
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A METHODOLOGY FOR EVALUATING RELATIONAL AND NOSQL DATABASES 

FOR SMALL-SCALE STORAGE AND RETRIEVAL  

 

DISSERTATION 

 

Ryan D. L. Engle, Major, USAF 

AFIT-ENV-DS-18-S-047 

 

 

 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 



AFIT-ENV-DS-18-S-047 

i 

The views expressed in this paper are those of the author and do not reflect official policy or 

position of the United States Air Force, Department of Defense, or the U.S. Government. 

 

This material is declared a work of the U.S. Government and is not subject to copyright protection 

in the United States. 

 

 

  



AFIT-ENV-DS-18-S-047 

ii 

 

 

A METHODOLOGY FOR EVALUATING RELATIONAL AND NOSQL DATABASES FOR 

SMALL-SCALE STORAGE AND RETRIEVAL 

 

DISSERTATION 

 

Presented to the Faculty 

Department of Systems and Engineering Management 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the  

Degree of Doctor of Philosophy 

 

 

Ryan D. L. Engle, BS, MS 

Major, USAF 

 

September 2018 

 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 

 

  



AFIT-ENV-DS-18-S-047 

iii 

 

 

A METHODOLOGY FOR EVALUATING RELATIONAL AND NOSQL DATABASES FOR 

SMALL-SCALE STORAGE AND RETRIEVAL 

 

 

Ryan D. L. Engle, BS, MS 

Major, USAF 

 

Committee Membership: 

 

Brent T. Langhals, PhD 

Chairman 

 

Michael R. Grimaila, PhD, CISM, CISSP 

Member 

 

Douglas D. Hodson, PhD 

Member 

 

 

ADEDJI B. BADIRU, PhD 

Dean, Graduate School of Engineering and Management 

  



AFIT-ENV-DS-18-S-047 

iv 

Abstract 

Modern systems record large quantities of electronic data capturing time-ordered events, 

system state information, and behavior. Subsequent analysis enables historic and current system 

status reporting, supports fault investigations, and may provide insight for emerging system trends. 

Unfortunately, the management of log data requires ever more efficient and complex storage tools 

to access, manipulate, and retrieve these records. Truly effective solutions also require a well-

planned architecture supporting the needs of multiple stakeholders. Historically, database 

requirements were well-served by relational data models, however modern, non-relational 

databases, i.e. NoSQL, solutions, initially intended for “big data” distributed system may also 

provide value for smaller-scale problems such as those required by log data. However, no 

evaluation method currently exists to adequately compare the capabilities of traditional (relational 

database) and modern NoSQL solutions for small-scale problems.  

This research proposes a methodology to evaluate modern data storage and retrieval systems. 

While the methodology is intended to be generalizable to many data sources, a commercially-

produced unmanned aircraft system served as a representative use case to test the methodology for 

aircraft log data. The research first defined the key characteristics of database technologies and 

used those characteristics to inform laboratory simulations emulating representative examples of 

modern database technologies (relational, key-value, columnar, document, and graph). Based on 

those results, twelve evaluation criteria were proposed to compare the relational and NoSQL 

database types. The Analytical Hierarchy Process was then used to combine literature findings, 

laboratory simulations, and user inputs to determine the most suitable database type for the log 

data use case. The study results demonstrate the efficacy of the proposed methodology.  
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A METHODOLOGY FOR EVALUATING RELATIONAL AND NOSQL DATABASES FOR 

SMALL-SCALE STORAGE AND RETRIEVAL 

I. Introduction 

Background 

Many electronic systems capture events, state information, behaviors, and performance data as 

time-ordered records (Mittman & Dominick, 1973) (Schneier & Kelsey, 1999) (Sosnowski, 

Gawkowski, & Cabaj, 2011). Typically, log data is collected in flat files stored locally and/or 

forwarded to other locations (Johnson & Zwaenepoel, 1987) (Simache & Kaâniche, 2001) (Fan & 

Wang, 2010). Analysis of log data enables historic and current system status reporting, supports 

fault investigations, and provides insight for emerging system trends  (Lin & Siewiorek, 1990) 

(Griffiths, Brito, Robbins, & Moline, 2009) (Ge, et al., 2010). Other uses include identifying 

patterns in system and user behavior, and event correlation (Peters, 1993) (Eick, Nelson, & 

Schmidt, 1994) (Yemini, Kliger, Mozes, Yemini, & Ohsie, 1996). Furthermore, record keeping is 

required by various regulatory bodies, such as the Federal Deposit Insurance Corporation and can 

be supported by log data collection and analysis (2014).  

This research was motivated by the need to store and analyze a large amount of Unmanned 

Aircraft System (UAS) log data collected from multiple aircraft and generated at multiple 

distributed control stations. Log data collected from this system over a five-year period was made 

available for this research effort. Specifically, the end users desired a relational database to store 

and retrieve log data using a single computer system. However, due to changing system 

requirements and subsequent updates, the structure of the log data has repeatedly evolved thus 

complicating efforts to find a traditional relational database solution. 
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The end users initially believed the relational-based approach would be an intuitive solution 

for the problem. Since the codification of relational database model in 1970, organizations have 

primarily relied on relational databases to store and retrieve data of perceived value (Codd, 1970). 

Until recently, the relational model and Structure Query Language (SQL) have been the principal 

solutions for the majority of data storage and retrieval applications. However, by the mid-2000s, 

institutions began to realize that valuable data existed in diverse formats (blob, JSON, XML, etc.) 

and at a scale (petabyte or larger) not easily decomposable into exacting, pre-defined relational 

tables. Furthermore, with the extensive global reach of the Internet, organizations require 

accessible data independent from geography and often by millions of simultaneous users with a 

tremendously low tolerance for latency. Conventional relational databases were found trailing 

behind with respect to flexibility, scalability, and speed. Thus, a new generation of data storage 

and retrieval mechanisms emerged to address these shortfalls. These new technologies are 

commonly known as NoSQL or Not Only SQL systems (Schram & Anderson, 2012). Though the 

definition of the term NoSQL is inexact and often debated, for the purposes of this research, 

NoSQL is used to refer to all modern non-relational database types. 

These NoSQL database types have developed along four general class lines: key-value, 

columnar, document, and graph (Han, E, Le, & Du, 2011) (Hecht & Jablonski, 2011) (Nayak, 

Poriya, & Poojary, 2013). Each one addressed issues of consistency, availability and 

partitionability, i.e. Brewer’s CAP Theorem, while exploiting the benefits of accepting diverse 

data types and organizing storage/retrieval around the  aggregate model rather than the enduring 

relational model (Fox & Brewer, 1999) (Sadalage & Fowler, 2013). In the NoSQL context, 

aggregates, represent a collection of data, or composite object, that is interacted with as a unit, 

equivalently setting the boundaries for ACID transactions (Sadalage & Fowler, 2013) (Evans, 
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2011) (Smith & Smith, 1977) (Elmasri & Navathe, 2016). Aggregates are fundamentally important 

because they define how data is stored and retrieved by the NoSQL databases. Implicitly, NoSQL 

databases must know more about the data to be stored and how it will be accessed. The aggregate 

model frees NoSQL databases from adhering to restrictive schemas and data structures typical of 

relational databases. As a result, NoSQL developers introduced database tools that are 

exceptionally fast, partitionable, and highly available.   

In the rush to develop NoSQL databases to operate in large scale environments, distributed 

across commodity hardware and support a diverse array of data types, little attention of their use 

has been considered for traditional deployments such as single desktop/computer solutions. Thus, 

it is conceivable that some advantages may exist even in such a limited deployment. While some 

NoSQL advantages, like partition tolerance, are irrelevant in a single box implementation, others 

may remain.  

Problem Statement 

Given the relational database model was not always optimal to address the changing data 

structure occurring with UAS log data, a different database option should be considered. Though 

NoSQL databases provide solutions for storage and retrieval of data with varying structures and 

contents, these systems were designed for large-scale operations. Given that UAS log data end-

users desired a single desktop solution, the storage and retrieval capabilities of the relational and 

NoSQL systems should be evaluated to determine which option is most suitable. However, no 

evaluation method existed to adequately compare capabilities of traditional relational databases 

and NoSQL solutions for such small-scale applications. The following research questions were 

devised to guide the study of database options in support of UAS log data in a single-box 

environment. 
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Research Questions 

RQ 1. What are the defining characteristics of relational and modern non-relational, i.e. 

NoSQL, database systems? 

This research question will investigate the aspects of modern, commonly-used database 

systems, i.e. storage and retrieval systems, and the associated terminology. The relational and 

aggregate models will be examined to discover any unique or commonly shared attributes. 

Common architecture designs will also be reviewed. 

RQ 2. How can the characteristics of relational and NoSQL database types be evaluated to 

determine their suitability for single computer log data storage and retrieval systems? 

This research question consider what criteria are necessary for comparing characteristics of 

modern data storage and retrieval systems to determine their suitability for deployment on a single 

system supporting transactions on log data. Additionally, an evaluation process will be considered 

to exercise the evaluation methodology.  

Methodology 

The research questions are answered through a combination of methods, procedures, and tools. 

A literature review was first conducted to outline the characteristics of modern data storage and 

retrieval technologies and propose effective criteria for the evaluation of each database option. 

Next, laboratory simulations were performed to quantitatively measure aspects of relational and 

NoSQL databases based upon the proposed criteria. Additionally, a field study with log data users 

provided real-world perspective on the appropriateness of the evaluation criterion. Finally, an 

evaluation using Analytic Hierarchy Process (AHP) combined the results of the lab simulation 

with the user provided inputs to identify the most suitable database system for the UAS log data.  
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Scope 

The development and evaluation approach will be limited to a single-computer solution. This 

restriction provides an opportunity to explore the NoSQL database types in a way that has not be 

thoroughly discussed in academic or practitioner literature to date. Additionally, it provides a 

reasonable starting point for future research to extend where this research terminates.  

While many modern data systems are well-suited for, tailored to, or may integrate data 

analysis, the analysis aspects of these systems will not be considered. The complexity of this aspect 

is largely dependent on the implementation of the data system. Additionally, the features of the 

evaluated data systems will be limited to data storage and retrieval. Features like user management, 

security, and others also vary widely between implementations. Thus, considering these 

characteristics of select implementations adds little value to a generalized evaluation approach for 

database systems.   

Assumptions  

The influence of cost and personnel are assumed to have some weight on the implementation 

of a log data storage and retrieval system. However, the author will assume that some funding 

would be available and that development personnel can be obtained to implement a solution. When 

the contrary is true, i.e. no funding and no personnel are available, then the problem becomes 

arguably less academic and more programmatic. 

Preview 

The remainder of this document is organized as follows. Chapter II provides a literature review 

outlining the characteristics of modern database technology. Additionally, the evaluation criteria 

are identified at the end of the chapter. In Chapter III, outlines a methodology to execute the 
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laboratory simulation and conduct the AHP using the results of the literature review, simulation, 

and field study. Next, in chapter IV, the results of the combined literature review, simulation, and 

field study are provided. Moreover, these results are used as inputs to the AHP to develop priorities 

using the criteria identified from Chapter II. These priorities are used to determine the most suitable 

database solution for the UAS use case. Finally, Chapter V discusses the findings of this research 

and provides recommendations for further study. 
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II. Literature Review 

This section summarizes academic and industry literature to characterize modern data 

concepts, database technologies, and establish evaluation criteria for comparing five database 

types. First, a brief overview of modern data concepts is discussed to establish a context and 

background for relational and emerging NoSQL systems. Next, a brief definition of log data is 

provided. The second section describes the key characteristics of database systems. The last section 

details the evaluation criteria used to compare the database types for single system storage and 

retrieval applications. 

Data Overview 

Recently data has been characterized in terms of five V’s: velocity, volume, variety, veracity, 

and value (Laney, 2001) (Elmasri & Navathe, 2016). Velocity entails how fast data is created, 

accumulated, ingested, and processed. Volume considers the size of the data of interest. Variety 

refers to the multitude of sources which generate data (Elmasri & Navathe, 2016). Data from these 

sources can be broadly grouped into five types: raw, cleansed, structured, semi-structured, and 

unstructured (John & Misra, 2017). Raw data has not been cleansed, filtered, or otherwise prepared 

for any particular analysis. In contrast, cleansed data has been readied for analysis (John & Misra, 

2017) (Larose & Larose, 2015). Structured data logically fits into a table composed of columns 

and rows. Structured data may either be in a raw or cleansed state. Semi-structured data contains 

tags, keys, or markers which identify fields and records. Extensible Markup Language (XML) and 

JavaScript Object Notation (JSON) are two examples of semi-structured data. Finally, unstructured 

data is data that does not fall into the structured or semi-structured categories. Data in images, 

videos, and audio files are examples of unstructured data (John & Misra, 2017). Veracity describes 
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two features: the source’s credibility and the data’s suitability for the intended audience (Elmasri 

& Navathe, 2016). The data’s value refers to the data’s usefulness to its users (Jain, 2016). 

The data lifecycle outlines the stages through which will pass during its existence. Various 

data lifecycle models exist (Ball, 2012) (USGS, 2017), but these models generally include 

acquisition, processing, analysis, storage, and disposal aspects (John & Misra, 2017) (USGS, 

2017). Acquisition involves generating data from new sources or collecting data from a legacy or 

shared source (Boston University, 2017) (USGS, 2017). Processing includes calibration, 

extracting, integrating, preparation, organizing, structuring, transforming, and verifying data for 

ingestion or analysis (Larose & Larose, 2015) (USGS, 2017). Analysis actions include modeling, 

statistical analysis, quality assurance, pattern detection, interpretation, and hypothesis testing. 

Storage encompasses documenting, organizing preserving, structuring, and physical storage 

processes, e.g., ingestion, and activities which make the data accessible to the needs of users or 

applications. Disposal includes processes which review the need for data retention in addition to 

the activities which dispose of the data (USGS, 2017) (John & Misra, 2017). These concepts 

outline the characteristics of the data lifecycle. 

Figure 1 presents a simplified view of the data lifecycle as a process. After data is acquired, it 

will be processed to prepare it for storage or analysis. After the analysis stage, data will flow to 

storage. From storage phase, data can return to the analysis phase or be disposed. Stakeholders 

may influence the data at any point in the lifecycle. Intuitively, most stakeholder interaction should 

occur during processing, analysis, and storage. 
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Figure 1. Simplified Data Lifecycle. 

Traditionally, data would be structured during the processing phase and ingested during the 

storage phase. Only then would it be available for analysis. This data model has been characterized 

by Serra as “Structure-Ingest-Analyze.” However, a new model, “Ingest-Analyze-Structure” is 

emerging with the development of modern technology. In this model, data can be ingested as raw, 

semi-structured, or unstructured data, analyzed, and then structured at a later time (Choosing 

technologies for a big data solution in the cloud, 2017).  

Figure 2 presents the relationship between the 5 V’s and the data lifecycle. Lines are drawn 

from each “V” data characteristic to the life cycle aspects which it influences.  

 

Figure 2. Graph of Relationship between Data Lifecycle and 5 V's. 

Log Data Definition  
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In the scope of this research, log data is defined as “sequence of records” produced by an 

electronic system (Kreps, 2013). The term “sequence” implies the records have a relationship with 

time. This relationship will be explored in more detail at the end of the section. Additionally, an 

“electronic system” refers generally to all the electronic, computing, and information system 

elements composing a system as defined by IEEE (2015). Moreover, log data is also known as 

data logs or simply logs (PCMag, 2017) (IBM Knowledge Center, 2017)  (Lee, Iyer, & Tang, 

1991). 

Log Data Storage and Retrieval  

Typically, log data is collected in flat files stored locally and/or forwarded to other locations 

(Johnson & Zwaenepoel, 1987) (Simache & Kaâniche, 2001) (Fan & Wang, 2010). However, 

growing quantities of log data collected from distributed systems requires special attention to 

efficiently organize, store, access, and retrieve these records for analysis. Storing log data in a 

relational database (RDB) is one approach to meeting these needs. The widespread use of RDBs 

and support tools make them a candidate for these purposes (IBM, 2017) (Oracle Corporation, 

2010). However, the semi-structured organization of the log files must be “wrangled,” i.e., 

collected, aggregated, cleaned, and organized, into structured data before they can be imported 

(Joshi, 2016). Ideally, log data would be wrangled once to map data fields into RDB table 

attributes. However, changes to the log data structure periodically occur and affect the import 

process, database schema, and existing queries. The nature of systems may aggravate problems as 

changes may be introduced incrementally. This aspect requires use of multiple import processes; 

one process for each unique log file format must be developed and maintained to properly read 

and import the log data. Thus, effective solutions for log data management require a well-planned 

approach to support the needs of its stakeholders.  
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Summary 

Log data is unique from other types of data in one significant aspect--log data is recorded as a 

sequence of events. Like other data, log data follows the data life cycle. Moreover, it is produced 

by a wide variety of sources and used for a multitude of purposes. Finally, due to its varying storage 

organization, i.e. being structured and semi-structured in some instances, a relational database 

solution may not necessarily be the most suitable solution for storage and retrieval. The next 

section describes database systems which provide the context for this work’s evaluation of log data 

storage and retrieval options.  

Database Systems 

A review of available literature fails to identify a widely accepted definition of data system 

architecture or simply database system. The conventional definition of a database system includes 

application programs, Database Management System (DBMS) software, and database elements, 

is inadequate given modern data characteristics (Elmasri & Navathe, 2016, pp. 4-8). This definition 

is too limited for evolving data systems and fails to address the architecture aspects. Specifically, 

modern data systems are blurring the lines which traditionally separated business logic and data 

tiers (Kleppmann, 2017, p. 4). For example, Microsoft’s SQL Server 2016 Enterprise Edition 

offers visualization, statistical analysis, and predictive analytics in a single package (Serra, 

Choosing technologies for a big data solution in the cloud, 2017). Furthermore, an architecture 

includes the “fundamental concepts or properties of a system in its environment embodied in it 

elements, relationships, and in the principles of its design and evolution” (ISO/IEC/IEEE, 2011). 

Thus, a definition which only includes the technical aspects is insufficient as an architecture. 

Therefore, a more thorough definition is needed. A better definition should consider the 

relationship between a system architecture and data. 
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The primary element of the data system architecture is the database system. As noted, the 

database system consists of one or more databases, DBMS software, and applications. A database 

is a shared collection of related data stored electronically, with an intended audience and purpose. 

The data collection is logically coherent, has meaning, and represents some real-world aspect such 

as business transactions. The DBMS supports the definition, construction, manipulation, and 

sharing of the database(s) among different users and applications. It is responsible for constructing, 

defining, manipulating, and sharing the databases. The applications provide users and external 

applications access point for the database. Specifically, the data system applications communicate 

with the DBMS software. Requests flow from the application through the DBMS to the database 

as queries. Queries are database interactions known as transactions. Transactions are processes 

which involve one or more database Create, Read, Update, or Delete (CRUD) operations. In a 

traditional database system, the database is optimized to support transactions on relatively small 

subset of data. Such systems are said to support Online Transaction Processing (OLTP) (Connolly 

& Begg, 2005) (Elmasri & Navathe, 2016) (Anderson, Lehnardt, & Slater, 2010). 

A database system possesses four characteristics. First, it is self-describing. This property 

means the system contains the data collection and a description of the database’s structure and 

constraints. Traditionally, this description resided in the database catalog in one or more schemas 

(Elmasri & Navathe, 2016). The second property of the database system is insulation or “program-

data independence” (Elmasri & Navathe, 2016, p. 12). This property decouples the data from the 

applications enabling changes in one to be independent from changes in the other. Third, a database 

system should support multiple views which enable a subset or derivation of the data to be 

accessible though not explicitly stored in the database. The last property provides for data sharing 

and multiuser transactions (Elmasri & Navathe, 2016).  



AFIT-ENV-DS-18-S-047 

25 

 

Figure 3 depicts the database system elements and their relationship to the traditional three-

tier architecture. The applications provide for interactions between users and the data in the 

presentation tier. The DBMS controls access and may provide specialized business rules in the 

logic tier. The database or databases organize and store the data collection in the data tier (Elmasri 

& Navathe, 2016) (Microsoft, 2017) (IBM, 2017) (IBM, 2017).  

 

Figure 3. Simplified Traditional Three-Tier Database System Architecture. 

This architecture was the basis for database system design since the 1970s (Codd, 1970). As 

stakeholder needs evolved, other database system elements were added. Additionally, various 

types of databases have been employed. The next two sections discuss the Data Warehouse (DW) 

and Data Lake (DL) system elements. An overview of the database types follows. 

Data Warehouses 

Data warehousing is defined as “subject-oriented, integrated, nonvolatile, time-variant 

collection of data in support of management’s decisions” (Inmon, 2002). In other words, data 

warehousing entails aggregating and cleaning data stored in multiple databases and multiple 
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formats to provide a single logical view of the collection. The process of aggregating, cleaning, 

integrating, (re-) structuring/reformatting, and transferring data from one or more sources into the 

data warehouse is known as ETL (Extract, Transform, and Load) (Elmasri & Navathe, 2016) (John 

& Misra, 2017) (SAS, 2017). The nonvolatile nature of data in a data warehouse means that data 

is generally not modified after ETL though it may be removed (Elmasri & Navathe, 2016).  

Since the data warehouse is intended to support decisions, it is optimized for data retrieval by 

Decision Support Systems (DSS), Executive Information Systems (EIS), Management 

Information Systems (MIS), Online Analytical Processing (OLAP), or knowledge discovery 

applications. Information in data warehouses can be focused further into data marts which contain 

a subset of the DW’s data. A data mart typically provides data warehouse analytical functionality 

but contains data geared towards one department or business line (Serra, Data Warehouse vs Data 

Mart, 2012). Both provide the means to explore warehoused data as a whole and contrasts with the 

OLTP optimization in databases (Fayyad & Stolorz, 1997) (Elmasri & Navathe, 2016).  

 

Figure 4. Data Warehouse Architecture Overview (Elmasri & Navathe, 2016, p. 1103) 

Figure 4 presents an overview of the architecture for a data warehouse. Specifically, the 

architecture elements and their relationships are depicted. On the left side of the figure, multiple 

sources of data are shown. This data is cleansed and reformatted during ETL from these sources 
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to the data warehouse. Once in the data warehouse, the data can be analyzed by OLAP, DSS, EIS, 

MIS or knowledge discovery (data mining as shown) applications (Elmasri & Navathe, 2016). 

Data Lake 

The term “data lake” was coined by James Dixon as an improved approach over data marts 

and warehouses for storing, analyzing, processing, and delivering big data (2010) (John & Misra, 

2017). Data lakes have evolved intended to serve as a centralized repository that can store, access, 

and retrieve “relevant” information (John & Misra, 2017). Unlike the other data system elements, 

data lakes can be populated with data in its raw format, including semi-structured and unstructured 

data. However, data lakes can also contain transformed or restructured data (John & Misra, 2017). 

Additionally, data lakes can be used independently from or in conjunction with the other data 

system elements (John & Misra, 2017) (Fowler, 2015) (Serra, Choosing technologies for a big data 

solution in the cloud, 2017) (Chen, Kazman, & Haziyev, 2016).  

Figure 5 presents a data lake architecture which includes a lambda layer. In this figure, the data 

acquisition layer contains the applications to receive the incoming data. The message layer 

decouples the acquisition and ingestion layers using a guaranteed messaging paradigm. The data 

ingestion layer controls how the data flows into the lambda layer. The lambda layer enables batch 

(knowledge discovery, data mining, and ingestion) and real-time processing (ingestion and ad-hoc 

user queries) via its batch and speed layers. The server layer provides access and retrieval to users 

and other applications. Lastly the data storage layer contains and provides access to the stored data 

(John & Misra, 2017). 
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Figure 5. Data Lake Layers. 

 

Database Types 

Files and File Hierarchies. 

Prior to the advent of relational databases, files and a hierarchy of flat files were used to 

organize and store data. Within a file, special characters were used to separate records and fields. 

For a file hierarchy, files which were organized by their location in the file system, indices or a 

both rather than an internal file structure (Sharpened Productions, 2017) (Codd, 1970). This 

technique created data access dependencies which Codd identified early in his work towards the 

relation model (1970). 

Relational Databases 

The relational data model has been a prominent technology since the 1970s (Codd, 1970). 

Systems using the relational data model have become known as SQL (Structured Query Language) 

systems because SQL is the standard interface to Relational Database Management Systems 

(RDBMSs) (Elmasri & Navathe, 2016).  
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RDBMSs organize data using Codd’s relational model which is based on mathematical set 

theory and first-order predicate calculus (Elmasri & Navathe, 2016) (Codd, 1970) (Chamberlin & 

Boyce, 1976). Some key concepts from Codd’s work include relations, tuples, domains, rows, 

relationships, attributes, and primary and foreign keys. He defined relation mathematically: given 

sets S1, S2, ..., Sn, which are not necessarily distinct, “R is a subset of the Cartesian product 𝑆1 ×

𝑆2 × …× 𝑆𝑛” (A relational model of data for large shared data banks, 1970). A tuple is an ordered 

list of n-elements and likewise a row is simply an n-tuple which exists in R (Weisstein, n-tuple, 

2016) (Codd, 1970). The set of permissible values on S1, S2, ... , Sn defines the domain for each set 

and each domain is considered an attribute. While relations are domain-ordered, Codd explained 

relationships are not dependent on this order. Furthermore, a primary key is a domain or domain 

combination containing values that uniquely identify every row of a given relation. Similarly, a 

foreign key is a domain or domain combination in R that is not a primary key of R, but is the 

primary key of another relation, S (A relational model of data for large shared data banks, 1970).  

Normalization is another aspect of the relational model and was Codd’s preferred method for 

organizing data (Codd, 1970). The normalization process examines functional dependencies and 

primary keys of a relational database. Its goal is to minimize both redundancy and update 

anomalies that could occur during insertion, deletion, and modification operations that could affect 

data consistency (Elmasri & Navathe, 2016).   

Most relational systems require a schema to be defined before data is loaded into the database. 

Such a schema describes tables, constraints, keys, and relationships to provide a structure for the 

database. Some schemas may also provide for user roles and additional views of the data. Whereas 

a table is closely related to the physical storage of the data, a view is a logical structure providing 

access to various data elements which already exist in tables. Additionally, a schema itself provides 
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a detailed, logical outline of or structure for the entire the database. Once a schema is established, 

it is expected to undergo few changes (Elmasri & Navathe, 2016) (Hoffer, Venkataraman, & Topi, 

2016) (Bradbury, 2017).  

NoSQL Databases  

In this research the term, NoSQL databases, refers to all modern non-relational database types. 

These NoSQL database types encompass a collection of systems including key-value, document, 

column, and graph data models. These systems represent a growing area of the database market 

(Elmasri & Navathe, 2016) (Connolly & Begg, 2005) (Sullivan, 2015) (Redmond & Wilson, 2012) 

(Marz & Warren, 2015) (solid IT gmbh, 2016). 

Aggregate concept 

One defining characteristic for NoSQL data stores is the use of aggregate stores or an 

aggregate-oriented model. The aggregate concept is a helpful way to contrast NoSQL database 

types with each other as well as with the relational databases and implies a certain level of 

knowledge exists regarding what data is stored and how it will be retrieved. An aggregate is 

formally defined as a composite data object that is considered the atomic unit for Create, Read, 

Update, and Delete (CRUD) operations. This concept originated with databases and software 

development in the 1970s and is also related to Evans’s recent work with domain-driven design. 

In the NoSQL context, aggregates may vary widely in size and composition, ranging from 

individual binary values representing status flags to MPEG video files and their associated 

metadata. Treating data as aggregates enables data stores to take advantage of locality and de-

normalization to improve data retrieval performance (Smith & Smith, 1977) (Evans, 2011) 

(Sadalage & Fowler, 2013) (Elmasri & Navathe, 2016) (Denning, 2005).  
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Empowering the aggregate model concept is the ability of NoSQL to accept data without any 

prerequisite data modeling, unlike relational databases where a schema or predefined logical view 

of the database must exist before data can be imported (Elmasri & Navathe, 2016) (Bradbury, 

2017). Thus, the NoSQL database structure, i.e. the physical aggregate, emerges as data is added 

(Robinson, Webber, & Eifrem, 2015) (Hoffer, Venkataraman, & Topi, 2016) (Bracket & Kempe, 

2013). Additionally, NoSQL databases excel at storing and retrieving semi-structured and 

unstructured data which do not fit well inside a traditional RDB. Unstructured data may include 

plain text format or multimedia, while semi-structured data may be organized into JSON or CSV 

formats. Both JSON and CSV formats impose some structure on data, but the contents can vary. 

Semi-structured data is also referred to as having a hybrid structure. RDBs primarily operate on 

structured data, which is data that is easily organized into a rectangular table and normalized. In 

contrast, NoSQL databases can store and retrieve all data types efficiently (Leavitt, 2010) (Cattell, 

2011) (Hecht & Jablonski, 2011) (Joshi, 2016). The following sections discuss the four general 

classes of NoSQL databases and their defining characteristics. 

Key-value Databases 

Key-value (KV) data models store and retrieve data as key-value pairs. The key is a unique 

identifier and the value is the data associated with the key. These pairs are similar to maps, 

dictionaries, and associative arrays which use non-integer indexing to organize data. Key-value 

databases do not require a defined set of key or value types to be used (Sullivan, 2015). 

In this data model, each stored value constitutes the complete aggregate. Additionally, 

aggregates are isolated and independent from each other. Thus, no relationships are stored in this 

data model. Furthermore, few limitations are placed on what data types can be stored as values. 

Values may contain strings, integers, maps, lists, sets, hashes, queues, Binary Large OBjects 
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(BLOBs), or a composite object of these types (Gudivada, Rao, & Raghavan, 2014) (Josuttis, 

2012) (Hecht & Jablonski, 2011) (Sadalage & Fowler, 2013).  

KV databases treat aggregates as opaque atomic units once they are imported. “Opaque” means 

the database has little knowledge about what comprises the value stored or how it is structured. 

However, this feature provides for great flexibility in storage, simplicity for querying, and shifts 

responsibility for data integrity outside of the database. Additionally, KV databases generally do 

not include a complex query processor. CRUD operations are accomplished using put, get, and 

delete operations. Thus, complex queries must be handled at the application layer outside the 

database (Hecht & Jablonski, 2011).  

Document Databases 

The document model is in many ways similar to the KV model. Document models organize 

and store data in a document structure consisting of a set of key-value pairs. More formally, a 

document is a self-describing, i.e., key-value pairs, hierarchical tree data structure consisting of 

scalar values, maps, lists, other documents, and collections. A collection is a group of documents 

and often pertains to a particular subject entity. Furthermore, document-based databases are free 

from a requisite schema and instead infer information from the document structure itself (Sullivan, 

2015).  

The aggregate is the document in this model. The inclusion of keys in the aggregate provides 

the self-describing aspect of this object (Cattell, 2011) (Sadalage & Fowler, 2013) (Sullivan, 

2015). Like the KV model, most data types can be stored in a document model including Boolean 

values, integers, arrays, strings, dates, and BLOBs among others. Additionally, document models 

employ a unique identifier to distinguish individual, top-level documents. While a document is 
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comparable to a row in a relational database, it does not natively store relationships between 

documents with the exception of nested documents (Cattell, 2011) (Sadalage & Fowler, 2013) 

(Sullivan, 2015). 

A few more aspects of the document model differ from the KV model. Document models 

provide aggregate transparency which enables access during read, update and delete operations to 

attributes/data elements stored within an aggregate. This characteristic is unlike the opaque nature 

of KV models. Additionally, document stores typically include a query processor that can perform 

complex queries such as searching for a range of values, accessing keys within a document, or 

handling conditional query statements like those common to SQL. Yet, like a KV model, 

responsibility for data integrity and any relational consistency is placed outside the database itself. 

Furthermore, document models often include indexing to speed up searches. Lastly, attributes can 

be added to existing documents (Cattell, 2011) (Sadalage & Fowler, 2013) (Sullivan, 2015). 

Documents are the lowest level of components defined and are an ordered set of key-value 

pairs. Dynamic schemas define collections. That is, documents organized in a particular collection 

do not have to “look” the same. Just as documents are grouped into collections, a set of collections 

comprises a database. Several databases can exist within a single instance of a document database. 

As relational database analogs, documents are comparable to rows and collections are akin to 

tables (Chodorow, 2013).  

Column Databases 

The column family, or column-oriented, model organizes data into a multidimensional map 

based of the Decomposition Storage Model (DSM). Originally the DSM organized data into 

columns which were associated by a unique identifier known as a surrogate. In this model, the 
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column is the basic storage unit and composed of a name and a value, much like a key-value pair. 

Columns may be grouped together as column families. Rows are composed of a unique key and 

one or more columns and/or column families (Copeland & Khoshafian, 1985) (Abadi, Boncz, & 

Harizopoulos, Column-oriented database systems, 2009) (Hecht & Jablonski, 2011) (Sadalage & 

Fowler, 2013) (Sullivan, 2015). 

Though the terminology is similar to the relational model, a row in this model is actually a 

two-level map. Figure 6 presents an example consisting of two rows, to illustrate the two-level 

map properties of the column family database. The first row, row key “1235,” contains a single 

column consisting of a column key designated as “name” and its value is “Grad Student A.” The 

second row, row key “1236,” contains a slightly more complex column family. In the column 

family, there are four keys, “firstAuthorName,” “secondAuthorName,” “thirdAuthorName,” and 

“fourthAuthorName” and four associated values, “Grad Student A,” “Professor X,” “Professor Y,” 

and “Professor Z.” 
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Figure 6. Examples of rows in a columnar database. 

 

In this model, the row value is the aggregate. Additionally, column family models provide 

aggregate transparency, like the document model, to provide access to individual columns within 

the aggregate. Furthermore, columns can be added, updated, or excluded from rows without 

updating a predefined schema. However, column families usually must be defined before they are 

used. Finally, column family databases often include a query processor to facilitate searching and 

retrieval (Abadi D. J., 2008) (Hecht & Jablonski, 2011) (Abadi, Boncz, Harizopoulos, Idreos, & 

Madden, 2013) (Sadalage & Fowler, 2013) (Sullivan, 2015). 

Typically columnar databases do not require a schema in the relational database sense, but do 

require a keyspace, row keys, columns, and column families to be defined explicitly. A keyspace 
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is considered the highest level structure in a column database because it contains all other data 

structures used in a particular DB. In fact, Sullivan stated a keyspace is analogous to a relational 

schema. Row keys are like primary keys because they are used to uniquely identify rows. A column 

structure stores a value and can consist of a column name, a time or version stamp, and the value 

itself. Finally, column families are a related group of columns and are like relational database 

tables because they store multiple columns and rows (2015). 

Graph Databases 

Graph database systems do not require a formal schema; however, these systems do require a 

structure (Robinson, Webber, & Eifrem, 2015, pp. 106, 109). Graphs consist of two elements: 

vertices and edges. A vertex or node is a particular point or location where two or more lines or 

edges intersect (Weisstein, Vertex, 2016). Likewise, the line connecting two unordered nodes is 

an edge. In a directed graph, the node order is relevant (Weisstein, Graph Edge, 2016).  

Property graph models are common implementations of the more general graph model. 

Property graph models store and retrieve data using the two primary modeling objects: nodes and 

edges. A node represents an entity and stores any attributes as properties. Likewise, an edge 

represents a relationship between one or two nodes. Edges have an associated direction between 

nodes and may also include properties. Properties for either nodes are edges are stored as key-

value pairs. (Hecht & Jablonski, 2011) (Sadalage & Fowler, 2013) (Robinson, Webber, & Eifrem, 

2015) (NOSQL Databases, 2018). 

Graph models share many characteristics with other NoSQL data models but have some unique 

traits. Graph models support most primitive data types such as Boolean, byte, short, int, long, float, 

double, and char types. Naturally, arrays of these primitives are also permitted. Storage of BLOBs 



AFIT-ENV-DS-18-S-047 

37 

 

are permitted but are not as well suited for the graph model. Graph models are said to be 

relationship oriented and most appropriate for heavily linked data. Additionally, they are unique 

from the other NoSQL data models because there are two elements (nodes and edges) which can 

comprise an aggregate. That is, data can be stored on either a node or an edge in this model to be 

considered an aggregate. Furthermore, nodes and edges may be defined in a schema or added as 

necessary (Hecht & Jablonski, 2011) (Sadalage & Fowler, 2013) (Robinson, Webber, & Eifrem, 

2015). 

Graph models are considered to represent relationships more naturally than other data models. 

Graphs can overcome the impedance mismatch commonly found in relational models of data 

objects. The object-relational impedance mismatch describes the difference between the logical 

data model and the tabular-based relational model resulting in relational databases. This mismatch 

has long created confusion between technical and business domains (Hecht & Jablonski, 2011) 

(Robinson, Webber, & Eifrem, 2015). 
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Figure 7. Example of a property graph model. 

Figure 7 presents an example of a property graph depicting a few relationships between the 

authors and their associated departments. In this figure, two kinds of nodes, “Author” and 

“Department,” and nine relationships are displayed. Each “Author” node has two properties: 

“name” and “title.” Similarly, the “Department” nodes contain one property called “name.” The 

values for each property are shown in the diagram. Relationships are interpreted by starting with 

one node and following a directed edge to its related node. For example, the Author named 

“Professor X” ADVISES the Author named “Grad Student A.” Additionally, the Author named 

“Professor X” WORKS IN the Department named “Systems Engineering & Management”. The 

Author’s “duties” in this relationship are to “Perform[s] research” and “teach[es] courses.” The 

other relationships are interpreted using the same method. 
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Retrieval and Transactions  

Data retrieval from a DBMS typically involves a transaction which is a process involving 

multiple steps all of which must be completed for the transaction to be considered successful 

(Sullivan, 2015) (Gray, 1981). Five concepts describe and provide context to transactions in 

DBMSs: queries, the CAP theorem and its extension, PACELC, ACID, and BASE. The ACID 

principle pertains primarily to RDBMSs while the BASE concept generally applies to NoSQL 

systems (Redmond & Wilson, 2012) (Sullivan, 2015) (Brewer, 2012). In contrast, the CAP and 

PACELC theorems apply to any distributed database system (Fox & Brewer, 1999) (Abadi D. J., 

Consistency tradeoffs in modern distributed database system design, 2012). These concepts will 

be described in detail in the following sections. 

ACID 

The ACID principle involves four properties concerning a transaction: Atomicity, Consistency, 

Isolation, and Durability (Haerder & Reuter, 1983). An atomic transaction is considered an 

indivisible unit. Thus, all transaction steps must be completed or none of them will complete 

(Sullivan, 2015). A consistent transaction results in a coherent and logical data view (Sullivan, 

2015). Isolation ensures that transaction operations are not apparent to users until the transaction 

completes. Lastly, a durable transaction ensures its results persist given a subsequent malfunction 

such as power failure or server crash (Haerder & Reuter, 1983) (Sullivan, 2015) (Redmond & 

Wilson, 2012). Such transactions undergo a two-phase commit in which databases agree to 

perform the operation and then perform the operation once agreement is communicated (Pritchett, 

2008). Again, most relational database transactions comply with the ACID principle and most 

NoSQL systems only provide ACID-like functionality at the aggregate level (Sadalage & Fowler, 

2013). 
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BASE 

The alternative to strict ACID-compliance transactions are those which support Basically 

Available, Soft state, and Eventually consistent (BASE) transactions. Basically available indicates 

the DBMS will usually be accessible by authorized users and applications. Soft state suggest that 

databases on different servers will not always contain matching copies of data. Eventually 

consistent entails that data systems will be inconsistent across servers some of the time. (Robinson, 

Webber, & Eifrem, 2015, p. 195) (Pritchett, 2008) (Brewer, 2012) (Vogels, 2009).  

Queries 

A query is an action performed on a database, using a language such as SQL, to access a 

specific set of data (Codd, 1970) (Baker, 2011). In a relational database, a query will often involve 

a join operation to de-normalize data across tables (Codd, 1970). Both NoSQL and relational 

system employ queries to address data and perform searches and transactions involving Create, 

Read, Update, and Delete (CRUD) operations. Transactions perform a single CRUD operation on 

a single atomic unit (Codd, 1970) (Chamberlin, et al., 1976) (Chodorow, 2013) (Carpenter & 

Hewitt, 2016) (White, 2015) (Anderson, Lehnardt, & Slater, 2010) (Redmond & Wilson, 2012).  

CAP and PACELC 

Brewer’s theorem, or the Consistency, Availability, and Partition-resilience (CAP) 

theorem (Gilbert & Lynch, 2002) (Fox & Brewer, 1999), defines three properties of a distributed 

database system: consistency, availability, and partition tolerance. Consistency means each server 

has the same version/copy of data viewable for transactions. This consistency is different from 

ACID consistency. Availability is the ability to provide a response to a transaction request. 

Partition resilience (also tolerance or protection) is the condition where a system will remain 

operational if the network connecting two or more database nodes fails, i.e., a network failure 
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results in a partition. The CAP theorem states a distributed system can achieve at most two of the 

three principles (Fox & Brewer, 1999) (Elmasri & Navathe, 2016) (Sullivan, 2015).  

This binary understanding of the CAP theorem has been criticized by even Brewer himself 

(2012) and has contributed to its PACELC (“pass-elk”) extension. PACELC can be understood as 

follows: if a network partition (P) occurs, then designers must balance availability (A) and 

consistency (C); else (E) no partitions exist, designers must balance latency (L) and consistency 

(C) (Abadi D. J., Consistency tradeoffs in modern distributed database system design, 2012).  

Scalability 

Scalability refers to a database system’s ability to increase its capacity while functioning 

normally without interference or minimal performance degradation. Vertical scalability pertains 

to increasing the resources of a single server, whereas horizontal scaling means to increase the 

number of available servers. Horizontal scalability also leads to distributed database (DDB) system 

design. Three concepts outline the features necessary to design a DDB system: fragmentation, 

replication, and allocation (Elmasri & Navathe, 2016, pp. 842, 845, 847) (Carpenter & Hewitt, 

2016, p. 19). In general terms, scalability is an inherent feature of many NoSQL systems and a 

capability that can be achieved with mixed success for RDBMSs. This section will compare both 

types of scaling, summarize fragmentation, replication, and allocation, and contrast the capabilities 

of relational and NoSQL systems to explain this claim. 

Additionally, it is appropriate to define Big Data during this discussion. Big Data definitions 

typically include properties known as the “three Vs”: volume, velocity, and variety. The amount 

or volume of this data can extend into the petabyte range (1K Terabytes). Velocity is simply a 

measure of how fast the data grows and typically ranges from real-time to daily time frames. 
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Variety refers to both data sources and formats (Amazon Web Services, 2016). Other “Vs,” such 

as variability, veracity, visualization, and value, have been included as well (Allen, Jankowski, & 

Pathirana, 2015) (McNulty, 2014) (Chen, Shiwen, & Liu, 2014). 

Vertical vs. Horizontal Scalability 

The inherent limitations of vertical scaling should be addressed. Consider a server upgraded to 

its maximum capacity in terms of processing power, memory, and disk storage. Currently, some 

affordable servers offer memory capacity in the single terabyte (TB) range and storage capacity 

around 100 TB (Athow, 2016). If the volume of data it needs to process and store exceeds this 

capacity, then the system has reached an upper limit and cannot operate effectively. Now consider 

that in 2013, an estimate of the digital universe’s size exceeded 4 zettabytes (4 billion TB) with an 

expectation it would increase by an order of magnitude to over 40 zettabytes by 2020 (IDC, 2014). 

The New York Stock Exchange creates 4-5 terabytes of data daily, Facebook’s photo data grows 

by 7 petabytes monthly, and the Internet Archive hosts approximately 18 petabytes (White, 2015, 

p. 3). The suggestion that a single server is inadequate does not appear unfounded. These facts 

underscore the current (or pending) limitations of vertical scaling.  

Reflecting on the numbers cited above, the notion of horizontally scaling to thousands of 

systems may seem improbable. Yet in 2013, Microsoft claimed to have one million servers which 

CEO Steve Ballmer claimed was less than Google’s but larger than Amazon’s (Anthony, 2013). 

Hosting thousands of servers now seems to exist within the realm of the possible. Additionally, 

scaling in this manner naturally supports a larger user base than a single, vertically scaled system—

the Internet itself is proof of this claim. 

Fragmentation 
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Fragmentation involves breaking the database into logical units. Two types of fragmentation 

are common: horizontal (or sharding) and vertical. A shard or horizontal fragment of a table is a 

subset of its rows. Shards are commonly organized to segment the data by feature or function, by 

a hashing algorithm, or through a look-up table. An additional concept related to shards is that of 

a “share-nothing” architecture in which no centralized state exists between shards and each server 

operates independently. We will see this idea opposes the concept of replication. In contrast to 

sharding, vertical fragmentation divides tables by columns. Hybrid or mixed fragmentation occurs 

when a combination of sharding and vertical fragmentation is used (Carpenter & Hewitt, 2016) 

(Elmasri & Navathe, 2016). 

Replication and Allocation 

The replication concept involves copying all or part of the database across multiple servers. A 

fully replicated distributed database will have a full copy of the database on every server in the 

system. Alternatively, some fragments are replicated. Replication can improve availability by 

ensuring some nodes are available when others go offline. Allocation is the process of assigning 

replications to particular nodes in the system. When fragments are disjoint, i.e., every fragment is 

stored at only one site except for primary keys, it is known as nonredundant allocation (Elmasri & 

Navathe, 2016, pp. 849-850).  

Concepts of master, slave, cascading replication, and concurrency control are included with 

replication models. Concurrency control is used to manage copies of the data, failure of nodes or 

communication links. Certain implementations, such as those supporting two-phase commits, must 

also manage distributed commits (Carpenter & Hewitt, 2016, p. 12). Additionally, deadlock may 

occur amongst distributed systems and requires management. A three-phase commit protocol is 

one solution to the distributed commit and deadlock problems (Elmasri & Navathe, 2016, p. 858). 
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Some systems may employ a master and slave relationship between servers to facilitate the 

replication process. Additionally, some implementations, such as PostgreSQL, use cascading 

replication to propagate replication from slave to slave (Elmasri & Navathe, 2016, p. 854) (Obe & 

Hsu, 2015, pp. 181-2). 

Scaling in ACID vs. BASE System 

NoSQL BASE systems are typically designed with scalability in mind. Key-value databases 

employ methods of replication (Sullivan, 2015). Key-value and column DBMSs tend not to shard 

their data (Robinson, Webber, & Eifrem, 2015). Document database supports replication of its 

databases and can be initiated to operate manually or continuously. In this way, it supports read 

request scaling by providing more than one database to provide load balancing and higher 

availability. Additionally, some document databases, such as CouchDB, provide a means to shard 

and distribute a logical database across servers (Anderson, Lehnardt, & Slater, 2010). Likewise, 

MongoDB was designed for horizontal scaling and automatically balances data loads across 

servers. When new machines are added, MongoDB will determine how to spread existing data to 

them. Additionally, MongoDB includes autosharding, a process which partitions data across 

various servers (Chodorow, 2013). Graph databases are an anomaly when it comes to NoSQL 

scaling because they typically do not scale horizontally very well. However, even an exception 

exists within this exception: Titan is designed for horizontal scaling (Sullivan, 2015).  

After reviewing the horizontal scalability concepts, one can speculate how systems strongly 

adhering to the ACID transaction principles will experience more complexities and performance 

degradation than systems in which BASE principles are expected (Dash, 2013). For example, 

consider the latency involved with a two- or three-phase commit across 1000s of nodes. If each 

system operates independently, then each system has to wait for, receive, and process a commit 
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message from the other systems in order to complete the commit. Even systems with more efficient 

master and slave relationships or nonredundant allocation will have similar issues of complexity 

compared to those designed to scale out. In short, RDBMS, ACID-based systems have struggled 

to meet the demands of Big Data scaling (Sullivan, 2015). 

Single Desktop System Database Evaluation Criteria  

This section describes criteria by which the characteristics of relational and the four NoSQL 

database types can be examined. Figure 8 displays the 12 criteria organized as a hierarchy. In this 

figure, the top node identifies the system of interest—a data storage and retrieval system. The next 

level of nodes provides a means to logically group the 12 criteria. Specifically, storage, retrieval, 

and aggregate properties partition the criteria.  

Overall, the 12 criteria were derived from relational and NoSQL database traits that remain 

relevant for a single box environment. Thus, many of the typical NoSQL characteristics associated 

with large scale data and applications are excluded. For example, horizontal scalability was not 

considered because this characteristic pertains to large-scale, distributed systems only. 

Additionally, the identified criteria focus on data storage and retrieval operations and mechanisms 

available within the databases themselves. That is, the database type does not rely on an external 

application to provide the feature.  

For this discussion, an aggregate is a collection of all the variables of interest sampled at a 

given moment in time. “Of interest” refers to the variables intended to be stored, retrieved, or 

updated in the DBMS. Likewise, an element would be a single sample of a variable, such as engine 

speed, altitude, or heading. Furthermore, a transaction is a CRUD operation performed on a single 

aggregate and a query is a set of transactions executed on one or more aggregates and/or elements.  
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Figure 8. Evaluation Criteria 

 

The proposed evaluation criteria are logically grouped by the type of operations they influence. 

First, Storage Properties refers to characteristics of NoSQL databases that affect either extent to 

which data must be manipulated prior to storage or the ability to create/delete aggregates and then 

view them once created. The second characteristic, Retrieval Properties, captures how well each 

database type can return stored data. The power of the NoSQL aggregate model stems from storing 

related data physically together, allowing efficient retrieval. Implicitly then, certain aspects of the 

stored data and more importantly how it is expected to be returned must be known a priori. For 

retrieval operations, the characteristics of interest include query complexity, the amount of a priori 

knowledge known, and the timelines required for query returns. The last set evaluation criteria 
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involve properties of the aggregates generated by each NoSQL database type. They include issues 

of consistency, data typing, ability to handle varied transaction size, and ability to update and 

manipulate each aggregate. Additionally, this set includes criteria involving properties which 

cannot be exclusively categorized as storage or retrieval that is some of these criteria incorporate 

aspects related to both storage and retrieval.  

To provide clarifying examples of how the criteria are to be used, a database system designed 

for Unmanned Aircraft Systems (UAS) log data is discussed. For this UAS, log data is generated 

by the periodic sampling of various subsystem status variables. The following sections discuss 

each of these criteria in greater detail and outline the relative importance for each. 

Storage Properties 

The first storage property is preprocessing and includes all preprocessing and associated 

operations required to import/load data into the DBMS. Examples of preprocessing may include: 

deciding/selecting which variables to store in the DBMS, filtering the selected variables from the 

raw data, transforming filtered variables into a format suitable for loading, and loading transformed 

data into the DBMS. When evaluating this criterion, one should consider the ability to perform 

preparation work before data can be loaded into the DBMS. If unwilling (or unable), then this 

criterion is important because the DBMS is expected/required to facilitate data preparation, 

preprocessing, or loading of raw data. However, if the user is willing and able to handle the 

preprocessing, then this criterion is less important because the DBMS is not expected/required to 

facilitate this process. 

The second storage property is structural malleability which refers to the DBMS’s ability to 

add/remove “types” of aggregates to and from the DBMS. For example, aggregate types for a UAS 
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database could include: engine subsystem, pilot inputs, aircraft telemetry, and others. If, perhaps, 

a new sensor system was added to the UAS, a new aggregate type might need to be added to the 

DBMS to store and organize data for this system. When considering this criterion for a UAS 

database, it would be important to think about the likelihood a new subsystem (thus new aggregate) 

would be added to or removed from the aircraft. If likely, then this criterion is important because 

a solution to support aggregate type changes is needed. If not, then this criterion is less important. 

The final storage property is transparency. In this case, transparency describes the DBMS’s 

ability to store aggregates such that individual elements within the aggregate can be viewed and 

retrieved during read transactions. For example, assume a DBMS is designed using an aggregate 

model that contains all variables for a sample in time. Thus, engine speed, altitude, landing gear, 

tail number, timing information, etc. are stored in each aggregate. When a DBMS supports 

transparency, it is possible to search for and retrieve engine speed from an aggregate. Without 

transparency, searches are limited to retrieving the entire aggregate, not the specific value for 

engine speed. Users should consider if they care about retrieving individual elements, such as 

engine speed, from the data. If so, then this criterion is important because there is a need to access 

individual data elements within aggregates. If not, then this criterion is less important.  

Retrieval Properties 

The first retrieval property criterion is query complexity which describes a DBMS’s ability to 

perform both simple and complex queries. A simple query retrieves data using only a unique 

identifier or a range of identifiers and/or values. Complex queries involve additional conditions 

enforced on the operations. For example, a simple query might ask 1) if the engine speed ever 

exceeded 5500 RPM or 2) if the engine speed exceeded 5500 RPM on the mission flown today. 
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An example complex query, however, may ask 1) if the engine fan drew more than 33 Amps while 

the cooling fan was set to auto or 2) what is the average coolant temperature during a mission for 

each aircraft. Users should consider whether they need the database to perform sorting, grouping, 

mathematical calculations, and conditional searches on their data sets. If yes, query complexity is 

important. If not, query complexity is less important. 

The second retrieval criterion is query omniscience and it refers to the degree to which the 

complete set of possible queries is known by the user before system is implemented. For example, 

if the user knows every question that will ever be asked about the data and does not anticipate 

unexpected events or circumstances will require unique investigations, then this criterion is 

important because the user will not need the DBMS to support additional queries/questions in the 

future. However, if the possibility exists for new unanticipated queries to be developed or for 

existing queries to be changed, then this criterion is not as important.  

Finally, result timeliness is the last retrieval criterion. Result timeliness refers to how quickly 

the results are provided to the user after a request is made. For example, a query is described, run, 

and produces results within 10 seconds of starting to run. If the user expects results within seconds 

or less, then result timeliness is important. However, if the user is willing to wait minutes or longer 

for a result, then result timeliness is less important. 

Aggregate Properties 

The first evaluation criterion for aggregate properties is cross-aggregate consistency. This 

criterion refers to the DBMS’s ability to perform cascading updates to data and relationships. 

Assume a UAS was flown on multiple distinct flights and the log data and tail number for each 

flight is loaded into a DBMS as part of several different aggregates. Additionally, the DBMS stores 
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the relationship between the UAS and each flight as part of these different aggregates. Under such 

a scenario, queries can determine which flights were flown by a particular UAS as well as any 

associated log data by looking for tail numbers across the aggregates. Queries can also 

retrieve/update properties about relationships such as the start/end date and time of all missions 

flown by a UAS using its unique tail number. Later, someone realizes the wrong tail number was 

recorded for a given flight, resulting in an update which affects all aggregates containing data from 

the affected UAS. Cross-aggregate consistency involves the process responsible for updating each 

aggregate with the appropriate tail number. When updates to stored data are required, cross-

aggregate consistency is important, because the DBMS is expected to enforce consistency among 

data and stored relationships. If the user can tolerate some inconsistencies or cross aggregate 

consistency can be managed in another way, then cross aggregate consistency is less important. 

Next, data typing enforcement describes the extent a DBMS applies schema enforcement for 

data typing during transactions. For example, flap angle is recorded in degrees with floating-point 

precision by the UAS. Assume an acceptable reading is 5.045 degrees. In contrast, landing gear 

status is recorded as either up or down (Boolean: 1 or 0). Data typing enforcement ensures flap 

angle is stored in and retrieved from the DBMS as 5.045 rather than being rounded to an integer 

value of 5. Likewise, landing gear status is stored and retrieved appropriately as either a 0 or 1. 

These data types (float and Boolean) can be specified in schemas and enforced by some DBMSs. 

Users should consider the data type and precision requirements. If the user’s elements have well-

known types and precision and the user wishes to ensure they are maintained within the DBMS, 

then data typing enforcement is important. If not, it is less important. 

The third aggregate evaluation criterion is large aggregate transactions which refers to the 

DBMS ability to store, retrieve, and update large aggregates quickly (within a few seconds). For 
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this criterion, a large aggregate is defined as being larger than 1 terabyte (TB) in size. Assume for 

a UAS example, the combined size of all the variables of interest collected in a sampling period is 

1.5 TB. In other words, an aggregate would be 1.5 TB. In this situation, DBMS support for large 

aggregate transactions is important. If not, then this criterion is less important. 

Conversely, the fourth aggregate evaluation criterion is small aggregate transactions 

which describes a DBMS’s ability to store, retrieve, and update small aggregates quickly. A small 

aggregate is defined for this criterion as being smaller than 1 kilobyte (kB). In the UAS context, if 

the combined size of all the sampled variables is 800 bytes, then the resultant aggregate would be 

800 bytes. In this situation, small aggregate transactions are important, because the resultant 

aggregate is considered small (<1kB). If the resultant aggregate was larger than 1 kB, then the 

small transaction performance would be less important. It should be noted that users may have the 

need for both large and small aggregate transactions. Additionally, some DBMS excel only at large 

scale, while others perform well at both. 

The fifth evaluation criterion is manipulation. Manipulation refers to the DBMS’s ability 

to update elements within stored aggregates independently from other aggregates and elements. 

This behavior may be desirable depending on what relationships exist between stored aggregates. 

For example, assume a UAS flight occurred and the log data is loaded into a DBMS. Later it is 

discovered that the timing signal was initially corrupt resulting in 10 aggregates containing 

incorrect timing information. Since subsequent timing information was accurate, it can be used to 

calculate the timing information for the corrupted periods. To update this information in the 

DBMS, the appropriate timing element within the affected aggregates must be changed. The 

manipulation property enables these update operations to occur independently without the DBMS 

automatically performing cascading update to all aggregates. This ability to independently perform 
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updates distinguishes manipulation from cross aggregate consistency. Users should consider 

whether updates to elements, such as timing, in existing aggregates are likely. If so, manipulation 

is important for the database solution to provide. If not, this ability is less important than others. 

Finally, plasticity pertains to the DBMS’s ability to add or remove elements within stored 

aggregates. For example, assume a UAS flight took place and the log data is loaded into a DBMS. 

Adequate GPS data was collected for the entire flight. Now the user wishes to use the existing GPS 

timing information to calculate the UTC time for each sample and store the result as a new element 

with the aggregate (LabSat, 2016). The plasticity property enables the DBMS to add a “Calculated 

UTC time” element to each aggregate. Similarly, assume a UAS flight occurred and the log data 

is loaded into a DBMS. Later it is determined that the Engine Speed element was included but 

contained corrupt data for this mission. The user wishes to remove this element from all of the 

aggregates for the flight. Plasticity enables the DBMS to remove elements from existing 

aggregates. To evaluate the need for plasticity, users should considerations whether the need exists 

for the DBMS to support adding or removing elements in existing aggregates. If the need exists, 

plasticity is important. Otherwise, it is not as important for the database to provide this ability. 

Summary 

This chapter explored the characteristics of log data which make it unique from other types of 

data. Specifically, log data is generated from a wide variety of electronic systems. It is also 

produced as a secondary function of its associated system. Log data is also inherently related to 

time as it is a “sequence of records.” The structure of log data can vary widely in both organization 

and contents. Otherwise, log data is similar to other data. The discussion of log data was intended 

to provide a context for the UAS log data use case which motivated the overall research problem 

to develop a suitable log data storage and retrieval system. 
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A variety of database systems and evaluation criteria were also covered in this chapter. The 

most significant systems for this research will be the relational and modern NoSQL database types. 

Specifically, these NoSQL types include key-value, document, columnar, and graph models. 

Additionally, 12 criteria were developed to compare key aspects of these database systems. These 

five systems will be evaluated using criteria and following the methodology described in the next 

chapter. 
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III. Methodology 

This section outlines the methods, processes, and tools that will be used to evaluate the five 

database types for small-scale storage and retrieval applications. Specifically, the five database 

types are the relational and four common NoSQL types: key-value, document, columnar, graph. 

An Unmanned Aircraft System (UAS) use case will provide the context and scope for this 

approach.  

A two-part study will be performed beginning with a laboratory simulation of representative 

implementations for each database type. The UAS system will also guide the design and 

implementation of the databases. The second part will be a field study to collect inputs from UAS 

log data users. The results of the literature review and both parts of the study will be used as inputs 

to the Analytic Hierarchy Process. This process was developed by T.L. Saaty to support decisions 

involving multiple criteria. The AHP approach also supports evaluation for criteria for which there 

is not established rating scale (How to make a decision: The Analytic Hierarchy Process, 1990) 

(On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process., 2007). 

AHP will be the mechanism to exercise the 12 criteria, established in chapter II, to identify a 

database that is best suited for the UAS users’ needs. To review, the 12 criteria are as follows: 

Cross-Aggregate Consistency (CAC), Data Type Enforcement (DTE), Large Aggregate 

Transactions (LAT), Manipulation (M), Plasticity (Pla), Preprocessing (Pre), Query Complexity 

(QC), Query Omniscience (QO), Result Timeliness (RT), Small Aggregate Transactions (SAT), 

Structural Malleability (SM), and Transparency (T). The use case, simulation study and the 

assessment process will be described in this chapter. 

Database Simulation Study 
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This study will focus on a use case involving the Unmanned Aircraft System (UAS) log data. 

This use case will be used to guide the study parameters to compare the five representative 

implementations of common database types. Data from ten flights spanning a three-year period, 

and two aircraft types will be prepared for, stored in, and retrieved by the databases. Additionally, 

ten questions provided by the log data user community will be used to assess retrieval aspects of 

the databases.  

For this particular dataset, the contents of the log data have changed over the system’s lifetime. 

Changes were driven by both hardware and software updates to the aircraft and controller stations. 

Specifically, new variables were added, removed, renamed, shared names with other variables, 

and/or were moved within the log data. This issue makes for unique data storage and retrieval 

challenges as traditional data import techniques, such as matching a variable to a relational table 

attribute, will fail when the contents are modified. Furthermore, retrieval methods may need to be 

adjusted to account for changes in contents as well. 

UAS Log Data Use Case 

For this use case, we consider a commercially-produced UAS system composed of an 

Unmanned Aerial Vehicle (UAV), a controller station, and a Line-Of-Sight (LOS) antenna 

operating as shown in Figure 9. From the controller station, operators can control the system from 

start, taxiing, takeoff, during flight, through landing, and powering down. While the system is in 

operation, the controller sends commands to the UAV and receives data from the UAV, both which 

are recorded into log files. Additionally, other flight status, timing, location, and communication 

information is recorded during the flight (Headquarters, United States Air Force, 2014).  
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Figure 9. Operational View of the Unmanned Aircraft System of Interest. 

 

Table 1 displays a list of log-generating subsystems and their descriptions. These subsystems 

will be used to organize data in the columnar and relational database types. In total, over 3,000 

variables collect data from 15 subsystems during flight operations. Of these variables, 

approximately 800 are identified in documentation which is available to the system operators. 

However, the controller station records all variables and generates multiple log files throughout 

the flight. The system generates approximately 40 MB of log data per hour of operation.  

Additionally, the log data is split into three categories of files, i.e., D, M, and A, and stored in 

a proprietary, but openly documented, MATLAB data format (Library of Congress, 2017) 

(Mathworks, 2018). The D-files contain variables whose contents alternate between Boolean 

values and are sampled at a low speed collection rate. In contrast, the M-files contain variables 

requiring double-precision accuracy and are also collected at a low rate. The A-files are a strict 
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subset of the variables in the M-files but are sampled at a higher collection rate. A set of D, M, and 

A log files are saved at the controller station for each hour of flight. The log data is not updated or 

changed after being written to these files. 

Table 1. List of UAS Subsystems and Descriptions. 

Subsystem Description 

Aircraft Air vehicle system composed of structural, mechanical, and electrical subsystems and 

components. 

Autopilot Assists operator(s) with aircraft flight responses according to flight plan and environment. 

Communication Electrical and radio components enabling voice, data, and control communication between 

aircraft GCS, and other entities. 

Electrical Aircraft electrical components not directly supporting communications. 

Engine Aircraft component providing mechanical and electrical power to other air vehicle 

subsystems. 

Failure Responsible for tracking failure events in aircraft and GCS. 

Feedback Manages aircraft responses to environmental and operator input. 

Fuel Responsible for delivering fuel to aircraft engine and providing fuel status information. 

Controller (Station) Houses human operator(s) and ground-based command, control, communications 

equipment. 

Landing Gear Mechanical and electrical subsystem enabling ground mobility. 

Modes Manages navigation modes, waypoints, and planned flight profiles. 

Navigation Determines and tracks air vehicle location. 

Operator Input Responsible for accepting, tracking, and communicating operator input to appropriate UAS 

subsystem. 

Performance Tracks aircraft performance information such as air speed, angle of attack, and vertical 

velocity. 

Sensor Performs operations related to particular DoD UAS capability such as recording and 

transmitting video. 

 

The differences in sampling rates resulted in modeling difficulties using a relational database. 

Evans refers to this type of problem as an impedance mismatch between objects and their relational 

models (Evans, 2011). Specifically, if data with both sampling rates are loaded into normalized 

tables, many null values must be stored as only a few variables are sampled at the higher rate. 

Thus, many tables and attributes will not contain data other than these null values. This is not an 

ideal situation for a relational database. The structural malleability criterion will be used to assess 

how the various database types handle this type of problem.  
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Another consideration is the need for specific data types, i.e., Boolean and double, to retain 

fidelity. The need to retain the appropriate precision will drive the need for the database types to 

support a data type specification. This capability will be assessed using the data typing 

enforcement criterion.  

Table 2 presents a summary of the data used for the study. In this table, the Flight Date column 

contains the date the UAS executed a flight and generated log data. The Aircraft Type column 

indicates whether the UAS was type A or type B. The next column, Aircraft ID Number, contains 

a unique identification number for the UAV. Likewise, the Controller ID Number column contains 

an identification number for the controller system commanding the UAV. This information will 

be used to generate keys for some of the database types used in this study.  

Table 2. Simulation Study Flight Data 

Flight Date Aircraft Type Aircraft ID Number Controller ID Number 

2010-01-08 A 398 505 

2010-01-12 B 433 505 

2010-08-20 B 450 537 

2010-12-14 A 371 537 

2011-02-15 A 370 506 

2012-01-06 B 433 522 

2012-02-22 B 469 643 

2012-04-17 B 450 643 

2012-04-27 A 314 605 

2012-05-29 A 336 605 

 

Figure 10 contains the ten questions from the user community. These questions will be used to 

design queries that elicit the appropriate information from each database type. 
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1. For which flights, dates, and time periods does the type A aircraft engine exceed 2,500 revolutions per 

minute (RPMs)? 

2. For which flights, dates, and time periods does the aircraft exceed 15,000 feet in altitude Above Ground 

Level (AGL)? 

3. For which flights, dates, and times, did the airspeed exceed 100 Knots Indicated Air Speed (KIAS) with 

the landing gear extended in the down position? 

4. Did any aircraft touch down in excess of 480 feet per minute? 

5. What is the maximum altitude in feet AGL for each flight? 

6. What was the operating time for each flight in seconds? 

7. For which, if any, flights, dates, and times did the aircraft lose connection to the controller station? 

8. For which, if any, flights, dates, and times, did the difference between the Manifold Air Pressure sensor 

#1 (MAP) 1 and MAP 2 exceed red/yellow limits for the type A aircraft? 

9. For which, if any, flights dates, and times did the fuel pump fail during the mission? 

10. For which, if any, flights, dates, and times did the Beta angle exceed 19 degrees during operations? 

 
Figure 10. UAS Log Data Question List. 

 

It is necessary to mention that no centralized enterprise-wide repository for storing and 

retrieving log data currently exists for the UAS of interest. Partial data stores exist on two separate 

networks, but neither instance contains a comprehensive data repository. The most accessible 

repository is maintained by the Flight Operational Quality Assurance (FOQA) analysts, but this 

data store contains only a portion of log data sets generally involving take-offs and landings. The 

other data store provides access, by exception, to complete flight data logs. Data is loaded into this 

repository when a data user requests analysis support from personnel located at another unit. Data 

is removed from this data storage medium when the original analyst deletes it. Separately from 

these data storage systems, analyst personnel typically obtain the log data from the controller 

station after a problem has occurred. Once their analysis is complete, the data is retained for a 

varying amount of time. That is, most analysts keep it on their location computer until they start 

running out of space.  
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This lack of a central repository for storing and retrieving log data, the ad hoc approach to 

sharing, and the single box approach to analysis makes this log data from this UAS appropriate for 

this study.  

Database Design Simulation 

The approach for designing and implementing each of the NoSQL database types follows a 

pattern involving six phases. In phase 1, the query expectations were considered in the context of 

each the data model, key-value, document, column, graph and relational. The considerations were 

used to define the appropriate aggregate construct to support log storage and retrieval via query. 

Once the aggregate was defined, phase 2 is initiated and the implementation-specific schema, i.e., 

logical data model, is designed. Queries are also developed at this time. For example, in the 

relational model, this step defines the tables, attributes, and keys. For the NoSQL types, this can 

include the definition of a schema or specification of the data type for elements within aggregates. 

Phase 3 involves preprocessing the data to be loaded into each database type. This phase includes 

the typical Extract, Transform, and Load (ETL) procedures related to preparing data to be loaded 

into a database. In phase 4, scripts are developed to create the appropriate schema for each database 

and import the data. Phase 5 involves importing the data using the scripts created in the previous 

phase. Lastly, the queries are run in phase 6. When designing and building the database simulations 

it was important to use identical processes for each simulation. It is understood there are numerous 

instantiations of NoSQL databases. For the purposes of this study, the base capabilities of each 

database type were of primary interest. 

The single box environments were configured as virtual machines running a 64-bit Linux Mint 

18.1 with 16 GB of RAM and 8 processing cores and 200 GB of hard disk space. This disk space 
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was allocated from a 2 TB Western Digital SATA drive rated at 7,200 RPM and 6 Gigabits per 

second. The virtual machines ran on an Intel i7-4820 CPU at 3.7 GHz with 32 GB of RAM on a 

64-bit Windows 7 operating system. Each database type existed within its own virtual machine 

and only one machine was active at a time. This independence and isolation provided for uniform 

measurements between the database types.  

A set of scripting tools written for the bash shell and in the Python language were developed 

to support these phases. The decomposition of the process into phases enable uniform 

measurements for phases 3 through 6 which can be compared during analysis. Specifically, bash 

scripting was used facilitate some data transformation, initialize the Python scripts for importing 

data, execute the queries, and record timing information.  

Measurements 

Table 3 identifies the characteristics to be measured in each phase of the study. Generally, two 

categories of data will be collected: the time to execute, i.e. the execution duration, and the lines 

of code (LOC) required to implement the steps in the phase. Specifically, the matrix columns 

identify the task areas of interest for the characteristic categories. The task areas of interest are 

Create Schema, Transform Data, Import Data and Queries. These task areas are the logical 

nomenclature for tasks accomplished in the phases as shown in this table. The cells containing an 

‘X’ associate the phase with data collected. While phase 1 was important to the design, it produced 

no measurable quantity. However, phase 1 contributes to a qualitative assessment of the Query 

Omniscience criterion. 
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Table 3. Matrix of Measured Variables in Each Phase. 

 

 

Table 4 illustrates the relationships between the task areas and the evaluation criteria. 

Specifically, the Create Schema task contributes to the Cross-Aggregate Consistency (CAC), Data 

Typing Enforcement (DTE), and Query Omniscience (QO) criteria. The Transform and Import 

Data tasks both contribute to the Preprocessing (Pre) criterion. Transform and Import Data also 

contribute to assessing the Structural Malleability (SM) criterion. The Import Data task also 

contributes to the DTE, Large Aggregate Transactions (LAT), Small Aggregate Transactions 

(SAT), and SM criteria. The Queries task contributes to the LAT, Query Complexity (QC), and 

QO, Result Timeliness (RT), SAT, and Transparency (T) criteria. The analysis of the results will 

be discussed in detail in Chapter IV.  

Table 4. Relationship of Task Areas to Evaluation Criteria. 

 

For this study, a single implementation of each database type was chosen as a representative 

example to be evaluated. The individual implementations were chosen from among popular 

DTE CAC LOC

Execution 

Duration (s) LOC DTE

Execution 

Duration (s)

Size on 

Disk 

(MB)

# of 

Aggreg

ates LOC T

Execution 

Duration (s) LOC

Phase 2 X X X

Phase 3 X X

Phase 4 X X

Phase 5 X X X X

Phase 6 X X

Transform Data QueriesCreate Schema Import Data

CAC DTE LAT Pre QC QO RT SAT SM T

Create Schema X X X

Transform Data X X

Import Data X X X X X

Queries X X X X X X
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options providing features that best represented their type (Edlich, 2016). Specifically, Riak KV 

version 2.2.3 was selected to represent the key-value type, MongoDB version 3.6 was selected for 

the document class, HBase version 1.6 on Hadoop version 2.9 for columnar, Neo4j version 3.3.3 

for graph, and MySQL Community Edition version 5.7 as the relational database representative. 

The author acknowledges each selected implementation still provides some nuanced 

characteristics and features extending beyond the representative traits of database type represented. 

Additionally, some databases may perform better in for certain tasks. These facts are unavoidable 

given that NoSQL implementations are often tailored to a particular purpose (Sadalage & Fowler, 

2013) (Redmond & Wilson, 2012).  

Analytic Hierarchy Process (AHP) Assessment 

This section outlines how AHP will be used in this study to support the development of a single 

box storage and retrieval system suitable for log data. In 1990, Thomas L. Saaty developed AHP 

to evaluate multiple criteria and multiple alternatives towards a goal as a decision support 

mechanism. AHP involves organizing factors which contribute to the decision in a hierarchy which 

may be incomplete. The factors are evaluated in a pairwise manner by judges using a fundamental 

scale. The scale enables the judges to rate the importance for the pairwise comparisons. 

Additionally, the alternatives are compared against each other with respect to their performance 

for each factor. The ratings are recorded in a matrix. Using the results of the comparisons, a set of 

local priorities may be approximated by normalizing the values of the recorded judgements down 

the columns and then averaging across the rows, i.e., “the normalized column average.” The result 

is a vector containing local priorities for the criteria and or factors. This process is repeated to 

determine local priorities for performance ratings as well. The last step is to calculate a set of 
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global priorities from the local priorities to identify the most suitable choice amongst the 

alternatives to support the goal (Saaty T. L., 1990).  

Importance ratings 

Table 5 presents the first matrix employed for this assessment. It consists of rows and columns 

containing the criteria. The full names of the criteria are provided in the rows and abbreviations 

are used as column headings. The relative importance of each criterion, with respect to the 

objective, is established using pairwise comparisons of criteria in each row to criteria in each 

column.  

The comparisons are evaluated from left to right and then top to bottom in the matrix. Thus, 

Cross-Aggregate Consistency (CAC) is compared to itself, Data Typing Enforcement (DTE), 

Large Aggregate Transactions (LAT), and so on until CAC is compared to Transparency (T). Then 

DTE is compared to itself, LAT, and so on until DTE is compared to T. This process continues 

downward through the rows of the matrix. 
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Table 5. Log Data Storage and Retrieval System Evaluation Criteria Matrix. 

 
CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1         X   

Data Typing Enforcement (DTE)  1           

Large Aggregate Transactions (LAT)   1          

Small Aggregate Transactions (SAT)    1         

Manipulation (M)     1        

Plasticity (Pla)      1       

Preprocessing (Pre)       1      

Query Complexity (QC)        1     

Query Omniscience (QO)         1    

Result Timeliness (RT)          1   

Structural Malleability (SM)           1  

Transparency (T)            1 

 

Table 6 provides the fundamental scaled identified by Saaty for the the AHP process, with 

explanations tailored for clarity and purpose, to rate the pairwise comparisons. Acceptable values 

for the comparisons are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, and 1/9. If the 

criterion in the row is more important to the use case than the criterion in the column, a whole 

number is recorded in the appropriate cell. If the column is more important than the row, a 

fractional number is recorded (1990).  

Table 6. The Fundamental Scale. 

Importance 

intensity 

Definition Explanation 

1 Equal importance Two criteria, row a and column b, contribute 

equally to the objective. 

3 Moderate importance of one over another Experience and judgment moderately favor one 

criterion, row a, over another, column b. 

5 Essential or strong importance Experience and judgment strongly favor one 

criterion, row a, over another, column b. 

7 Very strong importance One criterion, row a, has demonstrated dominance 

in practice over another, column b. 

9 Extreme importance The evidence favoring one criterion, row a, over 

another, column b, is of the highest possible order. 
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2, 4, 6, 8 Intermediate values between the two adjacent 

ratings/judgements 

Used when compromise is needed. For example, 6 

can be used for the intermediate value between 5 

and 7. Other intermediate values, such as 2.1, 2.2., 

2.3, and etc., are acceptable if the whole numbers 

are deemed too substantial. 

1/2, 1/3, 1/4, 

1/5, 1/6, 1/7, 

1/8, 1/9  

These values are used when you believe the criterion in the column, b, is more important than the 

criterion in the row, a. Note: Though fractions are easier human judges, decimal equivalent values 

are calculated used, in place of these fractions, for spreadsheet calculations.  

 

This process results in two notable outcomes. The first outcome is that each criterion is 

compared to itself along the diagonal. Thus, the diagonal of the matrix is filled with 1s. 

Additionally, a complete evaluation of the matrix would result in redundant comparisons. For 

example, the comparison of CAC to DTE has a reciprocal comparison of DTE to CAC. That is, 

the matrix is symmetrical about the diagonal. Thus, the comparisons to the right of the diagonal 

have a reciprocal comparison on the left side. Responses will be recorded to the right of the 

diagonal and the reciprocal will be calculated for the left. Therefore, half of the matrix is shaded 

in the figure to prevent redundant, wasted effort by the judges. Values will be calculated for the 

shaded area using the inputs from the right side of the diagonal.  

Cells in the evaluation matrix are referenced in a row-oriented manner. For example, consider 

the cell in Table 5 containing the ‘X’ value. This cell represents the comparison between the CAC 

and RT criteria. To identify this cell in a shorthand manner, one may refer to this cell as the CAC-

RT cell. Its symmetric pair (about the diagonal) would be the RT-CAC cell. The value in the 

symmetric pair is the reciprocal of the value in the original cell, CAC-RT. Thus, if CAC-RT 

contained a “2.00,” RT-CAC would contain “0.50.” 

Inputs from subject matter experts (SMEs) from operations and maintenance support, training, 

safety, and Flight Operations Quality Assurance (FOQA) expertise were requested. These areas 

encompass the majority of the known population of active duty UAS log data users. The testing 
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community is not directly represented, but it was known that one of the operations and maintenance 

support SMEs provided support to this community.  

A research goal was to obtain responses from at least two judges in each area to provide some 

validation of the methodology. 

Performance Ratings 

In addition to the judge’s importance inputs, ratings must be assessed for the database types 

with respect to each criterion. In these cases, pairwise comparisons are made between the database 

types regarding how well each type provides capability, i.e. performs, as defined by a criterion 

under consideration. Twelve additional matrices are used to record assessments made using data 

from the comparison study and database type’s fundamental capability, i.e. baseline ability, to 

provide features as identified by the literature review. The same scale is used for these ratings, but 

instead of importance, performance is considered. As before, these matrices will be used to 

calculated additional local priorities as described by Saaty (1990). 

Table 7 presents an example matrix that will be used to record these ratings. In this matrix, 

both the columns and rows contain a database type. The cells in the matrix will be populated with 

the ratings as described previously. The diagonal of this matrix again contains “1’s,” signifying 

that each database type is rated equally to itself with respect to the considered criterion. 

Furthermore, these matrices are also symmetric about the diagonal and thus the cells to the left of 

the diagonal are shaded as before. The shaded area is shown to illustrate the symmetry of the 

matrix; values will be recorded in this area of each matrix. 
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Table 7. Example Matrix for Performance Ratings. 

 Key-Value Document Columnar Graph Relational 

Key-Value 1     

Document  1    

Columnar   1   

Graph    1  

Relational     1 

 

Global priorities 

Combining the results of both sets of ratings will be used to calculate the global priorities. The 

global ratings will be interpreted to identify the most suitable database type for each SME’s inputs. 

That is, each SME will have a database type identified as most suitable given their inputs. The 

database type with the valued global priority is considered the most suitable. The results of this 

methodology are calculated and discussed in Chapter IV.   
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IV. Results 

This chapter presents the results of the simulation study, field study, and the AHP assessment 

to support a decision involving which database is most appropriate to store and retrieve UAS log 

data in a single box environment. The simulation study data is discussed first to lay the foundation 

for the AHP assessment’s calculations. The assessment will use a combination of the literature 

review findings and the simulation study’s results to develop local priorities related to the 

performance of the database types. Once the performance ratings are calculated, the importance 

ratings will be presented and analyzed. Finally, the global priorities will be calculated using both 

the performance and importance ratings to determine the most suitable database for the UAS log 

data use case. 

Simulation Study and Performance Ratings 

The results from the database simulation study are discussed in this section. A definition of the 

aggregate for each database type is presented first. Next, these results are organized and presented 

according to the task areas of interest identified in Chapter III, Table 3 to provide clarity. To 

review, these task areas are Create Schema, Transform Data, Import Data and Queries. 

Afterwards, each the results from each task area will be used to support the performance 

assessment of each database type. Chapter III, Table 4 illustrated the relationship between task 

areas and criteria.  

The performance evaluation matrices were filled according to the AHP rating process and scale 

described in Chapter III. Since the matrices are symmetric, the cells to the right of the diagonal 

contain recorded values and those to the left of the diagonal contain calculated reciprocals of the 

corresponding rating. Therefore, the ratings recorded in the “right” cells will be the focus of 
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analysis and discussion. Subsequently, the calculated ratings in the “left” cells will not be 

comprehensively discussed. 

Aggregate Design 

A quick review of terms is provided here for clarity. For this discussion, an aggregate is 

composed of one or more data elements and is considered an atomic unit to the DB during 

transactions. An element contains a value and is similar to a cell in a relational database table. A 

transaction is a CRUD operation performed on a single aggregate by the DB. Lastly a query is a 

set of transactions performed by the DB on one or more aggregates and elements. 

For this study, aggregates were tailored for each database type to exploit the capabilities of the 

underlying data model. In general terms, an aggregate contained a uniquely defining characteristic 

and a set of related elements. Though the definition of an aggregate in a relational database context 

has a different interpretation, the equivalent comparison for this discussion would be a row in a 

table or in some cases, the table itself. Multiple aggregates, on the order of hundreds of thousands, 

were stored in each database type. 

Riak KV Aggregates 

In the KV model, an aggregate consisted of the value portion of the key-value pair. Unique 

keys were defined using a concatenation of the flight metadata presented in Chapter III, Table 2, 

the flight number of the day, and the value of the running count of samples beginning at 0. The 

value portion of each stored key-value pair consisted a set of key-value pairs containing the 

variable name and value for all defined UAS log data variables collected for a given sample.  

Figure 11 and figure 12 present an example of a key and the resultant aggregate respectively. 

As shown in figure 11, the key includes an “A” prepended to the aircraft ID to indicate the data 
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was generated from a type “A” aircraft. Likewise, a “C” was prepended to the controller ID. This 

addition makes the data more human-readable and conform to the Riak key requirement enforcing 

that all keys are strings (Basho Technologies, Inc, 2018). Elements stored within the aggregate are 

not individually accessible via database queries; the entire aggregate must be retrieved and 

subsequently parsed outside of the database’s native functions. 

 

 

Figure 11. Example of a Unique Key Using Flight Metadata and Sample Id. 

 

Figure 12. Example Riak KV Aggregate. 
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MongoDB Aggregates 

The aggregate construct for the Mongo document database was similar to the aggregate model 

used for the Riak KV database. As discussed in Chapter II, document databases are composed of 

collections and documents. In this study, the collections were designed to contain a single flight’s 

log data set. Collections were named using the aircraft tail ID, the flight number of the day, the 

controller ID, and the date in the same manner described for the Riak KV keys. The resulting 

collection names are similar to the key shown in figure 11, yet lacked the sample ID number.  

Figure 13 provides an example of an aggregate organized using the MongoDB document 

model. In the document data model, the documents are the aggregates. In MongoDB, the 

documents are identified by a document_id element that contains a value that is unique to the 

collection’s namespace (Chodorow, 2013). These document IDs can be automatically generated 

or manually assigned. For this study, document IDs were manually assigned to each aggregate 

using the same string constructs as shown in figure 11. The remaining elements of the document 

consisted of key value pairs, consisting of log data variables name and values. Each element 

contained in the document is accessible to the user.   

 

Figure 13. Example MongoDB Document Containing UAS Log Data. 
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HBase Aggregates 

For the HBase database, aggregates were designed to store and retrieve the data required to 

support the queries identified in Chapter III. For each query, a table was created to store the data 

that the query would need to retrieve. Within each table, a column family was created to group 

together the log data for each flight. An aggregate is a row from a table and its elements vary to 

provide the information needed by a particular query. Additionally, a Flights table was created 

with column families named after the UAS subsystems to store all of the data collected. This design 

enables HBase to store all of the available log data, support the queries known at the time of design, 

and is consistent with the NoSQL paradigm of organizing data as it exists and how it is intended 

to be used (Sadalage & Fowler, 2013) (Redmond & Wilson, 2012) (Serra, Choosing technologies 

for a big data solution in the cloud, 2017).  

Figure 14 displays the relationships between elements of the Query #1 (Q1) table in HBase. 

The column families organize the log data together for each flight. Within the column families, 

only two columns are stored: Engine Speed and the Sample Date/Time. The Engine Speed column 

contains the values sampled and the Sample Date/Time column contains the date and time the 

sample was collected. The remaining nine Query tables are designed in a similar manner to store 

only the data that will be retrieved when the corresponding query is executed.  
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Figure 14. HBase Query #1 Table Logical Overview. 

Figure 15 presents the logical relationships between the column families and columns in the 

Flights table. In this diagram, only six of the 15 column families are shown. The complete list of 

column families includes Aircraft, Autopilot, Communications, Electrical, Engine, Failure, 

Feedback, Fuel, Controller Station, Landing Gear, Modes, Navigation, Operator Input, 

Performance, and Sensor. Additionally, only seven of the hundreds of columns are shown for two 

of the column families. Power, Rx Frequency, Sample Date/Time, Tx Frequency, Speed, and 

Temperature are included in this diagram.  
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Figure 15. HBase Flights Table Depicting Column Families and Columns. 

 

The reader should observe that Sample Date/Time is a repeated column in the Query and Flight 

tables across multiple column families. This redundancy is a characteristic of NoSQL designs. It 

intentionally violates the traditional relational model’s principle of normalization. In turn, this 

violation provides performance gains obtained by storing data together, i.e. the principle of locality 

(Denning, 2005). 

Neo4j Aggregates 

Recall that Neo4j refers to graph vertices as nodes and data stored within edges or nodes as 

properties (Robinson, Webber, & Eifrem, 2015). Additionally, edges represent relationships 

between nodes. Though they are shown with arrows to indicate direction, the edges/relationships 

are treated as bidirectionally traceable by Neo4j. That is, queries can trace the relationship along 

an edge from either node. Since both nodes and edges can store properties, aggregates in the Neo4j 

database can be either a node- or an edge-type depending on the details of a transaction. Thus, 
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properties stored in the nodes and edges are elements. This terminology will be used 

interchangeably within this document. 

Figure 16 displays the schema used to organize log data in the Neo4j database. In this diagram, 

Tail ID, Flight, Controller ID, and Sample are the node-type aggregates. Tail ID aggregates, i.e., 

nodes, contain data elements about the aircraft such as its ID number, aircraft type, its date of entry 

into service, date of last overhaul, assigned operating location, or other aircraft specific 

information. Similarly, Controller ID aggregates, i.e., nodes can store ID number, location, or 

other controller specific information. Flight aggregates, i.e. nodes, store data elements about the 

starting and date and time of the flight, the software versions of the aircraft and controller and 

other common/related data between aircraft, controllers, and samples. The Sample aggregates, i.e., 

nodes, store the bulk of the log data generated for a flight. Hundreds of elements, corresponding 

to sampled variables, are contained within each Sample. Thousands of Sample aggregates, each 

corresponding to an individual sample in time, are associated with a particular Flight aggregate. 

Flew, Controlled, Collected For are the edge-type aggregates. In this implementation, Flew 

and Controlled aggregates contain no log data elements. These aggregates simply represent the 

relationships between Flight and Tail ID and Flight and Controller ID respectively. The Collected 

For aggregate contains one element storing the date and time the sample was collected.  
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Figure 16. Neo4j Schema for Log Data. 

MySQL “Aggregates” 

In this methodology, the use and meaning of the term aggregate in the context of a relational 

database differs from the traditional definition. Here, a relational aggregate shall be interpreted as 

a row in a logical table that is treated as an atomic unit. A logical table includes tables defined in 

the relational database’s schema as well as views that are subsequently created. This definition 

enables comparison of aggregate types, related behaviors, and capabilities between the NoSQL 

and relational database types on more even terms. These comparisons will be explored more 

thoroughly later in this chapter.  

Figure 17 displays an example of the Engine subsystem table in MySQL. Part (a) provides a 

portion of the schema definition. Specifically, the attributes and primary key designations are 

shown. This table and other subsystem tables are normalized to approximately the third normal 

form (Elmasri & Navathe, 2016) (Hoffer, Venkataraman, & Topi, 2016). Part (b) illustrates 

example rows in the table with values shown for the composite primary key. In this example, the 
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rows are considered aggregates and the attributes are the elements. Other tables follow the same 

pattern concerning the relationship between aggregates and rows and elements and attributes.  

 

 

(a) Partial Schema Definition of Engine Table (b) Example Engine Table Data 

Figure 17. MySQL Engine Table Example 

Aggregate Summary  

These sections outlined aggregate and element definitions and provided specific examples of 

each for the database types involved in this study. The key-value and document aggregates are 

similar, but the KV database does not provide direct, independent access to the individual 

elements. The columnar aggregates are essentially rows within this data model. The graph database 

provides two type of aggregates, i.e. nodes and edges, in which elements can be stored and 

retrieved. Lastly the operating definition of an aggregate for the relational database is a table’s 

row. These concepts provide the foundation for the subsequent discussions concerning database 

comparisons. 

Task Area Results 

Create Schema 

The Create Schema task area includes all activities related to preparing the database itself to 

import log data. For MySQL, this includes defining tables, attributes, data types, constraints, keys, 

some indexes, and various other options. For the Riak database, this included identifying the 

expected data types and indexes for values on which “advanced” queries would be executed. An 
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“advanced” Riak query is considered any query that is not exclusively a value look-up using a 

specified key. In MongoDB, data types and indexes can be defined to speed up any expected 

queries. Additionally, collections can be defined to further organize the data and exploit the 

principle of locality. For HBase, tables and column families must be defined to organize the data. 

Finally, Neo4j used a schema definition to define nodes and any required relationships.  

Table 8 displays the results for the Create Schema task area of this study. In this table, the rows 

contain results for each of the five database types. Additionally, the specific database 

implementation is identified in the row label. In the DTE column, a categorical value of Yes or No 

was recorded. Yes indicates that a data type definition could be specified and subsequently 

enforced for aggregate elements. No indicates the opposite; that a data type could not be specified 

and/or enforced by the database itself. Likewise, the CAC column also contains categorical values. 

Results, Yes or No, in this column indicate whether the database natively permits, tracks, and 

enforces relationships or constraints between aggregates. The term, Natively, implies that 

additional third-party software is not required to facilitate this capability. The value included in 

the LOC column indicates the total number of Lines of Code (LOC) required to support all 

activities related to this task. The LOC value only includes code written and/or generated during 

the study. Generated LOC are those which were produced by other code written in this study. For 

example, code written in the Python language was used to generate JavaScript and Cypher Query 

Language code. 
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Table 8. Summary of Create Schema Results. 

 Data Typing Enforcement (DTE) Cross-Aggregate Consistency (CAC) LOC 

KV (Riak) Yes No 147 

Doc (Mongo) Yes No 657 

Col (HBase) No No 523 

Graph (Neo4j) No* Yes 34 

Rel (MySQL) Yes Yes 1536 

 

Three observations were made from these results to assess the performance of the database 

types. Recall from Chapter III Table 4, this task is related to CAC, DTE, and Query Omniscience 

(QO) criteria. The observations will be discussed and the performance ratings for CAC will follow. 

Since DTE and QO are dependent on the Import Data and Queries tasks respectively, their ratings 

will be withheld until their associated tasks are discussed.  

DTE Observation 

The first observation was the column and graph database types do not support specifying a 

data type during schema creation. Specifically, HBase stores all data as byte arrays and provides 

no enforcement of data type. In contrast, Neo4j does not support data type specification in schema 

definitions, however it does support specifying a data typing during importing and loading. Riak 

KV supported string, double, and Boolean data types which are the types used in the UAS of 

interest’s log data. MongoDB and MySQL support specifying these types among others. In fact, 

MongoDB’s relatively high number of LOC is related to its ability to specify data types. 

Furthermore, relational database type requires a comprehensive specification of the intended data 

type at the time of schema design. Ultimately, the columnar database type will be rated lower 

compared to its peers for the DTE criterion. The ratings for DTE will be discussed in the Import 

Data section of this chapter. 
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CAC Observation 

A second observation from the Create Schema task area was related to NoSQL’s structuring 

of data and the resulting impact to the query execution. If the data is not structured in such a way 

that a query can access it, then the database may have a limited ability to perform retrieval queries. 

For example, the design of the HBase column database’s structure, i.e. schema, affects how easily 

a query can obtain the data. Specifically, if the data is not stored in the same column family, 

multiple queries must be run with their results combined. HBase does not provide a native 

mechanism to combine query results. Thus, third party software must be used to perform these 

merging operations. Likewise, for KV databases, filtering pertinent data out of query results 

requires assistance from third party software if the storage structure does not exactly match the 

retrieval query. The remaining database types did not demonstrate significant query limitations 

due to schema design.  

This observation influences a lower rating for the KV and column database types compared to 

the other database types for the Query Omniscience (QO) criterion. A lower rating is necessary 

because the baseline capabilities of these database types do not readily support queries that are 

developed after the database is designed. Specifically, the developer should understand that queries 

must be well-known at the time of design and that additional queries may be difficult to implement 

after data is loaded. The specific ratings for QO will be discussed in the Queries section of this 

chapter. 

The last observation was that only graph and relational database types provide CAC support. 

The relational database, again, requires a complete definition of relationships and constraints 

during schema design. However, the graph database also requires complete specification of these 

properties between aggregates. Both database types store and perform operations on the data 
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according to these defined characteristics. The large number of LOC for the relational database 

hints at this fact. In contrast, the small number of LOC for the graph type does not suggest the 

importance of these definitions. The nature of the edges is defined by the model and once the 

relationship is defined, the graph database engine understands how to handle them during 

transactions and queries (Robinson, Webber, & Eifrem, 2015). The ratings for graph and relational 

database types will be significantly higher than those for KV, document, or column types. 

CAC Ratings 

Table 9 displays the CAC criterion ratings for the database types in this study. The row and 

column titles are generalized to the database type to illustrate the ratings reflect both the literature 

review and the results from the study. That is, the names, Riak KV, MongoDB, HBase, Neo4j and 

MySQL have been removed from these headings. As discussed in Chapter III, cells in this matrix 

contain values which represent comparisons between the database type identified by the row 

heading and the type identified in the column. In this matrix, the cells along the diagonal contain 

the value “1.00” indicating equal performance because these cells represent self-comparisons. In 

other words, a comparison of the KV database’s DTE performance to itself is equal. Furthermore, 

only the ratings to the right of the diagonal will be discussed because the matrix is symmetrical 

about the diagonal. Thus, values to the left of the diagonal are reciprocals of values to the 

diagonal’s right. These facts about the diagonal will be true for all AHP matrices.  

The first data row of this matrix contains the results of the pairwise comparisons for the KV 

database type. None of the KV, document, or column types natively support consistency between 

aggregates nor do they automatically store, retrieve, or update relationships. Thus, the KV-Doc 

and KV-Col cells contain a 1.00 to indicate their CAC performance is equal. Their symmetric 

pairs, i.e., Doc-KV and Col-KV cells, contain the reciprocal value of 1/1=1.00. In sharp contrast, 
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the graph and relational types were extremely proficient at managing consistency and 

relationships. Therefore, KV-Graph and KV-Rel cells contain 0.11 which indicates that graph and 

relational types are exceptionally better than key-value types for this criterion. Their symmetric 

pairs, i.e., Graph-KV and Rel-KV cells, contain reciprocal values, i.e. 1/(0.11)=9.00. The 

document and column type rows contain values reflecting that column and document type’s 

performance was equally poor and that the graph and relational types performed exceptionally well 

compared to these types. Graph and relational types are were assessed as equal for this criterion. 

The symmetric pairs to the left of the diagonal contain the reciprocal values for these ratings. 

Table 9. CAC Performance Rating Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 1.00 1.00 0.11 0.11 

Doc 1.00 1.00 1.00 0.11 0.11 

Col 1.00 1.00 1.00 0.11 0.11 

Graph 9.00 9.00 9.00 1.00 1.00 

Rel 9.00 9.00 9.00 1.00 1.00 

 

Transform Data 

The Transform Data task area includes activities related to preparing the data to be imported 

into the database. In general terms, these activities are consistent with the Extract and Transform 

phases of traditional ETL (Elmasri & Navathe, 2016) (John & Misra, 2017) (SAS, 2017). For this 

study, it includes transforming the data from the proprietary MATLAB format into a format 

readable by each database type. Specifically, the Comma-Separated Value, (CSV) format was 

selected because all database types included mechanisms to import data in this format. 

Additionally, data validation checks were performed in this task area to ensure that the UAS log 

data was complete and did not contain errors. The transformation tasks are considered by the 

Preprocessing and SM criteria.  
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Table 10 provides a summary of the results from the Transform Data task area of this study. 

In this table, each row of data contains results for one of the database types. The Execution 

Duration column indicates the cumulative number of seconds lapsed while transforming data from 

all 10 flights. Values in the LOC column display the total number of lines of code written and/or 

generated, during the study, to execute activities associated with this task area. 

Table 10. Summary of Transform Data Results. 

  Execution Duration (seconds) LOC 

KV (Riak) 2154.6 427 

Doc (Mongo) 2014.7 427 

Col (HBase) 2331.6 885 

Graph (Neo4j) 1695.5 321 

Rel (MySQL) 616.1 1378 

 

Two observations were made from this portion of the study and applied to the assessment of 

the database types for the relevant criteria. Recall from Chapter III, table 4 that Preprocessing and 

Structural Malleability (SM) was associated with the Transform Data task area. Additionally, both 

criteria were also dependent on the Import Data task areas. Therefore, the observations will be 

described, but the discussion of ratings will be postponed until the all associated task areas have 

been reviewed. 

SM and Preprocessing Observations 

The first observation was that despite claims that NoSQL databases ingest “raw” data, there is 

still much work involved to transform the data into something which can be imported (Sadalage 

& Fowler, 2013) (Sullivan, 2015) (Robinson, Webber, & Eifrem, 2015). The fact that the LOC is 

non-zero for this task highlights this fact. However, it should also be noted that the required number 

of LOC is smaller for the NoSQL types than it is for the relational type. The relational database 



AFIT-ENV-DS-18-S-047 

85 

 

still required more work to transform and prepare the data. This included removing special 

characters, white space, and often adding quotations to variable names in the raw data. 

Additionally, the sampled variables needed to conform to expectations for a matching process 

which would pair them with attributes defined in the relational database’s strict schema. This was 

not necessary for the NoSQL types which were accommodating to deviations from schema 

expectations.  

The tradeoff for this flexibility is encountered during query design and execution. Queries must 

account for differences in the structure of aggregates, i.e. different aggregate types. For example, 

if a sampled variable is named Eng Spd in one data set, Engine Spd in another, and Engine Speed 

in a third, the NoSQL types are flexible enough to allow these three aggregate variants to be 

permitted when log data is imported despite any predefined schema expectations. In contrast, these 

variants must be matched to a particular table and attribute for the relational database. The SM 

criterion considers these types of issues. As noted, ratings for this criterion will be discussed in the 

Import Data section of this chapter.  

Another observation was that NoSQL types required more execution time to transform the log 

data into the CSV format. The difference between the NoSQL and the relational transformation 

processes results from the way the A-files were prepared and a design choice in the relational 

model to handle data sampled at a different rate. Since the A-files consist of a strict subset of M-

file variables at a higher rate, storing these rows, i.e. “aggregates” in normalized tables would 

result in hundreds of attributes, i.e. “elements” containing null values. In fact, more A-file 

aggregates types would exist for a log data set than the others combined due to the high sampling 

rating. The end result would be that some RDB tables would contain hundreds of null attributes 
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for hundreds of thousands of rows. To avoid this result, a separate A-file table was created to store 

this data in the relational database.  

This A-file issue was not a problem for any of the NoSQL types. Sparsely populated tables and 

different “types” of aggregates are some of the reasons NoSQL solutions were developed. Thus, 

instead of separating the A-file log data for the NoSQL types, this data was merged with the low-

speed D- and M-file data. Merging this data was an intensive process to match and verify the merge 

was performed correctly. Hence, the execution times for the NoSQL databases were all longer than 

the transformation execution time for the relational database.  

Import Data 

The Import Data task area included activities involving importing the transformed data into 

each database type. These activities are generally consistent those of the Load phase of traditional 

ETL (Elmasri & Navathe, 2016) (John & Misra, 2017) (SAS, 2017). Specifically, the activities 

involved ensuring the data was located at the appropriate file system location for which each 

database type expects to import data, performing matching between aggregates and schema 

definitions, and other operations to load and store data within the database types.  

Table 11 presents a summary of the results from the Import Data task area of this study. The 

rows of data contain the results for the chosen implementation of each database type. . In the DTE 

column, a categorical value of Yes or No was recorded. Yes indicates that a data type definition 

could be specified during this phase of the study. No indicates the opposite; that a data type could 

not be specified. Like other tables, Execution Duration column displays the cumulative number of 

seconds lapsed while the Import Data activities operated on the 10 flights of log data. The Size on 

Disk column provides a measurement in megabytes (MB) for the total size of the data once it was 

loaded into each database type. The # of Aggregates column identifies the total number of 
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aggregates stored in each database. Lastly, the LOC column contains values indicating the total 

number of Lines of Code written and/or generated, during the study, to facilitate activities 

associated with this task area.  

Table 11. Summary of Import Data Results. 

  DTE Execution Duration (seconds) Size on Disk (MB) # of Aggregates  LOC 

KV (Riak) No 11,815.9 38,844  4,992,021  119 

Doc (Mongo) No 7405.1 2,293  4,992,021 29 

Col (HBase) No 8,722.1 33,213 19,123,233 50 

Graph (Neo4j) Yes 7,950.0 19,455 9,984,212 10,624 

Rel (MySQL) No 763.0 1,899 9,237,123 913 

 

A few observations were made during this segment of the study and combined to assess the 

database types using the evaluation criteria. Recall from Chapter III, Table 4 that Data Typing 

Enforcement (DTE), Preprocessing (Pre), Structural Malleability (SM), Large Aggregate 

Transactions (LAT), and Small Aggregate Transactions (SAT) criteria are associated with this task 

area. The ratings for DTE, Pre, and SM will be discussed in this section. However, the LAT and 

SAT criteria are also dependent on the Queries task area. Therefore, their ratings will be discussed 

in the Queries section to ensure they have been comprehensively explored.  

SM Observation 

One observation is the number of lines of code required for the graph database type. This 

relatively large number results primarily from the code generated to load various aggregate “types” 

into the database. As discussed in the Transform Data section, when a variable name in the raw 

data changes, the NoSQL types can adapt to store the data despite any existing schema 

expectations. For the graph database type, each name change can be handled, but the import 

process must specify the how to do so.  
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Figure 18 presents three examples of how the Neo4j Cypher code can be modified to import 

data from a variable with a changing name. Specifically, this graph database can store Eng Spd, 

Engine Spd, and Engine Speed as long as the specific aggregate element, i.e. sample.eng_spd, 

sample.engine_spd, or sample.engine_speed, into which the variable will be stored is explicitly 

named in the import code. In a sense, this method matches the variable name to an aggregate 

element that is specified at the time of import. Fortunately, the import code can be generated from 

the transformed data using a programming language such as Python.  

 

Figure 18. Three Examples of Cypher Code to Import a Variable with a Changing Name. 

This capability supports SM in which various aggregate types can be loaded into the database. 

The other NoSQL database types generally do not require such explicit definitions and can infer 

more from the data itself. Thus, Neo4j offered the same capability, but it required more work.  

SM Ratings 

Table 12 displays the SM criterion ratings matrix for the studied database types. The KV and 

document databases equally support the addition of new aggregate types, so the KV-Doc cell 

contains 1.00 to indicate this equality. In both cases, new aggregates can be loaded without 

restarting the databases or making significant changes. For columnar databases, new aggregates 

can require new column families to be defined. Adding new column families to a columnar 

database typically require a database restart (Sadalage & Fowler, 2013) (Sullivan, 2015) 

(Redmond & Wilson, 2012). Thus a 5.00 was recorded in KV-Col and Doc-Col cells to indicate a 
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stronger performance by the KV and document types that the columnar type for this criterion. 

Since the graph database required additional code to support additional aggregate types, its 

performance was not rated as strongly as the KV and document types. Hence the KV-Graph and 

Doc-Graph cells contain a value of 2.00 to show slightly better performance by the KV and 

document types.  

Table 12. SM Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 1.00 5.00 2.00 9.00 

Doc 1.00 1.00 5.00 2.00 9.00 

Col 0.20 0.20 1.00 0.14 5.00 

Graph 0.50 0.50 7.00 1.00 9.00 

Rel 0.11 0.11 0.20 0.11 1.00 

 

The relational database type was least suited to accept additional aggregate types. Recall that 

a new aggregate type containing a new element in this context would require one or more tables 

to be modified to support a new attribute. This process involved updating the schema, restarting 

the database, and depending on the implementation and design will produce tables full of default 

values in the new attribute columns for the updated tables. The default values may be valid and 

acceptable or may be required to be set to a sentinel value, etc. In either case, this will require 

additional work to check, set, and verify these elements for previously existing “aggregates.” Thus, 

all the NoSQL types were given better performance ratings than the relational type for this 

criterion. Specifically, the column type was rated as performing strongly better, i.e., rated 5.00, 

and the other NoSQL types were extremely better, i.e. rated 9.00, than relational. 
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DTE Observation 

Taking another look at figure 18, the reader should also note the method to specify the data 

type is shown. Specifically, toFloat( ) is used to convert the data and bind the aggregate element 

to a float type with floating point precision. Other data types are available as well (Neo4j, Inc., 

2018). This observation was combined with the DTE discussion from the Create Schema section 

and the Chapter II literature review findings to determine DTE ratings for each database type.  

DTE Ratings 

Table 13 presents the DTE criterion ratings for the five database types evaluated. The first data 

row of this matrix contains the results of the pairwise comparisons for the KV database type. Since 

the KV database supported some data typing but did not support as many types as the document 

database. Thus, a value of 0.33, was recorded in the KV-Doc cell to indicate the document database 

type performs DTE moderately better than KV types. However, the KV type performs DTE 

moderately better than the columnar type, so a value of 3.00 was recorded in the KV-Col cell. In 

contrast, the graph types enable strong control over data types and therefore a 0.20 was recorded 

in the KV-Graph cell. Likewise, the relational database type provides the strongest possible control 

of typing, so the KV-Rel cell contains 0.11 indicating this fact.  

Table 13. DTE Performance Rating Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.33 3.00 0.20 0.11 

Doc 3.00 1.00 7.00 0.20 0.11 

Col 0.33 0.14 1.00 0.13 0.11 

Graph 5.00 5.00 8.00 1.00 0.20 

Rel 9.00 9.00 9.00 5.00 1.00 
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Document type databases performed DTE significantly better than column databases, but not 

as well as graph or relational types. To represent these observations, Doc-Col was rated 7.00, Doc-

Graph was 0.20, and Doc-Rel was 0.11. The difference between Doc-Graph and Doc-Rel suggests 

that relational is still the best of the studied types. Likewise, the Col-Graph and Col-Rel cells 

provide consistent ratings of 0.13 and 0.11 respectively. Lastly the Graph-Rel cell contains a 0.25 

rating suggesting that relational types are still better than graph types for DTE because relational 

types still have a moderate advantage. 

Preprocessing Observations 

Another observation concerning data import is the amount of time required to import the data 

and the size on disk. If the Execution Duration results are viewed independently, they do not appear 

to suggest any coherent results. For example, the NoSQL types total import time ranges from 405.1 

to 11,815.9 seconds. Additionally, the relational database’s import time falls within the range for 

the NoSQL types at 763.0 seconds. However, when the Execution Duration is considered in 

conjunction with the Size on Disk, a story materializes. Even without employing statistical 

methods, there appears to be a correlating increase in import duration with an increase in the 

amount of data stored in the database on disk.  

It should come with little surprise that the data normalized in the relational database requires 

the least disk space of the databases studied. This fact is a benefit of normalizing data in a relational 

database to mitigate the need for redundantly stored data (Codd, 1970) (Elmasri & Navathe, 2016) 

(Redmond & Wilson, 2012). Likewise, because the NoSQL databases often intentionally store 

redundant data, their size on disk is categorically larger than the relational databases. However, 

what was unexpected was the amount of time required to support this redundancy—specifically 

for the KV database. KV databases are typically lauded for the speed (Sadalage & Fowler, 2013) 
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(Sullivan, 2015) (Gudivada, Rao, & Raghavan, 2014) (Hecht & Jablonski, 2011) (Marz & Warren, 

2015).  

These characteristics influence the preprocessing ratings of the database types. While total 

effort may be broad defined, this information, including LOC, provides some insight into how 

much effort is required to complete the preprocessing for each of these database types. 

Preprocessing Ratings 

Table 14 contains the Preprocessing criterion performance ratings for the five database types 

studied. The ratings here are considered in the context of effort and workload required to perform 

all preprocessing tasks. Effort and workload were evaluated in this study primarily by the 

Execution Duration and LOC—with emphasis placed on LOC. The following analysis combines 

results from the literature review, table 10, and table 11 to develop the ratings presented. 

Table 14. Preprocessing Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.50 3.00 0.33 7.00 

Doc 2.00 1.00 4.00 0.25 7.00 

Col 0.33 0.25 1.00 0.14 4.00 

Graph 3.00 4.00 7.00 1.00 5.00 

Rel 0.14 0.14 0.25 0.20 1.00 

 

The data transformation required for the KV database type was slower than document, graph 

and relational types, but faster than the columnar type. This observation was consistent with the 

simplicity promised by this NoSQL model (Sadalage & Fowler, 2013) (Sullivan, 2015) (Hecht & 

Jablonski, 2011) (DeCandia, et al., 2007). Additionally, the KV type was slower than all other 

types for importing data. This could be attributed to Riak’s method of storing data around its 

logical ring normally distributed in a multi-node cluster (Basho Technologies, Inc. , 2018) 
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(DeCandia, et al., 2007). While the overhead of this method may be tolerable for a distributed 

system, it was more noticeable in the single box environment. Moreover, KV required fewer LOC 

than column and relational types, the same as the document type, but more than the graph type for 

transforming data. For importing data, KV required more LOC than document and columnar, but 

less than graph and relational database types. Thus, reviewing the KV row of the Preprocessing 

performance rating table, KV-Doc and KV-Graph cells indicate that document and graph 

performed preprocessing better. In contrast, KV-Col and KV-Rel cells show that KV performed 

better.  

The document type database’s requirements for data transformation and importing were 

executed faster than the KV and column types, but slower than graph and relational types. This 

result meets expectations based on the nature of its aggregate model except for the KV example 

(Sadalage & Fowler, 2013) (Sullivan, 2015) (Hecht & Jablonski, 2011) (Chodorow, 2013). The 

difference for the KV model is suspected to be implementation-specific as previously described. 

In terms of LOC, the document type required the same number or fewer than KV, columnar, and 

relational, but the graph database used even less for the data transformation tasks. However, the 

document database required the least for importing data. Thus, in the document row of table 14, 

the Doc-Col and Doc-Rel cells indicate the document type performed better than these two types. 

In contrast, the graph database received a better Preprocessing performance rating as shown in the 

Doc-Graph cell.  

The columnar database type’s Preprocessing performance was also somewhat mixed. Its 

execution time for data transformation was the largest amongst the NoSQL types and nearly the 

largest for importing data. This database type also required the largest number of LOC for data 

transformation of the NoSQL types. However, the LOC for data import was relatively low. The 
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number of LOC required was less than the relational type for both task areas. The additional time 

and lines of code required were likely attributed to the way in which the data was modeled. Recall 

that tables were created to store the data required for each individual query as well as one to 

comprehensively store all of the flight data. Thus, multiple transformations were necessary to 

prepare and then import the log data for each table in this database. These steps could reasonably 

account for the additional time elapsed and lines of code during these phases. Thus, the remaining 

columnar ratings indicate its Preprocessing performance was worse than graph, but better than the 

relational type.  

The graph database type’s Preprocessing performance was the least straightforward to 

evaluate. For data transformation, the graph type was the clear NoSQL leader in terms of execution 

time and LOC with the lowest values for both categories. In fact, its number of LOC was the lowest 

amongst all types. Yet, the NoSQL types were categorically slower in execution for both data 

transformation and importing. Specifically, the graph type had the second fastest execution time 

for the Import Data task area for the NoSQL types. However, it required the largest number of 

LOC by a factor of ten for all types. In this case, the number of LOC does not provide the most 

accurate assessment of effort or workload because 10,038 LOC were automatically generated by 

some of the remaining 586 lines of code. Thus, for the remaining cell, i.e. Graph-Rel, the graph 

type was still assessed to perform better than the relational type.  

LAT and SAT Observations 

Additional observations can be made from Table 11. A simple review of the Size on Disk 

column illustrates the complete stored data set does not exceed 1 TB for any database; the largest 

database requires less than 40 GB to store all ten sets of data. Recall that Large Aggregate 

Transactions (LAT) criterion required a single aggregate to exceed 1 TB in size. Since the entire 
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data set is less than 1 TB, it is impossible for a single aggregate in this set to exceed this threshold. 

Therefore, no aggregates in this log data set would require the database to support LAT.  

Table 15 displays the calculated average size of an aggregate in each database measured in 

kilobytes (kB). These values were determined by dividing the size on disk by the number of 

aggregates and then converting the result into kB. The average aggregate size for most of the 

NoSQL databases exceeds the threshold, i.e., 1 kB, for the Small Aggregate Transactions (SAT) 

criterion. However, the document and relational databases exhibited an average size that indicates 

SAT would apply. For the relational database, this is expected because its tables are normalized to 

minimize the amount of data they contain. Since normalization was part of the design for this 

study, the result is not unexpected.  

Table 15. Calculated Average Size of Aggregates Per Database. 

  Average Size of an Aggregate (kB) 

KV (Riak) 7.97 

Doc (Mongo) 0.47 

Col (HBase) 1.78 

Graph (Neo4j) 2.00 

Rel (MySQL) 0.21 

 

For MongoDB, this result was somewhat unexpected. In fact, MongoDB’s Size on Disk result 

was also unexpectedly small because the other NoSQL databases were larger by an order of 

magnitude in all cases. However, MongoDB is designed for humongous data sets and uses a binary 

storage method to compress its data (Chodorow, 2013). Thus, this result is probably specific to the 

implementation and likely not reflective of document databases in general.  

Queries 
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The Queries task area includes all activities associated with retrieving data from and updating 

data in the database. As previously described, a query involves one or more transactions involving 

one or more aggregates. In this study, queries were performed to retrieve data from the various 

database types according to a set of questions identified from the UAS user community. These 

questions were identified in Chapter III, figure 10.  

Table 16 displays a summary of the results from the Queries task area of the simulation study. 

The Execution Duration column indicates the cumulative number of seconds lapsed while 

executing the queries resulting from the ten user community questions. Values in the LOC column 

display the total number of lines of code written and/or generated, during the study, to execute 

activities associated with this task area. 

Table 16. Summary of Queries Task Area Results. 

  T Execution Duration (s) LOC 

KV (Riak) Yes* 2.0@ 70@ 

Doc (Mongo) Yes 58.9 1,250 

Col (HBase) Yes - - 

Graph (Neo4j) Yes       1,718.5  38 

Rel (MySQL) Yes 3.8 84 

 

* This capability is not enabled by default. 

@Only 5 of the 10 queries were feasible and executed for this database. 

 

 

Additionally, table 17 provides a summary of each database’s native ability to perform a single 

query to retrieve the appropriate data necessary to answer each question identified by Chapter III, 

figure 10. The columns headers identify the question numbers and the row headers identify the 

databases. The cells in this table containing an ‘x’ indicate the database was capable of executing 

a query to retrieve and manipulate the data to answer the corresponding question. Empty cells 
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indicate that the question could not be answered by the native capabilities of the database and that 

third party software would be required to assist with the developing the answer.  

Table 17. Database Query Success Summary. 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

KV (Riak) x x         x x x x 

Doc (Mongo) x x x x x x x x x x 

Col (HBase)                     

Graph (Neo4j) x x x x x x x x x x 

Rel (MySQL) x x x x x x x x x x 

 

Many observations were made and applied to the evaluation of the database types for the 

relevant criteria. Recall, from Chapter III, table 4 that LAT, SAT, RT, QC, and QO criteria were all 

dependent on this task area. Since the Queries task area is the last remaining dependency for most 

of these criteria, their ratings will be discussed in this section. NOTE: The LAT ratings will be 

provided in the Other Ratings section because the study did not perform transaction involving 

large aggregates.  

QC and QO Observations 

First of all, not all databases could natively perform all queries to adequately answer the user 

community’s questions. Specifically, HBase could not natively provide meaningful data to answer 

any of the questions. This database permitted queries to specify which column or columns were 

desired and which row in the table to retrieve. For example, if the data in the table designed for 

query #3 was requested, data would be retrieved for all samples (aggregates) for all flights. While 

some filtering is possible, significant limitations exist due to the lack of data typing enabled by 

HBase. The resulting data set was unmanageable, containing nearly 5 million rows, without 

additional third-party software to reduce or filter out certain rows. Without writing additional 
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functions to provide filtering, this quantity of data could not be reduced (Luo, Yu, Kevin, Gupta, 

& Spaggiari, 2018). 

Likewise, even Riak KV’s advanced queries which could search indexes and a range of values, 

did not support a query with multiple conditions, e.g., an airspeed with the landing gear down or 

a maximum altitude for each flight, such as those required for questions 3-6. Additionally, the 

advanced query capability is disabled in Riak KV by default. Furthermore, this feature requires 

that a schema is defined and that indexes are built on the elements of interest. Moreover, the Riak 

database, by default, expects results to be streamed to the requesting application. This works well 

for distributed systems, but less desirable for a single box environment because of the speed 

resulting from the locality of the data. While many of these characteristics are implementation-

specific, they highlight the primary intent for simple, fast queries from the KV model. 

Figure 19 displays a snippet of a query to retrieve data from Riak KV for question 2. This 

query is written using the Python language because Riak KV has no native shell or query language. 

Apache Solr provides the foundation for advanced searching for this database. Without Solr, 

searching would be limited to keys only (Apache Software Foundation, 2018). The first five lines 

are responsible for creating a connection to the Riak database. The line beginning with results calls 

a function to submit the query to the database and stores the results. The parameters passed to the 

fulltext_search function are the name of the database, and the query parameters. The query 

parameters, i.e., ‘alt_agl_d:[15000 TO *]’are Extractors based on Apache Solr. Additional code 

is required, but not included, to present the results in a meaningful way. 
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Figure 19. Query #2 Written in Python 2.7 for Riak KV. 

Ultimately, the KV and columnar results are generally expected because both types provide 

only simple querying capabilities (Sadalage & Fowler, 2013) (Sullivan, 2015) (Hecht & Jablonski, 

2011) (DeCandia, et al., 2007). However, columnar database may be somewhat implementation 

specific because HBase is part of the Hadoop ecosystem which expects additionally layers, such 

as Hive, to be added to meet user needs. Though HBase provides a Java API to extend native 

capabilities, using this API would violates the intent of the study because this database natively 

provides put, get, and scan commands to store and retrieve data (White, 2015) (Spaggiari & O'Dell, 

2016) (Apache Software Foundation, The, 2016) (Gates, 2016). Thus, even being designed with 

detailed knowledge of the expected queries, i.e. having some query omniscience, these databases 

were unable to execute some queries. Furthermore, these databases would also struggle to execute 

unexpected queries requiring the same complexity, e.g. specifying multiple conditions, searching 

for values within a specified range, or performing a mathematical operation on an aggregation1 of 

values like determining the maximum value of a particular element or accumulating a total. 

Finally, these results make the values for KV database type in table 16 less meaningful because 

neither the elapsed time nor LOC reflects an outcome spanning completion of the expected tasks.    

                                                 
1 Here aggregation is used in the traditional sense to mean multiple values are grouped together to produce a singular 

value. 
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In contrast to the KV and columnar databases which could not perform the queries well, the 

remaining database types were able to perform all queries to adequately answer the specified 

questions. Reviewing the LOC for the document, graph, and relational databases provides some 

insight into the queries and their complexity. The queries for the graph database type required the 

fewest LOC. This resulted for two reasons: relationships are native to the aggregates and the syntax 

for identifying relationships is simple. Specifically, the relationships are wholly contained in the 

edge-type aggregates rather than developed by traditional relational database joins.  

Figure 20 and figure 21 present query #2 written in Neo4j’s Cypher Query Language (CQL) 

and MySQL’s Structured Query Language (SQL), respectively to illustrate both the similarities 

and difference in the languages. Query #2 corresponds to user question #2 which requests dates, 

times, and flights during which the aircraft exceeded 15,000 AGL. In this figure, the CQL line 

beginning with MATCH performs the equivalent FROM/JOIN operations in SQL. Specifically the 

CQL engine will identify the Sample nodes, s, which have the COLLECTED_FOR 

relationship/edge, r, with Flight nodes, f. For MySQL, query engine will join the flight and 

navigation tables on the flight_id key and join the navigation and performance tables on the 

composite flight_id and sample_id key to denormalize this data. The WHERE clause in both 

languages identifies the element, alt_agl, and the range, greater than 15000, for which data should 

be retrieved. The RETURN and SELECT clauses in each language identify which elements 

(attributes) should be extracted from the aggregate (denormalized table). The ORDER BY clause 

enables the extracted data to be sorted in ascending order by the elements (attributes) identified.  
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Figure 20. Query #2 Written in Neo4j’s Cypher Query Language (CQL). 

 

Figure 21. Query #2 Written in MySQL’s Structured Query Language (SQL). 

 

MongoDB provides the same capabilities using its shell to interpret JavaScript to execute 

queries. One limitation encountered was the query had to be re-written for each collection. It 

should be acknowledged that Mongo does permit cross-collection queries using a left-outer join 

via it’s $lookup operator (MongoDB, Inc., 2018). However, for the UAS log data, there is nothing 

to join between flights. Since the data was split by flights into collections, this required ten nearly 

identical queries to be written to retrieve the results to answer question #2. Thus, the LOC for 

MongoDB was much larger for the Queries task area. A different schema design, which does not 

use collections to separate data between flights, would reduce the number of lines to retrieve the 

data. However, this data would then need to be separated by a third party application.  

Figure 22 displays the query written in JavaScript for MongoDb to provide an answer for 

question #2, i.e. query #2. The first line identifies the collection in which to search. The second 

line indicates the element, alt_agl, and the range of interest, greater than 15,000, for which data 

should be retrieved. The following line is similar to the SQL SELECT statement signifying the 
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elements which should be retrieved. The last three lines inform the query engine the data should 

be sorted by _id and gps_time.  

 

Figure 22. Query #2 Written in JavaScript for MongoDB’s shell. 

 

The graph, relational, and document database types provide similar capabilities to search for, 

identify, retrieve, and sort the data of interest. These databases also provide for multiple 

mechanisms to search for and retrieve data of interest to provide flexible and powerful query 

performance. The KV and columnar database types support only limited queries and require 

significant foresight during their design to identify types of queries will be executed. In contrast, 

these types were less flexible in the ways in which they support data retrieval.  

QC Ratings 

Table 18 presents the QC criterion ratings results for the database types studied. The KV and 

columnar databases claim similar performance in terms of data retrieval, but in this study Riak KV 

performed better than the selected HBase implementation. However, since the ratings are intended 

to provide generalizations for each type, these two will be rated as equal to avoid bias resulting 

from implementation-specific issues since other databases of this type support these operations 

(ScyllaDB, 2018) (DataStax, Inc., 2018). In contrast, document, graph, and relational performed 

and support complex queries better than KV. Relational was exceptionally better, followed by 

graph and then document database types. Thus, the ratings in the KV-Doc, KV-Graph, and KV-

Rel cells reflect these observations. The document type outperformed the columnar type for this 
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criterion but was not as effective as graph or relation as reported in the Doc-Col, Doc-Graph, and 

Doc-Rel cells. As discussed in the observations section, the graph type was substantially better 

than the columnar type and relational was even better. The ratings in the Col-Graph and Col-Rel 

cells identify this outcome. Finally, while the graph type did require fewer LOC to perform the 

queries, its extensive execution time cannot be overlooked. Therefore, the Graph-Rel cell rates the 

relational type as performing better.  

Table 18. QC Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.20 1.00 0.13 0.11 

Doc 5.00 1.00 5.00 0.22 0.20 

Col 1.00 0.20 1.00 0.13 0.11 

Graph 8.00 4.50 8.00 1.00 0.50 

Rel 9.00 5.00 9.00 2.00 1.00 

 

QO Ratings 

Table 19 contains the results of the QO criterion assessment for the database types in this study. 

The ratings for this criterion assess how much knowledge of the queries must be known before the 

database is designed. Generally, the KV and columnar database types required the most 

forethought into query design before designing their schemas or aggregate structure. In contrast, 

the document, graph, and relational required less planning for queries during their design. The KV 

row in this matrix indicates that KV types require exceptional amounts of query planning 

compared to relational and graph database types. Additionally, the KV require significant planning 

compared to the document type and essentially the same planning effort as the columnar type. 

Additionally queries beyond those identified at schema/database design time would be 

significantly limited without redesigning the existing data storage structure (Sullivan, 2015) 

(Sadalage & Fowler, 2013) (Serra, Choosing technologies for a big data solution in the cloud, 
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2017). The document type result row shows that columnar databases require more query planning 

than document database types, but document types require more planning than graph and relational 

types. The columnar database results are the same as the KV results. Due to the limited nature of 

the queries for both of these types, much planning is required. Finally, the Graph-Rel cell indicates 

that a minor amount of additional planning is required for the graph database type.  

Table 19. QO Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 7.00 1.00 8.00 9.00 

Doc 0.14 1.00 0.14 2.00 3.00 

Col 1.00 7.00 1.00 8.00 9.00 

Graph 0.13 0.50 0.13 1.00 1.50 

Rel 0.11 0.33 0.11 0.67 1.00 

 

RT Observations 

The Execution Duration column in table 16 and the literature review are the basis for the RT 

observations and ratings. Recall the Execution Duration was incomplete for KV database because 

only 5 of the 10 queries could be accomplished with this database. However, KV types are known 

for fast data retrieval times albeit for ‘simple’ queries (DeCandia, et al., 2007) (Sadalage & Fowler, 

2013) (Sullivan, 2015). Despite HBase’s performance in this study, columnar databases have also 

claimed fast query performance, particularly when run as in-memory applications (Hecht & 

Jablonski, 2011) (Abadi D. J., Query execution in column-oriented database systems (Doctoral 

dissertation), 2008) (Plattner, 2014) (Sadalage & Fowler, 2013). The MongoDB database 

performed better than Neo4j in terms of query execution time despite the large number of queries 

and lines of code required. Furthermore, Neo4j’s query execution times were much longer than 

the relational. Thus, even though Neo4j lauds it query time performance over relational databases, 

this performance gain was not realized in the use case for this study. Future work may explore if a 
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different schema for the graph database could produce faster results. However, for this study, the 

results are as reported. 

RT Ratings 

Table 20 presents a matrix containing the Result Timeliness (RT) criterion ratings for the 

database types in this study. These ratings involved more reliance on the literature review than the 

previous ratings due to the lack of data from the study for the KV and columnar types.  

Table 20. RT Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 4.00 5.00 5.00 4.00 

Doc 0.25 1.00 5.00 2.00 1.50 

Col 0.20 0.20 1.00 0.33 0.33 

Graph 0.20 0.50 3.00 1.00 0.50 

Rel 0.25 0.67 3.00 2.00 1.00 

 

LAT & SAT Observations 

Another observation which influences the Large and Small Aggregate Transaction criteria is 

obtained by reviewing the variables involved in the ten queries. Specifically, the resultant 

aggregates are considered; that is, each query transaction is assumed to produce an aggregate as 

the result of selecting one or more elements from the stored aggregates. Each of the resultant 

aggregates are involved in the transactions to extract the data requested through the query. For 

example, consider the query which determines the dates, times, and flights in which the aircraft 

exceeded 15,000 ft AGL—query #2. Examples queries for this data were shown previously. From 

these examples, it was determined that the following elements would be extracted from the 

appropriate aggregates: flight_id_text, gps_time, gps_week, and alt_agl.  
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Table 21 displays the elements, the length of their name, type, and the size of the type for their 

stored value. This table assumes that 2 bytes are required to store a character, doubles are stored 

using 8 bytes, and Boolean required 1 byte to be stored in each database type (Oracle Corporation, 

2018) (White, 2015) (Sullivan, 2015). The Name Length refers to the name used to identify the 

element in the database. Thus, the length in bytes is twice the number of characters in the string. 

For example alt-agl,is 7 characters long, so 14 bytes are required to store it and flight_id_text is 

14 characters long, so 28 bytes are required to store that name. The Data Type column identifies 

which data type is used to store the element. The Size column indicates how many bytes are needed 

to store this type. For strings, this is the number of expected characters multiplied by 2 bytes per 

character.  

Using the example above for query #2 and the data from this table, the size of the resultant 

aggregate can be estimated. Each resultant aggregate for query #2 will need 76 bytes to store the 

element names and 62 bytes to store the values associated with the names for a total of 138 bytes 

excluding any overhead. Additionally, the largest resultant aggregate that could be produced using 

all of the elements of interest for these queries would require 344 bytes to store the names and 148 

bytes to store the values for a total of 492 bytes excluding overhead. Thus, the largest resultant 

aggregate would be less than 1kB in size (excluding overhead) and therefore reach the threshold 

to be considered a SAT and not crossing the LAT threshold. It is possible these small resultant 

aggregates affected the performance of the databases studied. The performance ratings for SAT 

will include this consideration. Consequently, the LAT ratings will be largely based on the 

literature review. 
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Table 21. Variable Names and Sizes 

Element Name Name Length (Bytes) Data Type Size (Bytes) 

Alt-AGL 14 double 8 

Alt-GPS 14 double 8 

Beta angle 20 double 8 

Calculated UTC Time 38 string 40 

Engine Speed 24 double 8 

Flight_ID_Text 28 string 38 

Fuel_Pump_Failed 32 Boolean 1 

Gear up 14 Boolean 1 

GPS time 18 double 8 

GPS week 16 double 8 

Link 1 Lost 22 Boolean 1 

Link 2 Lost 22 Boolean 1 

MAP Red Mismatch 32 Boolean 1 

MAP Ylw Mismatch 32 Boolean 1 

Pri AS 12 double 8 

VSI 6 double 8 

    

Total 344 N/A 148 

 

LAT Ratings 

Table 22 contains the LAT performance ratings for the five database types. The comparative 

study did not perform any transactions involving large aggregates, so these ratings are heavily 

influence by the literature review. Each row of the matrix will be discussed in the following 

paragraphs.  

Table 22. LAT Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.50 0.50 3.00 3.00 

Doc 2.00 1.00 1.00 4.00 4.00 

Col 2.00 1.00 1.00 4.00 4.00 

Graph 0.33 0.25 0.25 1.00 2.00 

Rel 0.33 0.25 0.25 0.50 1.00 
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KV databases are appropriate for the real-time processing of “Big Data” and large aggregates, 

but they are not impervious to experiencing latency when aggregates are exceptionally large. In 

those cases, another type of database, such as document or columnar, is recommended. However, 

KV are still generally better than graph and relational databases for transactions involving large 

aggregates (Gudivada, Rao, & Raghavan, 2014) (DeCandia, et al., 2007) (Sullivan, 2015). The KV 

row in the matrix illustrates these points. Specifically, the KV-Doc and KV-Col cells rate 

document and columnar databases as performing LAT better which the KV-Graph and KV-Rel 

cells show KV is better.  

Document and columnar database types are generally among the best choices for large 

aggregates. In distributed systems, document types can more easily shard data to other servers 

because of the inherent locality provided by its data model (Carpenter & Hewitt, 2016) (Anderson, 

Lehnardt, & Slater, 2010) (Chodorow, 2013). Similarly, columnar types can split their data by 

column family (Spaggiari & O'Dell, 2016) (Abadi D. J., Query execution in column-oriented 

database systems (Doctoral dissertation), 2008). However, this advantage is largely mitigated in a 

single box environment leaving them with a smaller locality advantage over relational and graph. 

The ratings in the Doc- and Col- rows reflects these findings.  

Lastly, there is not clear advantage between graph and relational types in terms of performance 

for LAT. Even in distributed systems, graph database systems are not ideal for exceptionally large 

aggregates. This is because there is little theory or heuristics for efficiently separating or sharding 

the graph into equal partitions without knowledge of the data (Robinson, Webber, & Eifrem, 

2015). Thus the Graph-Rel cell contains a 1.00 to represent equal performance.  
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SAT Ratings 

Table 23 displays the results of the SAT criterion performance assessment, in a matrix, for the 

five database types in this study. The results are developed from the combination of the study’s 

results and the literature review. The Execution Duration measurements and aggregate size 

estimates were among the results from the study influencing these ratings. The KV database type 

performs better than all four other types for transactions involving small aggregates (DeCandia, et 

al., 2007) (Hecht & Jablonski, 2011). Thus, the KV- cells indicate better performance for all 

comparisons. However, none of the ratings suggest much more than a moderate difference due to 

the limited data collected in the study. The document database is better than columnar types, but 

less effective than graph and relational types. Document type databases are particularly well-suited 

for large data sets and appear to sacrifice some performance for smaller data sets (Chodorow, 

2013) (Han, E, Le, & Du, 2011). The Doc- cells in the matrix reflect these findings without 

exceeding a moderate difference in either direction. The columnar database types typically perform 

less well than graph and relational database with respect to transactions involving small aggregates 

(Hecht & Jablonski, 2011). The Col- cells show ratings that favor graph and relational types for 

this criterion. Lastly, the relational database type performed better for this criterion and this is 

captured in the Graph-Rel cell. 

Table 23. SAT Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 3.00 3.00 3.00 4.00 

Doc 0.33 1.00 3.00 0.33 0.50 

Col 0.33 0.33 1.00 0.33 0.33 

Graph 0.33 3.00 3.00 1.00 0.50 

Rel 0.25 2.00 3.00 2.00 1.00 
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Transparency Observations 

The last observation from the Queries task area is directly related to the Transparency criterion. 

All databases in the study provided some ability to view, search, or select individual aggregate 

elements through query transactions. The KV database type generally does not provide this 

capability. In fact, it is disabled by default in Riak KV and requires a defined schema which must 

identify and declare a data type for any elements which are expected to be “transparent” for 

queries. The other database types are expected to provide this capability by default and did in this 

study. However, HBase was the least accommodating to searching by element value. Its lack of 

data typing complicated the ability to search element values in an intuitive manner.  

Transparency Ratings 

Table 24 provides the ratings from the performance assessment of each database type for the 

Transparency criteria. The results of the study are mostly consistent with expectations from the 

literature review with two exceptions. The first exception involves the Riak KV database which 

unexpectedly provided transparency for retrieval queries. Thus, the KV- ratings were weighted 

slightly in favor of KV performance. That is 1/7 was used instead of 1/9 which would indicate 

absolute dominance by the compared types. The second exception was the difficultly with which 

HBase provided searching inside of aggregates. Therefore, the columnar results were weighted 

slight against this database type for comparisons with document, graph and relational types. 

Table 24. Transparency Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.14 0.14 0.14 0.14 

Doc 7.00 1.00 3.00 1.00 1.00 

Col 7.00 0.33 1.00 0.33 0.33 

Graph 7.00 1.00 3.00 1.00 1.00 

Rel 7.00 1.00 3.00 1.00 1.00 
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Other Ratings 

This section contains the ratings of the remaining criteria: Manipulation and Plasticity. The 

bulk of these ratings are derived from the available academic and practitioner literature. However, 

some insights from the study influenced these ratings, but did not produce metrics that were 

collected in the study.  

Manipulation Ratings 

Table 25 displays the results for the Manipulation criterion for the five database types of 

interest. This criterion highlights the fact that KV database types generally do not provide a means 

to update elements within stored aggregates. It is related to the transparency criterion which refers 

to the ability to read or search within elements in stored aggregates (Hecht & Jablonski, 2011). 

Thus, the KV type was assessed to perform poorly in the context of this criterion. All other types 

enable the capability to update elements within their aggregate structures. The ratings reflect these 

findings by indicating all types perform better than KV and perform equally when compared to all 

others.  

Table 25. Manipulation Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.11 0.11 0.11 0.11 

Doc 9.00 1.00 1.00 1.00 1.00 

Col 9.00 1.00 1.00 1.00 1.00 

Graph 9.00 1.00 1.00 1.00 1.00 

Rel 9.00 1.00 1.00 1.00 1.00 
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Plasticity Ratings 

Table 26 presents Plasticity criterion ratings matrix for the five studied database types. This 

criterion measures how easy an element can be added or removed from an existing aggregate. 

Generally, the KV and relational types are the least supportive of this capability. In fact, KV 

databases categorically do not allow either operation concerning element for a stored aggregate. 

The solution for the KV type is to remove the existing aggregate and replace it with another 

aggregate. For the relational type, this capability involves stopping the database to update the 

schema to remove or add an attribute to a table. The other types natively and easily support this 

feature (Sullivan, 2015) (Redmond & Wilson, 2012) (Sadalage & Fowler, 2013).  

The ratings matrix reflects these findings. The KV-cells indicate poor performance for all 

comparisons including against the relational type. The other NoSQL types earned ratings scoring 

them higher than KV and relational for this capability. Lastly, the document, column, and graph 

types were rated equally amongst each other.  

Table 26. Plasticity Performance Ratings Matrix. 

  KV Doc Col Graph Rel 

KV 1.00 0.11 0.11 0.11 0.50 

Doc 9.00 1.00 1.00 1.00 5.00 

Col 9.00 1.00 1.00 1.00 5.00 

Graph 9.00 1.00 1.00 1.00 5.00 

Rel 2.00 0.20 0.20 0.20 1.00 

 

Performance Priorities 

The performance ratings established in the previous sections will be used to develop what 

Saaty called local priorities in the AHP process (How to make a decision: The Analytic Hierarchy 

Process, 1990). To differentiate from other local priorities, these results will be called performance 
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priorities in this research effort. A straightforward way to calculate these priorities is to normalize 

the ratings by column and then calculate the average for the row. The result is a vector containing 

local, i.e., performance, priorities for the given matrix. Saaty & Tran demonstrated this process in 

their later work (On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy 

Process., 2007). The normalization approach is demonstrated in detail for the CAC criterion and 

applied to all 12 criteria. 

Calculating the CAC Priority Vector Using Normalization 

Table 27 presents the performance ratings for the five database types for the CAC criterion. 

Additionally, the total sum of each column has been calculated and included as the last row of this 

table. This sum is required to normalize the values for each column.  

Table 28 contains the normalized values calculated using the sums presented in table 27. 

Specifically, the value in the KV-KV cell in Table 27, 1.00, was divided by the sum, 21.00. This 

result, 0.048, was recorded in the KV-KV cell in Table 28. This process was repeated for the Doc-

KV, Col-KV, Graph-KV, and Rel-KV cells for the KV column. The process continued for the 

Doc, Col, Graph, and Rel columns until all ratings were normalized in this manner.  

Table 27. CAC Ratings and Column Sums. 

  KV Doc Col Graph Rel 

KV 1.00 1.00 1.00 0.11 0.11 

Doc 1.00 1.00 1.00 0.11 0.11 

Col 1.00 1.00 1.00 0.11 0.11 

Graph 9.00 9.00 9.00 1.00 1.00 

Rel 9.00 9.00 9.00 1.00 1.00 

  

Sum 21.00 21.00 21.00 2.33 2.33 
 

 



AFIT-ENV-DS-18-S-047 

114 

 

Table 28. Normalized CAC Ratings and Priorities. 

  KV Doc Col Graph Rel 

KV 0.048 0.048 0.048 0.048 0.048 

Doc 0.048 0.048 0.048 0.048 0.048 

Col 0.048 0.048 0.048 0.048 0.048 

Graph 0.429 0.429 0.429 0.429 0.429 

Rel 0.429 0.429 0.429 0.429 0.429 

 

Table 29 displays the results of the next step which produced the CAC performance priorities 

for each database type. These values were determined by calculating the average of the values in 

each row from Table 28. For example, the normalized values in the KV-KV, KV-Doc, KV-Col, 

KV-Graph, and KV-Rel cells, (0.048, 0.048, 0.048, 0.048, 0.048,) were averaged (0.048) and 

recorded in the first row of table 29. The remaining rows were averaged in the same way. The 

priorities for this criterion were easy to calculate and trace because the CAC performance ratings 

were relatively consistent; that is, they were either 1, 1/9, or 9.  

In this priority table, larger values indicate better performance and a higher priority. Recall that 

CAC refers to the database capability to automatically update aggregates based on relationships 

with other aggregates. Since graph and relational database types were the types that supported this 

capability, it is not surprising they scored highest for this criterion and resulting priority.  

Table 29. CAC Performance Priorities. 

  Priorities 

KV 0.048 

Doc 0.048 

Col 0.048 

Graph 0.429 

Rel 0.429 
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Combined Priorities for All 12 Criteria 

Table 30 provides the results of this process for all 12 criteria. Specifically, each ratings matrix 

was normalized by column and the average was determined for each row to calculate the 

performance priorities. Like Table 29, larger values in this table indicated better performance by 

a database type for the particular criterion. Alone these results can loosely illustrate whether or not 

a database type performed well for a given criterion. However, the significance of these results is 

fully realized when they are combined with the priorities determined from the importance ratings 

to indicate which database(s) are suitable for the use case. The next few sections will discuss these 

topics. 

Table 30. Performance Priorities for All 12 Criteria. 

 

 

Importance Ratings, Priorities, and Global Priorities 

This section discusses the importance ratings obtained by UAS log data subject matters experts 

(SMEs). A total of nine inputs were received from the SMEs representing 

maintenance/engineering support/training, safety/accident investigation, and Flight Operations 

Quality Assurance (FOQA) perspectives. These inputs reflect the SMEs’ importance ratings for 

each of the 12 criteria defined in this research. The inputs were recorded using the matrix shown 

in Chapter III, Table 5 and collected from users during site visits to their locations. A script 

containing the fundamental scale, criteria definitions, considerations, and examples was used for 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

KV 0.048 0.057 0.194 0.416 0.027 0.033 0.180 0.039 0.415 0.496 0.347 0.034

Doc 0.048 0.116 0.327 0.123 0.243 0.302 0.232 0.135 0.083 0.196 0.347 0.280

Col 0.048 0.031 0.327 0.073 0.243 0.302 0.080 0.039 0.415 0.055 0.089 0.126

Graph 0.429 0.233 0.076 0.186 0.243 0.302 0.466 0.326 0.050 0.105 0.184 0.280

Rel 0.429 0.562 0.076 0.203 0.243 0.062 0.042 0.461 0.038 0.149 0.033 0.280
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the SMEs and is included in Appendix A. The research team was available to answer their 

questions about the definitions of the criteria but avoided influencing the SMEs judgements. 

Additionally, the SMEs were asked to explain the context for which they made their judgements 

and identify any assumptions they made which influenced their responses.  

The following sections are organized by the SMEs’ locations. The first part of each section 

contains a brief discussion of the mission tasks and SMEs expertise at the location. Next, the 

SMEs’ importance ratings are provided. The ratings are followed by resultant priorities. The last 

part of each section will focus on the global priorities which indicate the most suitable database 

type determined by the application of AHP. The first location, Charlie, includes explanations of 

the calculations, but other locations results continue without repeating this information. 

Location Charlie 

Overview 

Two SMEs from Charlie contributed importance ratings for this study. SME #1 was the 

enterprise-wide recognized “guru” for analyzing log data to support maintenance and operational 

issues. Other locations and personnel referred their challenging log data questions to this SME. 

This SME uses log data to troubleshoot operational and maintenance issues resulting from operator 

errors, hardware/software failures, and other system anomalies. SME #1 anticipated using 

historical log data to support analysis of problems encountered in the future. Additionally, this 

SME employs log data analysis to provide training to their unit personnel.  

The second SME from this location was also an experienced log data analyst. SME #2 

emphasized the importance of analyzing data on a disconnected, single box solution as their 
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experience proved operating environments are not always conducive to network-reliant solutions. 

This SME also expected to use log data to support root cause analysis of UAS problems. 

Ratings 

Table 31 and table 32 contain the importance ratings developed by SME #1 and SME #2 

respectively. The row and column headings identify the criteria using the abbreviations described 

throughout this chapter. The diagonal of these matrices contains values colored in red to emphasize 

this symmetric boundary. As discussed, the SMEs provided inputs solely in the cells to the right 

of the diagonals. Thus, results to the left of the diagonal were determined by calculating the 

reciprocal of the corresponding cell on the right. For example, on the right side, cell DTE-SM 

contains 7.00 and was recorded directly from SME #1. Its symmetric left-side partner is the SM-

DTE cell which contains 0.14 which is approximately 1/7—the reciprocal of the value in the DTE-

SM cell.  

Table 31. Importance Ratings Matrix - Location Charlie - SME #1. 

 

Table 32. Importance Ratings Matrix - Location Charlie - SME #2. 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 0.20 3.00 2.00 1.00 0.25 0.17 0.20 0.20 0.25 1.00 7.00

DTE 5.00 1.00 7.00 7.00 7.00 1.00 1.00 4.00 2.00 3.00 7.00 3.00

LAT 0.33 0.14 1.00 0.33 0.33 0.14 0.14 0.33 0.14 0.14 1.00 0.14

SAT 0.50 0.14 3.00 1.00 1.00 0.14 0.14 0.33 0.14 0.14 1.00 0.14

M 1.00 0.14 3.00 1.00 1.00 1.00 0.33 2.00 0.33 0.33 5.00 0.20

Pla 4.00 1.00 7.00 7.00 1.00 1.00 0.50 0.25 0.33 2.00 1.00 0.33

Pre 6.00 1.00 7.00 7.00 3.00 2.00 1.00 5.00 4.00 3.00 5.00 0.33

QC 5.00 0.25 3.00 3.00 0.50 4.00 0.20 1.00 0.33 4.00 5.00 2.00

QO 5.00 0.50 7.00 7.00 3.00 3.00 0.25 3.00 1.00 4.00 5.00 2.00

RT 4.00 0.33 7.00 7.00 3.00 0.50 0.33 0.25 0.25 1.00 5.00 0.20

SM 1.00 0.14 1.00 1.00 0.20 1.00 0.20 0.20 0.20 0.20 1.00 0.14

T 0.14 0.33 7.00 7.00 5.00 3.00 3.00 0.50 0.50 5.00 7.00 1.00
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Local Priorities 

Using the same process for calculating performance priorities, importance priorities were 

determined for these inputs. Specifically, these ratings were normalized by column and then the 

average of the normalized values were calculated across each row to develop the importance 

priorities.  

Figure 23 presents the resultant importance priority vectors from Location Charlie’s SMEs. 

Part (a) contains the results from SME #1 and part (b) contains SME #2’s results. In each part, the 

first column contains the list of criteria and the second column contains the calculated priorities 

which are normalized between 0 and 1. Additionally, the priorities are shaded using a white-to-

green gradient from smallest to largest value to highlight the results.  

These results are intermediate and provide limited insight when considered independently from 

the global priorities which have yet to be determined. However, reviewing the results can serve as 

a qualitative assessment of how well the judges understand the problem. For example, a 

preliminary review suggests SME #1 emphasized Data Typing Enforcement and Preprocessing 

while SME #2 appears to value Query Complexity. These observations are consistent with 

discussions between the research and the SME throughout the course of research. Specifically, 

SME #1 routinely emphasized that any solution should automatically ingest the data and retain a 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 0.11 9.00 5.00 1.00 3.00 0.14 0.11 7.00 0.33 0.13 0.20

DTE 9.00 1.00 9.00 7.00 0.50 5.00 0.33 0.33 9.00 0.33 0.50 0.50

LAT 0.11 0.11 1.00 0.11 0.11 0.11 0.11 0.11 0.50 0.11 0.11 0.11

SAT 0.20 0.14 9.00 1.00 0.33 0.33 0.20 0.14 3.00 0.20 0.33 0.33

M 1.00 2.00 9.00 3.00 1.00 0.50 0.33 0.50 5.00 0.33 0.20 0.50

Pla 0.33 0.20 9.00 3.00 2.00 1.00 0.50 0.25 7.00 0.33 0.20 0.20

Pre 7.00 3.00 9.00 5.00 3.00 2.00 1.00 0.50 9.00 7.00 5.00 2.00

QC 9.00 3.00 9.00 7.00 2.00 4.00 2.00 1.00 8.00 5.00 7.00 3.00

QO 0.14 0.11 2.00 0.33 0.20 0.14 0.11 0.13 1.00 0.20 0.20 0.14

RT 3.00 3.00 9.00 5.00 3.00 3.00 0.14 0.20 5.00 1.00 5.00 0.20

SM 8.00 2.00 9.00 3.00 5.00 5.00 0.20 0.14 5.00 0.20 1.00 0.33

T 5.00 2.00 9.00 3.00 2.00 5.00 0.50 0.33 7.00 5.00 3.00 1.00
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high level of fidelity. Likewise, SME #2 expressed an appreciation for powerful and flexible data 

queries—which could be accomplished by a system that provides QC. Additionally, the low 

priority associated with LAT suggests the SMEs recognized their log data does not exceed this 

threshold and used the rating system appropriately. Observations like these provide confidence the 

AHP approach for this problem is appropriate. 

  

(a) SME #1 (b) SME #2 

Figure 23. Importance Priority Vectors - Location Charlie. 

Another observation can be made by comparing the differences between SMEs’ the priority 

vectors. The color gradients serve as a qualitative histogram where the bold green color 

corresponds to bins with a higher count and the white corresponds to bins with a low count; the 

criteria would correspond to categorical bins. Treating the results in this figure as such, it is easier 

to identify differences. In particular, there is a noticeable difference between the importance 

priorities for QO by both SMEs.  

Global Priorities 

Each judge has a global priority vector associated with their results. These global priorities 

were determined by combining the results of the performance and importance priorities. 

Criteria Importance Priority

CAC 0.061

DTE 0.166

LAT 0.015

SAT 0.021

M 0.047

Pla 0.077

Pre 0.166

QC 0.091

QO 0.127

RT 0.071

SM 0.022

T 0.136
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Specifically, the importance priorities for each criterion are multiplied by the corresponding 

performance priority for each database type. These results are totaled for each database type to 

produce a vector of global priorities. For example, the performance priority, from table 30, for 

CAC for the KV database type is multiplied by SME #1’s importance priority for CAC. Then this 

product is computed for the document, column, graph, and relational types. The calculations 

continue for all criterion until a new matrix of values is produced. Table 33 illustrates the 

intermediate results of these products. The last step is to sum the value across each row. These 

values are the SME’s global priorities for each database type. Table 34 displays these results. The 

process is repeated for each SME. 

Table 33. Matrix of Importance and Performance Products for SME #1. 

 

Table 34. SME #1's Global Priorities. 

DB Type Global Priority 

KV 0.161 

Doc 0.185 

Col 0.142 

Graph 0.267 

Rel 0.244 

 

Table 34 indicates a graph-type database, with the largest global priority, is the most suitable 

solution given the inputs provided by SME #1. According to this table, a columnar-type database 

is least suitable because has the lowest global priority associated with. The values in between these 

extremes vary in suitability. Table 35 provides SME #2’s results for comparison. While the 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

KV 0.0029 0.0095 0.0028 0.0088 0.0013 0.0025 0.0299 0.0036 0.0528 0.0351 0.0076 0.0047

Doc 0.0029 0.0193 0.0048 0.0026 0.0115 0.0232 0.0385 0.0124 0.0105 0.0139 0.0076 0.0381

Col 0.0029 0.0051 0.0048 0.0015 0.0115 0.0232 0.0133 0.0036 0.0528 0.0039 0.0019 0.0171

Graph 0.0260 0.0387 0.0011 0.0039 0.0115 0.0232 0.0772 0.0298 0.0064 0.0074 0.0040 0.0381

Rel 0.0260 0.0933 0.0011 0.0043 0.0115 0.0047 0.0069 0.0421 0.0049 0.0105 0.0007 0.0381
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resulting values are different for each SME, the conclusion is the same: the graph database type is 

most suitable. 

Table 35. SME #2's Global Priorities. 

DB Type Global Priority 

KV 0.154 

Doc 0.205 

Col 0.097 

Graph 0.289 

Rel 0.254 

 

Location Hotel 

Overview 

The mission at this location is focused on providing training to UAS operators and maintainers. 

The three participating SMEs at this location, i.e., SME #3, SME #4, and SME #5, provide 

engineering support to operations, maintenance, and training activities. Part of their support 

involves analyzing UAS log data. SME #3 was a team lead and has less log data analysis 

experience than SME #4. SME #5 was relatively new to the team when the data was solicited from 

this team. In fact, SME #5 was the most junior log data analyst participating in this research effort. 

These SMEs would consider using a networked solution but understand the realities of working 

with the data on a single box.  

Ratings 

Table 36 presents the importance ratings obtained from SME #3. Unfortunately, SME #3 ran 

out of time during the visit and had not provided an update at the time of this writing. Thus, this 

data was incomplete. Additionally, these ratings contained values outside of the definitions in the 

fundamental scale—specifically it contained 0’s.  
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In this table, the cells highlighted in yellow denote the SME’s inputs that were 0’s. On the left 

side of the matrix’s diagonal, these values would be 1/0—mathematically undefined, so these cells 

are left blank. The cells highlighted in red designate the cells for which the SME did not provide 

any rating. To avoid undefined values, these cells on the diagonal’s left are also blank.  

Table 36. Importance Ratings Matrix - Location Hotel - SME #3. 

 

These ratings are included as part of an effort to be straightforward and complete. Saaty’s AHP 

methodology assumes the judge’s ratings are complete, so there is no described approach for 

interpolation. In contrast to this set of ratings, the other two results were complete and conformed 

to the fundamental scale.  

However, the data suggested that SME #4, despite instruction and discussion, took a more 

holistic approach to assigning ratings. Table 37 presents the ratings assigned by SME #4. 

Reviewing this data, it appears the judge performed column-wise comparisons as the cells in each 

column on the right side of the diagonal contain the same values. Without influencing the SME to 

change their answers, it was confirmed that this set of ratings reflects their evaluation of the 

criteria.  

 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 1.00 0.20 0.20 0.50 1.00 0.20 0.33 1.00 1.00

DTE 1.00 1.00 0.20 0.20 0.50 1.00 0.20 0.33 1.00 1.00

LAT 5.00 5.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SAT 5.00 5.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M 2.00 2.00 1.00 1.00 0.20 0.20 0.20 1.00

Pla 1.00 1.00 1.00 1.00 0.20 0.20 0.20 0.20

Pre 5.00 5.00 5.00 5.00 1.00 7.00 7.00 7.00 7.00 7.00

QC 0.14 1.00 1.00 0.20 0.20 0.20

QO 0.14 1.00 1.00 0.20 0.20 0.20

RT 3.00 3.00 5.00 5.00 0.14 5.00 5.00 1.00 0.20 0.20

SM 1.00 1.00 5.00 5.00 0.14 5.00 5.00 5.00 1.00 0.20

T 1.00 1.00 1.00 5.00 0.14 5.00 5.00 5.00 5.00 1.00
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Table 37. Importance Ratings Matrix - Location Hotel – SME #4. 

 

Table 38 displays the ratings matrix obtained from SME #5. No anomalous or unexpected 

ratings were detected upon preliminary review of this data set. It could be speculated that this 

respondent, as the junior analyst, had something to prove. Thus, their answers appear to be the 

most thoroughly considered of those collected from location Hotel. 

Table 38. Importance Ratings Matrix - Location Hotel – SME #5. 

 

Local Priorities 

Figure 24 displays the resultant priorities calculated using the normalization and averaging 

process previously described. Part (a) and (b) correspond to the ratings from SME’s 4 and 5 

respectively. As explained, the SME #3’s results were not reliable because they were incomplete 

and did not use prescribed fundamental scale. Other observations may be made by reviewing SME 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 0.50 9.00 9.00 9.00 0.25 9.00 0.14 9.00 0.33 0.17 0.20

DTE 2.00 1.00 9.00 9.00 9.00 0.25 9.00 0.14 9.00 0.33 0.17 0.20

LAT 0.11 0.11 1.00 9.00 9.00 0.25 9.00 0.14 9.00 0.33 0.17 0.20

SAT 0.11 0.11 0.11 1.00 9.00 0.25 9.00 0.14 9.00 0.33 0.17 0.20

M 0.11 0.11 0.11 0.11 1.00 0.25 9.00 0.14 9.00 0.33 0.17 0.20

Pla 4.00 4.00 4.00 4.00 4.00 1.00 9.00 0.14 9.00 0.33 0.17 0.20

Pre 0.11 0.11 0.11 0.11 0.11 0.11 1.00 0.14 9.00 0.33 0.17 0.20

QC 7.00 7.00 7.00 7.00 7.00 7.00 7.00 1.00 9.00 0.33 0.17 0.20

QO 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 1.00 0.33 0.17 0.20

RT 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.00 0.17 0.20

SM 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 1.00 0.20

T 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 1.00

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 3.00 9.00 9.00 0.20 0.11 3.00 0.11 5.00 2.00 0.50 0.13

DTE 0.33 1.00 9.00 9.00 0.25 0.13 2.00 0.11 4.00 7.00 0.20 0.17

LAT 0.11 0.11 1.00 1.00 0.11 0.14 0.50 0.11 1.00 0.33 0.11 0.11

SAT 0.11 0.11 1.00 1.00 0.11 0.14 0.50 0.11 1.00 0.33 0.11 0.11

M 5.00 4.00 9.00 9.00 1.00 1.00 9.00 1.00 9.00 9.00 1.00 1.00

Pla 9.00 8.00 7.00 7.00 1.00 1.00 9.00 7.00 9.00 9.00 1.00 3.00

Pre 0.33 0.50 2.00 2.00 0.11 0.11 1.00 0.20 0.33 0.14 0.13 0.13

QC 9.00 9.00 9.00 9.00 1.00 0.14 5.00 1.00 9.00 8.00 3.00 1.00

QO 0.20 0.25 1.00 1.00 0.11 0.11 3.00 0.11 1.00 0.11 0.14 0.14

RT 0.50 0.14 3.00 3.00 0.11 0.11 7.00 0.13 9.00 1.00 0.50 0.25

SM 2.00 5.00 9.00 9.00 1.00 1.00 8.00 0.33 7.00 2.00 1.00 1.00

T 8.00 6.00 9.00 9.00 1.00 0.33 8.00 1.00 7.00 4.00 1.00 1.00
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#4 and 5’s resultant priority vectors. To the researcher, it seemed unusual that SM and T would be 

emphasized for the UAS log data, but it appears that these judges were in (at least) partial 

agreement on this matter. The green shading for these criteria suggests both SMEs valued these 

capabilities. Additionally, by treating the vectors as color-coded histograms again, similar patterns 

are apparent between these two SMEs results. That is, “areas” of green appear in similar locations 

for both result sets even though the bin counts are clearly not the same. Finally, it is apparent that 

SME #5, despite their junior status, understood that LAT plays an insignificant role for this use 

case. 

  

(a) SME #4 (b) SME #5 

Figure 24. Importance Priority Vectors – Location Hotel. 

 

Global Priorities 

The priorities shown in Figure 25 were calculated from the local priorities using the process 

described previously. The results from both SMEs at this location agree that a graph-type database 

would be most appropriate for their needs because the global priority for the graph type had the 

Criteria Importance Priority

CAC 0.076

DTE 0.081

LAT 0.058

SAT 0.043

M 0.031

Pla 0.075

Pre 0.021

QC 0.131

QO 0.012

RT 0.077

SM 0.179

T 0.216

Criteria Importance Priority

CAC 0.058

DTE 0.057

LAT 0.013

SAT 0.013

M 0.146

Pla 0.225

Pre 0.017

QC 0.161

QO 0.017

RT 0.045

SM 0.118

T 0.131
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largest value. In contrast, both results also suggest that a KV database would be least suitable 

because this database type had the smallest resultant global priority. 

  

(a) SME #4 (b) SME #5 

Figure 25. Global Priorities for Location Hotel SMEs. 

 

Location Kilo 

Overview 

The mission at location Kilo involves investigations related to mishaps and overall safety. Only 

two SMEs participated from this location, i.e., SME #6 and SME #7. Both SMEs are involved with 

safety investigations and have experience analyzing the UAS log data using the available tools. 

SME #6 is the team leader and supervisor and assumes an analysis role commensurate with this 

title. Therefore, SME #7 has more “in the weeds” log data analysis experience, but is not 

considered a “junior” employee. In contrast to some other judges, SME #6 articulated that a 

networked solution would be ideal to support their operational needs concerning log data storage 

and retrieval. Both SMEs mentioned a desire to consolidate and use data from the existing two 

data repositories. Additionally, SME #7 observed that trend and historical analysis would be a 

desired outcome of using an automated system to manage the UAS log data.  

 

DB Type Global Priority

KV 0.007

Doc 0.018

Col 0.012

Graph 0.023

Rel 0.022

DB Type Global Priority

KV 0.109

Doc 0.232

Col 0.157

Graph 0.269

Rel 0.233
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Ratings 

Table 39 and Table 40 present the importance ratings recorded by SME #6 and #7 respectively. 

The responses of these judges did not appear to contain any qualitative anomalies or suggest issues 

with their understanding of the rating system. Thus, these ratings were used to produce local 

priorities as part of the AHP methodology. 

Table 39. Importance Ratings Matrix - Location Kilo - SME #6. 

 

Table 40. Importance Ratings Matrix - Location Kilo - SME #7. 

 

Local Priorities 

Figure 26 provides the priorities resulting from the normalized column average process 

described previously. Part (a) and (b) contain the respective results for SME #6 and SME #7. A 

cursory review can observer difference between the pair of judges results. SME #6’s results appear 

to emphasize fidelity (CAC and DTE) and import automation (Pre) which could be expected for a 

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 0.50 4.00 4.00 2.00 1.00 0.17 0.50 6.00 4.00 2.00 2.00

DTE 2.00 1.00 2.00 2.00 0.50 0.25 0.13 1.00 6.00 2.00 2.00 4.00

LAT 0.25 0.50 1.00 1.00 0.25 0.25 0.13 0.25 0.25 0.25 0.50 0.50

SAT 0.25 0.50 1.00 1.00 0.25 0.25 0.13 0.25 0.25 0.25 0.50 0.50

M 0.50 2.00 4.00 4.00 1.00 0.50 0.50 0.50 0.50 0.50 0.25 0.50

Pla 1.00 4.00 4.00 4.00 2.00 1.00 0.50 4.00 4.00 4.00 4.00 4.00

Pre 6.00 8.00 8.00 8.00 2.00 2.00 1.00 6.00 8.00 4.00 4.00 6.00

QC 2.00 1.00 4.00 4.00 2.00 0.25 0.17 1.00 4.00 4.00 2.00 2.00

QO 0.17 0.17 4.00 4.00 2.00 0.25 0.13 0.25 1.00 0.25 0.25 0.50

RT 0.25 0.50 4.00 4.00 2.00 0.25 0.25 0.25 4.00 1.00 2.00 2.00

SM 0.50 0.50 2.00 2.00 4.00 0.25 0.25 0.50 4.00 0.50 1.00 0.50

T 0.50 0.25 2.00 2.00 2.00 0.25 0.17 0.50 2.00 0.50 2.00 1.00

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 0.14 5.00 5.00 7.00 1.00 5.00 0.11 7.00 3.00 0.11 0.33

DTE 7.00 1.00 5.00 5.00 3.00 1.00 0.33 0.14 7.00 3.00 1.00 1.00

LAT 0.20 0.20 1.00 1.00 0.14 0.14 0.20 0.11 0.33 0.33 0.20 0.11

SAT 0.20 0.20 1.00 1.00 0.14 0.14 0.20 0.11 0.33 0.33 0.20 0.11

M 0.14 0.33 7.00 7.00 1.00 0.14 0.33 0.20 3.00 3.00 0.14 0.11

Pla 1.00 1.00 7.00 7.00 7.00 1.00 5.00 1.00 3.00 5.00 0.33 0.14

Pre 0.20 3.00 5.00 5.00 3.00 0.20 1.00 0.20 0.20 1.00 0.14 0.11

QC 9.00 7.00 9.00 9.00 5.00 1.00 5.00 1.00 7.00 7.00 1.00 1.00

QO 0.14 0.14 3.00 3.00 0.33 0.33 5.00 0.14 1.00 0.20 0.33 0.14

RT 0.33 0.33 3.00 3.00 0.33 0.20 1.00 0.14 5.00 1.00 0.33 0.14

SM 9.00 1.00 5.00 5.00 7.00 3.00 7.00 1.00 3.00 3.00 1.00 0.14

T 3.00 1.00 9.00 9.00 9.00 7.00 9.00 1.00 7.00 7.00 7.00 1.00
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supervisor and manager. In contrast, SME #7’s results appear to value flexibility and power of 

queries (QC) and the storage structure (SM and T). This result is also expected for someone 

intimately familiar with the changes to the contents of the logs and variety of questions 

accumulating over time. Furthermore, these results indicate both SME’s recognize that LAT is not 

particularly relevant for this system. This finding adds some confidence in the process thus far and 

its potential utility.  

  
(a) SME #6. (b) SME #7. 

Figure 26. Importance Priority Vectors - Location Kilo. 

Global Priorities 

The priorities shown in Figure 27 were calculated using the previously described process. 

Again, the results from both SMEs at this location indicate a graph-type database would be most 

suitable for their requirements because the global priority for this type had the largest calculated 

value. In contrast, both results also suggest that a columnar-type database would be least 

appropriate because this type had the smallest global priority of the set in both cases. 

Criteria Importance Priority

CAC 0.096

DTE 0.081

LAT 0.022

SAT 0.022

M 0.059

Pla 0.150

Pre 0.264

QC 0.093

QO 0.040

RT 0.067

SM 0.058

T 0.048

Criteria Importance Priority

CAC 0.077

DTE 0.099

LAT 0.013

SAT 0.013

M 0.045

Pla 0.097

Pre 0.049

QC 0.186

QO 0.032

RT 0.034

SM 0.127

T 0.229
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(a) SME #6 (b) SME #7 

Figure 27. Global Priorities for Location Kilo SMEs. 

 

Location Mike 

Overview 

Two SMEs, SME #8 and SME #9, from Mike participated in this research effort. The mission 

at this location involved log data analysis of flight operations to identify trends and events that did 

or could result in operational problems. The results of this analysis work supported commanders 

across the enterprise in identifying shortcomings in training, techniques, tactics, and procedures. 

These SMEs use a substantial amount of automation to facilitate detection of known events and 

anomalies. The data used for their analysis is stored in one of the aforementioned repositories and 

accessible via a network. Additionally, these SMEs were both familiar with flight operations, 

databases operations, querying, and the analysis techniques required to extract information and 

analyze UAS log data. SME #8 had more experience than SME #9.  

Ratings 

Table 41 and table 42 display the importance ratings determined by SME #8 and #9 

respectively. A preliminary review of their responses did not identify any unusual responses or 

indicate a lack of understanding concerning the rating system. Therefore, these results were used 

to calculate local priorities for the next step in AHP. 

DB Type Global Priority

KV 0.152

Doc 0.208

Col 0.132

Graph 0.312

Rel 0.197

DB Type Global Priority

KV 0.120

Doc 0.215

Col 0.118

Graph 0.275

Rel 0.271
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Table 41. Importance Ratings Matrix - Location Mike - SME #8. 

 

Table 42. Importance Ratings Matrix - Location MIke - SME #9. 

 

Local Priorities 

Figure 28 presents the local priorities determined from the rating provided in the previous 

section. Part (a) and (b) contain the results calculated from the respective ratings from SME #8 

and SME #9. Both SMEs appeared to value different aspects of data fidelity and consistency as 

indicated by their value of CAC and DTE. Additionally both sets of answers suggest sensitivity to 

the changing structure and contents of the log data through the resulting emphasis on M, Pla, and 

SM. Furthermore, neither SME from location Mike expected knowledge of all possible queries at 

the time of design (QO). Finally, SME #8 also determined that LAT was not appropriate for this 

use case. SME #9 resultant priorities did not clearly illustrate this understanding.  

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 0.14 2.00 3.00 1.00 0.20 0.17 0.14 3.00 0.17 0.14 2.00

DTE 7.00 1.00 7.00 5.00 3.00 2.00 0.33 0.25 5.00 7.00 1.00 5.00

LAT 0.50 0.14 1.00 0.33 0.14 0.33 0.14 0.13 0.33 0.14 0.13 0.33

SAT 0.33 0.20 3.00 1.00 1.00 0.50 0.20 0.20 1.00 0.20 0.14 0.50

M 1.00 0.33 7.00 1.00 1.00 4.00 1.00 0.33 5.00 1.00 0.20 7.00

Pla 5.00 0.50 3.00 2.00 0.25 1.00 0.20 0.14 3.00 0.50 0.14 5.00

Pre 6.00 3.00 7.00 5.00 1.00 5.00 1.00 0.33 5.00 1.00 1.00 5.00

QC 7.00 4.00 8.00 5.00 3.00 7.00 3.00 1.00 7.00 0.20 0.20 3.00

QO 0.33 0.20 3.00 1.00 0.20 0.33 0.20 0.14 1.00 0.20 0.14 1.00

RT 6.00 0.14 7.00 5.00 1.00 2.00 1.00 5.00 5.00 1.00 1.00 7.00

SM 7.00 1.00 8.00 7.00 5.00 7.00 1.00 5.00 7.00 1.00 1.00 5.00

T 0.50 0.20 3.00 2.00 0.14 0.20 0.20 0.33 1.00 0.14 0.20 1.00

CAC DTE LAT SAT M Pla Pre QC QO RT SM T

CAC 1.00 3.00 5.00 9.00 3.00 5.00 0.50 3.00 9.00 7.00 0.50 2.00

DTE 0.33 1.00 3.00 7.00 0.50 3.00 0.33 0.50 7.00 5.00 0.50 0.33

LAT 0.20 0.33 1.00 5.00 0.33 3.00 0.20 3.00 5.00 3.00 0.20 0.33

SAT 0.11 0.14 0.20 1.00 0.20 0.14 0.11 0.14 3.00 0.33 0.11 0.14

M 0.33 2.00 3.00 5.00 1.00 0.20 0.33 0.33 5.00 5.00 0.14 0.33

Pla 0.20 0.33 0.33 7.00 5.00 1.00 0.20 0.20 3.00 3.00 0.33 0.20

Pre 2.00 3.00 5.00 9.00 3.00 5.00 1.00 3.00 9.00 9.00 1.00 2.00

QC 0.33 2.00 0.33 7.00 3.00 5.00 0.33 1.00 7.00 7.00 0.33 0.33

QO 0.11 0.14 0.20 0.33 0.20 0.33 0.11 0.14 1.00 0.20 0.11 0.14

RT 0.14 0.20 0.33 3.00 0.20 0.33 0.11 0.14 5.00 1.00 0.14 0.14

SM 2.00 2.00 5.00 9.00 7.00 3.00 1.00 3.00 9.00 7.00 1.00 2.00

T 0.50 3.00 3.00 7.00 3.00 5.00 0.50 3.00 7.00 7.00 0.50 1.00
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(a) SME #8. (b) SME #9. 

Figure 28. Importance Priority Vectors – Location Mike. 

 

Global Priorities 

The priorities shown in Figure 29 were determined using the previously described process. 

Once more, the results from both location Mike SMEs identify the graph database type as best 

suited for their needs due to the associated large global priority for this type. Additionally, the 

results agreed the columnar database type is least suitable for these SMEs.  

  

(a) SME #8 (b) SME #9 

Figure 29. Global Priorities for Location Mike SMEs. 

 

  

Criteria Importance Priority

CAC 0.034

DTE 0.150

LAT 0.012

SAT 0.025

M 0.078

Pla 0.051

Pre 0.129

QC 0.162

QO 0.021

RT 0.133

SM 0.181

T 0.025

Criteria Importance Priority

CAC 0.147

DTE 0.072

LAT 0.057

SAT 0.015

M 0.059

Pla 0.052

Pre 0.179

QC 0.084

QO 0.012

RT 0.023

SM 0.178

T 0.121

DB Type Global Priority

KV 0.194

Doc 0.210

Col 0.098

Graph 0.257

Rel 0.240

DB Type Global Priority

KV 0.149

Doc 0.220

Col 0.114

Graph 0.298

Rel 0.219
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Summary 

This chapter presented the results of the methodology steps described in Chapter III. The 

simulation study and aggregate designs were presented first. The results of this study were used in 

conjunction with the literature review findings to establish performance ratings for each of the 

database types. These ratings were assessed using the AHP to develop performance priorities. The 

second half of this chapter described the importance ratings and resultant priorities calculated from 

the field study. Lastly, global priorities were calculated using the importance and performance 

results according to the third step of the AHP. The next chapter will summarize and discuss these 

global priorities.  
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V. Discussion 

This chapter provides an overview of the effort to determine the suitability of relational and 

NoSQL systems as log data storage systems.  

Interpretation of Global Priorities 

Table 43 displays a summary of the global priorities calculated for all SMEs. This table 

provides the means to quickly compare the suitability results across locations and SMEs. The 

results suggest that one database type is most suitable for all locations. The results vary for 

subsequent alternatives. Additionally, the table does not include a result for location Hotel’s SME 

#3 because the inputs from this SME could not be used to calculated local priorities. SME #3’s 

results were discussed more thoroughly in Chapter IV. 

Table 43. Summary of Global Priorities. 

 

The top result, i.e. most suitable database type, for all SMEs was the graph type database. This 

type earned the highest global priority score across all locations and SMEs. This consistent result 

is an encouraging endorsement for the validity of the methodology because the users have 

relatively similar needs for log data storage and retrieval. Specifically, the mechanism should have 

produced similar outcomes for SMEs with identical needs. Thus, it was expected the results would 

agree for SMEs at the same location. However, this universal agreement was not necessarily 

anticipated.  

DB Type C-SME #1 C-SME #2 H-SME #4 H-SME #5 K-SME #6 K-SME #7 M-SME #8 M-SME #9

KV 0.161 0.154 0.007 0.109 0.152 0.120 0.194 0.149

Doc 0.185 0.205 0.018 0.232 0.208 0.215 0.210 0.220

Col 0.142 0.097 0.012 0.157 0.132 0.118 0.098 0.114

Graph 0.267 0.289 0.023 0.269 0.312 0.275 0.257 0.298

Rel 0.244 0.254 0.022 0.233 0.197 0.271 0.240 0.219

Most Suitable Type Graph Graph Graph Graph Graph Graph Graph Graph
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Though the interpretation of the priorities agrees, the highest calculated global priority is 

different for each SME. Specifically, the highest scores in ascending order are 0.023, 0.257, 0.267, 

0.269, 0.275, 0.289, 0.298, and 0.312. This difference is important and expected because SME’s 

inputs were not in exact agreement because each input matrix resulted in different local priorities. 

Thus, the calculated global priorities would not be expected to match exactly.  

Additionally, the second most suitable type was the relational database type as six of the eight 

SMEs second largest global priority corresponded to the relational type. The remaining two 

indicated the document type would be a suitable second choice. The document type was the third 

best result for the original six. Thus, the results for second and third most suitable varied between 

relational and document.  

Furthermore, the columnar type database was solidly the least suitable choice among 

alternatives. Six SMEs global priorities agreed the columnar type was the worst solution for their 

needs. The remaining two results suggested key-value was the least appropriate. These results 

agreed that columnar types were next to last.  

Another observation pertains to the smallest value of this set of top priorities. This value is 

more than two standard deviations smaller than the mean of these samples. This priority was 

calculated from the inputs of SME #4 whose importance ratings presented an unusual pattern. 

Recall this SME’s ratings in each column of the input matrix were the same. Moreover, all this 

SME’s global priorities were smaller than the results of the other SMEs. Yet, the interpretation of 

this judge’s results matches those of the other judge from the same location. These two facts 

suggest the AHP approach and evaluation criteria are a robust mechanism for determining 

suitability of the data storage and retrieval systems. 
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Comments on the Methodology 

Overall there was reasonable agreement between the resultant global priorities of the SMEs. 

Though, it was acknowledged the total number of participating judges was small. This number 

should be increased for a study which intends to identify a statistically relevant solution for a log 

data storage and retrieval system. Yet, since the purpose of this study was to determine as a proof 

of concept whether the evaluation criteria are suitable to compare popular database types, the 

number of participants is acceptable.  

An aspect of Saaty’s original AHP methodology was not included in this effort. The original 

AHP methodology included a means to assess the consistency of the inputs provided by each judge. 

However, in Saaty’s later work involving AHP, he argued that inconsistent inputs do not invalidate 

the results. Thus, consistency was considered but not included in this project.  

Future Work 

In the future, a number of areas of this study could be extended. Additional use cases, besides 

the UAS log data, could be explored to augment the proof of concept for these criteria. For 

example, router logs on a small network or user access logs a group of buildings could be 

investigated. Both cases involve electronical log data generated by asynchronous events and could 

be used by personnel with different mission roles such as security, maintenance, and operations.  

A sensitivity experiment could be accomplished for the criteria performance ratings. This 

would assess influential each criterion has with respect to the overall global ratings. This 

experiment could also be extended to include other database experts to assess the performance of 

each database type. As an experiment, this could augment the statistical rigor of the ratings and 

establish a well-accepted baseline of performance. 
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Another extension of this work could include using other database implementations. The 

databases selected for this research are only five of hundreds of options. A few other options, such 

as an in-memory version of a key-value database type, like Redis, or a simpler columnar database 

system like Cassandra would provide additional support for the performance results involving the 

for their respective types. 

Finally, if six months or more time was available, a pilot study involving the graph database 

could be conducted at one of the units participating in the field study. Specifically, a graph database 

storage and retrieval application, like the one developed in the laboratory simulation, could be 

provided to the users at location Charlie. After a short period of training and usage, the users could 

provide feedback about whether the application met the storage and retrieval needs for their 

mission area. In this approach, a survey or user interviews could be employed to collect the data. 

This data could be used to further evaluate the validity of the proposed methodology and 

potentially tune the AHP inputs. 

Conclusion 

Ever since Codd formally defined the relational model in the 1970s, relational databases and 

its associated powerful SQL code have been the dominant standard by which data storage and 

retrieval have been measured. With the advent of modern, Big Data requirements, the relational 

model has been augmented with a variety of NoSQL type database options. However, for smaller, 

non-distributed applications, relational databases frequently remain the preferred database system. 

In many cases this is a prudent choice, but perhaps not always. In the UAS example studied, the 

inherent advantages of NoSQL databases yielded better results in a scaled-down single box 

environment.  
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Additionally, other data system practitioners have offered decision trees and various heuristics 

for selecting a data storage and retrieval system. However, these approaches typically lack the 

necessary rigor to choose a system beyond evaluating an issue with a discrete, e.g., binary or 

ternary, outcome such as data structure, the need for real-time event processing, or integrated 

analysis (Kosyakov, 2016) (Gessert, Wingerath, Friedrich, & Ritter, 2017) . The proposed 

approach, using AHP and the identified criteria, provides for pairwise comparison of multiple 

criteria to support a system decision.  

Finally, the author believes this work could be easily extended to evaluate solutions for uses 

that do not include log data. This methodology was motivated by and applied to a use case 

involving log data. However, as the literature review illustrated, log data possesses characteristics 

that are similar to other data types and few characteristics that are unique. Additionally, log data 

follows the general data life cycle like most other data. Furthermore, none of the criteria, developed 

in this research, are specifically tied to any unique aspect of log data. Moreover, the evaluation 

methodology’s primary constraint is small-scale applications. For these reasons, it is believed this 

evaluation methodology has applicability to a much wider range of single-box systems. 
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Appendix A. Importance Rating Script. 

Single Computer Log Data Storage and Retrieval System Needs 

The objective of this project is to identify data storage and retrieval systems that are best suited 

for the needs of <system name> log data users. Due to resource limitations and other constraints, 

only systems that run on a single computer will be considered. In the future, an Enterprise-wide 

solution may be evaluated. Twelve criteria were selected for evaluation and are shown in the input 

matrix on page two.  

For this project, we ask you consider how you would like to use the data if it were available in 

a database stored on a single computer or laptop. Specifically, we request two tasks from you. The 

first task is to briefly describe the ideal use case in which you would store and retrieve log data 

from a database. The second task is to make comparisons regarding importance about each of the 

twelve criteria.  

Task one may be accomplished on page two. Please provide an outline of the key aspects you 

would consider when accessing log data from a database. This outline should describe how you, 

personally, would use the data/database to accomplish tasks related to your job. You do NOT need 

to describe how the <system name> enterprise should use the data. Additionally, you can add to 

this description and clarify your outline as you work through task two. You may also include 

comments about why you rated one criterion more important than another. 

For task two, an input matrix is provided to record your ratings on page three. The ratings for 

each comparison are recorded in the cells of the matrix. Specifically, your results are recorded by 

comparing the importance of the criterion in a matrix row to the criterion in identified in each 
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column. You may find it convenient to print the input matrix and fill it in using the other sections 

as reference. This process and the criteria are explained in detail in this document.  

The remainder of this document provides pages to perform the tasks, outlines instructions for 

using the input matrix, explains the twelve criteria, and provides an example detailing how 

comparisons could be made.  

Task 1. Briefly describe how you would like to store and retrieve log data to meet your mission 

needs. 
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Task 2. Input Matrix 

  

1.  
CAC 

2.  
DTE 

3.  
LAT 

4.  
SAT 

5. 
M 

6. 
Pla 

7.  
Pre 

8.  
QC 

9.  
QO 

10. 
RT 

11. 
SM 

12.  
T 

1. Cross-Aggregate Consistency 
(CAC) 1                       

2. Data Typing Enforcement (DTE)   1                     

3. Large Aggregate Transactions 
(LAT)     1                   

4. Small Aggregate Transactions 
(SAT)       1                 

5. Manipulation (M)         1               

6. Plasticity (Pla)           1             

7. Preprocessing (Pre)             1           

8. Query Complexity (QC)               1         

9. Query Omniscience (QO)                 1       

10. Result Timeliness (RT)                   1     

11. Structural Malleability (SM)                     1   

12. Transparency (T)                       1 
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Using the input matrix 

The input matrix consists of rows and columns containing the criteria. To reduce space in this 

document, the full names of the criteria are provided in the rows and abbreviations are used as 

column headings. The relative importance of each criterion, with respect to the objective, is 

established using pairwise comparisons of criteria in each row to criteria in each column.  

The comparisons are evaluated from left to right and then top to bottom in the matrix. Thus, 

Cross-Aggregate Consistency (CAC) is compared to itself, Data Typing Enforcement (DTE), 

Large Aggregate Transactions (LAT), and so on until CAC is compared to Transparency (T). Then 

DTE is compared to itself, LAT, and so on until DTE is compared to T. This process continues 

downward through the rows of the matrix. These criteria and key terms will be explained in the 

next section of the document. 

The rating scale is provided in Table 44. Acceptable values for the comparisons are: 1, 2, 3, 4, 

5, 6, 7, 8, 9, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, and 1/9. If the criterion in the row is more important 

to your ideal case than the criterion in the column, a whole number is recorded in the appropriate 

cell. If the column is more important than the row, a fractional number is recorded. 

Table 44. Fundamental Scale 

Importance intensity Definition Explanation 

1 Equal importance Two criteria, row a and column b, contribute equally to the 

objective. 

3 Moderate importance of one over another Experience and judgment moderately favor one criterion, 

row a,  over another, column b. 

5 Essential or strong importance Experience and judgment strongly favor one criterion, row a, 

over another, column b. 

7 Very strong importance One criterion, row a, has demonstrated dominance in practice 

over another, column b. 
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9 Extreme importance The evidence favoring one criterion, row a, over another, 

column b, is of the highest possible order. 

2, 4, 6, 8 Intermediate values between the two adjacent 

ratings/judgements 

Used when compromise is needed. For example, 6 can be used 

for the intermediate value between 5 and 7. 

1/2, 1/3, 1/4, 1/5, 

1/6, 1/7, 1/8, 1/9  

These values are used when you believe the criterion in the column, b, is more important than the criterion in 

the row, a. 

 

This process results in two notable outcomes. The first outcome is each criterion is compared 

to itself. These comparisons are already recorded for you as “1’s” across the diagonal cells in the 

matrix. This comparison is mathematically important in the subsequent analysis and provided for 

you as an example comparison. Additionally, a complete evaluation of the matrix would result in 

redundant comparisons. For example, the comparison of CAC to DTE has a reciprocal comparison 

of DTE to CAC. To save time, these redundant comparisons have cells colored in black. You do 

not need to fill in these blackened cells. An example of a filled in table is shown below. Please 

note the numbers shown in this table are purely illustrative. 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

1. Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6  1/5  1/7  1/7 1/7  1 1/7  

2. Data Typing Enforcement (DTE)   1  7 7 5 5 3 1 1 / 2 1 3 3 

3. Large Aggregate Transactions (LAT)     1 1 1/5 1/5 1/5 1/5 1/7 1/7 1/5 1/3 

4. Small Aggregate Transactions (SAT)       1 1/5 1/5 1/5 1/5 1/7 1/7 1/5 1/3  

5. Manipulation (M)         1  1 / 2 1/3 1/3 1/5 1/7 2 1 

6. Plasticity (Pla)           1 1 / 2 1 1/3 1/5 3 1 

7. Preprocessing (Pre)             1 1 1 / 2 1/5 3 2 

8. Query Complexity (QC)               1  1 / 3 1 3 2 

9. Query Omniscience (QO)                 1  1  5 3 

10. Result Timeliness (RT)                   1 5  5 

11. Structural Malleability (SM)                     1  1/3 

12. Transparency (T)                       1 

 

Terminology 
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Aggregates and Elements 

The concept of an aggregate is central to modern database (DB) systems. An aggregate is 

composed of one or more data elements and is considered an atomic unit to the DB during 

transactions. An element contains a value and is similar to a cell in a relational database table. For 

example, an aggregate could be a single sample of all variables (signals) collected at a particular 

moment in time. Likewise an element would be a single sample of a particular variable (signal) 

such as engine speed, altitude, or heading. Additionally, an atomic unit is the typical component 

manipulated during DB transactions. 

Transaction 

A transaction is a Create, Read, Update, or Delete (CRUD) operation performed on a single 

aggregate by the DB. Essentially, a transaction is an operation that stores, retrieves, or removes an 

aggregate in the database. For example storing a single sample of all signals, i.e. an aggregate, in 

the database would be a transaction.  

Query 

A query is a set of transactions performed by the DB on one or more aggregates and elements. 

For example, a query could be run to retrieve the coolant temperature samples for a particular 

mission. Alternatively, a query could be performed to identify aircraft tail numbers stored in the 

database. Furthermore, a query could delete all data for a particular mission.   
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Criteria Explanations 

1. Cross-Aggregate Consistency (CAC) 

DB ability to perform cascading updates to across two or more aggregates based on 

implicitly or explicitly defined relationships. A cascading update is a database term referring to 

changes performed automatically by the database when a change to one aggregate logically affects 

other aggregates due to a defined relationship.  

This ability differs from manipulation. In a DB which supports CAC, the DB would identify 

the relationship between aggregates and perform the necessary updates. In contrast, in a DB which 

supports only manipulation, the DB executes update operations independently from any implicitly 

or explicitly defined relationships. That is, manipulation, by itself, ignores these relationships. 

• Examples 

• Assume a mission was flown and the log data is loaded into a DB. The log data is stored 

using one aggregate for each 1Hz sample of data. The aircraft tail number itself is 

stored in each aggregate. Later, someone realizes the wrong tail number was recorded 

for the mission. This update affects over 200,000 samples and thus 200,000 aggregates 

in the database. Cross-aggregate consistency involves the process responsible for 

updating aggregates to the appropriate tail number. 

• Assume a mission was flown and the log data is loaded into a DB. The tail number of 

the aircraft is related to each mission it flew. The relationship is stored by the DB. 

Queries can determine which missions were flown by a particular tail number. Queries 

can also retrieve/update properties about relationships such as the start/end date/time 

of a mission flown by a particular tail.  

• Considerations 

• When updates to stored data are required, should the DB be responsible for ensuring 

CAC? 

• If yes, CAC is more important than some criteria, because you need the DB to 

support enforcing this consistency. 
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• If no, CAC is less important than some criteria, because your need can tolerate 

some inconsistencies or you can manage CAC in another way. 

• Do aggregates in your data model have significant relationships to other aggregates? 

• If yes, CAC is more important than some criteria, because your aggregates are 

related to each other and your DB should store, retrieve and maintain these 

characteristics. 

• If no, CAC is less important than some criteria, because your aggregates are 

NOT significantly related to each other. 

• Do you need to store, retrieve, and update properties about the relationship between 

aggregates? 

• If yes, CAC is more important than some criteria, because you need the DB to 

store, retrieve and maintain relationship properties. 

• If no, CAC is less important than some criteria, because you do NOT need the 

DB to store, retrieve and maintain relationship properties. 

2. Data Typing Enforcement (DTE) 

DB enforcement of data types during transactions. Data types may include floats, 

doubles, Booleans, strings and others. 

• Example 

• Flap angle is recorded in degrees with floating-point precision by the UAS. Assume an 

acceptable reading is 5.045 degrees. In contrast, landing gear status is recorded as either 

up or down (Boolean: 1 or 0). DTE ensures that flap angle is stored in and retrieved 

from the DB as 5.045 rather than 5. Likewise, DTE also ensures that the landing gear 

status is stored and retrieved appropriately. These data types (float and Boolean) can 

be specified in schemas and enforced by some DBs. 

• Considerations 

• Can the data type and precision be identified for each element/signal? 

• If yes, DTE is more important than some criteria, because your elements/signals 

have well-known types and precision. 

• If no, DTE is less important than some criteria, because your elements/signals 

may have unknown types or precision. 

• Does the DB need to retain and enforce data types for your elements/signals? 
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• If yes, DTE is more important than some criteria, because you stated it needs 

to. 

• If no, DTE is less important than some criteria, because you stated it does NOT 

need to. 

3. Large Aggregate Transactions (LAT) 

DB can store, retrieve, and update large (>1TB) aggregates quickly (within a few seconds 

or less). 

• Example 

• The combined size of all the signals (of interest) sampled in 1 second is greater than 1 

terabyte (TB). “Of interest” refers to the signals you intend to store, retrieve, or update 

in the DB. 

• Considerations 

• Is the combined size of all the signals of interest sampled in 1 second is greater than 1 

TB? 

• If yes, then LAT is more important than some criteria, because your resultant 

aggregate is considered large (>1TB). 

• If no, then LAT is less important than some criteria, because your resultant 

aggregate is considered large (>1TB). 

4. Small Aggregate Transactions (SAT) 

DB can store, retrieve, and update small (<1kB) aggregates quickly (within a few seconds 

or less). 

• Example 

• The combined size of all the signals (of interest) sampled in 1 second is less than 1 

kilobyte (kB). “Of interest” refers to the signals you intend to store, retrieve, or update 

in the DB. 

• Considerations 

• Is the combined size of all the signals of interest sampled in 1 second is greater than 1 

kB? 



AFIT-ENV-DS-18-S-047 

146 

 

 

• If no, then SAT is more important than some criteria, because your resultant 

aggregate is considered small (<1kB). 

• If yes, then SAT is less important than some criteria, because your resultant 

aggregate is NOT considered small (<1kB). 

5. Manipulation (M) 

DB can update elements within a single stored aggregate.  

This ability differs from CAC because manipulation executes update operations independently 

from any implicitly or explicitly defined relationships. That is, manipulation ignores these 

relationships. In a DB which supports CAC, the DB would identify the relationship between 

aggregates and perform the necessary updates. 

• Example 

• Assume a mission was flown and the log data is loaded into a DB. At the start of 

the mission, the GPS signal was blocked and the first second of the mission has 

incorrect timing information. To update this information in the DB, you need to be 

able to change the appropriate timing elements within the stored aggregates. The 

manipulation property enables this operation.  

• Considerations 

• Should the DB enable updates to elements, such as timing, in existing aggregates? 

• If yes, manipulation is more important than some criteria, because you need 

the DB to support updates to existing data. 

• If no, manipulation is less important than some criteria, because you do 

NOT need to update stored information. 

 

6. Plasticity (Pla) 

DB transactions can add or remove elements within one or more stored aggregates. 

• Example 
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• Assume a mission was flown and the log data is loaded into a DB. Adequate GPS data 

was collected for the entire mission. Now you wish to use the existing GPS timing 

information to calculate the UTC time for each sample. Once the time is calculated, 

you want to store that with each sample. The plasticity property enables you to add this 

“Calculated UTC time” element to each aggregate.  

• Assume a <system name> mission was flown and the log data is loaded into a DB. 

Later it is determined that the Engine Speed signal was included and contained corrupt 

data for this mission. You want to remove this element from all of the aggregates for 

this mission. The plasticity property enables you to remove elements from existing 

aggregates. 

• Considerations 

• Should the DB support adding and removing elements in existing aggregates? 

• If yes, plasticity is more important than some criteria, because you the DB to 

allow you to add or remove elements to or from existing data. 

• If no, plasticity is less important than some criteria, because you do NOT need 

to add or remove elements to or from stored information. 

 

7. Preprocessing (Pre)  

The preprocessing and operations required to store data in the DB. 

• Examples:  

• Deciding/selecting which variables to store in the DB. 

• Filtering the selected variables from the raw data. 

• Transforming filtered variables into a format suitable for loading. 

• Loading transformed data into the DB. 

• Considerations: 

• Are you willing to perform preparation work before data can be loaded into the DB? 

• If no, then this criterion is more important than some criteria, because you 

expect the DB to facilitate data preparation, preprocessing, or load raw data. 

• If yes, then this criterion is less important than some criteria, because you do 

NOT expect the DB to facilitate this process. 

8. Query Complexity (QC) 
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DB ability to perform simple and complex queries. A simple query retrieves data using a 

unique identifier or a range of identifiers and/or values. Complex queries involve additional 

conditions enforced on the operations. 

• Examples 

• Simple:  

• Did the engine speed ever exceed 5500 RPM? 

• Did the engine speed exceed 5500 RPM on the mission flown today? 

• Complex: 

• Did the engine fan draw more than 33 Amps while the cooling fan was in auto? 

• What is the average coolant temperature during a mission for each aircraft tail 

number? 

• Considerations 

• Do you need the database to perform sorting, grouping, mathematical calculations, and 

conditional searches on your data sets?   

• If yes, query complexity is more important than some criteria, because you need 

the DB to support sorting, grouping, calculations, etc. 

• If no, query complexity is less important than some criteria, because you do 

NOT need the DB to support sorting, grouping, calculations, etc. 

9. Query Omniscience (QO) 

User knowledge of the set of queries before database is used.  

• Examples: 

• You possess knowledge of all the queries that will be run before ever using the 

database. You know every question that will ever be asked about the data. You never 

encounter unexpected events or circumstances which require unique investigations. 

(QO would be rated very important in this example.) 

• You know many of the questions that need to be answered by the data, but do encounter 

circumstances requiring unique investigations. (QO would be rated less important in 

this example.) 
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• You cannot anticipate how the data will be used. (QO is not very important in this 

example.) 

• Considerations: 

• Will you expect to add to or change queries? 

• If yes, then query omniscience is less important than some criteria, because you 

will need to update queries in the future. 

• If no, then query omniscience is more important than some criteria, because 

you will not need to update queries. 

• Do you expect to work with queries that you cannot change? 

• If yes, then query omniscience is more important than some criteria, because 

you will work with only a known or predefined set of queries. 

• If no, then query omniscience is less important than some criteria, because you 

will work with queries that will need to be changeable. 

• How well do you know what queries/data questions will be asked before system is 

designed? Do you know all the questions that will be asked about the data? Do you 

know all your queries now? 

• If your answer is “very well,” “yes,” and “yes”, then this criterion is more 

important than some criteria, because you know all of your data questions yet 

and will NOT need to support additional queries/questions in the future. 

• Otherwise, this criterion is less important than some criteria, because you do 

NOT know all of your data questions yet and will need to support additional 

queries/questions in the future. 

10. Result Timeliness (RT)  

How quickly results are provided to the user after a query is started. 

• Example 

• A query is described, run, and produces results within 10 seconds of starting to run. 

• Considerations 

• Do you expect results within seconds? 

• If your answer is yes, then result timeliness is more important than some criteria 

because you expect timely results. 

• Are you willing to wait minutes for a result? 
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• If you answer is yes, then result timeliness is somewhat less important than 

some criteria, because you need the DB to be somewhat timely. 

• Are you willing to wait hours for results? 

• If you answer is yes, then result timeliness is less important than some criteria, 

because timeliness is not important to your needs. 

11. Structural Malleability (SM)  

The ability to add or remove “types” of aggregates to or from the DB. 

• Example 

• Aggregate types could include: engine subsystem, synthetic aperture radar system, pilot 

inputs, aircraft, etc. Aggregates types such as these would need to be added to the DB 

if an equivalent subsystem is added to the UAS. Specifically, if a new sensor system 

was added, a new aggregate type might need to be added to the DB to store and organize 

data for this system. 

• Considerations 

• Are subsystems likely to be added to or removed from your platform? 

• If yes, then this criterion is more important than some criteria, because you need 

a solution to support these types of changes. 

• If no, then this criterion is less important than some criteria, because you do 

NOT need a solution to support these types of changes. 

12. Transparency (T) 

DB ability to store aggregates such that individual elements within an aggregate can be 

viewed and retrieved during read transactions. 

• Example 

• Assume we design a DB using an aggregate model that contains all signals for a 

particular moment in time. Thus, engine speed, altitude, landing gear, tail number, 

timing information, and etc. are stored in each aggregate.  

• With a DB that supports transparency, we can search for and retrieve engine speed for 

a particular mission/sample. 

• Without transparency, searches are limited to retrieving the whole aggregate when only 

engine speed is desired. 

• Considerations 
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• Do you care about retrieving individual elements, such as engine speed, from your 

data? 

• If yes, then this criterion is more important than some criteria, because you need 

to access individual data elements within aggregates. 

• If no, then this criterion is less important than some criteria, because you do 

NOT need to access individual data elements within aggregates. 

An Example 

This example is provided to illustrate how the input matrix could be filled in. Given a copy of 

the input matrix, we shall walk through a set of pairwise comparisons. As discussed, the process 

begins in the upper left portion of the matrix.  

The first comparison between CAC and itself has already been recorded as “1.” The “1” 

represents equal importance and is the expected results when comparing one criterion to itself. 

Again, all “self-comparisons have been recorded for you in the matrix. 

Table 45. Empty Input Matrix for Example 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

1. Cross-Aggregate Consistency (CAC) 1                       

2. Data Typing Enforcement (DTE)   1                     

3. Large Aggregate Transactions (LAT)     1                   

4. Small Aggregate Transactions (SAT)       1                 

5. Manipulation (M)         1               

6. Plasticity (Pla)           1             

7. Preprocessing (Pre)             1           

8. Query Complexity (QC)               1         

9. Query Omniscience (QO)                 1       

10. Result Timeliness (RT)                   1     

11. Structural Malleability (SM)                     1   

12. Transparency (T)                       1 
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The next comparison is between CAC and DTE. First we should review the considerations of 

CAC. Let’s assume that updates to data stored in the database are infrequent. For example, 

importing a set of mission data into the database a second time would be uncommon. Once the 

data for a particular mission is loaded, it does not need to change because the log data for a 

particular mission should not change after the mission is complete. The first CAC consideration 

leads us to “less important than some criteria” since we are managing CAC by assuming infrequent 

updates.  

Let’s also assume that we do not need to store relationships in the database. For example, we 

want to store the aircraft tail numbers with the missions (and mission data) they fly. Also, we never 

care to look across all the missions flow by a particular aircraft; we simply examine one mission 

at a time. Thus, there are no significant relationships that need to be stored explicitly because all 

of the data is “lumped together.” The remaining criteria for CAC also suggests it is “less important 

than some criteria.” 

Now we examine DTE which is related to the database’s enforcement of data precision. Let’s 

assume that we want to ensure the precision recorded by the UAS is maintained appropriately in 

the database. For example, we want flap angle to be stored as 5.0459 rather than 5.05. Thus, the 

considerations for DTE lead us to believe it is “more important than some criteria.”  

At this point, we understand CAC and DTE well enough to compare them to each other. We 

believe that DTE is more important than CAC. We review the fundamental scale, Table 44 , to 

determine by how much, i.e., the importance intensity. Since we have no relationships to maintain 
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and few updates, CAC is particularly low. However, we have not “demonstrated dominance in 

practice,” so the intensity is less than “7.” Let’s choose “5” because we are employing “experience 

and judgment.” Since we are working through the CAC row and we decided it is less important 

than DTE, we need to record the value as “1/5” in the CAC vs. DTE cell. This indicates that CAC 

is less important than DTE by an intensity of 5. Alternatively, this is interpreted as DTE is strongly 

more important than CAC. 

Table 46. Partial Matrix - CAC vs. DTE 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5                     

 

The next comparison involves CAC versus LAT. Let’s assume that a 10 hour UAS mission 

results in approximately 400 MB of log data. That means it collects about 40 MB per hour or ~0.01 

MB per second. Thus an aggregate composed of all the data in a single 1 Hz sample should be 

approximately 0.01 MB or ~10 kB.  

Reviewing the LAT considerations, we know the threshold is for 1 TB for an aggregate so, 

LAT is “less important.” Probably very much less in many cases. In the last example we considered 

CAC and determined it was “less important than some criteria.” Now we must make a 

determination about whether or not that holds true for LAT. If we choose to say that they are 

equally unimportant, we would record a “1.” However, I believe that CAC is more important 

because the LAT threshold is significantly higher than the size of these UAS aggregates. It seems 

unlikely that the aggregates would ever approach  1 TB.  
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Now we must make a judgement with respect to intensity. Let’s choose “3” to indicate that 

CAC is moderately more important than LAT. Thus a “3” is recorded in the CAC vs. LAT cell in 

the matrix.  

Table 47. Partial Matrix - CAC vs. LAT 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3                   

 

CAC and SAT are compared next. Using our previously defined assumptions, we believe 

aggregates will be approximately 10 kB. According to the SAT considerations, the SAT threshold 

is 1 kB, so it is “less important than some criteria.” Since the aggregate is somewhat close to the 

SAT threshold it might be inaccurate to say CAC is moderately more important than SAT. An 

intermediate value of “2” should suffice. Thus we record a “2” in the CAC vs. SAT cell.   

Table 48. Partial Matrix - CAC vs. SAT 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2                 

 

CAC is compared with M next. We already assumed that updates to aggregates are infrequent, 

so we will extend that assumption to state that updates to elements within aggregates are also 

uncommon. For example, it is unlikely that we would need to adjust the value of the recorded 

coolant temperature for a single sample in a particular mission. Thus, the M considerations indicate 

it is “less important than some criteria.”  
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Since we extended the original assumption for CAC to M, it seems appropriate to say that these 

criteria are equally important. Thus a “1” is recorded in the CAC vs. M cell. 

Table 49. Partial Matrix - CAC vs. M 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1               

 

The next comparison is between CAC and Pla. Let’s assume that we wish to add and element 

to certain aggregates after they have been stored in the database. For example, let’s use “Calculated 

UTC Time” as described from the Plasticity example in the Details section. Simply put, we want 

to add this calculated timing value to all the aggregates for a particular mission.  

The considerations for this criterion indicate that adding elements causes Plasticity to be more 

important than some criteria. Because we can expect that such an update would affect hundreds of 

thousands of samples, i.e., aggregates, we should consider its importance to be high.  Since this 

has not been demonstrated in practice, we should choose an intensity less than “7.” Let’s choose 

the intermediate value of “6.” We intend to indicate that Pla is more important than CAC, so this 

value is recorded as “1/6” in the CAC vs. Pla cell.  

Table 50. Partial Matrix - CAC vs. Pla 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1  1/6             

 

Working further towards the right side of the matrix, CAC is compared to Pre next. Let’s 

assume we want to spend the minimal amount of time and effort required to manipulate data before 
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it can be loaded into the DB. This effort should include development for any scripting and not just 

manual processes. With this assumption, the Pre considerations suggest it is more important than 

some criteria.  

Let’s say we really do not want to spend time on these processes, we can choose “5” to 

represent the importance intensity of Pre over CAC. We record “1/5” since we are actually 

comparing CAC to Pre. 

Table 51. Partial Matrix - CAC vs. Pre 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6   1/5           

 

The next two criteria to be compared with CAC are QC and QO. Let’s assume that we expect 

to run complex queries on the data and at this time we cannot comprehensively anticipate every 

query we will need to perform. For example, we might have a history of known issues we expect 

to examine. Specifically, we might need to determine if the engine fan drew more than 30 Amps 

while the cooling fan was in Auto. This is an example of a complex query. Additionally, future 

system upgrades prevent us from identifying every question that will be asked about the system or 

data.  

The considerations for QC suggest it will be more important because we need to perform 

complex queries. Since we have some practical history with examining data and let’s assume we 

believe complex queries are very important, we can choose “7.” It will be recorded at “1/7” in the 

CAC vs. QC cell. 
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Similarly, we believe additional queries will need to be defined in the future so the QO 

considerations also indicate it is more important. Since we have experience with system upgrades 

changing what data is analyzed and we also believe this characteristic is very important, “7” is 

chosen again to represent the importance intensity. The CAC vs. QO cell will record this as “1/7.” 

Table 52. Partial Matrix - CAC vs. QC and CAC vs. QO 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6  1/5  1/7  1/7       

 

CAC and RT are compared next. Let’s assume that we want to obtain query results within 

seconds of requesting data. The RT considerations guide us to believe it is more important than 

some criteria. Compared to CAC, it might be strong or very strong. If we decide that we have 

enough practical experience to understand that quick results matter, we should choose “7.” This 

value would be recorded as “1/7” in the CAC vs. RT cell to indicate the importance of RT (fast 

results) is very strong compared to CAC. 

Table 53. Partial Matrix - CAC vs. RT 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6  1/5  1/7  1/7  1/7     

 

CAC is compared to SM next. Let’s assume that a new subsystem could be added to our UAS. 

For example, an additional sensing pod or weapon system could be integrated. These types of 

additions can affect how the aggregates are stored in the DB. The considerations for SM indicate 
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that if subsystems are likely to be added, then it is more important. Since it is possible to add these 

systems but occur infrequently, our assumption is similar to those we used for CAC.  

Let’s use the logic we applied to M for this criterion as well. Thus, we will record that CAC 

and M are equal by recording a “1” in the CAC vs. M cell. 

Table 54. Partial Matrix - CAC vs. SM 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6  1/5  1/7  1/7  1/7 1   

 

The last comparison in the CAC row is against T. A reasonable assumption is that we will want 

to retrieve an individual element, i.e. signal, from the database. For example, we might need to ask 

for the coolant temperature for a mission. The considerations for T show that given our assumption, 

T is more important that some criteria.  

Since we know with some practice and certainty that individual signals need to be viewed, we 

can choose a “7” for this criterion. Thus, a “1/7” is recorded in the CAC vs. T cell to indicate the 

important of T over CAC.  

Table 55. Partial Matrix - CAC vs. T 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6  1/5  1/7  1/7 1/7  1 1/7  

 

Table 56 presents the results of the pairwise comparisons for the CAC row. This approach of 

evaluating each criterion should be repeated for the remaining unshaded cells in the matrix. Your 
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results for the first row may use different assumptions that will probably result in different values. 

This is expected and encouraged.  

Table 56. Input Matrix with CAC vs. Comparisons Completed 

  CAC DTE LAT SAT M Pla Pre QC QO RT SM T 

1. Cross-Aggregate Consistency (CAC) 1  1/5  3  2  1 1/6  1/5  1/7  1/7 1/7  1 1/7  

2. Data Typing Enforcement (DTE)   1                     

3. Large Aggregate Transactions (LAT)     1                   

4. Small Aggregate Transactions (SAT)       1                 

5. Manipulation (M)         1               

6. Plasticity (Pla)           1             

7. Preprocessing (Pre)             1           

8. Query Complexity (QC)               1         

9. Query Omniscience (QO)                 1       

10. Result Timeliness (RT)                   1     

11. Structural Malleability (SM)                     1   

12. Transparency (T)                       1 
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