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Field-Reversed Configuration:

@ Concept from Fusion Energy
- Challenge Scaling Down for Propulsion
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-

MARTIN, A, LILLY, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE NO. 18476 3/18



INTRODUCTION TO AIR FORCE FRC INTEREST

Field-Reversed Configuration:

@ Concept from Fusion Energy
- Challenge Scaling Down for Propulsion

@ Electrodeless (+ Limits Erosion)

RP3X FRC Thruster
-

MARTIN, A, LILLY, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE NO. 18476 3/18



%ﬁ INTRODUCTION TO AIR FORCE FRC INTEREST

Field-Reversed Configuration:

@ Concept from Fusion Energy
- Challenge Scaling Down for Propulsion

@ Electrodeless (+ Limits Erosion)

RP3X FRC Thruster

@ Acceleration Mechanism J x B
+ Enables Flexible Fuels

Pancotti, et al, “Adaptive Electric Propulsion for ISRU Missions”, 20th Adv. Space Prop., 11/2014

BLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE No. 18476 3/18



INTRODUCTION TO AIR FORCE FRC INTEREST

Field-Reversed Configuration:

@ Concept from Fusion Energy
- Challenge Scaling Down for Propulsion

@ Electrodeless (+ Limits Erosion)

RP3X FRC Thruster
-

@ Acceleration Mechanism J x B
+ Enables Flexible Fuels

@ Pulsed Operation
+Tunable Thrust/ISP
- Complex Coupled Dynamics
- High Dimensional Parameter Space

MARTIN, LiLLy, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE NO. 18476 3/18



INTRODUCTION TO AIR FORCE FRC INTEREST

Field-Reversed Configuration:

Concept from Fusion Energy
- Challenge Scaling Down for Propulsion

Electrodeless (+ Limits Erosion)

Acceleration Mechanism J x B
+ Enables Flexible Fuels

Pulsed Operation

+Tunable Thrust/ISP

- Complex Coupled Dynamics

- High Dimensional Parameter Space

Common Challenges/Benefits for EM
+ MPD/PIT/PPT

Complex Devices to Design

MARTIN,

RP3X FRC Thruster
-

LiLLY, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEARANCE NO. 18476

3/18




INTRODUCTION TO AIR FORCE FRC INTEREST

Field-Reversed Configuration:

@ Concept from Fusion Energy
- Challenge Scaling Down for Propulsion

@ Electrodeless (+ Limits Erosion)

RP3X FRC Thruster
-

@ Acceleration Mechanism J x B
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@ Pulsed Operation
+Tunable Thrust/ISP
- Complex Coupled Dynamics
- High Dimensional Parameter Space

@ Common Challenges/Benefits for EM
+ MPD/PIT/PPT
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SECTION: MODEL ENHANCEMENT

AFRL Model Development/Project Synergies:

Model Need Platform Project Progress Demo

Circuit BC/Energy Cons. TURF 1&2 Runtime Arbitrary ODE B.C.s Lorenz DSMC Inflow

Radiative Physics/Energy Cons. R&D 3 Full Level-Grouped Ar Model Abrantes PhD (UCLA 2018)

Multi-Fluid Physics/Stability Apollo 4 N.S./Braginskii Poiselle/Taylor Couette

Multi-Fluid Physics/Stability TURF/R&D 4 Hybrid Entropy/Energy Cons. Einfeldt/Step/Cylinder/Jet

Kinetic Charge Separation TURF 1&4 Boltzmann-n, vs. (n.) Quasi-1D HET
Projects:

1. In-House AFRL 6.2 Research

2. AFOSR Comp Math Lab-Task (New), PO: Fahroo
3. AFOSR Plasma/Electro-energetics Lab-Task, PO: Marshall
4. AFOSR Space Propulsion & Power, PO: Birkan

CAPPER (AFRL/RQRS)
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N.S. MULTIFLUID DEFINITIONS

atQ + V. FHyp + V. FPara — SEM + Sie

Q FHyp FPara SEM Sie
pe pelte 0 0 0
Pelle Pelee+p,l 11, gene(E+uexB) —Ri.
Ee e (Eetpe)l ue TL+qe gencueE u. R +Qf,
pi piui 0 0 0
piu; piniui+p;1 II; gini(E+uj xB) —R,;
& u;-(&4p;)1 u; Il +q; qinGE u; R,i+Q;

The EOS used here: p = nkgT. Energy & = % ol %pu e

Progress:
Classic (Newtonian) and Braginskii Formulations Implemented
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N.S. MULTIFLUID DEFINITIONS

atQ + V. FHyp + V. FPara — SEM + Sie

Q FHyp FPara SEM Sie
pe pelte 0 0 0
Pelle Pelee+p,l 11, gene(E+uexB) —R;.
Ee e (Eetpe)l ue TI,+qe gencueE u. R +Qf,
pi piui 0 0 0
piu; piniui+p;1 II; gini(E+u;xB) —R,;
& u;-(&4p;)1 u; Il +q; qinGE u; R,i+Q;

The EOS used here: p = nkgT. Energy & = % ol %pu e

Progress:
Classic (Newtonian) and Braginskii Formulations Implemented

Validation Cases:

Newtonian Braginskii
Channel Flow: v Hartman: (Pending)
Cylindrical Couette: v | Magneto-Rotational Instability: (Pending)
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Y
.¢,/ CHANNEL FLOW RESULTS

P
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3 — —
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o 1.0
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@ A solid, no slip, boundary is enforced at the walls
@ The input boundary uses a fixed Dirichlet condition. The flow is low subsonic (0.10 Mach).
@ The exit using a von Neumann boundary condition on all variables except for pressure, which is set to the inlet condition.

@ The chosen Reynolds number is approximately 30.
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CHANNEL FLOW RESULTS

Width

2.0

Pseudocolor

Tangential Velocity

2.0 3.0 4.0
Length

A solid, no slip, boundary is enforced at the walls
The input boundary uses a fixed Dirichlet condition. The flow is low subsonic (0.10 Mach).

The exit using a von Neumann boundary condition on all variables except for pressure, which is set to the inlet condition.

The chosen Reynolds number is approximately 30.
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——— Theory (Ar+B/r)
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Counter rotating solid, no slip, boundary is enforced at the inner/outer walls
Reynolds number independent solution is rapidly established

Good Agreement with Analytic Solution Attained
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@ Counter rotating solid, no slip, boundary is enforced at the inner/outer walls

@ Reynolds number independent solution is rapidly established

@ Good Agreement with Analytic Solution Attained
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes Einfeldt 1-2-3 : Energy
(i.e. Negative Pressures/Artificial Heating)

@ Low-f3 Numerical Instabilities in Apollo (Low-T,)

'\‘ if
% $ AY ® g
ol } Pl o
! H

Solution to Einfeldt’s 1-2-3 problem as obtained

s

with conservation of energy. (Kapper PhD, OSU,
’09)
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

@ Low-f3 Numerical Instabilities in Apollo (Low-T,)
@ Low-Power Lab Experiments are Low-T, (=10eV)

@ Relevant Regime Numerically Inaccessible
(i.e. T,<20eV)

Einfeldt 1-2-3 : Energy

= e
i
§
H

'\‘ if
% $ AY ® g
ol } Pl o
! H

Solution to Einfeldt’s 1-2-3 problem as obtained

s

with conservation of energy. (Kapper PhD, OSU,
’09)
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

@ Low-f3 Numerical Instabilities in Apollo (Low-T,)
@ Low-Power Lab Experiments are Low-T, (=10eV)

@ Relevant Regime Numerically Inaccessible
(i.e. T,<20eV)

@ Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU *09)

Einfeldt 1-2-3 : Entropy

Solution to Einfeldt’s 1-2-3 problem as obtained
with conservation of entropy. (Kapper PhD,

0OSU, "09)
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Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

@ Low-f Numerical Instabilities in Apollo (Low-T)
@ Low-Power Lab Experiments are Low-T, (=10eV)

@ Relevant Regime Numerically Inaccessible
(i.e. T,<20eV)

@ Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU *09)

@ Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

SA, LILLY, KAPPER (AFRL/RQRS) DisTRIBUTION A - APPROVED FOR

Solution to Einfeldt’s Vacuum Limit (Mach 5,
¥=7/5) problem as obtained with conservation of

entropy and new linearization. (Kapper 18)

T/Ty=10"*
p/po=10""
P/Py=10""13
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Entropy Formulation:

Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

@ Low-f3 Numerical Instabilities in Apollo (Low-T,)

@ Low-Power Lab Experiments are Low-T, (=10eV)

Relevant Regime Numerically Inaccessible
(i.e. T,<20eV)

Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU *09)

Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

Apollo Q — Electron Entropy Cons. (Sousa, TBD)

Pe
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& —
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piu;

Se =Pe/PZ
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Pele
PeSe
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(g"[

MARTIN,
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes . )
(i.e. Negative Pressures/Artificial Heating) Linde-Roe Corner Expansion

@ Low-f3 Numerical Instabilities in Apollo (Low-T,) ”
@ Low-Power Lab Experiments are Low-T, (=10eV) . .
@ Relevant Regime Numerically Inaccessible | : :
(i.e. T,<20eV) 1 .
@ Entropy Cons. Helps for Strong Expansions ) “
(Ch.8, Kapper PhD, OSU *09) '

@ Updated Method Enables Extreme Pressure Ratios
Top Left: Energy Conservation

(Kappery 2018) Top Right: Entropy Conservation
Bottom Left: Hybrid Solution
@ Apollo Q — Electron Entropy Cons. (Sousa, TBD) | Bottom Right: Hybrid Compression Flag

@ Extending to Hybrid Energy/Entropy Cons. (Kapper 18)

(Kapper, 2018)
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Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes

(i.e. Negative Pressures/Artificial Heating)

@ Low-f3 Numerical Instabilities in Apollo (Low-T,)

@ Low-Power Lab Experiments are Low-T, (=10eV)

Relevant Regime Numerically Inaccessible
(i.e. T,<20eV)

Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU *09)

Updated Method Enables Extreme Pressure Ratios
(Kapper, 2018)

@ Apollo Q — Electron Entropy Cons. (Sousa, TBD)
@ Extending to Hybrid Energy/Entropy Cons.

(Kapper, 2018)

MARTIN,

Mach 10.2 Cylinder

Plot of logT plus simulated Schlieren (top) and

Hybrid Switch (bottom)
(Kapper "18)
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ENTROPY CONSERVATION AND HYBRIDIZATION

Entropy Formulation:

@ Strong Rarefactions often break Fluid Codes
(i.e. Negative Pressures/Artificial Heating)

@ Low-f3 Numerical Instabilities in Apollo (Low-T,) Mach 1.5 Underexpanded Jet
@ Low-Power Lab Experiments are Low-T, (=10eV) | ° o -—

@ Relevant Regime Numerically Inaccessible
(i.e. T,<20eV)

@ Entropy Cons. Helps for Strong Expansions
(Ch.8, Kapper PhD, OSU *09) < N\

@ Updated Method Enables Extreme Pressure Ratios | Plotof Mach plus simulated Schlieren (top) and
Hybrid Switch (bottom)
(Kapper, 2018)

@ Apollo Q — Electron Entropy Cons. (Sousa, TBD)

(Kapper "18)

@ Extending to Hybrid Energy/Entropy Cons.
(Kapper, 2018)

LiLLY, KAPPER (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA CLEA o. 18476 11/18



SECTION: LEARNING IN PARAMETER SPACE

Complex Design Space for Pulsed EM:

@ Device Geometry: Length/Diameter/Pitch Angle/etc.
@ Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-lonization
@ Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...
Finding ‘Good’ Designs like a Needle in a Haystack!
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SECTION: LEARNING IN PARAMETER SPACE

Complex Design Space for Pulsed EM:

@ Device Geometry: Length/Diameter/Pitch Angle/etc.
@ Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-lonization
@ Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...
Finding ‘Good’ Designs like a Needle in a Haystack!

Potential Solutions:

Theory: Simplified Analysis Bounding Envelope/Reducing Dimension
Build and Bust: Fix Physical Constraints and Explore

Simulation: Requires DNS or Model with Extrapolative Power! (Validated)
Machine Learning: Finding the Curve beyond Theory (Exp. or Sim.)

Data Fusion: Accelerating Exp. Knowledge — Models that Extrapolate (Both)
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@ Device Geometry: Length/Diameter/Pitch Angle/etc.
@ Gas Flow: Mass Flow/Injection/Mixture/Rate/Density/Pre-lonization
@ Electrical: Energy/Coil Shape/Switching Speed/Frequency/Phase/Bias Field

15+ Dimensional Design Space...
Finding ‘Good’ Designs like a Needle in a Haystack!

Potential Solutions:

Theory: Simplified Analysis Bounding Envelope/Reducing Dimension
Build and Bust: Fix Physical Constraints and Explore

Simulation: Requires DNS or Model with Extrapolative Power! (Validated)
Machine Learning: Finding the Curve beyond Theory (Exp. or Sim.)

Data Fusion: Accelerating Exp. Knowledge — Models that Extrapolate (Both)
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THEORY: RMF PENETRATION

RMF Characterized by Dimensionless Parameters:
@ A =R/, where § = (21 /1,®)"/? is the
classical skin depth

@ Y= Wce/Vei» Where Vo; = 1 (ne®/m,) is the
electron-ion collision frequency

B

These parameter can be expressed in terms of RMF
intensity, frequency and the plasma resistivity:

=0T

Id lines as the RMF penetrates 4 plasma

1/2 20
o 1= (s) )|
LI.G

Theory: Hugrass (Aust. J. Phys. 38, 157 1985) b [%]='-12(1-0+0-'2(%—6-5?")
Semi-Emperical: Milroy (PoP 6, 2771 1999) '

(RMF penetration in a fixed ion plasma column) R I R

s

FIG. 4. Critical value of y vs \.

Question: Does this Relationships hold in MFPM? Milroy, PoP 6, 2771 (1999)
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THEORY: RMF PENETRATION

RMF Characterized by Dimensionless Parameters:
@ A =R/, where § = (21 /1,®)"/? is the
classical skin depth

@ Y= Wce/Vei» Where Vo; = 1 (ne®/m,) is the
electron-ion collision frequency

B

These parameter can be expressed in terms of RMF
intensity, frequency and the plasma resistivity:

=0T

Id lines as the RMF penetrates 4 plasma

1/2 20
o 3=n(s) |
LI.G

Theory: Hugrass (Aust. J. Phys. 38, 157 1985) b (4 Jrrovorp-esy)
Semi-Emperical: Milroy (PoP 6, 2771 1999) '

(RMF penetration in a fixed ion plasma column) R I R

s

FIG. 4. Critical value of y vs \.

Question: Does this Relationships hold in MFPM? 1\/[111.0y7 PoP 6, 2771 (1999)
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