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14. ABSTRACT

The aim of the project was to develop and validate Dengue virus (DENV) VLP based vaccines for the elicitation of broadly reactive immune
responses. This approach built on expertise and tools already developed by the members of the University of Pittsburgh’s Center for Vaceine
Research for Emerging Diseases and Biodefense. Synthetic genes were generated by GeneArt and cloned into the Center's expression plasmid.
Gene cassettes were generated for all 4 subtypes of dengue virus. Expression of these genes was verified by direct transfection of 2937 cells. Cell
lysates and supernatants were harvested and SDS-PAGE performed followed by immunoblotiing. While vaccines were effective at eliciting high
titer 1gG to homologous virus, virus-like particles for dengue virus were more efficient for eliciting neutralizing antibodies. A tetravalent VLP

vaccine was efficient at eliciting antibodies against all 4 subtypes of dengue virus, Data obtained from these mouse models can be used as the basis
for future non-human primate and human vaccine and challenge studies.

15. SUBJECT TERMS
dengue virus, virus-like particles, neutralizing antibodies, cell-mediated immunity, vaccine, baculovirus, DNA vaccine
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This project prog . ‘ruct and compare the immune responses generated with several

dengue VLP vaccine strategies: (1) a mixture of four VLPs, each with a primary envelope
sequence; (2) a mixture of four VLPs, each with a serotype consensus envelope sequence; and
(8) a chimeric VLP with all four envelope sequences on a single particle (primary or consensus
envelope sequences). For each VLP construct strategy, two different delivery systems were
employed: an in vivo “genetic VLP” DNA/particle prime-boost vaccine delivery system and an in
vitro baculovirus-expressed “purified VLP” vaccine delivery system.

The approved Statement of Work is as follows:

STATEMENT OF WORK: | = o o ot of the |
C o " ijonal, techi® 1d

!



non-hum

1y - “n¢ ot
Vi ' o “1st DE

T e : oo DNA
Y . - . S

from DENV. """ o™t con 1in Year 1 us

mammalian c¢... . .._ __ " in VLP secr o itrifugation
p. y will be primed ...... DNA pic...iv «..~. --sing each vaccine intradermally
by gene gun and the the same purified VLPs intranasally. Serum and
broncheoalveolar lavage (BAL) will be assayed for antibody responses and spleens and
lymph nodes (LN) for cellular r ;. Mice will be vaccinated with a single vaccine

‘1g VLPs repres g a single serotype or all four vaccines representing each
. Immune resp i elicited in mice vaccinated with a single vaccine will be
compared to the tetravalent VLP vaccination. Anti-DENV antibodies will be assayed for
specificity to DENV proteins by ELISA, the affinity to DENV protein by surface plasmon
resonance (SPR), and the ability to inhibit DENV infection (neutralization). Cellular

r., . lyed against C, prM/M, and E proteins from cells collected in the
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centrifi _ 2 rpm for 10 min to separate the ¢ - rre transferred to new vials
and frozen at -20°C.

A quantitative ELISA was perforr "~ s anti-Dlll specific IgG in serum of vaccinated

mice. Individual wells of a 96 microtiter plate were coated overnight at 4°C with dengue DIII
proteins produced from transfec... ZZZ7 __._ and then blocked (25°C for 2 hr) with PBS
supplemented with Tween-20 (0.05%) and nonfat dry milk (5%). Each serum sample was
serially diluted and incubated (25°C for 2 hr). Foliowing serial washes with PBS Tween-20
(0.05%), samples were incubated (25°C for 1 hr) with HRP conjugated goat anti-mouse IgG
(1:5000) or one of four IgG subclasses (IgGy, IgG '~" , or IgGs) (Southern Biotechnology,
Birmingham, AL) diluted in PBS Tw "7 (0.05%) and nonfat dry milk (5%). Unbound antibody

was removed and after additional v  samp 1 with TMB substrate, and the

colorim ~° ° 18 measured as the optical density at 405 nm using a plate reader (Biotek

P . ki, VT USA). The O.D. v hed naive sera was

subtr =~~~ nthe OD val o "~ ra from the vo~~*~*~1 mice. Results \ 'i
‘ e o in (SEM).
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No manuscripts were submitted that are related to the Statement of Work.

Published manuscripts related to establishing expression systems funded by this work
include:
- Dunn MD, Rossi SL, Carter DM, Vogt MR, Mehlhop E, Diamond MS, Ross TM.
Enhancement of Anti-DIll Antibodies by the C3d Derivative P28 Results in Lower Viral
Titers and Augments Protection in Mice. 2010. Virology J. 7:95-106.
- Tang X-C, Lu H-R, Ross TM. Hemagglutinin Displayed Baculovirus Protects Against
Highly Pathogenic Influenza. 2010. Vaccine. 28:6821-6831.
- Tang X-C, Lu H-R, Ross TM. Baculovirus-produced Influenza Virus-like Particles in

Man S T 7 T " ""e from Lethal Influenza Challenge. 2011. Viral Immunol.
24:1-9.
Two book chapters were derivedbas =~ = =~ Dengue and West Nile virus projects
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APPENDIX 1

Enhancement of anti-DIll antibodies by the C3d
derivative P28 results in lower viral titiers and
augments protection in mice

2010. Virology J. 7:95-106

Dunn, MD, Rossi, SL, Carter, DM, Vogt, MR,
Mehlhop, E, Diamond, MS, Ross, TM
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Enhancement of anti-DIll antibodies by the C3d
derivative P28 results in lower viral titers and
augments protection in mice

" Abstract

Introduction popu
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Materials and methods
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Construction and expression of DNA vaccine plasmids
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Dunn et of. Virology Journof 2010, 7:95
http//www.viralogyj.com/content/7/1/95
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Figure 1 Schematic diagram of constructs and expression of vaccine plasmids. A. A diagram of the WNV genome 15 shown in the center, and
the segments of the genome used in the vaccine constructs are shown above (Dill-modified) and belew (prM/E-modified). The construct expressing
prM/E was previously described [26]. The Olif region of the E gene {amino acids 586-705) was cloned downstream of the tpA leader sequence, and in
some cases, P28 was also cloned in frame and directly after the 3 end of the DI gene. An artificial BamHi site and stop codon was engineered at po-
siton 705 in the E gene to create the truncated Ecto E gene, and P2B was cloned into tie Ecto E construct using the BamHl site to <reate the Ecto E-
P28 construct. B. Supernatants from 93T cells transiently transfected with plasmid DNA were assessed by SDS-PAGE and Western blot. The mem-
brane was probed by with the Oill-specific monocional antibody, 7H2. Lane 1: DIN-DNA; Lane 2: CI-P28-ONA; Lare 3: pri/ECto E-DNA; Lane 4; privi/
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unbound virus-antibody solution, rinsed an additional
time with PBS, and then covered with the CMC overlay.
After 48 hours, monolayers were fixed with a 50:50 v/v
methanol and acetone solution. WNV foci were detected
by immunohistochemistry as described above. Titer was
determined as the dilution in which there was 50%
(FNRT,,) or 80% (FRNT,) or greater reduction in the
number of WNV foci by immunohistochemical staining.

Resuits

Construction of WNV Vaccine Plasmids

DNA plasmids were constructed that contained either
the complete E gene (in context with the precursor viral
gene prM "prM/E") or portions of the E gene (ectodomain
(Ecto) or domain IIT (DII1)) (Fig 1A). A second set of plas-
mids was generated with these same gene sequences con-
jugated to two copies of the molecular adjuvant P28 to
enhance antibody responses to the conjugated antigen
(Fig. 1A). All of these gene cassettes were cloned directly
downstream of a cytomegalovirus promoter to drive effi-
cient transcription. Each plasmid efficiently expressed
the E gene insert in transiently transfected 293T cells as
determined by Western blot of clarified cell supernatant
with a WNV-specific anti-E MAbs (Fig 1B). DNA plas-
mids expressing DIII enly produced a protein ~10-20 kD
in size. The addition of P28 resulted in an expressed pro-
tein of ~30 kD (Fig 1B; lanes 1 and 2). Ecto E (~65 kD)
and Ecto E-P28 (~70 kD} were efficiently secreted into
the supernatants of transiently transfected cells (Fig 1B;
lanes 3 and 4). In addition, a 65 kD protein representing E
was detected in supernatants from cells transiently trans-
fected with DNA expressing the prM/E gene cassette,
which produces subviral particles (SVPs) (Fig 1B; lane 5).
As expected, mock-transfected or vector-only transfected
cell supernatants showed no reactivity with WNV anti-E
MAbs,

The molecular adjuvant P28 enhances the anti-WNV
antibody response

Mice were vaccinated with the panel of DNA vaccines via
one of two routes: gene gun (GG} or intramuscular (IM)
at weeks 0, 3, and 6. On week 8, serum samples were col-
lected and the anti-WNV DIIIl antibody levels were tested
by ELISA from individual clarified sera samples (Fig. 2).
C57BL/6 mice immunized with all of the DNA plasmids
via the gene gun route developed high titers of anti-WNV
DIII antibodies. In contrast, mice vaccinated by an intra-
muscular route with DIII-DNA had significantly lower
total IgG titers that were significantly enhanced by conju-
gation of P28 (Fig. 2A). The enhancement effect was
observed following gene gun administration of plasmids
only at lower doses of vaccine (Fig 2B). Mice vaccinated
IM with Ecto E, Ecto E-P28 or prM/E developed similar
titers (Fig 2A).
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Flgure 2 Vaccine elicited anti-DIll antibodies. Total lgG titers were
measured by ELISA on WNV Dill-coated plates from mice vaccinated ID
or IM with DNA plasmids encoding sections of the WNV E gene, with
or without molecular adjutant P28 an week 8. Each dot represents an
individual mouse. Undetectable antibody titers were arbitrarily as-
signed a titer of 1, Error bars denote the standard error within the sam-
ples with a reasurable titer. Representative data from 1 of 2
experiments shown, A 2-way unmatched ANOVA with a Bonferroni
post-test was used to determine the significance of the data between
groups, which is denoted by asterisks; * P < 0.05, ** P <001, *** P <
0.001.

To characterize further the immune response elicited
by these vaccines, the IgG subtypes of the elicited anti-
DI antibodies were determined (Table 1). Gene gun
DNA vaccination elicited primarily a T-helper (Th)-2
{characterized by [gGl isotype), whereas DNA plasmids
administered intramuscularly elicited more of a Th-1
response (characterized by 1gG?2 isotype}). C57BL/6 mice
immunized by gene gun with DIII- or DII-P28-DNA
elicited predominately 1gG, and 1gG,,. Similar antibody
isotypes were elicited with Ecto E and Ecto E-P28
expressing plasmids. Interestingly, the prM/E plasmid
elicited a broader IgG isotype profile via both [D and IM

18
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Figure 4 Weight loss curves of WNV-infected vaccinated mice.
The weights of mice vaccinated by the GG (A) and IM (B} routes and
challenged with 102 FFU of WNV waere recorded daily, Dead and mori-
bund mice were included in the weight loss curves on the day of
death, but not after. The daify weight of each mouse was compared to
her weight the day of challenge, and data are shown as the average
percentage of inftial weight for each cohorr. The color scheme is iden-
tical for both panels. Error bars represent the standard error for all sam-
plas available at that time potnt.

weight, regardless of the vaccination route. In general,
mice vaccinated by gene gun had higher rates of survival
and less weight loss compared to mice vaccinated intra-
muscularly. Eighty percent of mice vaccinated 1D with
DIII-DNA survived challenge with little weight loss (Fig.
3A and 4) whereas, no mice vaccinated IM with DIII-
DNA survived challenge (Fig. 3B, p < 0.004). All of these
mice lost weight prior to succumbing to infection (Fig.
4C). Conjugation of P28 to DIII enhanced the survival
rate to 60% when the DNA was administered IM (Fig. 3B,
p < 0.046). Interestingly, the disparity in survival between
ID and IM vaccination routes was also apparent in mice
vaccinated with Ecto E DNA (Fig. 3). Eighty percent of
mice vaccinated ID or IM with Ecto E-DNA survived
challenge, and conjugation of P28 to Ectc E increased the
survival rate (100%) of [D-vaccinated animals, but slightly
decreased rate in IM-vaccinated mice (60%, Fig 3).
Although these survival results were not statistically dif-

Page 7 of 13

ferent between these groups, survival did correlated with
weight loss, as mice that lost more weight had the highest
morbidity and mortality (Fig. 4).

To determine if protection against WNV challenge pro-
spectively correlated with a reduction in viremia, the sera
at day 2 post-infection in each vaccine group was ana-
lyzed for infectious virus by a focus forming assay. Vacci-
nated C57BL/6 mice that survived infection (Fig. 5) had
viremia that was at or below the [imit of detection at day 2
post-challenge. With the exception of one mouse vacci-
nated with the Ecto E vaccine, all mice that died had a
viremia at day 3 of greater than 4 x 102 FFU/ml (Fig 5).

Neutralization titers

Sera from mice immunized with the DNA vaccines were
assayed for the ability to neutralize WNV infection in cell
culture (Table 2). Serum samples collected at week 8 and
again at 1 month post challenge (week [4 of study) were
divided into two groups: (I) mice that survived subse-
quent lethal challenge and (2) mice that did not survive
challenge (obtained from terminally moribund mice
immediately prior to euthanasia). Mice vaccinated with
any of the DNA vaccines by gene gun that survived chal-
lenge had high neutralizing titers at eight weeks (1/80-1/
320; FRNTy), whereas those that died from challenge
had lower titers <1/20 (Table 2}. In contrast to gene gun
vaccination, only mice vaccinated with prM-E DNA
intramuscularly had high neutralizing titers, which again
correlated with survival. Mice vaccinated via gene gun
with DNA plasmids expressing DIII, Ecto E, or these
immunogens conjugated to P28 had titers <1/20
(FRNTy,) did not survive infection. Similar results were
observed using a FRNT,,, albeit the titers were higher
than FRNTy,. Regardless of the route of vaccination, mice
that survived challenge exhibited an immunological
boost by 14 weeks since neutralizing titers rose following
infection (FRNT,; 1/320-1/1280).

Passive sera transfer protects mice from virus infection

Although several mice immunized with DIHI plasmids
survived infection, it remained unclear mechanistically
whether this was due to antibodies or possibly, memory
CD4+ and CD8* T cell responses To determine if anti-
DIl antibodies afone could afford protection against
WNYV infection, pooled antiserum from each gene gun
vaccinated group was transferred intraperitoneally into
naive 5 week-old C57BL/6 mice, which were then chal-
lenged with 102 PFU of WNV (Fig. 6). Fifty to seventy
percent of mice administered sera from mice vaccinated
with DII, Ecto E or Ecto E-P28 survived challenge 21
days post-infection. Sera from mice vaccinated with DIII-
P28 or prM-E showed greater (80-90%) survival com-
pared to DIII alone, although this did not attain statistical
significance. As expected, nearly all mice {10% survival))
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Figure 5 Viremia of protected and unprotected mice following WNV challenge Sera taken from the blood of three mice from each group 2 days
after infection were titrated on Vero cells to determine levels of virenia, Each paint represents the titer from one mouse; black and red dots denote
animals thar survived and died, respectively. The dashed line represents the limit of detection (LOD) for this assay, which was 4 x 10ZFFU/ml of serum.
Mice with a viremia less than the LOD were arbitrarily shown as dots at the bottom of the graph. J

administered naive sera succumbed to virulent WNV
infection.

Discussion
Although it has been a decade since the emergence of

WNV in North America, there remains no effective,
licensed vaccine to combat WNV induced disease in
humans. Although candidate vaccines have not advanced
beyond phase 1 and il clinical trials for humans (19,28},
there are currently approved inactivated and DNA vac-
cines licensed for use in horses and geese. Since neutral-
izing antibodies may serve as a primary protective
function against challenge [5], recent vaccine strategies
have focused on using the ectodomain of E or different
domains within E to elicit neutralizing anti-WNV anti-
bodies [23,24,26,29-33]. Recent attention has been
focused on DIII as a potential immunogen because struc-

tural and functional studies suggest that many protective
antibodies against WNYV recognize this highly conserved
epitopes within this region. Some DIII-specific neutraliz-
ing antibodies are particularly potent in blocking viral
fusion and escape from the endosome [34,35].

In this study, a series of DNA-based vaccines expressing
the full length E, Ecto E or the DIII domain of E were
fused to the molecular adjuvant P28 to enhance antibody
titers. The addition of P28 to DIII or Ecto E increased the
anti-DIII IgG antibody titer in C57BL/6 mice. However, a
high anti-DIII antibody titer was not sufficient to com-
pletely protect against WNYV infection. Mice vaccinated
with nearly alt gene gun delivered vaccines elicited similar
high-titer anti-DIII antibodies, however, only the prM/E
and Ecto E-P28 vaccinated mice were completely pro-
tected from lethal challenge.
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ABSTRACT

Baculovirus (BV) replicaring in insect cells can express a foreign gene product as part of its genome. The
influenza hemagglutinin {HA} can be expressed from BV and displayed on the surface of baculovirus
(HA-DBV). In this study we first generated six recombinant baculoviruses that expressed chimeric HAs
with segments of the BV glycoprotein (gp64). The signal peptide (SP) and cytoplasmic tail (CT) domains of
gp64 can enhance the display of HA from A/PR8/34 on BV surface, while the transmembrane (TM)domain
of gp64 impairs HA display. Different doses of either live or 3-propiotactone (BPL)-inactivated HA-DBV
were administered to BALB/c mice. Live HA-D8V elicited higher hemagglutination-inhibition (HAN titers
than BPL-inactivated HA-DBV, and provided stertilizing protection. A secand generation recombinant BV
simultaneousty displaying four HAs derived from four subclades of HSNI influenza viruses was con-
structed. This tetravalent H5N1 HA-DBV vaccine elicited HAI titers against all four homotogous H5N1
viruses, significantly decreasing viral tungtiters of challenged mice and providing 100% protection against
lethal doses of homologous H5N1 viruses. Moreover, mice vaccinated with HA-DBV had high levels of
IFN~y-secreting and HA-specific CD8+ T cells. Taken together, this study demonstrares that HA-DBV can
stimulate strang humaral, as wetl as cetlular immune responses, and is an effective vaccine candidate for

influenza.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Each year, seasonal influenza causes over 300,000 hospitaliza-
tions and 36,000 deaths in the US alone [1]. The emergence of the
novel HIN1 influenza virus in 2009 demonstrated how guickly a
new influenza pandemic can sweep across the world, The spread of
highly pathogenic H5N1 viruses in birds and coincident infections
in humans have raised the concerns that HSN1 viruses may cause
a new pandemic in humans. Vaccination is an effective method
to prevent influenza infection. There are two influenza vaccine
approaches licensed in the US; the inactivated, split vaccine and the
live-attenuated virus vaccine. Inactivated vaccines can efficiently
induce humoral immune responses but generally only poor cellufar
immune responses.

Abbreviations: ACMNPV, Auragrapha califarnica multiple nucleopolyhedrovinus;
BEVS. baculovirus expression vector system; BPL, B-propiolactone: CT. cyfoplasmic
tail; CTL, cytotaxic T lymphocytes; DBV, displayed baculovirus; HA, hemagglutinin
or hemagglutination assay; HAI hemagglutination inhibition; IFU, infectious unir;
PFU, plaque form unit; SP. signal peptide: T™, transmembrane; VLP, virus-like par-
ticle.

* Corresponding author. 9047 Biomedical Science Tower 3. 3501 Fifth Avenue.
Pittsburgh, PA 15261, USA Tel.: +1 412 6438 B666; fax: +1 412 624 4440,
E-mail address: tmr1 5@pitt.edu {T.M. Ross),

0264-410%/$ - see front marter © 2010 Elsevier Ltd. All rights reserved.
doi: 10.1016fj.vaccine.2010.08.040
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Baculoviruses are a family of large rod-shaped enveloped
viruses with a large circular double-stranded DNA genome (80-
200 kb). Baculoviruses infect some insects, but not mammals f2].
Autographa californica multiple nucleopolyhedrovirus (ACMNFV)
is the most well studied baculovirus and most extensively used
for protein expression because the polyhedron (PH) and p10 pro-
moters are efficient promoters {3]. Compared to other protein
expression approaches, the baculovirus expression vector system
(BEVS) produces abundant protein yields with appropriate eukary-
otic glycosylation and other modifications, Recently, this system
has also been used for virus-like particle (VLP) production for
vaccines against HIV, HPV and influenza [4-6]. However, the BV-
derived VLPs are always accompanied with BV contamination.
Therefore, separating VLPs from contaminating BY is one of the
obstacles that need to be overcome.

Due to its low cytotoxicity and absence of pre-existing antibod-
ies {7.8], AcCMNPV has emerged as a potent vaccine vector [9-13].
Foreign immunogens or peptides can be displayed on the enve-
lope of AcCMNPV by fusion with the baculovirus major envelope
protein gp64 [14.15]. Based on the baculovirus display system,
some efficient vaccines have been studied not only for viral dis-
eases, but also for parasitic disease, such as, classical swine fever
virus [16], influenza virus [12,17-19], avian reovirus |11], bovine
herpesvirus [20], Plasmodium berghei [13,14], and Plasmodium fal-
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conjugated to alkaline phosphatase. Following extensive washing,
cytokinefantibody complexes were incubated at room temperature
with BCIP/NBT chromagen until spots appeared. The plates were
rinsed with dH;0 and air-dried at 25 *C. Spots were counted by an
ImmunoSpot ELISPOT reader (Celtular Technology Ltd., Cleveland,
OH, USA).

2.13. Fow cytometry

In order to detect influenza-specific CD8* T cells, MHC class
I pentamer staining was employed. The CDB* T cell responses
to NP,47 are dominant followed by HAs33 responses in influenza
virus infected BALB/c mice. Lung lymphocytes were isolated from
infected mice at day 6 and 9 post-challenge as previously described
[29]. The cells were washed with FACS buffer (PBS, 1% FBS, 0.1%
sodium azide) and then blocked with anti-CD16/CD32 mouse Fc
receptor block (BD Biosciences. San Jose, CA, USA), followed by
staining with a murine MHC-! encoded ailele Kd-specific pentamer
for the HAg33 epitope or NP47 epitope conjugated to phycoerythrin
(PE). Lymphocytes were subsequently stained with anti-CD8 anti-
bodies conjugated to Pacific Blue, anti-CD3 antibodies conjugated
to PerCP and anti-CD19 antibodies conjugated with APC-Cy7 (BD
Biosciences. San Jose, CA, USA). The cells are then incubated with a
viability dye (Molecular Probes, Invitrogen, Eugene, OR, USA). Once
the surface staining was complete the cells were washed with FACS
buffer, then fixed in 1% formalin/PBS and the cetls were acquired
using a LSRIl flow cytometer (BD Biosciences, San jose, CA, USA).

3. Results
3.1. Construction of recombinant baculoviruses

In order to investigate the gp64 components that may influence
incorporation of HA on to baculovirus, six novel chimeric genes
were constructed. The coding sequences for the signal peptide,
transmembrane and cytoplasmic tail domains of HA were replaced
with those of gp64 (Fig. 1B): Bac-HA, expressing full length HA; Bac-
spHA, expressing ectodomain of HA with SP derived from gp64;
Bac-spHAct, expressing ectodomain of HA with SP and CT derived
from gp64; Bac-HAct, expressing HA with CT derived from gp64;
Bac-HAtmct, expressing ectodomain of HA with TM and CT derived
from gp64; Bac-spHAtmct, expressing ectodomain of HA with 5P,
TM and CT derived from gp64, All constructs were derived from the
mouse adapted influenza virus A/PR/8/34 {H1N1). The hypothesis
was that the 5P of the gp64 would facilitate the translocation of the
chimeric HA to the insectcell plasma membrane and the TM and CT
domains of gp64 will stabilize the chimeric HA incorporated into
virus envelope.

3.2. Confirmation of HA expression and incorporation into
baculovirus

To determine whether the HA expressed by BV is properly
translocated to the insect cell surface, BV infected and uninfected
insect cells were incubated with tRBCs fot agglutination. Approx-
imately 80% RBCs were absorbed on the insect cells infected with
baculoviruses containing HA genes. In contrast, no RBC abserption
was observed for the uninfected insect cells or cells infected with
baculovirus without HA gene (supplemental Figure 1). Therefore,
the HA proteins expressed in insect cells were translocated to the
cetl surface, were properly folded maintaining their hemagglutina-
tion activity.

To canfirm the expression of each chimeric HA, SR cells were
infected with these recombipant baculoviruses at a MOl ~1.0, and
harvested ar 4 days post-infection and the expressed HAs were
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Fig 3. Western-blor assay of HA-displayed baculovinus. (A} Supematants from
infected 519 celis probed with HA and vp39 ancibodies. (B) Pelleted rBV by
ultracentrifugation probed with HA and vp39 anribodies. (C) Supernatants after
ultracentrifugarion of rBY probed with HA antibody.

quantified by scanning densitometry (Fig. 3A). Equivalent concen-
trations of recombinant baculoviruses were loaded in each weli and
the amount of incorporated HA was normalized to vp39 (the major
baculovirus capsid protein). HA proteins were expressed at similar
levels by all the six constructs (Fig 3A).

To confirm that each HA was incorporated on the envelope of
baculoviruses, supernatants from infected 59 cells were used to
perform hemagglutination assay. All recombinant baculovirus con-
taining HA gene bound tRBCs, but baculoviruses without an HA
gene did not agglutinate tRBCs. Furthermore, at the same titer of
baculovirus (5x 107 ifu/ml), Bac-spHAct had the highest HA titer
{1:64)while Bac-spHAtmct and Bac-HAtmct had the lowest HA titer
{1:2), indicating that the different domains of gp64 (5P, TM and
CT) affected the efficiency of HA incorporation into baculovirus.,
In order to verify whether alt expressed HAs are incorporated
into baculovirus, HA-DBVs from infected Sf9 cells were pelleted
by ultracentrifugation and the supernatants and pelleted fractions
were analyzed. Four DBV pellets from cells infected with Bac-HA,
Bac-spHA, Bac-spHAct, and Bac-HAct incorporated similar amounts
of each chimeric HA, while two DBV pellets (Bac-HAtmct and Bac-
spHAtmct) incorporated about 50% less HAs (Fig. 3B). Supernatants
from Bac-spHAtmct and Bac-HAtmct had some unbound HAs while
the other four constructs did not have detectible HAs after ultra-
centrifugation (Fig. 3C). Therefore, Bac-spHAct was chosen as the
template for further vaccine studies.

3.3. HA-DBVs elicit hemagglutination-inhibition activity

Mice (BALB/c, n=15/group) were vaccinated with either 1} live
HA-DBV (Bac-spHAct) with the HA derived from the A/PR/8/34,
2} the same BV inactivated with BPL, 3} wt BV, 4} purified PR8
VLPs produced in mammalian cells or 5) mock vaccinated with
PBS. Serurn samples were evaluated for the ability to inhibit PR8
influenza virus induced hemagglutination of tRBCs, All Bac-spHAct
vaccinated mice had detectable HAI titer against PR8 vitus from
serum collected at week 2 and 5 (Fig. 4} Two weeks after the
first vaccination, the average HAI titers for live Bac-spHAct groups
(1x 108, 2x 107, and 4 x 10° ifufmouse) were between 118 and
373, while the average HAI titers for BPL-inactivated Bac-spHACt
groups (1 x 108, 2 x 107, and 4 x 108 ifu/mouse, same doses but
inactivated) were between 38 and 56. Following the second vac-
cination, HAI titers increased from the first dase (~10 fold) in
mice vaccinated with live Bac-spHAct vaccine, while the HAI titers
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Fig 8. Protection of mice from lethal H3N1 viruses' challenge. At week 3 after the final immunization, immunized mice (n = 5/group) were intranasatly infected with a lethal
dose of VN{D4, IN/05, WS/05 viruses, Mice were monitored daily for 13 days. (A) Body weight changes after challenge. (B) Percent survival after challenge.
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Fig 9, Virus titers in lungs at day 3 posr-challenge, Mice (n = 5)/group) were immu-
nized intramuscularly with Bac-HA2.2, Bac-4HA. wr BV. Ar week 3 after the 2nd
immunization, immunized mice were intranasally infected with a lerhal dose of
VIN/O4, INJOS, WS[05, Mice were sacrificed on day 3 post-challenge and lungs were
collected for plaque assay. * p<0.05, ** p <0.01

VN/04, INfO5 or WS/05 influenza viruses, white Bac-HA2.2 can
induce partial protective immune responses against heterologous
virus (VN/04, INJO5 ).

3.8. Cell-mediated immunity elicited by HA-DBY

We determined the magnitude of T-cell responses induced by
HA-DBV using [IFNy-ELISPOT and flow cytometry. Splenocytes were
harvested at 6 and 9days postchallenge and stimulated in vitro with
H2d-restricted CD8" T cell specific peptide HAs33 [29]. As expected,
after HA peptide stimulation, wt BV vaccinated mice had T cell
responses similar to the negative controls {unstimulated or stimu-
lated with irretevant peptide)(Fig. 10). In contrast, mice vaccinated
with Bac-HA2.2 or Bac-4HA vaccines had significant higher [FNvy
responses (300-460 spots/1x10° cells) following HA peptide stim-
ulation (Fig. 10). After NP4y peptide stimulation, IFN-y responses
were detected at tow levels in all vaccinated mice on day 6 post
infection, which is to be expected since the NP epitape is not present
in the vaccine. The ELISPOT assay was performed also on day 9 post
challenge, which is the peak of the T cell response during a primary
infection. With HAg33 peptide stimulation, mice vaccinated with
Bac-HA2.2 or Bac-4HA had 400-700 spots while mice vaccinated
with wt BV had only 130 spots per 1x10° cells, this is expected
because the T cell response in HA-DBV vaccinated mice is a recalt

Table 3
Percentage of pentamer positive CO8* T cells in tung

_% 700 1 r [1Bac-Haz.2
- 800 [ Bac4HA
o
g I wev
—t m -
]
a
¥ 400 A
g
= 300 4
g
_g 200 +
F
2 0 Swinl EEEIE —L
HAs33 NP 147 HAS33 NP 147

Day @ post infection Day 9 post infeclion

Fig. 10. [FNvy-ELISPOT assays. Splenocytes were collected on day 6 and 9 post-
infection with IN/O5. Each sample was stimulated with HAs33, NP.y;, and Ova
peptides. The spot number from Crva peptide stimulation was substracted.

response which must be stronger than primary response in wt BV
vaccinated mice. With NP, 47 peptide stimulation, mice vaccinated
with Bac-HA2.2 or Bac-4HA had 150 spots while mice vaccinated
with wt BV had 400 spots per 1x10° cells. This disparity is most
likely due to the fact that wt BV vaccinated mice were not pro-
tected from infection with the influenza virus which resulted in a
robust activation of influenza specific T cell responses, whereas in
the HA-DBV vaccinated mice a large proportion of the challenge
virus was neutralized by antibodies or cleared by influenza specific
T cells, therefore resulting in a lower frequency of NP specific T cells
on day 9 post challenge.

To determine the influenza specific T cell response in lung, lung
cells were collected at day 6 and 9 post-challenge with INJO5 and
analyzed via staining with a pentamer specific for T cells recogniz-
ing the HAs33 or NP 4y epitopes [29] (supplemental Figure 2A &
B). On day 6 post-challenge, the percentage of NP-pentamer® {CD8*
T cells in all vaccinatedfinfected mice was similar to unvacci-
nated/uninfected mice and 2.6% HA-pentamer*/CD8* T cells were
detected in the lungs of mice vaccinated with Bac-HA2.2 and Bac-
4HA. As expected, there were no HA-pentamer*/CD8* T cells in wt
BV vaccinated mice (Table 3). On day 9 post-challenge, HA-DBV
vaccinated mice had 4.6-5.4% NP-pentamer*/CD8" T cells in their
fungs, whereas wt BV vaccinated mice had 15% of their jung lym-
phocytes stain positive for the NP-pentamer. This revealed same

Challenge after vaccination Day G post infection

Day 9 post infection

Bac-HAZ.2 Bac-4HA wi BV Bac-HA2.2 Bac4HA wt BY
HA pentamer*/CD3" (%) 2.6 2.6 Q.1 26.1 208 13
NP pencamer* CD8* (¥} 0.2 05 08 54 4.6 15
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After the blood samples were clotted and centrifuged, serum
samples were collected. The HAI assay was used to assess the
functional antibodies to HA able to inhibit agglutination of
erythrocytes as previously described (3).

Three days after challenge, five mice from each group
were euthanized. The lungs were harvested and were ho-
mogenized by passing them through a cell strainer (BD
Biosciences, Bedford, MA) in I mL of PBS. The homogenates
were centrifuged at 1000xg for 10 min. The lung supema-
tants were collected for plaque assay on Madin-Darby canine
kidney (MDCK) cells as previously described (3).

Resuits
Optimization of fransduction conditions

Previous studies reported that many factors affect the ef-
fictency of baculovirus transduction, including cell lines,
transduction medium, incubation time, MOI, VSVG, and
sodium butyrate (26-28). Initially, we investigated the pro-
tein expression after baculovirus transduction in several cell
lines, such as Vero, HelLa, MDCK, HEK293, and 293T, and
found that 293T is the most susceptible cell line and yields
the highest protein expression (data not shown). As previ-
ously reported, PBS had the highest transduction efficiency
as the transduction medium (26). Two hours is long enough
for baculovirus transduction into 293T cells. Therefore,
transduction was conducted in PBS for 2h followed by two
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washes with PBS or DMEM. Then, the effect of MOI was
investigated by transducing 293T cells with BV-VLP/GFP at
different MOIls. Following 72h of incubation, supernatants
were harvested and NA expression was determined by
Western blot (Fig. 2A). The intensity of each band in the
Western blot was analyzed with Image] software (http://
rsb.info.nih.gov/ij/index.htmly (29). NA expression in-
creased with higher MOI, and saturated at MOI greater than
60. Therefore, we used MOI of 60 for further investigation.

Previous studies demonstrated that VSVG can affect ba-
culovirus transduction both in vitro and i vive (30), and
sodium butyrate can erthance gene expression in baculovirus-
transduced cells (28), Therefore, the effects of VSVG and bu-
tyrate on baculovirus transduction of 293T cells were exam-
ined. At MOT of 60, 293T cells were transduced with BV-VLP/
GFP or BV-VLP/GFP/VSVG. After transduction, the cells
were cultured with or without sodium butyrate. Under the
same transduction and culture conditions, the cells trans-
duced with BY-VLP/GFP/VSVG showed a higher level of
fluorescence intensity than with BY-VLP/GFP, indicating
that these cells were more efficiently transduced (Fig. 2B and
C) (30). Furthermore, the addition of 5mM sodium butyrate
enhanced GFP expression (Fig. 2C and D). In addition, plas-
mid transfection results in a high level of GFP expression (Fig.
2E), but the cells transfected with DNA plasmid had more
dead/dying cells compared to cells transduced with baculo-
virus (Fig. 2F and G) (31).

FIG. 2. Optimization of BV transduction conditions. (A} 293T cells were transduced with different MOls of BV-VLP/GFP. NA

expression was analyzed by Western blot probed with flag-tag antibody. The intensity

of bands was analyzed with Image|

software. The first lane (MOl =20} was used as baseline. (B) 293T cells transduced with BV-VLP/GFP at MOI = 50, no sodium
butyrate. (C) 2937 cells transduced with BV-VLP/GFP/VSVG at MOI = 50, no sodium butyrate. (D and F} 293T cells transduced
with BV-VLP/GFP/V5VG at MOI =50, with 5 mM sodium butyrate. (E and G) 293T cells transfected with pVLP/GFP (1 ug DNA/
10° cells). Round and gray cells in E and G are dead/dying cells. Color images available online at www liebertonline.com/vim
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Influenza VLP production

To investigate whether the HA, NA, and M1 can be ex-
pressed simultaneously in baculovirus-transduced or plasmid-
transfected mammalian cells, 293T cells were transduced with
BV-VLP/GFP/V5VG at an MO of 60, or transfected with
pVLP/GFP. As shown in Fig. 3A, three bands corresponding to
the molecular weights of HA, NA, and M1 were detected in the
supematanis of BV-VLP/CGFP/V5VG-transduced and pVLP/
GFP-transfected cells, but not in the supernatant of wild-type
BV-transcuced cells.

HA ori viral particles or VLPs has the ability to agglutinate
red blood cells, while soluble HA cannot agglutinate RBCs,
and the hemagglutination titer can reflect the concentration
of viral particles (32). Therefore, the functional YLPs can be
examined by hemagglutination assay. The supernatants from
293T cells transduced with BV-VLP without VSVG had no
detectable HA titer (Fig. 3B). However, the addition of VSVG
in BacMam BV increased the HA titer to 1:8. The addition of
5 mM sodium butyrate to the culture medium increased the
HA titer to 1:128, which was 4 times higher than 293T cells
directly transfected with plasmid pVLP/EGFP. In addition,
following sucrose gradient purification, there was no de-
tectable baculovirus in the purified VLP products by plaque
assay, although baculovirus DNA could be detected by PCR
(data not shown).
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Analysis of the immune response

The immunogenicity of purified VLPs and BacMam ba-
culovirus were examined in BALB/c¢ mice by intramuscular
injection at week 0 and /or 3. Serum samples were collected
2wk after each vaccination (weeks 2 and 5), and evaluated
for the ability to inhibit influenza virus-induced hemagglu-
tination of tRBCs (HAIJ), which is a main indicator for the
HA-specific immune response. The seroprotection rate (de-
fined as the percentage of subjects with an HALI titer >1:40) is
a well-accepted criterion for the evaluation of influenza
vaccine efficacy. A seroprotection rate >70% is one require-
ment for an influenza vaccine, according to the EU Com-
mittee for Human Medicinal Products (CHMP) (33).

After one immunization with VLP-BV, 80% of mjce had de-
tectable HAI titers (>1:10) against PRS virus; 35% of mice had an
HALI titer >1:40. After one immunization with VLP-tsf, 35% of
mice had detectable HAI titers, while none had an HAI titer
>1:40. After one immunization with BV-VLP, 50% of mice had
detectable HAI titers, while 10% of mice had an HAI titer >1:40.
After the second vaccination, a significant rise in HAI titers of all
immumnized mice could be observed. The average HAI titers of
mice vaccinated with VLP-BV, VLP-tsf, and BV-VLP were 1:240,
1:100, and 1:112, respectively (Fig. 4). The seroprotection rates for
all three vaccines ranged between 80 and 100%, and met the
CHMP requirement for immunogenicity. Remarkably, mice
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FIG. 3. VLP production from BV transduction or plasmid transfection. (A) Western blot assay of VLF produced from BV
transduction (with BV-VLP/GFP/VSVG and sodium butyrate) and plasmid transfection. Mouse anti-PR8 HA polyclonal
antibody (1:1000), mouse anti-flag tag monoclonal antibody (1:5000; Sigma-Aidrich), and mouse anti-M1 monoclonal anti-
body {1:200; AbD Serotec, Raleigh, NC) were mixed for detecting PR8 HA, NA, and M1 in one blot. (B) Hemagglutination
activity of VLP produced by plasmid transfection (1 pg DNA/10° cells) or BV-VLP transduction (MOI == &0). Color images

available online at www liebertonline.com/vim
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FIG. 4. Hemagglutination-inhibition (HAI) titers. Mice were immunized once (1°) or twice (2°) intramuscularly with VLP
derived from BV transduction (VLP-BV), VLP derived from plasmid transfection (VLP-tsf), BV producing PR8 VLF (BV-

VLP), wild-type BV (wt BV), and PB5 at a 3-week interval

(10 mice/group). Blood samples were taken 2 wk after each

vaccination. Serum HAI antibody titers were assessed against PRB virus. Bars indicate geometric mean titer (GMT) £ SEM.

vaccinated with VLP-BV had significantly higher HALI titers
compared to mice vaccinated with VLP-tsf, after both priming
and boosting immunization. As expected, all mice vac-
cinated with wt BV and mock vaccinated had no detectable HAI
titers.

Protection from lethal viral challenge

To evaluate the protective efficacy of each vaccine, all
vaccinated mice were challenged intranasally with a lethal
dose of mouse-adapted PR8 virus. Lung viral titers were
determined at day 3 post-challenge. Mice vaccinated with wt
BV or PBS had high viral lung titers (~1x10° pfu/mL),
while the mice that recetved only one vaccination with VLP-
BV, VLP-tsf, or BV-VLP had significantly lower viral lung
titers (2x10% to 2x10° pfu/mL) (Fig. 5}. There were no sig-
nificant differences between the three different vaccines. All
mice that received two vaccinations had undetectable viral
titers (<10 pfu/mL) in their lungs.

All mice vaccinated with wt BV or PBS had signs of mor-
bidity {e.g., ruffling fur, shivering, and inactivity), and had
lost greater than 20% of their original body weight by days
8-9 post-challenge (Fig. 6). All mice vaccinated once with
VLP-BV were protected with an average of 7% weight loss
(open triangles in Fig. 6). Eighty percent of mice vaccinated
once with VLP-tsf were protected against influenza challenge,
and 60% of mice vaccinated with BV-VLP were protected,
even though some mice showed signs of sickness. However,
all mice survived without any signs of sickness or weight loss
following two vaccinations with VLP-BY, VLP-tsf, or BV-VLP.

Discussion

VLPs mirmic the overall structure of parental virus parti-
cles without packaging infectious genetic material (34). it is a

promising approach to the production of vaccines due to its
low risk and high immunogenicity (35). VLP vaccines have
been produced from yeast-, insect-, mammalian-, and plant-
based systems for a variety of viral pathogens (5). VLPs
produced from mammalian cells have several advantages,
such as ease of purification and similar post-translational
modifications and cytoplasmic trafficking processes as wild-
type viruses. However, mammalian-based production
systems are hampered by high costs and difficulties with
preduction scale-up. The use of yeast and insect expression
systems are inexpensive and relatively easy to scale-up, but
the VLP purification is always a challenge because VLPs
produced in yeast cells are usually not secreted, and VLPs
produced in insect cells are accompanied by baculovirus
particles (10,36). Baculoviruses are rod-shaped particles
roughly 70 nmx320nm in size (37,38}, which are similar in
size to influenza virions. Many methods have been devel-
oped to improve the purification of VLPs derived from ba-
culovirus/insect-cell systems, including density-gradient
ultracentrifugation, size-exclusion chromatography, and af-
finity chromatography. These methods are efficiently puri-
fying some smali, non-enveloped VLPs, such as norovirus
(38nm) and human papillomavirus (40-50nm) (5.39), but
they are not efficient for other larger VLPs, such as HIV (100
120 nm) or influenza VLPs (80-120nm} (6,40-42).

In this study, we developed a new strategy to produce
influenza VLPs in mammalian cells with baculovirus vector.
BacMam baculoviruses can be produced using a standard
method in insect cells. Gene expression in transduced cells
can last over 16 days (43). Due to its rapid and facile gene
expression in varicus mammalian cells, the BacMam system
has been used as a substitute for direct plasmid transfection
(44). Influenza VLPs can be produced by simultanecusly
expressing HA, NA, and M1 in insect/mammalian cells. To
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FIG.5. Virus titers in lungs at day 3 post-challenge. Mice were immunized once (1°) or twice (2°) intramuscularly with VLP-
BV, VLP-tsf, BV-VLF, wt BV, and PBS. At week 3 after the last immunization, the immunized mice were intranasally infected
with a lethal dose of mouse-adapted PR8 virus (10 LDsg). Lung samples from individual mice in each group {five mice per
group) were collected on day 3 post-challenge, and each sample was diluted in 1 mL PBS. The titers are presented as logp pfu

per mL (™*p < 0.01 compared with the wt BV 2° and P8BS groups).

ensure gene uptake and expression in target cells, we de-
veloped a new BacMam baculovirus carrying all information
necessary to induce influenza VLF production. The resulting
constructs, BY-VLP/ECFP and BV-VLP/EGFP/VSVG, al-
lowed for the production of influenza VLPs. Transduction
efficiency was optimized and VLP production was charac-
terized. Since baculovirus cannot replicate in mammalian
cells as it does in insect cells (11), the purification of VLPs

produced from the BacMam system is much easier than
VLPs produced from insect cells. The BacMam system is also
easy to scale up by using bioreactors such as the baculo-
virus/insect-cell expression system (44). Therefore, the Bac-
Mam system combines the advantages of both baculovirus/
insect cell expression and DNA plasmid transfection meth-
ods: it is inexpensive, rapid, and facile for experiments for
gene overexpression, and is easy to scale up and purify, Of
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FIG. 6. Protection of mice from lethal PR8 challenge. Mice were immunized once (1°) or twice (2°) intramuscularly with
VLP-BV, VLP-tsf, BV-VLP, wt BV, and PBS. At week 3 after the final immunization, the mice were intranasally infected with a
lethal dose of mouse-adapted PR8 virus (10 LDsg) (five mice per group). The mice were monitored daily for 13 d. (A) Percent
survival after challenge. (B) Body weight changes after challenge.
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Abstract
Dengue viruses cause a spectrum of diseases by the four serotypes. Dengue is the most prevalent
arthropod-borne virus affecting humans today. Due in part to population growth and uncontrolled urbanization
in tropical and subtropical countries, breeding sites for the mosquitoes that transmit dengue virus have
proliferated. In turn, successful vector control programs have been eliminated, often due to lack of
governmental funding. Dengue viruses have evolved rapidly, as they have spread worldwide, and genotypes
associated with increased virulence has spread across Asia and the Americas. This chapter will describe the

virus, clinical and epidemiological, and treatments/vaccines associated with dengue infection.

50



Overview
Dengue fever {DF}, the most prevalent arthropod-borne viral illness in humans, is caused by the dengue

virus (DENV}. The four serotypes of DENV (DENV 1-4) are transmitted to humans primarily by the Aedes aegypti
mosquitc. DENV, is a member of the Flaviviridae family and is related to the viruses that cause yellow fever and
the Japanese, St. Louis, and West Nile encephalitides [1]. Infection by DENV causes a spectrum of clinical
diseases that range from an acute debilitating, self-limited febrile illness, known as dengue fever (DF) to a life-
threatening hemorrhagic and capilfary leak syndrome of dengue hemorraghic fever/dengue shock syndrome
(DHF/DSS). DENV causes an estimated 25 to 100 miflion cases of DF and 250,000 cases of DHF per year
worldwide, with 2.5 billion people at risk for infection [2, 3]. At present, no approved antiviral treatment or

vaccine is in use, and therapy is supportive in nature.
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Epidemic DHF first appeared in the 1950s in Southeast Asia, and by 1975 it had become a leading cause of
hospitalization and death among children in many countries in that region. In the 1980s, DHF began a second
expansion into Asia, and in countries where DHF is endemic, the epidemics have become progressively larger
over the last 15 years (CDC, http://www.cdc.gov/ncidod/dvbid/dengue).

The Americas have seen the most dramatic rises in the emergence of dengue cases. The mosquito vector
for dengue was eradicated in most of the region as part of the Pan American Health Organization’s (PAHO)
yellow fever eradication campaign in the 1950s and 1960s. The Aedes aegypti eradication program was officially
discontinued in the United States and other Western Hemisphere regions, leading to re-infestation of the
mosquito vector in most countries during the 1980s and 1990s. By 1997, the geographic distribution of Aedes

agegypti was wider than its distribution before the eradication program {Figure 1). Dengue is now endemic in
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much of the Western Hemisphere (Figure 2}. Hyperendemicity, the presence of multiple circulating serotypes, is

wide-spread in most countries and epidemics caused by multiple serotypes are more frequent.

Recent Dengue in the U.S.A.

« Dengue epidemics occurred in the USA in the 1800s and the first half of the 1900s
¢ Recent indigenous transmission
o Texas:
= 1980: 23 cases, first locally acquired since 1945
= 1986: 9 cases, 1995: 7 cases, 1997: 3 cases,
1998: 1 case, 1999: 18 cases, 2005: 25 cases
o Hawaii:
= 2001-2002: 122 cases (first since 1944)

o The first indigenous transmission of dengue in the United
States since the 1940s occurred in Texas in 1980.
o Other recent clusters in the United States also occurred
in Texas, where 25 locally acquired cases occurred in
2005,
o A dengue outbreak occurred in Hawaii during 2001-2002.
In this case Aedes albopictus mosquitoes were responsible for virus transmission. in
homes.

There are four grades of DHF. For all grades the four criteria for DHF must be met.

1. In Grade 1, fever and nonspecific constitutional symptoms are present and the only
hemorrhagic manifestation is provoked, that is, a positive tourniquet test (which will soon
be described).

2. In Grade 2, in addition to the Grade [ manifestations, there is spontaneous bleeding.

Grades 3 and 4 are Dengue Shock Syndrome. Grade 3 is incipient shock with signs of

circulatory failure.

4. In Grade 4, the patient has profound shock, with undetectable pulse and blood pressure.

(8]
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Reinfestation by Aedes aeqgypli
1930s 1970s 2006

Figure 1: Reinfestation of Aedes aegypti in the Americas. Unfortunately, the success of the
eradication campaign was not sustained. Beginning in the early 1970s, it began to be disbanded,
and many countries channeled their limited resources into other areas. Consequently, Aedes
aegypti began to reinfest the countries from which it had been eradicated. Comparing the 1970
with the 2006 map, we see the mosquito reestablishing itself throughout Central America and
most of South America. As the mosquito has spread, the number and frequency of dengue
epidemics have increased, as has dengue hemorrhagic fever activity in the Americas.

Source: PAHQ, 2001

Viralogy

DENV is an enveloped virus with a single-stranded, positive-sense 10.7 kilobase RNA genome {4], which is
transiated as a single polyprotein and then cleaved into three structural proteins (C, prM/M, E) and seven nan-
structural (NS) proteins by virus- and host-encoded proteases. In primary DENV infection, virus enters target
cells after the envelope {E) protein adheres to cell surface receptors, such as DC-SIGN on dendritic cells [5]. Viral
uptake occurs by receptor-mediated endocytosis. Endosomal acidification induces a conformational change in
the E protein resulting in fusion of the viral and endosomal membranes and nucleocapsid release into the

4
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cytaplasm [6, 7]. Virus assembly occurs at the endoplasmic reticulum (ER), and virions are exocytosed via Golgi-

derived secretory vesicles [8].

Epidemiology

Following the bite of a mosquito, usually Aedes aegypti or Aedes albopictus (2], DENV can cause a range of
illnesses from mild to severe. There are four distinct serotypes of DENV. Primary infection with one DENV
serotype provides lifelong immunity to that specific serotype. However, when an individual is infected with a
different serotype of DENVY, there is an increased risk of severe dengue disease [9]. This can occur with all four

serotypes, therefore, in regions with multiple endemic serotypes, the risk of severe disease is higher.

Pathogenesis

The pathogenesis of DHF/DSS, the most severe form of DENV infection, reflects a complex interplay of the
host immune response and the viral determinants of virulence [2, 10, 11]. Epidemiological studies have
suggested an immune system linkage as there is an increased risk of DHF with secondary infection and in
children within the first year of life born to DENV-immune mothers [12-15]. From these observations, the
hypothesis of antibody-dependent immune enhancement of infection (ADE) emerged. In support of the ADE
pathogenesis concept, antibody enhancement of DENV infection in monocytes in vitro correlated with increased
risk for DHF [15, 16], and peak viremia was increased in patients with severe secondary DENV infection [17, 18].
Differences in specific genetic determinants among viral isolates [19-21] may also affect virulence as some DENV
strains fail to cause severe disease [22, 23]. Finally, a pathologic cytokine response that occurs after extensive T
cell activation may contribute to the capillary leak syndrome associated with DHF [11]. Elevated levels of
cytokines, including IFN-gamma, TNF-alpha, and IL-10, to some extent correlate with severe disease [24-28]; and
disease severity has been associated with activation of CD8' T cells and the expansion of serotype-reactive low-

affinity DENV-specific T cells that produce high levels of vasoactive cytokines [29-33].

Clinical Presentations

Dengue fever may present in many forms; as an undifferentiated febrile iliness with a maculopapular rash,
particularly in children, flu-like symptoms, or as classic Dengue with two or more symptoms, such as fever,
headache, bone or joint pain, muscular pain, rash, pain behind the eyes, petechial hemorrhaging. Often, there is
prolonged fatigue and depression. During dengue epidemics, hemorrhagic complications may also appear, such

as bleeding from the gums, nosehleeds, and bruising. Case fatalities due to DF are low, but case fatality due to
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DHF can be high. There is no specific treatment for dengue fever except for symptomatic treatment, rest, and
rehydration.

DHF is characterized by spontaneous bleeding, plasma leakage, fever, and thrombocytopenia. Four clinical
manifestations need to be observed to be classified as DHF. These include: 1) fever, 2) hemorrhagic episodes
with the presence of at least one of the following: a positive tourniquet test; petechiae, ecchymoses, or purpura;
or bleeding from mucosa, gastrointestinal tract, injection sites, or others), 3) plasma leakage due to increased
capillary permeability, and 4) thrombocytopenia (100,000 mm3 or less). Moderate to marked
thrombocytopenia with concurrent hemoconcentration is a distinctive clinical laboratory finding of DHF.
However, in order to distinguish DHF from DF, an observation of plasma leakage manifested by a rising
hematocrit value (i.e., hemoconcentration) must be observed.

The normal course of DHF lasts between 7-10 days, and with appropriate intensive maintenance of the
circulating fluid volume, mortality may be reduced to less than 1%. Only severe DF and DHF cases should be
hospitalized. Serological tests are necessary to confirm cases of dengue. However, these tests may take several
days [34, 35]. Developing countries may not have the resources to perform these expensive confirmatory assays
and therefore, many suspected cases of dengue are not fully diagnosed. In severe cases of DHF, the patient’s
condition may suddenly deteriorate after a few days of fever; the temperature will drop, followed by signs of
circulatory failure; and the patient may rapidly go into a critical state of shock (dengue shock syndrome) and die
within 12-24 hours, or quickly recover following appropriate volume replacement therapy.

Dengue shock syndrome (DSS) is the most severe form of DHF, and is characterized by the presence of all
four DHF clinical manifestations, as well as circulatory failure. All three manifestations of circulatory failure must
be present: rapid and weak pulse, narrow pulse pressure or hypotension for age of patient, and cold, clammy

skin and altered mental state.
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Alarm Signals:

+ Severe abhdominal pain

» Prolonged vomiting

« Abrupt change from fever

to hypothermia

+ Change in level of
consciousness (irritability

or somnolence)

Four Criteria for DHF:

« Fever

« Hemorrhagic manifestations

« Excessive capillary permeability
+» < 100,000/mm? platelets

o]

' Initial Warning Signals: |
. = Disappearance of fever
'« Drop in platelets
|+ Increase in hematocrit

| When Patients Develop DSS:
i « 3to 6 days after onset of
i SymMptoms
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Diagnosis

Establishing a laboratory diagnosis of dengue infection is critical for diagnosis of dengue. A major
challenge for disease surveillance and case diagnosis is that the dengue viruses produce asymptomatic infections
and a spectrum of clinical iliness ranging from a mild, nonspecific viral syndrome to fatal hemorrhagic disease.
Important risk factors for DHF include the strain and serotype of the infecting virus, as well as the age, immune
status, and genetic predisposition of the patient. The most common method to detect the virus is culture or
detection of anti-dengue antibodies by serology. Virus can be cultured in vitro or by detection of viral RNA and
specific dengue virus antigens. Countries that do not have access to sophisticated laboratory tests rely on
identification of early clinical and/or simple laboratory indicators that can provide a reliable diagnosis of dengue
prior to hospitalization. Early distinction between dengue and other febrile illnesses could help identify patients

that should be monitored for signs of DHF.
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Differential Diagnosis

Febrile illnesses such as measles, typhoid fever, leptospirosis, and severe acute respiratory syndrome (SARS)

can praoduce symptoms similar to DF [36-41]. At presentation, these illnesses may share similar clinical features,

including headache, myalgia, and rash.

The differential diagnosis of dengue includes:

o Influenza

e Measles

¢ Rubella

e Malaria

o Typhoid fever

o Leptospirosis

e Meningococcemia

o Rickettsial infections

« Bacterial sepsis and

e Other viral hemorrhagic fevers.

Treatment and long-term outcomes.

There are no specific anti-virals that can kill the virus. However supportive care and treatment can go a long
way to treat DF. Paracetamol and other anti-pyretics can be used to treat fever. Bone pain should be treated by
analgesics or pain killing tablets. During episodes of DHF/DSS, the mortality rate in the absence of

hospitalization can be as high as 50%. With proper treatment, such as intravenous fluid replacement, the

mortality rate is greatly reduced.

Vaccines and immunity

Multiple correlates of protection have been described for dengue. However, the primary correlate
appears to be long-term homotypic protection [42, 43] or short-term heterotypic protection [42, 44]. The
majority of protective antibadies are directed at the surface E glycoprotein (45, 46], however, antibodies to
the M and NS1 proteins show some protective efficacy [47]. Passively transferring antibodies from a
seroconverted animals results in decreased infection and disease following challenge [45, 47]. In addition,
maternal antibodies decrease disease in infants [15, 48]. Using in vitro neutralization assays, antibodies
directed against the E protein prevent virus infection [49]. Antibodies that block viral attachment or prevent

fusion to target cells neutralize virus infection [50, 51]. In addition to neutralization, antibodies that
8
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mediate cell-mediated cytotoxicity reduce virus infection in both complement independent [52, 53] and
complement dependent mechanisms [54]. Cellular immune responses are generally weakly protective [55].
However, these responses are critical for viral clearance [56, 57]. Innate immune responses directed against
non-structural proteins, such as NS4B (a putative IFN antagonist), appears to mediate viral escape [58).
Currently, no DENV vaccine is approved by the U.S. Food and Drug Administration. Four related, but
serclogically distinct DENV can cause disease. Non-neutralizing, cross-reactive antibodies may contribute to
DHF pathogenesis via antibody dependent enhancement, an effective vaccine must induce high-titer
neutralizing antibodies against all four strains [59, 60]; failure to do so could increase the risk of severe
disease upon natural challenge. To circumvent this problem, tetravalent live-attenuated candidate vaccines
are in varying stages of development [61-65]. In clinical trials, tetravalent serologic responses were observed
in some individuals, but many developed do not develop high titer neutralizing antibodies despite multiple
immunizations [66, 67]. Subunit based vaccines, as purified proteins or DNA plasmid, are alternative vaccine
strategies. Repeated immunization of purified recombinant DENV DIl or Dlll-encoding plasmids induced
protective antibody in mice, albeit at relatively low neutralizing titers [68-72].
Both live attenuated vaccines and non-replicating vaccines, such as inactivated virus vaccines, virus-like
particles or DNA vaccines have been developed for dengue (Table X). These vaccines elicit protective
neutralizing antibodies. These vaccines can elicit long-lasting immunity against the specific serotype of

DENV. However, they are poorly cross-reactive against infection with another subtype of DENV.

Table 1 [ A partial list of dengue vaccine candidates that are under development
Vaccine type Vaccine developer(s) Clinical testing status Refs

Live attenuated WHRAIR/GSK Biologicals Tetravalent, Phase Il 57,116

Live attenuated Mahidol University/sanofi pasteur No current testing 77

Live attenuated, chimeric NIAID, NIH Monovalent (DENV-1 — 4), Phase /1l 73,89
Live attenuated, chimeric Acambis/sanofi pasteur Tetravalent, Phase | 74,92

Live attenuated, chimeric CDC/InViragen Preclinical 93

Inactivated virus WRAIR Preclinical 97

Subunit Hawaii Biotech Begins 2007 97

DNA Navy Medical Research Center Monovalent (DENV-1), Phase | 99
GSK. GlaxoSmithKline; NIAID, National institute of Allergy and Infectious Diseases; NIH, National Institutes of Health;

WHAIR, Walter Reed Army Institute of Research
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~ Type

Sponsor

Stage of
Development

Lwe Attenuated ST

tetravalent

_ tetravalent

Mahidol Univ/Sanofi/Pasteur

_ WRAIR/GSK

. Phase [

Chimerivax (17D YF)

DENV-2 (16681, PDK53)

_ DENV-2/4d30 (all serotypes)
DENV-1

_€DC/InViragen

Agambis/Sanafi-Pasteur

_ Rbate)
Preclinical

_NIAID, NIH

_Phase I/1i

_US FDA

Phase |

'DNA

Several approaches

Various

(i.e. Domain Iil, prM/E, NS1)

~ NMRC/Univ Pittsburgh

Phase I/Preclinical

Inactivated

Several approaches

- Preclinical

WRAR

SVP/VLPs
Subunit/Recombinant

Baculovirus (E, NS1)

Replication-defective AV (E)
Yeast (C/prM/E, E-lIBsAg)

Various

7 Replivax-UTMB/Acambis
various

Prédinigal ‘
Preclinical

_ E. coli (E, E-NS1)

_Various

Preclinical

Drosopbhila cells

DNA

Hawaii Biotech

_Phasel

Univ Pittsburgh

Preclinical

Figure Legends
Figure SRa. A world map denoting the areas that had WNV human disease prior to

endly.htm
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2003. Kunjin, the lineage Ib WNV, is also shown. Image reprinted with permission
[Solomon et al., 2003]. GET COPYRIGHT PERMISSIONS
Figure SR1. The number of confirmed human cases of WN disease in the United States

in 2008.
http://www.cdc.gov/ncidod/dvbid/westnile/Mapsactivity/surv&control08Maps_PrinterFri



Figure SR2. A simplified diagram of the WNV transmission cycle. The maintenance of

WNV in nature depends upon many avian and mosquito species. Humans and other
incidental hosts (like horses) become infected when WNV-infected mosquito takes a

bloodmeal from them.

Figure SR3. Timecourse of WNV infection and antibody response in humans as
estimated from blood donations. WNV genomes are detected by commercially available
kit by TMA assay. IgM and IgG are measured by ELISA (enzyme-linked immunosorbant
assay. ID-TMA: individual donation transcription-mediated activation performed once
(1x) or 6 times (6x). ID-NAT: individual donation nucleic acid test. MP-NAT:

minipooled nucleic acid test. Figure reprinted with permission [Busch et al., 2008].
(NEED TO GET PERMISSIONS)
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OVERVIEW

Since its isolation in Uganda in 1937, West Nile virus (WNV) has been responsible for
thousands of cases of morbidity and mortality in birds, horses, and humans. Histori-
cally, epidemics were localized to Europe, Africa, the Middle East, and parts of Asia
and primarily caused a mild febrile illness in humans. However, in the late 1990s,
the virus became more virulent and spread to North America. In humans, the clinical
presentation ranges from asymptomatic (approximately 80% of infections) to enceph-
alitis/paralysis and death (less than 1% of infections). There is no FDA (Food and Drug
Administration)-licensed vaccine for human use, and the only recommended treat-
ment is supportive care. Individuals that survive infection often have a long recovery
period. This article reviews the current literature summarizing the molecutar virology,
epidemiology, clinical manifestations, pathogenesis, diagnosis, treatment, immu-
nology, and protective measures against WNV and WNV infections in humans.

VIROLOGY AND MOLECULAR BIOLOGY OF WNV

West Nile virus is a positive-stranded RNA virus in the family Flaviviridae (genus Flavi-
virus), that includes other human pathogens, such as dengue, yellow fever, and Japa-
nese encephalitis viruses."* The virion consists of an envelope surrounding an
icosahedral capsid approximately 50 nm in size. The approximately11-kilobase
genome encodes a single open reading frame, which is flanked by § and 3’ untrans-
lated regions. The polyprotein of approximately 3000 amino acids is cleaved into 10
proteins by cellular and viral proteases (Fig. 1). Three of these proteins are the struc-
tural components required for virion formation {capsid protein [C]) and assembly into
viral particles (premembrane [prM] and envelope (E] proteins). The other 7 viral
proteins are nonstructural (NS} proteins (NS1, NS24, NS2B, NS3, NS4A, NS4B, and
NSS5) and are all necessary for genome replication. NS3 contains an ATP-dependent
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Fig. 1. WNV genome. A representation of the WNV genome including the 3 structural
proteins that make up virion particle and the 7 nonstructural proteins necessary for virus
replication and immune evasion.

helicase and in conjunction with the NS2B protein, a serine protease, which is required
for virus polyprotein processing. NS5 is a methyltransferase and RNA-dependent RNA
polymerase. The ather NS proteins are small, generally hydrophobic proteins of dispa-
rate functions. NS1 is a secreted glycoprotein implicated in immune evasion.® NS2A
plays a role in virus assembly and inhibiting interferon (IFN)-p promoter activation.®*
NS4A is responsible for a rapid expansion and modification of the endoplasmic retic-
ulum (ER) that helps establish replication domains.>® NS4B blocks the IFN
response.”’'? All the NS proteins seem to be necessary for efficient replication. '

The flavivirus life cycle consists of 4 principal stages: attachment/entry, translation,
replication, and assembly/egress (reviewed in {Clyde, 2006 #103,7}).WNV enters cells
via receptor-mediated endocytosis, and is transported into endosomes. The WNV
receptor is unknown. Several cell-surface proteins are potential WNV receptors
{dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-
SIGN], integrin =,[33),"*'® and the receptor required for WNV binding and entry may
vary by cell type. Acidification of the endosomal compartment causes a conforma-
tional change in the E protein, resulting in fusion of the viral and endosomal
membranes and release of the virus nucleocapsid into the cytoplasm.'”'® The viral
RMNA is translated and the polyprotein is processed. Genome replication is carried
out in specific domains established by the viral proteins.'””” As stated earlier, viral
proteins cause massive expansion and modification of the ER. Two domains are
important in replication and virus protein processing: vesicle packets and convoluted
membranes, respectively (Fig. 2).”>*" Following replication and translation, genomes
are packaged into virions, which mature through the ER-Golgi secretion
pathway.'"“7“%27 Progeny viruses are released by exocytosis.

PHYLOGENY

The most current phylogenetic studies based on complete or partial genome
sequences indicate 5 lineages of WNV.“® The virus that entered North America
belongs to lineage | (clade la). This lineage also contains viruses found in Europe,
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122 Fig. 2. WNV isolated from brain tissue from an infected crow. The tissue was cultured in
123 avero cell for a 3-day incubation péried. The Vero cells were fixed in glutaraldehyde, dehy-
[@12) drated, placed in an Epon resin, thin sectioned, placed on a copper grid, and stained with
uranyl acetate and fead citrate. The grids were then placed in the electron microscope
i@13] and viewed. Total magnification, image 65,625x. (Courtesy of Bruce Cropp, microbiologist, {Q15}
(@14] Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention
[CDC].)
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125

126 the Middle East, and Africa. The genome of Kunjin virus, the Australian strain of WNv,
127 is also in the lineage | group {clade Ib). Lineage Il contains WNV mainly of African
128  origin. Although there aré exceptions, in general, lineage | (clade la) viruses can cause
129 severe human neurologic disease, whereas lineage | (clade Ib) and lineage |l viruses
130 generally cause a mild, self-limiting disease. Not much is known about the viruses
131  that compnise lineags I, IV, and V.

132

133 EPIDEMIOLOGY

134
135 WNV is maintained in nature in a cycle between birds and mosquitoes (Fig. 3).

136 Although many different species of mosquito are capabie of maintaining this cycls,
137 the Culex species play the targest role in natural transmission (Fig. 4). Not alt infected
138  mosquitoes feed preferentially on birds, which can lead to other animals, including hu-
139 mans, becoming infected. Humans (and horses) are incidental or “dead-end” hosts in
140 this cycle, because the concentration of virus within the bioed (viremia) is insufficient
141 to infect a feeding naive mosquito. Other natural modes of WNV transmission have

been documented but occur rarely. WNV transmission can occur between infected
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Fig. 3. The WNV transmission cycle. The maintenance of WNV in nature depends on many
avian and mosquito species, Humans and other incidental hasts (like horses) become
infected when WHNVv-infected mosquito takes a bloodmeal from them.

mother and newborn via the intrauterine route?®>'or possibly by breast-feeding.®? A
recent study of pregnant women who became infected with WNV during the 2003
to 4 transmission in the United States suggested that adverse side effects in the
newborn infant due to WNV infection of the mother are rare, arid those cases with
infant illness/infection/mortality may be associated with WNV infection that occurred
while the mother was infected within 1 month prepartem.®

Within the human population, the virus can spread between individuals by more arti-
ficial means. In the early 2000s, patients that received tainted blood or organs from
viremic donors became infected.**~” These events highlighted the need to safeguard
blood and organ donations from potentlally viremic, yet healthy, donors, and relatively
few infections via this route of transmission have been reported since 2004.

The epidemiclogy of WNV is cortinugusly changing. The virus was initially isolated
from a febrite woman in Uiganda it 1937.%8 Since then, few outbreaks of WNV in human
ar horse populations have been recorded until the beginning of the 1990s. When
disease was observed in humaﬁs;—' symptoms were typically mild and neuraologic
complications were rare.?®“%The exceptions were outbreaks in Israel in the earfy
1950s and France in the 1960s, which were characterized by encephalitis in humans
and horses, A series of outbreaks in the 1990s brought WNV into the spotlight;
epidemics in Algeria, Moracco, Tunisia, Italy, France, Romania, Israel, and Russia
were associated with uncharacteristically severe human disease, including neurologic

\
N,

Fig. 4. Culex mosquito. The Culex species of mosquito, the most common vector of WNV,

Q18] feeding. (Courtesy of US Geological Survey)
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complications and death.***'=** |n the summer of 1999, a cluster of patients with
encephalitis in New York City signaled the entry of WNV into North America. The
sequence of the 1999 New York strain of WNV is closest in identity to a viral isolate
from Israel,** but how the virus traversed the Atlantic Ocean is still a mystery. In the
past decade, there have been thousands of reported human cases of WNV disease
(WN fever and WN encephalitis) accompanied by maore than 1000 deaths (Table 1).
The geographic range of the virus currently extends north into Canada, west across
all 48 contiguous states, and south into Mexico, the Caribbean, and Central and South
America (Figs. 5 and 6) {Blitvich, 2008 #876}. Since 2007, in addition to ongoing circu-
lation of WNV in the Western Hemisphere, there have been outbreaks or isolations of
WNV in Volograd (Russia) {Platonov, 2008 #877}, South Africa {Venter, 2009 #878},
Hungary {Krisztalovics, 2008 #879}, Romania {Popovici, 2008 #880}, and Italy {Rossini,
2008 #881}(see Fig. 5). In 2008 alone, there were 1338 cases of WNV disease reported
to the Centers for Disease Control and Prevention (CDC) and resulted in 43 deaths
within the United States (http://www.cdc.gov/ncidod/dvbid/westnile/surv&controlCa-
seCount08_detailed.htm).

CLINICAL PRESENTATION

It is difficult to accurately predict the incubation period of WNV in humans (time from
mosquito bite/infection to the presentation of symptoms), but it is approximately 2 to
15 days.***® The majority (>80%) of WNV infections are asymptomatic. Symptomatic
infections manifest primarily as a mild, self-limiting febrile illness. However, approxi-
mately 1% of infected people develop neurolegic infections and disease. Most symp-
tomatic patients exhibit mild illness with fever, sometimes associated with headache,
myalgias, nausea and vomiting, and chills.****~*% Further, some patients briefly
present with papular rash on the arms, legs, or trunk. These symptoms follow a fairly
predictable pattern, with illness generally lasting less than 7 days. However, several
patients experience severe fatigue and malaise during convalescence.

Approximately 5% of patients with symptomatic WNV infection develop neurologic
disease. WNV neurologic symptoms include meningitis, encephalitis, and poliomyeli-
tislike disease, presented as acute flaccid paralysis.”® WNV encephalitis and menin-
gitis are characterized by rapid onset of headache, photophobia, back pain,
confusion, and continuous fever. The WNV poliomyelitislike syndrome is characterized
by acute onset of asymmetric weakness and absent reflexes without pain. Patients
presenting with flaccid paralysis require further testing to determine nature and degree
of disease. Diagnostic tests, including cerebrospinal fluid (CSF) examination, should
be performed to differentiate WNV infection from stroke, myopathy, and Guillan-Barre
syndrome. Other clinical symptoms may include tremor, myoclonus, postural insta-
bility, bradykinesia, and signs of parkinsonism.

PATHOGENESIS

Understanding the full range of WNV pathogenesis in humans has been difficult,
mainly because of the difference in virulence between WNV strains, the high preva-
lence of asymptomatic or subclinical infections, and the relative infrequency of labo-
ratory-confirmed human infections. Little has been published about human infections
with WNV of limited virulence. Most of our current knowledge regarding WNV patho-
genesis resulted from animal models (mostly rodent) infected under controlled condi-
tions with a known amount of needle-inoculated virus, which may not accurately
reflect the course of a natural infection in humans. Nevertheless, many documented
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Fig. 5. Distribution of WNV. Countries with historic or recent (2007 to present) WNV activity
(isolations from mosquitoes, birds, horses, or humans) are highlighted in red and blue,
respectively.

accounts follow the course of infection in humans suffering from WN fever and WN
sncephalitis resulting from a virulent lineage | WNV infection,

WNV-infected mosquitoes transmit the virus to humans following a bloodmeal from
the host. During this process, mosquito saliva contaminated with WNV is deposited in
the blood and skin tissue. Virus contained within the skin is presumed to infect resident
dendritic cells, such as Langerhans cells (MHCII+/NLDC145+/E-cadherin+ cells),
which then traffic to the draining tymph node.3'%2 Shortly thereafter, virus amplifies
in the tissues and results in a transient, low-level viremia lasting a few days, and it typi-
cally wanes with the production of anti-WNV IgM antibodies.?® Following viremia, the
virus infects multiple organs in the body of the host, including the spleen, liver, and
kidneys. Eight days after onset of symptoms, WNV was detected in the urine (viruria)

H Indicates hurnan Shassse chse(s).
5] avian, animal or mosquits infections.

Fig. 6. The number of confirmed human cases of WNV disease in the United States in 2008.
{Courtesy of CDC.)
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of a patient with encephalitis,”* which is consistent with animal (hamster) experiments
demonstrating viruria®* and the presence of viral infection in the kidneys.™*®

On entering the central nervous system (CNS), WNV causes severe neurological
disease. WNV may enter the brain through a combination of mechanisms that facili-
tates viral neuroinvasion, such as direct infection with or without a breakdown of
the blood-brain barrier (BBB) or virus transport along peripheral neurons. High viremia
may easily lead to an infection of the brain if the BBB is disrupted, and it is correlated
with severity of infection in experimentally infected mice.®” Viremia and high viral titers
in the periphery alone do nat predict neuroinvasion. Host proteins, such as death-
associated protein kinase-related 2 (Drak2), intercellular adhesion molecule 1
(ICAM-1), macrophage migration inhibitory factor (MIF), and matrix metalloproteinase
9 (MMP-9), have all been implicated in altering BBB permeability during WNV infec-

'qg tion.”* " The virus may pass into the CNS without disrupting the BBB.”* The host's

response to infection may also contribute to WNV pathogenesis. Studies from exper-
imentally infected mice suggest that the innate immune sensing molecule toll-like
receptor 3 (TLR3) may play a role in WNV invasion of CNS,"* possibly by mediating
the upregulation of tumor necrosis factor (TNF)-«, thereby resulting in capillary leakage
and increased BBB permeability.®' The proinflammatory chemokines/cytokines,
monocyte chemoattractant protein 5 (MCP-5), MIF, IFN-y—inducible protein 10 (IP-
10), monokine induced by IFN-y (MIG), IFN-v, and TNF-=2, were all upregulated in
the brains of experimentally infected mice, suggesting that the host immune respanse
may be at least partially responsible for neurclogic symptoms of the disease.”®%°
However, an increase in BBB leakage does not accurately predict WNV-induced
mortality in hamsters, nor does lethal infection increase BBB permeability in all strains
of mice."” WNV may enter the brain by direct infection and retrograde spreading along
neurons in the periphery.®” Entering the brain via infected peripheral neurans is a likely
route, because the level of viremia is low and leakage into the CNS by a breakdown of
the BBB is less likely compared with animals with a high titer of circulating WNV in the
blood. The discrepancies observed regarding BBB compromise suggest that further
research is required to determine the exact mechanism through which WNV enters

the CNS.

DIAGNOSIS

Diagnosis of WNV infection depends on several factors, including environmental
conditions, behaviors, and clinical symptoms. Patient history provides crucial clues
to diagnosis. For example, if a patient presents with clinical symptoms, including fever
and headache, one must consider the distribution of WNV and its mosquito vector.
WNYV infection must be considered in endemic areas, especially during the summer
months. Furthermore, the patient history should suggest exposure to mosquitoes
through outdoor activities. An initial physical examination should confirm clinical
symptoms of fever, headache, myalgia, or the more severe meningitis and flaccid
paralysis. The presence of mosquito bites on the skin also helps diagnosis.

To confirm the initial diagnosis, specific laboratory tests must be ordered (Table 2).
To date, the most consistent way to verify WNV infection is seralogy.*” " WNV
antigen-specific enzyme-linked immunosorbent assay (ELISA) confirms infection.
Serological tests include acute or convalescent samples of serum or CSF to determine
the WNV-specific antibody profile by ELISA. The best test involves IgM-specific ELISA
(MAC-ELISA) in which serum is collected within 8 to 21 days after the appearance of
clinical symptoms. This test is commercially available and relatively inexpensive.™
Also, serology can be performed to analyze immune responses. The presence of
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Table 2

Laboratory tests and diagnosis of WNV infection

Test Positive Results

CBC Anemia, lymphopenia, thrombocytopenia

Ighi-specific ELISA . WNV-spaecific IgM antibodies detected

PRNT Known virus stock growth inhibited in tissue culture by serum,

indicating neutralizing antibodies

NAT PCR amplification shows presence of WNV genome RNA

Virus isolation/plague assay  Serum or CSF contain virus as seen in plague assay

CSF analysis Antibodies and/or virus present in ELISA or plague assay,
Elevated protein and increased polymorphonuclear cells,
negative gram stain

EMGINCS Severe effects on anterior horn cells

Abbreviations: CBC, complete blood count; ELISA, enzyme-linked immunosorbent assay; EMG,
electromyogram; NAT, nucleic acid testing; NCS, nerve conduction studies; PCR, polymerase chain
reaction; PRANT, plaque reduction neutralization test.

reactive lymphocytes or monocytes in CSF samples indicates WNV neurologic infec-
tion. More dramatically, a massive influx of polymorphonuclear cells occurs. In
patients with WNV neurainvasion, more than 40% of cells in the CSF are neutrophils.5®
Plague reduction and neutralization tests‘allow for identification of virus specificity. A
virology test can directly confirm the presence of virus. Serum or CSF is collected, and
virus is amplified within permissive cells'and sequenced. This test is time-consuming
and expensive. Finally, molecular biclogical tools can be used to confirm the presence
of virus. The nucleic acid test is a powerful tool for detecting WNV genomes. Serum or
CSF collected during the initial phases of virus infection can be directly amplified
or used to detect viral RNA by quantitative reverse transcription polymerase chain
reaction with virus-specific primers.

Magnetic resonance imaging suggests abnormalities in the brain and meninges of
WHNV-infected patients presenting, with CNS disease (Fig. 7).*5%%7° The regions of
the CNS most commonly affected are basal gangfia, thalami, brain stem, ventral
horns, and spinal cord. However, most of these studies were performed retrospec-
tively. Thus, the results do.not provide predictive capabilities to WNV infection.

DIFFERENTIAL DIAGNOSIS

Several diseases manifest as symptoms similar to WNV, including bacterial meningitis
and those caused. by the encephalitides viruses, such as the Japanese and Murray
Valfey encephalitis: virus. Therefore, differential diagnosis is crucial to determining
WNV infection. A.differential diagnosis is required when a patient presants with unex-
plained febrile'iliness, encephalitis or extreme headache, or meningitis. Thus far, the
only manner to differentiate between causes of encephalitis/meningitis is diagnostic
and serological laboratory tests to identify the specific pathogen causing the
symptoms.

TREATMENT AND LONG-TERM OUTCOMES

Currently, patients infected with WNV have limited treatment options. The primary
course of action is supportive care. There is no FDA-licensed vaccine to combat
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Fig. 7. Radiographic and neuropathologlc findings in WNV encephalms (A) Coronal
fluid-attenuated inversion recovery/(FLAIR) magnetic resonance image shows an area of
abnormally increased signal in the thalami, substantia nigra (extending superiorly toward
the subthalamic nuclei), and white matter. (8) Corresponding tissue section from the same
patient at autopsy 15 days [ater stained with Luxol fast blue-periodic acid Schiff for myelin
shows numercus ovoid foci of necrosis and pallor throughout the thalamus and subthalamic
nucleus {arrows). (C) Axial proton density image atthe [evel of the midbrain shows a bilaterally
increased signal in the substantia nigra (arrows). (D} Corresponding tissue section at autopsy
stained with Luxol fast blue-periodic acid Schiff illustrates multifocal involvement of the sub-
stantia nigra (arrows), with nearly 50% of the area destroyed; the red nuclei are clearly
affected. (£} Axial FLAIR image at the level of the lateral ventricle bodies shows a bilaterally
increased signal within the white matter. A scan performed approximately S months earlier
demonstrated an abnarmal signal in the left periventricular white matter. This signal increased
once WNV encephalitis developed, and the lesions in the right cerebral white matter (left side
of photograph)} were new, () Photomicrograph taken from the right periventricular white
matter immunostained with the HAM56 antibody shows numerous macrophages in perivascu-

‘Q17] tarareas (fowerright) and diffusely throughout the white matter (center). (From Kleinschmidt-

DeMaster BK, Marder BA, Levi ME, et al. Naturally acquired West Nile virus encephalomyelitis
in transplant recipients: clinical, laboratory, diagnostic, and neuropathologicat features. Arch
Neurol 2004;61:1210-20; with permission.)
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WN disease in humans, despite the research of many laboratories and institutions and
the vaccines available for use in horses.

Furthermore, there is no effective antiviral to combat WNV infection. Two classical
antiviral compounds, IFN and ribavirin, showed promising results in vitro,”"72 but it is
unclear if these compounds are effective in patients.”~77 Passively transferring anti-
WNV immunoglobulin has been shown to be effective in mause and hamster models™
and may be halpful in patients. 7980

Long-term complications {1 year or more postinfection) are common in patients
recovering from WNV infection. The most common self-reported symptom is fatigue
and weakness, although myalgia, arthralgia, headaches, and neuroclogic complica-
tions, such as altered mental depression, tremors, and loss of memory and concentra-
tion, are not uncommon.®' There is also evidence from animal madels®5-#283 and
human autopsies®® 8 that the virus may persist in some individuals, as measured
by isolation of virus or viral genomes or antigen manths after infection or symptom
presentation. Expermentally infected hamsters éhcjw long-term neurological
sequelas, which sesms to coincide with the presence-of viral antigen and genome
within areas of the brain showing neuropathalogy.®? Althdugh the direct evidence of
persistence in humans is imited at this time, many patients have long-lasting WNV-
specific IgM titers in the serum and CNS, suggesting that persistent infections may
be more commen than previously indicated .68

Table 3
WNV vaccines. A partial list of licensed and preclinical vaccines against WNV
Stage of
Type Antigen Sponsor Development
Chimeric {vectcr)
Recombitek WHNY-prM-E Merial Licensed for horses
(canarypox)
ChimeriVax WNV-prvi-E Acambis Phase Il
{yellow fever
virus) -
WNV-DENVA WNV-prii-£ NIAID/MNIH Phase 11
{dengue virus 4) =
DNA
WNV-DIII WINV-DII Multiple Precfinical
L oa P laboratories
WHMNV-E WNV-E Multiple Preclinical
‘ - labaratories
WNV-pri-£ WNV-prii-E Multiple Preclinical
B laboratories
Inactivatedikilled
Innovater Wheole virus fort Dodge Animal Licensed for horses
> a Health
Subvirion particlesiviruslike particles p——
VWNV-prM-E WHY-prM-E Multiple Preclinical
laboratories

Abbreviations: NiAID, National Institute of Allergy and Infectious Diseases; NIH, National institutes

of Health.
Data from http:/imww fortdodgelivestock.com, htipZ/Asww.merial.com, http/Avww.intervetusa.

com, http:ffwww.clinicaltrials.gow.
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IMMUNITY

The innate and adaptive immune responses mounted against WNV are critically
important for controlling infection. Type | IFNs (-« and -J3) are important for limiting
virus levels, reducing neuronal death, and increasing survival.”” The amount of IFN
made by the host in response to infection seems to be at least partty dependent on
the strain or virulence of the virus; mice infected with lineage | WNV with attenuating
mutations produce less type | IFN than mice infected with virulent lineage | WNV.*”
Furthermore, WNV strains that are more resistant to the affects of IFN (like some
virulent lineage | viruses) are more virulent than IFN-sensitive strains (like lineage I
strains).”

The adaptive immune response also plays a role in controlling infection. Studies
using WNV-infected genetically engineered knockout mice indicate that T-°"*and
B-"“cells are critical for controlling infection. CD8+ T-cell recruitment to the brain
by neurons expressing the chemokine CXCL10 and by CD40-CD40 ligand interactions
help reduce the viral burden in the brain and increase survival in experimentally in-
fected mice.”*"® B cells are activated within the lymph nodes of WNV-infected mice
48 to 72 hours after infection in an [FN-«/-[} —signaling dependent manner, and B cells
secreting WNV-specific IgM were detected on day 7 pastinfection.” IgM is critically
important for the control of early WNV infection, and passive transfer of WNV-specific
IgM could protect IigM-deficient mice from lethal WNV infection.'“ Approximately 3 to
4 days after WNV-specific IgM is detectable, anti-WNV IgG titers are measurable in
patients.”® IgG is the predominant antibody, most probably conferring long-term
immunity against WNV re-infection. Although not enough data exist, immunity against
WNV in convalescent patients is presumed to be lifelong.

VACCINATION

Although no FDA-approved vaccine exists for human use, there are effective, licensed
vaccines for the treatment of horses. This success has encouraged others to develop
these and other strategies for human vaccines. Currently, there are several ongoing
clinical trials.

There are several strategies being pursued for WNV vaccine development (Table 3).
The first strategy is inoculation of multiple doses of inactivated virus.'”"'"? Fort Dodge
Animal Health developed this strategy by formalin-inactivating whole virus. This
formulation has been approved for horses. The second strategy involves the produc-
tion of WNV antigens from a heterologous virus backbone. The vectors being used are
canarypox (Recombitek), yellow fever virus (ChimeriVax), and dengue 4 (WNV-
DEN4).'%*"%% The Recombitek vaccine has been licensed for use in horses. The third
approach is DNA vaccination. WNV structural antigens (prM-E) are expressed from
DNA plasmids.'®” The final strategy is inoculation with purified viral proteins. %'
These proteins can be produced in mammalian cell culture, bacteria, or yeast. A
recent study by Seino and colleagues''” compared the efficacy of 3 available
vaccines. Their study showed that horses vaccinated with the live, chimeric virus in
the yellow fever or canarypox vectors had fewer clinical signs of WNV disease than
animals receiving inactivated virus.

SUMMARY

In summary, WNV infection is a serious threat to public health, especially to the immu-
nocompromised and the elderly. The virus is maintained in an enzootic cycle between
mosquitoes and birds, with humans and other mammals as incidental hosts. Since its
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introduction to the Western hemisphere in 1999, WNV has spread across North and
South America in fewer than 10 years. Most human infections are asymptomatic.
However, clinical manifestations range from fairly mild febrile illness to very severe
neurclogical sequelae, including acute flaccid paralysis and encephalitis. Currently,
the virus is the most significant cause of viral encephalitis in the United States. Efficient
diagnosis of WNV infection requires a detailed history, including potential exposure to
contaminated mosquitoes, and sensitive serological and virology assays. Recent
studies have explained virus-host interactions, including pathogenesis and immune
evasion. Lastly, there are no prophylactic or therapeutic measures that exist to
combat the diseases caused by WNV infection, which warrants future research.
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