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Abstract 

In an effort to determine how to make secure software development more cost effective, the SEI 
conducted a research study to empirically measure the effects that security tools—primarily auto-
mated static analysis tools—had on costs (measured by developer effort and schedule) and bene-
fits (measured by defect and vulnerability reduction). The data used for this research came from 
35 projects in three organizations that used both the Team Software Process and at least one auto-
mated static analysis (ASA) tool on source code or source code and binary. In every case quality 
levels improved when the tools were used, though modestly. In two organizations, use of the tools 
reduced total development effort. Effort increased in the third organization, but defect removal 
costs were reduced compared to the costs of fixes in system test. This study indicates that organi-
zations should employ ASA tools to improve quality and reduce effort. There is some evidence, 
however, that using the tools could “crowd out” other defect removal activities, reducing the po-
tential benefit. To avoid overreliance, the tools should be employed after other activities where 
practicable. When system test cycles require expensive equipment, ASA tools should precede test; 
otherwise, there are advantages to applying them after system test.  
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1 Introduction 

This report describes the results of a research project called Composing Effective Secure Software 
Assurance Workflows (CESAW). The primary aim of the research was to investigate the impact 
of cybersecurity techniques and tools on software cost, schedule, and quality performance when 
they are applied throughout the software development lifecycle. The SEI collaborated with gov-
ernment and industry organizations that provided detailed performance data about their software 
projects for analysis and interpretation. 

Section 1 provides the motivation and context for the CESAW research. Section 2 describes the 
research methodology. Section 3 presents the results of the research, and Section 4 explores these 
results and provides interpretation. Section 5 describes how the results can be used by software 
organizations and proposes additional research to further an understanding of this important topic. 

1.1 An Economic Challenge for Cybersecurity 

The economic challenges associated with fielding highly secure and cyber-resilient systems are 
well known [Baldwin 2011, Snyder 2015, DoD 2017]. Developing secure and cyber-resilient soft-
ware requires multiple software security assurance (SSA) interventions throughout the develop-
ment lifecycle. These interventions include manual methods (e.g., reviews and inspections) as 
well as automated methods (e.g., static analysis and dynamic analysis). There are now numerous 
SSA techniques and tools to choose from [Wheeler 2016]. Organizations must determine which 
specific SSA techniques and tools apply and decide when in the software development lifecycle to 
use them. However, despite a variety of models that are intended to address cybersecurity plan-
ning and implementation [Mead 2010, Howard 2007, Caralli 2010, Forrester 2006, Bartol 2008], 
the fundamental questions regarding the costs and benefits of SSA techniques are little under-
stood. Larsen summarizes the problem by stating, “There is a general lack of relevant quantitative 
data about the true costs, schedule impact, and effectiveness (in various situations) of specific 
tools, specific techniques, and types of tools/techniques…This lack of quantitative data makes se-
lecting tool/technique types, and selecting specific tools, much more difficult” [Wheeler 2016]. In 
the absence of guidance in the form of data or models, the selection and application of SSA tech-
niques and tools is guesswork at best. 

1.2 Modeling and Predicting Software Vulnerabilities 

A number of researchers have reported results that are consistent with the thesis that a large por-
tion of software security vulnerabilities result from common development errors. Heffley and 
Meunier reported that 64% of the vulnerabilities in the National Vulnerability Database (NVD) 
result from programming errors [Heffley 2004]. Martin summarized empirical findings from the 
Common Weakness Enumeration (CWE) that link vulnerabilities to common development issues 
[Martin 2014]. Shin and Williams reported empirical findings that 21.1% of the files in a web-
based browser contained faults, and 13% of the faults were classified as vulnerability faults [Shin 
2011]. Hence, the number of software-based vulnerabilities in an application can be correlated 
with the number of software defects in that application. That is, we make the assumption that if 
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software defects are removed based on the application of an SSA intervention, then we can as-
sume that cybersecurity-based defects are also being removed from the software application. 

As part of this study, modeling techniques were used to evaluate the impact of defect-removal ac-
tivities on the reduction of software defects. Nichols developed a cost of quality model that is 
used to inform software development planning decisions [Nichols 2012]. Specifically, the model 
predicts the amount of effort that must be applied on defect removal activities to achieve a spe-
cific level of quality. The model is parameterized using software size estimates and historical per-
formance data. The model calculates expectation values for effort and defect densities. During the 
planning phase, a software team can examine quality, cost, and schedule goals by adjusting their 
plan and evaluating the consequences using the model.  

Building on the existing cost of quality model, the SEI team engaged and collaborated with organ-
izations that have integrated SSA tools into their software development lifecycle. The objective 
was to adapt the model by including actual parametric data resulting from the inclusion of SSA 
techniques and tools in the projects’ development lifecycles and then assess the impact of the in-
terventions on cost, schedule, and quality.  

1.3 Software Development Approaches 

For this study, the SEI used data from 35 projects from three organizations that develop software 
in avionics, design automation, and business intelligence. All of the projects developed software 
using the Team Software Process (TSP) approach. The TSP approach to software development 
was developed at the Software Engineering Institute (SEI), a federally funded research and devel-
opment center at Carnegie Mellon University [Humphrey 1999].  

1.4 Static Analysis Tools 

As noted in Table 1, the participating organizations used different static analysis tools, and they 
also chose to use them during different phases of the lifecycle.  

Table 1: Static Analysis Tools and the Process Phases Where They Were Used 

Organization # Projects Domain Static Analysis Tool Phase Where Tool Used  

A 5 Avionics Tool A Static Code Personal Review 

B 16 Business Intelligence Tool B_1 Static Code  
Tool B_2 Static Code and Binary 

Compile, Code Inspection, 
Personal Review 

C 14 Design Automation Tool_C Static Code and Binary Acceptance Test 

Following is a brief description of the static analysis tools that were used on the projects in this 
study. 

Static Analysis Tool A 

Static Analysis Tool A is a static branded code analysis tool used to identify security, safety, and 
reliability issues in C, C++, Java, and C# code. 
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Tool_B_1 

Tool_B_1 enforces a common set of style rules for C# code using a single, consistent set of rules, 
with minimal rule configuration allowed. Developers can implement their own rules if they so 
choose. 

Tool_B_2 

Tool_B_2 is an application that analyzes managed code assemblies (code that targets the .NET 
Framework common language runtime) and reports information about the assemblies, such as 
possible design, localization, performance, and security improvements. 

Tool_C  

Tool_C is a branded software development product, consisting primarily of static code analysis 
and static binary analysis. It enables engineers to find defects and security vulnerabilities in 
source code written in C, C++, Java, C#, and JavaScript. 

1.5 Development Lifecycle 

TSP projects use the software lifecycle activities that are listed in Table 2. These activities are con-
sidered the primary logical phases through which a software component or a change to a feature 
must pass. Please note that this does not imply a sequential approach without iteration. Rather, it 
characterizes the activities that should be performed on the product for each iterative cycle. Any 
phase can include defect injection or removal. However, each phase is characterized as being one 
where defects are primarily injected or removed. The Creation phase type indicates a phase where 
something is developed and defects are typically injected. The Appraisal phase type is one in which 
developers or technical peers examine the product and discover and remove defects. The phase type 
Failure is a phase where the product is tested and defect symptoms are identified. Developers must 
then isolate the defect causing the symptom and fix it. Defect removal through appraisal or failure 
typically incurs different costs. Table 2 indicates the phase type for typical TSP phases. 

Table 2: Typical Phases of a TSP Project 

 

 

 

 

 

 

 

 

TSP Phases Description Phase Type 

DLD Detailed-level design Creation 

DLDR Personal review of the detailed design Appraisal 

TD Unit test case development Creation 

DLDI Peer inspection of the detailed design Appraisal 

Code Writing the source code Creation 

CR Personal review of the source code Appraisal 

CI Peer inspection of the source code Appraisal 

UT Developer unit test execution Failure 

IT Integration test Failure 

ST System test Failure 

UAT User acceptance test Failure 

PL Product life Failure 
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The TSP approach has many characteristics in common with Agile projects. While there are a num-
ber of distinctions that set TSP apart from Agile, the most significant difference is the focus on qual-
ity and the inclusion of a measurement framework that makes it possible for software engineers to 
improve their performance. The TSP approach is defined in a series of process scripts that describe 
all aspects of project planning and product development. Within the scripts, operational definitions 
specify how measures are defined, estimated, collected, reported, and analyzed. The data that is 
used in this study is a compilation of data that was recorded in real time by software engineers as 
they conducted their work.  

Table 3 lists the measures that are collected by teams using the TSP approach [Humphrey 2010]. 
In addition to the base measures, additional measures derived from them can provide insight into 
team performance in terms of cost, schedule, and quality. 

Measures are collected in real time throughout the project and analyzed on a daily basis to guide and 
improve performance. This is accomplished using an automated tool called the Process Dashboard 
[SPDI 2017]. Each member of a TSP team enters their personal performance data into the Process 
Dashboard. The entries are compiled and combined automatically into a Team Dashboard that pro-
vides a daily accounting of overall team performance throughout the development lifecycle. 

Table 3: Product Size Measures Collected Using the TSP Approach 

Size Data Quality Data Schedule Data 

Added product size Defect ID Task time and phase; product/ele-
ment involved 

Added and modified product size Defect type Task commitment date and task 
completion date 

Base product size Phase where defect was discov-
ered 

 

Modified product size Phase where defect was removed  

New reuse product size Defect fix time  

Modified product size Brief description of defect  

New reuse product size   

Reusable product size   

Reused product size   

Total product size   
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2 Research Approach 

Performance was evaluated using the cost of quality model that was briefly discussed in Section 
1.2 (see “Plan for Success, Model the Cost of Quality” [Nichols 2012] for a detailed description 
of the model). For each of the three organizations, performance was evaluated with the use of the 
static analysis tool included and then compared to the hypothetical case in which the static analy-
sis tool was not used. 

2.1 Approach Background 

According to Runeson, research serves four distinct purposes [Runeson 2012]: 

1. Exploratory—finding out what is happening, seeking new insights, and generating ideas and 
hypotheses for new research.  

2. Descriptive—portraying a situation or phenomenon. 
3. Explanatory—seeking an explanation of a situation or a problem, mostly, but not necessarily, 

in the form of a causal relationship.  
4. Improving—trying to improve a certain aspect of the studied phenomenon. 

Since our research includes elements of improvement for quality, security, and cost, we adopt 
methods from software process improvement. Other important aspects include describing the phe-
nomena for use in benchmarking and modeling and exploring how the tools are used in practice 
and describing the use quantitatively. Explanation is not a priority for this work. Our focus is on 
real-world application of the tools rather than use under ideal conditions. Research on real-world 
issues includes a trade-off between level of researcher control and realism. This is essentially a 
tradeoff between internal validity and external validity; this tradeoff has been discussed in medi-
cal effectiveness studies (as opposed to efficacy studies) [Singal 2014, Fritz 2003, Westfall 2007]. 
In other words, we do not seek to measure the efficacy of these tools in finding vulnerabilities; in-
stead we want to evaluate how the use of these tools under real world conditions affects develop-
ment.  Therefore, our work is designed to fill a research gap in this aspect of external validity. In 
designing our approach to the research questions, we draw on experience from software process 
improvement, case studies, and medical literature on effectiveness studies.  

2.1.1 Software Process Improvement 

Software process improvement (SPI) is a systematic approach to increase the efficiency and effec-
tiveness of software development. Because our research objective is at least partially aligned with 
the goals of SPI, we examined approaches for evaluating proposed process improvements. A sys-
tematic review of SPI literature evaluated 148 papers and summarized the approaches used [Un-
terkalmsteiner 2012]. The following approaches were found (ordered by frequency from most 
used to least): 

• pre-post comparison  
• statistical analysis 
• pre-post comparison and survey 
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• cost/benefit analysis 
• pre-post comparison and cost analysis 
• statistical process control 
• statistical analysis and survey 
• software productivity analysis 
• cost/benefit analysis and survey 

We will briefly discuss some of these approaches, including their requirements and weaknesses. 

2.1.1.1 Pre-Post Comparison 

Pre-post comparison compares the value of pre-identified success indicators before and after the 
SPI initiatives took place. For a pre-post comparison of success indicators, it is necessary to set up 
a baseline from which the improvements can be measured. The major difficulty here is to identify 
reasonable baseline values against which the improvements can be measured [Rozum 1993]. 

One strategy could be to use the values from a representative successful project as the benchmark. 
An example that illustrates how to construct a baseline for organizational performance is provided 
by Daniel Paulish and colleagues [Paulish 1993, 1994]. A challenge to this approach, however, is 
the stability of the process benchmarks and wide variation [Gibson 2006].  

2.1.1.2 Statistical Analysis 

The statistical techniques presented in “Quantitative Evaluation of Software Process Improve-
ment” [Henry 1995] can be used to create baselines of quality and productivity measurements. 
The statistical analysis includes descriptive statistics summarizing the numeric data (e.g., tables of 
the mean, median, standard deviation, interquartile range, and so forth) or graphically (e.g., with 
histograms, box plots, scatter plots, Pareto charts, or run charts). Inferential statistics can general-
ize representative samples to a larger population through hypothesis testing, numerical estimates, 
correlation, and regression or other modeling. 

2.1.1.3 Cost/Benefit Analysis  

Evaluating an improvement initiative with a cost/benefit measure is important since the budget for 
the program must be justified to avoid discontinuation or motivate broader rollout [Kitchenham 
1996, van Solingen 2004]. Furthermore, businesses need to identify efficient investment opportu-
nities and means to increase margins [van Solingen 2004]. When assessing cost, organizations 
should also consider resources beyond pure effort (which can be measured with relative ease); for 
example: office space, travel, computer infrastructure [van Solingen 2004], training, coaching, ad-
ditional metrics, additional management activities, and process maintenance. Nonetheless, activ-
ity-based costing helps to relate certain activities with the actual effort spent [Ebert 1998]. 

Since actual cost and effort data can be collected in projects, they should be used. A useful tech-
nique to support estimation is the “what-if-not” analysis [Ebert 1998]. Project managers could be 
asked to estimate how much effort was saved due to the implemented improvement in follow-up 
projects. In our research, rather than use a subjective estimate, we used actual collected data to 
calibrate models for process variants.  
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2.1.1.4 Statistical Process Control 

Statistical process control (SPC), often associated with time series analysis, can provide infor-
mation about when an improvement should be carried out and help determine the efficacy of the 
process changes [Caivano 2005, Hare 1995]. SPC is often used to identify trends or outliers 
[Paulk 2009]. SPC can also be used to identify and evaluate stability using shape metrics, which 
are analyzed by visual inspection of data that is summarized by descriptive statistics (e.g., histo-
grams and trend diagrams) [Schneidewind 1999]. 

2.1.1.5 Historic SPI Study Weaknesses 

A number of common deficiencies were found in the literature [Unterkalmsteiner 2012]:  

• Incomplete context descriptions were used that did not contain a complete description of the 
process change or the environment. The importance of context in software engineering is em-
phasized by other authors [Petersen 2009; Dybå 2012, 2013]. 

• Confounding factors were rarely discussed; frequently, multiple changes were introduced at 
once, presenting challenges for evaluation validity. 

• Imprecise measurement definitions resulted in many problems, including broad ranges for in-
terpretation [Kaner 2004]. 

• Scope was lacking beyond pilot projects. The effects on business, wider deployment, and 
fielded products were rarely discussed. 

2.1.1.6 Hybrid Methods Using Participant Surveys 

Our data collection was previously approved for use in research, but any surveys we conducted 
would require further approval from our institutional review board (IRB) for research involving 
human subjects. In light of time and project constraints, we decided to avoid the risk by foregoing 
the use of participant surveys.  

2.1.2 Case Studies, Quasi-experiments, and Action Research 

Research approaches in the literature include case studies, quasi-experiments, action research, 
project monitoring, and field study. Although the characteristics of these approaches have over-
lapping and sometimes shifting definitions, the guidelines for conducting case studies [Runeson 
2008], can be applied to all of these approaches.  

We had intended to apply the action research by helping the subjects implement both tools and 
measurement. We were unsuccessful in obtaining sufficient cooperation to introduce changes, 
however, so we reverted to observation of their currently implemented processes.  

2.1.3 Effectiveness vs. Efficacy 

Despite laboratory demonstrations of effectiveness, there remain a number of threats to the real-
world effectiveness of tools and techniques. Scientifically valid tests can impose selection criteria 
on the subjects of the study, exert considerable control over the execution, and take place using 
highly skilled specialists who may not be generally available. Following the example of the medi-
cal industry, we distinguished between efficacy (explanatory) and effectiveness (pragmatic) trials 
[Fritz 2003]. The goal of efficacy trials is to determine how a technique, tool, or treatment works 
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under ideal circumstances, which requires minimization of confounding factors. In practice, pro-
tocol deviations, other techniques, compliance, adverse events, and so forth can affect efficacy. 
Effectiveness studies evaluate the usefulness under real world conditions (i.e., in less than ideal 
situations or when tools are inexpertly applied). 

Criteria that distinguish efficacy from effectiveness studies include the following [Gartlehner 
2006]: 

1. The setting is more or less representative of the state of the practice. The setting should not 
include extraordinary resources, equipment, training, or specialized skills. 

2. The subjects should be representative of the general population with few restrictions. Selec-
tion and randomization enhance internal validity at the expense of generalizability.  

3. The measure of success is the final outcome unless empirical evidence verifies that the ef-
fects on intermediate points fully captures the net effect. 

4. Durations should mimic real application under conventional settings. Those implementing 
the techniques should exercise their judgment rather than be restricted by research protocols.  
Moreover, those judgments should reflect a primary concern for achieving project outcomes 
rather than satisfying the needs of explanatory research.  

5. There should be an assessment of adverse events to balance benefits and risks. In effective-
ness studies, for example, discontinuation rates and compliance are a feature, not a bug.  

6. Adequate sample size is needed to assess a minimally important difference.  

2.2 Study Design 

In preparing this study we faced several constraints: 

1. Without prior fundamental research approval, we were limited in what we could share with 
potential collaborators. 

2. Without prior approval from the IRB for research involving human subjects, we were reluc-
tant to include participant surveys as part of our design. This increased our reliance upon the 
software development process data. 

3. Funding was limited to a single fiscal year, with the potential for modest extensions of un-
used funds. 

4. We needed data that could answer our research question using our proposed technique, thus 
limiting potential collaborators. 

5. Collaborators had to be willing to instrument their project to collect the required data. 

2.2.1 Participant Selection 

To address the fundamental research concerns we adopted two strategies. The first involved work-
ing with DoD development teams directly. The second was to identify suitable projects with data 
in the SEMPR repository.  

The DoD collaborators were chosen by convenience: Because we had previously worked with 
these groups, we had existing relationships to leverage. For the other group we searched the 
SEMPR task logs, time logs, and defect logs for keywords associated with static analysis tools. 
We also sent email to TSP partners asking for projects that used these tools. 
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In SEMPR, we selected projects that met the following criteria: 
• Multiple projects from the same organization were available. 
• Tool use could be reliably determined from the log data. 
• Project data without the tools existed. 
• Data was complete (i.e., it included size, time logs, and defect logs). 

One DoD project provided us with the data requested. The others offered test data, but declined to 
help with instrumenting the tool use. Because of the data gaps, we were only able to analyze the 
projects that sent the TSP data.  

2.2.2 Data Collection 

The primary data collection consisted of developer entries into the Process Dashboard tool. The 
DoD project data was sent to us in September 2017 following the end of the most recent develop-
ment cycle. The data included prior cycles. 

The other project data was submitted to the SEI through the Partner Network, meeting the terms 
of TSP licensing. The data included the Process Dashboard data files, project launch records, pro-
ject meeting notes, and post-mortem reports.   

2.2.3 Data Storage 

Project data was stored on a secure SEI file system. The Dashboard files were imported into the 
SEMPR Repository [Shirai 2014] using the Data Warehouse [SPDI 2014]. After extraction, data 
was collected into fact sheets for summary [Shirai 2015]. 

2.2.4 Data Analysis 

The data analysis included the following steps: 

1. data extraction 
2. data cleaning 
3. statistical analysis 
4. establishing baselines 
5. model building 

2.2.4.1 Data Extraction 

Our first step was to identify projects of interest. For the DoD projects we traced the Process 
Dashboards to project IDs in the SEMPR repository. For the others, we first identified projects of 
interest based on the key words and found two organizations with sufficient data. We then identi-
fied specific project IDs associated with the static analysis tools. We verified our selections by  

• reviewing the Project Dashboard data directly 
• examining other project artifacts to confirm our assumptions 
• holding discussions in person and by email with project participants to confirm tool usage and 

context 
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We then proceeded to data extraction. The Data Warehouse is built on a Microsoft SQL server.  
We developed scripts to query the database to extract the data needed to compute the parameters.  

2.2.4.2 Data Cleaning 

Although TSP data is of generally high quality, we needed to perform several steps to clean the 
data. First, we adjusted the development phases to a common baseline. Individual projects some-
times adapt the frameworks or use phases out of true order. We verified phase order with time log 
entries and discussions with project members. For one organization we combined phases into a 
single requirements phase and adjusted for some process name changes. For another organization 
we noted that “acceptance test” preceded system test and was used as part of the build. 

Second, our measure of size includes “added” and “modified.” In practice, this number should be 
derived from base, total, added, and deleted. Some projects, however, entered this value directly.  

The output fact sheets are provided as a research artifact available online in the SEI Library to 
those who would like to repeat this research or apply the data to other research questions. We also 
provide fact sheets that include the work breakdown structure coding, providing data at the com-
ponent rather than the aggregated project level.  

2.2.4.3 Statistical Analysis 

To prepare for modeling, we extracted the direct data (size, phased effort, defects injected, and de-
fects removed) and aggregated it to the project level. From there we derived phase injection rates, 
phase removal rates, phase defect fix times, phase performance rates, phase defect removal yields, 
phase defect densities, phase defect removal densities, and phase development rates with the re-
work time (defect find and fix effort removed). We collected parametric and non-parametric pa-
rameters and compared them to identify baseline projects.  

2.2.4.4 Modeling 

Using the project parameters for the organization averages, we applied our TSP quality model 
(similar to COQUALMO) [Nichols 2012, Madachy 2008]. The most significant adjustment here 
was to restrict the range of allowable ranges in system test.  

Because some parameter uncertainties were large, we compared them with alternative scenarios in 
which we set the static removal phase effort to zero and the yield to zero. We then compared the 
resulting efforts and escape defect densities. Note that removing the tool allows more defects to 
escape into later phases. The model assumes a fixed yield in these phases so that overall defect 
escapes increase, but some of those defects are captured and removed in the later test phases.  De-
pending on fix times and capture levels, this could potentially increase overall time to delivery. 
The result of this is an estimate of the net cost of applying the tool and the benefit as measured by 
defect density after system test.  
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3 Data Collection and Processing 

Source data for this study was provided by 35 projects from three organizations that develop soft-
ware in avionics, design automation, and business intelligence (see Table 4). 

Table 4: Participating Organizations and Projects 

Organization # Projects Domain Total LoC Total Defects 

A 5 Avionics 641305 22160 

B 16 Business Intelligence 118933 10676 

C 14 Design Automation 178532 40542 

Detailed data for each project are provided in the CESAW_Project_data.csv fact sheet (available 
online in the SEI Library), which includes information for each project (total added and modified 
lines of code) and each development cycle process (effort, defects found, defects removed, defect 
find and fix time). Project summaries are included in Table 5. 

Table 5: Project Summary Data 

Org Project 
Key 

Team 
Size Start Date End Date A&M [LoC] Effort [Hours] Duration [Days] 

A 615 48 8-Sep 14-Oct 796887 35091.5 2215 

A 613 35 13-May 16-Mar 117279 7130.8 490 

A 614 30 14-Jun 15-Jul 246118 7746.8 391 

A 612 36 15-Jul 16-Nov 89127 10927.9 490 

A 617 41 16-Apr 17-Jul 84316 10851.6 457 

B 180 16 11-Jun 12-Feb 20318 2626.3 246 

B 49 11 12-Jan 12-Dec 22411 1929.0 327 

B 181 8 12-Jan 13-Jul 37123 3950.7 552 

B 47 13 12-Jul 12-Aug 484 537.4 47 

B 48 13 12-Jul 12-Aug 1865 707.9 47 

B 606 12 12-Jul 12-Oct 4020 1278.4 88 

B 50 15 12-Aug 14-Dec 6089 2248.8 844 

B 56 4 12-Sep 13-Feb 0 749.4 148 

B 182 7 12-Sep 12-Nov 4494 924.5 53 

B 183 9 12-Nov 13-Jul 5148 1234.0 264 

B 184 7 12-Nov 13-Aug 38302 3165.5 272 

B 70 10 13-Feb 13-May 442 788.5 92 

B 71 6 13-Feb 13-May 0 516.8 98 

B 72 5 13-Feb 13-May 0 621.5 85 

B 83 11 13-Apr 13-Aug 0 1334.2 112 

B 84 4 13-May 13-Aug 0 556.6 100 

C 23 3 11-Sep 11-Oct 23 21.2 21 

C 456 22 12-Feb 13-Jul 2554 3207.8 512 
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Org Project 
Key 

Team 
Size Start Date End Date A&M [LoC] Effort [Hours] Duration [Days] 

C 455 19 12-Dec 13-Dec 737 572.2 374 

C 458 20 13-Jul 13-Nov 0 2428.0 138 

C 415 5 13-Sep 14-Mar 4042 815.8 178 

C 459 20 13-Nov 14-Apr 83 1296.8 129 

C 416 8 14-Jan 14-Apr 9678 1282.8 91 

C 419 7 14-Jul 14-Oct 13333 1532.2 114 

C 420 8 14-Nov 15-Jan 9741 1282.5 73 

C 171 19 12-Jul 12-Dec 1817 2294.6 149 

C 79 9 13-Jan 13-May 8998 1941.9 140 

C 449 11 14-Jan 14-Nov 6500 2253.7 316 

C 418 8 14-Apr 14-Jul 7806 1141.9 72 

C 460 25 14-Apr 14-Oct 66499 3294.8 180 

C 461 25 14-Sep 15-Jan 46694 3392.4 137 

3.1 Process Activity Mapping 

A traditional TSP development approach was briefly presented in Table 2. However, projects typi-
cally customize the process to fit their particular circumstances (e.g., whether systems engineering 
phases are included, inclusion of requirements definition phases or documentation phases, etc.). Alt-
hough there is process customization, a key principle is followed: a quality assurance phase always 
follows a process phase in which product is created. That is, each product creation process phase is 
followed by an appraisal process.  

The three organizations that are part of this study chose to customize the TSP development ap-
proach in various ways. Projects within each organization used their organization’s customized 
TSP lifecycle definition. For the purposes of this study, it was necessary to use a common devel-
opment lifecycle framework so comparisons could be made among the projects from different or-
ganizations. Therefore, the customized framework used by each project in this study was mapped 
to a standard framework that is presented in Table 6. The Process Type column lists the lifecycle 
type for the phase name in the first column. The Phase Type column distinguishes the purpose of 
the phase by one of four attributes: overhead, construction, appraisal, or failure.  

Table 6: Standard Process Phases Mapped to Process Type and Phase Type 

Standard Lifecycle Activity Name Process Type Activity Type 

Launch and Strategy Strategy Overhead 

Planning Planning Overhead 

System Engineering Requirements Identification System Requirements Construction 

System Engineering Requirements Identification Inspection System Requirements Appraisal 

System Engineering Requirements Analysis System Requirements Appraisal 

Launch and Strategy Strategy Overhead 

System Engineering Requirements Review System Requirements Appraisal 

System Engineering Requirements Inspection System Requirements Appraisal 
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Standard Lifecycle Activity Name Process Type Activity Type 

System Engineering Test Plan System Requirements Construction 

System Design System Requirements Construction 

System Design Review System Requirements Appraisal 

System Design Inspection System Requirements Appraisal 

Software Requirements analysis Software Requirements Construction 

Software System Test Plan Software Requirements Construction 

Software Requirements Review Software Requirements Appraisal 

Software Requirements Inspection Software Requirements Appraisal 

High-Level Design High Level Design Construction 

Integration Test Plan High Level Design Construction 

HLD Review High Level Design Appraisal 

HLD Inspection High Level Design Appraisal 

Detailed Design Detailed Level Design Construction 

Unit Test Development Detailed Level Design Construction 

Detailed Design Review Detailed Level Design Appraisal 

Detailed Design Inspection Detailed Level Design Appraisal 

Code Coding Construction 

Code Review Coding Appraisal 

Compile Coding Failure 

Code Inspection Coding Appraisal 

Unit Test Module Test Failure 

Independent Test Plan   Construction 

Build and Integration Integration Test Failure 

Functional Test     

Software System Test Software System Test Failure 

Documentation   Construction 

Acceptance Test   Failure 

Postmortem     

Transition and Deployment   Construction 

After Development     

Product Life   Failure 

Other Test Plan     

Other Test Plan Review and Inspect     

Other Test Development     

Other Test Case Review and Inspect     

Other Testing     
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Table 7 illustrates how the lifecycle phases of each organization are mapped to the standard 
lifecycle phases.   

Table 7: Project Phases Mapped to Standard Lifecycle Phases  

Standard Lifecycle Phase Name Organization A Organization B Organization C 

Management and Miscellaneous Management and Mis-
cellaneous 

Management and Mis-
cellaneous 

Management and Mis-
cellaneous 

Launch and Strategy Launch and Strategy Launch Launch and Strategy 

Planning Planning Planning Planning 

System Engineering Requirements 
Identification  Problem Identification  

System Engineering Requirements 
Identification - Inspection  Problem Identification 

Inspection  

System Engineering Requirements 
Analysis  In Work  

System Engineering Requirements 
Review  Work Inspection -  

Author  

System Engineering Requirements 
Inspection  Work Inspection -  

Others  

System Engineering Test Plan  Integration Test  

System Design    

System Design Review    

System Design Inspection    

Software Requirements analysis Requirements Requirements Requirements 

Software System Test Plan System Test Plan System Test Plan   

Software Requirements Review Requirements Review Requirements Review   

Software Requirements Inspection Requirements Inspec-
tion 

Requirements Inspec-
tion 

Requirements Inspec-
tion 

High-Level Design High-Level Design High-Level Design High-Level Design 

Integration Test Plan Integration Test Plan    

HLD Review HLD Review  HLD Review 

HLD Inspection HLD Inspection HLD Inspection HLD Inspection 

Detailed Design Detailed Design Detailed Design Detailed Design 

Unit Test Development Test Development Detailed Design Re-
view   

Detailed Design Review Detailed Design Re-
view Test Development Detailed Design Re-

view 

Detailed Design Inspection Detailed Design In-
spection 

Detailed Design  
Inspection 

Detailed Design In-
spection 

    Unit Test Development 

Code Code Code Code 

Code Review Code Review Code Review Code Review 

Compile Compile Compile Compile 
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Standard Lifecycle Phase Name Organization A Organization B Organization C 

Code Inspection Code Inspection Code Inspection Code Inspection 

Unit Test Unit Test Unit Test Unit Test 

Independent Test Plan     

Build and Integration Build and Integration 
Test 

Build and Integration 
Test 

Build and Integration 
Test 

Functional Test     

Software System Test System Test System Test System Test 

Documentation Documentation Documentation   

Acceptance Test Acceptance Test  Acceptance Test 

Postmortem Postmortem  Postmortem 

Transition and Deployment   Product Life 

After Development     

Product Life Product Life Product Life Documentation 

Other Test Plan   Documentation Review 

Other Test Plan Review and In-
spect   Q-Test Planning 

Other Test Development   Documentation Inspec-
tion 

Other Test Case Review and In-
spect   Q-Manual Test Case 

Design 

Other Testing   Q-Manual Test Case 
Development 

   Q-Manual Test Case 
Review 

   Q-Manual Test Case 
Inspection 

   Q-Auto Test Case De-
sign 

   Q-Auto Test Case De-
velopment 

   Q-Auto Test Case Re-
view 

   Q-Auto Test Case In-
spection 

   Do Not Use - Integra-
tion Test Plan 

   Do Not Use - System 
Test Plan 

3.2 Data Collection 

Organizations recorded their own data using the Process Dashboard [Shirai 2014] while using the 
Team Software Process to plan and track their software projects. The data collection consists of 
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logging all direct effort on project tasks, recording defects detected and repaired, and recording 
product size as measured in lines of code.  

Project data from each organization included the variables described in Table 8 through Table 11. 
The project data from each organization were combined and averages were used for the perfor-
mance comparisons. 

3.3 Data Definitions 

This section describes the data variables that were evaluated for the performance analysis. 

Table 8: Variables Identifying the Source Data 

Variable Description 

project_id Unique numerical identifier of the project 

organization_key Unique numerical identifier of the project’s organization 

team_key Unique numerical identifier of the project team 

wbs_element_key Numerical assignment that identifies the work breakdown structure element to which 
each data record applies  

 
Table 9: Variables Used For Recording Product Size Information 

Measure Description 

size_metric_short_name Abbreviation for the size measure that is being used for product size. Examples include 
lines of code (LOC), pages, and use cases. 

size_added_and_modified Number of new units of size that are added to a new or existing product  

size_added Number of new units of size that have been added to the product 

base_size Number of units of size already existing in a product before it is modified by the devel-
oper to arrive at the new product 

size_deleted Number of units of size that are deleted from an existing product during modification by 
the developer to arrive at the new product 

size_modified Number of units of size of existing product that are modified to arrive at the new product 

size_reused Number of units of size that are copied from a library or repository “as-is” and included 
in the product under development 
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Table 10: Variables Associated with Software Product Quality  

Measure Description 

Cumulative Defect Injections Sum of defects injected in the product during the current and all previous product devel-
opment phases 

Cumulative Removals Sum of defects removed in a product during the current and all previous product devel-
opment phases 

Defect Density Number of defects detected in the product during a phase divided by the size of the 
product 

defect injection rate Number of defects injected into the product per hour 

Defect_fix_time Total number of task time minutes required to fix all discovered defects within a process 
phase 

Defects Injected Total number of defects injected into a product during a process phase 

Defects Removed Total number of defects removed during a process phase 

Development Effort Total number of task time minutes in a process phase 

phase effort per_defect Number of task time hours associated with finding and fixing errors for each defect 

Phase_Escapes Within a given process phase, the cumulative removals minus the cumulative defect in-
jections 

Phase_no.Defect_cost Total number of task time minutes within a process phase applied to product develop-
ment, minus the task time minutes associated with finding and fixing defects within that 
phase (Phase_no.Defect_cost =Total.Phase.Effort - sum(defect.Find&Fix_Effort) 

Phase_Rate_no.defect_ef-
fort/LOC 

Total number of task time hours per LOC associated with product development minus 
the task time hours per LOC associated with finding/fixing product defects 

Size Size of the product measured in lines of code 

Yield Percentage of product defects that are removed during a process phase 
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Table 11: Variables Associated with Development Effort 

Measure Description 

0000_BeforeDev_act_time_min Task time applied to project before software development begins 

1000_Misc_act_time_min Miscellaneous task time applied to project activities. Some TSP teams used 
this category to track task time that is not directly applied to development ac-
tivities. 

1100_Strat_act_time_min Task time applied to developing the strategy for the project 

1150_Planning_act_time_min Task time applied to planning the project 

1200_SE_REQ_act_time_min Task time applied to systems engineering requirements definition/analysis 

1220_SE_REQR_act_time_min Task time applied to reviewing and fixing defects in the requirements 

4030_STest_act_time_min Task time applied to developing the system test plan 

4040_Doc_act_time_min Task time applied to developing documentation (e.g., installation manuals, 
user guides, etc.) 

4050_ATest_act_time_min Task time applied to developing the acceptance test plan for the product 

5000_PM_act_time_min Task time applied to post mortem (lessons learned) activities throughout the 
project 

6100_PLife_act_time_min Task time applied during the product life phase (following product release) 

6200_AfterDev_act_time_min Task time applied after product development but before product release 

0000_BeforeDev_fix_time Task time applied to finding and fixing defects in an existing product before it 
is enhanced 

1000_Misc_fix_time Placeholder for fix time data that did not map to other process phases 

1100_Strat_fix_time Task time applied to making corrections or changes to the current strategy for 
the project 

1150_Planning_fix_time Task time applied to making changes to the software development plan 

1200_SE_REQ_fix_time Task time applied to making corrections or additions to the systems engineer-
ing requirements during the requirements process phase 

1220_SE_REQR_fix_time Task time applied to personal review of the requirements, and finding and fix-
ing any errors during the systems engineering requirement process phase 

1240_SE_REQI_fix_time Task time applied to multi-person review of the requirements, and finding and 
fixing any errors during the systems engineering requirements inspection 
phase 

1250_SE_REQ_Val_fix_time Task time applied to validation of the requirements and finding and fixing any 
errors during the systems engineering requirements validation phase 

3000_Req_fix_time Task time applied to finding and fixing any software defects during the require-
ments phase of the project 

3020_ReqR_fix_time Task time applied to finding and fixing software defects during the require-
ments review phase of the project 

3040_ReqI_fix_time Task time applied to finding and fixing software defects during the require-
ments inspection phase of the project 

3100_HLD_fix_time Task time applied to finding high-level design defects during the high-level de-
sign development phase of the project 

3110_ITP_fix_time Task time applied to finding and fixing defects during the integration test plan-
ning process phase 

3120_HLDR_fix_time Task time applied to finding and fixing design defects during the high-level de-
sign review process phase 
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Measure Description 

3140_HLDI_fix_time Task time applied to finding and fixing detailed design defects during the high-
level design inspection phase 

3200_DLD_fix_time Task time applied to finding and fixing detailed design defects during the de-
sign phase 

3210_TD_fix_time Task time applied to finding and fixing defects during the test development 
phase 

3220_DLDR_fix_time Task time applied to finding and fixing defects during the detailed design per-
sonal review phase 

3220_DLDI_fix_time Task time applied to finding and fixing defects during the detailed design in-
spection phase 

3300_Code_fix_time Task time applied to finding and fixing defects during the coding phase 

3320_CodeR_fix_time Task time applied to finding and fixing defects during the personal code review 
phase 

3330_Compile_fix_time Task time applied to finding and fixing defects during the compile phase 

3340_CodeI_fix_time Task time applied to finding and fixing defects during the code inspection 
phase 

3350_UTest_fix_time Task time applied to finding and fixing defects during the unit test phase 

3400_TestCaseDevel_fix_time Task time applied to finding and fixing defects during the test case develop-
ment phase 

4010_BITest_fix_time Task time applied to finding and fixing defects during the build and integration 
testing phase 

4030_STest_fix_time Task time applied to finding and fixing defects during the system test phase 

4040_Doc_fix_time Task time applied to finding and fixing defects during the documentation phase 

4050_ATest_fix_time Task time applied to finding and fixing defects during the acceptance test 
phase of the project 

5000_PM_fix_time Task time applied to finding and fixing defects during the post mortem phase 
of the project 

6100_PLife_fix_time Task time applied to finding and fixing defects during the product life phase of 
the project 

6200_AfterDev_fix_time Task time applied to finding and fixing defects after the product has been de-
veloped but before the product has been released 

0000_BeforeDev_def_rem Task time applied to finding and fixing defects before the project begins 



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  30  
[Distribution Statement A] Approved for public release and unlimited distribution 

4 Results 

This section provides performance results for organizations A, B, and C. It includes our findings 
about effectiveness and cost for each organization and answers these primary research questions: 

1. How do static analysis tools affect defect escapes?  
2. Does employing the static analysis tools increase or reduce total development effort?  

We operationalize the first question in terms of defect finds and escapes. The second question is 
addressed by observing phase effort, phase defect removals, and effort required to mitigate the de-
fects found. We use the model to estimate the secondary effects downstream of the actual static 
analysis.   

To address these primary research questions, we must also answer these secondary questions: 

1. How are the static analysis tools included in the overall development process? 
2. What are the phase defect removal yields? 
3. What are the find and fix times for the removed defects in each phase? 
4. What are the completion rates for each phase with and without rework? 

These secondary questions help us to populate the local model. We present distributions with par-
ametric and non-parametric statistics for these values using the project as the unit of analysis. 

4.1 Organization A 

Organization A projects employed the static analysis tool, Tool A, as part of their personal review 
phase. The count of removed defects by origin phase is shown in Figure 1; the removal phase is 
shown in Figure 2. The injection removal count matrix is shown in Table 12. The fix time matrix 
is shown in Table 13, and the average fix time per defect is shown in Table 14. Summary statistics 
are included in Table 15. 

These projects were executed in sequence by essentially the same team over a period of several 
years. To understand the project development parameters and consistency over time, we examined 
the phased effort and defects in each of the projects and as a group. We began by comparing the 
distribution of all defect find and fix times by project in Figure 68, Figure 69, Figure 70, and Fig-
ure 72. A visual inspection suggests that the defect fix time distribution was similar across the 
projects. 
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Figure 1: Defect Origin Phase (Organization A) 

 

Figure 2: Defect Removal Phase (Organization A) 
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Table 12: Defect Count by Origin and Removal (Organization A) 

 HLD HLD 
Review 

HLD  
Inspect 

Design Design 
Review 

Design 
Inspect 

Test 
Devel 

Code Code 
Review 

Compile Code  
Inspect 

Test IT Sys Test 

HLD 30 13 55 25 3 27 1 12 3  12 6   

HLD Review   2            

HLD Inspect   1            

Design    30 1118 3153 15 229 50 8 262 524   

Design Review     26 21   1      

Design Inspect      79  3 2  3    

Test Devel        34   4 2   

Code      233  141 2135 746 7722 1179   

Code Review         25 3 14 6   

Compile          12 2 2   

Code Inspect           199 2   

Test            58  1 

IT             28  
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Table 13: Sum of Defect Fix Time by Origin and Removal (Organization A) 

 HLD HLD 
Review 

HLD  
Inspect 

Design Design 
Review 

Design 
Inspect 

Test 
Devel 

Code Code 
Review 

Compile Code  
Inspect 

Test IT Sys 
Test 

HLD 656.4 57.5 412.7 639.5 46.8 110.4 35.3 452.1 283.9  557.4 241.1   

HLD Review   17.0            

HLD Inspect   2.7            

Design    592.3 6867.9 16797.2 413.2 3524.6 725.8 110.5 4680.0 19493.4   

Design Review     115.0 185.1   0.4      

Design Inspect      1242.9  110.4 6.6  127.1    

Test Devel        553.6   8.5 23.6   

Code      1727.2  2001.7 10567.4 2535.1 52715.6 25218.5   

Code Review         166.5 2.6 73.5 63.5   

Compile          44.9 123.6 96.9   

Code Inspect           2013.5 54.0   

Test            1712.6  236.5 

IT             1097  

 

  



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  34  
[Distribution Statement A] Approved for public release and unlimited distribution 

Table 14: Average Defect Fix Effort by Origin and Removal (Organization A) 

 HLD HLD 
Review 

HLD  
Inspect 

Design Design 
Review 

Design 
Inspect 

Test 
Devel 

Code Code 
Review 

Compile Code  
Inspect 

Test IT Sys Test 

HLD 21.9 4.4 7.5 25.6 15.6 4.1 35.3 37.7 94.6  46.4 40.2   

HLD Review   8.5            

HLD Inspect   2.7            

Design    19.7 6.1 5.3 27.5 15.4 14.5 13.8 17.9 37.2   

Design Review     4.4 8.8   0.4      

Design Inspect      15.7  36.8 3.3  42.4    

Test Devel        16.3   2.1 11.8   

Code      7.4  14.2 4.9 3.4 6.8 21.4   

Code Review         6.7 0.9 5.2 10.6   

Compile          3.7 61.8 48.5   

Code Inspect           10.1 27.0   

Test            29.5  236.5 

IT             39.2  
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Table 15: Phase Defect Fix Effort Statistics (Organization A) 

Removed_Phase N Mean SE Mean StDev Minimum Q1 Med Q3 Max IQR 

HLD 15 67.7 16.7 64.8 1.8 18.1 39.7 120.0 195.0 101.9 
HLD Review 11 5.2 2.1 6.9 0.1 0.5 3.7 5.4 20.8 4.9 
HLD Inspect 51 8.5 2.0 14.5 0.0 1.4 2.8 10.1 76.0 8.7 
Design 56 22.2 5.3 40.0 0.0 2.9 6.1 24.1 241.5 21.3 
Design Review 814 9.0 0.8 23.3 0.0 1.0 3.0 8.0 364.5 7.0 
Design Inspect 2296 9.1 0.5 22.4 0.0 1.1 3.0 7.9 367.1 6.8 
Code 373 24.5 3.8 73.9 0.0 2.0 5.5 16.7 992.0 14.7 
Code Review 1592 7.6 0.5 19.5 0.0 0.9 2.1 6.0 270.0 5.1 
Compile 293 10.3 2.4 40.6 0.1 0.9 2.5 6.2 603.0 5.3 
Code Inspect 6571 10.1 0.3 27.1 0.0 1.2 3.4 8.6 640.5 7.4 
IT 127 42.3 10.0 112.3 0.0 2.5 10.4 38.5 1060.0 36.0 
After Development 4 43.7 21.6 43.2 3.6 5.3 40.6 85.2 90.0 79.9 



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  36  
[Distribution Statement A] Approved for public release and unlimited distribution 

 

 

Figure 3: Defect Counts and Fix Time by Type (Organization A) 

 

Figure 4: Phase Defect Fix Effort Box Plot (Organization A) 
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Table 16: Cost and Quality Performance in the Absence of Tool_A 

Phase No.Defect.Phase. 
Rate [Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate [Hr/ 

Defect] 

0000_BeforeDev 0.00000  0.00  

1000_Misc 0.01923 0.000  0.417 

1100_Strat 0.00018 0.000   

1150_Planing 0.00068 0.016  0.012 

1200_SE_REQ 0.02440 0.048  0.276 

1220_SE_REQR 0.00434 0.028 0.25 0.066 

1240_SE_REQI 0.00321 0.027  0.051 

1250_SE_REQ_val 0.00443 0.010 0.12 0.477 

3000_Req 0.00000    

3020_ReqR 0.00005 0.062   

3040_ReqI 0.00408 0.001   

3100_HLD 0.00410 0.077  0.458 

3110_ITP 0.00000    

3120_HLDR 0.00000 2.087 0.01 0.074 

3140_HLDI 0.00122 0.001 0.04 0.124 

3200_DLD 0.00691 1.234  0.351 

3210_TD 0.00023 0.259  0.467 

3220_DLDR 0.00174 0.039 0.16 0.105 

3220_DLDI 0.00333 0.035 0.60 0.097 

3300_Code 0.00945 2.174  0.318 

3320_CodeR 0.00141 0.044 0.14 0.090 

3330_Compile 0.00036 0.061 0.07 0.051 

3340_CodeI 0.00468 0.062 0.68 0.128 

3350_UTest 0.00561 0.015 0.51 0.441 

3551xxxx 0.00000 0.000 0.00 0.000 

3400_TestCaseDevel 0.00000    

4010_BITest 0.00300 0.051 0.40 0.508 

4015_xxxx 0.00000 0.000 0.00 0.000 

4030_STest 0.00000 0.000 0.17 3.942 

4040_Doc 0.00233 0.035 1.00 0.148 

4050_ATest 0.00000  0.00  

5000_PM 0.00039 0.000   

6100_PLife 0.00000 23.077 0.00 0.043 
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To simulate the cost and quality performance of Organization A projects in the absence of static 
analysis, the data was modified in the following ways: 

• The personal review phase (i.e., 3320_CodeR) was removed (i.e., variable values were  
set to zero). 

• The documentation phase was removed from consideration (since documentation activities do 
not affect software code defect values). The yield was changed from 1.00% to 0.00%. 

Since a small number of defects escaped into the system test phase, the yield of 0.17% for this 
phase was not modified within the cost quality model for simulating the case where a static analy-
sis tool was not used. 

Table 17 presents cost and quality performance data for Organization A in the absence of Tool A 
during the personal review phase. 

Table 17: Cost and Quality Performance in the Absence of Tool_A (Organization A) 

Phase 
No.De-
fect.Phase. Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate 

[Hr/Defect] 

0000_BeforeDev 0.00000  0.00  

1000_Misc 0.01923 0.000  0.417 

1100_Strat 0.00018 0.000   

1150_Planing 0.00068 0.016  0.012 

1200_SE_REQ 0.02440 0.048  0.276 

1220_SE_REQR 0.00434 0.028 0.25 0.066 

1240_SE_REQI 0.00321 0.027  0.051 

1250_SE_REQ_val 0.00443 0.010 0.12 0.477 

3000_Req 0.00000    

3020_ReqR 0.00005 0.062   

3040_ReqI 0.00408 0.001   

3100_HLD 0.00410 0.077  0.458 

3110_ITP 0.00000    

3120_HLDR 0.00000 2.087 0.01 0.074 

3140_HLDI 0.00122 0.001 0.04 0.124 

3200_DLD 0.00691 1.234  0.351 

3210_TD 0.00023 0.259  0.467 

3220_DLDR 0.00174 0.039 0.16 0.105 

3220_DLDI 0.00333 0.035 0.60 0.097 

3300_Code 0.00945 2.174  0.318 

3320_CodeR 0.00000 0.000 0.00 0.000 

3330_Compile 0.00036 0.061 0.07 0.051 

3340_CodeI 0.00468 0.062 0.68 0.128 
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Phase 
No.De-
fect.Phase. Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate 

[Hr/Defect] 

3350_UTest 0.00561 0.015 0.51 0.441 

3551xxxx 0.00000 0.000 0.00 0.000 

3400_Test-
CaseDevel 

0.00000    

4010_BITest 0.00300 0.051 0.40 0.508 

4015_xxxx 0.00000 0.000 0.00 0.000 

4030_STest 0.00000 0.000 0.17 3.942 

4040_Doc 0.00233 0.035 0.00 0.148 

4050_ATest 0.00000  0.00  

5000_PM 0.00039 0.000   

6100_PLife 0.00000 23.077 0.00 0.043 

Figure 5 illustrates the impact on defect density from removing the personal review process phase 
(which included Static Analysis Tool A) from the development.  

 

Figure 5: Defect Density with and without Static Analysis Tool A (Organization A) 
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Figure 6: Cumulative Development Effort with and without Static Analysis Tool A (Organization A) 

 

Figure 7: Cumulative Defect Flow with Static Analysis Tool A (Organization A) 
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Figure 8: Cumulative Defect Flow without Static Analysis Tool A (Organization A) 

 

 

Figure 9: Defect Removal by Phase with and without Static Analysis (Organization A) 
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Figure 10: Coding Process Rates (Organization A) 
 

 

Figure 11: Code Review Yield vs. Review Rate (Organization A) 

4.2 Organization B 

Organization B projects employed the static analysis tools Tool_B_1 and Tool_B_2. A histogram 
of defect removals is shown in Figure 13. The tools were primarily used in the compile phase of 
development, and then in the personal review phase and the inspection phase. The counts of dis-
covered defect types by orthogonal defect category are shown in Figure 12. The most common 
types are violations of development standards and inconsistent interfaces.  
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Figure 12: Defect Types (Organization B) 

 

 

Figure 13: Number of Defects Removed During Development Phases (Organization B) 

In order to address the main research question (What are the model parameters with and without 
using these tools?) we performed additional analysis on the defect rates and fix times. The related 
research questions included the following: 
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1. Where were the defects injected? 
2. Where were the defects removed? 
3. How much effort was spent per defect by phase? 
4. How much total effort was required to use the tools? 

Tool_B_1 defect finds by phase origin are presented in Table 18. Defect injections are shown 
along the rows, and defect removals are shown in the columns. Table cells exclude the phases 
prior to design. Defect finds were more or less equal in the code review, code inspect, and com-
pile phases. The effort recorded fixing these defects is summarized in Table 19. The average find 
and fix times by removal and origin phase are summarized in Table 20. Similar tables for 
Tool_B_2 defects are summarized in Table 22, Table 23, and Table 24. 

The descriptive statistics for the removal phase are summarized in Table 27. Detailed parametric 
and non-parametric descriptions of find and fix time in each phase are included in  Figure 14, Fig-
ure 15, Figure 19, Figure 20, and Figure 21. 
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Table 18: Tool_B_1 Origin and Removal Phase of Defect Found 

Sum of Fix Count Removed      

Injected 
Design  
Inspect Code 

Code  
Review 

Code  
Inspect Compile 

After Devel-
opment Grand Total 

Before Development   1   1 1   3 

Design 2           2 

Code     10 14 10   34 

Compile       1     1 

Code Inspect       3     3 

Test           1 1 

Grand Total 2 1 10 19 11 1 44 

 
 
Table 19: Tool_B_1 Total Defect Fix Effort by Phase of Origin and Removal 

Sum of Tool_B_1-Effort Removed  

Injected 
Design 
Inspect Code 

Code  
Review Compile 

Code  
Inspect Test 

After Devel-
opment Grand Total 

Before Development  260.4  30.5 1   291.9 

Design 0.8   0 0   0.8 

Code   48.2 89.1 115.1   252.4 

Code Inspect     30.6 0  30.6 

Compile     4.1   4.1 

Test       3.3 3.3 

Grand Total 0.8 260.4 48.2 119.6 150.8 0 3.3 583.1 
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Table 20: Tool_B_1 Fix Effort per Defect by Phase of Origin and Removal 

Average Fix Effort per Defect Removed 

Injected Design 
Inspect 

Code Code 
Review 

Compile Code  
Inspect 

Test After  
Development 

Grand 
Total 

Before Development  86.80  6.10 1.00   32.43 

Design 0.40       0.40 

Code   4.82 8.91 8.85   7.65 

Code Inspect     10.20   10.20 

Compile     4.10   4.10 

Test       3.30 3.30 

 Grand Total 0.4 86.8 4.82 7.97 8.38   3.3 11.9 

These are a small portion of all development defects. Table 24 summarizes counts of all defects found and removed by phase. Total and average fix times 
by phase origin and removal are included in Table 25 and Table 26. Descriptive statistics for all defects are summarized in Table 27. Defect types are 
included in Table 28. Histograms of the fix time distributions, along with statistics are included in Figure 14 through Figure 22. Category_0 refers to 
Tool_B_1, which only scans source code, while Category_1 refers to Tool_B_2, which also scans the compiled binary.  

The graphic data provides a way to visualize the statistical significance of the differences in the mean values for different phases or removal activities. 
The range of find and fix times is wide and the distributions are highly skewed, but the distributions are unimodal. Because our model will add data be-
tween phases rather than multiply, use the mean values to obtain average behavior. Nonetheless, distribution data suggests that we can expect wide ranges 
of behavior with small samples. Future work may use Monte Carlo rather than point solutions to obtain expected performance ranges.  
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Table 21: Defects Coded for Tool_B_2 by Phase of Origin and Removal 

Tool_B_2 Removed 

Injected 
Design  
Inspect Code 

Code 
Review Compile 

Code  
Inspect Test 

After  
Development Grand Total 

Before Development         

Design    5 1   6 

Code   1 12 1   14 

Code Inspect     3 2  5 

Compile         

Test       1 1 

Grand Total   1 17 5 2 1 26 

 
Table 22: Tool_B_2 Defect Removal Effort by Phase of Origin and Removal 

Sum of FX-Effort Removed 

Injected 
Design 
Inspect Code 

Code 
Review Compile 

Code  
Inspect Test 

After  
Development Grand Total 

Before Development  0  0 0   0 

Design 0   8.3 3.3   11.6 

Code   1.7 20.8 0.5   23 

Code Inspect     34.7 31  65.7 

Compile     0   0 

Test       3.3 3.3 

Grand Total 0 0 1.7 29.1 38.5 31 3.3 103.6 
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Table 23: Tool_B_2 Removal Effort per Defect by Phase of Origin and Removal 

Average Fix Effort 
per Defect Removed 

Injected Design Inspect Code 
Code 
Review Compile 

Code  
Inspect Test 

After  
Development 

Grand  
Total 

Before Development         
Design    1.66 3.30   1.93 

Code   1.70 1.73 0.50   1.64 

Code Inspect     11.57 15.50  13.14 

Compile         
Test       3.30 3.30 

 Grand Total     1.7 1.71 7.7 15.5 3.3 3.98 
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Table 24: All Defects, Phase of Origin (Injection) and Removal 

Defects Removed                         

Phase Injected  
Design 
Review 

Design 
Inspect Code 

Code 
Review Compile 

Code  
Inspect Test Int Test Sys Test 

Accept 
Test 

Product 
Life 

After  
Development Total 

Design 1070 1607 271 85 19 220 246 2 20   7 3547 

Design Review 17 6 2 1  1 1      28 

Design Inspect  48 45 13 1 20 7  1    135 

Code   6 1204 361 2160 230 11 27  1 2 4002 

Code Review    8 14 4 6      32 

Code Inspect      84 65 1 1    151 

Compile      10 1      11 

Test Devel   8 6  4 82 128 298    526 

Test       19 4 15   1 39 

Int Test        7 34 5   46 

Grand Total 1087 1661 332 1317 395 2503 657 153 396 5 1 10 8517 

  



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  50  
[Distribution Statement A] Approved for public release and unlimited distribution 

Table 25: Total Defect Find and Fix Time (After High-Level Design) 

Sum of Fix Time [Minutes]                       

Phase  
Injected  

Design 
Review 

Design 
Inspect Code 

Code 
Review Compile Code Inspect Test Int Test Sys Test 

Accept 
Test 

Product 
Life 

After  
Development Total 

Design 6172.8 10798.3 2378.2 1008.9 150.9 1981.2 6986.6 30.9 1120.7   830.2 31458.7 

Design  
Review 198.7 23.1 2.9 21.8  2.5 23.7      272.7 

Design  
Inspect  209.6 141.6 124.2 1.2 129 30.5  14.4    650.5 

Code   23.3 5169.4 1091.1 10868.7 2507.8 586.9 984.3  99.8 56.8 21388.1 

Code Review    33.4 23.9 34.6 30.7      122.6 

Code Inspect      455.5 604.9 182 11    1253.4 

Compile      36.6 11      47.6 

Test Devel   51.8 42.3  129.8 127.4 347.8 752.7    1451.8 

Test       212.8 1.7 82.6   3.3 300.4 

Int Test        9.4 151.4 4.1   164.9 

Grand Total 6371.5 11031 2597.8 6400 1267.1 13637.9 10535.4 1158.7 3117.1 4.1 99.8 890.3 57110.7 
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Table 26: Average Defect Fix Effort by Removal and Origin 

Average Defect Effort [Minutes/Defect]                     

Phase  
Injected  

Design 
Review 

Design 
Inspect Code 

Code  
Review Compile 

Code In-
spect Test Int Test Sys Test 

Accept 
Test 

Product 
Life 

After  
Development Total 

Design 5.8 6.7 8.8 11.9 7.9 9.0 28.4 15.5 56.0   118.6 8.87 

Design Review 11.7 3.9 1.5 21.8  2.5 23.7      9.74 

Design Inspect  4.4 3.1 9.6 1.2 6.5 4.4  14.4    4.82 

Code   3.9 4.3 3.0 5.0 10.9 53.4 36.5  99.8 28.4 5.34 

Code Review    4.2 1.7 8.7 5.1      3.83 

Code Inspect      5.4 9.3 182.0 11.0    8.30 

Compile      3.7 11.0      4.33 

Test Devel   6.5 7.1  32.5 1.6 2.7 2.5    2.76 

Test       11.2 0.4 5.5   3.3 7.70 

Int Test        1.3 4.5 0.8   3.58 

Total 5.86155 6.64118 7.8247 4.85953 3.20785 5.44862 16.0356 7.5732 7.87146 0.82 99.8 89.03 6.71 
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Table 27: Descriptive Statistics for All Defects by Removal Phase 

Phase N Mean SE Mean StDev Minimum Q1 Median Q3 Maximum 

Fix Time  Accept Test 5 0.82 0.536 1.199 0.1 0.1 0.2 1.85 2.9 

After Development 10 89 24.2 76.5 3.3 24.4 72.3 142.8 240 

Code 344 9.27 1.34 24.86 0 1.1 2.9 6.4 257.4 

Code Inspect 2607 5.404 0.258 13.152 0 0.7 1.6 4.7 242.9 

Code Review 1337 4.894 0.315 11.5 0.1 0.8 1.8 4.3 171.1 

Compile 415 3.258 0.541 11.014 0.1 0.6 1.2 2.6 198.9 

Design 4 13.15 4.97 9.95 3.1 4 12.55 22.9 24.4 

Design Inspect 1690 6.82 0.459 18.862 0 0.7 1.9 5.125 363.3 

Design Review 1094 5.961 0.506 16.743 0.1 0.8 1.75 4.4 239.7 

Documentation 49 10.89 2.03 14.24 0.2 1.65 5.4 17.45 72.2 

HLD Inspect 35 9.59 3.16 18.71 0.2 1.2 3.1 11.3 103.3 

HLD Review 19 9.08 3.16 13.77 0.7 1.6 3.5 13 59.9 

Int Test 153 7.57 3.22 39.89 0.1 0.5 1 4 459.3 

Int Test Plan 79 2.172 0.577 5.126 0 0.1 0.5 2 40 

Planning 7 30.9 11.2 29.8 0.7 2.3 23.9 49 82.8 

Product Life 2 261 161 228 100 * 261 * 422 

Reqts Inspect 469 3.861 0.327 7.074 0 0.8 2.6 5 116.6 

Reqts Review 172 2.222 0.36 4.727 0.1 0.4 1 2.2 54.6 

Sys Test 401 8.31 1.76 35.3 0 0.3 0.8 2.45 510 

Test 691 18.27 1.68 44.26 0 2.1 5.5 14.8 654 

Test Devel 6 14.32 4.77 11.69 0.5 6.65 11.6 22.88 34.5 
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Figure 14: All Other Defects, Code Review 
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Figure 15: Tool_B_1 Defect Find and Fix Time, Code Review 
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Figure 16: Other Defects, Average Find and Fix Time, Compile 
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Figure 17: Tool_B_1 Defects, Average Fix Time, Compile 
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Figure 18: Tool_B_2 Defects, Average Find and Fix Time, Compile 
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Figure 19: Other Defects, Fix Time Distribution, Code Inspect 
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Figure 20: Tool_B_1, Defect Fix Time Distribution, Code Inspect 
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Figure 21: Tool_B_2 Defect Find and Fix Distribution, Code Inspect 

1 st Quartile 0.500
Median 3.300
3rd Quartile 242.900
Maximum 242.900

-263.431 427.897

0.500 242.900

72.449 874.51 1

A-Squared 0.48
P-Value 0.062

Mean 82.233
StDev 1 39.1 48
Variance 1 9362.293
Skewness 1 .731 26
Kurtosis *
N 3

Minimum 0.500

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

24521 01 751 401 0570350

Median

Mean

4002000-200

95% Confidence Intervals

Summary Report for average_fix_time, Code Inspection
category = 2



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  61  
[Distribution Statement A] Approved for public release and unlimited distribution 

 

Figure 22: Tool_B_1 Defect Find and Fix Distribution 

1 st Quartile 1 .000
Median 2.450
3rd Quartile 1 0.000
Maximum 1 01 .400

4.938 1 9.01 5

1 .483 4.774

1 9.660 29.854

A-Squared 8.68
P-Value <0.005

Mean 1 1 .976
StDev 23.702
Variance 561 .806
Skewness 2.82541
Kurtosis 7.58304
N 46

Minimum 0.01 0

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

6305404503602701 80900

Median

Mean

201 51 050

95% Confidence Intervals

Summary Report for average_fix_time
category = 1



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  62  
[Distribution Statement A] Approved for public release and unlimited distribution 

In this project we observed a strong correlation between effectiveness of the personal code review 
and the peer code inspections (see Figure 23). We normally expect to see this correlation (but do 
not always) because similar skills are applied. The range of review and inspection yields is very 
wide. 

 

Figure 23: Inspection Phase Yield vs. Personal Review Phase Yield (Organization B) 
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Table 28: Defect Type Frequencies Found During Development Phase (Organization B) 

Defect Type After  
Development 

Code  
Inspection Code Review Compile Test Row Totals 

Assignment    1  1 

Checking    2  2 

DESIGN - Interface    1  1 

DESIGN - Stand-
ards 

  1 1  2 

DEV - Assignment 1   2  3 

DEV - Interface    1  1 

DEV - Standards  2  3  5 

DEV - Syntax    1  1 

Function    1  1 

Interface    4 1 5 

Syntax  2   1 3 

Column Totals 1 4 1 17 2 25 

Figure 24, a scatterplot of project average code review yields versus code review rates in lines of 
code per hour, shows very weak correlation between the yield in code review and the rate at 
which code was reviewed. Nonetheless, though the review rate never exceeded 500 LOC per 
hour, about half the reviews exceeded the 200 LOC per hour recommendation. This lack of corre-
lation is observed at a project level; the individual developer or component levels were not exam-
ined. Although a plausible explanation is that there was large variance among individual develop-
ers in review effectiveness, this analysis was not pursued because it was beyond the scope of our 
research questions. 
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Figure 24: Personal Review Rate vs. Code Review Yield (Organization B) 

We had identified a set of projects before the tools were inserted into the development with the 
intention of analyzing the parameters pre- and post-. However, the pre-post differences were ob-
scured by the large overall performance variation.  We therefore adopted a different analysis strat-
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all compile activity to the tools in the “post” projects. That is, “compile” was used only as a tool 
activity, not to record actual compile time. We then used the data that was explicitly activity as 
“static analysis” to estimate adjustments to the other code review and code inspection phases. The 
statistical parameters are included in Table 29. 

Table 29: Performance with Tool_B_2 and Tool_B_1 Static Analysis (Organization B) 

Phase 
No.Defect. 
Phase.Rate 
[LOC/Hr] 

No.Defect. 
Phase.Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate 

[Hr/Defect] 

0000_BeforeDev  0.0000  0.0000  

1000_Misc 128.0464 0.0078 0.0000   

1100_Strat 903.5513 0.0011 0.0000   

1150_Planing 164.2225 0.0061 0.0345  0.4517 

3000_Req 209.0475 0.0048 1.3872  0.4517 

3020_ReqR 612.7987 0.0016 0.0112 0.2066 0.0370 

3040_ReqI 276.1358 0.0033 0.0681 0.7856 0.0582 

3100_HLD 2238.8472 0.0004 1.4939  0.3050 

3110_ITP 257.4165 0.0039 0.1553 0.0806 0.0398 

3120_HLDR 13878.0127 0.0000 0.0000 0.0979 0.1513 
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Phase 
No.Defect. 
Phase.Rate 
[LOC/Hr] 

No.Defect. 
Phase.Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate 

[Hr/Defect] 

3140_HLDI 1995.2280 0.0004 0.0182 0.2000 0.1627 

3200_DLD 108.8589 0.0092 3.4666  0.2192 

3210_TD 288.3239 0.0034 1.4073  0.1842 

3220_DLDR 327.9854 0.0020 0.0869 0.2583 0.1002 

3220_DLDI 86.2034 0.0098 0.1079 0.4818 0.1194 

3300_Code 95.8922 0.0099 3.3868  0.1574 

3320_CodeR 332.3528 0.0019 0.0972 0.2528 0.0914 

3330_Compile 1713.4691 0.0004 0.1723 0.1043 0.0551 

3340_CodeI 64.4342 0.0133 0.0801 0.6539 0.1007 

3350_UTest 160.2417 0.0043 0.0557 0.5511 0.3120 

3400_Test-
CaseDevel 

0.0000 0.0000 0.0000 0.0000 0.0000 

4010_BITest 122.4605 0.0080 0.0515 0.2166 0.1409 

4015_xxxx 0.0000 0.0000 0.0000 0.0000 0.0000 

4030_STest 343.4037 0.0024 0.0000 0.4000 0.1476 

4040_Doc 608.1998 0.0016 0.2001 0.1250 0.2403 

4050_ATest 95.3808 0.0105 0.0000 0.4000 0.0137 

5000_PM 1296.2678 0.0008 0.0000   

6100_PLife 12385.4713 0.0000 0.0000 0.4000 4.3500 

 
Table 30: Performance without Tool_B_2 or Tool_B_1 Static Analysis (Organization B) 

Phase 
No.Defect. 
Phase.Rate 
{LOC/Hr] 

No.Defect. 
Phase.Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate 

[Hr/Defect] 

0000_BeforeDev  0.0000  0.0000  

1000_Misc 128.0464 0.0078 0.0000   

1100_Strat 903.5513 0.0011 0.0000   

1150_Planing 164.2225 0.0061 0.0345  0.4517 

3000_Req 209.0475 0.0048 1.3872  0.4517 

3020_ReqR 612.7987 0.0016 0.0112 0.2066 0.0370 

3040_ReqI 276.1358 0.0033 0.0681 0.7856 0.0582 

3100_HLD 2238.8472 0.0004 1.4939  0.3050 

3110_ITP 257.4165 0.0039 0.1553 0.0806 0.0398 

3120_HLDR 13878.0127 0.0000 0.0000 0.0979 0.1513 

3140_HLDI 1995.2280 0.0004 0.0182 0.2000 0.1627 

3200_DLD 108.8589 0.0092 3.4666  0.2192 

3210_TD 288.3239 0.0034 1.4073  0.1842 
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Phase 
No.Defect. 
Phase.Rate 
{LOC/Hr] 

No.Defect. 
Phase.Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield FixRate 

[Hr/Defect] 

3220_DLDR 327.9854 0.0020 0.0869 0.2583 0.1002 

3220_DLDI 86.2034 0.0098 0.1079 0.4818 0.1194 

3300_Code 95.8922 0.0099 3.3868  0.1574 

3320_CodeR 332.3528 0.0019 0.0972 0.2400 0.0914 

3330_Compile 0.0000 0.0000 0.0000 0.0000 0.0000 

3340_CodeI 64.4342 0.0133 0.0801 0.6300 0.1007 

3350_UTest 160.2417 0.0043 0.0557 0.5511 0.3120 

3551xxxx 0.0000 0.0000 0.0000 0.0000 0.0000 

3400_Test-
CaseDevel 

 0.0000    

4010_BITest 122.4605 0.0080 0.0515 0.2166 0.1409 

4015_xxxx 0.0000 0.0000 0.0000 0.0000 0.0000 

4030_STest 343.4037 0.0024 0.0000 0.4000 0.1476 

4040_Doc 608.1998 0.0016 0.2001 0.0000 0.2403 

4050_ATest 95.3808 0.0105 0.0000 0.4000 0.0137 

5000_PM 1296.2678 0.0008 0.0000   

6100_PLife 12385.4713 0.0000 0.0000 0.4000 4.3500 
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Table 31: Number of Defects Removed per Phase with Static Analysis (Organization B) 

Injected 
Phase 

Design 
Review 

Design 
Inspect Code Code  

Review Compile Code  
Inspect Test Int Test Sys Test Accept 

Test 
Product 
Life 

After  
Development Total 

Design 1070 1607 271 85 19 220 246 2 20   7 3547 

Design 
Review 

17 6 2 1  1 1      28 

Design 
Inspect 

 48 45 13 1 20 7  1    135 

Code   6 1204 361 2160 230 11 27  1 2 4002 

Code  
Review 

   8 14 4 6      32 

Code  
Inspect 

     84 65 1 1    151 

Compile      10 1      11 

Test 
Devel 

  8 6  4 82 128 298    526 

Test       19 4 15   1 39 

Int Test        7 34 5   46 

Total 1087 1661 332 1317 395 2503 657 153 396 5 1 10 8517 
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Table 32: Effort Spent on Defect Removal with Static Analysis (Organization B) 

Injected 
Phase 

Design 
Review 

Design 
Inspect Code Code Re-

view Compile Code In-
spect Test Int Test Sys Test Accept 

Test 
Product 
Life 

After  
Development Total 

Design 6172.8 10798.3 2378 1008.9 150.9 1981.2 6987 30.9 1121   830.2 31458.7 

Design 
Review 198.7 23.1 2.9 21.8  2.5 23.7      272.7 

Design 
Inspect  209.6 141.6 124.2 1.2 129 30.5  14.4    650.5 

Code   23.3 5169.4 1091.1 10868.7 2508 586.9 984.3  99.8 56.8 21388.1 

Code Re-
view    33.4 23.9 34.6 30.7      122.6 

Code In-
spect      455.5 604.9 182 11    1253.4 

Compile      36.6 11      47.6 

Test 
Devel   51.8 42.3  129.8 127.4 347.8 752.7    1451.8 

Test       212.8 1.7 82.6   3.3 300.4 

Int Test        9.4 151.4 4.1   164.9 

Total 6371.5 11031 2598 6400 1267.1 13637.9 10535 1158.7 3117 4.1 99.8 890.3 57110.7 
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Table 33: Average Amount of Effort to Find and Fix Defects without Static Analysis (Organization B) 

Injected 
Phase 

Design  
Review 

Design  
Inspect Code Code 

Review Compile Code 
Inspect Test Int Test Sys Test Accept 

Test 
Product 
Life 

After  
Development Total 

Design 5.768971963 6.71954 8.776 11.869 7.9421 9.00545 28.4 15.45 56.04   118.6 31458.7 

Design 
Review 

11.69 3.85 1.45 21.8  2.5 23.7      272.7 

Design 
Inspect 

 4.37 3.15 9.55 1.2 6.45 4.357  14.4    650.5 

Code   3.88 4.29 3.02 5.03 10.9 53.35 36.46  99.8 28.4 21388.1 

Code 
Review 

   4.18 1.70 8.65 5.1      122.6 

Code In-
spect 

     5.42 9.3 182 11    1253.4 

Compile      3.66 11      47.6 

Test 
Devel 

  6.475 7.05  32.45 1.55 2.75 2.53    1451.8 

Test       11.2 0.425 5.51   3.3 300.4 

Int Test        1.342 4.45 0.82   164.9 

Total 5.86 6.64118 7.825 4.86 3.21 5.45 16.04 7.57 7.871 0.82 99.8 89.03 57110.7 
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Figure 25: Defect Density per Phase with and without Static Analysis (Organization B) 

Our analysis of the measured results by phase and the expected results by phase if the static analy-
sis tools had not been used are shown in Figure 25 through Figure 29. For these projects in this 
organization, the effects were very small. Cumulative effort was slightly lower using the tools 
(see Figure 26) because effort increased by a tiny amount in the removal phases (see Figure 27), 
but was more than compensated for by the lower effort in test. Test effort was reduced because 
the defect density was reduced by a small amount prior to test. For phased defect removal, see 
Figure 30.  

The cumulative defect flows cannot be easily distinguished graphically (see Figure 28 and Figure 
29). We believe the effects of using these tools were positive both for escaped defect density and 
total effort, but the effect was modest. The vast majority of defects were removed using conven-
tional techniques of review and test. A potential benefit of the tools is targeted removal of specific 
known weaknesses that might escape review, inspection, and test.  
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Figure 26: Cumulative Amount of Effort with and without Static Analysis (Organization B) 

 

Figure 27: Team Effort by Phase with and without Static Analysis (Organization B) 
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Figure 28: Cumulative Defect Flow with Static Analysis (Organization B) 

 

 

Figure 29: Cumulative Defect Flow without Static Analysis (Organization B) 
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Figure 30: Defects Removed per Phase with and without Static Analysis during Personal Review Phase 
(Organization B) 

4.3 Organization C 

Organization C used a commercial tool that statically analyzed both the source code and the final 
binary. The tool was integrated into the build process and executed prior to test.  

Related research questions for this case include the following: 

• How much time does the project spend in each development process? 
• What are the find and fix times for defects found by the various activities?  

The phase effort question is partially addressed in Figure 31. The fraction of time in individual 
phases varied widely. This may have resulted from different processes, but can also result from 
differences in the specific work packages in the project. Figure 32 shows that all removal yields 
vary widely, but none as much as test. Descriptive statistics for yields are summarized in Table 
34. 

The find and fix time distribution for the static analysis tool is shown in Figure 34, with statistics 
provided in Table 35. 

The majority of the defects were injected in code. The fix times for those defects by removal 
phase are shown in Figure 35. A small number of the defects were injected in prior projects. Fol-
lowing this is the distribution of the defect removal efforts by phase. The average values are used 
in the model. Again, we note that the distributions are highly skewed (approximately log-normal 
in frequency). A table summarizing the final parameters used in the model is included in Table 
36. 
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Figure 31: Project Development Process Effort (Organization C) 

 

 

Figure 32: Project Defect Removal Yields (Organization C) 
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Table 34: Descriptive Statistics, Phase Yields (Organization C) 

  N N_missing Mean SE Mean StDev Minimum Q1 Median Q3 Maximum 

3210_TD_Yield 14 0 0.16 0.04 0.13 0.00 0.05 0.12 0.27 0.46 

3240_DLDI_Yield 14 0 0.27 0.06 0.24 0.00 0.01 0.28 0.48 0.65 

3320_CodeR_Yield 14 0 0.25 0.04 0.14 0.00 0.15 0.25 0.35 0.51 

3330_Compile_Yield 14 0 0.07 0.03 0.11 0.00 0.00 0.02 0.07 0.33 

3340_CodeI_Yield 14 0 0.32 0.06 0.22 0.01 0.16 0.28 0.47 0.76 

3350_UTest_Yield 14 0 0.65 0.08 0.31 0.00 0.49 0.69 0.96 0.99 

3400_TestCaseDevel_Yield 14 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4010_BITest_Yield 14 0 0.32 0.10 0.37 0.00 0.00 0.12 0.59 1.00 

4030_STest_Yield 13 1 0.53 0.14 0.50 0.00 0.00 0.91 1.00 1.00 

4050_ATest_Yield 9 5 0.50 0.17 0.50 0.00 0.00 0.50 1.00 1.00 

To address the question of how much effort is required to fix defects in each development activity, we collected the histograms, boxplots, and descriptive 
statistics of the find and fix times, shown in Figure 33 through Figure 45. 

Figure 33 displays the find and fix time distribution for defects injected in code or design and removed in acceptance test. Figure 34 shows the distribution 
of defects explicitly coded as found in “static analysis” with the descriptive statistics included in Table 35. The acceptance test has a high uncertainty in 
the median value that cannot be distinguished from the static analysis. Nonetheless, the mean values (dominated by the more expensive events) indicate a 
statistically important difference in the mean values of find and fix time.  
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Figure 33: Defect Find and Fix Time in Acceptance Test, for Code and Design Defects 
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Figure 34: Static Analysis (Code and Binary) Defect Find/Fix Time 
 

Table 35: Distribution of Static Analysis (Code and Binary) Defect Fix Times 

Variable N  N* Mean SE. Mean StDev Minimum Q1 Median Q3 Maximum 

defect_fix_min 38  0 3.987 0.957 5.898 0.2 0.3 1.6 4.825 23.1 

To model the scenarios with and without the static checker, we used data from the projects that explicitly attributed the defect finds and effort to ac-
ceptance test. Although the TSP uses this phase after system test, these teams used the acceptance test phase to collect defects between build and integra-
tion test and system test. We made the appropriate adjustment in the data.  
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Figure 35: Project Distribution of Code Defect Find and Fix Time by Removal Phase (Organization C) 

For defects explicitly marked as “static analysis” defects, we summarize the find and fix rates in 
Figure 34 and Table 35. These find and fix times can be compared to the distributions for all de-
fects removed in each activity as shown in the boxplots in Figure 35 and the more detailed distri-
butions that follow. 
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Figure 36: Defect Fix Time, Design Review (Organization C) 

 

Figure 37: Defect Fix Time, Design Inspect (Organization C) 
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Figure 38: Defect Fix Time, Code Inspect (Organization C) 

 

Figure 39: Defect Fix Time, Code Review (Organization C) 
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Figure 40: Defect Fix Time, Compile (Organization C) 

 

Figure 41: Defect Fix Time, Test (Organization C) 
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Figure 42: Defect Fix Time, Integration Test (Organization C) 

 

Figure 43: Defect Fix Time, Acceptance Test (Organization C) 
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Figure 44: Defect Fix Time, System Test (Organization C) 

 

Figure 45: Defect Fix Time, After Development (Organization C)  
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Table 36: Average Parameters, using Static Analysis (Organization C) 

 

No.Defect. 
Phase.Rate 
{LOC/Hr] 

No.De-
fect.Phase.Rate 
[Hr/LOC] 

Def_Inj_Rate 
[Def/Hr] Yield 

FixRate 
[Hr/De-
fect] 

Req 153.1 0.0 0.1     

ReqR 1184.2 0.0 0.0 0.0308 0.04 

ReqI 4439.3 0.0 0.0 0.2698 0.03 

HLD 580.7 0.0 0.1   0.18 

ITP 201426.2 0.0 25.2   0.04 

HLDI 50356.5 0.0 0.0 0.0377 0.21 

DLD 60.9 0.0 0.3   0.64 

 TD 466.2 0.0 0.1   0.67 

DLDR 247.7 0.0 0.0 0.1856 0.19 

DLDI 282.9 0.0 0.0 0.3070 0.18 

Code 32.2 0.0 0.4   0.22 

CodeR 126.1 0.0 0.0 0.2363 0.13 

Compile 2047.5 0.0 0.1 0.0521 0.02 

CodeI 161.1 0.0 0.0 0.3729 0.17 

Utest 41.3 0.0 0.0 0.6881 0.32 

BITest 173.2 0.0 0.0 0.1500 0.43 

StaticAnalysis 392.4 0.0 0.0 0.3750 0.22 

STest 174.9 0.0 0.0 0.4000 0.22 

PM 1028.8 0.0 0.0     

PLife 221.2 0.0 0.0 0.4000 0.55 

In this case, the model differences only occur after use of static analysis between the integration 
and system test phases. The test yields have a very large variation in performance, so the results 
are only a long-term expected average. The results suggest a modest reduction in defect density. 
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Figure 46: Defect Density with and without Static Analysis Phase (Organization C) 

 

Figure 47: Defect Removals by Phase (Organization C) 

In this case, the defect density after test is lower, but total effort increased. This occurs because 
more defects were removed in test, and these defects required additional effort to repair. The find 
and fix time was comparable to the other test defects.  
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Figure 48: Cumulative Effort with and without Static Analysis 

 

 

Figure 49: Cumulative Flow of Defects with Static Analysis 
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Figure 50: Defect Cumulative Flow, without Static Analysis 

4.4 Overall Find and Fix Times 

 

Figure 51: Organization Find and Fix Time Distributions 

The organization results for defect find and fix time distributions for organizations A, B, and C 
are included, along with another organization (Organization D) that was not included in the study 
from an embedded devices domain. The vertical and horizontal scales are the same. The distribu-
tions are similar in overall range and roughly in shape. Organization A has the fewest very short 
find and fix times. In all organizations, the vast majority of defects were resolved in less than 15 
minutes.  
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5 Discussion 

5.1 Effectiveness of Defect Removal 

Static analysis is effective, but it does not replace other quality activities. Organization A used 
static analysis in the code review phase and had a median removal yield of 12.4% and a range of 
10.5% to 18.1%. The total number of defects removed, 2256, was 2.3 times the number removed 
in compile, but only about one-fourth as many defects as were removed in code inspection. Code 
inspection yield had a median value of 68% and a range between 54% and 76%. The high yield 
and relatively low rates for code inspection demonstrate that the team understood how to perform 
effective reviews and inspections. The high rates, rate variance, and lack of correlation between 
rate and yield in code review reinforce our belief that defect removal in the review phase is en-
tirely driven by the tool, not by personal review techniques.  

In context, the static analysis removal yield is only a fraction of the removal yields for code in-
spection, design inspection, or unit test. Moreover, the static analysis yield is lower than we would 
expect from a good code review. If the static analysis has crowded out personal code review, the 
net defect removal may have gone down. This suggests a potential risk of a so-called Peltzman 
effect in which compensating behavior partially offsets the benefits [Peltzman 1975].  

Organization B did not isolate the tool use into a separately tracked activity as did Organization A 
and, to a lesser extent, Organization C. The strong correlation between code review and code in-
spection yields as seen in Figure 24 suggest that code reviews proceed independently.  

Based on the modeling and defect labeling, we estimated a company-average reduction of 11% in 
escapes, which is comparable to the lower bound of Company A. Unfortunately, we also see some 
hints of a Peltzman effect by observing that the median review rate was 165 LOC/hr for the pro-
jects with the most static analysis finds, while the median code review rate was 359 LOC/hr for 
the others. Nonetheless, the median review yield was 22% for all projects and also 22% for the 
projects with the most static analysis finds.  

A 12% reduction in defects is modest compared to the high yields in code inspection and unit test, 
which had yields of 67% and 60%. As with Organization A we found a modest improvement ra-
ther than a replacement for other activities.  

Organization C had the smallest obvious improvement by implementing code and static analysis 
at build time before final test. This small scale is an artifact of the overall low levels of defects en-
tering that phase because the yield was 63%. This high yield could be an artifact of either 1) inef-
fective finds of defects downstream (leading to an overestimation of the yield), or 2) the new tool 
finding defects that were resistant to other techniques. 

In either case, the tool was clearly effective, finding 74 total defects and reducing the defect den-
sity from 1.9 to 1.2 defects/KLOC. 
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5.2 Cost of Defect Removal 

Organization C ran the tool during the build process. Developers only remediated the issues. We 
looked at both time of defects and total time during acceptance test. The phase time divided by 
defects gives 149 minutes per defect. The logged fix time was only 535 minutes compared to 
11055 minutes in that phase. The actual defect fix time was only about 7.2 minutes per defect.  

The difference appears to be that the analysis time for the tool findings was considerably greater 
for this phase. We cannot resolve how much was identifying false positives and how much was 
simply separating analysis (i.e., find time) from the actual fix. For our economic analysis we in-
cluded a fixed cost of running the tool based on the difference.  

5.3 Are False Positives a Problem? 

We have heard concerns about the level of false positives (i.e., spurious warnings) that would in-
crease development costs without any direct benefit. Our data did not record all warnings, so we 
cannot directly measure the false positive rate. We did, however, measure the total developer ef-
fort in a phase and found no evidence that false positives were a problem. It may be that false pos-
itives were resolved very quickly, or that the tools were configured to reduce the incidence of 
false positives. The latter might also reduce overall effectiveness. Our study cannot resolve this, 
except to note that false positives were not a visible problem. 

Static analysis cannot solve all quality or security problems. At most, static analysis tools look for 
a fixed set of patterns, or rules, in the code.  Both false positives and false negatives (i.e., escapes) 
will occur. Because static analysis is prescriptive, the findings for a given situation will be con-
sistent and depend entirely on the state of the code/binary. Future work might analyze the types of 
defects found in the different phases to better estimate the local rates of defect escapes. 

5.4 Threats to Validity 

Our analysis can be replicated if the key parameters can be measured with reasonable accuracy. 
Although our overall approach was designed to prefer external validity to internal validity, the re-
sults may not generalize.  

5.4.1 External Validity 

We cannot claim that results would be representative for all kinds of software projects. Although 
we included results from 39 projects, the variation of development parameters was wide among 
projects, even within the same company. More projects would reduce the standard errors of the 
parameters used. It is possible, for example, that the difference in fix times for system test and 
code review is much smaller than our measured averages.  However, the number of projects may 
be constrained by a need to examine results from similar contexts. Moreover, the injection rates 
with an organization were much more consistent than the removal yields. Static analysis should 
consistently find certain types of defects if they are present.  Defect injection consistency suggests 
that the defects will be there to be removed with any effective approach. 

While we examined projects from three organizations in different development domains, an effi-
cacy study gains strength with a broader sample. Nonetheless, this is a start on which further re-
search should build. Another domain might have different parameters, including substantially 



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  90  
[Distribution Statement A] Approved for public release and unlimited distribution 

lower static analysis yields, higher costs of static analysis remediation, higher static analysis fixed 
cost (e.g., higher rates of false positives or difficulty disposing of them), or much lower costs of 
remediation in test (coupled with high test yields). We can think of no domain where this is likely, 
but acknowledge the possibility that such a domain exists.   

The use of TSP was a necessary condition to be included in this study; this may lead to a selection 
bias. TSP projects in general have a tendency to higher quality, thus biasing the results. Moreover, 
TSP projects already exhibit a level of process discipline that may not be expected in the general 
population, and this discipline may carry over to use of static analysis tools. Less than competent 
use of the tools may not provide overall benefits.  

Our analysis approach requires data from a more or less complete project. There may be an un-
seen survival bias in which failed or canceled projects behave differently with respect to the static 
analysis. 

5.4.2 Construct Validity 

Construct validity assesses whether the study findings could be incorrect because of misleading 
data or incorrect assumptions in the model. 

TSP data quality has previously been studied [Shirai 2014, Salazar 2014]. The projects that were 
used all contained data that passed basic required consistency checks including distributional 
properties and consistence among the logs. The association of defect finds with the tool was dis-
cussed with the data analysis.  

We make the simplifying assumption that all defects are removed with similar effectiveness in 
different phases and that the finds will be more or less random. We know different types of activi-
ties remove defect types at different rates [Vallespir 2011, 2012]. Addressing this threat remains 
for future work.  

The model also uses average values for the organizations. Mathematically, the project parameters 
will reproduce, ex post, the project results. In practice, parameters vary both statistically and be-
cause of process drift. With sufficient data, the model could be extended to use distributions to 
produce probability ranges for the outcomes. This remains for future work.  

We measure the defect findings, but do not directly measure fielded faults, severity, or association 
of the defects with security. We assume relationships found in prior work [Woody 2015, Emanu-
elsson 2008, Wheeler 2016, Chulani 1999]. 

5.4.3 Internal Validity 

Internal validity evaluates whether causal findings are due to factors that have not been controlled 
or measured. Causality, by design, is beyond the scope of this work because attempts to control 
the behavior would weaken external validity. Instead, we assume a causal system and attempt to 
measure the effects of the tools as implemented in real-world environments. Internal validity 
could suffer to the extent that the assumptions were violated by subjective judgments or by the 
participants or the analyst. 

Under everyday real-world development settings, factors such as developer or management pref-
erences, process compliance, education, training, and so forth will affect the results. Although 
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some of these factors could be accounted for with additional observation or surveys, these were 
beyond the scope of this work. Blinding the analyst was impractical. The effect is minimized by 
minimizing subjective judgment. 

5.5 Limitations and Future Work 

Our effectiveness analysis is limited to the defect removal of the tools in the project context and 
the operational costs. A more complete treatment of cost/benefit would include acquisition and 
licensing costs of the tools, the cost of fielded defects, and the external costs such as impact on the 
user. Given additional cost information, a more complete treatment can be found in [Zheng 2006].  

In this study we analyzed the operational cost and effectiveness of applying the tools in a real-
world setting. We did not investigate ways to use the tools more effectively or assess the individ-
ual tool use for compliance, specific usage, or comparative effectiveness with tools of similar or 
dissimilar type.  

We did not investigate the specific coverage of tools with respect to defect type or defect severity; 
therefore we cannot assess potential secondary effects when multiple tools are combined. We did, 
however, demonstrate that in principle it is possible to gather data using orthogonal defect catego-
rization, and this could be used to extend the analysis capabilities. While the tool yields remain 
modest, it seems likely that interactions will be secondary, possibly even for similar tool types. 

We investigated the cost effectiveness in organizations that already had defect escape levels that 
are low by industry standards [Jones 2011]. Effectiveness for lesser quality development pro-
cesses was not demonstrated. In principle, our model should apply equally well to other organiza-
tions; however, the study may be inhibited by lower quality data. Our model suggests settings 
with less effective quality practices should benefit more from these tools because the absolute find 
rates will be higher and the potential reduction of test time will be greater. 

The sample size is not large enough to exclude the possibility of circumstances that would make 
the tools very effective or very ineffective. Absence of evidence is not evidence of absence. Stud-
ies with substantially larger samples are possible in principle but face practical difficulties. We 
provide some recommendations for instrumentation that will make the gathering and analysis 
more consistent and analyzable. 

Because the effect of individual tools can be modest in either relative or absolute terms, observa-
tional studies with less detailed process data will be challenged to resolve the effects on defect es-
capes. This will become more pronounced as additional tools are included in the development. In-
consistencies in which kinds of defects are counted in which of the development phases, and 
inconsistencies in effort accounting, will introduce threats to construct validity.  

Following products for a longer term to track maintenance effort, deployed defects and 
vulnerabilities, patch deployment costs, external costs to users, and so forth will enhance external 
validity.  

In summary, more study is needed, but the study will require improvements to the process instru-
mentation and data collection.  
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5.6 Implications for Cost-Effective Process Composition 

Each organization’s use of the tools was modestly effective. There seems little doubt that even 
software development projects that are performing well can improve code quality by including 
static analysis tools in the development process. Moreover, using these static analysis tools early 
is modestly effective in reducing development time by reducing defect find and fix in test. The 
difference in find and fix phase efforts more than compensated for the time to operate the tools 
and find/fix in test. A partial exception was when the tools were run at integration. The find/fix 
advantage is reduced and disappears when we consider the fix cost of evaluating the warnings.  

The tools were applied inconsistently not only between organizations but between projects within 
the same organization. This could lead not only to inconsistent tool effectiveness, but also to diffi-
culties in evaluating cost effectiveness. We recommend that projects adopt practices that enhance 
the consistency of tool use and measurement rather than leave each project to adopt an ad hoc ap-
proach.  

Developers and project managers were unwilling to commit resources to either measuring or auto-
mating tool use for this study. No organization had a clear understanding of the cost effectiveness 
of the tools. When we consider the modest effects of the tools on the process, we are concerned 
that the cost/benefit trade-offs will not be apparent to management or software acquirers. We 
therefore recommend the automation of tool usage when practicable to improve both usage con-
sistency and measurement. Isolating tool usage was a mechanism that was helpful with the ac-
counting. Building automation into the build process helped Organization C institutionalize use.  

We recommend the following actions to establish usage standards: 
• Define the overall workflow and specify when in the development process the tools should be 

applied. 
• Document the settings to be applied. 
• Set clear guidelines for when issues must be remediated, mitigated, or ignored. 

We recommend the following actions to establish measurement standards: 
• Count all issues reported and mitigated. 
• Account for all effort expended running the tool and resolving the issues. 

Apply the tools after other manual practices. Tools were observed to sometimes crowd out manual 
activities. In particular, we observed a static analysis tool replacing the personal review. The 
teams that segregated tool use to after development, reviews, and inspection, but before test, 
avoided this problem.  

We recommend using static checking tools before test, but after manual review and inspection for 
the following reasons: 
• Defects are removed when the costs are less than in test. 
• It avoids crowding out other effective removal techniques. 
• Objective measures of the defect escapes from earlier removal activities are provided. 

Defects found by static binary checkers and dynamic checkers have comparable find/fix effort to 
other system test defects. Where test resources are constrained (i.e., by personnel availability, the 
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need for special equipment, or by large and time consuming regression tests), it makes the most 
sense to run the checkers prior to test. However, if these factors do not apply, the binary and dy-
namic checkers could potentially be used to validate test completeness.  

Finally, we observed that there are two simple ways to get through test quickly: 
1. Run ineffective tests (or no tests at all).  
2. Make sure that the code being tested has few or no bugs to be found. 

Software quality and security checking tools should not replace reviews and tests (even uninten-
tionally). Instead, the processes should be composed to verify and validate that the development 
process is effective.  
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6 Conclusions 

In this research we examined data from 39 software projects in three organizations and applica-
tion domains that applied static analysis on code or code and binary, looking for evidence show-
ing how static analysis affects development effort and quality. We gathered the historical process 
development parameters from the projects’ data logs and analyzed how sensitive cost and defect 
escapes were to changes in the parameters that are affected by static analysis tools. Although or-
ganizations applied different tools at different times during the development process, the results 
are consistent with the conclusion that static analysis modestly improves the delivered quality, 
and presumably reduces escaped vulnerabilities.  

Our analysis was based only on the operational costs; we did not consider the cost of software li-
censes or training costs.  

We reached the following conclusions: 
1. The tools studied have a positive, but modest, effect on reducing defect escapes. 
2. When applied to the code or code and binary prior to integration, the tools studied also have 

a modest positive effect on reducing overall project costs. 
3. When applied to the code and binary at or after integration, costs increased slightly but were 

consistent with the costs of remediating the found defects. 
4. Defect fix effort from static code analysis was comparable to personal review and inspection 

defect fix times. 
5. Defect fix times from static binary analysis were closer to defect fix times from system test. 
6. Static code analysis tools are associated with reduced overall development time because they 

reduce the number of defects found in the more expensive test phases. 
7. Static binary analyses do not shorten development time and require a substantial effort to ad-

dress the findings. The defect fix costs are similar to system test.  

We found that defect fix effort was similar to that of defects found in inspections, and binary anal-
ysis results were between code inspection and late test. We therefore observe that overall develop-
ment time is reduced when the defects are removed earlier in the process, but effort is not reduced 
when the tools are applied later.  

Because static analysis finds were only a small portion the total defects, we also conclude that 
static analysis alone is not sufficient, but is a cost effective, incremental improvement to develop-
ment that should be used with other defect removal techniques. This raises the question of why 
static analysis is not universally practiced and what incentives will be necessary to increase utili-
zation. One potential answer to the usage gap may be that while the benefits are real but modest, 
without detailed effort and defect accounting they may be obscured by natural variation in the 
software development process. A second answer may be that the costs are very visible, while the 
benefits (i.e., reductions in downstream defects) are less apparent because they are delayed in time 
and are sometimes observed by a different set of developers.  
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Another observation about the results of using the tools is that the benefits are challenging to con-
nect directly to effort, quality, or development duration. Despite similar data gathering and pro-
cess phases, these three organizations implemented the tools somewhat differently. Understanding 
the context and specific usage was a major challenge during our research and required much addi-
tional background information, including discussions with participants and the use of project rec-
ords. This approach will not scale to larger studies. More standardization in the accounting and 
automation could enable studies with more data and a broader set of domains. 

Increased automation of static analysis and data collection may help to mitigate another problem 
we observed. At least one organization appears to have more or less ceased to perform personal 
reviews of the code, depending instead on the static analysis tool. This suggests that there is a risk 
that the benefits may be partially offset by developers relying on the tool and foregoing or superfi-
cially executing other effective defect removal techniques. The other two organizations at least 
partially automated the static analysis into the build later in the development. The organization 
that most fully automated the tool had no obvious problems with process compliance. 

Finally, continued progress of software analytics can make economic analyses (such as those in 
this report) more cost-effective and feasible. Although global rules may apply, examination of lo-
cal behaviors is of significant benefit. 
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Appendix: Additional Data 

 

Figure 52: Defect Distribution, HLD (Organization A) 

 

Figure 53: Defect Distribution, HLD Review (Organization A) 
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Figure 54: Defect Distribution, HLD Inspect (Organization A) 

 

Figure 55: Defect Distribution, Design (Organization A) 
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Figure 56: Defect Distribution, Design Review (Organization A) 

 

Figure 57: Defect Distribution, Design Inspect (Organization A) 

1 st Quartile 1 .000
Median 3.000
3rd Quartile 8.000
Maximum 364.500

7.374 1 0.579

2.600 3.400

22.21 3 24.482

A-Squared 1 59.58
P-Value <0.005

Mean 8.977
StDev 23.292
Variance 542.502
Skewness 8.1 066
Kurtosis 91 .0082
N 81 4

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 08642

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Design Review

1 st Quartile 1 .1 00
Median 3.000
3rd Quartile 7.900
Maximum 367.1 00

8.1 71 1 0.002

3.000 3.200

21 .739 23.034

A-Squared 432.50
P-Value <0.005

Mean 9.087
StDev 22.367
Variance 500.295
Skewness 8.0360
Kurtosis 92.8891
N 2296

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 08642

95% Confidence Intervals

Organizatioln A, defect_fix_time_minutes 
removed_phase_name = Design Inspect



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  99  
[Distribution Statement A] Approved for public release and unlimited distribution 

 

 

Figure 58: Defect Distribution, Test Development (Organization A) 

 

Figure 59: Defect Distribution, Code (Organization A) 

1 st Quartile 3.225
Median 1 3.700
3rd Quartile 34.475
Maximum 1 41 .600

7.227 48.836

3.686 32.783

28.841 60.426

A-Squared 1 .74
P-Value <0.005

Mean 28.031
StDev 39.043
Variance 1 524.342
Skewness 2.0461 4
Kurtosis 4.1 0389
N 1 6

Minimum 0.300

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

504030201 00

95% Confidence Intervals

Defect efect_fix_time_minutes, Organization A, "Test Development"
removed_phase_name = Test Devel

1 st Quartile 2.000
Median 5.500
3rd Quartile 1 6.700
Maximum 992.000

1 6.937 31 .980

5.000 7.476

68.929 79.598

A-Squared 81 .1 4
P-Value <0.005

Mean 24.458
StDev 73.878
Variance 5457.925
Skewness 8.3889
Kurtosis 91 .0724
N 373

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

353025201 51 05

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = Code



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  100  
[Distribution Statement A] Approved for public release and unlimited distribution 

 

Figure 60: Defect Distribution, Code Review (Organization A) 

 

Figure 61: Defect Distribution, Compile (Organization A) 
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Figure 62: Defect Distribution, Code Inspect (Organization A) 

 

Figure 63: Unit Test Defect Distribution, Test (Organization A) 
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Figure 64: Defect Distribution, Integration Test (Organization A) 

 

Figure 65: Defect Distribution, After Development (Organization A) 
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Figure 66: Defect Fix Time Distribution, Project 612 (Organization A) 

 

Figure 67: Defect Fix Time Distribution, Project 613 (Organization A) 
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Figure 68: Defect Fix Time Distribution, Project 614 (Organization A) 

 

Figure 69: Defect Fix Effort, Project 615 (Organization A) 
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Figure 70: Defect Fix Effort, Project 617 (Organization A) 

 

 

Figure 71: Time Log Entries (Organization A) 
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Figure 72: Defect Fix Time Distributions for Four Organizations 

 

Figure 73: Defect Fix Time Distributions, Project 47 
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Figure 74: Defect Fix Time Distributions, Project 48 

 

 

Figure 75: Defect Fix Time Distributions, Project 49 
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Figure 76: Defect Fix Time Distributions, Project 50 

 

Figure 77: Defect Fix Time Distributions, Project 56 
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Figure 78: Defect Fix Time Distributions, Project 83 

 

Figure 79: Defect Fix Time Distributions, Project 84 
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Figure 80: Defect Fix Time Distributions, Project 95 

 

Figure 81:  Defect Fix Time Distributions, Project 101 
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Figure 82: Defect Fix Time Distributions, Project 171 

 

 

Figure 83: Defect Fix Time Distributions, Project 180 
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Figure 84: Defect Fix Time Distributions, Project 181 

 

 

Figure 85: Defect Fix Time Distributions, Project 182 
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Figure 86: Defect Fix Time Distributions, Project 183 

 

Figure 87: Defect Fix Time Distributions, Project 184 
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Figure 88: Defect Fix Time Distributions, Project 415 

 

Figure 89: Defect Fix Time Distributions, Project 416 

9178655239261 30

0.30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 0.9814
Scale 1 .509
N 147

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal 

project_key = 415

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.5

0.4

0.3

0.2

0.1

0.0

Loc 0.3703
Scale 1 .372
N 303

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal 

project_key = 416

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.



 

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  115  
[Distribution Statement A] Approved for public release and unlimited distribution 

 

Figure 90: Defect Fix Time Distributions, Project 419 

 

Figure 91: Defect Fix Time Distributions, Project 449 
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Figure 92: Defect Fix Time Distributions, Project 455 

 

 

Figure 93: Defect Fix Time Distributions, Project 459 
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Figure 94: Defect Fix Time Distributions, Project 460 

 

Figure 95: Defect Fix Time Distributions, Project 461 
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Figure 96: Defect Fix Time Distributions, Project 606 
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