Technical Report
1238

Probabilistic Programming
with Missing Data

D. Suen

K.L. Nahabedian
M.J.Yee

M.B. Hurley

26 February 2019

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Lincoln Laboratory @

This material is based upon work supported by the Assistant Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001.

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and
development center operated by Massachusetts Institute of Technology. This material is based
upon work supported by the Assistant Secretary of Defense for Research and Engineering under
Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Assistant Secretary of Defense for Research and Engineering.

© 2018 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

Massachusetts Institute of Technology

Lincoln Laboratory

Probabilistic Programming with Missing Data

D. Suen
K.L. Nahabedian
M.J. Yee
M.B. Hurley

Group 104

Technical Report 1238

26 February 2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Lexington Massachusetts

This page intentionally left blank.

ACKNOWLEDGMENTS

The authors would like to thank the group office leadership: Paul Metzger, Ben Landon,
and Sanjeev Mohindra for their guidance of the program through the year. We would also like to
thank Ken Senne for his tireless devotion to our group’s summer internship program to identify and
recruit young talent who will form the backbone of the U. S. technical workforce in future years.

iii

This page intentionally left blank.

TABLE OF CONTENTS

Acknowledgments
List of Figures
List of Tables
Abstract

INTRODUCTION

1.1 Motivation and Objectives
1.2 Generative Model

1.3 Integrals for the Model
14 Prior Distributions

MARKOV CHAIN MONTE CARLO (MCMC)

DESCRIPTIONS OF PROBABILISTIC PROGRAMMING LANGUAGES
3.1 PyMC3
3.2 Stan

STABILITY MEASUREMENTS

4.1 Stability to Sample Size

4.2 Stability to Measurement Noise
4.3 Stability to Missing Data Fractions

K-MEANS CLUSTERING ALGORITHM

5.1 Initialization

5.2 Assignment of Measurements to Clusters
5.3 Cluster Distribution Parameter Updates
5.4 Clustering Algorithm Summary

5.5 R and Stan Code

EMPIRICAL CLUSTERING RESULTS
6.1 Clustering with Two-Dimensional Gaussian Data
6.2 Clustering with Three-Dimensional Gaussian Data

Page
iii

vii

ix

Xi

Tt W N =

11
11
11
14

15
15
16
16
17
17

19
19
25

TABLE OF CONTENTS
(Continued)

Page

7. SUMMARY AND FUTURE WORK 29
A INTEGRALS REQUIRED FOR ESTIMATES OF MEANS, COVARIANCE MATRI-

CES, AND POSTERIOR PROBABILITIES 31

B STAN PROBABILISTIC PROGRAM FOR 2D CLUSTERING 33

Glossary 35

References 37

vi

Figure
No.

S Ot s W N

10
11
12
13
14
15
16
17

18

19

LIST OF FIGURES

A graphical depiction of the generative model for producing observed sam-
ples drawn from a normal distribution of true sample measurements cor-
rupted by sensor noise.

Results from estimating the 2-D mean from different numbers of data samples.
Results from estimating the eigenvalues from different numbers of data samples.
Results from estimating the 2-D mean from different measurement noise levels.
Results from estimating the eigenvalues from different measurement noise levels.

Results from estimating the true distribution while varying the number of
points missing data in one dimension.

Results from estimating the eigenvalues, rotation angles of the covariance,
and mean, while varying the number of points missing data in one dimension.

A plot of the simulated data for three clusters before the addition of noise.

A plot of the simulated data for three clusters with the addition of noise and
measurements with missing dimensions plotted as rectangles spanning the plot.

The initial clusters and assignments for a simulated data set.
Cluster results after iteration one.

Cluster results after iteration two.

Cluster results after iteration three.

Cluster results after iteration four.

Cluster results after iteration five.

Cluster results after iteration six.

The final results from the clustering algorithm after iteration seven. Mea-
surements are colored by their assignment. Measurements with missing data
are plotted as diamonds with a vertical or horizontal bar, indicating the di-
rection with missing data.

An RGB color representation of the simulated 3D data set, arranged in a
grid pattern.

A plot of simulated 3D data with missing features.

vii

Page

14

15
19

20
21
21
21
22
22
22
22

23

26
26

LIST OF FIGURES

(Continued)
Figure
No. Page
20 The resulting cluster assignments for the simulated 3D data set with missing

features. 27

viii

LIST OF TABLES

Table
No. Page

1 Comparison of Missing Value Imputation Approaches 25

ix

This page intentionally left blank.

ABSTRACT

This report summarizes work performed to develop a computer algorithm that is capable of
handling missing data fields in multivariate data sets. The results presented here are based upon
prior work which examined the applicability of inverse covariance matrices, or precision matrices,
to representing missing data as zero eigenvalues in the precision matrices. The prior work used
maximum a posteriori (MAP) estimates for a combination of normally distributed multivariate data
with normally distributed multivariate measurement errors and assumed that the prior probability
distributions for means and precision matrices were uniform.

This work extends the previous technique to one that uses normal-Wishart matrices to de-
scribe the prior probability distribution for a normal data distribution and to estimate posterior
parameters for these distributions for multivariate data with missing fields. While the integrals to
estimate posterior probabilities from likelihood and prior probability distributions may in fact be
analytically solvable, the authors were unable to discover such a solution. Instead, analytic integral
solutions were used for individual probability measurements and a probabilistic programming lan-
guage was used to perform numerical integration on the remaining integrals. The chosen solution
leverages the strengths of one integration method to address the weakness of the complimentary
method: analytic integration is performed where numerical integration cannot be performed, and
numerical integration is performed where analytic solutions are currently unknown. Most of the
recent work was performed by an undergraduate intern for Group 104 at MIT Lincoln Laboratory
during the Summer of 2018. A model for the problem is defined and analyzed mathematically. A
discussion of the probabilistic programming languages and programs is also provided, along with
results for a number of simulations.

X1

This page intentionally left blank.

1. INTRODUCTION

As the state of the art in data analytics moves to even larger data sets with multi-modal
features of greater number of dimensions, the problem of missing data fields is bound to become
more prevalent. Fields like medical and social sciences research have struggled with the missing
data problem for decades. Solutions have included Multiple Imputation (MI) [1,2] and Full In-
formation Maximum Likelihood (FIML) [3,4]. The FIML technique uses a set of boolean values
to indicate missing data fields, while the technique developed by the authors uses inverse covari-
ance matrices, or precision matrices (also called information matrices), to represent missing data
fields; zero eigenvalues in the appropriate dimensions of the precision matrix represent missing data
fields. The technique described in this report can be considered a generalization of FIML, in that
the measurement coordinate systems’ principal axes are no longer required to be the same for all
measurements. Individual measurements can have different principal axes with different subsets of
axes containing no information.

From a Bayesian perspective, prior work by the authors ignored the prior distribution func-
tions for the mean and precision matrix. In other words, uniform distribution functions were
assumed for the prior distribution for the mean and precision matrix of the data distribution. The
prior work also used a maximum likelihood method to estimate a cluster’s mean and covariance ma-
trix. This work extends the previous work to use normal-Wishart prior probability distributions for
the mean and precision matrix of a cluster and to determine posterior estimates of the expectation
values for the mean and precision matrix from the distribution of the data. The normal-Wishart
distribution is the conjugate prior for the multivariate normal distribution when precision matrices
are adopted instead of covariance matrices. While the model for data generation consists of Gaus-
sian and Wishart distributions, complete analytic integration of the density functions was found
to be intractable. This project examined the possibility of using a probabilistic programming lan-
guage to perform the numerical integrations needed to estimate expectation values for means and
covariance matrices. The utility of the approach was demonstrated with a simple data set clustered
with a k-means algorithm that relied on a probabilistic program to estimate association likelihoods
between measurements and clusters and to update the Gaussian model parameters of the clusters.

1.1 MOTIVATION AND OBJECTIVES

Over the course of a summer internship, Daniel Suen was tasked to select a suitable proba-
bilistic programming language for the posterior estimation of a cluster’s mean and precision matrix
from multivariate data with missing parameters. Stan, Edward, and PyMC3 were evaluated for
potential use. Probabilistic programs were then to be written such that they could be integrated
into a k-means style clustering algorithm to demonstrate the effectiveness of the programs [5-7].
The k-means algorithm consists of two iterated steps: assigning measurements to clusters and es-
timating the means and precision matrices for each cluster from the assigned measurements. The
two steps are repeated until measurements are consistently assigned to the same cluster.

As data sets become increasingly large, it becomes more and more difficult to obtain complete
data. For instance, traditional statistical data analyses have often been plagued with problems

such as poor response rates (surveys) and censorship (medical data, survival analysis). Various
techniques have emerged to work with the data that have been given. This summer project sought
to use the Bayesian approach of probabilistic programs to avoid analytically evaluating integrals
that are too challenging to solve. The project was primarily an exploratory one to evaluate the
power of Probabilistic Programming Languages (PPLs) and how they could be applied to this type
of problem.

For readers with previous experience with Markov Chain Monte Carlo (MCMC), this report
includes a lot of beginner topics that may be uninteresting. A short overview of MCMC is provided
for those readers with little exposure to this topic. The report first introduces the generative model
that described how data are imagined to be generated and moves to a discussion on the PPLs used.
Afterwards, it outlines a variant of the k-means clustering algorithm and presents empirical results.
Appendices are provided which contain summary derivations of the update equations associated
with the probabilistic programs.

1.2 GENERATIVE MODEL

The generative model for the specific problem of interest for this summer project can be
described with Figure 1. Using a probabilistic approach, a given cluster can be represented via a
PDF, say a multivariate normal (MVN) distribution with unknown mean vector p and covariance
matrix 3,. Next, a state x; is sampled from this distribution, generating a measurement for that
cluster.

For each x;, zero-mean additive Gaussian noise is added to model the sensor measurement
noise. Under this model, each sensor can have a unique covariance matrix 3, associated with its
measurement error, and only z; is strictly observed.

In other words, the generative model is a convolution of two Gaussian distributions: a distri-
bution from which true sample measurements are drawn and an error model to introduce noise into
the actual measurements that are observed. The core aspect of the problem is thus estimating the
cluster distribution parameters y and X, in the presence of sensor measurement error and missing
features. To accomplish this end, Bayesian techniques were adopted to enforce various priors of the
form p(u, X)) that represent prior beliefs about the cluster distribution parameters.

Although the generative model uses covariance matrices, the algorithms that were developed
use precision matrices for a majority of the calculations. This is especially true for the measurement
error matrices X,,. Precision matrices A, are used instead. For this analysis, it was assumed that
the measurement error precision matrices are known. The problem is insolvable if the measurement
error matrices are unique and unknown for each measurement. It is possible to solve the problem if
the measurement error matrix is the same for all samples. This problem is not studied here because
the focus is on developing algorithms that can handle missing data fields, as represented with the
individual error matrices.

Throughout the report, the derivations will switch between ¥ and A notation for covariance
and precision matrices, depending on context and convenience. Note that ¥ = A~! where the
inverse exists.

Figure 1. A graphical depiction of the generative model for producing observed samples drawn from a normal
distribution of true sample measurements corrupted by sensor noise.

1.3 INTEGRALS FOR THE MODEL

Relying on Bayes’ rule, the posterior distribution function for the mean and covariance matrix
of the underlying distribution of the measurements is

P ({ZU L5 Azz} |/L’ A,u) P (:U’a Au)
P ({zi; w3 Az, }) '

For this model, it is assumed that z; is only dependent on the cluster parameters u and X, = A;l
through z;. Some of the notation is relaxed in the following derivations to limit the complexity of
the typesetting; for instance, the integrals should be from —oo to oo over all dimensions. It is also
assumed that the A, are known, and are thus fixed parameters rather than random variables. The
generative model defines the probability distributions p(z;|z;; X,,) for a specific measurement and
p(xi|p; E,) for a specific cluster. In addition, this report explores the use of the Normal-Wishart
prior distribution for this generative model. To implement a k-means style algorithm, estimates of
the parameters y and X, for particular clusters are desired.

(1)

P(NaAu| {Zi’mi;Azi}) =

If the posterior probability distribution P (u, A,|{z,x:; Az, }), is available, the expectation
values for p and ¥, can be determined by the integrals

(W) = / TP (A (i A) dis A, (2)
(Bu) = /OO (o= () (= ()T P (g Apl {20, w45 Az) dp dA,. (3)

These integrals can be used to determine cluster parameters from the associated measurements.

Given the assumption that measurements are independent, other than through p and A, the
probability for sets of measurements can be reformulated into a product of probabilities,

P ({ziy e A} s M) =] P (o is Ay A (4)

The predictive posterior distribution can be used to determine the likelihood that an observed
measurement Z associates with a given cluster. This is used in the k-means algorithm to assign
measurements to clusters.

P (3 {zi A} 5 As) :/P(Z]i;Ag)P(ﬁcm,Au) x

5
H P (zi|xi; Azy) P (il p, Ay) P (p, Ay) doey d dp dA,. (5)

All three integrals in Equations 2, 3, and 5 require solving the integral for a single measurement
chain,

p(zilps Ay Azy) = /p(zi,xilu,A#;Azi) dz; (6)
= /p(zi’$i7N7A,u§Azi)p(fpi’N)Au) dz; (7)
= [bl ol) dos (®)

The z; variables are considered to be nuisance parameters and are removed with the integration.
The multivariate Gaussian PDF can be defined as

M) = A2 o (L= i —)
) = oo e |~ Ty =))
where n is the number of dimensions. The insertion of Gaussian functions leads to
p(zilp, ApsAz) = /N(ZiawiaAzi)N($iaM7Au) dx; (10)
(1A 1AL (11)
(27[-)71/2
1
[exw (=5 6= A s =)+ (o1 = 07 oi — 0]) .

This integral can be solved analytically (by completing the squares) and the log-likelihood
function easily obtained

1 1
logp(zi’/% Au§ Azl) = C-— 5 log |AZ1 + AM‘ + 5 log |AM’ (12)
1
2 (ZzTAzzzz + T A — (Azyzi + App) T(A2, + AH)_1<AZiZi + Auﬂ))

with a constant term, C' = £ log (|A,|) — n/2log (27). For additional discussion on the problem of
obtaining analytical solutions, see Appendix 1.

While probabilistic programs can numerically integrate the function in Equation 10 for pos-
itive definite precision matrices, it becomes problematic when one of the precision matrices is no

longer positive definite. This would effectively require sample draws from an infinite space. An-
alytic integration leads to an apparent problematic term with |A,,|. This term is zero if any of
the eigenvalues are zero. However, the term can be cancelled in the equations that are involved
in the clustering algorithm described here. The term cancels via the normalization terms, such
as the divisor term in the posterior probability equations. The association cost functions can be
considered to be log-likelihood ratio tests to determine cluster assignment and the term can again
be canceled. Arguments can be made that these measures remain finite in the limit of eigenvalues
of A, approaching zero. This argument assumed that the combination A, + A, remains positive
definite. The selection of the normal-Wishart prior is to ensure that A, remains positive definite.

Fortuitously, the log-likelihood function in Equation 12 can easily be implemented in Stan.
Stan also provides primitives for the Wishart distribution so that a normal-Wishart prior distri-
bution can easily be constructed. The remaining integrals for estimating expectation values for
p and A, and for the posterior predictive log likelihood ratio test can be easily obtained through
numerical integration of the remaining integrals.

1.4 PRIOR DISTRIBUTIONS

The uniform distribution prior was pursued in previous work. The first probabilistic programs
that were written this summer also used a uniform prior for the cluster mean and covariance matrix.
To ensure that the sampled matrix was positive definite, eigenvalues Aj, Ay ~ U(0,100) and a
rotation angle © ~ U(0,27) were sampled uniformly and independently. In the case of a 2-D
covariance matrix, a sampled matrix was then constructed by

_|cos@ —sinf| |\ O cosf) siné
X = [sinG cosf] [0)\2} [— sinf cos 0} ’ (13)
where A1, A2, and 6 are all realizations of the random variables A1, Ao, and O, respectively.

For the Normal-Wishart prior distribution, the following definition is provided. Because of
the simple definition, it should be easily definable from the primitives provided by probabilistic
programs, assuming the Wishart distribution and MVN parameterized by a precision matrix are
in the set of primitives.

A mean vector and precision matrix pair (g, A) ~ NW(po, A, W, v) is equivalent to
1. A~W(W,v)

2. p~N(po, AA)™)

One can interpret the Wishart distribution function as a multidimensional analog to the chi-
squared distribution function. For the Wishart distribution, it is required that v > dim(W) — 1,
and that the expected value is E[A] = vW. The larger the value of v, the more concentrated the
distribution is around ¥vW. Hence, if one has a reasonable estimate Ay for A, one can select v

based on his/her level of confidence on the estimate Ag. The term W = Ag/v can then be set
accordingly.

Additionally, it is a good practice to set pg based on the prior belief on where g may lie. The
parameter A reflects one’s confidence about the parameter pg; the larger the value of A, the larger
the values of the precision matrix AA, and so indicates increased confidence in the likely value of .

2. MARKOV CHAIN MONTE CARLO (MCMCQ)

The No-U-Turn Sampler (NUTS) is an auto-tuned Hamiltonian Monte Carlo (HMC)! ex-
tension developed by Hoffman and Gelman [8]. There are advantages of NUTS over traditional
MCMC methods such as the Metropolis algorithm [8]; namely, the Metropolis algorithm performs
poorly with high-dimensional data sets due to it purely being a random walk (see curse of dimen-
sionality). As such, whenever possible, the authors usually opted for using the NUTS algorithm.

Under certain regularity conditions, the posterior distributions can exhibit asymptotic normal-
ity (with a convergence in distribution). See the Bernstein-von Mises theorem for more details [9].
The paper titled “Applications of the theory of Martingales” by Doob is also applicable to regu-
larity conditions; it is one of the first papers to discuss the Bernstein-von Mises theorem, although
the paper contains heavy mathematics [10].

! http://arogozhnikov.github.i0/2016/12/19/markov_chain_monte_carlo.html

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

This page intentionally left blank.

3. DESCRIPTIONS OF PROBABILISTIC PROGRAMMING LANGUAGES

Probabilistic programming languages are programming languages that can be used to specify
a probabilistic model and then perform inference. Inference can be as simple as attempting to
obtain more accurate estimates for some of the model parameters.

3.1 PYMC3

The incorporation of Edward into TensorFlow initially made working with Edward appealing,
but ultimately, it was decided to skip the use of Edward because of its relative immaturity and to
avoid any potential obstacles during setup that could delay progress.

On that note, PyMC3 was chosen as the first language to apply to the generative model.
PyMC3 required the installation of theano to be able to work with tensors. PyMC3 was the first
language that was implemented for a few reasons:

1. It is easy to import into Python.
2. There are no difficult dependencies to manage during installation.

3. There is excellent user support and documentation.

The first PPL programs that were written assumed uniform priors so prior distribution func-
tions could be ignored. To combat the risk of possibly generating samples with square matrices
containing non-positive eigenvalues, the eigenvalues and a rotation angle were independently drawn
from uniform distributions of finite extent to ensure that the eigenvalues were positive definite. The
covariance matrices were composed via the matrix decomposition outlined in Section 2.

Unfortunately, a roadblock was encountered while trying to advance beyond uniform prior
distributions and implement Normal-Wishart prior distributions in PyMC3. As of the summer
of 2018, there were no MVN primitives in PyMC3 that used precision matrices. The decision
was made to transition to Stan because Normal-Wishart distributions are contained in its set of
primitives.

3.2 STAN

First, there are a few helpful references that readers may use to familiarize themselves with
Stan in general. The Stan Reference Manual provides some overview of the Stan syntax and
example applications [11]. An article by Annis, et al. [12] gives good examples of how to implement
user-specified distributions in Stan. Additionally, the “Brief Guide to Stan’s Warnings” provides an
excellent summary of the meanings of many of the common Stan warnings?.

The first difficulty with Stan occurred while trying to set up PyStan to work in Python, likely
due to a dependency issue. After a few attempts at reinstallation, this approach was abandoned

2 http://mc-stan.org/misc/warnings.html

http://mc-stan.org/misc/warnings.html

in favor of utilizing RStan with R. The remainder of the probabilistic programs were written in R
and RStan. The web page, “Installing RStan on Windows” was a straightforward guide for getting
RStan running on MS Windows?.

Essentially, one of the key aspects of Stan that set it apart from other aforementioned PPLs
is that every Stan program defines a model and is saved in a .stan file. This means that models
can easily be ported between popular encapsulating languages such as R, Python, and MATLAB.
In addition, PPLs such as Edward and PyMC3 were specifically developed to work with Python.
Their functions are inherently ‘Pythonic’ in nature; hence, if one uses those languages, one must
also use Python. The installation attempts of this summer suggest that a PyStan installation may
not be completely straightforward, whereas the RStan installation was fairly simple; no effort was
made to use Stan with MATLAB.

As mentioned earlier, NUTS is one of the state-of-the-art MCMC algorithms, which Stan
provides. The Stan manual provides details on how to write programs for log probability densities.
This capability is essential for writing modern MCMC algorithms [11]. The Stan files written
for this project defined models specifying the prior probability distributions and the likelihood
functions. As long as the model remained the same, the same model could be repeatedly executed
to analyze different data sets. When a Stan program is first called in R, the model is compiled
into C++ code. Assuming the model remains the same, the model can be saved as a .Rda file and
then loaded into future instantiations of R to avoid duplicative compilations (which can take up to
a few minutes to complete).

When diagnosing the convergence of MCMC, it is useful to run multiple chains at the same
time - the idea being that if there is decent convergence, multiple chains starting at different points
in state space should arrive at roughly the same region. The Gelman-Rubin diagnostic compares
the within-chain variance to the between-chain variance; if they are similar, then it can be said
that the chains appear to be well-mixed; values close to 1 are the most ideal [13].

To see how well a model is performing, it is useful to plot the autocorrelation as a function of
the lag, and examine the traceplots. A good autocorrelation function should have a value of 1 at
a lag of 0 and values close to 0 everywhere else. A good traceplot should appear fuzzy, and there
should be little evidence of correlation. Thinning (keeping every kth sample) can be used to reduce
the autocorrelation of the output sample sequence.

3 https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-Windows

10

https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-Windows

4. STABILITY MEASUREMENTS

The stability of the estimates to changes in sample size or measurement error level was
examined. One would expect that a decrease in sample size or an increase in measurement noise
would result in loss of accuracy. The experiments that were run indicate that lower sample sizes
or higher measurement errors result in posterior estimates that are more biased towards the prior
distribution parameter values, as expected.

Experiments were also conducted to evaluate the sensitivity to changes in sample size. For
each Rda file, 50 MCMC runs were performed. After each run, the mean of the posterior distribution
samples was calculated to get sample means for the mean vector and the precision matrix. Hence,
there are a total of 50 mean vector estimates and 50 precision matrix estimates for data sets with
different sample sizes.

Similarly, experiments were conducted to evaluate the sensitivity to changes in measurement
error levels. Like before, for each Rda file, 50 MCMC runs were performed, and after each run, the
mean of the posterior distribution samples was calculated to get sample means for the mean vector
and the precision matrix. As before, there are a total of 50 mean vector estimates and 50 precision
matrix estimates for data sets with different measurement error levels.

4.1 STABILITY TO SAMPLE SIZE

Figure 2 shows the resulting estimates of the mean components from 50 MCMC runs for each
of seven sample sizes ranging from 2 to 1000. The simulated data were generated to describe a
cluster with a mean of [1,2]" and a covariance matrix of [5, —1;—1, 2]. The eigenvalues for this
matrix are approximately 5.30 and 1.70. The measurement noise model’s precision matrix was set to
A, =1[1,0;0,1]. There were no missing measurements in this analysis. The prior parameters were
set to o = [0,0], A =2, W =[1,0;0,1] and v = 3. Figure 3 show histograms of the 50 estimates
of the eigenvalues. As could be expected, the estimates improve as sample size increases. For low
sample sizes, the estimates are very poor and biased toward the prior distribution.

4.2 STABILITY TO MEASUREMENT NOISE

A similar test was run to assess the sensitivity to different measurement noise levels. The same
basic measurement noise precision matrix was used but scaled across a range of factors:
A, = all,0;0,1], where a ranged from 0.05 to 20. The sample size for this test was set at 100
samples. The results are shown in Figures 4 and 5. Again, as expected, as the precision improves,
the more reliable estimates are obtained for the mean and eigenvalues for the covariance matrix.
Although not as extreme for this series of runs as compared to the runs with varying sample sizes,
the estimates are more biased toward the prior parameters for the runs with larger noise levels
(smaller a).

11

Mean 1

Mean 2

.. 1000 points .10 points .. _ 1000 points 10 points_
- i - A o &1 -
o | = e Frr 24 e 5] R
g g s o g =
4 £ LR L]
° 7 T ’7 T 1 - ‘v—v—m—v—\ ST T - T 1
-2 -1 o 2 3 -1 3 4 -1 0 1 3 4
5 points 500 points . 9 points_
p-value e p-value =] p-valve _ p-value
0.944 & - 0.594 g ® 0.347 g o 0122
:] —h 3] 3 —|
- g = E v —
g - T 2] : n
T T T 1 - =7 T T 1
2 -1 o 2 3 -1 3 4 -1 0 1 3 4
_ 2 points _100 points 2 points
o B
: e S w gt s o5 [ol
g - g = 2] 2 24
E o L F g -] £ v
o - = od o d —
| e e E— —] T T T 1 —r T [T 1 f T T !
-2 -1 0 3 -2 -1 o 2 3 -1 3 4 -1 0 1 2 3 4
~_ 50 points 50 points
.] pvalue = 2 pvaue
: = 0995 5 ° 0.598
£ .1 E o 'L
g - &
= T T T 1
-2 -1 0 1 3 -1 3 4
Figure 2. Results from estimating the 2-D mean from different numbers of data samples.
Eigenvalue 1 Eigenvalue 2
« _ 1000 points “ 710 points 1000 points 10 points
.] p-value .] p-value .29 p-value _—] p-value
g o] 0645 g © 0.001 § e 0697 § o] 0.002
R ER S - Bl m
£ -] £ -] B £
o1 ls o3 i o i
T T T 1 r 1 rr____r 1 1
0 2 4] 8 [2 6 8 [8 0 2 4 -] 8
o _ 500 points p°'"jf - 500 points 5 points
. pevalue .= pevalue L p-value N & —LL p-value
g .1 0389 g o - 0147 g e 0.162 g =] 5928
LI L : I
- g £ v - g o
o] . 1] o Sl
0 2 4 6 8 0 2 6 8 4 (] 8 0 2z 4 6 8
. 2 points 100 poi .
100 points o oo points o 2 points
. m: p-value 5 - p-value 5 + p-value 3 = p-value
g o 0658 £ o 1803 e5 H © - 0.010 H & 161585
2 1 ’_17 S g <1 g 8
g = g < B« - E o
g 7] g I Ze
T T T 1 ° T T T 1 = T T 1 ° ﬁnﬁ—l—ﬁ
0 2 4 6 8 0 2 [8 4 6 8 0 2 4 6 8
. _ 50 points ER 50 points
L 81 p-value R p-value
g 0346 g .1 0.229
5 L] g .
£7] H’ £
e H - —
0 2 4 6 8 4 6 8

Figure 3. Results from estimating the eigenvalues from different numbers of data samples.

12

Frequency Frequency Frequency

Frequency

Frequency

Frequency

6 12

[

10 15

5

0

0 5 1015

_a=20
p-value
] 0134
]]]]:
2 0 2 3
_a=5
b p-vae
1 0345
2 4 0 2 3
a=2
p-vale
H 0.434
2 1 0 2 3
_a= 1 p-value
0637
- T
2 4 0 1 2 3

Figure 4. Results from estimating the 2-D mean from different

Frequency

Eigenvalue 1

a=20
] p-value
0715
r T T T 1
0 2 4 6 2
a=5 ,
p-value
ﬂ\ 3
T T T T 1
0 2 4 6 8
a=2
p-value
[0.313
r T T T 1
0 2 4 6 2
a=1 —
p-value
T T T T]
0 2 4 6 8

Frequency

Frequency

Frequency

o

4 8

0

4 8 12

o

a

pvakie
0.587

12

Frequency
4 8
I

0

12

Frequency
A

02488

12

Frequency
02468
L

Frequency

p-value

02488

- ©
0.343 g L]
g <
g o]
T 1 =
3 4 1 1
. a=0.05
p-vale -
0712 E o
ERE
£
T 1 D e e e
3 4 - 1
p-valie
0713
T 1
3 4

pvakie
0.831

measurement noise levels.

Eigenvalue 2

a=05 o a=20 o5 r a=05
p-value o - p-value . - p-value
0079 g2 =+ 0.443 g =+ 0.012
g o4 § o4
g 8
g = g -
|‘|_ s [
=] o I
T T T 1 r T T 1
0 2 8 8 0 2 € 8
a=0.25 - a=5 a. a=0.25
p-value . 24 p-value . 7] p-value
0177 g N 0.255 13 0.108
8 - § %=
F . gL
= : - e : J “
o o M
r T T 1 T T 1 T T T 1
0 2 6 8 0 L] 8] z 6 8
a=0.05 a=2 a=0.05
.
p-value . p-value - vale
4.079e-5 2 o 0.192 2 B8 3.782e-12
Ea l H
g 7 Ii e
o L o
T T T 1 T T 1 T T T 1
0 2 6 8 0 6 8 0 2 6 8
o a=1
4 H p-value
E @A 0.190
E
£
o
i T]
0 6 8

Figure 5. Results from estimating the eigenvalues from different measurement noise levels.

13

0% Data Missing One Dimension 10% Data Missing One Dimension 30% Data Missing One Dimension

50% Data Missing One Dimension 70% Data Missing One Dimension 90% Data Missing One Dimension

> Estimated distribution
> True distribution
o Points with no missing data
Points with missing data in y-dimension
o Points with missing data in x-dimension

Figure 6. Results from estimating the true distribution while varying the number of points missing data in
one dimension.

4.3 STABILITY TO MISSING DATA FRACTIONS

A test was run to assess the quality of mean and covariance estimates as the amount of
data with missing values increases. There were 600 points sampled from a distribution with mean
[—12,10]" and a covariance matrix of [1, —0.5; —0.5, 1]. Measurement noise was set so low as to be
negligible, in order to simplify the study of the effects of the variable in question: the percentage
of missing data.

Figure 6 shows that as the percentage of points with missing data increases, the quality of
the distribution estimate decreases. While the estimate of the mean remains reasonably accurate,
the estimate of covariance matrix degrades and becomes more ”circular”. Figure 7 shows 1) the
eigenvalues of the estimated covariance matrix, 2) the rotation angles of the matrix, and 3) the
estimated mean, all as a function of percentage of points with missing data. Although the estimate
of the mean remains reasonably accurate as the percentage of points with missing data increases,
the eigenvalues and rotation angles show that the covariance estimate degrades.

14

Eigenvalues of Covariance vs. Estimated Covariance Rotation Angles vs. Estimated Mean Values vs.
Percent of Points Missing Data Percent of Points Missing Data Percent of Points Missing Data

ance Matrix
5

© Estimated major axis rotation

o Estimated minor axis rotation
—— True major axis rotation
—— True minor axis rotation

ues of Covari
1

© Estimated mean in x-direction
o Estimated mean in y-direction
= True mean in x-direction
= True mean in y-direction

Estimated Mean

Estimated larger eigenvalue

Estimated smaller eigenvalue
— True larger eigenvalue £
= True smaller eigenvalue

Estimated Rotation Angles of Covariance.

Eig
0
o o

T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 [20 40 60 80 100

9% Data Points Missing a Dimension % Data Points Missing a Dimension % Data Points Missing a Dimension

Figure 7. Results from estimating the eigenvalues, rotation angles of the covariance, and mean, while varying
the number of points missing data in one dimension.

5. K-MEANS CLUSTERING ALGORITHM

5.1 INITIALIZATION

The k-means algorithm is certainly simple and fast, but it is widely known that finding the
global optimal solution for clustering even low-dimensional 2-D data into k£ hard clusters is an
NP-hard problem [14]. To get faster convergence to an optimal solution, the k-means++ algorithm
was used to initialize the centers of each cluster. This initialization approach tends to select the
k cluster means with large separation. The algorithm randomly selects a cluster center from the
measurement data set and then continues to randomly choose additional cluster centers from the
remaining measurements with a probability proportional to D?, where D is the distance from a
measurement to the nearest cluster’s center.

For the simulations, the generation of the initial definition of precision or covariance matrices
for the cluster distributions was kept relatively simple. Variances for all d dimensions were inde-
pendently estimated from the complete data set while covariance terms were defined to be zero.
The cluster precision matrix diagonal terms were then simply the multiplicative inverse of these
variances while the initial off-diagonal terms were defined to be zero. The same initial precision
matrix was used for all the clusters.

After selection and definition of the initial estimate of cluster means and precision matrices,
the k-means algorithm alternated between the following two steps: assigning data points to the
cluster with the highest probability of association and updating cluster distribution parameters.
The algorithm would repeat the two steps until a convergence criterion was met (typically, when
all measurements stop being reassigned) or the maximum number of iterations was reached. In this
algorithm, the maximum number of iterations was set to 20 to ensure a timely completion of the
algorithm.

15

5.2 ASSIGNMENT OF MEASUREMENTS TO CLUSTERS

The purpose of this step is to assign (or reassign) each data point to the appropriate cluster.
Traditional k-means or fuzzy c-means algorithms utilize a distance metric (typically Euclidean),
but this algorithm was written to utilize log-likelihood ratios. As every cluster distribution is
characterized by a mean and precision matrix, a measurement is assigned to a cluster if and only
if the probability density value for association between that measurement and that cluster is a
maximum of all cluster association costs. Specifically, the hard assignment a; for a data point z; is
updated upon each iteration with

a; = argmax p(zi|u;, Ap;s Az,), (14)
J

where j is the cluster index.

Equation 12 was used to generate the association log likelihood between each measurement
and cluster. Note that Stan does not require the log probability to describe a normalized probability
density function — being off by an additive constant term is fine. Stan drew samples to represent
the posterior distribution, as specified by the model. Usually, more than one MCMC chain is
recommended to determine convergence diagnostics. However, for the simulations associated with
clustering, only one chain was drawn, due to time constraints. Experience gained from running
these simulations suggests that MCMC should be run before clustering. This way, multiple chains
can be run to verify convergence was achieved, as indicated via the Gelman-Rubin statistic [13].
Additionally, this can indicate an appropriate choice for the number of warm-up samples (burn-in
period) and chain length. For this analysis, 1000 samples were typically drawn, with half of those
being discarded as part of the burn-in period.

5.3 CLUSTER DISTRIBUTION PARAMETER UPDATES

To cluster the simple synthetic data, the NUTS algorithm was used to draw 1000 samples
with no thinning. The generated sequence appeared to be roughly uncorrelated and had only one
mode. The estimates i and [\u were calculated by taking the average of the valid posterior samples;
essentially, this is the same as taking the expected value of the posterior distribution. These new
estimates replaced the old ones in the k-means algorithm.

In the Stan programs that were written for this project, the variable value, NA, was used
to denote “Not Available”, or missing features, in a given measurement’s state vector, z;. The
R programming language naturally uses NA to represent missing data and handles mathematical
operations with this special assignment. Stan does not naturally support missing data fields. By
default, in Stan, NA represents ‘not a number’ and the multiplication NA - 0 returns NA, so to
achieve the correct calculations, the programs simply converted all NAs to 0s before performing
multiplications. This is a natural convention to adopt with the use of precision matrices to indicate
missing data. In the principal coordinate frame for measurements, any real value of z; multiplied
by the zero row and column in the missing coordinate axis will return zero, as desired. The correct
computation is naturally and correctly performed for products like zJ A, z;. Some care is necessary
for representing measurement from different principal axes. The zero terms need to be set for

16

precision matrices defined in the principal coordinate frames and then rotated into the common
frame.

54 CLUSTERING ALGORITHM SUMMARY

The aforementioned steps for the k-means clustering algorithm are summarized in the pseu-
docode contained in Algorithm 1. Let d be the dimensionality of the measurements, z;.

Algorithm 1 k-Means for Missing Data

1: procedure k-MEANS FOR MISSING DATA

2 Initialize k means: pi1, o, 3, . . . , . € R? using the kmeans++ algorithm

3 Initialize k d x d cluster precision matrices: A, Ay, Aps, .o Ay,

4: Initialize the Normal-Wishart prior distribution on the cluster means and precision matrices
5 repeat

6 for i€ {1,2,3,...,N} do

7 Update cluster assignment a; = argmax p(zil g, A5 Azy)

8: end for !

9: for j €{1,2,3,...,k} do

10: Draw samples from the posterior distribution using the NUTS algorithm

11: Estimate the cluster parameters p; and A,; with sample means of the posterior
12: end for

13: until convergence

14: end procedure

In many clustering algorithms, the performance can be measured using an objective loss
function. One was not explicitly used here, but performance can be quantified with a sum of the
log-likelihood function for all the measurements and their assigned clusters, as with Equation 12.
The constant term would be neglected.

5.5 R AND STAN CODE

The model was specified and described in Stan while the code to perform the iterative steps
in the k-means algorithm was written in R. In Stan, the model was defined by the prior distribution
and likelihood functions. R was used to generate simulated raw measurement data that was saved in
an .Rda file for repeated executions of the algorithm. The raw measurement data were transferred
from R to Stan. Stan was then used to generate and return posterior distribution samples to R,
which the R code then used to determine the assignments of measurements to clusters or to calculate
sample means, depending on the type of requested posterior distribution.

17

This page intentionally left blank.

6. EMPIRICAL CLUSTERING RESULTS

6.1 CLUSTERING WITH TWO-DIMENSIONAL GAUSSIAN DATA

The first simulation considered the case of two-dimensional, reasonably separated Gaussian
clusters. Clean data were generated by initializing three Gaussian clusters via the distributions

o[2-)
o= [2 [),

o[-t 1)

Two hundred simulated measurements were sampled from each distribution to create the
cluster measurements. Then, six hundred 2 x 2 precision matrices were drawn from a Wishart

distribution,
0.8 0
w([es 0] o). s

20

158

10

Figure 8. A plot of the simulated data for three clusters before the addition of noise.

19

20
1

g L "_'- R

15
|
4|
q

o =
4

10

Figure 9. A plot of the simulated data for three clusters with the addition of noise and measurements with
missing dimensions plotted as rectangles spanning the plot.

0 8

To simulate missing features, 60 measurements were selected at random: 30 measurements had the
values in the first row and column replaced with 0 while the other 30 measurements had the values in
the second row and column replaced with 0. This marked these dimensions as being associated with
missing data. Each of these 600 precision matrices represents the measurement error distribution.
Figure 8 shows the true x-y locations for the 600 data points. Figure 9 shows the measurements
with added noise. Measurements with missing values for one of the two dimensions are plotted as
rectangles that span the axis of the plot with the missing dimension.

. . . . |18 0
Based on the parameters, the noise was defined, on average, with the precision matrix {] .

The following series of figures show the progress of the clustering algorithm on the noisy data.
These figures do not plot the missing data as horizontal and vertical rectangles to avoid obscuring
the cluster assignments. The initial assignment of measurements to clusters and cluster covariance
ellipses are shown in Figure 10.

The clustering algorithm iterated until there were no longer any reassignment of measurements
to different clusters. The ellipses represent the 95% elliptical confidence regions for the three cluster
distributions. Figures 11 through 17 show the cluster distributions marching to a good assignment
after seven iterations. The colors (red, green, black) indicate the assignments that the algorithm
made.

20

Figure 10. The initial clusters and assignments for a simulated data set.

Iteration 1 Iteration 2

Figure 11. Cluster results after iteration one. Figure 12. Cluster results after iteration two.

21

Iteration 3 Iteration 4

15

10

Figure 13. Cluster results after iteration three. Figure 14. Cluster results after iteration four.

Iteration 5 Iteration 6

15

10

Figure 15. Cluster results after iteration five. Figure 16. Cluster results after iteration siz.

22

20

15

10

-15 -10 -5 0

Figure 17. The final results from the clustering algorithm after iteration seven. Measurements are colored
by their assignment. Measurements with missing data are plotted as diamonds with a vertical or horizontal
bar, indicating the direction with missing data.

23

Figure 9 represents what the algorithm initially received, while Figure 17 is a plot of what the
clustering algorithm returned. The missing data are depicted using diamonds with superimposed
horizontal or vertical lines to indicate the dimension with no information. A horizontal line indicates
no information about the first dimension while a vertical line indicates no information about the
second dimension. Data with both dimensions intact is represented with a colored, filled-in circle
with the color reflecting the cluster assignment for a measurement.

The clustering results are reasonable. First, the algorithm captured reasonable estimates of
the three underlying distributions’ parameters. The estimated means and covariances, which can
be compared to the true values above, are as follows:

 [-6941] o _ [0.967 0.156
= [15.964} 21 = [0.156 2.119} ! (19)
[-12024] = [0.996 —0.236
H2 = [10.212 } 22 = [—0.236 0.823 } ! (20)
[-4.904] o [2.377 0.886
bs = [8.106 } b [0.886 1.214} ‘ (21)

The impact of missing features on the assignments can be seen in a number of cases. For
instance, all of the data with a first component between —14 and —10, but with a missing second
component, were assigned to the black cluster. This makes perfect sense because the other clusters
have extremely low association probabilities in this interval. At the same time, some errors can be
seen for the assignment of other measurements with missing features in other intervals because of
cluster overlap in one dimension or the other. This is because the clustering algorithm performs
a hard assignment based upon maximum log-likelihood. For example, one of the green diamonds
towards the bottom of Figure 17 is misclassified as a member of the green cluster while in fact
the data point was generated from the red cluster. This is because the algorithm only knows
that the point lies somewhere close to the line x = —8. Membership is more likely to be with
the green cluster given the likelihood values for the three clusters along this line. Because the
clustering algorithm makes a hard decision, it follows that the algorithm incorrectly assigned this
measurement to the green cluster.

With 60 missing data points, the algorithm achieved a clustering performance of 594/600 =
99% probability of correct assignment. The missed classifications for this simulated data set are
strictly due to missing features in the measurements. Data sets with higher overlap between clusters
are likely to suffer from misclassifications because of the inability to fully separate the clusters.

6.1.1 Comparison with Other Techniques

This section compares the performance of the algorithm to that of several well-established
techniques: (1) single imputation with mean substitution, (2) multiple imputation by chained
equations (using the MICE package), and (3) nonparametric imputation (using the missForest
package, which builds a random forest model for each variable and then uses these models to
predict missing values). For (1) and (3), k-means++ is run after the dataset is “completed” by

24

imputing all missing values. For MICE, m = 5 completed datasets are formed, k-means++ is
run on each completed dataset individually, and then the final cluster assignments are determined
through voting. Table 1 summarizes the accuracy of each approach.

TABLE 1

Comparison of Missing Value Imputation Approaches

Approach Clustering Accuracy
Mean substitution 575/600 = 95.8%
MICE 577/600 = 96.2%
missForest 581/600 = 96.8%
Probabilistic programming 594/600 = 99.0%

To bracket these results, recall that 540/600 = 90% of the data points have no missing values.
So a strategy of simply dropping all rows with missing data and clustering the rest can achieve
at most 90% clustering accuracy. As another point of comparison, performing k-means++ on the
noise-free data results in an accuracy of 599/600 = 99.8%.

The probabilistic programming approach outperforms the three techniques for the clustering
simulation described above. Of course, a more extensive evaluation is needed to be able to declare
that the probabilistic programming technique developed here is truly superior to other methods.
The evaluation would need to be statistically significant, evaluate performance over different simu-
lated and real data sets, and additional missing-data techniques. However, the results of this initial
comparison suggest that the probabilistic programming algorithm may have superior performance
to many other techniques. A more in-depth analysis will be pursued in the future.

Implementation Note: The randomForest package (required by missForest) appears to have a
limitation in which there must be at least two independent variables in a model. This is a problem
for the two-dimensional clustering setup, where missForest will create models to predict = given y
and predict y given x. As a workaround, an R data frame was created with x replicated as x1 and
x2, allowing missForest to run without errors. Using completed x1 or x2 values for x resulted in
the same performance.

6.2 CLUSTERING WITH THREE-DIMENSIONAL GAUSSIAN DATA

This simulation was designed to generate measurements for four different 3-D Gaussian dis-
tributions. For visualization, the resulting measurements were rounded to the nearest integer in
a range of [0,255]. The measurements can then be plotted as RGB colors for visualization. Each
cluster has 100 samples, for a total count of 400 measurements. Like before, the measurement noise
was generated randomly for each data point. In Figure 19, measurements that are missing one
feature are depicted as a black square. The figure shows three measurements that were selected

25

Original Data

Figure 18. An RGB color representation of the simulated 3D data set, arranged in a grid pattern.

4 Clusters with Missing Data

Uncertainty in Blue Dimension

Uncertainty in Red Dimension Uncertainty in Green Dimension

Figure 19. A plot of simulated 3D data with missing features.

26

Clustering Results

Figure 20. The resulting cluster assignments for the simulated 3D data set with missing features.

to illustrate missing dimensions. The displayed color gradients that associate with black squares
indicate a range of possible colors for the squares, given the constraints from the measured color
values. The color gradients are based upon the means of the two known RGB values with the
missing value spanning a range from 0 to 255.

The cluster distributions for the 3D data were all spherical distributions with the covariance
80 0

matrices defined as [0 80

] . The measurement noise precision matrices were all sampled from a

Wishart distribution, W ([1/ 5 0] ,15).
0 1/5
Figure 20 shows the results of the clustering. The mean cluster color is shown for the mea-
surements. There were 8 misclassifications, giving an overall accuracy of 392/400 = 98%. It can be
noted that not all of the misclassifications are due to the 24 measurements with missing features.
Two are misclassifications of measurements with no missing information. Likely, these misclassifi-
cations were due to the overlap between clusters that was enhanced by measurement uncertainty.

27

This page intentionally left blank.

7. SUMMARY AND FUTURE WORK

The primary goal of this project was to determine if a probabilistic programming language
could be used to process multivariate data with missing features. On that front, the primary task
was to develop programs that would estimate Gaussian cluster parameters and thereby, also cluster
data sets with missing fields. By adopting precision matrices to represent measurement noise, it
was not only possible to account for sensors with different levels of precision, but also account for
different coordinate systems and for missing features.

A possible perceived weakness of the algorithm described here is that the parameter estimates
become biased towards the prior parameters with decreasing sample sizes or increasing measurement
noise. In actuality, this is the intended behavior for Bayesian algorithms; estimates are influenced
by the selection of prior probability distributions and only weakly influence the resulting estimates
when sample sizes are large and measurement noise low. The advice is then that the parameters
for prior distribution should be chosen carefully so that results are a reflection of the available
information.

There are a number of possible avenues for future work. This technical report only presents
an initial analysis of the effectiveness of probabilistic programs for processing incomplete data.
Further analyses can be performed to identify subtleties with the method.

The clustering algorithm developed here makes hard assignments of measurements to clusters
within its iterative loop. Clustering algorithms that make soft assignments could be developed and
studied. This class of algorithms would provide more information on possible cluster assignments for
measurements with missing information so that an analyst could recognize conditions where cluster
assignments might be ambiguous. The effects of missing features on a soft clustering algorithm
remain to be studied. It has been suggested by colleagues that the maximization step in the data
assignment step can be replaced with another MCMC algorithm for soft clustering. During this
MCMC run, the logistic normal distribution may be applicable for estimating partial memberships.

A serious issue with the algorithms that were studied here is that the MCMC clustering
algorithms take increasingly significant time to run as the number of dimensions increase. Major
research efforts are required to significantly improve the computational performance of MCMC
algorithms, even beyond the applications presented in this report.

Estimating the appropriate value of the number of clusters k remains a big question in cluster-
ing research. A review of the clustering literature and implementation of algorithms that attempt
to estimate the number of clusters could be performed. There are algorithms that run a set of k-
means algorithms with different values for £ and then compare a global cost measure to determine
the optimal fit. Another possible study is to determine if the same precision matrix technique can be
ported to nonparametric Bayesian methods, where k dynamically fluctuates as the algorithm runs,
with eventual convergence to an optimal value for k.

As a final suggestion in an incomplete list of possible future studies, additional studies could
be conducted to investigate how other multivariate distributions, such as the multivariate gamma
distribution, might support a representation for missing data. Currently, this study has only

29

considered the representation of missing features for multivariate Gaussian distributions. Other
data sets might be better described by other classes of multivariate probability distributions.

30

A INTEGRALS REQUIRED FOR ESTIMATES OF MEANS,
COVARIANCE MATRICES, AND POSTERIOR PROBABILITIES

Although the integrals involved in the estimation of posterior parameters contain well behaved
distribution functions such as Gaussian and Wishart distributions, integration of the combinations
of functions has been difficult to perform via analytical methods. Expanding on Section 1.3, the
typical integral for expectation values and posterior probabilities is of the form

F)= [FP A i A} i (A.22)
where F is a function or variable. The probability P (u, A,|{z;,x;; Az, }) is expanded in Equation 1
with the curly braces indicating the product of probability functions, as with Equation 4.

The full integral expansion is then of the form of
<]:> _ ff HZN (Zia T, AZZ)N(xl) 1y AM)N(/J’u Ko,)‘Au) |a% (W7 V) dxl d/’L dAM)
f HzN (Zia Ly, Azl) N (xi’ Hy Au) N (:U’a Ho, >‘Au) w (Wv V) dz; d/‘L dAM

The Gaussian distribution is defined for precision matrices, as with Equation 9. The Wishart
distribution is defined as

(A.23)

W(W,0) = L A2 (W) 2 (A.24)
27/ W T, (%)

where

p .
Fp (g) — 7-(-13(19—1)/4]1;[1F <g‘ o .721> (A25)

The variable p is the dimension of the precision matrices.

The integrals over the product of probabilities involving z; and z; is straightforward and are
given in Equations 10 and 11. The solutions for these integrals when F is independent of z; and z;
is

p(zil s Az = [As 21N 121 (A, + A2 (A.26)
e % (ZzTAzl' Zi‘hUITA,u'U'*(Azi Zi+A,u,U')T(Az,L' +A/,L)71 (Azi Zi+A,u/L))

The full integral for the numerator of Equation A.23 is now

<°FN> — /J—_' H ’AZ, +A,u|_1/2 e—%(MTAH/J,—(AzizH—AM;L)T(AZi+AH)*1(Azizi+AHp,)) « (A27)

N (s 110, AN) W (W, 0) [A 2 dps A,
and the denominator is

<f'D> — /H |Azl + AM|71/2 6—%(MTAHM—(Azizi-i-AHM)T(AZZ.—l—AH)*l(Azizi—&-/\”u)) « (A28)

N (s 110, AN W (W 0) (A Y2 dp dA,.

31

The F variables or functions of interest in this report contain terms in p and, for the predictive
posterior, terms in A,,. It may be noted that common factors not containing integration terms have
been canceled.

While the integrals in Equations A.27 and A.28 may have analytical solutions, the authors
have been unable to derive them nor discover solutions from literature searches. DeGroot provides
a terse solution to similar equations involving normal distributions and a normal Wishart prior [15]
(as referenced without proof by Murphy [16]) but the integrals under study here are more complex
because of the product of determinants of A, summed with the various A.,. Faced with this
problem, it was determined to use probabilistic programming to obtain a numerical solution for
the remaining integrals.

32

B STAN PROBABILISTIC PROGRAM FOR 2D CLUSTERING

The Stan source code file used in the 2D clustering algorithm contained the following lines:

functions {
real likelihood_log(row_vector z, row_vector mu,
matrix Yz, matrix Yu) {
real logprob;
logprob = 1/2.0 % (—log_determinant (Yz+Yu) + log_-determinant (Yu));
logprob = logprob — 1/2.0 % (z*Yzxz’' 4+ muxYuxmu’' -—
(Yzxz’+Yusmu’) "« inverse (Yz+Yu)* (Yzxz +Yusmu’)) ;

return logprob;

}
}

data {
int<lower=2> dim; // dimensionality
int<lower=1> N; // number of data points
row_vector [dim] y[N]; // data
matrix [dim, dim]| prec_noise[N]; // all precision matrices

}

parameters {
cov_matrix [dim] Lambda_data; // precision matrix
row_vector [dim] mu; // mean vector

}

transformed parameters {

}

model {
matrix [dim,dim] W= [[1,0],[0,1]]; // initialize prior parameters
real nu = 3;
real lambda = 2;
row_vector [dim] mu0 = [—8,12];
Lambda_data =~ wishart(nu, W); // normal wishart prior

mu -~ multi_normal_prec (mu0, lambdaxLambda_data);

for (i in 1:N) {
y[i] ~ likelihood (mu, prec_noise[i], Lambda_data);

}
}

33

This page intentionally left blank.

GLOSSARY

FIML Full Information Maximum Likelihood
HMC Hamiltonian Monte Carlo
LL Lincoln Laboratory
MAP Maximum A Posteriori
MCMC Markov Chain Monte Carlo
MI Multiple Imputation
MIT Massachusetts Institute of Technology
MVN Multi-Variate Normal
NaN Not a Number
NA Not Available
NP Nondeterministic Polynomial
NUTS No-U-Turn Sampler
NW Normal-Wishart
PDF Probability Density Function or Probability Distribution Function

ROC Receiver Operating Characteristics

35

This page intentionally left blank.

1]
2]

REFERENCES

D.B. Rubin, “Inference and missing data,” Biometrika 63(3), 581-592 (1976).

D.B. Rubin and N. Schenker, “Multiple imputation for interval estimation from simple random
samples with ignorable nonresponse,” Journal of the American Statistical Association 81(394),
366-374 (1986).

C.K. Enders, “A primer on maximum likelihood algorithms available for use with missing
data,” Structural Equation Modeling 8(1), 128-141 (2001).

C.K. Enders and D.L. Bandalos, “The relative performance of full information maximum
likelihood estimation for missing data in structural equation models,” Structural Equation
Modeling 8(3), 430-457 (2001).

S. Lloyd, “Least square quantization in pcm. bell telephone laboratories paper. published in
journal much later: Lloyd, sp: Least squares quantization in pcm,” IEEE Trans. Inform.
Theor.(1957/1982) Google Scholar (1957).

J.A. Hartigan and M.A. Wong, “Algorithm as 136: A k-means clustering algorithm,” Journal
of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100-108 (1979).

D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial
and Applied Mathematics (2007), pp. 1027-1035.

M.D. Hoffman and A. Gelman, “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo,” arXiv:1111.4246 (2011), URL http://arxiv.org/abs/1111.
4246.

A W.v.d. Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Math-
ematics, Cambridge University Press (1998).

J.L. Doob, “Application of the theory of martingales,” Le calcul des probabilites et ses appli-
cations pp. 23-27 (1949).

Stan Development Team, “Stan modeling language users guide and reference manual, version
2.17.0,” The Stan Project (2017), URL https://github.com/stan-dev/stan/releases/
download/v2.17.0/stan-reference-2.17.0.pdf.

J. Annis, B.J. Miller, and T.J. Palmeri, “Bayesian inference with stan: A tutorial on adding
custom distributions,” Behavior Research Methods 49(3), 863-886 (2017), URL https://doi.
org/10.3758/s13428-016-0746-9.

A. Gelman and D.B. Rubin, “Inference from Iterative Simulation Using Multiple Sequences,”
Statist. Sci. 7, 457-472 (1992).

M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means problem is np-hard,”
in Proceedings of the 3rd International Workshop on Algorithms and Computation, Berlin,

37

http://arxiv.org/abs/1111.4246
http://arxiv.org/abs/1111.4246
https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf
https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf
https://doi.org/10.3758/s13428-016-0746-9
https://doi.org/10.3758/s13428-016-0746-9

Heidelberg: Springer-Verlag (2009), WALCOM ’09, pp. 274-285, URL http://dx.doi.org/
10.1007/978-3-642-00202-1_24.

[15] M.H. DeGroot, Optimal statistical decisions, McGraw-Hill, Inc (1970).

[16] K.P. Murphy, “Conjugate bayesian analysis of the gaussian distribution,” University of British
Columbia (2007), URL http://www.cs.ubc.ca/{~}murphyk/Papers/bayesGauss.pdf.

38

http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://www.cs.ubc.ca/{~}murphyk/Papers/bayesGauss.pdf

REPORT DOCUMENTATION PAGE O Ao g

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
26-02-2019 Technical Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8721-05-C-0002 & FA8702-15-D-0001
Probabilistic Programming with Missing Data 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
2236

D. Suen, K.L. Nahabedian, M.J.Yee, and M.B. Hurley 5e. TASK NUMBER 3301

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

MIT Lincoln Laboratory
244 Wood Street TR-1238

Lexington, MA 02421-6426

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

ASD R&E ASD R&E

3030 Defense Pentagon

Washington, DC 20301-3030 11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report summarizes work performed to develop a computer algorithm that is capable of handling missing data fields in
multivariate data sets. The results presented here are based upon prior work which examined the applicability of inverse
covariance matrices, or precision matrices, to representing missing data as zero eigenvalues in the precision matrices. The prior
work used maximum a posteriori (MAP) estimates for a combination of normally distributed multivariate data with normally
distributed multivariate measurement errors and assumed that the prior probability distributions for means and precision matrices
were uniform.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES
a. REPORT b. ABSTRACT c. THIS PAGE Same as report 52 19b. TELEPHONE NUMBER (include area
Unclassified Unclassified Unclassified code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Title
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation and Objectives
	Generative Model
	Integrals for the Model
	Prior Distributions

	Markov Chain Monte Carlo (MCMC)
	Descriptions of Probabilistic Programming Languages
	PyMC3
	Stan

	Stability Measurements
	Stability to Sample Size
	Stability to Measurement Noise
	Stability to Missing Data Fractions

	K-Means Clustering Algorithm
	Initialization
	Assignment of Measurements to Clusters
	Cluster Distribution Parameter Updates
	Clustering Algorithm Summary
	R and Stan Code

	Empirical Clustering Results
	Clustering with Two-Dimensional Gaussian Data
	Clustering with Three-Dimensional Gaussian Data

	Summary and Future Work
	Integrals Required for Estimates of Means, Covariance Matrices, and Posterior Probabilities
	Stan Probabilistic Program for 2D Clustering
	Glossary
	References

