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OUTLINE

1 INTRODUCTION & CHALLENGES

2 MODEL ENHANCEMENTS

3 LEARNING IN PARAMETER SPACE

4 CONCLUSION & FUTURE DIRECTIONS
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INTRODUCTION TO AIR FORCE FRC INTEREST

Field-Reversed Configuration:

Concept from Fusion Energy
- Challenge Scaling Down for Propulsion

Electrodeless (+ Limits Erosion)

Acceleration Mechanism J×B
+ Enables Flexible Fuels

Pulsed Operation
+Tunable Thrust/ISP
- Complex Coupled Dynamics
- High Dimensional Parameter Space

Common Challenges/Benefits for EM
+ MPD/PIT/PPT

+ Similar Tools Required

Complex Devices to Design
Pose Significant Modeling Challenge

RP3X FRC Thruster
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TOOL DEVELOPMENT SPANNING REGIMES

The Boltzmann Equation for f (x,v; t):

∂ fs
∂ t +v · ∂ fs

∂x + qs
ms
(E+v×B) ∂ fs

∂v =
(

∂ fs
∂ t

)
coll

Collisionality Limits:
(Vlasov) 0←

(
∂ fs
∂ t

)
coll
→ ∞ (Euler)

Ohm’s Law:
(me� mi)→ ∂ fe

∂ t ≡ 0

Steady-State Solutions:
∂

∂ t ≡ 0

Limits Exchange Accuracy for Cost
Transition Incurs Costs to Limit

(ν = 0 6= ν → 0)
But Relaxes/Removes Assumptions

TURF: For Exploring Efficient Methods
Minimizing Cost/Accuracy & Redundancy

Range of Validity
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PROGRESS ON MF FORMATION/REVERSAL

Apollo Formation Simulations:

RMF→ jθ → Bz-Reversal

Initially Conditions:
Fully Ionized Xe Gas
ni=ne=1020/m3

60G Bias (Z) + 60G RMF @ 1MHz

Strong Reversal Bz Reversal by 180◦

Reversal Weakens, 180◦-360◦

Cycle Repeats
(But Lower Amplitude)

Parameter Space is being Explored

Also Needs Experimental Validation!

DG FRC-Formation
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RADIATIVE EMISSION VALIDATION

High Fidelity Validation:

FRCs are Dynamic Pulsed Devices

Ext. Probes Probes avoid Disruption
...but Mostly Limited View

Fast Camera:
Absolute Magnitudes Difficult
Relatively High Dimensional

Emission from IonMix (ne,Te) Table

Plotted at Equivalent ω

Similar Structures in 2 & 3
Despite Different Conditions

Experiment Relaxes but
Simulation Intensifies in 4+

Model Needs Additional Physics

DG FRC-Formation

MSNW Ar FRC Formation
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High Fidelity Validation:

FRCs are Dynamic Pulsed Devices

Ext. Probes Probes avoid Disruption
...but Mostly Limited View

Fast Camera:
Absolute Magnitudes Difficult
Relatively High Dimensional

Emission from IonMix (ne,Te) Table

Plotted at Equivalent ω

Similar Structures in 2 & 3
Despite Different Conditions

Experiment Relaxes but
Simulation Intensifies in 4+

Model Needs Additional Physics

DG FRC-Formation

+Circuit Model
+CR-Model

(Apollo Multifluid Simulation Emission Intensity)
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SECTION: MODEL ENHANCEMENT

AFRL Model Development/Project Synergies:

Model Need Platform Project Progress Demo
Circuit BC/Energy Cons. TURF 1 & 2 Runtime Arbitrary ODE B.C.s Lorenz DSMC Inflow
Radiative Physics/Energy Cons. R&D 3 Full Level-Grouped Ar Model Abrantes PhD (UCLA 2018)
Multi-Fluid Physics/Stability Apollo 4 N.S./Braginskii Poiselle/Taylor Couette
Multi-Fluid Physics/Stability TURF/R&D 4 Hybrid Entropy/Energy Cons. Einfeldt/Step/Cylinder/Jet
Kinetic Charge Separation TURF 1 & 4 Boltzmann-ne vs. 〈ne〉 Quasi-1D HET

Projects:
1. In-House AFRL 6.2 Research
2. AFOSR Comp Math Lab-Task (New), PO: Fahroo
3. AFOSR Plasma/Electro-energetics Lab-Task, PO: Marshall
4. AFOSR Space Propulsion & Power, PO: Birkan

MARTIN, SOUSA, LILLY, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE NO. 18476 7 / 18



SECTION: MODEL ENHANCEMENT

AFRL Model Development/Project Synergies:

Model Need Platform Project Progress Demo
Circuit BC/Energy Cons. TURF 1 & 2 Runtime Arbitrary ODE B.C.s Lorenz DSMC Inflow
Radiative Physics/Energy Cons. R&D 3 Full Level-Grouped Ar Model Abrantes PhD (UCLA 2018)
Multi-Fluid Physics/Stability Apollo 4 N.S./Braginskii Poiselle/Taylor Couette
Multi-Fluid Physics/Stability TURF/R&D 4 Hybrid Entropy/Energy Cons. Einfeldt/Step/Cylinder/Jet
Kinetic Charge Separation TURF 1 & 4 Boltzmann-ne vs. 〈ne〉 Quasi-1D HET

Projects:
1. In-House AFRL 6.2 Research
2. AFOSR Comp Math Lab-Task (New), PO: Fahroo
3. AFOSR Plasma/Electro-energetics Lab-Task, PO: Marshall
4. AFOSR Space Propulsion & Power, PO: Birkan

MARTIN, SOUSA, LILLY, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE NO. 18476 7 / 18



N.S. MULTIFLUID DEFINITIONS

∂tQ+∇ ·FHyp +∇ ·FPara = SEM +Sie

Q

ρe

ρeue

Ee

ρi

ρiui

Ei



FHyp

ρeue

ρeueue+peI
ue·(Ee+pe)I

ρiui

ρiuiui+piI
ui·(Ei+pi)I



FPara

0

ΠΠΠe

ue·ΠΠΠe+qe

0

ΠΠΠi

ui·ΠΠΠi+qi



SEM

0

qene(E+ue×B)
qeneueE

0

qini(E+ui×B)
qiniuiE



Sie

0

−Rie

ue·Rie+Qe
ie

0

−Rei

ui·Rei+Qi
ei


The EOS used here: p = nkBT . Energy E = p

γ−1 +
1
2 ρu ·u.

Progress:
Classic (Newtonian) and Braginskii Formulations Implemented

Validation Cases:

Newtonian Braginskii
Channel Flow: X Hartman: (Pending)
Cylindrical Couette: X Magneto-Rotational Instability: (Pending)
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CHANNEL FLOW RESULTS

A solid, no slip, boundary is enforced at the walls

The input boundary uses a fixed Dirichlet condition. The flow is low subsonic (0.10 Mach).

The exit using a von Neumann boundary condition on all variables except for pressure, which is set to the inlet condition.

The chosen Reynolds number is approximately 30.
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TAYLOR COUETTE RESULTS

Counter rotating solid, no slip, boundary is enforced at the inner/outer walls

Reynolds number independent solution is rapidly established

Good Agreement with Analytic Solution Attained
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

Low-β Numerical Instabilities in Apollo (Low-Te)

Low-Power Lab Experiments are Low-Te (≈10eV)

Relevant Regime Numerically Inaccessible
(i.e. Te<20eV)

Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU ’09)

Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

Apollo Q→ Electron Entropy Cons. (Sousa, TBD)

Extending to Hybrid Energy/Entropy Cons.
(Kapper, 2018)

Einfeldt 1-2-3 : Energy

Solution to Einfeldt’s 1-2-3 problem as obtained

with conservation of energy. (Kapper PhD, OSU,

’09)
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Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

Apollo Q→ Electron Entropy Cons. (Sousa, TBD)

Extending to Hybrid Energy/Entropy Cons.
(Kapper, 2018)

Einfeldt Vacuum Limit : Entropy

Solution to Einfeldt’s Vacuum Limit (Mach 5,

γ=7/5) problem as obtained with conservation of

entropy and new linearization. (Kapper 18)

T/T0=10−4

ρ/ρ0=10−9

P/P0=10−13
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Q
ρe

ρeue
Ee
ρi

ρiui
Ei


→

Q
ρe

ρeue
ρese
ρi

ρiui
Ei


se = Pe/ρ

γ
e
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

Low-β Numerical Instabilities in Apollo (Low-Te)

Low-Power Lab Experiments are Low-Te (≈10eV)

Relevant Regime Numerically Inaccessible
(i.e. Te<20eV)

Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU ’09)

Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

Apollo Q→ Electron Entropy Cons. (Sousa, TBD)

Extending to Hybrid Energy/Entropy Cons.
(Kapper, 2018)

Linde-Roe Corner Expansion

Top Left: Energy Conservation
Top Right: Entropy Conservation
Bottom Left: Hybrid Solution
Bottom Right: Hybrid Compression Flag

(Kapper ’18)
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Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

Apollo Q→ Electron Entropy Cons. (Sousa, TBD)

Extending to Hybrid Energy/Entropy Cons.
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Mach 10.2 Cylinder

Plot of logT plus simulated Schlieren (top) and
Hybrid Switch (bottom)

(Kapper ’18)
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Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

Apollo Q→ Electron Entropy Cons. (Sousa, TBD)

Extending to Hybrid Energy/Entropy Cons.
(Kapper, 2018)

Mach 1.5 Underexpanded Jet

Plot of Mach plus simulated Schlieren (top) and
Hybrid Switch (bottom)

(Kapper ’18)
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SECTION: LEARNING IN PARAMETER SPACE

Complex Design Space for Pulsed EM:

Device Geometry: Length/Diameter/Pitch Angle/etc.
Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-Ionization
Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...
Finding ‘Good’ Designs like a Needle in a Haystack!

Potential Solutions:

Theory: Simplified Analysis Bounding Envelope/Reducing Dimension
Build and Bust: Fix Physical Constraints and Explore
Simulation: Requires DNS or Model with Extrapolative Power! (Validated)
Machine Learning: Finding the Curve beyond Theory (Exp. or Sim.)
Data Fusion: Accelerating Exp. Knowledge→Models that Extrapolate (Both)
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THEORY: RMF PENETRATION

RMF Characterized by Dimensionless Parameters:

λ = R/δ , where δ = (2η/µoω)1/2 is the
classical skin depth

γ = ωce/νei, where νei = η(ne2/me) is the
electron-ion collision frequency

These parameter can be expressed in terms of RMF
intensity, frequency and the plasma resistivity:

λ = R
(

µoω

2η

)1/2
γ = 1

e

(
Bω

nη

)
Theory: Hugrass (Aust. J. Phys. 38, 157 1985)
Semi-Emperical: Milroy (PoP 6, 2771 1999)

(RMF penetration in a fixed ion plasma column)

Question: Does this Relationships hold in MFPM? Milroy, PoP 6, 2771 (1999)
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

MFPM Simulated Dataset

Density, n = 1×1019m−3

2π×105Hz<ω < 10π×105Hz

5G < Bω < 30G

Electron temperature,
30eV < Te < 50eV
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Observed Bz-Reversal

Confusion Matrix
- Pred No Pred Yes

Actual No 23 21
Actual Yes 0 36
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Predicted Bz-Reversal
Logistic Regression

Confusion Matrix
- Pred No Pred Yes

Actual No 39 5
Actual Yes 4 32
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Predicted Bz-Reversal
K-Nearest Neighbors

Confusion Matrix
- Pred No Pred Yes

Actual No 38 6
Actual Yes 5 31
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Predicted Bz-Reversal
Support Vector Machines

Confusion Matrix
- Pred No Pred Yes

Actual No 39 5
Actual Yes 4 32
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Predicted Bz-Reversal
Random Forest

Confusion Matrix
- Pred No Pred Yes

Actual No 37 7
Actual Yes 3 33
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LEARNING: RMF PENETRATION

Machine Learning on MFPM Data:

Randomly Explored (ω , Bω , Te) with MFPM

Points Plotted w.r.t. (λ , γ) from Theory

Theory: Necessary but Not Sufficient

Classical Classifiers Explored

Fewer False Positives & Higher γc

Balancing Complexity vs. Accuracy?

Artificial Neural Network (ANN) with
Stochastic Gradient Descent

Better Classification w/o Extreme Complexity

Open Questions:
- Classification Space (λ , γ) Right for MFPM?
- Relevant Dimensions beyond 2D?
- Data Requirements in 3+D Classification?
- Do Experiments Exhibit Similar Trends?

Predicted Bz-Reversal
ANN

Confusion Matrix
- Pred No Pred Yes

Actual No 39 5
Actual Yes 2 34
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ACTIVE SUBSPACE FOR REVERSAL?

Curse of Dimensionality:

Optimization Cost Exponential w/ Dim

Not all Dimensions Created Equal!

First Step: Identify Dominant Dimensions

Often Works in Complex Looking Problems
(Dominant Low-D Structure is Common)

Low-D Structure in Random FRC Data?

Active Subspace for Min(Bz) in (ω , Bω , Te)

Needs Experimental Validation
- Result Model Artifact?
- Exp. has Many More Dimensions

EP Exp Produce Data Faster than Simulation

Active Subspaces in the Experimental Loop?
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Low-D Structure in Random FRC Data?

Active Subspace for Min(Bz) in (ω , Bω , Te)

Needs Experimental Validation
- Result Model Artifact?
- Exp. has Many More Dimensions

EP Exp Produce Data Faster than Simulation

Active Subspaces in the Experimental Loop?

http://activesubspaces.org
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ACTIVE SUBSPACE FOR REVERSAL?

Curse of Dimensionality:

Optimization Cost Exponential w/ Dim

Not all Dimensions Created Equal!

First Step: Identify Dominant Dimensions

Often Works in Complex Looking Problems
(Dominant Low-D Structure is Common)

Low-D Structure in Random FRC Data?

Active Subspace for Min(Bz) in (ω , Bω , Te)

Needs Experimental Validation
- Result Model Artifact?
- Exp. has Many More Dimensions

EP Exp Produce Data Faster than Simulation

Active Subspaces in the Experimental Loop?

Random Points:

2π×105Hz<ω < 10π×105Hz

5G < Bω < 30G

30eV < Te < 50eV
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SECTION: CONCLUSION AND FUTURE WORK

AFRL Pulsed EP Progress:
Enhanced Models
- Viscous Multi-Fluid
- Hybrid Entropy/Energy Conservation

Improved Understanding
- Classifiers & Machine Learning
- Reduced Dimensionality

Near Term Goals:
Integrate Models
- Porting DG MFPM to TURF
- Verify Braginskii Implementation
- Circuit BCs
- Radiation Losses

Re-Engage with Experimental Community
Long Term Goals:

Cross-Verify MFPM/Kinetic Assumptions

Quantify Extrapolative Model Power

Optimize Design of Pulsed EP in High-D

Actively Control Pulsed EP Systems
HYPERS Simulation Results for MSX

Omelchenko, Phys Rev E. 92, 023105, 2015
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VISCOSITY IMPLEMENTATION

The Braginskii equations:

Implementation of Parabolic Flux: ΠΠΠα , and qα (Viscosity & Heat Flux)

The viscosity begins with the classic Newtonian tensor (1).

←→
W = ∇u+∇uT −

(
2
3

∇ ·u
)
←→
I (1)

←→
W is rotated into the magnetic field coordinate frame.
←→
W r is then decomposed into parallel, perpendicular, and gyroviscous Wi

Each of Wi components is multiplied by a scalar ηi.

Finally,

ΠΠΠα = rotlab

(
N=4

∑
i=0

ηiWi

)
(2)
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