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1. SUMMARY 
 

The objective of this research work was to develop a ternary based public key exchange 
scheme that is addressable to replace, or complement, the existing Public Key Infrastructures 
(PKI).  The Ternary Addressable Public Key Infrastructure (TAPKI) leveraged arrays of physical 
unclonable functions (PUFs) and heterogeneous ternary/binary computing systems.  Public and 
private key pairs are binary streams while the core of the TAPKI is based on ternary logic. The 
communication between parties can occur over untrusted channels, by exchanging dynamically 
generated public keys, and using legacy binary codes. The proposed ternary environment largely 
enhanced entropy, creating an additional level of cyber-protection. 

While the initial benchmarking research work was considered as a compelling generic 
proof of concept, which validated the potential value of ternary computing for Information 
Assurance, the anticipated outcome of the research work was to develop the key technology 
modules needed to deploy ternary cryptography that can secure strategic assets. 
 
The main objectives were the: 

a) Characterization of packaged arrays of balanced ternary PUFs (-, 0, +) fabricated with 
memristors, or ReRAM (Resistive Random-Access Memory) arrays, in preparation for the 
design of multichip-modules integrated with crypto-processors; 

b) Development of a multi-key Ternary Addressable Public Key Infrastructure (TAPKI) 
based on randomly generated ternary tables: multi-addresses, and multi-key, for one time 
use polymorphic cryptography; 

c) Development of heterogeneous ternary RISC (Reduced Instruction Set Computer) engines, 
hardware/software (HW/SW) to drive this cryptography, and the development of a Field-
programmable gate array (FPGA)-based emulation of these engines. 
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2. INTRODUCTION 
 

Hackers and cyber-criminals continuously probe and attack legacy infrastructure. The 
layers of assurance that are added to our systems after-the-fact can be themselves susceptible to 
the same attacks. It may be the time to ask the following question: should we consider radical 
architectural and infrastructural changes that may disrupt the status quo to support a healthier 
cyber-security ecosystem through computational diversity? 

Ternary computing uses trits (three primitive values of 0, 1, and 2, or balanced values of -
, 0, and +) to enable denser numerical encodings, support a fuzzy state, and give the cryptographer 
the opportunity to introduce new ciphering methods based on hardware primitives that can provide 
additional security.  However, general-purpose ternary computers have not been successful so far, 
because they are not as simple as binary computer designs for working with binary encoded data 
and existing binary architectures. 

This work is a re-introduction of ternary computing, a technology invented 150 years ago 
but that has seen little practical application because it has not demonstrated advantages over binary 
computing in terms of computability or processing performance.  Instead of applying ternary 
computing to processing, this work was predicated on the hypothesis that the integration of native 
ternary hardware with binary hardware can improve cyber security. 

If ternary computing has the potential to disrupt and change the landscape of cybersecurity, 
we must ask a second question: can the inherent complexity and implementation costs associated 
with ternary computing be mitigated such that this technology can be used as a compelling 
fortification against malicious entities? In this work, the limitations of current security protocols 
were explored and the design of ternary computing units was demonstrated to take advantage of 
recent advances in semiconductor technology. As an example, the design of public key exchange 
protocols between a computer and a secure microcontroller using the Java Card OpenPlatform that 
takes advantage of ternary operations and representation was completed.   

 

3. METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1. Ternary cryptographic tables. 
The initial step of the TAPKI exchange scheme, also called personalization, is based on the 

generation by the secure Server of the network, of one cryptographic table per client device, with 
Ternary True Random Numbers (T-TRN) of trits, and this in a fully secure environment1. In this 
paper, we are using balanced ternary logic with each trit being either a “-” state, a “0” state, or a 
“+” state. For example, each table can have the format of 256 rows, and 256 columns, for a total bit 
density of 64Ktrits, see Figure 1.  
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Figure 1: The server generates a crypto-table with ternary numbers for each client device. 

During personalization, one cryptographic table is securely downloaded to each connected 
device, which could be a terminal device, a secure microcontroller, or a smartcard. These devices 
have secure non-volatile memories embedded in them to store their cryptographic tables, and all 
crypto-tables are securely kept in the server. The personalization, i.e. data generation, and transfer 
has to be done once for each connected device, thereby creating a dedicated and highly secure 
environment. With this basic scheme, it is assumed that the non-volatile memories of the client 
devices are secure, as it is assumed in traditional public key infrastructure (PKI). Rather than storing 
the “private keys”, the basic TAPKI scheme is based on the storage of crypto-tables. As discussed 
below, crypto-tables can be replaced by Addressable arrays of Physical unclonable function 
Generators (APG), which are more secure. 

3.2.  Public Key Generation 
In this scheme, we are calling the public key of the TAPKI the information needed to generate a 

particular private key from the cryptographic table. As it is a standard practice with other PKI 2,3,4,5,6 
the public key is openly shared, in a communication channel that is based on binary logic, and is 
assumed to be highly unsecure. In this scheme, only the server and the client device can 
independently generate a binary private key.  

 
Figure 2: A public key is the set of instructions describing how to find a particular private key in the table. The encryption is based on a 

symmetrical scheme which use the private key. 

As done with Elliptic Curve Cryptography (ECC), [26-32], or Quantum Key Distribution 
(QKD), TAPKI is a key exchange scheme. The private keys after key exchange are used to encrypt 
and decrypt messages, and perform authentication cycles, establishing a secure communication 
environment between server, and client.  
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 The initial implementation is based on AES-256 (Advanced Encryption Systems); however, 
alternate methods such as polymorphic encryption need to be considered. The TAPKI scheme is 
only as good as the encryption method used in association with the key exchange.  
 In its basic form, the public key of the TAPKI is a particular address Ai,j1 = {Xi, Yj} in the crypto-
table, see Figure 2. The private key can be the stream Pri,j1=Ci,j1={Ci,j11,…,Ci,j1k} of k bits extracted 
from the stream of trits that are located in the cryptographic table following the address Ai,j1. The 
“0” states are ignored, the “-”s are converted into binary “0”s, and the “+”s are converted into binary 
“1”s. The 256 bits needed for the private key can be extracted from the rolling following rows in 
the table if the address pointed by the public key is located at the end of a row. If the address pointed 
by the public key is located at the bottom of the table, the rolling following rows can be located at 
the top section of the table in such a way that a fixed length of 256 bits is always extracted for the 
private key.  
 Only the server, and the client with the appropriate cryptographic table can generate the same 
private key for the TAPKI protocol, a third party without the same exact cryptographic table cannot 
extract the same private key from the same public key. And the public key, i.e. the address in this 
case, can be changed often to increase the level of security. 

3.3.  Hash Functions and Multi-Factor Authentication 
To increase the level of security, hash functions, such as the standard hash algorithm (SHA), can 

be used to protect the public and private keys, with an additional password, or pin code. The hash 
functions are one-way cryptographic functions that convert input messages into hash digests. Even 
a single bit change in the input message, results in a totally different hash digest. The revised 
protocol is shown in Figure 3. 

 The password can be a data stream of any length, and any origin such as a pin code, or a 
biometric print, i.e. finger print, vein, or retina. This password has to be known by both parties, as 
part of this protocol. With such an architecture, a third party should not be able to directly extract 
the address Ai,j1 = {Xi, Yj} in the crypto-table from the public key. The objective is to make the 
knowledge of the public key pointless without knowing the password used in the hash function. A 
binary random number Ti,j1, generated by the Server side becomes the new public key. This random 
number Ti,j1 generates the address Ai,j1={Xi, Yj} from the hash function and the password, as shown 
in Figure 3.  

If for example the ternary cryptographic table is a 256 x256 array, the first 8 digits of the hash 
message can be the address of the column Xi, and the next 8 digits can be the address of row Yj. 
The private key, PrK1= Di,j1 ={D1i,j1, …, Dki,j1}, is then the stream of k binary bits located in the 
cryptographic table pass address Ai,j={Xi, Yj} after skipping the ternary “0”, and converting the 
ternary “-“s and “+”s into binary “0”s and “1”s . The public key transmitted is PuK1={Ti,j1}. User 
A can generate again the address Ai,j1={Xi, Yj} with the same hash function, the same password and 
Ti,j1 , thereby the same private key PrK1= Di,j1 from the same cryptographic table. With this 
password protection method, a hacker cannot determine the address Ai,j from the public key 
PuK1={Ti,j1}, even if the hacker was able to uncover the cryptographic table.  

If a malicious party takes possession of the user’s terminal device, the knowledge of the public 
key alone will be useless unless the malicious party also takes possession of the password. 
Additional levels of protection through a multi-factor authentication can be added such as biometric 
methods to authenticate the user.  In this method, the random number Ti,j1 can be dynamically 
changed to a different number Ti,j2 prior to the following communication between parties, resulting 
in a different public key PuK2={Ti,j2}, a different address Ai,j2, and different private key PrK2=Di,j2, 
thereby enhancing security. 
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Figure 3: The hash function converts the random number Ti,j1 (the public key), and the password into the address Ai,j1 allowing the generation 

the private key. 

To increase the level of protection of the scheme, the password PW used to feed the hash function 
can be the result of multiple levels of independent factors combined to form a giant cryptographic 
key of variable length7. 

3.4.  Ternary states to mask the private keys 
Private keys can be further protected by adding a masking pattern Ii,j1 to the public key [x]: 

PuK1={Ti,j1,Ii,j1}. The masking pattern Ii,j1 is used to extract a binary data stream, i.e. the private 
key, from the cryptographic table which contains trits. The objective of this masking operation is 
to largely increase the number of possible private keys from the cryptographic table [33]. A mask 
Ii,j1={I1i,j1,…,Imi,j1} having the same length m as the data stream Ci,j1={C1i,j1,…,Cmi,j1} that is 
generated with the cryptographic table past the address Ai,j, and to mask all the ternary “0”s (in blue 
in the example) of the data stream, representing t trits, as well as replacing the ternary “-”s  and 
“+”s with binary “0”s and “1”s.  

For example the trits of Ci,j1 facing a 1 in Ii,j1 are masked . Additionally, an arbitrary number h 
of trits of Ci,j1 are also masked with a second random number that is part of Ii,j. see the red bits in 
the example bellow. This results in a new private key PrK1={Pr1K1, … ,PrkK1} of length k, with 
k=m-t-h: Ternary data stream Ci,j1 is extracted from the cryptographic table, the asking pattern Ii,j1 
is extracted from the public key  PrK1 = (0111000011010100) :  

 
The total number of possible private key combinations from a particular data stream Ci,j1 of 

length m is increased by the factor �𝑚𝑚−𝑡𝑡
ℎ �. This represents the number of possible combinations to 

insert the additional and arbitrary number of h “1s” in the stream of Ii,j1 having m - t “0s” left, after 
t bits were masked “1” to eliminate the ternary trits “0”. For example, if the size of the data stream 
Ci,j1 extracted from the crypto-table is m=512, the number of “0” trits to be masked is t=182, and 
the number of additional blanking is h=74, the size of the private key is k = m - t - h = 256 bits, 
and the number of possible combinations is:  

�𝟓𝟓𝟓𝟓𝟓𝟓−𝟏𝟏𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 � ≈ 1 1075 

The scheme is enhanced by encrypting Ii,j1, for example by using the hash digest of section E as 
a cryptographic key, and AES. 
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3.5. Value of the use of ternary states in the crypto-tables.  
The use of ternary states increases the number of possible combinations of ternary random 

numbers that can be generated and downloaded in the cryptographic table, i.e. entropy, from 2N to 
3N, with N being the size of the table.  

This also increases the number of possible combinations, in the data stream Ci,j1 of m trits 
extracted at the address Ai,j1 by the factor 3m/2m =(1.5)m. If m= 512, this factor equal: 

(1.5)512 ≈ 1.4 1090 
The generation of the binary data stream Ii,j1={I1i,j1, …,Imi,j1} has to be such that the ternary states 

“0” of Ci,j1 need to be masked to result in a private key PrK1={Pr1K1, … ,PrkK1} which  is a binary 
data stream compatible with a legacy symmetrical encryption scheme such as AES. Both private, 
and public keys remain binary data streams, so the communication protocol between parties are 
back compatible with legacy infrastructure. A third party should not be statistically able to generate 
a working public key in man-in-the-middle attacks (pretending to be a legitimate server [21-23]) 
without the knowledge of the location of the ternary states “0” in the stream Ci,j1. A randomly 
generated public key will most likely fail to mask the ternary states of the cryptographic table, and 
will result in a ternary private key that cannot effectively be used in a symmetrical encryption 
scheme. In the example shown above (m=512, t=182, k=256), the probability to randomly find 256 
bits out of 512 that have no ternary “0” state is given by: 

P = (𝟑𝟑𝟑𝟑𝟑𝟑
𝟓𝟓𝟓𝟓𝟓𝟓

 ) (𝟑𝟑𝟑𝟑𝟑𝟑
𝟓𝟓𝟓𝟓𝟓𝟓

 )  … ( 𝟕𝟕𝟕𝟕
𝟐𝟐𝟐𝟐𝟐𝟐

 ) = 𝟑𝟑𝟑𝟑𝟑𝟑!  𝟐𝟐𝟐𝟐𝟐𝟐!
𝟓𝟓𝟓𝟓𝟓𝟓!  𝟕𝟕𝟕𝟕!

    ≈  2.11 10-78 
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3.6.  Schemes to enhance entropy 
Multiple addresses from the message digest: The message digest generated by a commercial 

hash function such as SHA-2 or SHA-3 can be 512-bits long, or more. Multiple addresses of the 
cryptographic table of the PKI can be extracted from each message digest. For example, as  shown 
Figure 4, when the size of the cryptographic table is 256 x 256, it is possible to extract 32 different 
addresses from a 512-bit long message digest.  Ai,j1 can be extracted from the first 16 bits of the 
message digest, Ai,j2 from the next 16 bits, all the way to Ai,j32 from the last 32 bits. To extract Ci,j, 
and get 512 trits, it is then possible to read the 16 bits following each of the 32 addresses. If the 
cryptographic table contains true random numbers, there are 216 possible combinations for each of 
the 32 addresses; if each address can be picked anywhere in the cryptographic table, the total 
number of possible configurations is: 

(216)32 = 2512 ≈ 1.34 10154 

The number of possible configurations is slightly reduced when it is assumed that the 32 
addresses cannot not overlap with each other: 

∏ (𝟐𝟐𝟏𝟏𝟏𝟏 − 𝟑𝟑𝟑𝟑𝟑𝟑)𝒊𝒊=𝟑𝟑𝟑𝟑
𝒊𝒊=𝟎𝟎  ≈ 1.08 10154 

 

 
Figure 4: 32 different addresses from the hash digest to extract 512 trits 
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The example discussed above of a 256 x 256 table, with a 512-bit long message digest can be 
generalized in tables of different sizes, and message digests shorter or longer. Cryptographic tables 
of smaller sizes than 256 x 256, and the same 512-bit long message digest could be segmented in 
more than 32 addresses. For example, a 64 x 64 cryptographic table can be segmented into 42 
addresses, a 1024 x 1024 table can be segmented into 25 addresses. The example discussed above 
of a 256 x 256 table, with a 512-bit long message digest can be generalized to tables of different 
sizes, and message digests shorter or longer. Cryptographic tables of smaller sizes than 256 x 256, 
and the same 512-bit long message digest could be segmented in more than 32 addresses. For 
example, a 64 x 64 cryptographic table can be segmented into 42 addresses, a 1024 x 1024 table 
can be segmented into 25 addresses. 

Use information stored in the cryptographic table. A different method to increase the possible 
combinations is to read the few trits located around the address Ai,jq, and to use the information to 
access a set of instructions on how to generate the ternary stream Ci,jq. In the example shown in 
Figure 4, the trits located at location Ai,jq, and the one located just after, are read, a digital number 
from 1 to 9 can be extracted. This number, for example 7 in Figure 5, can be used as instruction 7 
to generate the trits Ci,jq={Ci,jq1, …, Ci,jq16} from the cryptographic table. 

As an example of “instruction”, the spacing to extract the trits following the location Ai,jq can be 
edited, or spaced, with the number read in the pair of cells. In the example shown in Figure 5, a “+-
” at address Ai,jq triggers the selection of the trits stored in every 7 cells in the cryptographic table. 
Each different address in the cryptographic table has different pairs of trits, and different 
instructions will therefore space differently the generation of their streams of trits. With such an 
edit spacing method, there are 9 different ways to extract 16 trits located past the different 32 
addresses. The number of possible configurations is then increased by:  (9)32 = 3.4 1030 

This method can further increase the number of configurations by reading longer streams of trits 
following each address. Reading 8 trits will yield the following number of configurations: 

(83)32 ≈ 5 1086 

 
Figure 5: 32 different instructions from the crypto-table to extract 512 trits from 32 different addresses. 
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General instruction set.  The instruction “edit spacing” can be replaced by any set of instructions 
needed to compute, and extract the trits following the location Ai,jq, with each different address in 
the cryptographic table having different instructions. 

Mitigation of frequency analysis. Frequency analysis is a generic method to break cryptographic 
protocols that handle streams of bits of constant length. Block ciphers like AES usually encrypt 
blocks of 128 bits at each operation. The encryption of long plain text with thousands of words, 
with millions of 128 blocks, could be exposed to frequency analysis. The combination of the two 
methods described in section 2.1, and 2.2 can be effective to mitigate such attacks. For example, 
each of the 32 addresses can be used to extract chunks of 16 trits with different spacing, and are 
therefore not following a predictable sequence. The reading of the trits can vary address to address 
resulting in non-repetitive patterns.  

The information is coming from the table itself, not the public key, this further increases the 
number of possible pairs of public/private key combinations. The ternary information extracted at 
each address can be used in many other ways to protect the scheme from frequency analysis. For 
example, the number 0 to 8 read on the two trits located around Ai,j1 can be used to vary the length 
of the chunk of trits extracted; that with a 0 this length is 16, with 1 it is 17, with 2 it is 18, with 3 
it is 19, and so one. The total number of chunks to extract 512 trits does not have to be 32 anymore 
for each public key. 

3.7.  Use of Physical Unclonable Functions 
Arrays of ternary addressable PUF generators (APG), based on memory arrays 8,9,10,11 can 

generate ternary challenges and responses to replace the ternary random numbers described in 
section 2.1, that are filling the look up tables, as shown Figure 6. During initial set-up, or 
personalization, the APGs located at the client side securely generates look up tables of PUF ternary 
challenges that are downloaded in the server in a highly secure environment. The public/private key 
scheme is constructed in a similar way to the one presented above, in Figure 4. 

 
Figure 6:  The TAPKI scheme is based on addressable ternary PUF arrays (APG). The private keys are based on ternary challenges or responses, 

not ternary random numbers. 

During this personalization operation, the ternary data stream Ci,j1={C1i,j1,…,Cmi,j1} located at 
the address Ai,j1 on the server side, has been replaced by a data stream of ternary challenges 
Chi,j1={Ch1i,j1,…,Chmi,j1} which will be used to generate the private key PrK1 during the subsequent 
authentication cycles. On the client side, at each authentication cycle, the AGP is queried again with 
the public key, PUF responses Rei,j1={Re1i,j1,…, Remi,j1} are generated at the address Ai,j1 for the 
purpose of private key generation PrK1.  APG’s can also be used separately on the server side for 
additional protection at the level of password management.  
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One noticeable difficulty in the use of PUFs, instead of a ternary random number, is the need to 
incorporate error correcting methods to be sure that both private keys are absolutely identical. The 
use of arrays of addressable PUFs, as described in this section, assume that the private keys 
generated independently by both the server, and the client devices are exactly the same. A single 
bit mismatch between the two private keys can totally derail the symmetrical encryption scheme. 
However, there is a definite possibility that a few bits of the PUF responses generated in the field 
will differ from the bits of the PUF challenge stored in the server. This difference can be caused by 
variations of the physical elements due to temperature changes, voltage drifts, aging, noisy 
measurements, or electromagnetic radiations. For this purpose, the schemes with PUFs need to 
integrate error correction methods in the implementation. It will ensure the exact reconstruction of 
a private key in the field. We can use BCH (Bose, Chaudhuri, and Hocquenghem) error correction 
scheme to recover the PUF output bits in the field.  

As shown in Figure 7, the input of a BCH encoder is a random number. The output of the encoder 
is XORed with the PUF response. In the reproduction stage, a noisy PUF response is XORed again 
with the helper data and then a BCH decoder is used to recover an error free Key. The helper data 
can be added to the public key, and encrypted to reduce exposure to a third party. For example, a 
very strong TAPKI implementation can be based on public keys of 1,536 bits. The first 512 bits 
represent the random number Ti,j1 needed to feed the hash function, find Ai,j1, extract Chi,j1 and the 
server side, and Reij1 on the client side. The following 512 bits represent the helper data needed to 
correct the ternary responses, in such a way that both streams are identical. The helper can be 
encrypted with the message digest of the hash function. The third 512 bits represent the masking 
data Ii,j1 needed to extract the private keys independently, by all parties. 

Generation process

PUF

BCH 
enc

Reproduction 
process

BCH 
dec

Helper 
data

Key PUF

w` Key

SS

w

 
Figure 7:  Error Correction scheme for PUF 

 

3.8.Implementation of the TAPKI 
 We implemented a server-client TAPKI scheme on a PC environment. The algorithms for 
public-private key exchange are described in this section. 

Key generation by the server 
The block diagram describing the algorithms for key generation at the server side is shown 

below, Figure 8. 

• The first step on the server side is the generation of the binary random number Ti,j1, for 
example 512 bits. A new number can be generated at each authentication cycle between the 
server and the client. 

• The second step is to use the hash function, and a password to generate the message digest 
Ai,j1. Typically, SHA-2 and SHA-3 can generate a message digest of 512 bits. In our 
implementation we are simply XORing Ti,j1, and the password to feed the hash function. 
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• The third step is to extract the stream of trits from the crypto-table. The 512 bits of Ai,j1, are 
cut in 32 chunks of 16 bits. Each of the 32 chunks are pointing to one address in the crypto-
table. The 16 trits following each address are extracted to generate the stream of 512 trits Ci,j1. 
To increase entropy the trits located around each address are read, and generate instructions 
on how extract the 16 trits. 

• The fourth step is to mask the 512 trits of Ci,j1 to extract 256 bits, the private key Pri,j1. Using 
the mask Ii,j1, all ternary states “0” of Ci,j1, are masked, as well as arbitrary additional “-“ and 
“+” trits. This results in a stream containing only two types of trits, the “-“ and the “+”, that 
are converted to “0” and “1” bits. 

• The last step is to generate the public key Pui,j1. The first portion of the public key is the 
random number Ti,j1. The second portion of the key is the result Mi,j1, of the XORing of the 
message digest Ai,j1, and the mask Ii,j1. 

 

 
Figure 8: Diagram showing the algorithm for TAPKI key generation by the server 

Key generation by the client 
The block diagram describing the algorithms for key generation at the client side is shown below, Figure 

9. 

 
Figure 9: Diagram showing the algorithm for TAPKI key generation by the client. 
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• The first step is to retrieve the public key Pui,j1 (Ti,j1, Mi,j1)  transmitted by the server.

• The second step is to extract the same message digest Ai,j1 from Ti,j1, and the password.

• The third step is to find Ii,j1 by XORing Ti,j1 and Mi,j1.

• The fourth step is to extract the stream of trits Ci,j1 with Ai,j1, and the crypto-table.

• The last step is to mask Ci,j1 with Ii,j1 to generate the private key Pri,j1.

4. RESULTS AND DISCUSSION

Each factor described in this key exchange protocol was introduced to enhance the level of randomness, 
i.e. the entropy, and mitigate brute force attacks, and frequency analysis having the objective to extract the
keys.  In this section, we are quantifying the effect of each factor of TAPKI, and summarizing it in table 1
shown below.
a. Initial step: The generation of a table with 256x256 random trits during personalization contains an

extremely large level of entropy:
E A= Log2(365536) ≈ 10,3868 

The entropy due to the ternary logic is 1.5 higher. 
b. Basic scheme: In this scheme, only the first16 random bits of the message digest are used to find an

address within the crypto-table, and generate the private key. So, the number of possible configurations
has low entropy:

EB1= Log2(216) = 16 
The private key are 256 bits long, the number of possible keys is: 

EB2= Log2(2256) = 256 
c. Hashing: To feed the hash function, random numbers of 512-bits need to be generated, as well as 512-

bit passwords:
EC1= Log2(21024) = 1024

Message digests of 512 bits are generated, with entropy EC2= Log2(2512) = 512, however the collision is
high when only the first 16 bits are used to extract the private keys.

d. Masking: The masking operation eliminates the ternary “0”s to leave behind a private key which has to
be a binary stream. The number of possible ways to mask 182 memory cells out of 512 leads to the
entropy:

ED1 = 258.
In the implementation of the TAPKI scheme, we masked an arbitrary number of cells to leave behind a
final private key of 256 bits, creating an additional entropy:

ED2 = 249. 
e. Multiple addresses: The first advantage of the protocol using 32 addresses in the crypto-table from the

512-bit message digest is to exploit the entire message digest, rather than the first 16 bits. This protocol
reduces the collision problem highlighted above in section C. The number of ways to find randomly 32
addresses create the entropy:   EE1 = 512.

To exploit the trits located at each of the 32 addresses, and to modify the way of extracting the private
keys can enhance entropy. A protocol based on the reading of 8 trits read at each of 32 addresses, can
increase entropy by

f. EE2 = 288.
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TABLE 1. ENTROPY CALCUATION 

 
 

A server-to-client TAPKI prototype was designed to evaluate the protocol, and compare it to 
other key exchange methods in use for PKI: RSA (Rivest–Shamir–Adleman), and ECC (Elliptical 
curve cryptography). The ternary random numbers needed for the crypto-tables, 64K trits, were 
generated and downloaded into the memory of each client device.  

The example of server-to-terminal prototype shown below, use the private key generated by the 
TAPKI, and AES-256, to encrypt and securely transmit 2.5Mbyte Microsoft word files “inf633” 
between the server and the terminals. All benchmarking results were run on a MacBook Pro 3.1 
GHz Intel® Core TM i7. 
 

 

 
Figure 10 Example of server-to-terminal prototype 
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The TAPKI key exchange with hashing function, multi-factor authentication, and multi-
addressing protocol takes 809 CPU (Central Processing Unit) clock cycles for 256-bit keys. Based 
on the experimental verification done in our computing environment, it is significantly less than the 
equivalent figures for both ECC (about 96,000 CPU clock cycles for ℱ2256) and RSA (494,000 
CPU clock cycles for 3,072-bit keys) key exchange schemes for similar key strength.  

5. CONCLUSION 
 
 At every step, the use of ternary states at the client/server side strengthens the TAPKI scheme, 
while the interested parties can communicate with legacy binary cryptography. Our implementation 
was an iterative process aimed at the prevention of possible attacks, and the enhancement of 
entropy. A quasi-infinite number of public keys allows the implementation of a one-time public key 
protocol. The hash function with multi-factor authentication, which is a mainstream cryptographic 
method, is aimed at creating a barrier between the public key, and creating the ability to hide the 
locations of relevance in the cryptographic tables.  
 The obligation to know where the ternary states are located in the cryptographic table prevents 
a third party from randomly finding a public key that will be able to generate a private key, to query 
the client. The use of multiple addresses and the reading of the ternary content of the cryptographic 
tables create a quasi-infinite number of possible private keys per public key.  
 This work is part of a wider project that we are conducting that includes the development of 
heterogeneous binary/ternary units, native ternary coding, ternary PUFs, ternary random number 
generators, and multi-factor authentication with ternary keys.  Of particular importance is 
determining how to transition the single device PUF success that has been demonstrated into a 
packaged chip.  The packaged chip version must be extensively tested for reliability and robustness.  
Once the hardware has been advanced and validated, integration into the TAPKI protocol becomes 
the next research step that will be addressed for final development.  Finally, we are concurrently 
developing how the TAPKI code can be written for the ternary computing unit. 
 The TAPKI key exchange protocol does not use arithmetic instructions, and therefore does not 
consume significant computing power. This protocol is based on shift registers, and Boolean logic, 
which is relatively strait forward to transfer to a native ternary computing environment. 
 Another area of research is related to polymorphic cryptography. In the implementation that is 
described in this paper the message digest is pointing toward multiple addresses within the 
cryptographic table with the objective of generating a single private key. This protocol can be 
changed to generate multiple private keys for polymorphic cryptography. Lastly, we are also 
studying ways to use the polymorphic nature of TAPKI to make the hardware used by the client 
distinct, and constantly changing over-time. 
 In conclusion, ternary computing is creating an additional degree of freedom that can be 
extremely valuable to strengthen cybersecurity. We are not advocating the use of generic ternary 
computers however, in favor of a heterogeneous ternary/binary architecture. In this environment, 
we are considering the TAPKI as extremely promising.  
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 
 
AES   Advanced Encryption Systems  
APG   Addressable arrays of Physical unclonable function Generators 
BCH   Bose, Chaudhuri, and Hocquenghem error correction 
CPU   Central Processing Unit 
ECC   Elliptic Curve Cryptography 
FPGA   Field-Programmable Gate Array 
HW   Hardware 
PKI   Public Key Infrastructure 
PUFs   Physical Unclonable Functions 
PW   Password 
QKD   Quantum Key Distribution 
ReRAM  Resistive Random-Access Memory 
RISC   Reduced Instruction Set Computer 
RSA   Rivest–Shamir–Adleman encryption 
SHA   Standard Hash Algorithm 
SW   Software 
TAPKI   Ternary Addressable Public Key Infrastructure 
T-TRN   Ternary True Random Numbers 
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