sustained at the end of the wargame. The larger the base damage, 

the lower the fitness score for BLUFOR and the higher the fitness score for REDFOR. 

Moreover, since the wargame includes probabilistic events during the course of the game, 

an average of all fitness scores across a sample of multiple games played results in the 

overall fitness score assigned to each genome. These overall (average) fitness scores are 

used to determine which personality polygons are statistically better performing. 

                                                 
113 Jesus Rodriguez, “Understanding Hyperparameters Optimization in Deep Learning Models: 

Concepts and Tools,” Medium, August 8, 2018, https://towardsdatascience.com/understanding-
hyperparameters-optimization-in-deep-learning-models-concepts-and-tools-357002a3338a. 

114 Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag, “Collaborative Hyperparameter 
Tuning,” In International Conference on Machine Learning (2013): 199–207, 
http://proceedings.mlr.press/v28/bardenet13.pdf. 

115 Lee Jacobson, “Applying a Genetic Algorithm to the Traveling Salesman Problem,” Project Spot, 
August 20, 2012, http://www.theprojectspot.com/tutorial-post/applying-a-genetic-algorithm-to-the-
travelling-salesman-problem/5. 



43 

The hyperparameter chosen for selection is to pick the top 10% of the genomes by 

their overall fitness scores, mark them as elites, and to move those exact genomes into the 

next population batch without modification. This process of elitism helps to prevent 

taking steps backward in training, by ensuring there are some genomes at least as strong 

as previous generations continuing into the next population.116 Elitism is also effective at 

validating previous genome results, since elites will experience different environmental 

conditions (e.g., enemy spawn locations) in the next generation of game iterations. 

The hyperarameter chosen for crossover is to generate 20% of the next population 

from an “offspring” of sets of two randomly picked elite-genome “parents” from the 

previous generation. In the crossover process, one to five of the sequential values of the 

six key parameters are chosen from one parent genome, and the remaining values are 

chosen from a second parent genome to create a new genome. Crossover techniques are a 

method that systematically explores whether sequential pairs of values in a genome are 

synergistic and fitness enhancing.117 In this wargame, since several of the parameters are 

interrelated (e.g., heat rate on enemy, heat radius on detect, and cooling rate on explore), 

crossover helps to search for genomes with effective pairings of these sequential values. 

The hyperparameters chosen for mutation divide into two subgroups: gross and 

fine mutation. The gross mutation algorithm randomly picks elite genomes to generate 

20% of the next population batch. The fine mutuation algorithm randomly picks elite 

genomes to generate 10% of the next population batch. Both algorithms have a 20% 

chance of mutating, or modifying, any of the six key parameters of the picked genome. 

The gross mutuation changes the key parameter up to a maximum of 10% from its 

previous value, whereas a fine mutation changes the parameter up to a maximum of 1%. 

Including a gross and fine mutation process helps a genetic algorithm explore whether 

moderate or small changes in an already successful genomes can further optimize to find 

                                                 
116 Loris Serafino, Between Theory and Practice: Guidelines for an Optimization Scheme with 

Genetic Algorithms—Part I (Shenzhen, China: Kuang-Chi Institute of Advanced Technology, 2011): 16, 
https://arxiv.org/pdf/1112.4323.pdf.  

117 Ibid., 7. 
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a more precise solution, and to determine whether small disturbances in key values will 

have large emergent effects on the overall dynamic system (i.e., the butterfly effect).118 

Finally, the hyperpareter used for randomizing the remaining 40% of genomes for 

the next population batch is through a pseudo-random algorithm that picks new values 

from zero to one for all key parameters. Randomization fills the remaining population 

back to its original batch size, so that the evolutionary cycle can perpetualy continue. In 

addition, with a large percentage of the next population batch being randomly generated, 

this technique helps to search for unexpected key parameter combinations, rather than 

merely exploiting the current best performing genomes. Randomization is used to prevent 

getting stuck with a set of personality polygons that may locally be producing the highest 

fitness scores, but are not the highest fitness score relative to the global solution space. 

2. Initial Conditions 

Research using genetic algorithms has found that the initial conditions used by the 

machine learning technique can have impacts on its ability to produce useful solutions for 

optimization problems.119 Two important factors are the size of the starting population as 

compared to the size of the total solution space and the corresponding diversity in the 

distribution of the starting population. In other words, starting with too small of an initial 

population or too low of an initial distribution could result in a solution that gets stuck at 

a local versus a global optimal solution. Besides the quality of the fitness solutions found, 

the size and distribution of initial conditions also drives computational resources required 

to reach a solution. Evidence suggests that quasi-random numbers, or evenly-distributed 

numbers that still imitate randomness, provide a superior way to generate diversity within 

a population compared to pseudo-random numbers.120 Therefore, the model uses quasi-

                                                 
118 James Richter, “On Mutation and Crossover in the Theory of Evolutionary Algorithms” (PhD diss. 

Montana State University, 2010), 75, https://www.cs.montana.edu/techreports/0910/Richter.pdf. 
119 Pedro Diaz-Gomez and Dean Hougen, “Initial Population for Genetic Algorithms: A Metric 

Approach,” In GEM (2017): 43–49, http://www.cameron.edu/~pdiaz-go/GAsPopMetric.pdf. 
120 Heikki Maaranen, Kaisa Miettinen, and Marko Makela, “Quasi-Random Initial Population for 

Genetic Algorithms,” Computers & Mathematics with Applications 47, no. 12 (2004): 1885–1895, 
https://core.ac.uk/download/pdf/82606936.pdf. 
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random numbers as initial conditions to reduce computational resources and to reduce the 

potential to get stuck in a locally optimal solution. 

Applying the concept of quasi-random numbers, this thesis implements a Halton 

Generator121 to produce an initial population of genomes for BLUFOR and REDFOR. 

Figure 11 provides a histogram for the initial population of BLUFOR used in generating 

the experimental data. It highlights the generator’s effectiveness at distributing the initial 

values of the key parameters from zero to one across the six-dimensional search space.  

 

Figure 11.  Histogram for BLUFOR Initial Conditions of 100 Genomes 

D. SCALABILITY OF MODEL: CLOUD COMPUTING 

Creating a custom model of a swarming wargame, and giving a genetic algorithm 

access to manipulate that wargame, was necessary to generate quantitative data to explore 

the thesis research question; however, the model was insufficient without the capacity to 

scale the model’s architecture for rapid execution. Therefore, the research team designed 

the model to take advantage of a Naval Postgraduate School cloud-computing webservice 

located in the Coalition for Open-source Defense Analysis (CODA) Laboratory122 that 

                                                 
121 Heikki Maaranen, Kaisa Miettinen, and Antti Penttinen, “On Initial Populations of a Genetic 

Algorithm for Continuous Optimization Problems,” Journal of Global Optimization 37, no. 3 (2007): 405, 
http://www.cs.uoi.gr/~lagaris/GRAD_GLOPT/projects/genetic_POPULATIONS.pdf. 

122 Barbara Honegger, “NPS ‘Cloud Computing’ Lab Up and Running,” Naval Postgraduate School, 
February 8, 2010, https://web.nps.edu/About/News/NPS-Cloud-Computing-Lab-Up-and-Running-.html. 
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enabled centralized data collection and decentralized executions of millions of wargames. 

The result of gaining access to these powerful remote services was the ability to execute 

hundreds-of-thousands of complete wargame simulations in the span of a single day. 

Aside from generating data, all data across a full generation of wargames played 

must be readily accessible for a genetic algorithm to work. The genetic algorithm needs 

the fitness scores for all genomes in a tested population (potentially thousands of games) 

before it can iterate through just one evolution of its selection, mutation, crossover, and 

randomization process to generate the following population. Based on this necessity, the 

model relies on a web database to store previous population results and to also post new 

population generations that are ready for the next batch of simulation. With this 

architecture, any computer with a web browser is able to communicate to that database 

and determine whether there is an untested genome from the new population batch that it 

should simulate. Then, after all simulations for that genome (i.e., a sample of wargames) 

is complete, the computer communicates the simulation results back to the database and 

the process repeats. Thus, the more computers, the faster the output of the framework. 

Pairing the strength of a web-based database for dataset management, with an 

architecture that directly scales by adding more computing resources, the model rapidly 

expanded with the addition of cloud-computing access. The Naval Postgraduate School 

CODA Laboratory offered remote-access to a hosted cluster of 16 computer processors 

and 64 gigabytes of memory, which allowed 40 simultaneous instances of the wargame to 

be run for several straight days. Each instance completed an entire wargame (simulating 

five hours of mission execution) in approximately ten milliseconds. Access to cloud-

computing scaled the training architecture to execute millions of games over the course 

of a few days. This capability replaced the need to build a human crowd or to rely on 

personal computers to manually execute wargames. Ultimately, the custom architecture 

and model design enabled the generation of sufficient data for quantitative research. 
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IV. METHOD AND ANALYSIS OF RESULTS 

The experimental design for this thesis combines the proof-of-concept drone 

swarm wargame and the machine learning technique outlined in Chapter III to generate 

data for a quantitative analysis of the proposed Way of Swarm framework. To make this 

assessment, the machine learning technique self-played two million iterations of the 

wargame in a co-evolving format. This method permitted a statistical comparison of the 

performance of subsequent generations of the swarming algorithm against a reference 

baseline adversary. Ultimately, the experiment produced statistically significant results 

that address the thesis research question by demonstrating the ability to rapidly train a 

swarming algorithm that (1) accomplishes a specific mission objective and (2) reduces 

the workload of the human to operate a swarm. Additionally, the experiment highlights 

the rapid, agile, and flexible benefits of using machine learning techniques through co-

evolving self-play. The results show that the framework can generate an effective swarm 

algorithm, in only a few training days, while also being able to adapt to different initial 

conditions and environmental assumptions. 

The following chapter is presented in two sections. First, the chapter outlines the 

experimental design for testing the model. This section discusses the control and test 

variables, the requirement for generating a baseline, a test of the model’s sensitivity to 

initial conditions, and the co-evolutionary process for training swarms. Second, the 

chapter presents the experimental results and data analysis. This section includes the 

optimized key decision-making parameters for swarming agents for the wargame, an in-

depth interpretation of those parameters, and a statistical analysis of the model and the 

relative change in swarm algorithm effectiveness. 

A. EXPERIMENTAL DESIGN 

1. Control and Test Variables 

To assess which values for the key decision-making parameters produced the best 

results for each mission, the experimental design isolated individual agent parameters 

(i.e., six for BLUFOR and six for REDFOR agents) as independent variables in the 
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model. Additionally, the experiment either fixed or controlled for all other factors that 

impact the dependent variable (i.e., base damage) within a set range of assumptions. 

Table 2 outlines the controlled, independent, and dependent variables of the experiment.  

Table 2.   Control and Test Variables 

 
 

Leveraging existing military planning techniques, like the Military Decision 

Making Process (MDMP), the experimental design focused training on a specific mission 

set, environment, and scenario. The experiment also applied a concept used by military 

planners to frame the adversary’s capabilities, known as most dangerous course of action 

(MDCOA).123 This concept, which is similar to a prudential strategy in game theory, 

refers to finding a worst-case scenario by evaluating the adversary’s strategic options and 

their assessed capabilities.124 Using an intelligence assessment of the adversary, military 

planners develop the MDCOA from the strategic to tactical levels of war to develop 

friendly courses of action to maximize mission success. Likewise, this thesis applied this 

concept to help train BLUFOR by setting REDFOR to a (notional) assessed MDCOA. In 

                                                 
123 Department of the Army, Commander and Staff Organization, FM 6-0 (Washington, DC: 

Department of the Army, 2017): 9-15, 
http://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN7501_FM_6-0_Incl_C2_FINAL_WEB.pdf. 

124 Philip D. Straffin, Game Theory and Strategy (Washington, DC: Mathematical Association of 
America, 1993): 70. 

Rules of the Game                                                                                   
(i.e., Mission, Probabilities, Base Damage)

Game Board                                                                                                      
(i.e., Board Dimensions, Human Intelligence Priorities, Terrain) 

Agent Characteristics                                                                                     
(i.e., Speed, Number, Sensor Range)

Genetic Algorithm Hyper-parameters                                                
(i.e., Elite, Cross-over, Mutation)

Independent 
Agent Decision-Making Algorithms                                                        
(i.e., Specific Parameters - Six Each)

Dependent Variable
Fitness Score                                                                                                

(Percent Base Damaged)

Controlled
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this case, the REDFOR MDCOA consists of training against 150 agents with 5 attack 

locations and the capabilities for REDFOR agents as listed in Chapter III, Section B.  

Additionally, to prevent the machine learning technique from “overfitting” a 

BLUFOR solution based on human intelligence priorities or on fixed starting locations of 

the REDFOR, the experiment stochastically adjusts REDFOR starting locations within a 

fixed range for each game. For instance, the wargame requires that at least one of the five 

starting locations is within an area marked as a high-confidence threat location via the 

human intelligence assessment. The remaining four starting locations must start at least 

1.5 miles away from the BLUFOR base, but otherwise they have no further restrictions. 

This helps to reduce the overfitting of BLUFOR key decision-making parameters based 

on “memorizing” a known starting location. Therefore, although the gameboard location 

and terrain map remained fixed, the experimental design used a controlled variation 

within the environment to generate a more robust and generalizable algorithm solution. 

2. Generating a Baseline  

To assess the performance of subsequent generations of BLUFOR as the training 

iterations progressed, the experiment required a stable reference point for a comparison. 

Simply using the BLUFOR fitness score (i.e., average base damage) for each game would 

not be an accurate representation of the performance of the algorithm effectiveness since 

REDFOR is also improving for each generation. Google solved this challenge in its co-

evolving gaming framework by using the Elo rating system to assess the performance of 

its algorithm.125 Elo is a self-correcting scoring system, often used to measure the relative 

skill level of players in games like Chess or Go, based on past performance.126 However, 

since this technique weighted the points a winner received based on the Elo rating of the 

opponent (self-correcting), the best way for Google to increase the rating of its algorithm 

was to play opponents with higher Elo ratings. This thesis did not use the Elo rating 

                                                 
125 Silver et al., “Mastering the Game of Go Without Human Knowledge,” 2017. 
126 Paul Albers and Han Vries, “Elo-rating as a Tool in the Sequential Estimation of Dominance 

Strengths,” Animal Behavior 61 (2001): 489, http://dx.doi.org/10.1006/anbe.2000.1571. 
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system, as each genome would have required an associated Elo rating through all training 

cycles, increasing the data management requirements and complicating the design.  

Rather, applying the general concept of Elo ratings, the experimental design used 

a simplified progress-check against a known baseline. For example, instead of measuring 

a continuous swarm rating, the experiment used a trained group of elite REDFOR from 

the results of an initial run of the framework to serve as a baseline adversary. The elite 

REDFOR genomes represented a formidable set of opponents, embodying the concept of 

MDCOA due to its evolutionary stability, meaning these REDFOR personality polygons 

did not significantly change with additional training evolutions. This corresponds to their 

fitness scores not improving with further modifications to local interaction parameters. 

Figure 12 shows the evolution of personality polygons for the elite group of REDFOR 

genomes used as a baseline for future training. The shape of personality polygons after 

1,040,000 games does not significantly change, compared to those after 540,000 games, 

supporting the claim that they had evolved to a reasonable MDCOA level of proficiency. 

 

Figure 12.  Generating a MDCOA Baseline for REDFOR 

To expedite the development of a baseline adversary, the MDCOA creation matches 

limited the initial population for BLUFOR and REDFOR to 50 genomes, instead of 100, 

used in the final experiments. This allowed for generating the baseline in less time.  
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3. Sensitivity to Initial Conditions 

Research in optimization suggests that the solutions found by genetic algorithms, 

as well as other machine learning techniques, potentially have a strong dependence on the 

initial conditions (i.e. initial population of genomes).127 Therefore, to assess the severity 

of this effect on the model, this research performed a second iteration of the training 

framework, with a different set of initial conditions, to create a second MDCOA baseline 

for REDFOR. Figure 13 shows the personality polygons for REDFOR that resulted from 

using two different initial conditions. Although there are differences in the evolutionary 

process to reach the solutions, both iterations produced final polygons that display a high 

degree of similarity. This adds confidence that the solutions this custom wargame and 

machine learning technique produce are not highly sensitive to the initial conditions. 

 

 

Figure 13.   Sensitivity Analysis: Generating a MDCOA Baseline for 
REDFOR with Two Different Initial Conditions 

Therefore, the final MDCOA baseline for REDFOR (Figure 14) combined results from 

the initial and sensitivity test into a single set of opponents for training progress-checks. 

                                                 
127 Maaranen, Miettinen, and Makela, “Quasi-Random Initial Population,” 2004; Diaz-Gomez and 

Hougen, “Initial Population for Genetic Algorithms,” 2017. 
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Figure 14.  Personality Polygons of MDCOA Baseline for REDFOR  

4. Sequential Co-Evolution  

Applying the concept of self-play, adopted from Google’s AlphaGo Zero128, this 

research’s experimental design also enabled both BLUFOR and REDFOR to learn as the 

training evolutions progressed. However, to best control the training in a deliberate 

manner, each force co-evolved in an alternating sequence. To begin, both REDFOR and 

BLUFOR initial populations played and then simultaneously evolved new populations. 

After these matches, the next population of BLUFOR genomes played against the elite 

REDFOR genomes from the first generation. Next, the roles reverse, and the population 

of REDFOR genomes played the elite BLUFOR genomes from the second generation, 

and so forth. Table 3, depicts the chosen co-evolving sequence that alternates generations 

of populations against an opponent’s elite genomes.  

Table 3.   Co-Evolving Sequential Training Iterations 

  

                                                 
128 Silver et al., “Mastering the Game of Go Without Human Knowledge,” 2017. 

Genome Population Elite (top 10%) Genome Population Elite (top 10%) Genome Population Elite (top 10%)
BLUFOR 100 N/A 100 10 10 N/A

REDFOR 100 10 10 N/A 100 10

2nd Generation1st Generation 3rd Generation

Evolved

Evolved
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The experimental design used the genome population sizes as listed in Table 4. A 

primary tradeoff in selecting the population size was balancing the desire to generate 

statistically significant findings against the ability to run a large quantity of wargames in 

a short time. Since the best solutions for both BLUFOR and REDFOR genomes are 

unknown prior to running the first generation, the experimental design started with 100 

initial genomes for both forces. Subsequent generations applied the sequential co-

evolution process, limiting one force to only the elite (top 10) genomes to compete 

against a new population (100) of the adversary’s evolved genomes. Additionally, every 

match between each distinct BLUFOR and REDFOR genome conducted twenty games. 

This allowed for an average fitness across the twenty sample games, which accounted for 

the stochastic nature of the wargame and the variation in REDFOR starting locations. 

Table 4.   Genome Population Sizes and Game Sample Sizes 

 
 

 

B. ANALYSIS OF EXPERIMENTAL DATA  

To assess the potential of the framework to turn a collection of decentralized 

drones into a swarm, the experimental design used 780,000 iterations of the wargame, 

conducted over two days, evolving both BLUFOR and REDFOR over 30 generations. 

Every five generations, the elite BLUFOR genomes played the baseline REDFOR 

genomes to obtain a progress-check on the performance of the swarming algorithm. The 

training framework concluded when there were no longer significant changes in the 

fitness scores of subsequent baseline progress checks. Figure 15 depicts the fitness scores 

(i.e., average base damage) plotted for each progress check across the 780,000 games. 

BLUFOR REDFOR
1 100 100 20 200,000 200,000
2 100 10 20 20,000 220,000
3 10 100 20 20,000 240,000
… 100/10 10/100 20 20,000 …
30 100 10 20 20,000 780,000

Genome Size
Generation

Games Per 
Matchup

Total        
Runs

Cumulative 
Runs
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Figure 15.  Average BLUFOR Base Damage as Progress Checked 
Against MDCOA Baseline for REDFOR 

Figure 16 shows a visual progression of personality polygons for BLUFOR as the 

genetic algorithm processed through the solution space to find optimized parameters. The 

visualization starts with the initial population of pseudo-random genomes, then shows the 

first set of elite BLUFOR (top performers in the initial matchups), then the first set of 

their repopulated (or evolved) genomes, and so on. The expansion and contraction of the 

polygons is a product of the alternating co-evolutionary experimental design, and the 

hyperparameters selected for evolutionary elitism, crossover, and mutation in the genetic 

algorithm. Although this process can be computationally expensive, it also highlights the 

strength of a genetic algorithm to search a space methodically to find an optimal solution. 
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Figure 16.  Genetic Algorithm Visualized through BLUFOR Evolution 

1. Experiment Results 

The result of the training framework was the output of optimized values for the 

best set of the six key decision-making parameters for both BLUFOR and REDFOR. 

These six decision-making parameters drove the local interaction rules of each individual 

agent, which translated into the accomplishment of a desired global behavior (e.g., for 

BLUFOR, minimizing average base damage). This section presents the results of the 

experiment by highlighting the evolutionary progression of the personality polygons that 

culminated in a final set of best-trained parameters for the mission.  

Initially, BLUFOR and REDFOR started the experiment with 100 unique quasi-

randomly generated genomes, shown in Figure 17, representing the initial populations. 
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Figure 17.  Initial Populations of 100 Quasi-random Genomes 

From this initial set of distributed samples in the search space, the experimental 

design enabled each genome of BLUFOR to play 20 iterations against each genome of 

REDFOR, totaling 200,000 wargames. The fitness scores (i.e., average base damage) for 

each match of 20 games determined the elite (top 10) genomes for each force. Figure 18 

depicts this initial generation of elite genomes per force. The variation of each set of elite 

genomes within the initial generation highlights how the genetic algorithm robustly 

worked through the solution space. From the initial elite populations, the experiment 

continued, performing the sequential co-evolution method for the remainder of the trial.  

 

Figure 18.  Elite Personality Polygons after 200,000 Games 
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Ultimately, after 780,000 wargames, or 30 generations of co-evolutionary training, 

the framework produced the best-trained genomes for both forces. Figure 19 displays the 

resultant elite personality polygons for both BLUFOR and REDFOR. 

 

Figure 19.  Elite Personality Polygons after 780,000 Games 

Tables 5 and 6 provide the specific values for the key decision-making parameters 

for the best-trained BLUFOR and REDFOR genomes. These values are responsible for 

the local interaction decisions of each set of individual team agents, which translated into 

the best accomplishment of the desired base-defense mission by the swarm in the 

wargame.  

Table 5.   BLUFOR Key Decision-Making Parameters after 780,000 Games 

Parameter Value Description 
B K1 0.208 Explore versus Exploit Ratio 
B K2 0.252 Heat Regeneration per Time 
B K3 0.924 Heat Amount on Detection 
B K4 0.231 Heat Radius on Detection 
B K5 0.159 Cool Amount on Explored 
B K6 0.105 Exploring Maximum Boundary 
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Table 6.   REDFOR Key Decision-Making Parameters after 780,000 Games 

Parameter Value Description  
R K1 0.287 Explore versus Exploit Ratio 
R K2 0.836 Heat Regeneration per Time 
R K3 0.985 Cool Amount on Detection 
R K4 0.299 Percentage Spawn at Main Base 
R K5 1.000 Attack Frequency when in Range 
R K6 0.006 Maximum Spawn Delay Time 

 

2. Interpreting the Data 

The proof-of-concept for this research used a high level of human bias in the 

development of the wargame, which also affords a high degree of insight into the results. 

In other words, since the game used key decision-making parameters that human 

programmers conceived, the resultant personality polygons are straightforward to 

interpret and justify. This increases trust in the resulting algorithm by providing the 

ability to explain how a trained swarm will likely behave in the operations, which is a 

valuable attribute when seeking to form an effective human-autonomy team. This also 

increases trust when human operators deploy a trained swarm by helping them 

understand the left and right limits, or constraints, of a trained decentralized swarm. Since 

the swarming algorithm trained for a specific mission, adversary, and environment, it is 

beneficial to examine the trained parameter values to help understand future behavior 

from within this narrow context. This section examines the values of the three parameters 

that are common to both BLUFOR and REDFOR, then analyzes the three unique to 

BLUFOR, and concludes by assessing the three parameters distinct to REDFOR. 

First, this analysis examines the best-trained values within the shared parameters 

of BLUFOR and REDFOR genomes (i.e., first three parameters listed in Tables 5 and 6). 

The genetic algorithm nearly maximized the parameter for the heating or cooling amount 

on detection (depending on REDFOR or BLUFOR) for both forces (0.924 for BLUFOR 

and 0.985 for REDFOR). This maximization makes sense for both forces. For instance, 

for BLUFOR, finding REDFOR is the primary way to minimize average base damage, so 

the term must have a significant weight to drive the collective swarm behavior. This 
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means that when a BLUFOR agent finds a REDFOR agent, it produces a strong signal to 

alert the other members in the swarm. Similarly, avoiding detection by BLUFOR is the 

primary way for REDFOR to maximize the number of agents available to attack the base. 

Therefore, when REDFOR agents detect BLUFOR agents, they produce a strong signal 

to warn the other members in the swarm. This concept is similar to the way ant foraging 

dynamics work through the use of pheromones.129 The stronger the pheromone, the 

stronger the collective behavior will be, producing a cascading effect.  

Next, the-explore-versus-exploit terms for both BLUFOR and REDFOR are very 

similar (0.208 for BLUFOR and 0.287 for REDFOR). This balance is in line with other 

research efforts in evaluative feedback, which emphasizes the need to allow an agent to 

explore, rather than just exploit, what it initially perceives as the best option to enable the 

discovery of a better solution.130 The trained values for BLUFOR and REDOR support 

this finding, but they also highlight that the individual members of a swarm are not 

particularly efficient in and of themselves. However, although the high rate of exploration 

can, at times, produce overlap, the power of a swarm does not reside in creating highly 

efficient agents at the individual level, but effective behavior on the global scale. 

Therefore, the vales for which the genetic algorithm solved through the framework make 

sense and are consistent with previous research in evaluative feedback. 

The last common parameter between BLUFOR and REDFOR is heat 

regeneration, which displays a significant difference in final values (0.252 for BLUFOR 

and 0.836 for REDFOR). However, both values make sense by examining them in the 

context of the wargame. First, the value selected for BLUFOR indicates that a lower rate 

for heat regeneration was beneficial. This makes sense since this parameter 

predominantly affected tiles with a preset intelligence priority (i.e., a location in the 

                                                 
129 Erol Sahin, Swarm Robotics: From Sources of Inspiration to Domains of Application, Report 

Numbers METU-CENG-TR-2005-01 (Ankara, Turkey: Middle East Technical University, 2005), 
http://www.kovan.ceng.metu.edu.tr/pub/pdf/METU-CENG-TR-2005-01.pdf. 

130 Howard M. Schwartz, “Multi-agent Machine Learning: A Reinforcement Approach” (Hoboken, NJ: 
John Wiley & Sons, 2014), 52-56, https://ebookcentral.proquest.com/lib/ebook-
nps/detail.action?docID=1775207. 
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environment assessed as a likely location for REDFOR activity). However, the conditions 

of the game only required one out of five of the REDFOR starting locations to generate 

within these areas. Thus, it follows that the final BLUFOR genome would place a low 

value on this parameter, opting to search and react to REDFOR actions, rather than bias 

toward assessed threat locations. Conversely, REDFOR placed a high value on heat 

regeneration. This weighting is logical because BLUFOR drones travel at a much faster 

relative speed. This requires a dynamic operating picture to enable REDFOR to take 

advantage of fleeting opportunities in the relative positions of BLUFOR. For instance, if 

the heat regeneration had been lower, REDFOR would have perceived favorable moves 

as unfavorable (e.g., BLUFOR is no longer on the cooled tile). In other words, since the 

movement speed of BLUFOR drones was fast, the heat regeneration needed to be fast to 

accurately represent the environment.  

Second, this analysis examines the specific values for the parameters unique to 

both the best-trained BLUFOR and REDFOR genomes. Starting with BLUFOR, there 

were three unique parameters. First, the value for the heat radius on detection (0.231) 

controlled how far an agent would transmit heat from a location where it located a 

REDFOR agent. If the value of this parameter became too large, the heat map quickly 

became saturated with heat (Figure 20). The saturation effect inhibits effective swarm 

behavior by making it difficult to discern the location of REDFOR. Therefore, the final 

trained value balanced the need to increase the spread of information against the need to 

prevent an over-saturation of heat.  
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Increasing the heat radius oversaturates the heat map of 
individual drones by making nearly all the tiles appear as a 
high priority (red). This effectively increases random behavior 
vice effective swarm behavior. 

Figure 20.  Oversaturation of Heat Pheromone 

Next, the low value for the cooling rate on explored parameter (0.159) indicates 

that it was beneficial to place low confidence in an individual agent’s ability to search a 

tile (low cooling value). Consequently, this reduced how long it took for another agent to 

return to re-search the same location. Decreasing the revisit time between searches makes 

sense considering that the probability of detecting REDFOR agents is not perfect and that 

REDOR agents are constantly moving. Finally, the trained value for the explore limit 

(0.105) was the lowest value in the BLUFOR genome. This value indicated that it was 

beneficial for the BLUFOR agents to explore out to the maximum expected threat range 

of REDFOR, but not much farther. This is not surprising, because the sensor range for 

each BLUFOR was limited to one tile per time-step, thus the only way to maintain a 

sufficient search density of sensors was to heavily restrict the operating area for 

BLUFOR. It is logical to infer that increasing the number of BLUFOR drones or their 

sensors’ range, for this given scenario, could increase the value of this parameter.  

In contrast, REDFOR had three distinct parameters. First, the value for the 

percent spawn at main base (0.299) indicated that it was beneficial for REDFOR to mass, 

to a degree, but distributing its force across all five locations to produce a simultaneous 
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and omnidirectional attack provided the greatest chance for success. This is not 

surprising, since defending against this type of attack, referred to as a saturation attack, 

often proves difficult for military planners.131 Next, examining the attack frequency in 

range (1.000), a high value for this parameter was expected, as shooting is the only 

means to damage the BLUFOR base. However, a maximum value was not expected. The 

act of shooting slows REDFOR agents’ subsequent action phase and increases their 

likelihood of detection in the wargame, but this did not appear to inhibit the decision to 

shoot as much as possible when entering effective range. It is possible this is because 

REDFOR learned that the density of BLUFOR agents diminishes at greater distances 

from the base. Thus, the probability of detection increases the closer REDFOR agents get 

to the BLUFOR base (Figure 21), thereby making it more advantageous to strike as soon 

as possible.  

 
Black dots represent REDFOR agents detected and removed 
from the game. The figure is representative of most games, 
indicating the low likelihood of REDFOR getting close to the 
BLUFOR base before they begin shooting and getting 
detected. 

Figure 21.  REDFOR Probability of Removal 

                                                 
131 Fang Qiwan, Yin Zhixiang, and Jiang Chuanfu, Menace of Anti-Ship Missiles and Shipborne Laser 

Weapons, NAIC-ID(RS)T0337-96 (Wright-Patterson AFB, OH: National Air Intelligence Center, 1996), 
http://www.dtic.mil/dtic/tr/fulltext/u2/a313312.pdf. 
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Finally, the value for maximum agent delay time (0.006) indicated that launching 

the REDFOR attack as soon as possible generated the highest average base damage. By 

nearly minimizing this delay, REDFOR was able to start positioning its agents within 

firing range before BLUFOR was fully established. This makes sense considering that 

BLUFOR staggers the initial deployment of its drones. Figure 22 depicts this advantage 

by showing that when REDFOR begins its early attack, BLUFOR is still deploying its 

force, with only fifteen of its fifty agents on the board at the time. 

 

Figure 22.  Example BLUFOR Disposition for Early REDFOR Attack  

Ultimately, due to the degree of human bias in the development of the wargame, 

this research was able to analyze the resultant key decision-making parameters of the 

swarm logically. Explaining why the framework did what it did increases the level of 

trust that operators, within the human-autonomy team, will have when deploying a 

swarm. This insight frames the left and right limits of the swarm’s behavior while 

accomplishing a specific mission objective. Additionally, this highlights a strength of the 

framework, in that it reduces the “black-box” effect commonly associated with AI 

systems. By focusing on a specific mission and with understandable decision-making 

parameters, this framework enables a process for establishing a higher degree of trust in 

the final solution. 
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3. Statistical Analysis 

Statistical analysis of the underlying model and the resulting swarm algorithm 

effectiveness provides additional insight that can increase both trust and confidence in the 

solution that the training framework generated. This section examines three statistical 

tests that provide context into the validity and further utility of the experimental results. 

First, this section covers a regression analysis between the agent key decision-making 

parameters (factors) and the average base damage (dependent variable). Second, this 

section conducts a regression analysis to highlight residual risk inherent in the trained 

solution produced by the chosen assumptions. Third, this section presents a difference in 

means hypothesis test comparing the final algorithm effectiveness against the reference 

baseline algorithm. 

The personality polygons after training are both distinct and evolutionarily stable, 

supporting the claim that all key decision-making parameters for BLUFOR and REDFOR 

had a significant impact on the amount of average base damage that occurred. To verify 

this initial observation, and to further understand which key decision-making parameters 

had the most influence, this analysis performed a statistical regression between the 

independent factors and dependent variables. Table 7 summarizes the regression results. 

Table 7.   Statistical Significance of Key Decision-making Parameters 

 

B K1 Explore versus Exploit Ratio <0.001 ***

B K2 Heat Regeneration per Time <0.001 ***

B K3 Heat Amount on Detection <0.001 ***

B K4 Heat Radius on Detection 0.044 **

B K5 Cool Amount on Explored <0.001 ***

B K6 Exploring Maximum Boundary <0.001 ***

R K1 Explore versus Exploit Ratio <0.001 ***

R K2 Heat Regeneration per Time <0.001 ***

R K3 Cool Amount on Detection <0.001 ***

R K4 Percentage Spawn at Main Bas 0.935
R K5 Attack Frequency when in Ran <0.001 ***

R K6 Maximum Spawn Delay Time <0.001 ***

Model Significance (F-test): <0.001 ***

Note:

Key Decision Making Parameters p-value

*p<0.1; **p<0.05; ***p<0.01
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The results of this statistical analysis largely supports the claim that the chosen 

model parameters were significant factors, with almost every factor across BLUFOR and 

REDFOR showing a high level of statistical significance (p<0.01) in how they affect the 

percentage of base damage. However, there are two exceptions. First, although the heat 

radius on detection for BLUFOR displayed statistical significance (p<0.05), it was not as 

significant as the other factors for BLUFOR. This could be because another factor, like 

heat amount on detection, could interact with this term and reduce its impact. Next, the 

percentage spawn at main base parameter did not display statistical significance (p>0.9). 

Even though the trained value converged at 0.299, statistical regression did not indicate 

that this value had strong influence on the average base damage. This could be because 

the wargame did not give REDFOR the choice of how many locations it could spawn 

from, but rather how many forces it consolidated into its main effort. Also, the wargame 

did not allow different spawn locations to stager their attacks, relative to one another. 

These facts likely diminished the impact this factor had on the average base damage.  

Even though the final BLUFOR personality polygon represents the best-trained 

swarm algorithm, the framework also offers the ability to identify residual risk inherent in 

the specific scenario. By examining the final matchups between the trained BLUFOR 

genomes and the MDCOA REDFOR genomes, analysts can determine common aspects 

within the sample data that lead to the worst outcomes. For instance, a particular portion 

of the environment may offer greater advantages to the attacking force, which then 

consistently leads to higher average base damage, regardless of the defending swarm’s 

algorithm. To determine if this was the case, the analysis included a statistical regression 

between the number of spawn points within one of the four main quadrants of the board 

(northeast, southeast, southwest, and northwest) and the overall base damage. Table 8 

depicts the results of this regression. The data for this regression came from a sample of 

twenty iterations of the wargame between the trained BLUFOR and the baseline 

REDFOR genomes. 
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Table 8.   Regression Analysis to Highlight Residual Risk 

 

The results of this analysis indicated that REDFOR has a statistically significant 

advantage by spawning more forces from the northwest portion of the board (p<0.01), 

with a nearly three-fold increase, on average, in the amount of base damage produced 

when compared to the next highest region. This is likely because the terrain complexity 

in this portion of the board gives REDFOR an advantage by making it more difficult for 

BLUFOR to find them. Highlighting this residual risk allows commanders to design a 

layered defense, focusing efforts to the northwest, that combines other countermeasures 

with a swarm. This increases confidence that the swarm will produce the intended results. 

Finally, this research performed a difference in means hypothesis test comparison 

between the performances of subsequent generations of the swarming algorithm against 

the reference baseline algorithm. First, the initial population of BLUFOR genomes 

created using the quasi-random process played the reference baseline REDFOR. The 

results of this run provided a starting point to compare subsequent generations of the 

BLUFOR algorithm, which resulted in an average base damage just over 120%. Next, the 

elite BLUFOR produced from the first generation played against the baseline REDFOR 

to produce the second point, resulting in an average base damage of 70%. The process 

accomplished baseline checks every five generations until the training cycle concluded. 

After thirty generations, a difference in means hypothesis test compared the resulting 

average base damage of 41% to the initial (pre-trained) baseline algorithm effectiveness. 

The test concluded at a 95% confidence level that, against the most-dangerous REDFOR, 

the difference between the average base damage from the initial generation (pre-training) 

and final generation (post-training) of BLUFOR is a reduction of 78-82% damage. 

Quadrant Coefficent

NE 0.07 0.013 **

SE 0.04 0.174
SW 0.04 0.223
NW 0.19 <0.001 ***

Model Significance (F-test) <0.001 ***

Note:

p-value 

*p<0.1; **p<0.05; ***p<0.01
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V. CONCLUSION 

The experimental results from this thesis show that machine learning techniques 

are effective at training the decision-making algorithms for a decentralized swarm of 

drones using the rapid self-play of a mission-specific wargame. Although these results 

offer a promising indication of the value of the proposed Way of Swarm framework, the 

findings also raise two additional questions: (1) where can the military use the framework 

to enhance its forces (i.e., “so what”), and (2) what are additional research efforts that can 

improve the framework (i.e., “now what”)? The conclusion explores these questions by 

examining where this proof-of-concept model could scale up to meet the requirements of 

American military forces that would benefit by deploying decentralized swarms across all 

battlefield domains. Additionally, the conclusion discusses how further investments of 

resources and research into the framework components, such as improved model designs, 

sensitivity analysis, field tests, and user interfaces, can extend this research to serve as a 

stronger foundation for an operationalized framework for training America’s swarms. 

The following chapter is presented in four sections. First, the chapter reflects on 

three major findings from this thesis to reinforce the key lessons learned from swarming 

research and experimentation with the custom-built swarm model. Second, the chapter 

reviews why selecting decentralized drones was an important factor for this research and 

it presents a set of mission-specific vignettes to highlight cross-domain applications for 

training decentralized swarms. Third, the chapter offers a series of further research 

opportunities that can improve the proposed framework, increase the trust for 

operationalizing the resulting algorithms, and enhance the overall understanding of when 

decentralized (versus centralized) control of swarming autonomous systems is more 

effective for a variety of mission types and environments. Finally, the chapter concludes 

with an inclusive summary of the thesis that reemphasizes the relevance and urgency of 

swarming research and reiterates how the role of the human decision maker is shifting—

but is no less critical—in drone swarm ways of warfare. 
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A. MAJOR FINDINGS 

1. Algorithms should be a Training Priority 

Beyond merely focusing on training the human operator to be better at controlling 

their machines, the American Way of War must adapt to prioritize training the decision-

making algorithms of the machines. Traditionally, military leaders design robust training 

programs with the intent to improve the decision-making process of their personnel and 

to enhance their effectiveness at accomplishing a specific task or mission.132 However, 

with the emergence of AI and machine learning techniques, leaders must begin to adjust 

their long-held paradigms of what it means to train the operational forces; they must 

consider that the algorithms inside the machines can also improve their decision-making 

process by conducting similar robust training programs to those of personnel.  

By developing training programs for machines, there is no longer a requirement 

for the algorithms for an autonomous system to be hard-coded by a human programmer 

(i.e., prescribing exactly what parameters the machine should use to make its decisions). 

Instead, it is possible to develop a shell of an algorithm, without knowing optimal 

decision-making parameters, and to allow machine learning to develop a recommended 

set of parameters that is best fit to achieve a specified task. For this thesis, the proof-of-

concept model demonstrated that this type of machine learning framework is possible for 

training decentralized swarms, and with additional research, this process may prove to be 

faster and more successful at optimizing solutions compared to a human programmer.133 

Therefore, with a proper algorithm training framework, the idea of drones “self-learning” 

how to accomplish a mission as a collective could become just as routine as personnel 

who learn from their hands-on experiences (similar to reinforcement machine learning) or 

learn from a subject matter expert (similar to supervised machine learning). 

                                                 
132 J. Fletcher and P. Chatelier, An Overview of Military Training, IDA Document D-2514 (Alexandria, 

VA: Institute for Defense Analyses, 2000), http://www.dtic.mil/dtic/tr/fulltext/u2/a408439.pdf. 
133 Silver et al., “Mastering the Game of Go Without Human Knowledge,” 2017; Vincent, “AI Bots 

Beat Humans,” 2018.  
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Optimizing the decentralized decision-making algorithms of autonomous systems 

is essential for overcoming the span-of-control limitations for centrally coordinating large 

quantities of drones. The ultimate objective of the human-autonomy team is to optimize 

the combined decision-making effort of the human and the machine. Furthermore, when 

the human decision maker becomes over-tasked or is out-performed in their mental or 

physical reaction times, then the team must prioritize building trust and confidence in the 

algorithms of the autonomous systems in order to enable delegating more of the cognitive 

workload. Once the machine is proficient at tasks, below the level of accepted risk where 

the operator trusts the actions of the algorithm, then the operator can assign more tasks to 

the machine. This rebalances the workload of the team, allowing the operator to focus on 

mission aspects that are unique to the person (e.g., ethics, empathy, risk). Ultimately, it is 

not the decision-making process (i.e., OODA loop) of either the human or machine, that 

must outperform the adversary’s decision-making process, but it is the combination of the 

overall human-autonomy team that military leaders must effectively train to succeed. 

2. Design Wargames for Machine Learning Integration 

The right type of wargame is necessary to serve as a training platform to generate 

a large quantity of datasets for machine learning techniques to train swarming algorithms. 

Currently, there are no prerecorded datasets that demonstrate how a drone swarm should 

optimally behave in different military mission sets or environments. Thus, a framework 

that uses simulated agents and environments to generate data is suited to the data-sparse 

field of swarm research. However, to generate millions of game results for reinforcement 

machine learning techniques to learn from those experiences, the wargame design needs 

to be capable of fully executing simulated missions in a short time span. There are very 

few existing wargames that are designed to rapidly execute millions of games and that are 

built to integrate machine learning with direct access into the parameters of wargame 

agents. To overcome this limitation, and to generate higher quantities of game results, 

designers should ensure that the wargames are capable of executing at a speed faster than 

real time, that wargames can be entirely self-played by AI players, and that wargames can 

distribute across multiple computers that collaborate in data collection and generation.  
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Furthermore, wargame designers for swarm algorithm design should consider the 

benefits of resisting the trend of designing software with immersive real-time interfaces 

(e.g., touchscreen or virtual reality) and resisting a priority on high-definition graphics.134 

While these types of simulations can be ideal for enhanced human training, the delays for 

constantly waiting for mandatory user inputs and the processing requirements to display 

real-time graphics reduces the pace for an AI system to rapidly iterate through millions of 

self-played games. Therefore, as designers consider how to incorporate the power of 

machine learning techniques to determine drone agent decision-making parameters, they 

should consider how their wargames can benefit swarm algorithm design through either 

faster game play (for the machine) or higher-fidelity game play (for the human). 

3. Machine Learning is Effective and Accessible 

One of the most significant findings from this thesis research was that machine 

learning techniques and the computing power necessary to effectively train the decision-

making algorithm for a swarm of autonomous systems are readily accessible resources. 

The genetic algorithm that was effective in this research at rapidly searching through a 

vast solution space for optimized parameters is reproducible in any coding language. 

Additionally, companies such as Google, Facebook, and IBM are packaging and freely 

distributing their more powerful machine learning techniques (e.g., deep artificial neural 

networks and Q-learning algorithms).135 Furthermore, with the decreasing costs of data 

storage, and the increasing speeds of networking, there exists low-cost solutions to create 

highly capable data centers and distributed cloud-computing environment that can extend 

beyond large companies or research institutions.136 This emerging combination of readily 

available access to data processing power, data storage, and data-driven machine learning 
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techniques is revolutionizing the ability to transition from studying the theories of what is 

possible through AI advancements, and applying those theories to real challenges. 

 An important concept explored in this thesis research is that the computing power 

of large cloud-computing data centers does not need to be inside of the relatively small 

hardware of each drone agent to harness the benefits of machine learning techniques. 

Moreover, there does not need to be a stream of communication between the swarm and 

the cloud, since each drone does not need to wait on a centralized controller or algorithm 

to decide what action each agent should make. Instead, this framework demonstrated that 

operators can use cloud-computing services, narrow AI, and wargame simulations before 

the mission to train a predetermined algorithm set for each agent. The operator can then 

copy and upload the trained parameters (a smaller computer file that is computationally 

inexpensive to run) into the individual drones to execute. This process of pretraining the 

algorithm and then deploying it is similar to how cellular phones can learn to recognize 

faces or voices in their deployed applications.137 Although the algorithm of how to detect 

specific features was pretrained on powerful data center computers, once the algorithm 

was trained, it can deploy to less powerful computers for execution.  

B. OPERATIONALIZING THE FRAMEWORK  

The emergence of commercially available technologies, like AI and autonomous 

systems, is progressing warfare into its next evolution, where any force, including both 

non-state and state actors, can deploy a swarm into combat. Given this change in the 

character of war, figuring out how to not only leverage swarms, but also how to defend 

against them, is critical for a competitive strategy. Many within the DoD have recognized 

the rising cost of military hardware and the corresponding decrease in the quantity the 

services can field.138 The military has sought to reverse this trend by investing in large 

quantities of cheap systems (like drone swarms), yet it has overlooked a crucial element: 
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how to train this autonomous swarming component to perform the variety of different 

missions across the services. To leverage the full potential of swarms, the DoD must 

focus algorithm training on specific missions and train to decentralize swarm execution.  

Although centralizing the control of swarms works well in certain circumstances, 

it may not necessarily work in all operating environments. Decentralized swarms are 

more resilient, given that centralized execution presents a single point of vulnerability 

that could be problematic in the contested environments of near-peer adversaries. In 

addition, decentralized swarms provide versatility by enabling faster responses to a 

variety of dynamic circumstance, thereby minimizing the span-of-control challenges. 

Developers of naval doctrine have highlighted the value of being able to operate along 

this spectrum of command and control to full autonomy, or a spectrum between network-

centric warfare and network-optional warfare.139 Decentralization of swarms presents a 

difficult challenge, but one that the American Way of War must endogenize to enhance 

mission performance in dynamic environments and to overcome adversary actions that 

seek to disrupt, deny, and degrade America’s current advantages.  

To operationalize the framework presented in this thesis, the DoD must undertake 

an effort to create a variety of different wargames that machine learning techniques can 

self-play and master. To obtain the benefits of resiliency and versatility of a decentralized 

swarm, trust must exist within the human-autonomy team. Ultimately, building trust in 

the tactical environment comes down to higher-quality training. Therefore, establishing 

enough trust to decentralize decision making from the human to the individual drones 

within a swarm requires a novel approach to training. There are numerous different 

mission sets across all domains that could benefit significantly from this thesis initiative. 

The following section explores two relevant vignettes that highlight this potential. 
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1. Vignette 1: Unmanned Undersea Vehicle Patrols  

The Navy is seeking to leverage emerging undersea systems, like Hydroid’s 

Remus M3V and Teledyne Energy’s subsea drone refueling stations, for search, survey, 

and reconnaissance operations.140 In one scenario, the Navy envisions deploying swarms 

of unmanned undersea vehicles (UUVs) ahead of a fleet operating in contested waters to 

survey the area for threats. Research sponsored by the Navy that examines how to 

employ UUVs for these missions claim that assured communications is critical to control 

their systems.141 This is because unmanned systems still need human operators and will 

thus “exacerbate manpower and manning challenges... [and] in many instances, the 

number of personnel required to operate and support a single unmanned system exceeds 

that for a manned platform with a similar concept of employment.”142 This approach, 

which relies heavily on the communications network, would centralize the operation 

of these drones under the Navy’s existing command and control architecture. In a world 

of perfect communication, a network-centric strategy like this may produce a high 

probability of mission success.  

However, the enemy gets a vote, and in contested environments, like the South 

China Sea, the Navy cannot assume a threshold level of communication within its entire 

network. To improve the ability to operate UUVs in challenging environments, the Navy 

needs to embrace a network-optional approach and decentralize its underwater swarms to 

increase both resiliency and versatility.143 To meet this need, the Navy should invest in 

the development of a mission-specific wargame that a narrow AI could self-play to train 

the local decision-making parameters of the individual UUVs and refueling stations. 

Much like the model presented in this thesis, the result of this effort would be a highly 
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specific (but adaptable) algorithm that the Navy could use to decentralize its swarms of 

UUVs to accomplish the search, survey, and reconnaissance mission. Importantly, this 

does not imply that there should not be an option to centralize or override the operation of 

their UUVs. Yet, if the Navy cannot transmit commands due to a need to limit electronic 

emissions, if the swarm cannot receive commands due to adversarial jamming, or if the 

scale of the swarm outpaces available manpower, then decentralization provides a way to 

overcome these obstacles and ensure freedom of action. 

2. Vignette 2: Collateral Scans for Kinetic Strikes 

Air strikes against terrorist leaders and other high profile figures within violent 

extremist organizations have become a mainstay of the American strategy to defeat their 

spread.144 Oftentimes, the DoD uses the term kinetic strike to describe these operations, 

which refers to “lethal air action controlled by dislocated strike cells against enemy time-

sensitive targets, and/or high-value individuals (HVI).”145 Although military analysts 

argue that kinetic diplomacy is never sufficient, they concede that an effective strategy 

still requires some level of violence, albeit discriminate violence.146 Therefore, increasing 

the performance of kinetic strikes is beneficial to the National Defense Strategy. 

However, executing these tactics is resource intensive. Often the demand for 

assets with the requisite combination of training, sensors, endurance, and munitions, 

outpaces the available supply. One particular resource-intensive task within the kinetic 

strike mission is conducting real-time collateral scans, or scanning the area to reduce the 

risk to non-combatants. Typically, multiple assets with visual sensors perform this task 

by scanning the target area of interest for any collateral concerns (e.g., vehicle traffic, 
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pedestrians, etc.). Determining the locations in which the aircraft should focus its scans 

and how to timely and accurately communicate potential collateral concerns in a rapidly-

changing environment are difficult tasks that are predominantly centralized.  

To increase the performance of kinetic strike missions, the DoD should develop 

an on-demand swarm of decentralized drones to perform the collateral scan mission. For 

example, using the Perdix micro-drone test147 as a baseline, existing aircraft would 

deploy a swarm of small, cheap, and lightweight drones to conduct collateral scans when 

conditions were met for a kinetic strike. This would decrease the number of traditional 

assets needed to mitigate the risk of collateral damage, and replace them with a resilient 

and versatile swarm of drones. Operating in this manner would require trust within the 

human-autonomy team. To achieve this, the DoD needs to develop a collateral scan 

wargame that a machine learning algorithm could self-play to train the local decision-

making parameters of the individual drones. In operation, the appropriate authority would 

first identify and pass the intended target to the trained swarm before deployment. Once 

deployed, the swarm would interact with the local environment, based on its AI assisted 

and validated training, to determine the best locations to position themselves, identify 

collateral concerns, and communicate concerns in a timely manner.  

Decentralizing the operation of drones performing collateral scans during a 

kinetic strike does not imply that the human is removed from decisions to employ lethal 

force. Rather, the aim is to speed the decision-making process of the human-autonomy 

team by allowing the swarm to self-organize and position itself at the best locations to 

conduct collateral scans and streamline real-time adjustments in a dynamic environment. 

Trying to centralizing the operation of a swarm in this type of scenario would at best be 

inefficient, and, at worst, be counterproductive and could result in missed opportunities to 

conduct a successful kinetic strike. Ultimately, applying the proposed framework of this 

thesis to the kinetic strike mission has the potential to produce swarm strategic utility. 
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C. FUTURE RESEARCH 

There are multiple approaches to advance the research and experimentation of the 

proposed Way of Swarm framework. This section highlights several areas of suggested 

future research, including improvements to the model, applications of sensitivity tests for 

risk mitigation and hardware investment priorities, opportunities for field-testing trained 

algorithms, innovations for building user interfaces, and experiments to test the spectrum 

of control for autonomy based on mission sets and performance (i.e., what conditions are 

best to centralize as opposed to decentralize the control of a swarm). 

1. Improve the Model 

Future researchers can improve upon the proof-of-concept model in this thesis by 

addressing both the wargame design and the machine learning techniques selected. For 

instance, researchers could enhance the wargame to simulate the specific capabilities of a 

known drone type, model a specific environment with greater accuracy, or reduce the 

level of abstraction in the wargame. For instance, adding more fidelity to the wargame, 

such as three-dimensional flight characteristics, adverse weather effects, and line-of-sight 

communications, will allow the machine learning technique to solve for a greater variety 

of unknown key decision-making parameters (e.g., optimal altitudes for flying drones). 

However, the more robust the simulation, the more time it will take to execute millions of 

simulations to generate datasets. Researchers will need to determine the right balance 

between the fidelity of the wargame, the desired key decision-making parameters, and the 

amount of resources available to iterate through millions of simulations.  

Additionally, researchers can incorporate more sophisticated machine learning 

techniques, such as artificial neural networks or Q-learning, to solve for decision-making 

parameters at a broader range. The underlying decision-making algorithm for the drone 

agents in this thesis was based on a set of linear equations containing a series of rates 

used for heating and cooling gameboard tiles along a critical decision-tree path. The 

genetic algorithm systematically adjusted the rates and proportions to determine optimal 

global behaviors. Alternatively, neural networks offer a design structure for discovering 

this decision-making algorithm by reducing the human template (i.e., the OODA loop) 
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down to a more primitive set of raw inputs and outputs. This approach could potentially 

reduce the amount of human investment when scaling this model across multiple military 

mission sets (e.g., UUV patrols, collateral scan for kinetic strikes, etc.), but it requires 

more research to optimize neural network designs for use in decentralized applications.  

Moreover, Q-learning is another powerful version of reinforcement learning that 

could be used to enhance the framework design. Q-learning uses a values function within 

the algorithm to choose an action based on a given state to earn an immediate and future 

reward. When the possible combinations of actions and rewards is large, a Q-learning can 

be used to output and update value functions as opposed to individual agent actions.148 

Therefore, as the complexity of the wargame increases, Q-learning provides a method to 

"determine the best weightings for optimal control and design problems."149 Overall, 

employing additional machine learning techniques could make the final swarm training 

framework more efficient and represents a valid area for further research. 

2. Conduct a Robust Sensitivity Test 

Creating both trust and confidence within the human-autonomy team is a critical 

objective to bring more autonomy to the battlefield. Chapter IV, Section B, discussed one 

method for using the framework to highlight residual risk via statistical analysis of the 

final trained algorithms. However, in addition to these tests, the framework needs a more 

robust series of tests to further understand the sensitivity of the wargame model and 

initial assumptions. Once the training framework generates a solution for a given mission 

and scenario, additional iterations should examine the implications of any errors in the 

assumptions used to develop the wargame. For instance, if the designers of the wargame 

underestimated the adversary’s capability (e.g., speed, weapons range, etc.) then the 

trained decision-making parameters of the swarm would not perform as advertised. 
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Hence, additional sensitivity tests provide a way to better understand the risks inherent in 

the solution, which increases both trust and confidence for the operator.  

Running a robust sensitivity test would consist of three distinct steps. First, 

designers of the wargame would modify key simulation assumptions. For example, if the 

original training iteration assumed an enemy attack range of one kilometer, designers 

would modify this value (e.g., increase to two kilometers). Second, developers would re-

run the training framework with the adjusted assumption to observe the differences in 

swarm algorithms produced. By changing the enemy’s characteristics, the drone swarm 

will respond by adapting its algorithm over the course of the training evolution, resulting 

in a different solution. Third, to understand the sensitivity of the model to each particular 

assumption, the test would need to culminate with a series of wargames between the new 

optimized adversary produced with the adjusted assumptions and the original drone 

swarm algorithm. This final step provides insight into the changes in the results that 

would highlight the risk inherent in each assumption used to build the model.  

Model sensitivity tests provide an analysis tool for commanders to further identify 

residual risk and to gain trust and confidence in the framework. Commanders deploying 

swarms that trained through a narrow AI can use this tool to determine ways to improve 

the assumptions within their control (e.g., shape their critical information requirements). 

This can improve the training model, and thereby improve outcomes on the battlefield. 

Not only can this tool identify which characteristics of the adversary present the greatest 

risk, but the tool can also indicate which characteristics of the drone swarm are the most 

critical for additional resource investment (e.g., sensor upgrades, battery life, speed, etc.). 

Furthermore, commanders could use this tool to determine how many drones it would 

take to achieve a desired mission effectiveness percentage or an acceptable level of risk.  

3. Field-Test the Trained Algorithms 

Although the experimental results support that the proposed training framework 

produces effective drone swarm algorithms, without any real-world flight validation, the 

operators responsible for mission accomplishment would likely be averse to trusting the 

swarm and employing them in combat. Field tests of the machine learning recommended 
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algorithms are the final step to build trust in the decision-making process of the swarms 

and serve as a location to build partnerships in the resulting human-autonomy teams. 

Installations, such as Camp Roberts in California, currently exist to field-test aerial drone 

swarm tactics, and organizations like the Naval Postgraduate School, Georgia Tech, and 

DARPA have used the installation extensively for the purpose of live flight validation.150  

Field tests can generate data to reduce the gap between the theoretical simulation 

and reality. Comparing real-world results to the wargame simulation provides the human 

and narrow AI with feedback to update the assumptions in the model. The model relies 

on updated assumptions to generate refined behaviors for the swarms in both subsequent 

training and operations. Therefore, combining additional sensitivity tests in simulation, 

along with real-world operational testing is critical for culminating a viable framework 

that remains rapid, agile, and flexible. 

4. Design a User Interface  

One of the critical areas of further research is determining the best practices for 

constructing a set of user interfaces for human operators to monitor and override drone 

swarms (a front-end interface) as well to change assumptions and mission-types for the 

algorithm model and to retrain key decision-making parameters (a back-end interface). 

For the front-end interface, the software package must be intuitive to deploy and operate. 

If the swarm has real-time communication links available during operations, the interface 

should also include options to monitor active swarm operations and to update information 

to the swarms with critical changes (e.g., updated intelligence priorities). Additionally, 

the front-end interface should have the option to manually override specific drone agents 

when deemed necessary by a human operator. Although the intent of the framework is to 

train the swarm to effectively operate without the need for constant human control, due to 

unforeseen circumstances, the consideration must be assessed to keep an override option 

available for the operators to switch to manual control mode as desired. 
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Beyond just being able to launch, monitor, and override drone swarms in the field, 

one goal of the swarm training framework is that the tools for modifying the wargames, 

updating mission assumptions, and retraining the swarms should also be accessible at 

forward locations. Being able to rapidly adjust the training of drone swarms to current 

scenarios and assumptions that are known by the operators of the swarms in the field will 

give those swarms a higher effectiveness than those swarms trained for more generalized 

missions and environments. However, this goal requires that researchers build and test a 

back-end user interface that allows users who are not computer programmers or machine 

learning experts to apply the framework to their unique drone swarm and mission set. 

The back-end interface should allow users to easily change the type of drone agents, the 

environmental parameters, intelligence assumptions, and the mission-specific objective of 

their assigned swarm, and then click “train” to output an updated and optimized set of 

decision-making parameters that the framework generates to fit a specific situation. 

5. Wargame the Spectrum of Control 

One critical claim made in this thesis research is about the importance of training 

decentralized (as opposed to centralized) swarms of autonomous systems. Future research 

could further explore which control modes are more effective for military drone swarms 

in unique mission sets and environmental conditions. In addition to testing whether one 

mode of control is better in certain situations, experimentation could also help determine 

best practices for building a hybrid framework of control. Is it always best to employ 

swarms under centralized control as long as the swarm can maintain communication with 

a powerful data center? Or, perhaps, is it best for swarms to execute as much as possible 

in a decentralized pre-trained algorithm mode, even if they have good communications, 

so that military personnel will have more opportunities to build trust on how the swarm 

responds in a variety of situations? In either case, as military forces train to fight in 

contested and degraded environments, the ability to survive without communication, 

whether intentional (i.e., network-optional) or unintentional (i.e., the enemy gets a vote) 

demands having the best-trained decentralized swarming techniques ready for forces to 

execute when necessary. 
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To emphasize the importance between decentralized and centralized control for 

drone swarms, future wargame designers should add the ability for narrow AI to assume 

different modes of control over individual drones or entire forces in their wargames. 

There is a lack of wargames that focus on how to better improve the decentralized control 

of agents, as opposed to focusing on improving the single human (or computer) player 

who usually directly controls all agents in the game. Instead of insisting on centralizing 

the game information to a single controller, more wargames should focus on how the 

agents could improve their decision-making ability given the agent’s constrained 

observations and understanding of the state of the game. A wargame can simulate the 

demand for decentralization by limiting agents’ “knowledge” of the state of the game so 

that not all agents always share perfect information. Essentially, each agent in a wargame 

gets its own observations and decision-making algorithm (i.e., its own OODA loop) and 

cannot always reliably receive new commands. With more focus on the agents, operators 

will concentrate less on maximizing their own decision-making processes, and instead, 

become more cognizant of the benefits of optimizing the agents’ algorithms. 

D. SUMMARY 

Ultimately, as the ability to employ small, inexpensive, and capable autonomous 

systems is increasing across all domains, the American military needs to adapt its way of 

fighting to ensure it maintains a competitive advantage. The current frameworks that 

intend to train swarm tactics to drones limit the potential for the human-autonomy team 

to succeed in complex, contested, or denied environments, by relying on communication 

to a centralized controller that will begin to over-task the human decision maker. To 

overcome this span-of-control barrier, the proposed Way of Swarm is a successfully 

demonstrated method to develop decentralized swarming algorithms based on training the 

decision-making parameters of individual drone agents. The synergy of mission-specific 

wargames, machine learning, and cloud-computing services provided a rapid, agile, and 

flexible framework to train swarming agents and generate effective training datasets in an 

otherwise data sparse area of research. When combined with future research that includes 

better models, a robust sensitivity analysis, field tests, and accessible user interfaces, the 

proposed framework will serve as a force multiplier to enhance human-autonomy teams.  
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The proposed Way of Swarm aims to enhance the human-autonomy team, but not 

completely remove the human from the decision-making process. Although this research 

trained a decentralized swarm to better accomplish a mission with minimal human input, 

this does not mean that human input and oversight is not a requirement. Rather, the goal 

of a decentralized drone swarm is to enable individual agents to make their own decisions 

given the operator’s intent, as part of a collective team, thereby rebalancing the workload 

of the human. This enables the operator to focus on tasks that are not suitable for AI-

trained systems, while maximizing the unique capabilities of the human in the team. This 

falls in line with the DoD’s vision for unmanned systems, contending that “the expansion 

of capabilities in unmanned systems over the coming decades will largely be dependent 

on the ability to effectively team humans and autonomous systems in the force.”151 This 

thesis has argued that effective teaming between human operators and swarms of 

autonomous systems requires trust in decentralized execution; building this trust is 

achieved by adapting new technologies into the strategic framework for training effective 

algorithms. 
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