
 
 
 
 

 ARL-TR-8669 ● MAR 2019 
 
 
 
 

 
 
 
Circuit Models of Pyroelectric Charger 
 
by Michael Grinfeld and Pavel Grinfeld 

 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.  

 



 

 

NOTICES 

 

Disclaimers 

 

The findings in this report are not to be construed as an official Department of the 

Army position unless so designated by other authorized documents. 

 

Citation of manufacturer’s or trade names does not constitute an official 

endorsement or approval of the use thereof. 

 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8669 ● MAR 2019 

 

 
 
Circuit Models of Pyroelectric Charger 

 
by Michael Grinfeld  
Weapons and Materials Research Directorate, CCDC Army Research Laboratory 

 
Pavel Grinfeld 
Drexel University, Philadelphia, PA 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.

 



 

ii 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 

valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

March 2019  

2. REPORT TYPE 

Technical Report 

3. DATES COVERED (From - To) 

1 October 2018–8 March 2019 

4. TITLE AND SUBTITLE 

Circuit Models of Pyroelectric Charger 

5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 

Michael Grinfeld and Pavel Grinfeld  

5d. PROJECT NUMBER 

 

5e. TASK NUMBER 

 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Combat Capabilities Development Command 

Army Research Laboratory 

ATTN: FCDD-RLW-PC 

Aberdeen Proving Ground, MD 21005-5069 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 

ARL-TR-8669 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

In the framework of electrical engineering notions, we suggest a model of a pyroelectric charger. The pyroelectric charger 

(also called pyroelectric sandwich) includes both metal conductors and a dielectric pyroelectric crystal. Depending on the 

scope of applications, the charger can be modeled on different levels of complexity, ranging from basic schematic models, 

adopted in electrical engineering, to extremely sophisticated models, incorporating contemporary condensed matter physics. 

In this report, we focus on the models adopted in electrical engineering. These models are based mostly on circuit theory and 

ordinary differential equations. We analyze two extreme regimes: the quasi-static regime, in which the polarization does not 

change, and the explosive regime, in which the polarization abruptly changes or completely disappears. More elaborate 

models, based on using partial differential equations, will be analyzed in future reports. 

15. SUBJECT TERMS 

electrostatics, pyroelectricity, electric charger, circuit theory, electrical engineering 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

29 

19a. NAME OF RESPONSIBLE PERSON 

Michael Grinfeld 

a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

410-278-7030 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited. 

iii 

Contents 

List of Figures iv 

Acknowledgments v 

1. Introduction 1 

2. What is a Pyroelectric Charger? 2 

3. Traditional Elements of Modeling in Electrical Engineering 4 

4. Modeling the Pyroelectric Charger 7 

5. The Simplest Circuits with Pyroelectric Chargers 8 

5.1 How to Charge the Pyroelectric Charger Itself? 8 

5.2 Charging an Exterior Capacitor 10 

6. Explosive Pyroelectric Charger 13 

7. Conclusion 19 

8. References 21 

Distribution List 22



 

Approved for public release; distribution is unlimited. 

iv 

List of Figures 

Fig. 1 An unbounded pyroelectric plate .......................................................... 2 

Fig. 2 Electric circuit with a pyroelectric charger (sandwich), capacitor, and 
resistor ................................................................................................... 3 

Fig. 3 The notation for the pyroelectric charger .............................................. 7 

Fig. 4 A circuit for charging the pyroelectric charger ..................................... 9 

Fig. 5 A circuit for charging a capacitor with the pyroelectric charger ........ 10 

Fig. 6 The combined circuit for the pyroelectric charger with the inductance, 
resistor, and capacitor ......................................................................... 14 

 

  



 

Approved for public release; distribution is unlimited. 

v 

Acknowledgments 

The author wishes to thank Dr Steven Segletes for useful discussions and careful 

reviewing of the report. 

 

 



 

Approved for public release; distribution is unlimited. 

1 

1. Introduction 

Pyroelectricity is a group of phenomena known for millennia; its presentation can 

be found in a multitude of textbooks and monographs.1‒3 As indicated by the 

ancient Greek root name of these phenomena, they are characterized by the 

appearance of electrical events under the action of fire. During the long history of 

developments of the physical science and technology based on pyroelectricity, 

there appeared various methods of generating pyroelectric phenomena not directly 

associated with exposition of substance to open fire. We do not dwell here on a 

detailed discussion of multiple applications of pyroelectricity, since our interests at 

this stage are limited to electric charging of batteries through the use of shock waves 

or explosions. The corresponding chargers are not designed for repeated usage like 

the typical electric batteries and accumulators. They are designed to be used only 

once. This obvious drawback of explosive chargers has one important 

compensation: the process of charging is extremely quick. Sometimes, this feature 

can be of crucial importance. The analysis of such explosive chargers and, more 

generally, of the generators of electric power was pioneered more than a half-

century ago in studies.4,5 A comprehensive review of more recent developments 

can be found in a monograph.6 A series of elegant experiments with shock wave-

induced charging has been fulfilled at the US Army Combat Capabilities 

Development Command’s (CCDC) Army Research Laboratory by Peter 

Bartkowski and Paul Berning.7 Very often pyroelectricity shows up in combination 

with other closely related phenomena (piezoelectricity, ferroelectricity, etc.). The 

corresponding theoretical literature counts hundreds of thousands of publications. 

Naturally, those theories face many difficulties, ranging from conceptual to rather 

superficial. As always, the fundamentals are poorly understood. Therefore, it does 

not make much sense to develop any comprehensive and therefore cumbersome 

theories, each chain of which is rather weak and questionable. To our 

understanding, CCDC Army Research Laboratory engineers prefer the standards of 

electrical engineering. That is what we try to suggest in this report. To do so, we 

decided not to touch the basics of ferroelectricity, which unavoidably would entail 

the discussions of phase transformations, thermodynamics, partial differential 

equations, and so forth.  
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2. What is a Pyroelectric Charger? 

In fact, we intend to add to traditional electrical engineering only one element—the 

pyroelectric charger. The pyroelectric charger can be thought of as a capacitor with 

a special type of dielectric crystals inside it. The dielectric crystal inside the 

pyroelectric charger, however, differs quite essentially from the traditional 

capacitor of classical electrical engineering.8 In classical theory, the polarization 

inside the crystal vanishes when the exterior electric field vanishes. The essential 

peculiarity of the pyroelectric crystal is the presence of large enough macroscopic 

polarization P  even in the absence of any exterior electric stimulus. Thus, nature 

itself supplied us with the free storage of a significant amount of electrostatic 

energy, associated with any pyroelectric crystal.  

The central question appears: How is it possible to make the electrostatic energy of 

pyroelectric crystals usable in traditional devices?  

To address this question, consider a uniform unbounded pyroelectric plate, as 

shown in Fig. 1. Its uniformity includes, among the traditional features, the uniform 

distribution of the natural polarization. 

 

Fig. 1 An unbounded pyroelectric plate 

Classical electrostatics claim that because of the uniformity of the plate and the 

distribution of the polarization inside it, the electrostatic field E  1) vanishes outside 

the crystal, and 2) remains uniform and vertically directed inside the crystal. If so, 

there is a free voltage U  between the boundary points A  and B .  

This voltage opens the door to charge any traditional electric capacitor C or 

generate a pulse of current through any traditional resistor R (thus, converting the 

electrostatic energy of the pyrocrystal into the Joule heat). There is one obstacle, 

however, caused by the almost complete absence of free movable charges inside 

the dielectrics. Thus, we have to combine the pyroelectric crystal with metallic 

parts, abundant with the freely moving electrons. Technically, we can cover the 

pyrocrystal with the conducting foils, producing a capacitor-like sandwich, as 

shown in Fig. 2. Then, the voltage between the foils will be the same as the voltage 

between two opposite sides of the crystal. The role of the foils is very simple: they 

 
B

A
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supply the system with a multitude of free electrons that are absent in the 

pyrocrystal itself. Now, if we connect two opposite foils with a capacitor, then, 

under the action of the electric field, the free electrons will begin moving from one 

foil into one plate of the sandwich and, at the same time, the free electrons will be 

leaving the opposite plate of the sandwich and move inside the opposite foil. The 

case of using the resistor is even more straightforward: the free electrons of one of 

the foils will begin moving through the resistor to another foil, producing the 

electric current in the resistor. These processes will proceed until the potentials of 

the two foils become equal.  

 

Fig. 2 Electric circuit with a pyroelectric charger (sandwich), capacitor, and resistor 

Summarizing, the pyroelectric sandwich or charger permits the conversion of the 

electrostatic energy of the distributed dipoles to the electrostatic energy of the 

capacitor, or into Joule heat.  

These processes include various details and secondary phenomena. When a very 

detailed description is required and multiple effects are taken into account, it makes 

sense to suggest more or less sophisticated models of theoretical physics. Such 

models are based on the formulation and analysis of the boundary value problems 

for systems of partial differential equations. However, a huge fraction of practical 

problems do not require such sophisticated models. In particular, many problems 

can be analyzed in a framework of the technically simpler models, known as circuit 

theory. Circuit theory is based on usage of the Kirchhoff systems (a.k.a., Kirchhoff 

laws), which reduces to the initial value problems for systems of ordinary 

differential equations. 

The models, based on circuit theory, cannot provide exhaustive detail. However, 

they should not be treated as intellectually superficial. Researchers often confuse 

complex theories, using sophisticated mathematics, with deep theories. They 

believe that sophisticated theories appear after the simple theories become clear 

and exhaust their potential. In fact, with very rare (though important) exceptions, 

the situation is the opposite. The so-called simple theories are conceptually much 

deeper than the technically complex ones. The fundamentals of electrical 

engineering remain complex and mysterious: their interrelations with classical 
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electromagnetism include many sophistications, and the analysis for the same 

problems in the framework of theoretical and mathematical physics does not make 

those problems more clear. Quite the contrary, it makes those fundamental 

problems far more obscure. With these methodological thoughts in mind, we 

discuss in the next section how to model the circuits with pyroelectric sandwiches, 

using the language of electrical engineering.  

3. Traditional Elements of Modeling in Electrical Engineering 

To make sure that we are on the same page with the readers, who may have quite 

different specializations, we present our vision of the key elements of electrical 

engineering.  

The circuit models of electrical engineering include four basic types of the 

elements: electric batteries, capacitors, resistors, and inductors. Each of these 

elements is characterized by one or two parameters. For instance, a capacitor is 

characterized by one constructive parameter C , called its electric capacity, and  one 

state parameter, called capacitor’s charge CQ . Other characteristics—the voltage 

CU  and the current through it CI —are calculated via C  and CQ  by means of the 

equations of electrical engineering, reminiscent but not coinciding with the 

elements of classical electrodynamics. Needless to say, real-life capacitors cannot 

be characterized by the single parameter C . In fact, from the more general 

viewpoint, the parameter C  should be treated as a placeholder, which should be 

replaced with much more sophisticated models when necessary. 

The element of electrical engineering called the resistor is characterized by one 

constructive parameter called resistance R . Other characteristics like voltage RU  

and the current through it RI  are connected with R  by means of an equation of 

electrical engineering known as Ohm’s law. 

The battery in circuit theory is characterized by two constructive parameters: the 

magnitude E  of electromotive driving force (EMF) and the internal resistance 

EMFR . Other characteristics like voltage EMFU  and the current EMFI  are connected 

with the EMF E and the internal resistance via the equations of electrical 

engineering.  

These equations are closely related with the basic principles of classical 

electrostatics. However, the distinctions between classical electrostatics and 

electrical engineering are also quite significant and can easily become sources of 

confusion or misunderstanding. In particular, we will not be surprised if our 

understanding of the interrelations between classical electrostatics (which is our 
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specialty) and electrical engineering (which is not our specialty) will differ 

essentially from the understanding of our readers. Therefore, in order to avoid 

confusion, it is even more important to explain our understanding of circuit theory 

and electrical engineering.  

Let us give one illustration. When dealing with capacitors, it should be remembered 

that, contrary to the spatial charge distributions, any capacitor always carries a total 

charge equal to zero (therefore, we do not feel the electric field of a capacitor in its 

exterior). 

Compare the central notion of electric charge in classical electrostatics on the one 

hand and in electrical engineering on the other. In classical electrostatics, when 

talking about a charge Q  we mean the charge of a certain sign, positive or negative; 

even when using a “homogenized” description, we are talking about domains with 

the dominating amounts of charges of a certain sign. But when talking about a 

charge of the capacitor CQ in the framework of electrical engineering, we have in 

mind something completely different. Namely, a capacitor, as a whole, is always 

electrically neutral and it contains the same amounts of positive and negative 

charges. Because of this central distinction, certain alterations are required in 

electrical engineering for the concepts of electric capacity, electric current, and so 

on.  

When calculating the electric charges CQ  of the capacitors by solving the equations 

of electrical engineering, we get positive or negative results. However, this does 

not mean that there is an abundance of positive or negative charges in the 

capacitors. The net charge of the capacitor is always zero. But the sign of the charge 

in electrical engineering still plays a key role. It is because when formulating a 

system of the equations of electrical engineering we make an a priori choice of the 

plates carrying positive and negative charges. When, a posteriori, we get the answer 

for the CQ with a positive sign, it is just the indication that our a priori guess was 

correct; when we get the negative value of CQ , this is the indication that our a priori 

choice of the positively and negatively charged plates should be changed to the 

opposite. This change in the assigned signs does not imply the necessity of 

reformulating the master system of circuit theory and solving the corrected system 

from scratch. The same is true about the a priori chosen direction of the electric 

currents.  

The main objects requiring calculation are voltages U , electric currents I , and 

charges Q , describing each of the elements composing the electric circuit under 

study.  Usually, they are all functions of the time t . In these cases, we are talking 
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about transient or nonstationary processes; otherwise, we deal with stationary 

processes. 

Quantitative analysis of electric circuits is based on Kirchhoff rules and the main 

relationships of electrical engineering. For resistors, the voltage  U t , the electric 

current  I t , and the resistance R  are interconnected by Ohm’s law 

    R RU t RI t  , (1) 

which is an algebraic relationship. 

 

The capacitor’s voltage  CU t  and its charge  CQ t  are connected with the 

capacitor’s capacitance C  by the relationship  

 C
C

Q
U

C
  , (2) 

which is also an algebraic relationship. 

Although electric charges cannot move through the capacitor, it is convenient to 

talk about electric current moving “through the capacitor”. Many quite 

sophisticated mathematicians, involved in mathematical physics, believe that there 

is a real current moving through capacitors. Of course, this has nothing in common 

with reality—perhaps they simply confuse the concept of a capacitor’s breakdown 

with the concept of apparent current through the capacitor. By definition, the 

apparent current through capacitor  CI t  is given by the relationship 

  
 C

C

dQ t
I t

dt
  , (3) 

which is an ordinary differential equation. This is an electrical engineering 

surrogate of the equation of charge continuity in classical electrostatics.  

By the way, when dealing with a spatial distribution of charges  , , ,Q x y z t , the 

electric current becomes a vector with three components:  , , ,xI x y z t , 

 , , ,yI x y z t , and  , , ,zI x y z t . For the temporal change of the charge, we get the 

following differential equation: 

 
yx z

II IQ

t x y z

 
  

   
 . (4) 
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Basically, Eq. 3 plays the same role as Eq. 4. There is one typical confusion though, 

caused by using the same notation Q  for the charge density in the spatial 

distributions of charges, on the one hand, and for the charges in capacitors, on the 

other hand.  

The third canonical element of electrical engineering is the inductor or inductance. 

The voltage  LU t  across the inductance is connected with the current  LI t  

through it by means of the ordinary differential equation 

  
 L

L

dI t
U t L

dt
  , (5) 

where L  is the positive constant, called the inductance (or the coil inductance).  

At last, the fourth canonical element of electrical engineering is the electromotive 

driving force of EMF. The EMF E  is connected with the interior resistance EMFR , 

the current EMFI , and the voltage EMFU via the following relationship of electrical 

engineering: 

 E =  𝑈𝐸𝑀𝐹 +  𝐼𝐸𝑀𝐹𝑅𝐼𝑀𝐹.  (6) 

4. Modeling the Pyroelectric Charger 

In this report, we introduce one more element to the circuit modeling in the 

framework of electrical engineering, called the pyroelectric charger. Of course, the 

realistic pyroelectric conductor may require far more elaborate modeling and 

formal instruments than those accepted in electrical engineering. 

For the pyroelectric charger, we use the logo shown in Fig. 3. 

 

Fig. 3 The notation for the pyroelectric charger 

By definition, the pyroelectric charger is characterized by the material parameter 

P , called the capacitance of the pyroelectric charger. The state of the pyroelectric 

charger is characterized by two numbers: its polarization P and the accumulated 

charge PQ . Like for any other element of electric circuit, we now have to formulate 

 

 

P




PI
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how to calculate the current PI  through the pyroelectric charger and how to 

calculate the voltage PU  imposed on the pyroelectric charger.   

For the current PI , we postulate the same relationship between  PI t  and  PQ t  

as for the traditional capacitor  

  
 P

P

dQ t
I t

dt
  , (7) 

In what concerns the voltage  PU t , we postulate the following relationship 

  
 P

P

P

P Q t
U t




  , (8) 

connecting the capacitance, the polarization, and the charge. 

In the simplest situation, the polarization P  and the capacitance P  are certain 

positive constants. However, the polarization P  typically depends on the 

temperature, sometimes dramatically. In particular, it vanishes completely when 

the temperature exceeds the critical value CT , called the Curie temperature. Also, 

under the action of a sufficiently intensive shock wave, the polarization can 

disappear and even change to the opposite orientation. This phenomenon was 

analyzed in several publications.4,5,7  

5. The Simplest Circuits with Pyroelectric Chargers 

In the following sections, we illustrate how to analyze electric circuits with 

pyroelectric charges in the framework of generalized electrical engineering.  

5.1 How to Charge the Pyroelectric Charger Itself? 

Assume that the charger with the polarization P is originally disconnected from 

any elements and it carries the charge Q . Let us check, using our model, what 

happens if we attach the plates of the charger to the exterior resistor R , as shown 

in Fig. 4. 
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Fig. 4 A circuit for charging the pyroelectric charger 

We choose a priori the directions of the currents through the charger PI  and the 

resistor RI , as shown in Fig. 4. It is obvious that currents of the same magnitude 

and direction move through both elements. But the Kirchhoff methodology permits 

us to choose a priori those currents through the circuit’s elements, with their 

directions and magnitudes, arbitrarily. This is very convenient since, more often 

than not, intuition is not helpful in making proper choices when dealing with 

complex circuits. Let us deliberately make the anti-intuitive choice, as shown in 

Fig. 4. 

Now, the Kirchhoff methodology automatically leads us to the equations for 1) the 

currents 

 0P RI I    (9) 

and 2) the voltages 

 0P RU U   , (10) 

on the charger PU  and the resistor RU . 

The first of the Kirchhoff laws, Eq. 9, automatically shows us that the currents have 

opposite signs; thus, a posteriori, one of the chosen direction should be eventually 

changed to the opposite. 

Ohm’s law implies for the resistor 

 R RU RI  . (11) 

Combining the relationships between Eq. 7, Eq. 8, and Eqs. 9–11, we arrive at the 

following ordinary differential equation 

 
1 1P

P

dQ
Q P

dt R R 
    , (12) 

for the charge of the pyroelectric charger. 

 

 

 

RI

RI
PI

PI

P



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The differential Eq. 12 should be amended with the so-called initial data 

  0PQ Q .  (13) 

The ordinary differential Eq. 12 with the initial data (Eq. 13) has the following 

solution: 

    
1 1

0 1RC RC
t t

Q t Q e P e
 

    . (14) 

At t   the charge  PQ t  approaches its saturation value PQ
, 

 PQ P    . (15) 

We see that the saturation value PQ
of the charger depends only on the polarization 

P  and not on the initial charge Q . In particular, the initial charge | |Q  can be 

either smaller or bigger than the saturation charge | |PQ
. 

5.2 Charging an Exterior Capacitor 

Let Q  be the initial charge of the pyroelectric charger with the polarization P . Let 

us use it for charging the initially uncharged capacitor C , as shown in Fig. 5. We 

choose the a priori currents’ directions as shown in Fig. 5. 

 

Fig. 5 A circuit for charging a capacitor with the pyroelectric charger 

For the balance of the currents in the knot we get 

 0P CI I   . (16) 

The voltage balance implies 

 0P CU U   . (17) 
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The charge conservation equations for the charger and the capacitor read 

 P
P

dQ
I

dt
   (18) 

and 

 C
C

dQ
I

dt
  , (19) 

respectively. 

 

The “constitutive” equation for the charger reads 

  
1

P PU P Q


   . (20) 

The “constitutive” equation for the capacitor reads 

 C
C

Q
U

C
  . (21) 

Using Eqs. 18 and 19, we eliminate the currents from the system, rewriting Eq. 16 

as 

 0CP
dQdQ

dt dt
   . (22) 

The “constitutive” Eqs. 20 and 21 allow us to eliminate the voltages PU  and CU  

from Eq. 17 

   0
1 C

P

Q
P Q

C
    , (23) 

which can be rewritten as 

 
1 1 1

P CQ Q P
C 

    . (24) 

The differential Eq. 22 implies  

 P C totQ Q Q  ,  (25) 
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where the constant totQ  has the physical meaning of the total charge of the charger 

and the capacitors. 

 

Solving the system of Eqs. 24 and 25, we get 

  C tot

C
Q P Q

C 



   , P tot

C
Q Q P

C C



 


 
 , (26) 

as implied by the following chain: 

 

 

   

 

1 1 1

1 1 1
,

tot C C

C tot C tot

P tot C tot tot tot

Q Q Q P
C

C
Q P Q Q P Q

C C

C C
Q Q Q Q P Q Q P

C C C

 

  



  



 
   

 

   

  

   

 
  

   

Let us analyze the final result (Eq. 26) of our analysis. Consider a special case, 

when originally the charger is fully saturated and the exterior capacitor is originally 

free of charge, that is, when 

     00 , 0P CQ P Q   . (27) 

Then, for the total charge totQ , we get 

    0 0tot P CQ Q Q P     . (28) 

Inserting Eq. 28 in our final relationships, Eq. 26, we get 

   0CQ t   ,  PQ t P  . (29) 

Per the relationships (Eq. 29), when the charger is fully saturated whereas the 

exterior capacitor lacks the original charge, the charger will not charge the 

originally empty capacitor—this situation, contradicting the analysis of the 

traditional capacitors, seems very natural when dealing with pyroelectric chargers; 

this fact confirms the consistence and usefulness of the suggested model.  

With all other values of the initial charges of the charger and capacitor, per Eq. 26, 

there is a redistribution of charges between the charger and the exterior capacitor.  
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Based on Eq. 26, one can conclude that the final distribution of the charges does 

not depend upon the initial charges of the charger and the capacitor individually, 

but only upon the total charge totQ  of both. Also, our model predicts only the final 

distribution of the charges but says nothing about the transient processes. These 

obvious shortcomings can be eliminated by taking into account the resistance and 

the inductance of the charging circuit, as shown in Section 6.   

6. Explosive Pyroelectric Charger 

Let us come back to the charging circuit shown in Fig. 5. Assume that the 

pyroelectric charger was initially fully charged so that 

 P PQ Q P    . (30) 

At 0t  , let the pyroelectric charger get exposed to an intensive shock load or an 

extensive heat wave. Assume that the pyroelectric charger loses its polarization P . 

Then, part of the charges will move from the pyroelectric charger to the capacitor 

C . The final charges CQ  and PQ  can still be calculated with the help of Eq. 26, in 

which we have to first put  

 0,P Q P    . (31) 

Then, we get 

 ,C P

CQ Q
Q Q

C C



 
 

 
 . (32) 

The relationships (Eq. 32) are valid for any initial charge Q  of the pyroelectric 

charger.  

If the charger is fully saturated, we have to put in Eq. 32 the condition of the 

saturation Q P  . Then, we get the required relationships 

 ,C P

CP P
Q Q

C C



 
   

 
 . (33) 

Since neither resistance R  nor inductance L  are taken into account, our analysis 

does not include any differential equations. To get a more detailed description, 

these elements should be taken into account. For instance, we can consider the 

chain, shown in Fig. 6. 
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Fig. 6 The combined circuit for the pyroelectric charger with the inductance, resistor, and 

capacitor 

The analysis of the circuit leads to the following second order ordinary differential 

equation for the charge  CQ t  of the capacitor 

 
2

2

1 1 1C C tot
C

d Q dQ P QR
Q

dt L dt L C L 

  
     

 
 , (34) 

where    0 0tot P CQ Q Q   is the total charge of the charger and the capacitor.  

Equation 34 has a “particular” solution   part

C CQ t Q const   such that 

  part

C tot

C
Q P Q

C 
  


 . (35) 

The solution carries a simple physical meaning. It gives the final value of the charge 

of the capacitor C  at t  approaching infinity.  

In the regime of explosive charging, when 0P   at 0t  , the final charge is equal 

to 

 
part tot

C

CQ
Q

C 
 


 . (36) 

In particular, if in the initial moment the pyroelectric charger was fully charged, 

that is,  0PQ P  , whereas the exterior capacitor was completely uncharged, that 

is,  0 0CQ  , we get totQ P  .  

Then, Eq. 36 implies 

 
part

C

CP
Q

C 



 , (37) 

 C

P






 

Approved for public release; distribution is unlimited. 

15 

When we are interested in the transient process, accompanying the explosive 

charging, we have to use the general solution of the second order ordinary 

differential equation (Eq. 34). There are two different convenient forms of the 

general solution, depending on the validity of the inequalities 

 a)   
2

4 1 1
1

L

R C 

 
  

 
      or    b)   

2

4 1 1
1

L

R C 

 
  

 
. (38) 

(The “convenience” here means that no complex numbers appear in the solution.) 

In the case a), the convenient form of the general solution reads 

  
   1 1

2 2

R R
t t

gen part L L
C CQ t Q A e A e

   

     , (39) 

where A  and A are the integration constants, and   is defined as 

 
2

4 1 1
1

L

R C 

 
    

 
 . (40) 

In the case b), the convenient form of the general solution reads 

  
* *

2 2sin cos
2 2

R R
t t

gen part L L
C C s c

R t R t
Q t Q A e A e

L L

  
   ,  (41) 

where sA  and cA are the arbitrary constants and *  is defined as 

 
*

2

4 1 1
1

L

R C 

 
    

 
 . (42) 

Roughly speaking, the choice of the convenient form is essentially connected with 

the induction L : when the induction is very small, the form shown in Eq. 39 is 

more convenient; when the conductance is very large, the form shown in Eq. 41 is 

more convenient. We shall realize, though, that even a small induction plays a 

crucial role in the process of explosive charging. Formally, it is reflected in the fact 

that the inductance L  appears in the denominators in Eq. 43 (or as a coefficient of 

the highest derivative if we multiply the terms by L ); thus, the assumption 0L   

qualitatively changes the properties of this master equation.  

Usually, the initial data are used to determine the arbitrary constants. Two initial 

items of data are required when dealing with a second order ordinary differential 

equation. When considering the shock-induced charging, it is natural to assume 
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that, at 0t  , the pyroelectric charger is saturated:  0PQ P  , whereas the 

capacitor possesses no charge at all:  0 0CQ  . Then, the total charge in the system 

is equal to  0tot PQ Q P   . 

Since we are considering explosive charging, which eliminates the polarization P  

of the charger at 0t  , Eq. 34 should be replaced with the following one: 

 
2

2

1 1 1C C tot
C

d Q dQ QR
Q

dt L dt L C L 

 
     

 
 . (43) 

Now, in view of the initial data, we get  0tot PQ Q P   , and the relationship  

(Eq. 43) should be replaced with the following one: 

 
2

2

1 1 1C C
C

d Q dQR P
Q

dt L dt L C L 

 
    

 
 . (44) 

We dwelled on the detailed derivation of Eq. 44 because it possesses an apparent 

inconsistency. Namely, it contains the polarization P  on the right-hand side, 

although the polarization P vanishes at 0t  . Therefore, some concentration is 

necessary in order to avoid confusion. 

The particular solution of Eq. 44 reads 

 
part

C

CP
Q

C 



 . (45) 

Consider the case when the induction L  is very small but does not vanish. Using 

the general solution in Eq. 39 and the relationship in Eq. 45, we get 

  
   1 1

2 2

R R
t t

gen L L
C

CP
Q t A e A e

C 

   

   


 . (46) 

Further, assume that the initial charge of the capacitor C  vanishes; the relationship 

 0 0CQ   gives us the following relationship, connecting the arbitrary constants: 

 
CP

A A
C 

   


 . (47) 

Further, we assume that not only the charge  CQ t  but also the current  CI t  

through the capacitor vanishes at 0t  . This assumption gives us the required 

additional relation for determination of the arbitrary constants; namely, we get 
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    1 1 0A A      . (48) 

Solving the system (Eqs. 47 and 48), we get 

 
1 1

,
2 2

CP CP
A A

C C 
 

  
  

   
 . (49) 

Inserting Eq. 49 in Eq. 46, we arrive at the following solution of our problem 

  
   1 1

2 2
1 1

1
2 2

R R
t t

L L
C

CP
Q t e e

C 

      
   

   
 . (50) 

Differentiating Eq. 50, we arrive at the following formula of the current  CI t : 

  
2

2
1

sinh
2

R
t

L
C

CP R R t
I t e

C L L

 


 
 . (51) 

Using the relationship shown in Eq. 40, we can rewrite Eq. 51 as 

   2
4

sinh
2

R
t

L
C

P R t
I t e

R L

 



,  (52) 

or else 

 
2 2

4 4
1 1 1 1

2 2

2

2 1

4
1

L C Rt L C Rt

C L C LR R

C

P
I t e e

R L C

R C

 

 

 



    
           
   

 
  
 
 

 . (53) 

The current  CI t  assumes its extremum at critt t  such that 

 tanh
2

critR t

L


   . (54) 

After calculating the critt t , the corresponding extremum current 
crit

CI  can be found 

from the formula 

 
2 2

4 4
1 1 1 1

2 2

2

2 1

4
1

crit critRt RtL C L C

C L C LR Rcrit

C

P
I t e e

R L C

R C

 

 

 



    
           
   

 
  
 
 

 . (55) 
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For small inductance L , we can approximate the relationship in Eq. 53 by the 

following one: 

  
1 1

2
C R

t t
R L

C

P
I t e e

R





 
  

  
 
 

 . (56) 

In this approximation, the equation for the critt  reads 

 
 

2 1 1
2

1 1

crit

R C
t

RL
R

e
C L





  

 



 , (57) 

and it implies the following value of  critt  

 
 

2

2 1 1 1 1
lncrit

RL R
t

R C C L 
   


  

 . (58) 

Thus, for the extremum current 
crit

CI  we get the following expression: 

 
 

 
1 1

2

2 1 1 2 1 11 1 1 1

2 2

2

L C R

R C R C

crit

C

C L C LP
I

R R R



  



 

   



      

 
      
     
       
  

 , (59) 

as implied by the following chain:  

 

   

 
   

 
 

1 1 2 2

2 1 1 2 1 11 1 1 1

1 1
2 2 2

2 1 1 2 1 11 1 1 1

1 1

2 1 1

ln ln

ln ln

1 1

2

2

2

2

C RL R R RL R

R LR C R CC L C Lcrit

C

L C R R R

R C R CC L C L

L C

R C

P
I e e

R

P
e e

R

C LP

R R



  



  













 

      

 

      

 

 


 

    


 

    



   

 
   
  
 

 
 

  
 
 

 
  
  

 
2

2 1 11 1

2

R

R CC L

R


    

 
   

  
   

  
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Per the explicit relationships in Eqs. 58 and 59, at the magnitude of the induction

L , approaching zero, the critical time critt  also approaches zero, whereas the 

magnitude of the critical current 
crit

CI  approaches the following value: 

 

 
2crit

C

P
I

R
  . (60) 

Thus, in the approximation of small inductance, the explosive charging is 

accompanied by a single splash of the current, occurring at the moment critt , 

described by the transcendental relationship (Eq. 54), and assuming the value  
crit

CI , described by the relationship in Eq. 55.  

For a large enough induction L , technically, the analysis is the same as for small 

induction, but the general solution in Eq. 39 should be replaced with the general 

solution in Eq. 41 (if the reader is not experienced enough with using analytic 

continuation of real functions in complex domains). The process of charging in this 

case will include multiple oscillations. 

7. Conclusion 

Summarizing, we suggested a model of a pyroelectric charger and its analysis in 

the spirit of electrical engineering. The model of the pyroelectric charger is 

characterized by a positive parameter, called the capacity of the charger, and by the 

polarization P . We postulated the relationships in Eqs. 7 and 8, describing the 

voltage and the current through the charger. The model permits the analysis of the 

transient processes accompanying pyroelectric charging and, in particular, the 

explosive regime of charging.  

We established Eq. 34, describing pyroelectric charging of a capacitor in the circuit, 

which includes the inductive element, as well as a resistor. It is a second-order 

linear ordinary differential equation that can be integrated explicitly in elementary 

(sometimes transcendental) functions. There are two convenient forms of the 

general solutions of Eq. 34: one of them (Eq. 39) is convenient in the case of a small 

magnitude of inductance; the other (Eq. 41) is convenient in the case of a large 

magnitude of inductance. 

We illustrated the suggested engineering approach by analyzing the explosive 

charging of a capacitor by means of the pyroelectric charger. We limited ourselves 

with the case of small (but non-vanishing) inductance. The key relations describing 

this process are shown in Eqs. 53–60.  
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The suggested model is remarkably simple and does not require any sophisticated 

techniques going beyond standard college mathematics and physics. More 

sophisticated models of explosive charging would require much more elaborate 

modeling and will be discussed elsewhere.  

 



 

Approved for public release; distribution is unlimited. 

21 

8. References 

1. Lang SB. Pyroelectricity: from ancient curiosity to modern imaging tool. Phys 

Today. 2005;58(8):31–36.  

2. Pyroelectricity. Wikipedia; 2019 Mar 5 [accessed 2019 Mar 7]. 

https://en.wikipedia.org/wiki/Pyroelectricity.  

3. Whatmore RW. Pyroelectric devices and materials. Rep Prog Phys. 

1986;49(12):1335–1386. 

4. Neilson FW. Ferromagnetic and ferroelectric one-short explosive-electric 

transducers. Albuquerque (NM): Sandia National Laboratories; 1956. Report 

No.: SCTM-230B-56(51). 

5. Wittekindt RH. Shape of the current output pulse from a thin ferroelectric 

cylinder under shock compression. Washington (DC): Diamond Ordnance 

Fuze Laboratories, Ordnance Corps, Department of the Army (US); 1961. 

Report No.: DOFL-TR-922. 

6. Altgilbers LL, Baird J, Freeman BL, Lynch CS, Shkuratuv SI. Explosive 

pulsed power. London (England): World Scientific; 2010.  

7. Bartkowski P, Berning P. The use of ferroelectric ceramics to charge small 

capacitor banks. Aberdeen Proving Ground (MD): Army Research Laboratory 

(US); 2017. Report No.: ARL-TR-8140. 

8. Bird J. Electrical circuit theory and technology. New York (NY): Taylor and 

Francis; 2010. 

 



 

Approved for public release; distribution is unlimited. 

22 

 

 1 DEFENSE TECHNICAL 

 (PDF) INFORMATION CTR 

  DTIC OCA 

 

 2 CCDC ARL 

 (PDF) IMAL HRA  

   RECORDS MGMT 

  FCDD DCL 

   TECH LIB 

 

 1 GOVT PRINTG OFC 

  (PDF)  A MALHOTRA 

 

 3 SANDIA NATL LAB  

 (PDF) J NIEDERHAUS  

  A ROBINSON  

  C SIEFERT  

 

 36 CCDC ARL 

 (PDF) FCDD RLW 

   S SCHOENFELD  

   T BJERKE 

  FCDD RLW LH  

   B SCHUSTER  

  FCDD RLW M  

   J BEATTY  

   B LOVE 

  FCDD RLW MB 

   G GAZONAS  

   D HOPKINS  

   B POWERS  

  FCDD RLW MG  

   J ANDZELM  

  FCDD RLW PA 

   S BILYK  

   W UHLIG   

   P BERNING  

   M COPPINGER  

   K MAHAN  

   C ADAMS  

  FCDD RLW PB  

   C HOPPEL  

   M SCHEIDLER  

   T WEERASOORIYA  

   S SATAPATHY  

  

 

  FCDD RLW PC 

   J CLAYTON 

   R BECKER  

   D CASEM 

   M GREENFIELD  

   R LEAVY  

   J LLOYD  

   M FERMEN-COKER   

   S SEGLETES  

   A SOKOLOW  

   A TONGE  

   C WILLIAMS  

  FCDD RLW PD  

   R DONEY 

   M KEELE  

   C RANDOW  

   J RUNYEON  

   G VUNNI 

  FCDD RLW PE 

   P BARTKOWSKI 

 


