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2. Summary of Research Findings 

2.1 Dynamic decision-making 

Understanding how people make decisions, from very simple perceptual to complex 
cognitive decisions, is an important area of research in psychology. We examined 
decision-making behavior in dynamically changing decision contexts. Real world 
decision contexts are continually varying, and good decision makers must continually 
adjust their behavior to track environmental changes. 

Consider the case of a military observer making decisions about the identity (friend vs. 
enemy) of noisy stimuli from reconnaissance pictures. The difficulty of these decisions 
will change throughout the task, as more or less clear pictures are used, or more or less 
uniform terrain is observed. An ideal observer must dynamically adjust their decision 
making process to reflect changes in the environment. For example, if it becomes easier 
to identify friendly stimuli in new terrain, observers should relax their criterion for 
identifying enemy stimuli. 

Previous research has often assumed static models for decision making that ignore 
sequential dependencies between environments and the effect of history on current 
decision making. Some more recent research has focused on dynamic models of decision 
making, in which certain parameters of the decision process are allowed to vary from 
decision to decision. However, this research typically makes another static assumption: 
namely that the environment is stationary. 

In this part of the AFOSR funded research (reported in Brown & Steyvers, 2005, 
JEP:LMC, and Brown, Steyvers, & Hemmer, 2007, Psychological Science), we 
developed new experimental paradigms in which dynamic decision making environments 
forced participants to change their decision making processes in order to remain 
(approximately) ideal. This paradigm allowed us to observe decision makers tracking 
changes in the environment. One of the experimental paradigms involved an aircraft 
flying through a canyon environment (see screenshots below). During the flight, the 
aircraft is attacked by incoming missiles. There are two types of incoming missiles and 
the participant in the experiment has to make a quick decision about the correct type of 
missile in order to choose the appropriate counter-measures. The goal was to measure 
decision speed in natural environments and also to measure how well participants adapt 
to changes in the decision making environment (e.g., by making the two types of missiles 
more or less similar during the course of the experiment). 



Figure I. Screenshots of the experiment to track decision-making m dynamic 
environments 

We also developed two models for the decision process in dynamic environments. One 
model is an ideal observer system in which statistical evidence for a changed 
environment is weighed in optimal fashion against evidence for a stable environment. 
The ideal observer analysis results in estimates for the ( optimal) number of trials it takes 
to detect and adjust to new decision environments (see Figure 2). Our other model is a 
dynamic SDT model that estimates how long it actually takes for individual decision 
makers to adapt to novel decision environments. By comparing predictions from the ideal 
observer model to the parameter estimates from the decision model (from individual 
decision makers), we can quantify the degree of mismatch between ideal and actual 
observer. 
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2.2 The speed of change detection 

Many real-world environments involve complex changes over time where behavior that 
was previously adaptive becomes sub-optimal. These dynamic environments require a 
rapid respond to change. For example, stock analysts need to quickly detect changes in 
the market in order to adjust investment strategies, and coaches need to track changes in a 
player's performance in order to adjust team strategy. Reliable change detection requires 
accurate interpretation of sequential dependencies in the observed data. Research on 
decision making in probabilistic environments has often called into question our ability to 
correctly interpret sequential events. When required to predict random events, such as 
coin tosses, people reliably use inappropriate strategies, such as the famous "Gambler's 
Fallacy" identified by Kahneman and Tversky (1973, 1979) - if a random coin is tossed 
several times, people often believe that a tail becomes more likely after a long run of 
heads. The error of reasoning that underlies the Gambler's Fallacy is the perception of 
probabilistic regularities in a sequence where no such regularities are present, because the 
sequence is in fact truly random. Such perceptions might arise because real-world 
environments rarely produce truly random sequences - often there really is statistical 
information in the sequence of events. Therefore, the Gambler's Fallacy could simply be 
the result of people projecting their experience of real-world environments onto 
laboratory tasks. 

Related work in dynamical systems research using response time tasks paints a 
complimentary picture. When the optimal strategy in a task is to provide a series of 
independent and identically distributed responses, people often perform sub-optimally. 
Long-range autocorrelations have been observed, where responses depend on earlier 
responses that occurred quite a long time previously (e.g., Gilden, 2001; Van Orden, 
Holden, & Turvey, 2003, 2005; Thornton & Gilden, 2005), although not all authors agree 
on the meaning of the data (e.g., Farrell, Wagenmakers, & Ratcliff, 2006; Wagenmakers, 
Farrell, & Ratcliff, 2004, 2005). The same criticism applies to dynamical systems 
research as to the Gambler's Fallacy - tasks requiring long sequences of stationary and 
conditionally random responses have questionable ecological validity. 

Even with real-world environments, people often observe statistical regularities where no 
such regularities might be present (e.g., Albright, 1993; Gillovich, Vallone & Tversky, 
1985). For example when a basketball player makes several successes in a row, observers 
readily conclude that the player's underlying skill level has temporarily increased; that 
the player has a "hot hand". Observers make these conclusions even when the data are 
more consistent with random fluctuations than with underlying changes in skill level. The 
problem with the hot hand phenomenon is the statistical interpretation of the results. The 
uncontrolled nature of batting averages and basketball successes make the true state of 
underlying process impossible to know. Even after detailed statistical analyses of data 
from many games, statisticians are still unsure whether a "hot hand" phenomenon 
actually exists in the data (Adams, 1992; Larkey, Smith, & Kadane, 1989; Chatterjee, 
Yilmaz, Habibullah, & Laudato, 2000). This confusion makes it difficult to draw 
meaningful conclusions about the optimality of people's judgments. 



In this part of the AFOSR funded research, we investigated the ability of human 
observers to track changes in dynamic environments. In contrast to research on the hot 
hand phenomenon, we used controlled dynamic environments where we knew exactly 
how the observations were produced and at what time points the changes occurred. We 
could therefore assess the degree to which human observers detect changes at the correct 
times and whether they observe too many or too few changes. When an observer detects 
too many change points they may behave sub-optimally because they react to perceived 
changes in the underlying environment that do not exist (e.g., a basketball coach who is 
prone to seeing hot hands where none are present). Conversely, when an observer detects 
too few change points, they may fail to adapt to short-lived changes in the environment. 
This tradeoff between detecting too few and too many change points has often been 
ignored in previous studies of change detection, which mostly assumed an offiine 
experiment where the task is to identify change points in a complete set of data that were 
observed earlier (see, e.g., Chinnis & Peterson, 1968, 1970; Massey& Wu, 2005; 
Robinson, 1964). However, real-world examples are invariably online: data arrive 
sequentially, and a detection response is required as soon as possible after a change point 
passes, before all the data have been observed. Online change detection is also important 
in clinical settings, particularly for identifying dorsolateral frontal lobe damage. For 
example, the widely used Wisconsin Card Sorting Task (Berg, 1948) screens patients 
according to how often they make perseverative errors - that is, how often they fail to 
detect a change in the task environment, and continue to apply an outdated and sub­
optimal strategy. Animal researchers have studied similar behavior in rats ( e.g., Gallistel, 
Mark, King, & Latham, 2001). Rats take some time to detect and adjust to unsignaled 
changes in reinforcement schedules, but eventually return to optimal probability 
matching behavior. 

We theorized that there might be a U-shaped relationship between the speed with which 
an individual detects changes and their task performance. Figure 3 helps illustrate this 
theoretical relationship. Imagine there is some task in which optimal performance is only 
possible when the subject has an accurate idea of the decision environment. Now 
suppose that environment is dynamic, and changes with time in an unpredictable manner. 
Then individuals who detect changes very slowly (left side of Figure 3) will perform 
poorly because they will base their decisions on outdated assessments of the task 
environment. Individuals who detect changes very rapidly (right hand side) may also be 
expected to perform poorly. This is because individuals who detect changes very rapidly 
are the same individuals who are prone to detecting changes when no changes exist -
they "see" change in the environment too easily. These people will perform poorly on 
the task because they sometimes "detect" changes in the enyironment that do not exist, 
and adjust their task performance behavior more often than is optimal. 



Too slow Too fast 

Speed of change detection 

Figure 3: We predicted a U-shaped relationship between performance and speed 
of change detection. Individuals who detect changes very slowly (left side) will 
perform poorly, as they base their behavior on old data. Individuals who detect 
changes very easily (right side) will also perform poorly because they will 
sometimes "detect" changes that are simply random variability in the 
environment. 

We used sequence prediction experiments to see if we could observe this hypothetical U­
shape in real data. In one of the experiments (reported in Steyvers & Brown, 2007; 
Neural Information Processing Systems) presented participants with an llxll grid of 
buttons on a touch-screen computer. We programmed the computer to "light up" buttons 
using a random sequence, and instructed subjects to try to predict the next button that 
would light up in the random sequence. We introduced dynamics by making the 
properties of the random sequence change from time to time. We found that people were 
very good at predicting the location of the next element in the random sequence. More 
interestingly, we observed the predicted U-shaped relationship between task error and 
speed of change detection (see Figure 4). 
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Figure 4. Observed data supporting predicted U-shaped relationship between 
task error and speed of change detection ("Mean Absolute Prediction Change''). 

Given that all real-world decision making takes place in a dynamic environment, our 
results could be very useful. We have shown that some people detect changes in their 
environment very readily, and some people do not. Both kinds of people perform 
decision making tasks more poorly than people who detect changes in their environment 
at an ideal rate. These tools allow us to assess the stability of an individual's trait of 
"speed of change detection. This measurement will be useful to know, not just for 
recruitment, but also for personnel-task matching. In environments where changes are 
frequent, the ideal individual will be one who usually detects changes too rapidly. 
Conversely, in a situation where the environment is quite stable, the best performance 
will be given by people who are slow to detect changes. 

2.3 Change Detection: prediction versus inference 

We followed up our previous experiments on change detection to get better data for the 
experimental phenomena and also develop psychologically plausible particle filters for 
our data. In our new experiments (reported in Brown & Steyvers, under review), random 
numbers were presented to an observer, one number at a time. After each new value was 
presented, the observer was required to respond, either with an inference about the mean 
value of the process that is currently generating data, or with a prediction for the next 
value. Figure 5 illustrates the particular set of distributions we used in our experiments, 
along with some example stimuli and two sets of example responses. Each stimulus was 
sampled from one of four normal distributions, all with the same standard deviation but 
with different means, shown by the four curves labeled "A" through to "D" in the upper 



right comer of Figure 5. The 16 crosses below these distributions show 16 example 
stimuli, and the labels of the distributions from which they arose are shown just to the 
right of the stimuli (we call these the "generating distributions"). The five uppermost 
stimuli were generated from distribution A. Most of these fall close to the mean of 
distribution A, but there are random fluctuations - for example, the third stimulus is close 
to the mean of distribution B. After the first five stimuli, the generating distribution 
switches, and three new stimuli are produced from distribution B. The process continues 
with six stimuli then produced from distribution D and finally two from distribution A 
again. 
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Figure 5. An illustration of the data generating process for the change 
detection experiments. Each stimulus is sampled from one of four normal 
distributions, but the selection of the distribution is not observed by the 
participant. At each timestep, there is a small probability that the 
generating distribution is switched to a new distribution. Example data for 
two participants are shown on the right for two different tasks; an 
inference task where the goal is to identify the generating distribution for 
the last stimulus, and a prediction task where the goal is to predict the most 
likely region where the next stimulus will appear. See text for additional 
details. 

There were two different kinds of questions that we asked participants. In the prediction 
condition, we asked about the future, requiring participants to predict where the next 
stimulus would fall. Participants made this response by clicking the mouse in one of four 
regions, defined by the crossover points of the four distributions and illustrated in Figure 
5 by the shaded rectangles in the lower left comer. Some example predictions for two 
participants (S1 and S2) are shown on the far right of Figure 5. These data illustrate some 



general trends that will become important later - for example, the third stimulus is quite 
close to distribution B, and this causes both participants to predict that the next stimulus 
will fall in the corresponding region. The other kind of question we asked participants 
was about the past, which we call an inference response. In this condition, after each 
stimulus we asked the participants which distribution they think bad generated it. In other 
words, with the inference task, we require participants to identify the hidden state of the 
generating process. Two example sets of responses are also shown for the inference task 
on the right side of Figure 5. 

Sample z0 randomly from {1,2, ... , K}. 

Repeat for trial i=1 , 2, 3, . .. 

i. Sample x uniformly from (0, 1 I 
ii. If (x<cx) sample z1 - {1,2, ... ,K} \ {z,1) 

else keep z1 = z1•1 

iii. Sample observation y1- N(~lz
1
,a) 

Figure 6: The stimulus generation algorithm. 

Figure 6 provides the details of the process used to generate stimuli. The variable K 
represents the number of generating distributions, which we set to four. Each generating 
distributionj=l, .. ,K is normally distributed with mean µi and standard deviation cr. We 
chose mean values µi of {.2, .4, .6, .8} and cr=.l in order to have some overlap in the 
generating distributions and to insure that almost observations fall on the unit interval. On 
each trial, an observation was sampled randomly from one of the four normal 
distributions. After every trial there was a probability a that the distribution would 
change to one of the other three locations, selected at random. The exact value of a was 
varied depending on the experimental condition. With a low a; most observations are 
sampled from the same distribution, requiring few change detections from the participant. 
With a high a, rapid fluctuations in the underlying generating distributions are possible, 
requiring participants to carefully interpret the changes in observed stimulus values. 

A Particle Filter Model. Our task involved tracking the hidden state of an underlying 
process whose visible outputs are perturbed by noise. This is an important problem in 
many statistical and computational applications in which particle filters have had great 
success. Particle filter models are a type of sequential Monte Carlo integration, and are 
the real-time (or online) analogues of standard Markov chain Monte Carlo integration 
methods (see, e.g., Doucet, de Freitas, & Gordon, 2001, or Pitt & Shepard, 1999). For 
statistical analysis, the central advantages of particle filter models are their simple and 
efficient computational properties, and that they can be made to approximate the optimal 
Bayesian solution for some problems, without the intractable integration problems that 
usually arise in Markov chain Monte Carlo methods. Particle filters also make good 
candidates for psychological models because they can perform almost optimally, but the 



required computations are simple enough to be plausible as a psychological process. The 
first application of particle filters to psychological data was by Sanborn et al. (2006), who 
showed that a particle filter model for categorization was able to capture both ideal 
observer as well as suboptimal behavior simply by varying the number of particles. 
Particle filters also have similarities to existing, but less formal, models of cognition that 
have enjoyed considerable support, such as Kahneman and Tversky's (1982) "simulation 
heuristic". There are many methods for sampling from particle filter models (see, e.g., 
Doucet, Andrieu, & Godsill, 2000). The most efficient algorithms are the importance 
weighting methods, but these are too complicated to be plausible as models of human 
cognition. Instead, we develop a model for the change detection task based on the method 
of direct simulation, which is much simpler and does not make unreasonable demands on 
the observer. The mathematical details of this algorithm are set out in the Appendix, but 
we provide a more intuitive description in the following text, and an illustrative example 
in Figure 7. 
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Figure 7. Illustrative example of the particle filter algorithm. 

The observer begins with some number of particles, say P. Each particle represents a 
single hypothesis about the mean of the distribution that is currently generating stimuli. 
An initial set of particles for a P=8 system is shown on the top row of the right hand side 
of Figure 7. These initial particles have randomly distributed guesses - for example, three 
particles guess that the generating distribution is B, one particle that the distribution is D 
and so on. The first observation is generated from distribution C, and is illustrated by the 
uppermost cross on the shaded rectangle. After this observation, the particles are updated 



such that particles that are consistent with the observation are kept (or even multiplied) 
and those that are inconsistent are rejected. The first observation is most consistent with 
distribution C, but also somewhat consistent with B and D. This causes the two initial 
particles that hypothesized distribution A to be rejected - no arrows show these particles 
continuing to the next trial. After this filtering, only particles consistent with distributions 
B, C and D remain. The second observation (also drawn from distribution C) is most 
consistent with distributions C and D. This time, the filtering operation rejects the three 
particles from distribution B because they are inconsistent with the data. This process 
continues and the ensemble of P particles evolves over trials, and tracks the location of 
the generating distribution as it moves, illustrated by the histograms on the right side of 
Figure 7. These show that the distribution of particles tracks the true generating 
distribution (shown on the far left of the figure) . 
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Figure 8. Predicted task accuracy vs. the number of particles (P) for the 
particle filter model, using two different estimates of change probability: 
a =.32 (the true value) and a=.17 (the average participant value). 

The particle fi lter model has two parameters that affect its performance, the number of 
particles (P) and an estimate of the frequency of changes in the generating process ( a). 
The number of particles imposes a processing limitation, and affects the overall level of 
task performance. The estimate a represents the observer's belief about how often the 
generating distribution changes - it is the observer's estimate of the parameter a that was 
used to generate the observations. Figure 8 shows how these two parameters affect task 
accuracy, using parameter values obtained from our fits to data. We propose that the 
number of particles might vary from observer to observer, and this will set an overall 
limit on the accuracy of each observer. Consider for a moment just the upper line 
( a=.32) in Figure 8. When there are very few particles ( e.g. P=l on the very left side of 
the graph), accuracy is low, but still well above the chance level of 25%. Such poor 
performance results from various suboptimal sequential strategies that might mimic 
human data. Increasing the number of particles increases the overall accuracy of the 
model. As P• oo the model mimics an ideal observer with statistically optimal decisions, 



because the distribution of particles over the hypotheses approaches the posterior 
distribution conditional on all previous observations. The lower line in Figure 8 shows 
how overall performance is affected by an inaccurate estimate of change frequency, a. 
This line illustrates what happens when the observer believes there are fewer changes in 
the generating process (17%) than actually occur (32%). Overall performance is lowered, 
and even with a large number of particles, performance does not grow to the optimal 
levels. An inaccurate a estimate causes decreased performance because it governs how 
new particles are generated from old ones. Just as in the data, particles remain the same 
from trial to trial, except for a probability a of changing to one of the other three 
locations. When the estimate accurately matches the environment ( a=a) the model 
performs most accurately. When the estimate is too small or too large, the model 
performs inaccurately because it is either too slow to change or too quick to label 
outlying observations as changes in the generating distribution. 

In Experiment 1, we tested participants on the inference task only. That is, after 
displaying each stimulus, we asked participants which of the four distributions was most 
likely to have generated that observation. We assessed performance in this task under 
three conditions, in which there was either a low, medium or high change probability 
(i.e., a value) . The question was whether participants were able to track changes in the 
hidden state of the data generating process and whether they were sensitive to the 
changes in the rate at which those changes occurred. Also, this experiment allowed us to 
investigate individual differences in the accuracy of change detection as well as the 
number of changes detected. We hypothesized there would be substantial differences in 
individual ability, with some individuals detecting too few or too many changes, leading 
to suboptimal performance. 

Methods. One hundred and three undergraduates from the University of California, 
Irvine, participated in Experiment 1. We generated stimuli using the algorithm from 
Figure 2, and illustrated these using a "tomato processing factory'' in which cans of 
tomatoes were produced from one of four horizontally-separated "production pipes" at 
the top of the screen (to view a working example of the experiment, visit 
http://psiexp.ss.uci.edu/). The locations of these four pipes correspond to the mean values 
of four distributions that generate the stimuli. Using simple animations, tomato cans were 
produced one at a time from one of the four pipes. The standard deviation of each 
distribution was half of the horizontal separation between pipes. After each new stimulus 
appeared, all other stimuli on screen were moved downwards to make room, simulating a 
conveyor belt. No more than 15 stimuli were ever visible on screen at any time, with the 
lowest one falling off screen. There were four response buttons at the top of the screen, 
one above each pipe. Participants used these buttons to indicate their responses to the 
inference questions ("Which pipe generated the most recent stimulus?"). The experiment 
began with the participant reading through instructions that described the generating 
process and the random movement of the cans. After this, the first cans rolled out of the 
machine with all elements of the task visible. This "familiarization phase" lasted for 10 
stimuli at the beginning of each block. The participant's task at this time was trivial, as 
they could directly observe which pipe had generated the most recent stimulus. The 
familiarization phase allowed us to identify and exclude participants who failed to pay 



attention. It also made the participants more familiar with the idea of inferring which pipe 
generated the stimuli, and illustrated that the stimuli did not always fall nearest to the 
pipe that had generated them. After 10 familiarization trials, a curtain covered the 
machinery that generated the stimuli, beginning the 40 trials of the decision phase. 
During this phase, the participant's task remained unchanged, but was difficult since the 
only information available to the participant was the final location of the stimuli. 
Participants completed one short practice block followed by 12 full blocks divided into 
four blocks in each of three conditions. The three conditions were defined by the 
frequency of changes in the underlying generating process: a=8%, a=l6% and a=32%. 
The pipe used to generate each stimulus was either a repeat of the pipe used for the 
previous trial (with probability 1-a) or a new pipe drawn randomly from the other three 
possibilities (with probability a). All four blocks of each condition occurred 
consecutively, but the order of the three conditions was counterbalanced across 
participants. We constrained the pseudo-random stimulus sequences to ensure that there 
was at least one change in the generating distribution during each familiarization phase. 
Importantly, we used the same stimulus sequence for corresponding blocks for all 
participants to reduce variability in comparisons across participants. 

Results. The two central attributes of participants' responses were their accuracy (i.e., 
how often they correctly inferred which distribution had produced the data), and their 
variability; these measures are summarized in the left and right columns of Figure 9, 
respectively. Participants averaged about 70% correct responses, with a tendency for 
accuracy to decrease with increases in the proportion of changes in the data generating 
process (a). We summarized response variabi Li ty by calculating the proportion of trials 
on which the participant provided a different response than they had provided for the 
previous trial. This measures how often the participant changes their belief about the 
mean of the underlying data generation process. The histograms for response variability 
(right column of Figure 9) show that variability increased as the proportion of changes in 
the data generating distribution increased. On average, participants made 11 response 
changes per block during the low frequency (a=8%) condition, rising to 13 changes per 
block in the medium frequency {a=l6%) condition and 16 changes per block in the high 
frequency {a=32%) condition. 
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Figure 9. Histograms of task accuracy and response variability across 
participants in Experiment 1. The arrows show the mean of each distribution. 

Figure 10 compares accuracy and response variability on a within-subjects basis, 
separately for the three conditions: low, medium and high a. Each participant is 
represented by a black dot in each of the three panels (the grey areas are predictions from 
the particle filter model, discussed next). The upper boundary of the accuracy data forms 
an inverted-CT shape for all three conditions. This inverted-CT shape illustrates the trade­
off between subjects who were too quick to detect changes and those who were too 
cautions. 
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Figure 10. Accuracy vs. response variability (the proportion of trials on which 
the participant changed their response). From left to right, the panels show data 
from the three conditions of Experiment 1: low, medium and high probabilities 
of a change ( a) in the data generating process. Black dots show human data, 
the grey shading shows predictions from the particle filter model, under all 
possible parameter values. The crosses show "ideal" performance, using the 
particle filter model with a correct estimate of change probability ( a=8%, 16% 
or 32%) and many particles (P=IO00). 

Our participants demonstrated increased response variability and decreased accuracy 
across the three conditions, as the frequency changes in the generating process ( a) 
increased. This may suggest that participants were appropriately reactive to the 
experimental manipulation, but the situation may be more complicated. Increasing the 
frequency of changes in the generating process ·also increases the variability in the data, 
and so naturally leads to greater response variability. Put another way, even if 
participants were completely insensitive to the experimental manipulation of a, they 
would still exhibit increased response variability with increased a, just by virtue of 
tracking the (more variable) stimuli. The interesting question is whether participants 
demonstrated enough extra response variability to suggest they were sensitive to the 
experimental manipulation of a. This question can only be answered by model-based 
analyses. 

Particle filter model analyses. The particle filter model maintains a set of particles that 
represent a distribution of beliefs about which of the four processes is currently being 
used to generate data - see, e.g., the histograms on the extreme right of Figure 7. In 
Experiment 1, participants were forced to give just one response, not a distribution. This 
constraint is included in the model in the statistically optimal manner, by having the 
model return the mode of the particle distribution as its inference about the generating 
distribution (assuming that the goal of the task is to maximize the number of correct 
decisions). We use two different approaches to assess the model. We first take a global 
approach, in which we evaluate the model's predictions for all possible parameter 
settings, and compare the range of behaviors produced by the model with participants' 
behavior. Next, we take a focused approach by estimating model parameters for each 
participant, and investigating the effects of the experimental manipulations on the 
parameter estimates. The grey circles in Figure 10 illustrate the entire range of behavior 



that can be predicted by the particle filter model when given the same stimuli as our 
participants. We varied the estimate of change probability from a=0 to a= 1 in small 
steps, and the number of particles from .P=l to P= l000 (predicted accuracy reached 
asymptote around .?=250). The model captures the observed variability in participant 
behavior in this task in two ways. Firstly, the model successfully predicts data that were 
actually observed - almost all data fall inside the range of model predictions. Secondly, 
the model does not predict data that are wildly different from those that were observed -
the grey circles do not generally fall very far from the data. The model also captures the 
important qualitative trends in Figure 10, including the decreased accuracy and increased 
variability with increasing change probability (a). The performance of an "ideal 
observer" is shown by the crosses, which represent the particle filter's predictions with a 
large number of particles (.?=1000) and with perfect estimates of the frequency of 
underlying changes ( a=8%, 16% and 32%). Surprisingly, some participants performed 
close to optimally on this task, and indeed the average participant performance was not 
far below optimal. The upper boundary of the grey shading illustrates the optimal 
performance level that can be achieved for all different estimates of a from zero to one. 
Even though the accuracy of the participants decreases as they detect too many and too 
few changes, the accuracy of many participants remains close to the top border of the 
grey shading. This indicates that many participants could be characterized as operating 
optimally, except that they used an inaccurate estimate of a. 
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Figure 11. Estimates of the a parameter from the particle filter model. The 
estimates increase as the true value (a) increases from 8% to 32%. 

The model analyses provide insight into the _question of whether our participants were 
sensitive to the experimental manipulation of a. We used the particle filter model to 
generate maximum-likelihood estimates of the parameters (P and a), separately for each 
participant. Various techniques exist to estimate the likelihood of a particle filter model 
(Hilrzeler & Kilnsch, 2001), but we used a simple brute force method; see Appendix B 
for details. We constrained the parameter estimates to a single, fixed value of P for all 
three conditions, but allowed three independent values of a for the three experimental 
conditions. The parameters revealed that participants were indeed sensitive to 
manipulations of the underlying frequency of changes in the data generating process. 
Figure 11 shows histograms of the a estimates across participants, separately for the 



three experimental conditions. The a estimates were smallest in the a =8% condition, 
where the average value across participants was a=l0.9%, increasing to an average of 
a =15.3% in the a=16% condition, and a=17.2% for the a =32% condition. These 
estimates confirm that participants were sensitive to the experimental manipulation, 
although their estimates of a were set sub-optimally. There was some shrinkage towards 
the mean condition (i.e., a was too low in the high-a condition and too high in the low-a 
condition). The average estimate of the number of particles ranged from P=12 to P=400. 
The mean value was P=l 10, which is quite large, given that model performance becomes 
close to asymptotic at around P=250. The high value for P indicates that participants 
were close to optimal, although most often they had an incorrect estimate of the 
underlying change frequency (i.e. a:;t:a). 

The remarkable finding from Experiment 1 was that some participants performed almost 
as well as a statistically optimally "ideal observer". The performance of most other 
participants was well described by the same (ideal) particle filter model, although with an 
incorrect estimate of the underlying frequency of changes in the generating process. The 
reader may wonder why our participants were close to optimal, when data from other 
paradigms reliably demonstrate the fallibility of human decision making. Our dynamic • 
data generating process may be similar to "real world" environments than static (i.i.d.) 
processes, resulting in better performance. A second feature that separates our paradigm 
from others is the question posed to participants. We asked our observers to identify 
which of the four stimulus distributions generated the most recent stimulus. This question 
asks about the past, requiring participants to make inferences about prior states of the 
world using existing data. Most other analyses of human decision making ask instead 
about the future, requiring participants to make predictions about the outcomes of 
gambles, for example (e.g., see Kahneman & Tversky, 1973). It is possible that people 
treat questions about the past and about the future very differently, even when there is no 
statistical reason to do so. Similarly, Jones and Pashler (2007) have shown that making 
predictions about the future is not an especially privileged task. Indeed, they found that 
when similar questions were asked about the future (predictions) and the past 
(retrodictions), participants never performed better when making predictions than 
retrodictions. 

Advantage of Particle Filters. Modem Monte Carlo techniques provide a natural way to 
model inference in probabilistic environments, including many decision making tasks 
commonly used in psychological research. Standard Markov chain Monte Carlo 
(MCMC) methods, and the newer sequential Monte Carlo (SMC) methods, are both 
useful solutions to some of the associated computational problems, and variants of each 
have been proposed as psychological models (e.g. Brown & Steyvers, 2005; Sanborn et 
al., 2006). While both MCMC and SMC are equally appropriate analyses from a 
statistical viewpoint, it seems that SMC methods such as particle filters have several 
advantages as models of human cognition. Firstly, SMC algorithms place lighter and 
more plausible computational demands on the observer. SMC methods do not require the 
observer to keep a memory for a long chain of previous events. A related advantage for 
SMC methods is their ease of application to online (as opposed to post hoc, or offline) 
experiments - when observations arrive sequentially, and a response is required after 



each observation. SMC methods are naturally designed for such sequential paradigms, 
and employ incremental update algorithms between observations. In contrast, many of 
the standard MCMC approaches require extensive re-calculation between each 
observation, making them computationally inefficient and unlikely as psychological 
process mechanisms. A final advantage of SMC approaches to cognitive modeling is the 
ability to model both optimal and sub-optimal behavior within the same .framework. 
Standard Bayesian approaches to statistical inference based on MCMC naturally provide 
optimal performance, under the assumption of accurate knowledge of the data structure. 
When endowed with a large number of particles, the particle filter models provide the 
same optimality as the MCMC techniques, but they can also accommodate suboptimal 
behavior, when the number of particles is small. 

Appendix: Particle filter based on direct simulation 

Let U and qi be the uniform and normal density functions, respectively. Suppose that 
there are K generating distributions, P particles, and that the observation on trial i, say y; 
is normal with standard deviation cr and mean µj, where} is the generating distribution. 
The algorithm is initialized on trial i=O with particles u0={u0,1, u0,2, .•. uo,P}, where each 
element is one of the integers 1 .. K. On each subsequent trial i set a counter p=O and then 
repeat the following: 

1. Sample z randomly from {u;, 1, u;,2, • •. Ui,P}. 
2. Samplex1~ U[0,l]. If x1<a. sample z~ {l, 2, .. . K}\ {z}. 
3. Samplexi~U[0,1]. If [ q>(y;lµz,cr)>x2 ] thenp=p+l and u;,p=z. 
4. If p=P stop, else return to 1. 

This method of simulation directly mimics the data generation process, but creates an 
evolving set of particles that approximates the desired posterior distribution. 
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