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Formulation, Implementation and Testing 
of the Diffusive Wave (DW) Module of 

Adaptive Hydraulics (AdH) 
 

by Gaurav Savant, Corey J. Trahan, and Tate O. McAlpin 

PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes 
the implementation and application of the Diffusive Wave (DW) module of the AdH 
numerical code, referred to as AdH-DW, for the rapid simulation of dam-break- and river-
flow-caused flooding. 

MOTIVATION AND BACKGROUND: Numerical simulation of inundation has been an 
integral part of flooding analysis since the advent of modern computing. These simulations 
have historically been performed using the Shallow Water Equations (SWE) in two 
dimensions (2D) due to the accuracy of results obtained. However, the solution of 2D-SWE 
can impose run-time constraints because of the computational intensity required 
(Prestininzi 2008); therefore, in general, 2D-SWE are of reduced use for problems where 
inundation results are required in a time-sensitive manner. In such instances, the 
computational efficiency and stability afforded by DW equations are of benefit. 

DW equations (sometimes referred to as the non-inertia wave equations) utilize the SWE 
under the assumption that the inertial, pressure, and viscous terms are much smaller than 
the gravity and friction terms; such flows occur during fluvial flooding associated with dam 
and levee breach. Under these assumptions, the shallow water mass conservation equation 
simplifies to 
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 n = user-specified Manning’s coefficient 
 c = user-specified conversion factor (1 for S.I.; 1.487 for English units; or arbitrary 

conversion) 
 Cd = drag coefficient 

 V  = velocity magnitude. 
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The momentum equations simplify to 
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where u and v are the x- and y-direction velocity components, respectively. 

This equation set has only one independent variable, h, and is hence a faster and easier 
solve than the full set of SWE. It has been shown that the DW equations yield reasonably 
good approximations for downstream backwater effects as well as depth of flooding and is 
thus useful when the speed of analysis is critical. Another benefit of using DW equations is 
that the solution is shock free and hence does not require the intensive numerical treatment 
that 2D-SWE require for stability purposes. 

LIMITATIONS OF DW EQUATIONS: The diffusive wave equations are obtained by 
assuming that the inertial and pressure forces are insignificant when compared to the 
friction and slope terms.  

These assumptions imply that in areas of extreme slope change and areas where pressure 
forces might be significant, such as at the site of a breach, the velocity results provided by 
DW equations will be invalid; however, the overall inundation extents might be correct. In 
view of the limitations listed, the authors urge extreme care in deciding whether DW 
equations are appropriate for the problem under consideration. 

FINITE ELEMENT DISCRITIZATION: AdH-DW discretizes the equations of mass 
conservation using a finite element (FE) approach. The exact FE discretization in AdH-DW 
uses a Galerkin Least Squares (GLS) approach with 
linear weight and basis functions on linear triangles. 
This section describes how this discretization is 
achieved and implemented in AdH-DW. 

Basics. The FE discretization is performed over a 
triangular element mapped to a computational parent 
{(0, 0); (0, 1); (1, 0)} as represented in Figure 1. 

 
Figure 1. Computational element. 
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The linear basis functions (φι) are then defined as 
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whereξ  and η  are locally defined variables whose values vary linearly from 0 to 1 (Figure 2) 
(i.e., (1) at node 1 the value of ξ and η  is 0; and therefore 1φ  is equal to 1, 2φ and 3φ are equal 
to 0; (2) at node 2 the value of ξ is 1 and η  is 0; and therefore 2φ is equal to 1, 1φ  and 3φ are 
equal to 0; (3) at node 3 the value of ξ is 0 and η  is 1; and therefore 3φ is equal to 1, 1φ  and 2φ  
are equal to 0). 

 
Figure 2. Variation in ζ and η. 

In traditional finite element fashion, the linear basis functions are used to expand any 
solution variables so that, for three node triangles, the continuous field discretizes to 
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where all variables are as previously defined.  

Equations 5 through 7 above expand the variables in the computational or parent space. 
The expansion in the physical space is written as 
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where φ
∧

 is the basis function in the physical space and h(t) is time varying depth. 
Hereafter, h will be used to refer to the time varying quantity. 

The transformation from the computational element to the physical element utilizes the 
Jacobian defined as 
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The relationship between the physical element area, denoted as “ Λ ”, and J is 
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Since in typical FE fashion all integrations are performed on the computational element, the 
following transformations are written, as example, to map back and forth between the two: 
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Weak Form. To be able to utilize Equation 1, it is recast in the weak form as  
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where: 

 Ω = global domain 
 Γ  = the global boundary 

nx and ny = outward normal in the x- and y-directions, respectively. 

The weight function, w, is an arbitrary function that is smooth and has compact support. 
Since w is arbitrary, any solution to Equation 1 is a solution to the weak form as well. Note 
that w is being used to enforce the essential boundary conditions as well.  

Until this point, the solutions are exact while the sections below expand the weak form into 
the finite element statement such that numerical solutions can be obtained.  

The only dependent variable, h, is interpolated on the individual elements using linear 
Lagrange polynomials: 
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where the subscript i indicates the nodal value and the subscript h indicates the 
approximate value. Henceforth the subscript h is dropped, but it should be understood that 
all values are approximate.  

Pure Galerkin FE methods have been shown to have spurious oscillations in convection-
dominated systems when certain combinations of elements and weight functions are used. 
The combination of linear triangles and linear basis functions used in AdH is one such case. 
Various strategies such as the Streamline Upwind Petrov-Galerkin, Galerkin Least Squares 
(GLS), etc., exist that avoid the generation of spurious oscillations by enriching the Galerkin 
weight function, usually by adding a discontinuous weight function to the continuous 
Galerkin weight function. AdH-DW uses the GLS strategy to suppress these oscillations. The 
section below provides a description of the continuous and discontinuous parts of the weight 
function. 

The finite element form is obtained by multiplying Equation 1 by a GLS weight function, 
ψ φ ϕ= + , trial + GLS function and integrating by parts over the domain to obtain the 
following: 
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where: 

 Ωe = elemental 2D domain 
 Γe = elemental boundary 
 Γ = the global boundary 
 G  = the GLS contribution. 
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where the subscript e indicates an elemental average. The GLS weight function takes the 
following form: 
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τ is a weighing function, and the form it takes in AdH-DW is 
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where le is the spectral radius, and in AdH-DW, it is equivalent to the square root of the 
elemental area.  

Notice that the discontinuous portion,ϕ , is composed of gradients of the continuous trial 
function and is only integrated against the discrete equation over the interior of the 
element. This means that essential boundary conditions are addressed by the continuous 
portion,φ , of the test/weight function. 

The sections below detail the integration of the continuous portion of the test/weight 
function against individual terms. 

Continuity Equation. This section describes the FE discretization of the continuity 
equation (Equation 17). 

Temporal Term 

The temporal term is expressed using a finite difference, Crank-Nicholson, expression as 
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where: 

 α = factor that determines order of time-stepping, 0 1α≤ ≤  
 ∆t = time-step size. 

Each term in Equation 21 is integrated consistently to obtain 
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where: 

 n = the time under consideration (t-1, t or t+1). 

Convective Storage/Change Term 
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 are computed as an elemental average for stability. 

The weak form of these terms is integrated using integration by parts as follows: 
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The second term on the right-hand side in Equations 23 and 24 is the line integral over the 
element boundary multiplied by the shape function. These terms will be discussed later in 
this report. The following are the final forms of the convection terms: 

x-direction terms 
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y-direction terms 
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Boundary Line Integration Terms 

Continuity Convective Storage/Change Terms 
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from Equations 23 and 24, respectively. These terms are integrated based on the basis 
function (Figure 3) defined below: 
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The integration of these terms involves one-dimensional (1D) elements as shown in Figure 3.  

 
Figure 3. 1D line integral basis functions. 

The basis function definitions in Equation 29 are used to expand the variables as 
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where xn  is the normal in the x-direction for the line segment and y∆  is y-ordinate distance 
between the nodes on the line segment. 
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where yn  is the normal in the y-direction for the line segment, L is the length of the line 
segment, and x∆  is x-ordinate distance between the nodes on the line segment. 

BOUNDARY FILE IMPLEMENTATION: The DW equation set is activated within AdH by 
specification of the “OP DIF” card in the boundary conditions (*.bc) file.  

The card description for “OP DIF” is as follows: 

DW Definitions Control Cards 
Diffusive Wave 

DIFFUSIVE WAVE PARAMETERS 
Field Type Value Description 
1 char OP Card type 
2 char DIF Physics type 

APPLICATION: The implementation of DW in AdH was tested on four problems: (1) a 
square domain with a series of depressions, (2) simulation of a flood wave, (3) a real dam 
break in Malpasset, France, and (4) a hypothetical dam break in North Korea. 

1. Square Domain. This test specification was provided by the British Environment Agency 
(Neelz and Pender 2010). The test case (Test 2 in the British Environment Agency report) 
suggests comparing data at 16 points in the domain (locations shown in Figure 4). The 
modeled domain consists of numerous depressions within a perfect 2000 meter (m) × 2000 
m rectangle (Figure 5). Each depression is identical in shape and 0.5 m in depth. Along the 
north to south direction a slope of 1:1500 exists, and from west to east a slope of 1:3000 
exists with an approximate 2 m drop in elevation on the northwest to southeast diagonal. 

The Computational Model Builder (CMB), a product of the U.S. Army Engineer Research and 
Development Center, Information Technology Laboratory, was used to create the 2D mesh 
of the domain. The mesh was created to have 20 m nodal spacing throughout the model 
domain for a total of 10,200 nodes and 20,000 elements.  
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Figure 4. Plan view of the modeled domain 

extending from X=0 to X=2000 m 
and Y=0 to Y=2000 m. 

  
Figure 5. Contoured elevations.  

A 100 m inflow boundary condition is specified at the upper left of the domain running south 
from the northwestern corner (Figure 6). The inflow hydrograph is shown in Figure 7. This 
inflow lasts for only the first 1.5 hours (90 minutes) while the model simulation time is for 
48 hours (2880 minutes).  

2000 m 
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Figure 6. Inflow boundary to modeled domain.

 
Figure 7. Flood hydrograph used as boundary condition. 

A Manning’s n value of 0.030 was specified throughout the domain, and the simulation was 
executed using a constant time-step of 10 seconds (sec). 

Data were extracted from the model at the Environment Agency-specified points at the 
center of each depression (16 points shown in Figure 4) with an output of every 300 
seconds. For brevity, model and observed results are presented at locations 4 and 6, 
(Figures 8 and 9), and suffice to say that other locations show a similar behavior. 

Inflow 
boundary 
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Figure 8. Water level behavior at Location 4. 

 
Figure 9. Water level behavior at Location 6. 
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2. Flood Propagation over an Extended Floodplain. This test is based on a test (test 4) 
presented in Neelz and Pender (2010) and simulates the flooding caused by the failure of 
an embankment or overtopping. The domain consists of a 1000 m × 2000 m floodplain, 
with inflow spread over a 20 m line on the left boundary of the floodplain (Figure 10).  

The peak inflow is 20 m3/sec and has a base time of 300 minutes (Figure 11). The purpose 
of this test was to assess the ability of AdH-DW in predicting the inundation depth and the 
time of arrival from a flood wave.  

  
Figure 10. Test Domain and observation points. Figure 11. Inflow. 

The simulation results from AdH-DW were compared at locations shown in Figure 10 to 
the results provided in Neelz and Pender (2010). Figures 12–17 provide a graphical 
comparison of these results.
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Figure 12. Water depth versus time at Point 1. Figure 13. Water depth versus time at Point 2. 

  
Figure 14. Water depth versus time at Point 3. Figure 15. Water depth versus time at Point 4. 

Figure 16. Water depth versus time at Point 5. Figure 17. Water depth versus time at Point 6. 

The AdH-DW simulation results compare favorably to those reported in Neelz and Pander 
(2010). 
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3. Dam Break in Malpasset, France. The Malpasset dam failed explosively on 2 
December 1959. The resulting flood wave was approximately 40 m high. The high water 
levels from the resulting flood wave were widely documented at locations provided in 
Figure 18. Three transformers, labeled A, B, and C, were damaged from the flood, and their 
loss provided arrival time information. Table 1 provides a comparison of the high water 
levels between the observed and model simulated values, and Table 2 provides a 
comparison of the flood wave arrival times. 

 
Figure 18. Malpasset Reservoir and observation locations. 

Table 1. Water surface elevation comparisons. 
Maximum Water Level (m) 

Location P1 P2 P3 P4 P5 P6 P7 P8 P9 
Observed 79.1 87.2 54.9 64.7 51.1 43.7 44.3 38.6 31.9 
Simulated 79.9 83.4 55.2 61.9 52.6 44.1 45.7 37.1 31.8 
Location P10 P11 P12 P13 P14 P15 P16   
Observed 40.7 24.1 24.9 17.2 20.7 18.6 17.2   
Simulated 39.5 24.3 24.7 16.9 20.6 18.4 16.4   
 

Table 2. Arrival time comparison. 
Travel Time (s) 

Transformer A to B B to C 
Observed 1150 165 
Simulated 500 100 
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AdH-DW-simulated values compare favorably with the observed water surface elevations. 
Since the slope of the water level and the pressure forces at the breach site are high, which 
violates the DW equation assumptions, the flood wave arrival times are inaccurate 
compared to those observed in the field. 

4. Hypothetical Breach of a Reservoir in Asia. This application is an efficiency/turn-
around test of the AdH-DW to simulate a large-scale dam break. The simulation development 
utilized the tool suite available within CMB. The “grab cut” tool available within CMB was 
used to rapidly create the land-water delineation for the simulation, and the “filigree” 
meshing option was used for the generation of AdH-DW mesh. Figure 19 shows the general 
domain extents (visualization was performed within the SMS software suite). 

 
Figure 19. Model domain (red indicates mesh boundary). 
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Shuttle Radar Topography Mission data obtained using the Environmental Simulator 
program’s QUEST data services library were used as the underlying elevation data for the 
simulation (Figure 20).  

 
Figure 20. Underlying model bathymetry. 

The exact reservoir capacity for the reservoir is unknown, and therefore AdH-DW 
simulations were performed with constant reservoir depths of 5 m and 10 m (Figure 21).  
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Figure 21. Model initial reservoir depth (left panel: 10 m initial depth; right panel: 5 m initial depth). 

Figures 22 and 23 present the inundation at days 1 and 3 after the breach. 

 
Figure 22. Model inundation 1 day after breach (left panel: 10 m initial depth; right panel: 5 m initial 

depth). 
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Figure 23. Model inundation 3 days after breach (left panel: 10 m initial depth; right panel: 5 m initial 

depth). 

SUMMARY AND CONCLUSIONS: This CHETN describes the development, and testing of 
the diffusive wave module for the AdH hydrodynamic code. The implementation was tested 
on three cases: (1) a test problem consisting of a series of depressions, (2) a test involving 
the flooding of a floodplain, (3) Malpasset Dam-break problem, and (4) hypothetical dam 
break in Asia. The AdH-DW accurately replicated the inundation extents for Test 1, Test 2, 
and the Malpasset, France, application and was both stable, efficient, and quantitavely 
accurate for a hypothetical dam break application in Asia. As expected, the flood wave 
arrival time was inaccurate for the Malpasset dam break test given that the DW equations 
are inaccurate at the breach site due to the assumptions of the DW equations. 

POINTS OF CONTACT: This CHETN was prepared as part of the Environmental 
Simulator (ES) work package of the Engineered Resilient Systems (ERS) program of the U.S. 
Army Corps of Engineers. The POC for technical inquiries is Dr. Gaurav Savant 
(gaurav.savant@erdc.dren.mil). For information about the ES work package, please contact 
the ES work package manager, Dr. Jeffrey Hensley (Jeffrey.L.Hensley@erdc.dren.mil).This 
technical note should be referenced as follows:  

Savant, G., C. J. Trahan, and T. O. McAlpin. 2018. Rapid dam break and flooding 
simulations using the Diffusive Wave (DW) Module of Adaptive Hydraulics (AdH). 
ERDC/CHL CHETN-IV-112. Vicksburg, MS: U.S. Army Engineer Research and 
Development Center. http://dx.doi.org/10.21079/11681/29351. 

mailto:gaurav.savant@erdc.dren.mil
mailto:Jeffrey.L.Hensley@erdc.dren.mil
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