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1.0 SUMMARY

     In order to develop a computational inexpensive atomistic-scale method to simulate 
ferroelectric response for realistic materials – including defects and interfaces – we have 
extended the ReaxFF reactive force field method to BaTiO3 based materials. This extension was 
performed by combining earlier published ReaxFF descriptions for barium oxides and titanium 
oxides and by training this combined Ba/Ti/O/H force field against Density Functional Theory 
(DFT) data describing, amongst others, volume/energy relations for various BaTiO3 crystal 
morphologies, oxygen vacancy energies and vacancy migration barriers and barriers for 
asymmetric/symmetric/asymmetric deformations of BaTiO3 crystal structures. We found that 
ReaxFF can successfully reproduce these DFT data – without the necessity for changing the 
ReaxFF formulism, which means that these ReaxFF Ba/Ti/O/H parameters are fully transferable 
with all earlier ReaxFF parameter sets – including those for organic molecules and different 
inorganic systems.
     After completing the training, we applied this ReaxFF Ba/Ti/O/H parameter set in a series of 
molecular dynamics (MD) simulations. We observed a clear ferroelectric to non-ferroelectric 
transition for BaTiO3 bulk phases and observed how different surface terminations can affect the 
ferroelectric response. As such, we argue that ReaxFF provides a unique, computationally 
efficient, tool for studying ferroelectric response in realistic, complex materials.
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2.0 INTRODUCTION

Ferroelectric phase transitions of perovskite-based oxides represent an important class of 
structural phase transitions that have significant technological implications related to piezoelectric 
and pyroelectric response 1-2. Ferroelectric perovskites exhibit a spontaneous electric polarization 
that can be reoriented by an external electric field.

To improve our understanding of the dielectric properties of the oxides and their interfaces, 
we need to obtain detailed, atomistic-scale insight in the key events at this interface. Given typical 
operation conditions include elevated temperatures and relatively long time-scales, a simulation 
tool is required that can evaluate dynamics and properly describe reaction barriers and reaction 
energies. Furthermore, defects and domain boundaries in the oxide materials will play a key role 
in their dielectric response – which means that relatively large systems will need to be used in the 
simulations so that such large structural features can be considered. This combination of system 
size and dynamics indicates that quantum mechanical (QM) based methods by themselves will not 
be sufficient to fully evaluate the activity of a catalyst. While QM-based methods have become 
key tools in the evaluation of reaction barriers and reaction energies, the high computational cost 
associated with these methods renders QM-based dynamical descriptions only viable for relatively 
small systems and short time scales. For a fully dynamical description of events at piezoelectric 
metal oxide interfaces and boundaries, we require a computational method that is a number of 
magnitudes faster but retains the quality of QM-results for reaction energetics. Force field (FF) 
based approaches can provide the computational speed required to perform molecular dynamics 
(MD) simulations on system sizes sufficiently large to describe the full chemistry of the metal
oxide and their interfaces. For this reason, a number of FF-based concepts related to ferroelectric
materials have been formulated – ranging from relatively straightforward core-shell BaTiO3

models3 – aiming to capture the atomic dipole connected with ferroelectric response – to bond-
valence models, as developed by Rappe and co-workers1, 4-6, which capture the ferroelectric
response through bond orders rather than atom polarizability. Beyond these relatively simple –
and relatively fast – force field approaches there also exist more sophisticated force field
approaches that allow charge flow through polarizable charges – either through a single point
charge model, as applied in the COMB-potential2, 7 – or even through a polarizable core-shell
concept, as developed by Zhang, Goddard and co-workers8-9. These concepts all share a significant
lack of transferability – they have demonstrated success within a single ferroelectric formulation,
but cannot be straightforwardly extended to study interactions of ferroelectric materials in multi-
material interfaces – for example, a ferroelectric nanocluster on a metal support, or ferroelectric
clusters suspended in an organic polymer. In this project, we evaluated the ability of the ReaxFF
method – which shares many features with the COMB potential and has demonstrated
transferability to a wide range of materials (Figure 1) – for describing ferroelectric material
response.

2 
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Figure  1 Overview of Some Previous ReaxFF Applications to Mixed Metal Oxide Systems (a) Comparison of DFT 

and ReaxFF Surface Energies for Yttrium-stabilized BaZrO3 surfaces10 (b) ReaxFF Application to Reactive Diffusion 
of Hydrocarbons in the Pore of a Bi/Mo/V-mixed Metal Oxide Catalyst11. (c) ReaxFF Application to H2 Dissociation 
on a YSZ-supported Ni- Nanoparticle12 (d) Comparison of Experimental and ReaxFF/DFT Informed kMC Structures 

of a Clean and Hydroxylated TiO2 Surface with Pd-metal Clusters13
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3.0 METHODS, ASSUMPTIONS, ANDPROCEDURES

While originally primarily designed for non-reactive systems, in recent years a number of FF-
approaches have been formulated that can also be used to model reactive events (Reactive 
Force Field (RFF)). At this moment, RFFs have been reported for metallic [e.g. 14-15], covalent 
[e.g. 16-17] and fully/partially ionic materials [e.g. 7, 18]. One of the more widely employed reactive 
force field schemes is the ReaxFF reactive force field approach19, which combines a bond order/
bond distance relationship with a polarizable charge description. This combination has made 
ReaxFF applicable to a wide range of materials, including covalent [e.g. 19-20], metallic21-22, and 
metal oxide/hydride/carbide systems [e.g. 23,24]. The ReaxFF transferability enables us to not only 
study the oxide materials in this project, but it also allows for a straightforward extension to a wide 
range of interactions with surfaces and     organic materials. At  this  moment,  we already have 
ReaxFF parameters available for various oxide materials, including zirconates25-27, zinc 
oxides28-30, aluminum oxides, silica and iron oxides29, 31-32, as well as a range of noble metals, 
including Pt, Pd, Ni and Cu33-35. These ReaxFF descriptions are fully transferable, which means 
that only a limited number of new ReaxFF angle parameters need to be developed to enable 
simulations of oxide interactions with other materials. ReaxFF has been successfully employed to 
a number of mixed-metal oxide systems (Figure 1), including Ba/Y/Zr-oxides36 as well as Bi/Mo/
V-oxides11, 23, 37-39, where we demonstrated an ability to predict the structure of complex multi-
metal, multi-oxidation materials. Given the considerable success of the bond/valence force fields 
developed by Rappe and co-workers1, 4-6, as well as the COMB-polarizable force field method2, 7, 
in reproducing QM-results for ferroelectric materials we would expect the ReaxFF concept to 
be capable of predicting ferroelectric response, and our earlier work on copper ions in water 
supports this expectation. For these clusters, we clearly observe the ReaxFF capability to 
reproduce the complex, asymmetric, behavior of transition metal oxides. In this project, we seek 
to extend the ReaxFF method to ferroelectric materials, in particular BaTiO3, by training against 
a DFT derived training set containing, amongst others, equations of state for ferroelectric 
(tetragonal, orthorhombic and rhombohedral) and non-ferroelectric (cubic) BaTiO3 phases, 
oxygen vacancy energies and their migration barriers and asymmetric-symmetric-asymmetric 
BaTiO3 unit cell distortions. In addition to these BaTiO3 specific data, we also included the Ti- 
and Ba-metal data and TiO2 and BaO oxide data from previous work10, 40 into the ReaxFF training 
set, thus extending the transferability of the BaTiO3 force field to BaO and TiO2 materials and their 
surface chemistry.

Force field optimization was performed using the standalone, open-source ReaxFF code. MD-
simulations were performed using the ADF/ReaxFF code – using multiple processors for the 
larger (8192 atom) systems. In our NPT simulations we employed Berendsen thermostats and 
barostats with relatively weak coupling (100 fs for the thermostat, 2500 fs for the barostat 
coupling).

4 
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4.0 RESULTS AND DISCUSIONS

A central part of the ReaxFF training set consisted of DFT/PBE derived volume/energy 
equations of state for various asymmetric (tetragonal, rhombohedral and orthogonal, all 
ferroelectric phases ) and symmetric (cubic, non-ferroelectric phase) BaTiO3 crystal 
morphologies. Figure 2 compares the ReaxFF and DFT results for these four phases – showing 
that ReaxFF captures their energy/volume trend and, most importantly, reproduces that the cubic 
phase is significantly less stable at zero pressure than the three asymmetric phases.

Figure 2 Comparison of DFT/PBE and ReaxFF Equations of State for Various BaTiO3 Crystal Morphologies.

In addition to these equations of state, we also included oxygen vacancy energy formation and the 
barrier for migration of these vacancies in the ReaxFF training set. Figure 3 shows the lowest 
energy path for O-vacancy migration in BaTiO3.  ReaxFF predicts a vacancy energy of+146.5 
kcal/mol (relative to O2) for BaTiO3, which is in reasonable agreement with the DFT value 
(+182.6 kcal/mol) especially considering that DFT typically over-estimates the O2 stability. More 
importantly, perhaps, ReaxFF reproduces the barrier for O-vacancy migration quite well 
(ReaxFF: 19.6 kcal/mol; DFT: 19.9 kcal/mol) which indicates that ReaxFF should be able to 
describe vacancy migration and re-organization. Furthermore, using local restraints we can force 
a BaTiO3 unit cell to transform from a tetragonal to a cubic structure – according to DFT 
calculations, the barrier for this asymmetric to symmetric conversion is 2.1 kcal/mol; ReaxFF 
finds a barrier of 2.0 kcal/mol – where the cubic, symmetric, state has the highest energy along 
the transformation path.

5 
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Figure 3 Initial, Energy Minimized Structure of the Oxygen Vacancy in BaTiO3 (start) and Transition State Structure 
for the Migration of this Vacancy (TS)

In order to validate the ReaxFF BaTiO3 force field we performed a series of molecular dynamics 
(MD) simulations. The first of these simulations involved a heating/cooling of an initially
tetragonal BaTiO3 supercell (Figure 4). Here we found that around T=250K the crystal structure
changes from a ferroelectric phase to a non-ferroelectric, cubic, phase.  Subsequently, we took
the 500K non-ferroelectric structure from Figure 4 and performed a cooldown simulation (Figure
5) where we saw, around T=280K, the reverse conversion from a non-ferroelectric to a
ferroelectric phase (in this case, an orthogonal phase).

6 
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Figure 4 Cell Parameters for a BaTiO3 Supercell During a Heat-up Simulation Using the ReaxFF BaTiO3 Parameters

Figure 5 Cell Parameters for a BaTiO3 Supercell during a Cool-down Simulation Using the ReaxFF BaTiO3 Parameters

7 
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In order to evaluate the capability of these ReaxFF parameters to evaluate surface effects on 
ferroelectric transitions, we subsequently performed a similar heatup/cooldown cycles for an 
8192-atom BaTiO3 slab, including various surface terminations.  These terminations includes 
TiO and BaO surfaces – and we also tried TiO-surface with additional –OH groups and TiO-
surfaces exposed to water molecules – which partially resulted in –OH terminated surfaces. 
Figure 6 and Figure 7 show the initial configuration of two bare TiO-terminated BaTiO3 slab and 
its ferroelectric response during heating and cooling – while Figure 8 and Figure 9 show a 
similar simulation for a TiO-terminated slab where the bottom surface is covered with Ti-OH 
groups. As can be clearly observed when comparing Figure 7 and Figure 9, the surface 
termination has a distinct impact on the ferroelectric response – for the bare TiO-cases a domain 
wall is formed almost at the center of the slab, reducing the overall dipole moment to around 
25% of its initial value. Such a domain wall was not observed for the Ti-OH covered surface, 
causing an almost complete recovery of the overall dipole moment after cooling.

Figure 6 Structure for an 8192-atom BaTiO3 Slab with TiO-surfaces on Both Ends
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Figure 7 Overall Dipole Moment of the Bare-TiO Terminated BaTiO3 Slab (Figure 6) During a 
Heating/cooling Cycle

Figure 8 Structure for an 8192-atom BaTiO3 Slab with TiO-surfaces on the Top-end and a TiOH-
covered Surface on the Bottom
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The results in the previous figures serve as some highlights from the ReaxFF MD simulations –
in addition to these MD cases we also simulated ferroelectric response in the presence of 
vacancies, external electric field and many different surface terminations. In all these cases we 
observe substantial interaction between the initial configuration and the overall ferroelectric 
response – indicating that this is a highly dynamic, environment-dependent property for which 
the ReaxFF parameter set, developed in this project, is highly suitable.

Figure 9 Overall Dipole Moment of the Ti-OH Terminated BaTiO3 slab (Figure 8) During a Heating/Cooling 
Cycle
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5.0 CONCLUSIONS

We have successfully extended the ReaxFF description to ferroelectric and non-ferroelectric 
phases for BaTiO3. This extension was performed without any modification in the ReaxFF 
functional form – which means that this BaTiO3 parameter set can be straightforwardly 
extended to a wide range of other materials and surfactant molecules –providing a unique and 
computationally inexpensive simulation tool for realistic ferroelectric materials. Oxygen 
vacancies – and their migration- were also considered in the force field development. Given 
that realistic BaTiO3 materials have a significant concentrations of defects, this again extends 
the realism of the ReaxFF description.

We tested the ReaxFF BaTiO3 parameter set in a series of molecular dynamics (MD) 
simulation, which reproduced a reversible ferroelectric/non-ferroelectric phase transition upon 
heating and cooling. We also performed MD simulations on a large BaTiO3 slab and found that 
the surface termination and surface chemistry affects the ferroelectric response – changing the 
location and mobility of dipolar domain walls.

11 
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