REPORT DOCUMENTATION PAGE

The public reporting but the data needed, and reducing the burden, to 22202-4302. Responde currently valid OMB co	Irden for this collection of i completing and reviewing b Department of Defense, ents should be aware that ntrol number. PLEASE D	nformation is estimated to avec the collection of informatio Washington Headquarters S notwithstanding any other p D NOT RETURN YOUR FOR	verage 1 hour per response, incluent n. Send comments regarding the ervices, Directorate for Informati rovision of law, no person shall I RM TO THE ABOVE ADDRESS.	uding the time for revie is burden estimate or ion Operations and Re pe subject to any penal	wing instructions, searching existing data sources, gathering and maintaining any other aspect of this collection of information, including suggestions for ports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA Ity for failing to comply with a collection of information if it does not display a		
1. REPORT DA	TE	2. REPORT TYP	ΡE		3. DATES COVERED (From - To)		
06 August 201	8	Briefing Charts			21 July 2018 - 30 August 2018		
4. TITLE AND S Improved Mode	SUBTITLE	iding for Field-Reve	ersed Configuration (F	RC) Thrusters	5a. CONTRACT NUMBER		
(Briefing Charts	s)				5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)					5d. PROJECT NUMBER		
Robert Martin,	Eder Sousa, Rob	ert Lilly, Michael Ka	apper		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER Q200					
7. PERFORMIN	G ORGANIZATION	NAME(S) AND ADD	RESS(ES)		8. PERFORMING ORGANIZATION		
Air Force Rese	earch Laboratory (AFMC)			REPORT NUMBER		
1 Ara Drive							
Edwards AFB,	CA 93524-7013						
9. SPONSORIN	G/MONITORING A	GENCY NAME(S) AN	ID ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Rese AFRL/RQR	arch Laboratory (AFMC)			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
5 Pollux Drive	04 00504 7040						
Edwards AFB,	CA 93524-7048				AFRL-RQ-ED-VG-2010-259		
12. DISTRIBUT Distribution State	ION/AVAILABILITY ement A: Approved	STATEMENT for Public Release; D	istribution is Unlimited. F	A Clearance Nun	nber: 18476 Clearance Date: 30 July 2018.		
13. SUPPLEME For presentation Prepared in colla The U.S. Govern	NTARY NOTES at AFOSR Space P boration with ERC, ment is joint author	ropulsion and Power Inc. of the work and has t	Annual Review; Arlingtor he right to use, modify, re	n, Virginia, USA; / eproduce, release	August 7-10, 2018. e, perform, display, or disclose the work.		
14. ABSTRACT Viewgraph/Briefing Charts							
15. SUBJECT T N/A	ERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
					Robert Martin		
	J. ADJIKACI				19b. TELEPHONE NUMBER (Include area code)		
Unclassified	Unclassified	Unclassified	SAR	79	N/A		

IMPROVED MODELS AND UNDERSTANDING FOR FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS

Robert Martin¹, Eder Sousa², Robert Lilly², Michael Kapper²

¹Air Force Research Laboratory, ²ERC Inc., Edwards Air Force Base, CA USA

5. AIR FORCE

AFOSR Space Propulsion and Power Review, 2018 Distribution A - Approved for public release; Distribution unlimited. PA clearance No. 18476

4 Conclusion & Future Directions

Field-Reversed Configuration:

• Concept from Fusion Energy - Challenge Scaling Down for Propulsion

Field-Reversed Configuration:

- Concept from Fusion Energy - Challenge Scaling Down for Propulsion
- Electrodeless (+ Limits Erosion)

Field-Reversed Configuration:

- Concept from Fusion Energy - Challenge Scaling Down for Propulsion
- Electrodeless (+ Limits Erosion)
- Acceleration Mechanism *J* × *B* + Enables Flexible Fuels

Pancotti, et al, "Adaptive Electric Propulsion for ISRU Missions", 20th Adv. Space Prop., 11/2014

Field-Reversed Configuration:

- Concept from Fusion Energy - Challenge Scaling Down for Propulsion
- Electrodeless (+ Limits Erosion)
- Acceleration Mechanism *J* × *B* + Enables Flexible Fuels
- Pulsed Operation +Tunable Thrust/ISP
 - Complex Coupled Dynamics
 - High Dimensional Parameter Space

Field-Reversed Configuration:

- Concept from Fusion Energy - Challenge Scaling Down for Propulsion
- Electrodeless (+ Limits Erosion)
- Acceleration Mechanism *J* × *B* + Enables Flexible Fuels
- Pulsed Operation +Tunable Thrust/ISP
 - Complex Coupled Dynamics
 - High Dimensional Parameter Space
- Common Challenges/Benefits for EM + MPD/PIT/PPT

Complex Devices to Design

Field-Reversed Configuration:

- Concept from Fusion Energy - Challenge Scaling Down for Propulsion
- Electrodeless (+ Limits Erosion)
- Acceleration Mechanism *J* × *B* + Enables Flexible Fuels
- Pulsed Operation +Tunable Thrust/ISP
 - Complex Coupled Dynamics
 - High Dimensional Parameter Space
- Common Challenges/Benefits for EM + MPD/PIT/PPT
 - + Similar Tools Required

Complex Devices to Design Pose Significant Modeling Challenge

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$$

Range of Validity Collisionless Equilibrium Time Accurate **Boltzmann Equation** Steady-State

Equilibrium

Equilibrium

The Boltzmann Equation for $f(\mathbf{x}, \mathbf{v}; t)$:

 $\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$

• Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)

The Boltzmann Equation for $f(\mathbf{x}, \mathbf{v}; t)$:

 $\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$

- Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)
- Ohm's Law: $(m_e \ll m_i) \rightarrow \frac{\partial f_e}{\partial t} \equiv 0$

The Boltzmann Equation for $f(\mathbf{x}, \mathbf{v}; t)$:

 $\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$

- Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)
- Ohm's Law: $(m_e \ll m_i) \rightarrow \frac{\partial f_e}{\partial t} \equiv 0$
- Steady-State Solutions: $\frac{\partial}{\partial t} \equiv 0$

The Boltzmann Equation for $f(\mathbf{x}, \mathbf{v}; t)$:

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$$

- Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)
 - Ohm's Law: $(m_e \ll m_i) \rightarrow \frac{\partial f_e}{\partial t} \equiv 0$
- Steady-State Solutions: $\frac{\partial}{\partial t} \equiv 0$

Limits Exchange Accuracy for Cost

 $\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$

- Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)
- Ohm's Law: $(m_e \ll m_i) \rightarrow \frac{\partial f_e}{\partial t} \equiv 0$
- Steady-State Solutions: $\frac{\partial}{\partial t} \equiv 0$
- Limits Exchange Accuracy for Cost Transition Incurs Costs to Limit

 $\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$

- Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)
- Ohm's Law: $(m_e \ll m_i) \rightarrow \frac{\partial f_e}{\partial t} \equiv 0$
- Steady-State Solutions: $\frac{\partial}{\partial t} \equiv 0$

Limits Exchange Accuracy for Cost Transition Incurs Costs to Limit $(v = 0 \neq v \rightarrow 0)$ But Relaxes/Removes Assumptions

 $\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_s}{\partial \mathbf{v}} = \left(\frac{\partial f_s}{\partial t}\right)_{coll}$

- Collisionality Limits: (Vlasov) $0 \leftarrow \left(\frac{\partial f_s}{\partial t}\right)_{coll} \rightarrow \infty$ (Euler)
- Ohm's Law: $(m_e \ll m_i) \rightarrow \frac{\partial f_e}{\partial t} \equiv 0$
- Steady-State Solutions: $\frac{\partial}{\partial t} \equiv 0$

Limits Exchange Accuracy for Cost Transition Incurs Costs to Limit

TURF: For Exploring Efficient Methods Minimizing Cost/Accuracy & Redundancy

• RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal

- RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal
- Initially Conditions: Fully Ionized Xe Gas $n_i=n_e=10^{20}/m^3$ 60G Bias (Z) + 60G RMF @ 1MHz

- RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal
- Initially Conditions: Fully Ionized Xe Gas $n_i=n_e=10^{20}/m^3$ 60G Bias (Z) + 60G RMF @ 1MHz
- Strong Reversal B_z Reversal by 180°

- RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal
- Initially Conditions: Fully Ionized Xe Gas $n_i=n_e=10^{20}/m^3$ 60G Bias (Z) + 60G RMF @ 1MHz
- Strong Reversal B_z Reversal by 180°
- Reversal Weakens, 180°-360°

- RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal
- Initially Conditions: Fully Ionized Xe Gas $n_i=n_e=10^{20}/m^3$ 60G Bias (Z) + 60G RMF @ 1MHz
- Strong Reversal B_z Reversal by 180°
- Reversal Weakens, 180°-360°
- Cycle Repeats (But Lower Amplitude)

DG FRC-Formation

$t=1.0-2.0\omega$

- RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal
- Initially Conditions: Fully Ionized Xe Gas $n_i=n_e=10^{20}/m^3$ 60G Bias (Z) + 60G RMF @ 1MHz
- Strong Reversal B_z Reversal by 180°
- Reversal Weakens, 180°-360°
- Cycle Repeats (But Lower Amplitude)
- Parameter Space is being Explored

DG FRC-Formation

- RMF $\rightarrow j_{\theta} \rightarrow B_z$ -Reversal
- Initially Conditions: Fully Ionized Xe Gas $n_i=n_e=10^{20}/m^3$ 60G Bias (Z) + 60G RMF @ 1MHz
- Strong Reversal B_z Reversal by 180°
- Reversal Weakens, 180°-360°
- Cycle Repeats (But Lower Amplitude)
- Parameter Space is being Explored

Also Needs Experimental Validation!

DG FRC-Formation

High Fidelity Validation:

• FRCs are Dynamic Pulsed Devices

DG FRC-Formation

MSNW Ar FRC Formation

High Fidelity Validation:

- FRCs are Dynamic Pulsed Devices
- Ext. Probes Probes avoid Disruption ...but Mostly Limited View

DG FRC-Formation

High Fidelity Validation:

- FRCs are Dynamic Pulsed Devices
- Ext. Probes Probes avoid Disruption ...but Mostly Limited View
- Fast Camera: Absolute Magnitudes Difficult Relatively High Dimensional

DG FRC-Formation

(False Color Intensity - MSNW Fast Camera Studies)

High Fidelity Validation:

- FRCs are Dynamic Pulsed Devices
- Ext. Probes Probes avoid Disruption ...but Mostly Limited View
- Fast Camera: Absolute Magnitudes Difficult Relatively High Dimensional
- Emission from IonMix (n_e, T_e) Table
- Plotted at Equivalent ω

DG FRC-Formation

(False Color Intensity - MSNW Fast Camera Studies)

(Apollo Multifluid Simulation Emission Intensity)

High Fidelity Validation:

- FRCs are Dynamic Pulsed Devices
- Ext. Probes Probes avoid Disruption ...but Mostly Limited View
- Fast Camera: Absolute Magnitudes Difficult Relatively High Dimensional
- Emission from IonMix (n_e, T_e) Table
- Plotted at Equivalent ω
- Similar Structures in 2 & 3 Despite Different Conditions

DG FRC-Formation

(False Color Intensity - MSNW Fast Camera Studies)

(Apollo Multifluid Simulation Emission Intensity)

High Fidelity Validation:

- FRCs are Dynamic Pulsed Devices
- Ext. Probes Probes avoid Disruption ...but Mostly Limited View
- Fast Camera: Absolute Magnitudes Difficult Relatively High Dimensional
- Emission from IonMix (n_e, T_e) Table
- Plotted at Equivalent ω
- Similar Structures in 2 & 3 Despite Different Conditions
- Experiment Relaxes but Simulation Intensifies in 4+

DG FRC-Formation

(False Color Intensity - MSNW Fast Camera Studies)

(Apollo Multifluid Simulation Emission Intensity)

High Fidelity Validation:

- FRCs are Dynamic Pulsed Devices
- Ext. Probes Probes avoid Disruption ...but Mostly Limited View
- Fast Camera: Absolute Magnitudes Difficult Relatively High Dimensional
- Emission from IonMix (n_e, T_e) Table
- Plotted at Equivalent ω
- Similar Structures in 2 & 3 Despite Different Conditions
- Experiment Relaxes but Simulation Intensifies in 4+

Model Needs Additional Physics

AFRL Model Development/Project Synergies:

Model	Need	Platform	Project	Progress	Demo
Circuit	BC/Energy Cons.	TURF	1 & 2	Runtime Arbitrary ODE B.C.s	Lorenz DSMC Inflow
Radiative	Physics/Energy Cons.	R&D	3	Full Level-Grouped Ar Model	Abrantes PhD (UCLA 2018)
Multi-Fluid	Physics/Stability	Apollo	4	N.S./Braginskii	Poiselle/Taylor Couette
Multi-Fluid	Physics/Stability	TURF/R&D	4	Hybrid Entropy/Energy Cons.	Einfeldt/Step/Cylinder/Jet
Kinetic	Charge Separation	TURF	1 & 4	Boltzmann- n_e vs. $\langle n_e \rangle$	Quasi-1D HET

Projects:

- 1. In-House AFRL 6.2 Research
- 2. AFOSR Comp Math Lab-Task (New), PO: Fahroo
- 3. AFOSR Plasma/Electro-energetics Lab-Task, PO: Marshall
- 4. AFOSR Space Propulsion & Power, PO: Birkan

AFRL Model Development/Project Synergies:

Model	Need	Platform	Project	Progress	Demo
Circuit	BC/Energy Cons.	TURF	1 & 2	Runtime Arbitrary ODE B.C.s	Lorenz DSMC Inflow
Radiative	Physics/Energy Cons.	R&D	3	Full Level-Grouped Ar Model	Abrantes PhD (UCLA 2018)
Multi-Fluid	Physics/Stability	Apollo	4	N.S./Braginskii	Poiselle/Taylor Couette
Multi-Fluid	Physics/Stability	TURF/R&D	4	Hybrid Entropy/Energy Cons.	Einfeldt/Step/Cylinder/Jet
Kinetic	Charge Separation	TURF	1&4	Boltzmann- n_e vs. $\langle n_e \rangle$	Quasi-1D HET

Projects:

- 1. In-House AFRL 6.2 Research
- 2. AFOSR Comp Math Lab-Task (New), PO: Fahroo
- 3. AFOSR Plasma/Electro-energetics Lab-Task, PO: Marshall
- 4. AFOSR Space Propulsion & Power, PO: Birkan

$$\partial_t \mathbf{Q} + \nabla \cdot \mathbf{F}^{Hyp} + \nabla \cdot \mathbf{F}^{Para} = \mathbf{S}^{EM} + \mathbf{S}^{ie}$$

Q	F ^{Hyp}	Frara	\mathbf{S}^{LM}	Sie
$\int \rho_e$	$\rho_e \mathbf{u}_{\mathbf{e}}$	[0]	[0]	[0]
$\rho_e \mathbf{u_e}$	$\rho_e \mathbf{u_e} \mathbf{u_e} + p_e \mathbf{I}$	Π_e	$q_e n_e (\mathbf{E} + \mathbf{u_e} \times \mathbf{B})$	$-\mathbf{R}_{ie}$
\mathcal{E}_{e}	$\mathbf{u}_{\mathbf{e}} \cdot (\mathscr{E}_{e} + p_{e})\mathbf{I}$	$\mathbf{u_e} \cdot \mathbf{\Pi}_e + \mathbf{q_e}$	$q_e n_e \mathbf{u_e E}$	$\mathbf{u}_e \cdot \mathbf{R}_{ie} + \mathbf{Q}_{ie}^e$
ρ_i	$\rho_i \mathbf{u_i}$	0	0	0
$\rho_i \mathbf{u_i}$	$\rho_i \mathbf{u_i} \mathbf{u_i} + p_i \mathbf{I}$	Π_i	$q_i n_i (\mathbf{E} + \mathbf{u_i} \times \mathbf{B})$	$-\mathbf{R}_{ei}$
E _i	$\left[\mathbf{u}_{\mathbf{i}} \cdot (\mathscr{E}_i + p_i) \mathbf{I} \right]$	$\begin{bmatrix} \mathbf{u_i} \cdot \mathbf{\Pi}_i + \mathbf{q_i} \end{bmatrix}$	$q_i n_i \mathbf{u_i E}$	$\mathbf{u}_i \cdot \mathbf{R}_{ei} + \mathbf{Q}_{ei}^i$

The EOS used here: $p = nk_BT$. Energy $\mathscr{E} = \frac{p}{\gamma - 1} + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}$.

$$\partial_t \mathbf{Q} + \nabla \cdot \mathbf{F}^{Hyp} + \nabla \cdot \mathbf{F}^{Para} = \mathbf{S}^{EM} + \mathbf{S}^{ie}$$

The EOS used here: $p = nk_BT$. Energy $\mathscr{E} = \frac{p}{\gamma - 1} + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}$.

$$\begin{array}{c|c} \mathbf{Q} & \mathbf{F}^{Hyp} & \mathbf{F}^{Para} & \mathbf{S}^{EM} & \mathbf{S}^{ie} \\ \hline \rho_e \mathbf{u}_e & \\ \rho_e \mathbf{u}_e & \\ \varphi_e \mathbf{u}_e + \rho_e \mathbf{I} & \\ \varphi_e \mathbf{u}_e (\mathscr{E}_e + p_e) \mathbf{I} & \\ \rho_i \mathbf{u}_i & \\ \rho_i \mathbf{u}_i & \\ \varphi_i \mathbf{u}_i \mathbf{u}_i + \rho_i \mathbf{I} & \\ \mathbf{u}_i \cdot (\mathscr{E}_i + p_i) \mathbf{I} & \\ \end{array} \right| \quad \begin{array}{c} 0 & \\ \mathbf{\Pi}_e & \\ \mathbf{u}_e \cdot \mathbf{\Pi}_e + \mathbf{q}_e & \\ 0 & \\ \mathbf{\Pi}_i & \\ \mathbf{u}_i \cdot \mathbf{\Pi}_i + \mathbf{q}_i & \\ \end{array} \right| \quad \begin{array}{c} 0 & \\ q_e n_e (\mathbf{E} + \mathbf{u}_e \times \mathbf{B}) & \\ q_e n_e \mathbf{u}_e \mathbf{E} & \\ 0 & \\ q_i n_i (\mathbf{E} + \mathbf{u}_i \times \mathbf{B}) & \\ q_i n_i \mathbf{u}_i \mathbf{E} & \\ \end{array} \right| \quad \begin{array}{c} 0 & \\ -\mathbf{R}_{ie} & \\ \mathbf{u}_e \cdot \mathbf{R}_{ie} + \mathbf{Q}_{ie}^e & \\ 0 & \\ -\mathbf{R}_{ei} & \\ \mathbf{u}_i \cdot \mathbf{R}_{ei} + \mathbf{Q}_{ei}^i & \\ \end{array} \right|$$

 $\partial_t \mathbf{O} + \nabla \cdot \mathbf{F}^{Hyp} + \nabla \cdot \mathbf{F}^{Para} = \mathbf{S}^{EM} + \mathbf{S}^{ie}$

The EOS used here: $p = nk_BT$. Energy $\mathscr{E} = \frac{p}{\gamma - 1} + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}$.

Progress:

Classic (Newtonian) and Braginskii Formulations Implemented

$$\begin{aligned} \mathbf{Q}_{t}\mathbf{Q} + \mathbf{V} \cdot \mathbf{F}^{Hxyp} + \mathbf{V} \cdot \mathbf{F}^{Hxrd} &= \mathbf{S}^{EM} + \mathbf{S}^{e} \\ \mathbf{Q} & \mathbf{F}^{Hyp} & \mathbf{F}^{Para} & \mathbf{S}^{EM} & \mathbf{S}^{ie} \\ \rho_{e}\mathbf{u}_{e} & \rho_{e}\mathbf{u}_{e} + \rho_{e}\mathbf{I} \\ \mathbf{u}_{e} \cdot (\mathscr{E}_{e} + p_{e})\mathbf{I} \\ \rho_{i}\mathbf{u}_{i} & \rho_{i}\mathbf{u}_{i} \\ \rho_{i}\mathbf{u}_{i} & (\mathscr{E}_{e} + p_{e})\mathbf{I} \\ \mathbf{u}_{e} \cdot (\mathscr{E}_{e} + p_{e})\mathbf{I} \\ \mathbf{u}_{e} \cdot (\mathscr{E}_{e} + p_{e})\mathbf{I} & \mathbf{u}_{e} \cdot (\mathscr{E}_{e} + p_{e})\mathbf{I} \\ \mathbf{u}_{i} \cdot (\mathscr{E}_{i} + p_{i})\mathbf{I} & \mathbf{u}_{i} \cdot (\mathscr{E}_{i} + p_{i})\mathbf{I} \end{aligned} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \mathbf{H}_{e} & \mathbf{H}_{e} + \mathbf{Q}_{e} & 0 & 0 \\ \mathbf{H}_{i} & \mathbf{H}_{e} + \mathbf{Q}_{e} & 0 & 0 \\ \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{Q}_{i} & \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} & \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} & \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} + \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} \cdot \mathbf{H}_{i} + \mathbf{H}_{i} \cdot \mathbf{H}_{i$$

-Hup - Para aFM aia

The EOS used here: $p = nk_BT$. Energy $\mathscr{E} = \frac{p}{\gamma-1} + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}$.

Progress:

Classic (Newtonian) and Braginskii Formulations Implemented

Validation Cases:

Newtonian	Braginskii
Channel Flow: 🗸	Hartman: (Pending)
Cylindrical Couette: 🗸	Magneto-Rotational Instability: (Pending)

- A solid, no slip, boundary is enforced at the walls
- The input boundary uses a fixed Dirichlet condition. The flow is low subsonic (0.10 Mach).
- The exit using a von Neumann boundary condition on all variables except for pressure, which is set to the inlet condition.
- The chosen Reynolds number is approximately 30.

- A solid, no slip, boundary is enforced at the walls
- The input boundary uses a fixed Dirichlet condition. The flow is low subsonic (0.10 Mach).
- The exit using a von Neumann boundary condition on all variables except for pressure, which is set to the inlet condition.
- The chosen Reynolds number is approximately 30.

- Counter rotating solid, no slip, boundary is enforced at the inner/outer walls
- Reynolds number independent solution is rapidly established
- Good Agreement with Analytic Solution Attained

- Counter rotating solid, no slip, boundary is enforced at the inner/outer walls
- Reynolds number independent solution is rapidly established
- Good Agreement with Analytic Solution Attained

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. $T_e < 20 \text{eV}$)

Einfeldt 1-2-3 : Energy

Solution to Einfeldt's 1-2-3 problem as obtained with conservation of energy. (Kapper PhD, OSU, '09)

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. $T_e < 20 \text{eV}$)
- Entropy Cons. Helps for Strong Expansions (Ch.8, Kapper PhD, OSU '09)

Einfeldt 1-2-3 : Entropy

Solution to Einfeldt's 1-2-3 problem as obtained with conservation of entropy. (Kapper PhD, OSU, '09)

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. *T_e*<20eV)
- Entropy Cons. Helps for Strong Expansions (Ch.8, Kapper PhD, OSU '09)
- Updated Method Enables Extreme Pressure Ratios (Kapper, 2018)

Einfeldt Vacuum Limit : Entropy

Solution to Einfeldt's Vacuum Limit (Mach 5, γ =7/5) problem as obtained with conservation of entropy and new linearization. (Kapper 18)

$$T/T_0=10^{-4}$$

 $\rho/\rho_0=10^{-9}$
 $P/P_0=10^{-13}$

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. *T_e*<20eV)
- Entropy Cons. Helps for Strong Expansions (Ch.8, Kapper PhD, OSU '09)
- Updated Method Enables Extreme Pressure Ratios (Kapper, 2018)
- Apollo $Q \rightarrow$ Electron Entropy Cons. (Sousa, TBD)

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. *T_e*<20eV)
- Entropy Cons. Helps for Strong Expansions (Ch.8, Kapper PhD, OSU '09)
- Updated Method Enables Extreme Pressure Ratios (Kapper, 2018)
- Apollo $Q \rightarrow$ Electron Entropy Cons. (Sousa, TBD)
- Extending to Hybrid Energy/Entropy Cons. (Kapper, 2018)

Linde-Roe Corner Expansion

Top Left: Energy Conservation Top Right: Entropy Conservation Bottom Left: Hybrid Solution Bottom Right: Hybrid Compression Flag

(Kapper '18)

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. *T_e*<20eV)
- Entropy Cons. Helps for Strong Expansions (Ch.8, Kapper PhD, OSU '09)
- Updated Method Enables Extreme Pressure Ratios (Kapper, 2018)
- Apollo $Q \rightarrow$ Electron Entropy Cons. (Sousa, TBD)
- Extending to Hybrid Energy/Entropy Cons. (Kapper, 2018)

Mach 10.2 Cylinder

Plot of *logT* plus simulated Schlieren (top) and Hybrid Switch (bottom)

(Kapper '18)

- Strong Rarefactions often break Fluid Codes (i.e. Negative Pressures/Artificial Heating)
- Low- β Numerical Instabilities in Apollo (Low- T_e)
- Low-Power Lab Experiments are Low- T_e ($\approx 10 \text{eV}$)
- Relevant Regime Numerically Inaccessible (i.e. *T_e*<20eV)
- Entropy Cons. Helps for Strong Expansions (Ch.8, Kapper PhD, OSU '09)
- Updated Method Enables Extreme Pressure Ratios (Kapper, 2018)
- Apollo $Q \rightarrow$ Electron Entropy Cons. (Sousa, TBD)
- Extending to Hybrid Energy/Entropy Cons. (Kapper, 2018)

Mach 1.5 Underexpanded Jet

Plot of Mach plus simulated Schlieren (top) and Hybrid Switch (bottom)

(Kapper '18)

Complex Design Space for Pulsed EM:

- Device Geometry: Length/Diameter/Pitch Angle/etc.
- Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-Ionization
- Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...

Finding 'Good' Designs like a Needle in a Haystack!

Complex Design Space for Pulsed EM:

- Device Geometry: Length/Diameter/Pitch Angle/etc.
- Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-Ionization
- Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...

Finding 'Good' Designs like a Needle in a Haystack!

Potential Solutions:

- Theory: Simplified Analysis Bounding Envelope/Reducing Dimension
- Build and Bust: Fix Physical Constraints and Explore
- Simulation: Requires DNS or Model with Extrapolative Power! (Validated)
- Machine Learning: Finding the Curve beyond Theory (Exp. or Sim.)
- Data Fusion: Accelerating Exp. Knowledge \rightarrow Models that Extrapolate (Both)

Complex Design Space for Pulsed EM:

- Device Geometry: Length/Diameter/Pitch Angle/etc.
- Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-Ionization
- Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...

Finding 'Good' Designs like a Needle in a Haystack!

Potential Solutions:

- Theory: Simplified Analysis Bounding Envelope/Reducing Dimension
- Build and Bust: Fix Physical Constraints and Explore
- Simulation: Requires DNS or Model with Extrapolative Power! (Validated)
- Machine Learning: Finding the Curve beyond Theory (Exp. or Sim.)
- Data Fusion: Accelerating Exp. Knowledge \rightarrow Models that Extrapolate (Both)

RMF Characterized by Dimensionless Parameters:

- $\lambda = R/\delta$, where $\delta = (2\eta/\mu_o \omega)^{1/2}$ is the classical skin depth
- $\gamma = \omega_{ce}/v_{ei}$, where $v_{ei} = \eta (ne^2/m_e)$ is the electron-ion collision frequency

These parameter can be expressed in terms of RMF intensity, frequency and the plasma resistivity:

•
$$\lambda = R \left(\frac{\mu_o \omega}{2\eta}\right)^{1/2}$$
 $\gamma = \frac{1}{e} \left(\frac{B_\omega}{n\eta}\right)$

Theory: Hugrass (Aust. J. Phys. 38, 157 1985) Semi-Emperical: Milroy (PoP 6, 2771 1999) (RMF penetration in a fixed ion plasma column)

Question: Does this Relationships hold in MFPM?

RMF Characterized by Dimensionless Parameters:

- $\lambda = R/\delta$, where $\delta = (2\eta/\mu_o \omega)^{1/2}$ is the classical skin depth
- $\gamma = \omega_{ce}/v_{ei}$, where $v_{ei} = \eta (ne^2/m_e)$ is the electron-ion collision frequency

These parameter can be expressed in terms of RMF intensity, frequency and the plasma resistivity:

•
$$\lambda = R \left(\frac{\mu_o \omega}{2\eta}\right)^{1/2}$$
 $\gamma = \frac{1}{e} \left(\frac{B_\omega}{n\eta}\right)$

Theory: Hugrass (Aust. J. Phys. 38, 157 1985) Semi-Emperical: Milroy (PoP 6, 2771 1999) (RMF penetration in a fixed ion plasma column)

Question: Does this Relationships hold in MFPM?

Milroy, PoP 6, 2771 (1999)

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory

MFPM Simulated Dataset

- Density, $n = 1 \times 10^{19} m^{-3}$
- $2\pi \times 10^5 Hz < \omega < 10\pi \times 10^5 Hz$
- $5G < B_{\omega} < 30G$
- Electron temperature, $30eV < T_e < 50eV$

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c
- Balancing Complexity vs. Accuracy?

Predicted *B_z*-Reversal K-Nearest Neighbors

-	Pred No	Pred Yes
Actual No	38	6
Actual Yes	5	31

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c
- Balancing Complexity vs. Accuracy?

Predicted *B_z*-Reversal Support Vector Machines

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c
- Balancing Complexity vs. Accuracy?

Learning: RMF Penetration

Machine Learning on MFPM Data:

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c
- Balancing Complexity vs. Accuracy?
- Artificial Neural Network (ANN) with Stochastic Gradient Descent
- Better Classification w/o Extreme Complexity

Learning: RMF Penetration

Machine Learning on MFPM Data:

- Randomly Explored $(\omega, B_{\omega}, T_e)$ with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c
- Balancing Complexity vs. Accuracy?
- Artificial Neural Network (ANN) with Stochastic Gradient Descent
- Better Classification w/o Extreme Complexity

Open Questions:

- Classification Space (λ, γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Learning: RMF Penetration

Machine Learning on MFPM Data:

- Randomly Explored (ω , B_{ω} , T_e) with MFPM
- Points Plotted w.r.t. (λ, γ) from Theory
- Theory: Necessary but Not Sufficient
- Classical Classifiers Explored
- Fewer False Positives & Higher γ_c
- Balancing Complexity vs. Accuracy?
- Artificial Neural Network (ANN) with Stochastic Gradient Descent
- Better Classification w/o Extreme Complexity

Open Questions:

- Classification Space (λ, γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

• Optimization Cost Exponential w/ Dim

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!
- First Step: Identify Dominant Dimensions

SUBSPACES			
ACTIVE	SUBSPACES		
GOAL	Make intractable high-dimensional parameter studies tractable by discovering and exploiting low-dimensional structure.		
DEFINE	First $n < m$ eigenvectors of $\int abla f abla f^T ho d{f x}$		
DISCOVER	First $n < m$ eigenvectors of $\ \ \frac{1}{N} \sum_{i=1}^N abla f_i abla f_i^T$		
APPROXIMATION $f(\mathbf{x}) \approx g(\mathbf{W}_1^T \mathbf{x})$	INTEGRATION OPTIMIZATION $\int f(\mathbf{x})\rho d\mathbf{x} \qquad \text{minimize} f(\mathbf{x})$		
http://activesubspaces.org			

ACTIVE SUBSPACE FOR REVERSAL?

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!
- First Step: Identify Dominant Dimensions
- Often Works in Complex Looking Problems (Dominant Low-D Structure is Common)

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!
- First Step: Identify Dominant Dimensions
- Often Works in Complex Looking Problems (Dominant Low-D Structure is Common)
- Low-D Structure in Random FRC Data?

ACTIVE SUBSPACE FOR REVERSAL?

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!
- First Step: Identify Dominant Dimensions
- Often Works in Complex Looking Problems (Dominant Low-D Structure is Common)
- Low-D Structure in Random FRC Data?
- Active Subspace for $Min(B_z)$ in (ω, B_ω, T_e)

ACTIVE SUBSPACE FOR REVERSAL?

Curse of Dimensionality:

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!
- First Step: Identify Dominant Dimensions
- Often Works in Complex Looking Problems (Dominant Low-D Structure is Common)
- Low-D Structure in Random FRC Data?
- Active Subspace for $Min(B_z)$ in (ω, B_ω, T_e)
- Needs Experimental Validation
 - Result Model Artifact?
 - Exp. has Many More Dimensions

Curse of Dimensionality:

- Optimization Cost Exponential w/ Dim
- Not all Dimensions Created Equal!
- First Step: Identify Dominant Dimensions
- Often Works in Complex Looking Problems (Dominant Low-D Structure is Common)
- Low-D Structure in Random FRC Data?
- Active Subspace for $Min(B_z)$ in (ω, B_ω, T_e)
- Needs Experimental Validation
 - Result Model Artifact?
 - Exp. has Many More Dimensions

EP Exp Produce Data Faster than Simulation Active Subspaces in the Experimental Loop?

SECTION: CONCLUSION AND FUTURE WORK

AFRL Pulsed EP Progress:

- Enhanced Models
 - Viscous Multi-Fluid
 - Hybrid Entropy/Energy Conservation
- Improved Understanding
 - Classifiers & Machine Learning
 - Reduced Dimensionality

SECTION: CONCLUSION AND FUTURE WORK

AFRL Pulsed EP Progress:

- Enhanced Models
 - Viscous Multi-Fluid
 - Hybrid Entropy/Energy Conservation
- Improved Understanding
 - Classifiers & Machine Learning
 - Reduced Dimensionality

Near Term Goals:

- Integrate Models
 - Porting DG MFPM to TURF
 - Verify Braginskii Implementation
 - Circuit BCs
 - Radiation Losses
- Re-Engage with Experimental Community

SECTION: CONCLUSION AND FUTURE WORK

AFRL Pulsed EP Progress:

- Enhanced Models
 - Viscous Multi-Fluid
 - Hybrid Entropy/Energy Conservation
- Improved Understanding
 - Classifiers & Machine Learning
 - Reduced Dimensionality

Near Term Goals:

- Integrate Models
 - Porting DG MFPM to TURF
 - Verify Braginskii Implementation
 - Circuit BCs
 - Radiation Losses
- Re-Engage with Experimental Community

Long Term Goals:

- Cross-Verify MFPM/Kinetic Assumptions
- Quantify Extrapolative Model Power
- Optimize Design of Pulsed EP in High-D
- Actively Control Pulsed EP Systems

Work Supported through AFOSR Task 17RQCOR465 (PO: Birkan) Questions?

VISCOSITY IMPLEMENTATION

The Braginskii equations:

(2)

- Implementation of Parabolic Flux: Π_{α} , and \mathbf{q}_{α} (Viscosity & Heat Flux)
- The viscosity begins with the classic Newtonian tensor (1).

$$\overleftrightarrow{\mathbf{W}} = \nabla \mathbf{u} + \nabla \mathbf{u}^T - \left(\frac{2}{3}\nabla \cdot \mathbf{u}\right)\overleftrightarrow{\mathbf{I}}$$
(1)

- $\overleftrightarrow{\mathbf{W}}$ is rotated into the magnetic field coordinate frame.
- $\overrightarrow{\mathbf{W}}_r$ is then decomposed into parallel, perpendicular, and gyroviscous \mathscr{W}_i
- Each of \mathcal{W}_i components is multiplied by a scalar η_i .

Finally,

$$\mathbf{\Pi}_{\alpha} = rot_{lab} \left(\sum_{i=0}^{N=4} \eta_i \mathscr{W}_i \right)$$