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ABSTRACT 


 Renewable energy generation is intermittent, necessitating energy storage 


subsystems to provide electricity during periods of reduced or no power generation. 


Liquid air energy storage (LAES) systems, with their high energy density and scalability, 


are a promising method to store energy for intermittent systems.  This thesis presents 


two independent papers for use in the systems engineering process during the 


conceptualization and requirements stage of designing and development a LAES system. 


The first paper is a closed-form method of calculating the compressor work for a 


modified simple Linde-Hampson system and liquid yield of a binary mixture of nitrogen 


and oxygen using only their respective pure fluid tables. This tool provides a 


methodology to check holistically a vast amount of different potential binary mixtures for 


use in a LAES system. The second paper is an energy and exergy analysis of a LAES 


system in order to map the trade space and identify optimum operating ranges. 


Additionally, this paper provides insight in to potential measures of performance and 


effectiveness of the LAES system. Finally, this thesis presents a valuable Excel add-in 


tool used to download fluid chemistry tables from the National Institute of Standards and 


Technology website. 
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EXECUTIVE SUMMARY 


A key objective of the Marine Corps Expeditionary Energy Strategy Planning 


Guidance developed in 2011 was to “allow Marines to travel lighter – with less – and move 


faster by reducing size and amount of equipment and dependence on bulk supplies” 


(USMC 2011).  The planning guidance states, “energy is an essential combat enabler and 


a critical vulnerability” (USMC 2011).  One of these vulnerabilities lies in the dependence 


on fossil fuels to provide needed energy to operate command posts in expeditionary 


environments.  According to the planning guidance, this dependence has caused the Marine 


Corps to consume over 200,000 gallons of fuel per day at Afghanistan forward operating 


bases in 2010 (USMC 2011).  The Army’s Energy Security and Sustainability Strategy 


states similar goals of decreasing the force’s demand of fossil fuels and diversifying and 


expanding resource supplies (ASAIE 2015).  Solar and wind technologies can potentially 


provide a portion of all of the necessary power reducing or eliminating use of fossil fuels.  


However, these generation sources are intermittent and are faced with periods of reduced 


or no power generation.  A solution to this problem is energy storage technologies, and this 


thesis presents one technology known as liquid air energy storage (LAES).  


Liquid air energy storage systems are capable of operating completely independent 


of fossil fuels.  The system uses excess power from renewable energy sources such as solar 


and wind to power equipment necessary to produce liquid air.  Liquid air energy storage 


systems condense air to a liquid at -196°C, store it in an insulated unpressurized vessel, 


and expand the liquid air through a turbine when electricity is in demand (Gökçeer, 


Demirkaya, and Padilla 2017).  In order to design and develop such a system, systems 


engineers are in need of tools to support their understanding of the physics and 


thermodynamics of a LAES system, a method to analyze performance parameters, and a 


means of validating modeling and simulation to support model-based systems engineering.   
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This analysis thesis presents a methodology for a systems engineer to perform 


analysis and comparison of a vast array of cryogenic, non-reacting binary mixtures used in 


the liquefaction subsystem of the LAES system.  The methodology provides a new, closed-


form means to investigate alternative working fluids to air and mixtures used in an 


additional subsystem to pre-cool air, which results in higher liquid air yields.  Additionally, 


this analysis thesis identifies optimum pressure ranges of 20 to 50 MPa exiting the air 


compressor.  This operating range produces the highest liquid yields and results in the 


highest energy and exergetic efficiencies.  The analysis identified pre-cooling of air in the 


liquefaction subsystem and heating of liquid air beyond ambient temperatures also resulted 


in higher liquid yields, and in energy and exergetic efficiencies.  The work presented in 


this thesis provides the fundamental understanding of the physics and thermodynamics of 


a LAES system.  Systems engineers conducting future modeling and simulation of a LAES 


system may reference the equations and methodology presented in this thesis to validate 


that their models are within the expected performance parameters and producing physically 


realistic output.  


The thesis presents this body of knowledge in the form of two journal manuscripts.  


The two papers are titled “Closed-Form Thermodynamic Analysis of a Modified Linde-


Hampson System with Binary Mixtures” and “Operating Range for an Ideal Building-Scale 


LAES System through Energy and Exergy Analysis” and are pending acceptance to Energy 


and Entropy journals, respectively.  Additionally, the thesis presents the system description 


and system dynamics of the current LAES system in possession of the Naval Postgraduate 


School.  Finally, the thesis presents an additional analytic tool, which downloads 


thermophysical fluid properties from the National Institute of Standards and Technology 


(NIST) website.  The NIST chemistry webbook website limits users to view up to 600 rows 


of data in only html or a tab-delimited text file format.  The tool, dubbed NIST Caddie, is 


capable of downloading up to 1,048,576 rows of data directly into an Excel worksheet.  


This enables a user to complete thermodynamic calculations completely in Excel over the 


entire range of fluid properties and render results seamlessly as Excel graphs and charts.  


This tool was vital to the analysis and methodology presented in the Chapter III of the 


thesis.   
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I. INTRODUCTION 


A. MOTIVATION AND BACKGROUND 


Remote communities and military forward operating bases (FOBs) often do not 


have access to the traditional electrical grid. In these instances, they must rely on electrical 


generation methods like diesel or gas generators and/or renewable energy systems. When 


integrated, these systems form a microgrid. Microgrid systems are a localized energy grid 


designed to supply the necessary electrical load for a small community (Chowdhury, 


Chowdhury, and Crossley 2009). Microgrids normally act in two distinct modes, a stand-


alone island mode and grid-connected mode (Chowdhury, Chowdhury, and Crossley 


2009). A microgrid may consist of multiple types of distributed energy resources such as 


natural gas, biogas, wind power, solar photovoltaic cells, fuel cells, combined heat and 


power systems (Chowdhury, Chowdhury, and Crossley 2009). An added benefit to 


microgrids is there close proximity to demand, which “increases the power quality and 


reliability of electricity delivered to sensitive end-uses” (Hatziargyriou et al. 2007, 79).   


Remote communities in developed countries and military operations have similar 


expectations of electrical service. Whether for quality of life, such as clothes washers and 


dryers, air-conditioners, electric ovens and ranges, or for mission-critical equipment, such 


as command, control, communications, computers, and intelligence (C4I) equipment, end-


users have the expectation of sustained and reliable electrical services (Backhaus et al. 


2015). In a situation where fuel resupply to either remote communities or military 


operations is delayed or unavailable, the choice is to rely on renewable energy systems 


within the microgrid or suffer outages.  


In 2010, Marine Corps forward operating bases’ total power generation was up to 


303 MW and required over 200,000 gallons of fuel per day (Pollman 2003). Logistics 


burdens like these have made it a mission for the Marine Expeditionary Forces by 2025 to 


sustain its C4I and life support systems in place and only rely on liquid fuel for mobility 


systems (USMC 2011). The Army’s Energy Security and Sustainability Strategy cites the 


use of microgrids and the need to decrease resource demand, drive innovation, and 







 2 


diversify and expand resource supply (ASAIE 2015).  In order to achieve a decreased 


demand of fossil fuels, the Marine Corps and Army must shift power generation away from 


diesel generators and more to renewable energy systems like solar and wind technologies. 


Solar and wind renewable energy systems are considered intermittent energy 


systems, and they alone are not sufficient to provide sustained uninterrupted electrical 


loads. Intermittent energy systems on a remote microgrid must rely on energy storage if 


service is to remain uninterrupted. Renewable energy systems have periods of excess 


power and system shortages. When electrical generation is higher than the demand, energy 


storage systems uses the excess power to store energy and then release power during 


shortages in order to balance electrical loads (Wang et al. 2015).  


B. LIQUID AIR ENERGY STORAGE 


There are multiple options to balance electrical loads: rechargeable batteries, 


pumped hydro, compressed air, liquid air, and others.  Given their high energy density and 


scalability, liquid air energy storage (LAES) systems are a promising method to store 


energy for intermittent systems (Wang et al. 2015).  Batteries are a valid energy storage 


solution but can be costly overtime due to the need to replace after cycling.  Traditional 


compressed air energy storage (CAES) systems store compressed air in caverns formed in 


either salt, rock, or aquifer formations (McLarnon and Cairns 1989).  The requirement for 


specific geological features in CAES and pumped hydro make this option less attractive 


for remote communities and FOBs.  Micro-CAES systems use smaller pressurized vessels 


instead of large caverns but have lower energy densities than liquid air (Ameel et al. 2013, 


Kim et al. 2012).  Liquid air energy storage is still considered a developing technology, 


although, the components that make up this system are widely used in industry and are 


proven reliable and mature systems (Luo et al. 2015).  Figure 1 depicts a top-level system 


diagram of how a LAES system interacts with external systems like renewable energy 


sources and the microgrid.  Renewable energy sources like solar and wind provide 


necessary power to the liquefaction subsystem, where the liquid air is the fuel for energy 


production, which provides the needed electricity to the microgrid. 
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Figure 1.  System Level Diagram of a LAES System. 


The simplest method of liquefying air is the Linde-Hampson cycle, which consists 


of a compressor, two-stream heat exchanger, and a Joule Thomson (JT) valve (Hands 


1986). The Linde-Hampson cycle will be further discussed in the following chapter. 


Additional methods include dual pressure Linde cycle, precooled Linde-Hampson cycle, 


Claude cycle, Kaptiza system, Heylandt cycle, and other variations (Hands 1986, Barron 


1985). Liquid air is stored at 79 K in an unpressurized and insulated vessel for use during 


periods of intermittency (Gökçeer, Demirkaya, and Padilla 2017). In the electrical 


generation subsystem of LAES, liquid air is released from the storage tank where it is 


evaporated and expanded through a turbine to generate electricity (Gökçeer, Demirkaya, 


and Padilla 2017).   


C. THESIS OVERVIEW 


This thesis uses the manuscript option, namely using two papers submitted for 


publication as the core content. The previous sections introduced the motivation, 


background, and introduction to LAES systems. Chapter II presents a description of the 


components and system dynamics of the current LAES system belonging to the Naval 


Postgraduate School (NPS). Chapters III and IV present exact copies of two journal articles 


submitted to Energy and Entropy. The intent of the thesis and two papers are to act as tools 


in the system conceptualization stage of the V-model. The V-model is a systems 


engineering process used to guide the design, development, test of a system which was 
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“developed by NASA as part of the Software Management and Assurance Program 


(SMAP)” (Forsberg and Mooz 1992, 37).  The decomposition and definition process 


focuses on “the movement from an operational need to system-level requirements” to 


specifications for components in the detailed design (Buede 2009, 11). The process ends 


with an integration and verification sequence by verifying components, subsystems, the 


full system through testing (Blanchard and Fabrycky 2010).  Both USMC and US Army 


state they have a need to decrease resource demand and expand resource supply.  Liquid 


air energy storage is a system that supports this operational need.  This thesis provides tools 


a systems engineer may use to assist in system conceptualization to the development of 


system requirements.  Figure 2 provides an illustrative example of where the work of this 


thesis fits into the V-model.   


 


Figure 2.  V-Model Example Showing Where Current Thesis is 
Targeted. Adapted from Blanchard and Fabrycky (2010) and Forsberg and 


Mooz (1992). 
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It is critical for systems engineers to have a basic understanding of the dynamics of 


a LAES system if they are to undertake the design and development of the system.  The 


dynamics of the system is defined based on the fluid characteristics at the inlet and exit of 


each component of the LAES system.  This unique system involves subject areas of 


physics, thermodynamics, and cryogenics.  Although a detailed understanding of these 


subjects are not necessary, it is beneficial for a systems engineer to have the basic 


understanding of physics and thermodynamics.  This thesis does not present thorough 


background information on these subjects and assumes the reader has a basic 


understanding.   


The step following this thesis is modeling and simulation of a liquid air energy 


storage system. The results from this thesis will provide the necessary physical 


understanding to validate the model and simulation. The two papers presented in this thesis 


are titled “Closed-Form Thermodynamic Analysis of a Modified Linde-Hampson System 


with Binary Mixtures” and “Operating Range for an Ideal Building-Scale LAES System 


through Energy and Exergy Analysis.”   


The first paper, contained in Chapter III, presents a closed-form method of 


calculating the compressor work for a modified simple Linde-Hampson system and liquid 


yield of a binary mixture of nitrogen and oxygen using only their respective pure fluid 


tables. This work is important to the systems engineering process for the development of 


the LAES system because it provides a methodology of holistically checking a vast amount 


of different binary mixtures. Air is composed of mostly nitrogen and oxygen, 


approximately 78.10% and 20.95%, respectively (Lemmon et al. 2000). Due to the large 


percentages of these two gases, air is similar to a binary mixture. This paper provides a tool 


for studying alternative working fluids to air toward an analysis of alternatives in a trade-


off study.   


The second paper, contained in Chapter IV, presents an energy and exergy analysis 


of a liquid air energy storage system in order to identify optimum operating ranges.  This 


paper analyzes the simple and pre-cooled Linde-Hampson liquefaction subsystems and the 


direct expansion method with and without heating liquid air beyond ambient temperatures 


in the energy production subsystem.  The usefulness of this paper to systems engineers is 
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not only in providing an understanding of the physics and thermodynamics of the system, 


but in presenting a methodology to use for analyzing alternative system designs.  The 


fundamental analysis presented in this paper provides necessary validation of future 


modeling and simulation. 


Chapter V introduces an Excel add-in developed during this thesis work, which was 


vital to the analysis conducted in Chapter III. The add-in, called NIST Caddie, provides 


users the ability to download up to 1,048,576 rows (limit of an Excel worksheet) of fluid 


chemistry data from the National Institute of Standards and Technology (NIST) website. 


The thesis closes with conclusions and a description of future work in Chapter VI.  


Appendix A includes the nomenclature used for each paper.  Appendix B includes the 


complete Visual Basic for Applications (VBA) coding for the NIST Caddie.   
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II. CURRENT LIQUID AIR ENERGY STORAGE SYSTEM 
OF INTEREST 


A. SYSTEM DESCRIPTION 


In 2015, the Office of Naval Research (ONR) sponsored construction of a LAES 


demonstration system through the Naval Facilities Engineering Command (NAVFAC) 


Engineering and Expeditionary Warfare Center. Nitro-Turbodyne, Inc. built this system 


and the Naval Postgraduate School now has possession of the system. The system was 


unsuccessful in producing adequate amounts of liquid air. The fundamental analysis 


conducted within this thesis provides the necessary understanding into the physics of the 


system, which may provide the insight into why this demonstration system was 


unsuccessful in producing liquid air. Figure 3 provides a schematic of the critical 


components of the Nitro-Turbodyne LAES system.   


 


Figure 3.  Schematic of the Nitro-Turbodyne, Inc. LAES System. 
Adapted from Nitro-Turbodyne (2016). 


The liquefaction subsystem consists of a molecular sieve, a compressor, an ice 


water heat exchanger, a double-piped regenerator (heat exchanger), a JT valve, and a 
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Dewar. The molecular sieve removes moisture and CO2 from ambient air by using a 


mixture of sorbent 4A and sorbent 13X (Nitro-Turbodyne 2016). The removal of water and 


CO2 from the system eliminates the concern for the fluids freezing since water freezes at 


273.15 K and CO2 freezes at 194.75 K (Lemmon, McLinden, and Friend n.d.). What 


remains is 78.12% nitrogen, 20.96% oxygen, and 0.92% Argon (Lemmon et al. 2000). 


Figure 4 shows an image of the molecular sieve, otherwise known as the air intake 


scrubber. 


 


Figure 4.  Image of the Molecular Sieve as Part of the Nitro-Turbodyne, 
Inc. LAES System. Adapted from Nitro-Turbodyne (2016). 


The compressor is a commercial-off-the-shelf (COTS) compressor made by Airtex, as 


depicted in Figure 5. The compressor is capable of producing up to 3.5 ft3 per min. at about 


4500 psi. The ice-bath heat exchanger’s purpose is to reduce the temperature of the fluid 


exiting the compressor. It cools the air via a finned heat exchanger in an ice water bath, as 


shown in Figure 6.   


The double-piped heat exchanger, JT valve, and Dewar are a part of the condenser 


subsystem, as shown in Figure 7. The double-piped heat exchanger is a cross-flow heat 


exchanger with a high-pressure stainless steel hose line inside of a larger atmospheric  
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Figure 5.  Image of the Compressor as Part of the Nitro-Turbodyne, Inc. 
LAES System. Source: Nitro-Turbodyne (2016). 


 


Figure 6.  Image of the Ice-Bath Heat Exchanger as Part of the Nitro-
Turbodyne, Inc. LAES System. Source: Nitro-Turbodyne (2016). 


 


Figure 7.  Image of the Condenser Subsystem as Part of the Nitro-
Turbodyne, Inc. LAES System. Adapted from Nitro-Turbodyne (2016). 
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pressure rubber corrugated hose. The double-piped heat exchanger’s purpose is to cool the 


incoming air prior to reaching the JT valve. The JT valve is a pressure-reducing device, 


which maintains a constant enthalpy of the air as it passes through. The double-piped heat 


exchanger and JT valve are within the insulated box. The final component of the 


liquefaction subsystem is the Dewar, which stores liquid air at approximately 79 K.   


The electrical generation subsystem consists of an evaporator, an anti-freeze 


subsystem, turbine, and generator. The evaporator is similar to the ice-bucket heat 


exchanger except instead of ice water the bucket contains hot anti-freeze. The anti-freeze 


subsystem acts as a thermal energy storage system. It captures the heat rejected from the 


compressor via a finned heat exchanger, uses the hot anti-freeze to heat the liquid air in the 


evaporator, and then cycled back to the compressor by the anti-freeze pump. The turbine 


and generator receive the high-pressure evaporated air generating electricity. The control 


box displays information from multiple sensors that are reading pressure, temperature, flow 


rate, and such, from sensors throughout the system. 


B. SYSTEM DYNAMICS 


Figure 8 is a block diagram of the Nitro-Turbodyne, Inc. The LAES system and 


serves as a tool to explain its system dynamics. This system takes in ambient air first 


through the molecular sieve. As stated previously, the molecular sieve removes the 


moisture and CO2 from ambient air. This filtered air then enters the compressor, where the 


air is compressed from atmospheric pressure to 250 atmospheres (atm). As pressure 


increases, the temperature increases as well. The compressor is a three-stage compressor. 


It sequentially compresses air in each stage and cooled via convection from fins and a 


cooling fan. According to the manufacturer, the compressor is capable of rejecting enough 


heat so that the compressed air is less than 10°F above ambient temperature (Airetex 2006). 


The anti-freeze heat exchanger captures the heat rejected from the compressor and transfers 


the resulting hot anti-freeze to later components in the system. The ice-bath heat exchanger 


next receives the compressed air and cools it to ambient temperature or below. Next, the 


double-piped heat exchanger receives the compressed air and transfers to the JT valve. The 


JT valve reduces the pressure from 250 atm to just above ambient pressure. During this 
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pressure reduction, the temperature drops significantly. If the temperature of the 


compressed air into the JT valve is low enough, the output of the JT valve will be a mixture 


of liquid and gaseous air. The liquid air is stored in the Dewar until it is ready to be used 


and the remaining gaseous air (or regen air) is returned to the double-piped heat exchanger. 


As Figure 3 shows, the regen air then cools the incoming compressed air prior to it entering 


the JT valve and finally returns to the molecular sieve. Theoretically, this system requires 


approximately 180 minutes from a “cold start” to generate liquid air. Although, ONR 


reported this system was not successful in generating liquid air.   


 


Figure 8.  Block Diagram of Nitro-Turbodyne, Inc. LAES System 


The required temperature of air to become a liquid is 78.9 K (Lemmon et al. 2000). 


Air undergoes a throttling process as it passes through the JT valve. In a throttling process, 


the enthalpy does not change, but the pressure drops and temperature either drops or 


increases (Moran and Shapiro 2004, 549–550). The required temperature of air entering 


the JT valve can be determined by referencing the enthalpy of air at 78.9 K and at 


atmospheric pressure and then referencing the same enthalpy at the incoming pressure. For 


example, if the incoming pressure is approximately 200 atm and the exit pressure is 1 atm, 


the enthalpy at 78.9 K is approximately 79.21 kJ/kg. Therefore, at 200 atm, the approximate 


temperature of air entering the JT valve must be 178.3 K. Due to the requirement of this 
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low temperature, the system must cycle through the liquefaction subsystem many times 


before the air is cool enough prior to entering the JT valve in order to generate liquid air.  


Once an adequate amount of liquid air has been created and there is a system 


demand for additional electricity, the Dewar releases liquid air to the electrical generation 


subsystem. The evaporator receives the liquid air. The hot antifreeze bath in the evaporator 


heats the liquid air back to a gas at roughly room temperature. Due to the design of this 


system, the pressure maintains at just above ambient, but the kinetic energy in the gas 


increases. This is because the volume of one kilogram of liquid air is 1.154 x 10–3m3 and 


the volume of one kilogram of gaseous air at room temperature is 0.835m3 (Bell 1963). 


This is an increase of over 700 times the volume of liquid air. The expansion of air is 


constrained to a constant diameter stainless steel tube, and therefore, the velocity of the air 


increases accordingly. Due to NPS not having possession of the turbine for this system, it 


is assumed that an impulse or reaction turbine spins due to the high velocity of the air. This 


in turn spins the generator, which creates electricity for any use such as for a microgrid or 


for base camp operations. 
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III. PAPER I: CLOSED-FORM THERMODYNAMIC 
ANALYSIS OF A MODIFIED LINDE-HAMPSON SYSTEM 


WITH BINARY MIXTURES 


This chapter has been submitted for publication in a journal by the authors Todd A. Howe, 
Anthony G. Pollman, and Anthony J. Gannon. 
 


A. ABSTRACT 


This paper presents a closed-form method of calculating the compressor work for 


a modified simple Linde-Hampson system and liquid yield of a binary mixture of nitrogen 


and oxygen using only their respective pure fluid tables. The modified system uses two 


compressors in lieu of a single compressor, one compressor for makeup gas and a second 


for return gas. The methodology presented can be used for any non-reacting binary mixture 


of liquefaction fluids at any composition and for analysis with alternative liquefaction 


systems. The two-compressor model yields more conservative results than the single 


compressor model but is a useful alternative when detailed experimental data of a binary 


mixture is not available. This work is a part of a larger study for the design of a small-scale 


liquid air energy storage (LAES) system. The analytical approach presented in this paper 


for a binary mixture of nitrogen and oxygen provide the means to validate future modeling 


of cryogenic systems based on different binary working fluids.   


Keywords: energy storage, cryogenic, binary mixture, liquefaction systems, liquid air 


B. INTRODUCTION 


Patented in the 1903, the Linde-Hampson (LH) liquefaction system shown in 


Figure 9 was the second system used to liquefy gases and is the simplest of all liquefaction 


systems (Barron 1985, Hands 1986, Bell 1963, Linde 1903). This paper will first introduce 


the analysis of this system for a single pure fluid and then the analysis for a binary fluid 


mixture. 
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Figure 9.  Simple Linde-Hampson Liquefaction System. Adapted from 
Barron (1985). 


As shown in Figure 9, at steady state, the pure fluid at ambient conditions is 


isothermally compressed (1 to 2) and precooled through the heat exchanger (3). Next, the 


fluid goes through a throttling process through the Joule Thomson (JT) valve where it 


becomes a two-phase mixture (4). The liquid generated remains in a reservoir and the gas 


cycles back through the heat exchanger, cooling the gas from state 2 to 3, and returns to 


the compressor at state 1 condition. The mass flow rate of the liquid gas is equal to the 


mass flow rate of the makeup gas.   


The temperature-entropy diagram (T-s) shown in Figure 10 provides an example of 


how the states change within the simple Linde-Hampson system for nitrogen as the 


working fluid. An example of a thermodynamically ideal liquefaction system is presented 


as dashed lines in Figure 10. In this ideal system, gas is isothermally compressed from state 


1 to 2 and undergoes isentropic expansion from state 2 to f at the initial pressure of state 1 


(Barron 1985). The thermodynamically ideal liquefaction system is used to compare the 


system when using different fluids through a figure of merit (FOM) (Barron 1985). 
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Figure 10.  Diagram of Simple Linde-Hampson Cycle. Adapted from 
Barron (1985). 


C. SIMPLE LINDE-HAMPSON SYSTEM ANALYSIS 


The simplest way to conduct a thermodynamic analysis on this system is two draw 


two control volumes, one around the compressor and the second around the heat exchanger, 


JT valve, and liquid reservoir (Barron 1985). Using the first and second law for the 


compressor (Barron 1985, Moran and Shapiro 2004) 


 
 �̇�𝑄𝑅𝑅 + �̇�𝑚ℎ1 = �̇�𝑚ℎ2 + 𝑊𝑊𝑐𝑐̇ →


�̇�𝑊𝑐𝑐
�̇�𝑚


= �̇�𝑄𝑅𝑅
�̇�𝑚


+ (ℎ2 − ℎ1)  (1)  
 
 �̇�𝑚𝑠𝑠2 = �̇�𝑚𝑠𝑠1 + �̇�𝑄𝑅𝑅


𝑇𝑇1
→ �̇�𝑄𝑅𝑅


�̇�𝑚
= 𝑇𝑇1(𝑠𝑠2 − 𝑠𝑠1) . (2) 


 
Combining equations (1) and (2) to get specific work or work per unit mass compressed 


(Barron 1985). 


 
 �̇�𝑊𝑐𝑐


�̇�𝑚
= 𝑇𝑇1(𝑠𝑠1 − 𝑠𝑠2) + (ℎ2 − ℎ1) (3) 


 
For the thermodynamically ideal liquefaction system, the work per unit mass 


compressed is equal to the work per unit mass liquefied because 100 percent of the gas 


compressed is liquefied (Barron 1985). 
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 �̇�𝑊𝑖𝑖
�̇�𝑚


= 𝑇𝑇1�𝑠𝑠1 − 𝑠𝑠𝑓𝑓� + �ℎ𝑓𝑓 − ℎ1� = �̇�𝑊𝑖𝑖
�̇�𝑚𝑓𝑓


 (4) 
 


For the second control volume, there is no work or heat transferred to or from the 


control volume; therefore, the first law reduces to (Barron 1985). 


 
 �̇�𝑚ℎ2 = �̇�𝑚𝑓𝑓ℎ𝑓𝑓 + ��̇�𝑚 − �̇�𝑚𝑓𝑓�ℎ1 (5) 
 
Solving for the fraction of the liquid mass flow rate will give the liquid yield, defined as Y 


(Barron 1985). 


 
 𝑌𝑌 = �̇�𝑚𝑓𝑓


�̇�𝑚
= ℎ2−ℎ1


ℎ𝑓𝑓−ℎ1
 (6) 


 
The final system performance is the work required for liquefaction. Substituting Equation 


(5) into (3) gives the work per unit mass liquefied (Barron 1985). 


 
 �̇�𝑊𝑐𝑐


�̇�𝑚𝑓𝑓
= �̇�𝑊𝐶𝐶


�̇�𝑚𝑌𝑌
= [𝑇𝑇1(𝑠𝑠1 − 𝑠𝑠2) + (ℎ2 − ℎ1)] �ℎ𝑓𝑓−ℎ1


ℎ2−ℎ1
� (7) 


 
The figure of merit is defined as 


 
 𝐹𝐹𝐹𝐹𝐹𝐹 = �̇�𝑊𝑖𝑖


�̇�𝑚𝑓𝑓
/ �̇�𝑊𝑐𝑐


�̇�𝑚𝑓𝑓
. (8) 


 
shows the performance of the Linde-Hampson cycle using a temperature of T1 = T2 = 300K 


and pressures of p1 = 1 atm and p2 = 200 atm for pure nitrogen, oxygen, and air (Barron 


1985). This table presents results from Baron and results from the previous equations using 


available fluid tables from NIST and Lemmon. 
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Table 1.   Performance of the Linde-Hampson Cycle. 


Fluid 
Liquid 
Yield 
(Y) 


Work/Unit 
Mass 


Compressed 
(kJ/kg) 


Work/Unit 
Mass 


Liquefied 
(kJ/kg) 


Figure 
of 


Merit 
Source 


N2 0.0708 472.5 6673 0.1151 (Barron 1985, 74) 
O2 0.1065 405.0 3804 0.1671 (Barron 1985, 74) 
Air 0.0808 454.1 5621 0.1313 (Barron 1985, 74) 


N2 0.0746 472.8 6335 0.1214 (Lemmon, McLinden, and 
Friend n.d.) 


O2 0.1063 405.9 3819 0.1663 (Lemmon, McLinden, and 
Friend n.d.) 


Air 0.0808 453.9 5622 0.1316 (Lemmon et al. 2000) 


 


The analysis of the Linde-Hampson system with a binary mixture as the working 


fluid is different from a single pure substance. Using a control volume round the heat 


exchanger, JT-valve and liquid reservoir, conservation of mass shows 


 
 �̇�𝑚2 = �̇�𝑚1 + �̇�𝑚𝑓𝑓 (9) 


and  


 �̇�𝑚1 = �̇�𝑚𝑔𝑔 . (10) 
 


The first law energy balance is 


 
 �̇�𝑚𝑓𝑓𝑁𝑁2ℎ2𝑁𝑁2 + �̇�𝑚𝑓𝑓𝑂𝑂2ℎ2𝑂𝑂2 + �̇�𝑚𝑔𝑔𝑁𝑁2ℎ2𝑁𝑁2 + �̇�𝑚𝑔𝑔𝑂𝑂2ℎ2𝑂𝑂2 = 
                                   �̇�𝑚𝑓𝑓𝑁𝑁2ℎ𝑓𝑓𝑁𝑁2 + �̇�𝑚𝑓𝑓𝑂𝑂2ℎ𝑓𝑓𝑂𝑂2 + �̇�𝑚𝑔𝑔𝑁𝑁2ℎ1𝑁𝑁2 + �̇�𝑚𝑔𝑔𝑂𝑂2ℎ1𝑂𝑂2  (11) 
 


The individual mass flow rates are unknown, and therefore, more information is 


needed to determine the yield and work. A vapor liquid equilibrium (VLE) diagram for 


oxygen and nitrogen will provide the molar fraction of oxygen and nitrogen in liquid and 


vapor phases. According to Raoult’s Law, the partial pressure of a substance is the product 


of its vapor pressure and its mole fraction in the mixture (Barron 1985). 


 
 𝑝𝑝𝑗𝑗 = 𝜋𝜋𝑗𝑗𝑥𝑥𝑗𝑗  (12) 
 







 18 


Where the partial pressure of is 𝑝𝑝𝑗𝑗, the vapor pressure is 𝜋𝜋𝑗𝑗, and the liquid molar 


fraction is 𝑥𝑥𝑗𝑗. Assuming the gaseous mixture behaves as an ideal gas, the total pressure of 


the mixture based on the Gibbs-Dalton Law is (Gillespie 1930)  


 
 𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑦𝑦𝑗𝑗 , (13) 
 
where 𝑦𝑦𝑗𝑗 is the vapor mole fraction of the jth component in the mixture. Combining 


equations 12 and 13 gives 


 
 𝑦𝑦𝑗𝑗 = �𝜋𝜋𝑗𝑗/𝑝𝑝�𝑥𝑥𝑗𝑗 , (14) 
 
Assuming that the gas is ideal and the liquid is a perfect mixture, the total pressure is 


(Barron 1985)  


 
 𝑝𝑝 = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗 = ∑ 𝜋𝜋𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗 . (15)
  
A binary mixture like oxygen and nitrogen therefore has a total pressure of 


 
 𝑝𝑝 = 𝜋𝜋𝑂𝑂2𝑥𝑥𝑂𝑂2 + 𝜋𝜋𝑁𝑁2�1 − 𝑥𝑥𝑂𝑂2�. (16) 
 


The point at which nitrogen and oxygen are a two phase mixture is immediately 


following the JT valve and inside the liquid reservoir. Using a total pressure of the mixture 


inside the liquid reservoir as one atmosphere, the resulting temperature-composition 


diagram for an oxygen-nitrogen mixture is shown in Figure 11. Partial pressures for oxygen 


and nitrogen were taken from NIST tables (Lemmon, McLinden, and Friend n.d.). Figure 


11 shows the progression of the mixture from initial operation to steady state; where the 


mole fraction of gaseous and liquid oxygen and nitrogen is 0.213 and 0.787, respectively.   
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Figure 11.  VLE Diagram of an Oxygen and Nitrogen Mixture 


The final temperature where equilibrium was achieved using the partial pressures 


from the NIST tables was 78.943 K. This differs slightly from Lemmon’s temperature of 


78.903 K for liquid air (Lemmon et al. 2000).   


The composition of oxygen and nitrogen gases returning to the heat exchanger and 


compressor is at the equilibrium temperature. The composition of oxygen and nitrogen 


gases entering the heat exchanger from the compressor is still not known due to the mixing 


of makeup air. Therefore, a closed-form solution can be found by the addition of a second 


compressor, and thus modifying the current Linde-Hampson system.   
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D. MODIFIED LH SYSTEM WITH A BINARY MIXTURE 


The modified Linde-Hampson system has two compressors, one compressor for 


makeup air and a second compressor for the returning gas. Figure 12 displays the modified 


system with new state numbers.   


 


Figure 12.  Modified Linde-Hampson System with Two Compressors. 


At steady state, the composition of liquid nitrogen and oxygen generated is 


equivalent to the composition of nitrogen and oxygen gas entering into the system as 


makeup gas. The initial vapor and final liquid lines in Figure 11 also shows this. After 


converting the molar fraction of nitrogen and oxygen to a mass fraction, the composition 


liquid nitrogen and oxygen is defined as 


 
 


�̇�𝑚𝑓𝑓𝑂𝑂2
�̇�𝑚𝑓𝑓𝑁𝑁2


= 𝑥𝑥, (17) 


  
and the composition of gaseous nitrogen and oxygen returning back to the second 


compressor is 


 
 


�̇�𝑚𝑔𝑔𝑂𝑂2
�̇�𝑚𝑔𝑔𝑁𝑁2


= 𝑦𝑦. (18) 
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The liquid yield of the system is the ratio of the liquid mass flow rate to the overall 


mass flow rate 


 
 𝑌𝑌 = �̇�𝑚𝑓𝑓


�̇�𝑚
=


�̇�𝑚𝑓𝑓𝑁𝑁2
+�̇�𝑚𝑓𝑓𝑂𝑂2


�̇�𝑚𝑓𝑓𝑁𝑁2
+�̇�𝑚𝑓𝑓𝑂𝑂2


+�̇�𝑚𝑔𝑔𝑁𝑁2
+�̇�𝑚𝑔𝑔𝑂𝑂2


. (19) 


 
Substituting oxygen terms for nitrogen terms from equations (17) and (18) gives 


 


 𝑌𝑌 =
�̇�𝑚𝑓𝑓𝑁𝑁2


(1+𝑥𝑥)


�̇�𝑚𝑓𝑓𝑁𝑁2
(1+𝑥𝑥) + �̇�𝑚𝑔𝑔𝑁𝑁2


(1+𝑦𝑦). (20) 


 
Rearranging terms results in 


 
 𝑌𝑌 = 1


1+
�̇�𝑚𝑔𝑔𝑁𝑁2


(1+𝑦𝑦)


�̇�𝑚𝑓𝑓𝑁𝑁2
(1+𝑥𝑥)


  . (21) 


 
The first law energy balance for the modified system within control volume 1 is 


 
 �̇�𝑚𝑓𝑓𝑁𝑁2ℎ2𝑁𝑁2 + �̇�𝑚𝑓𝑓𝑂𝑂2ℎ2𝑂𝑂2 + �̇�𝑚𝑔𝑔𝑁𝑁2ℎ8𝑁𝑁2 + �̇�𝑚𝑔𝑔𝑂𝑂2ℎ8𝑂𝑂2 = 
                                   �̇�𝑚𝑓𝑓𝑁𝑁2ℎ6𝑓𝑓𝑁𝑁2 + �̇�𝑚𝑓𝑓𝑂𝑂2ℎ6𝑓𝑓𝑂𝑂2 + �̇�𝑚𝑔𝑔𝑁𝑁2ℎ7𝑁𝑁2 + �̇�𝑚𝑔𝑔𝑂𝑂2ℎ7𝑂𝑂2         . (22) 
 
Substituting oxygen terms for nitrogen terms from equations (17) and (18) gives 


 
 �̇�𝑚𝑓𝑓𝑁𝑁2ℎ2𝑁𝑁2 + 𝑥𝑥�̇�𝑚𝑓𝑓𝑁𝑁2ℎ2𝑂𝑂2 + �̇�𝑚𝑔𝑔𝑁𝑁2ℎ8𝑁𝑁2 + 𝑦𝑦�̇�𝑚𝑔𝑔𝑁𝑁2ℎ8𝑂𝑂2 = 
                                �̇�𝑚𝑓𝑓𝑁𝑁2ℎ6𝑓𝑓𝑁𝑁2 + 𝑥𝑥�̇�𝑚𝑓𝑓𝑁𝑁2ℎ6𝑓𝑓𝑂𝑂2 + �̇�𝑚𝑔𝑔𝑁𝑁2ℎ7𝑁𝑁2 + 𝑦𝑦�̇�𝑚𝑔𝑔𝑁𝑁2ℎ7𝑂𝑂2      . (23) 
 
Dividing both sides by �̇�𝑚𝑓𝑓𝑁𝑁2and reducing results in 


 


 
�̇�𝑚𝑔𝑔𝑁𝑁2
�̇�𝑚𝑓𝑓𝑁𝑁2


=
ℎ6𝑓𝑓𝑁𝑁2


−ℎ2𝑁𝑁2+𝑥𝑥�ℎ6𝑓𝑓𝑂𝑂2−ℎ2𝑂𝑂2�


ℎ8𝑁𝑁2−ℎ7𝑁𝑁2+𝑦𝑦�ℎ8𝑂𝑂2−ℎ7𝑂𝑂2�
  . (24) 


 


Substituting Equation 24 into 21 results in a final yield equation of   


 


 𝑌𝑌 = 1 �1 +
ℎ6𝑓𝑓𝑁𝑁2


−ℎ2𝑁𝑁2+𝑥𝑥�ℎ6𝑓𝑓𝑂𝑂2−ℎ2𝑂𝑂2�
(1+𝑦𝑦)


ℎ8𝑁𝑁2−ℎ7𝑁𝑁2+𝑦𝑦�ℎ8𝑂𝑂2−ℎ7𝑂𝑂2�
(1+𝑥𝑥)


��   . (25) 
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The compressor work is in terms of total mass flow rate. Therefore, an equation to 


relate the mass flow rate of liquid and gaseous nitrogen and oxygen to total mass flow rate 


is required. This is achieved using equations (17), (18), and (19) to write each mass flow 


component in terms of the total mass flow, yield and mass fractions x and y. 


 
 �̇�𝑚𝑓𝑓𝑁𝑁2 = �̇�𝑚𝑌𝑌


(1+𝑥𝑥)
 (26) 


 
 �̇�𝑚𝑓𝑓𝑂𝑂2 = 𝑥𝑥�̇�𝑚𝑌𝑌


(1+𝑥𝑥)
 (27) 


 
 �̇�𝑚𝑔𝑔𝑁𝑁2 = �̇�𝑚(1−𝑌𝑌)


(1+𝑦𝑦)
 (28) 


 
 �̇�𝑚𝑔𝑔𝑂𝑂2 = 𝑦𝑦�̇�𝑚(1−𝑌𝑌)


(1+𝑦𝑦)
 (29) 


 


The compressor has a work per unit mass compressed based on the first and second 


law equations. The first law and second equation for the makeup air compressor is 


(compressor 1) 


 
 𝑊𝑊𝑐𝑐1


̇ = �̇�𝑄𝑅𝑅1 + �̇�𝑚𝑓𝑓𝑁𝑁2 �ℎ2𝑁𝑁2 − ℎ1𝑁𝑁2� + �̇�𝑚𝑓𝑓𝑂𝑂2 �ℎ2𝑂𝑂2 − ℎ1𝑂𝑂2� (30) 
 
 �̇�𝑄𝑅𝑅1 = 𝑇𝑇1 ��̇�𝑚𝑓𝑓𝑁𝑁2


�𝑠𝑠2𝑁𝑁2 − 𝑠𝑠1𝑁𝑁2� + �̇�𝑚𝑓𝑓𝐹𝐹2
�𝑠𝑠2𝑂𝑂2 − 𝑠𝑠1𝑂𝑂2��   . (31) 


 
Substituting in equations (26) and (27) 


 
 𝑊𝑊𝑐𝑐1


̇ = �̇�𝑄𝑅𝑅1 + �̇�𝑚𝑌𝑌
(1+𝑥𝑥)


�ℎ2𝑁𝑁2 − ℎ1𝑁𝑁2� + 𝑥𝑥�̇�𝑚𝑌𝑌
(1+𝑥𝑥)


�ℎ2𝑂𝑂2 − ℎ1𝑂𝑂2� (32) 
 
 �̇�𝑄𝑅𝑅1 = 𝑇𝑇1 �


�̇�𝑚𝑌𝑌
(1+𝑥𝑥)


�𝑠𝑠2𝑁𝑁2 − 𝑠𝑠1𝑁𝑁2� + 𝑥𝑥�̇�𝑚𝑌𝑌
(1+𝑥𝑥)


�𝑠𝑠2𝑂𝑂2 − 𝑠𝑠1𝑂𝑂2��    . (33) 
 
Combining equations (32) and (33) and dividing through by mass flow rate yields the 


compressor work per unit mass 


 
 𝑊𝑊𝑐𝑐1̇


�̇�𝑚
= 𝑇𝑇1 �


𝑌𝑌
(1+𝑥𝑥) �𝑠𝑠2𝑁𝑁2 − 𝑠𝑠1𝑁𝑁2� + 𝑥𝑥𝑌𝑌


(1+𝑥𝑥) �𝑠𝑠2𝑂𝑂2 − 𝑠𝑠1𝑂𝑂2�� + 
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                                               𝑌𝑌
(1+𝑥𝑥)


�ℎ2𝑁𝑁2
− ℎ1𝑁𝑁2


�+ 𝑥𝑥𝑌𝑌
(1+𝑥𝑥)


�ℎ2𝐹𝐹2
− ℎ1𝐹𝐹2


�  . (34) 
 
The compressor work per unit mass for the return air (compressor 2) is therefore 


 
 𝑊𝑊𝑐𝑐2̇


�̇�𝑚
= 𝑇𝑇1 �


𝑌𝑌
(1+𝑥𝑥) �𝑠𝑠8𝑁𝑁2 − 𝑠𝑠7𝑁𝑁2� + 𝑥𝑥𝑌𝑌


(1+𝑥𝑥) �𝑠𝑠8𝑂𝑂2 − 𝑠𝑠7𝑂𝑂2�� + 


                                              𝑌𝑌
(1+𝑥𝑥)


�ℎ8𝑁𝑁2
− ℎ7𝑁𝑁2


� + 𝑥𝑥𝑌𝑌
(1+𝑥𝑥)


�ℎ8𝐹𝐹2
− ℎ7𝐹𝐹2


�                    . (35) 
 
The total compressor work for the system is the sum of equations (34) and (35). 


 
 𝑊𝑊𝑐𝑐̇


�̇�𝑚
= 𝑊𝑊𝑐𝑐1̇


�̇�𝑚
+ 𝑊𝑊𝑐𝑐2̇


�̇�𝑚
 (36) 


 
The calculation for compressor work per unit mass liquefied is simply the work per unit 


mass divided by the liquid yield. 


 
   𝑊𝑊𝑐𝑐̇


�̇�𝑚𝑓𝑓
= 𝑊𝑊𝑐𝑐̇


�̇�𝑚𝑌𝑌
 (37) 


 
The ideal compression work for this modified system is calculated using states 1 


and 6f, using a modified form of Equation (4). 


 
 �̇�𝑊𝐶𝐶𝑖𝑖 = �̇�𝑄𝑅𝑅𝑖𝑖 + �̇�𝑚𝑓𝑓𝑁𝑁2 �ℎ6𝑓𝑓𝑁𝑁2 − ℎ1𝑁𝑁2� + �̇�𝑚𝑓𝑓𝑂𝑂2 �ℎ6𝑓𝑓𝑂𝑂2 − ℎ1𝑂𝑂2� (38) 
 
 �̇�𝑄𝑅𝑅𝑖𝑖 = 𝑇𝑇1 ��̇�𝑚𝑓𝑓𝑁𝑁2


�𝑠𝑠1𝑁𝑁2 − 𝑠𝑠6𝑓𝑓𝑁𝑁2� + �̇�𝑚𝑓𝑓𝑂𝑂2
�𝑠𝑠1𝑂𝑂2 − 𝑠𝑠6𝑓𝑓𝑂𝑂2�� (39) 


 
Substituting Equation (39) into (38) and substituting mass flow rates with equations (26) 


and (27) yields 


 
 �̇�𝑊𝐶𝐶𝑖𝑖 = 𝑇𝑇1 �


�̇�𝑚𝑌𝑌
(1+𝑥𝑥) �𝑠𝑠1𝑁𝑁2 − 𝑠𝑠6𝑓𝑓𝑁𝑁2� + 𝑥𝑥�̇�𝑚𝑌𝑌


(1+𝑥𝑥) �𝑠𝑠1𝑂𝑂2 − 𝑠𝑠6𝑓𝑓𝑂𝑂2�� + 


                                          �̇�𝑚𝑌𝑌
(1+𝑥𝑥)


�ℎ6𝑓𝑓𝑁𝑁2 − ℎ1𝑁𝑁2� + 𝑥𝑥�̇�𝑚𝑌𝑌
(1+𝑥𝑥)


�ℎ6𝑓𝑓𝑂𝑂2 − ℎ1𝑂𝑂2�        , (40) 
 
resulting in an ideal compressor work per unit mass liquefied of 


 
�̇�𝑊𝐶𝐶𝑖𝑖
�̇�𝑚𝑌𝑌


=
�̇�𝑊𝐶𝐶𝑖𝑖
�̇�𝑚𝑓𝑓


= 𝑇𝑇1 �
�𝑠𝑠1𝑁𝑁2−𝑠𝑠6𝑓𝑓𝑁𝑁2�


(1+𝑥𝑥) +
𝑥𝑥�𝑠𝑠1𝑂𝑂2−𝑠𝑠6𝑓𝑓𝑂𝑂2�


(1+𝑥𝑥) � +   
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�ℎ6𝑓𝑓𝑁𝑁2−ℎ1𝑁𝑁2�


(1+𝑥𝑥)
+


𝑥𝑥�ℎ6𝑓𝑓𝑂𝑂2−ℎ1𝑂𝑂2�


(1+𝑥𝑥)
  . (41) 


 


E. RESULTS AND DISCUSSION 


The system is assumed to be operating at two different pressures, 1 atm at states, 1 


and 5 through 7 and 200 atm at states 2 through 4 and 8. The compressors are assumed to 


be operating isothermally. The temperature at each state is 300 K except for states 6f and 


6g, which are at 78.94 K, based on the vapor-liquid equilibrium diagram. The final step to 


calculate the yield and work for the two-compressor Linde Hampson system is to determine 


the correct enthalpy and entropy values. The values found in tables are based on pure fluids, 


and therefore, they must be adjusted to account for compressibility in the fluids in a 


mixture. Some iteration is required to determine these as the partial pressures are dependent 


on the compressibility factors Zi of each component. The compressibility factor of a fluid 


mixture is (Moran and Shapiro 2004) 


 
 𝑍𝑍 = ∑𝑦𝑦𝑖𝑖𝑍𝑍𝑖𝑖 |𝑇𝑇,𝑉𝑉, (42) 
 
where 𝑦𝑦𝑖𝑖 is the fluid mole fraction, and 𝑍𝑍𝑖𝑖 is the fluid compressibility factor at a constant 


temperature and volume. The individual fluid compressibility factor is (Moran and Shapiro 


2004) 


 
 𝑍𝑍𝑖𝑖 = 𝑝𝑝𝑖𝑖


𝜌𝜌𝑖𝑖𝑅𝑅𝑖𝑖𝑇𝑇
, (43) 


 
where 𝑝𝑝𝑖𝑖 is the real fluid gas partial pressure, 𝜌𝜌𝑖𝑖 is its density, 𝑅𝑅𝑖𝑖 is the fluid gas constant, 


and 𝑇𝑇  is the temperature. The partial pressure of the fluid gas is 


 
 𝑝𝑝𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑍𝑍𝑝𝑝


𝑍𝑍𝑖𝑖
 = 𝑝𝑝𝑖𝑖𝑍𝑍


𝑍𝑍𝑖𝑖
  . (44) 


 
The corrected partial pressure of the fluid gas is known, and therefore, the real fluid gas 


partial pressure is 


 
 𝑝𝑝𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑝𝑝𝑧𝑧𝑖𝑖


𝑍𝑍
  . (45) 
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Following the previous procedures, the resulting molar fractions and real partial 


pressures for nitrogen and oxygen are displayed in Table 2 for states 1,2, 6f, 7, and 8. 


Table 2.   Molar Fractions and Partial Pressures for Nitrogen and Oxygen 
and Different States. 


State 𝑻𝑻 
(K) 


𝒑𝒑 
(atm) 𝒚𝒚𝑵𝑵𝟐𝟐 𝒑𝒑𝑵𝑵𝟐𝟐   


(atm) 
𝒚𝒚𝑶𝑶𝟐𝟐 𝒑𝒑𝑶𝑶𝟐𝟐  


(atm) 
1 300 1 0.787 0.786 0.213 0.214 
2 300 200 0.787 159.2 0.213 40.77 
8 300 200 0.945 189.6 0.055 10.37 
6f 78.94 1 0.787 1.000 0.213 1.000 
7 300 1 0.945 0.945 0.055 0.055 


 


The enthalpy and entropy values for nitrogen and oxygen were collected from 


(Lemmon, McLinden, and Friend n.d.) according to the corresponding temperature and 


partial pressure shown in Table 3.  Table 3 provides the resulting yield, compressor work, 


and figure of merit for the nitrogen and oxygen mixture. 


Table 3.   Results for Nitrogen and Oxygen Mixture in Modified Linde 
Hampson System. 


Fluid 
Liq. 


Yield 
(Y) 


�̇�𝑾𝒄𝒄𝟏𝟏
�̇�𝒎


 
(kJ/kg) 


�̇�𝑾𝒄𝒄𝟐𝟐
�̇�𝒎


 
(kJ/kg) 


�̇�𝑾𝒄𝒄


�̇�𝒎
 


(kJ/kg) 


�̇�𝑾𝒄𝒄


�̇�𝒎𝒇𝒇
 


(kJ/kg) 


Figure 
of 


Merit 
N2 (.787) 
O2 (.213) 0.1042 47.7 420.0 467.7 4489 0.0784 


 


The overall work per unit mass compressed for the modified system agrees within 


3% of the simple Linde-Hampson system. In addition, if the calculations presented are used 


to calculate the work per unit mass compressed for a pure substance of nitrogen or oxygen, 


the results are equivalent as shown in Table 1. Figure 13 shows the change in work per unit 


mass compressed as the composition of nitrogen and oxygen are varied in the modified 
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system. This equivalency at 100% nitrogen and 100% oxygen validates the calculations 


presented. 


 
This graph shows the change in work per unit mass compressed based on the composition 
of nitrogen and oxygen. In addition, it shows the work for air, 100% nitrogen, and 100% 
oxygen based on the values presented in Table 1. 


Figure 13.  Composition of Nitrogen and Oxygen versus Work per Unit 
Mass Compressed (kJ/kg). 


The yield for the modified system is significantly different due to the use of a 


second compressor in parallel. This difference affects the figure of merit, as shown in 


Figure 14. This figure may be useful when choosing a desired composition of a mixture in 


order to achieve optimal performance. Figures 13 and 14 also show the corresponding 


values for air from Barron and NIST tables. 
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This graph shows the figure of merit based on the composition of nitrogen and oxygen. In 
addition, it shows the work for air, 100% nitrogen, and 100% oxygen based on the values 
presented in Table 1. 


Figure 14.  Composition of Nitrogen and Oxygen versus Figure of Merit. 


The difference in the figure of merit in the two compressor model is mainly due to 


entropy generation in the mixing of the two high pressure streams as opposed to the mixing 


taking place at a low pressure before the single compressor. 


F. CONCLUSIONS 


This paper presented a closed-form solution to analyzing a binary mixture within a 


modified Linde-Hampson system. The methodology presented could be used for any non-


reacting binary mixture at any composition. Although the modified Linde-Hampson 


system is not physically the same system as the simple Linde-Hampson system, the work 


per unit mass compressed for each system is equivalent when observing each substance of 


the binary mixture in its pure state. The modified system results in more conservative 


estimates of performance but is still physically realistic and useful for binary mixtures 


where data is only available for the individual components.   Even though the liquid yield 


for the two systems is different, the modified system is useful for comparison of various 


binary mixtures. Future work includes addition of non-reacting ternary mixtures, modeling 


of LAES system with binary mixtures, and analysis with alternative liquefaction systems. 
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IV. PAPER II: OPERATING RANGE FOR AN IDEAL BUILDING-
SCALE LAES SYSTEM THROUGH ENERGY 


AND EXERGY ANALYSIS 


This chapter has been submitted for publication in a journal by the authors Todd A. Howe, 
Anthony G. Pollman, and Anthony J. Gannon. 
 


A. ABSTRACT 


This paper presents an ideal energy and exergy analysis of a liquid air energy 


storage (LAES) system to identify optimum operating points within the system.  This 


system uses the simple Linde-Hampson and pre-cooled Linde-Hampson cycles for the 


liquefaction subsystem and direct expansion method with and without heating above 


ambient temperature for the energy production subsystem.  This work presents the upper 


bounds of energy and exergetic efficiency for the LAES system; presents the effectiveness 


of pre-cooling air for liquefaction and heating air beyond ambient temperature for energy 


production; and analysis on the components of the LAES system.  This work is a part of a 


larger study for the design of a building-scale LAES system.  The analytical approach 


presented in this paper may be applied to other LAES configurations to identify optimal 


operating points of the system energy and exergetic efficiencies. 


Keywords: liquid air energy storage, energy analysis, exergy analysis, cryogenic system 


B. INTRODUCTION 


Liquid air energy storage (LAES) is a developing thermal electrical energy storage 


technology and is a promising addition to other long-term storage technologies such as 


pumped hydroelectric storage (PHS) and compressed air energy storage (CAES) (Luo et 


al. 2015, Chen et al. 2009).  LAES has a higher energy density than PHS and four to six 


times the energy density of CAES at 200 bar (Luo et al. 2015, Wang et al. 2015).  Studies 


have shown LAES is capable of higher round trip efficiency than CAES (Krawczyk et al. 


2018). In addition, LAES has an advantage over CAES and PHS due to not being 


constrained to geographical features (McLarnon and Cairns 1989).  Although, micro-


CAES systems are not constrained to geographic features and are effective in distributed 
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power networks (Kim et al. 2012, Kim and Favrat 2010).  Highview Power Storage 


developed a 300kW LAES pilot plant in Slough, Scotland and have a 10MW commercial 


demonstration plant planned (Radcliffe and Williams 2013).  


LAES has two main subsystems, air liquefaction subsystem and energy production 


subsystem.  In the liquefaction subsystem, air is compressed, cooled, and expanded which 


produces liquid air.  Multiple configurations like Linde-Hampson cycle, Claude cycle, 


Heylandt cycle, Collins cycle, and more, liquefy and store air (Barron 1985).  The energy 


production system has multiple configurations like direct expansion method, indirect 


Rankine cycle, indirect Brayton multiple configurations like direct expansion method, 


indirect Rankine cycle, indirect Brayton cycle, and other variations that may be 


implemented (Lim, Al-Atabi, and Williams 2016).  Storage is commonly included as a 


third subsystem, although this paper includes liquid air storage in the liquefaction 


subsystem. 


There are multiple thermodynamic studies on liquid air energy storage available in 


literature.  Early research in 1977 compressed air to 7 atm, dehumidified air and 


compressed further to 49 atm and cooled for storage; then re-pressurized liquid air to 80 


atm before expanding through a turbine, which gave a efficiency up to 72% (Smith 1977).  


Guizzi et al. (2015) conducted a thermodynamic analysis of a LAES system with a multi-


stage compressor and turbine, and a storage subsystem, which resulted in a round-trip 


efficiency of 54–55%.  A similar system and analysis conducted by Kawczyk et al. (2016) 


showed round trip efficiencies from 45–57% when adjusting the inlet pressure to a JT 


valve.  Another analysis demonstrated the effects on LAES energy efficiency when 


adjusting the compressor efficiency, compressor discharge pressure, and cryogenic pump 


discharge pressure (Xue et al. 2015).  Additional work has focused on the liquefaction 


subsystem.  Abdo et al. (2015) conducted a thermodynamic analysis on the Linde-


Hampson cycle, Claude cycle, and Collins cycle and showed Claude and Collins cycles 


both having higher overall efficiencies than the Linde-Hampson cycle.  Yu, Tian, and Xu 


(2009) conducted an exergy analysis of a Linde-Hampson cycle with an ejector and showed 


the addition of the ejector reduced the total exergy destruction in the cycle. 







 31 


This paper presents an energy and exergy analysis of an ideal liquid air energy 


storage system.  Energy is conserved through all processes and systems, but this is untrue 


for exergy (Moran and Shapiro 2004).  Unlike exergy analysis, energy analysis does not 


account for the quality of energy; this makes exergy analysis useful when searching for 


areas of improvement within a system (Rosen and Dincer 2001, Lior and Zhang 2007).  


The analysis in this paper explores the upper bounds of energy efficiency and exergetic 


efficiency of the LAES system to identify optimal operating parameters.   


C. SYSTEM DESCRIPTION 


The liquid air energy storage system analyzed in this paper investigates the two 


different liquefaction subsystems, the simple Linde-Hampson cycle and the pre-cooled 


Linde-Hampson cycle; and two different energy production subsystems, a direct expansion 


method and the direct expansion method with additional heat added.  Figure 15 displays 


the complete LAES system with alternative options to use either type of liquefaction 


subsystem or energy production subsystem.   


 


Figure 15.  System Diagram of a Liquid Air Energy Storage System. 
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The simple Linde-Hampson cycle consists of a compressor, heat exchanger (HX-


1), Joule-Thomson (JT) valve, and liquid reservoir.  At steady state, mixing of makeup air 


and return air occurs prior to entering the compressor at state 1.  Air is compressed to state 


2 and then cooled in HX-1 to state 3.  The cooled high-pressure air is expanded through 


the JT valve to state 4 where it is a two-phase mixture.  The liquid reservoir stores liquid 


air at state 6 for later use by the energy production subsystem and the gas returns to HX-1 


at state 5 providing the cooling from states 2 to 3.  The pre-cooled Linde-Hampson system 


adds an additional heat exchanger, HX-1’.  The subsystem providing the additional cooling 


in HX-1’ is treated as a black box and only the required Qout is calculated to achieve a 


desired state 2’ temperature. 


The direct expansion method for the energy production subsystem consists of a 


cryogenic pump, heat exchanger (HX-2), and turbine with a generator.  The cryogenic 


pump pumps liquid air from the liquid reservoir to a desired pressure to state 7.  Heat 


exchanger 2 heats pressurized liquid air to ambient temperature by the surrounding heat or 


available waste heat to state 8.  A turbine then expands the evaporated air to generate 


electricity to state 9.  The direct expansion method is a simple but an inefficient method to 


extract liquid air (Lim, Al-Atabi, and Williams 2016).  The system can extract additional 


energy from the liquid air when heated beyond ambient temperature prior to entering the 


turbine.  The Qin represents the additional heat required to heat the liquid air above ambient 


pressure.  Similar to HX-1’, this is treated as a black box where the subsystem to achieve 


the required Qin to reach a desired state 8 temperature is not considered. 


Multiple combinations of state 2 pressures, state 2’ temperatures, state 7 pressures, 


and state 8 temperatures can be used in this LAES system.  Figure 16 shows an example 


of the system dynamics of the LAES system with one possible combination.  The figure 


shows the liquefaction subsystem as states 1 through 5’ where ambient air it pressurizes air 


to 20 MPa, precools to 250 K, and expands to generate approximately 21.3% liquid yield.  


The remaining gas passes through both heat exchangers, cooling the incoming air.  States 


6 through 9 represent the energy production subsystem.  The subsystem pumps liquid air 


to 100 MPa, heats beyond ambient temperature to 350 K, and expands isothermally to state 


9.  This figure displays an ideal case for the LAES system where there is isothermal 
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compression and expansion, 100% effective heat exchangers, and an isentropic cryogenic 


pump. 


 


Figure 16.  Air Temperature Entropy Diagram Showing Each State in the 
LAES System. 


D. SYSTEM ENERGY ANALYSIS 


As previously stated, this paper is investigating the upper bounds of an ideal LAES 


system.  Therefore, all components are ideal components, the compressor isothermally 


compresses fluid, pumps isentropically compress fluids, heat exchangers are 100% 


effective, the turbine isothermally expands fluid, and there are no losses in lines.  This 


section and the following section are organized by looking at each subsystem individually 


and then as a complete system. 
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1. Liquefaction Subsystem 


The key information needed for the liquefaction subsystem is the required work for 


the compressor, the liquid yield, and required heat rejection from HX-1’.  Using the first 


and second law on the compressor, the work per unit mass required to compress air from 


state 1 to 2 is (Barron 1985, Moran and Shapiro 2004, Kanoglu, Dincer, and Rosen 2008) 


 
 �̇�𝑊𝑐𝑐


�̇�𝑚
= 𝑇𝑇1(𝑠𝑠2 − 𝑠𝑠1) + (ℎ1 − ℎ2). (46) 


 
This analysis calculated the liquid yield for the simple Linde-Hampson subsystem 


using a control volume encompassing HX-1, the JT valve, and liquid reservoir.  The control 


volume excludes HX-1’ and therefore, state 2 equals state 2’ and state 5’ equals state 1.  


Since there is no work or heat transferred to or from this control volume, the energy balance 


is (Barron 1985, Kanoglu, Dincer, and Rosen 2008) 


 
 �̇�𝑚ℎ2 = �̇�𝑚𝑓𝑓ℎ𝑓𝑓 + ��̇�𝑚 − �̇�𝑚𝑓𝑓�ℎ1 . (47) 
 
The ratio of liquid mass flow rate to mass flow rate provides the liquid yield for the simple 


Linde-Hampson subsystem 


 
 𝑌𝑌 = �̇�𝑚𝑓𝑓


�̇�𝑚
= ℎ2−ℎ1


ℎ𝑓𝑓−ℎ1
  . (48) 


 
The compressor work per unit mass liquefied is therefore the compressor work per 


unit mass divided by the liquid yield.   


 
 �̇�𝑊𝑐𝑐


�̇�𝑚𝑓𝑓
= �̇�𝑊𝐶𝐶


�̇�𝑚𝑌𝑌
= [𝑇𝑇1(𝑠𝑠2 − 𝑠𝑠1) + (ℎ1 − ℎ2)] �ℎ𝑓𝑓−ℎ1


ℎ2−ℎ1
� (49) 


 
 The pre-cooled Linde-Hampson system requires the use of a second heat exchanger 


(HX-1’) (Barron 1985).  There are two cooling streams, Q̇out stream and the returning air 


stream.  The required Q̇out for any desired temperature at state 2’ is based on the energy 


balance of HX-1’ (Barron 1985). 
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 �̇�𝑚𝑟𝑟ℎ𝑎𝑎 + �̇�𝑚ℎ2 + ��̇�𝑚 − �̇�𝑚𝑓𝑓�ℎ5′ = �̇�𝑚𝑟𝑟ℎ𝑏𝑏 + �̇�𝑚ℎ2′ + ��̇�𝑚 − �̇�𝑚𝑓𝑓�ℎ1 (50) 
 
Assuming the mass flow rate through the liquefaction subsystem, �̇�𝑚, is equal to the mass 


flow rate in the black box subsystem, �̇�𝑚𝑟𝑟, rearranging the equation and solving for Qout per 


unit mass gives 


 
 �̇�𝑄𝑜𝑜𝑜𝑜𝑜𝑜


�̇�𝑚
= ℎ𝑎𝑎 − ℎ𝑏𝑏 = (ℎ2′ − ℎ2) + (1 − 𝑌𝑌)(ℎ1 − ℎ5′) . (51) 


 
Using the previous control volume but now including HX-1’, the energy balance is 


(Barron 1985) 


 
 �̇�𝑚𝑟𝑟ℎ𝑎𝑎 + �̇�𝑚ℎ2 = �̇�𝑚𝑟𝑟ℎ𝑏𝑏 + ��̇�𝑚 − �̇�𝑚𝑓𝑓�ℎ1 + �̇�𝑚𝑓𝑓ℎ6 . (52) 
 
Defining the black box subsystem mass flow-rate ratio as (Barron 1985) 


 
 𝑟𝑟 = �̇�𝑚𝑟𝑟


�̇�𝑚
 , (53) 


 
the yield of the pre-cooled Linde-Hampson subsystem is therefore 


 
 𝑌𝑌 = �̇�𝑚𝑓𝑓


�̇�𝑚
= ℎ2−ℎ1


ℎ𝑓𝑓−ℎ1
+ 𝑟𝑟 ℎ𝑎𝑎−ℎ𝑏𝑏


ℎ𝑓𝑓−ℎ1
 . (54) 


 
As Equation (54) shows, pre-cooling provides additional liquid yield.  This analysis 


uses the assumption that the ratio, r, is equal to one and 100% effective heat exchangers.  


Therefore, the liquid yield of the subsystem is unchanged from Equation (48).  


2. Energy Production Subsystem 


The energy calculations needed for the direct expansion method is the cryogenic 


pump work and the turbine work.  The analysis assumes that the mass flow rate of the 


energy production subsystem is equal to the mass flow rate of the liquefaction subsystem.  


Additionally, the analysis assumes the pump isentropically compresses liquid air and there 


are no heat losses in the pump.  Using these assumptions, the pump work is defined as 
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 �̇�𝑊𝑝𝑝


�̇�𝑚
= ℎ6 − ℎ7, (55) 


 
assuming isothermal expansion, the turbine work is 


 
 �̇�𝑊𝑜𝑜


�̇�𝑚
= 𝑇𝑇8(𝑠𝑠9 − 𝑠𝑠8) + (ℎ8 − ℎ9). (56) 


 
No work is associated with HX-2 for the direct expansion method.  This ideal 


system assumes the compressed liquid air reaches ambient temperature through a heat 


exchanger by means of the surrounding air or by waste heat recovery.  Although this is not 


practical in a real system, this is a step in ensuring the analysis determines the true upper 


bounds of the system. Providing additional heat to HX-2 allows state 8 to reach 


temperatures beyond ambient temperature.  The analysis assumes additional heat required 


is only heat required beyond 300 K at a particular pressure.  Therefore, assuming the mass 


flow rate of the heating source is equivalent to the mass flow rate of the energy production 


subsystem, the equation for additional heat is 


 
 �̇�𝑄𝑖𝑖𝑖𝑖


�̇�𝑚
= ℎ8 − ℎ300𝐾𝐾, (57) 


 
where ℎ300𝐾𝐾 is the enthalpy of air at a temperature of 300 K at a given pressure. 


3. Complete LAES System 


The first law measure of performance for the complete LAES system is the overall 


system efficiency, or round trip efficiency.  The equation to calculate the overall system 


efficiency is dependent on the subsystems used.  The simple Linde-Hampson subsystem 


with direct expansion method has work inputs to the compressor and pump from equations 


(49) and (55), respectively.  The heat rejection required from Q̇out in HX-1’ for the pre-


cooling Linde-Hampson subsystem requires additional work to be performed.  This work 


is calculated as the work required for a Carnot refrigerator (Moran and Shapiro 2004)  


 


 
�̇�𝑊𝐻𝐻𝑋𝑋1′


𝑚𝑚𝑓𝑓̇
= �̇�𝑄𝑜𝑜𝑜𝑜𝑜𝑜


�̇�𝑚𝑓𝑓 
� 𝑇𝑇1
𝑇𝑇5′


− 1� . (58) 
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Given liquid air is the working fluid, using work per unit mass liquefied is preferred 


for energy efficiency calculations.  When the temperature of state 8 exceeds ambient 


temperatures, additional work is required to add the necessary heat to achieve this 


temperature.  This additional work is defined as the work required for a Carnot heat pump 


(Moran and Shapiro 2004). 


 
 �̇�𝑊𝐻𝐻𝑋𝑋2


�̇�𝑚𝑒𝑒
= �̇�𝑄𝑖𝑖𝑖𝑖


�̇�𝑚𝑒𝑒
�1 − 𝑇𝑇7


𝑇𝑇8
� (59) 


 
The overall system efficiency is the ratio of work output to inputs. 


 
 𝜂𝜂𝑠𝑠𝑦𝑦𝑠𝑠 = �̇�𝑊𝑜𝑜


��̇�𝑊𝐶𝐶
𝑌𝑌� �+�̇�𝑊𝑝𝑝+�̇�𝑊𝐻𝐻𝑋𝑋1′


+�̇�𝑊𝐻𝐻𝑋𝑋2


 (60) 


 


E. SYSTEM EXERGY ANALYSIS 


The below exergy analysis uses a steady-state exergy rate balance to calculate the 


exergy destruction within a given component, as seen in Equation (61) (Moran and Shapiro 


2004)   


 
 0 = ∑�1 − 𝑇𝑇0


𝑇𝑇𝑗𝑗
� �̇�𝑄𝑗𝑗 − �̇�𝑊𝑐𝑐𝑐𝑐 + ∑�̇�𝑚𝑖𝑖𝜓𝜓𝑖𝑖 − ∑ �̇�𝑚𝑒𝑒𝜓𝜓𝑒𝑒 − 𝐼𝐼 ,̇ (61) 


 
where the exergy flow, 𝜓𝜓, is defined as (Moran and Shapiro 2004), 


 
 𝜓𝜓𝑖𝑖 = ℎ𝑖𝑖 − ℎ0 − 𝑇𝑇0(𝑠𝑠𝑖𝑖 − 𝑠𝑠0) + 𝑉𝑉𝑖𝑖


2


2
+ 𝑔𝑔𝑧𝑧𝑖𝑖 . (62) 


 


This analysis assumes kinetic and potential energy terms are negligible, and therefore 


Equation (62) reduces to 


 
 𝜓𝜓𝑖𝑖 = ℎ𝑖𝑖 − ℎ0 − 𝑇𝑇0(𝑠𝑠𝑖𝑖 − 𝑠𝑠0) . (63) 
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The dead state temperature, 𝑇𝑇0, is assumed to be 300 K at a pressure of 0.101325 


MPa.  The analysis will present the calculations of the exergy destruction rate, 𝐼𝐼,̇ and 


exergetic efficiency, ε, for each component and the system. 


1. Liquefaction Subsystem 


From state 1 to 2, there is no temperature change, and therefore, the compressor 


exergy destruction rate is 


 


 𝐼𝐼�̇�𝑐
�̇�𝑚� = −�̇�𝑊𝑐𝑐


�̇�𝑚� + 𝜓𝜓1 − 𝜓𝜓2 . (64) 
 
Substituting in Equation (63)  


 


 𝐼𝐼�̇�𝑐
�̇�𝑚� = −�̇�𝑊𝑐𝑐𝑐𝑐


�̇�𝑚� + ℎ1 − ℎ2 − 𝑇𝑇0(𝑠𝑠1 − 𝑠𝑠2), (65) 
 
the exergetic efficiency for the compressor is (Moran and Shapiro 2004, Kanoglu 2002),  


 
 𝜀𝜀𝑐𝑐 = 𝜓𝜓2 − 𝜓𝜓1


�−�̇�𝑊𝑐𝑐𝑐𝑐
�̇�𝑚� �  � . (66) 


 
Assuming the mass flow rates �̇�𝑚 = �̇�𝑚𝑟𝑟 with no work or heat loss, the exergy 


destruction rate for HX-1’ is (Paniagua et al. 2013) 


 


 
𝐼𝐼�̇�𝐻𝑋𝑋1′


�̇�𝑚
� = (𝜓𝜓2 − 𝜓𝜓2′) + (𝜓𝜓𝑎𝑎 − 𝜓𝜓𝑏𝑏) + (1 − 𝑌𝑌)(𝜓𝜓5′ − 𝜓𝜓1). (67) 


 
The exergetic efficiency for HX-1’ is the ratio of the exergy increase of the hot stream to 


the exergy decrease in the cold streams (Moran and Shapiro 2004, Kanoglu 2002). 


 
 𝜀𝜀𝐻𝐻𝑋𝑋1′ = (𝜓𝜓2 − 𝜓𝜓2′)


(𝜓𝜓𝑏𝑏 − 𝜓𝜓𝑎𝑎) + (1 − 𝑌𝑌)(𝜓𝜓1 − 𝜓𝜓5′)
�  (68) 


 
The exergy destruction and exergetic efficiency for HX-1 is 
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 𝐼𝐼�̇�𝐻𝑋𝑋1
�̇�𝑚
� = (𝜓𝜓2′ − 𝜓𝜓3) + (1 − 𝑌𝑌)(𝜓𝜓5 − 𝜓𝜓5′) (69) 


 
 𝜀𝜀𝐻𝐻𝑋𝑋1 = (𝜓𝜓2′ − 𝜓𝜓3)


(1 − 𝑌𝑌)(𝜓𝜓5′ − 𝜓𝜓5)�      . (70) 
 


The analysis assumes there is no work or heat transfer to the surroundings for fluid 


flow through the JT valve.  In addition, there is no change in enthalpy during a throttling 


process; therefore, the exergy destruction rate reduces to 


 


 𝐼𝐼�̇�𝐽𝑇𝑇
�̇�𝑚
� = 𝑇𝑇0(𝑠𝑠4 − 𝑠𝑠3) . (71) 


 
The JT valve exergetic efficiency is defined as the ratio of the exergy flow out to the exergy 


flow in (Kanoglu 2002). 


 
 𝜀𝜀𝐽𝐽𝑇𝑇 = 𝜓𝜓4


𝜓𝜓3�  (72) 
 


The analysis completes the calculation for the simple Linde-Hampson subsystem 


exergetic efficiency by taking the ratio of the reversible work to the actual work (Kanoglu, 


Dincer, and Rosen 2008, Borri et al. 2017).  The reversible work is the difference in exergy 


flow of states 1 and 6 (Kanoglu, Dincer, and Rosen 2008). 


 
 𝑤𝑤𝑟𝑟𝑒𝑒𝑐𝑐 = 𝜓𝜓6 − 𝜓𝜓1 = ℎ6 − ℎ1 − 𝑇𝑇0(𝑠𝑠6 − 𝑠𝑠1) (73) 
 
The simple Linde-Hampson subsystem exergy efficiency is 


 
 𝜀𝜀𝑠𝑠𝑠𝑠𝐻𝐻 = 𝑤𝑤𝑟𝑟𝑒𝑒𝑐𝑐


��̇�𝑊𝐶𝐶
𝑌𝑌� � � . (74) 


 
The pre-cooled Linde-Hampson subsystem exergy efficiency must also account for 


the from work input to HX-1’. 


 
 𝜀𝜀𝑝𝑝𝑐𝑐𝑠𝑠𝐻𝐻 = 𝑤𝑤𝑟𝑟𝑒𝑒𝑐𝑐


��̇�𝑊𝐶𝐶
𝑌𝑌� + �̇�𝑊𝐻𝐻𝑋𝑋1′�


�  (75) 
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2. Energy Production Subsystem 


The ideal pump is assumed to be isentropic, which results in an exergy destruction 


rate of 


 


 𝐼𝐼�̇�𝑝
�̇�𝑚𝑒𝑒
� = −�̇�𝑊𝑝𝑝


�̇�𝑚𝑒𝑒
� + ℎ6 − ℎ7. (76) 


 
The exergetic efficiency of the pump is 


 
 𝜀𝜀𝑝𝑝 = 𝜓𝜓7 − 𝜓𝜓6


�−�̇�𝑊𝑝𝑝
�̇�𝑚𝑒𝑒
� ��


. (77) 


 
Assuming the mass flow rates �̇�𝑚𝑎𝑎 and  �̇�𝑚𝑒𝑒 are equivalent, the exergy destruction 


and exergetic efficiency of HX-2 is 


 


 𝐼𝐼�̇�𝑡
�̇�𝑚𝑒𝑒
� = (𝜓𝜓𝑐𝑐 − 𝜓𝜓𝑑𝑑) + (𝜓𝜓7 − 𝜓𝜓8) (78) 


 
 𝜀𝜀𝐻𝐻𝑋𝑋2 = (𝜓𝜓7 − 𝜓𝜓8)


(𝜓𝜓𝑑𝑑 − 𝜓𝜓𝑐𝑐)� . (79) 
 


The ideal turbine is assumed to be isothermal, which results in an exergy 


destruction rate of 


 


 𝐼𝐼�̇�𝑡
�̇�𝑚𝑒𝑒
� = −�̇�𝑊𝑡𝑡


�̇�𝑚𝑒𝑒
� + 𝜓𝜓8 − 𝜓𝜓9 . (80) 


 
The exergetic efficiency of the turbine is 
 
 𝜀𝜀𝑡𝑡 = 𝜓𝜓9 − 𝜓𝜓8


�−�̇�𝑊𝑡𝑡
�̇�𝑚𝑒𝑒
� ��  . (81) 
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3. Complete LAES System 


The total exergy destruction rate of the system is the sum of all component exergy 


destruction rates from equations (64), (67), (69), (71), (76), (78), and (80).  The exergetic 


efficiency for the entire LAES system is defined as (Kanoglu 2002) 


 


 𝜀𝜀𝑠𝑠𝑦𝑦𝑠𝑠 = �̇�𝑊𝑎𝑎𝑐𝑐𝑡𝑡 − 𝐼𝐼�̇�𝑡𝑡𝑡𝑡𝑡
�̇�𝑊𝑎𝑎𝑐𝑐𝑡𝑡
�  , (82) 


 
where �̇�𝑊𝑎𝑎𝑐𝑐𝑡𝑡 is the sum of all work inputs 


 
 �̇�𝑊𝑎𝑎𝑐𝑐𝑡𝑡 = �̇�𝑊𝐶𝐶 + �̇�𝑊𝑝𝑝 + �̇�𝑊𝐻𝐻𝑋𝑋1′


+ �̇�𝑊𝐻𝐻𝑋𝑋2 . (83) 
 


F. RESULTS AND DISCUSSION 


1. First Law Results and Discussion 


The following results use values of enthalpy and entropy gathered from (Lemmon 


et al. 2000).  The tables available from Lemmon et al. (2000) provide only discrete iso-


pressure values as shown in Table 4. 


Table 4.   List of Iso-Pressures Available from Lemmon et al. 


Pressure 
(MPa) 


0.101325 0.2 0.5 1 2 5 10 
20 50 100 200 500 1000 2000 


 


The analysis found that the pressure range for the liquefaction subsystem to produce 


any liquid yield is 5 MPa to 100 MPa; at 200 MPa, the liquid yield drops to zero.  Figure 


17 shows the liquid yield for the simple Linde-Hampson subsystem.  These results match 


results found in (Barron 1985, Joshi and Patel 2015).  The maximum yield point found by 


Joshi and Patel was 0.107 at a pressure of 32 MPa, which is represented on Figure 17 with 


an “x.” 
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Figure 17.  Liquid Yield for Simple Linde-Hampson Subsystem over 
Varying State 2 Pressures. 


Figure 18 shows an alternative view of the liquid yield for the simple Linde-


Hampson subsystem.  The expansion of air from state 3 to 4 is an isenthalpic process.  This 


throttling process must follow the lines of constant enthalpy shown on a temperature 


entropy diagram.  Figure 18 shows the lines of constant enthalpy followed over the 


different state 2 pressures.  This figure also shows the corresponding state 3 temperature 


for each state 2 pressure.  The state 3 temperature is important when considering the 


required effectiveness of a heat exchanger to reach this temperature.   
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Figure 18.  Air Temperature Entropy Diagram Showing Liquid Yield 
with Lines of Constant Enthalpy from State 3 to State 4. 
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replenishing liquid air supply ensures continued support during peak demands.  Figure 20 
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Figure 19.  Compressor Work per Unit Mass Liquefied for Simple 
Linde-Hampson Subsystem. 


 


Figure 20.  Liquid Yield for Pre-cooled Linde-Hampson Subsystem with 
Varying State 2 Pressures. 
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When the liquid increases, this reduces the work required by the compressor on a 


per unit mass liquefied basis.  Figure 21 shows the resulting compressor work per unit mass 


liquefied for the pre-cooled Linde-Hampson subsystem.  This figure shows all pressures 


begin to converge, except 100 MPa, at a state 2’ temperature around 250 K.   


 


Figure 21.  Compressor Work for Pre-cooled Linde Subsystem with 
Varying State 2 Pressures. 
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shows the same convergence of pressures as Figure 21, but also displays the impact HX-
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Figure 22.  Required Heat Removal for Pre-cooled Linde-Hampson 
Subsystem. 


 


Figure 23.  Total Work per Unit Mass Liquefied for the Pre-cooled 
Liquefaction Subsystem. 
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The LAES system efficiency is dependent on multiple factors, including state 2 


pressure, state 2’ temperature, state 7 pressure, and state 8 temperature.  Figure 24 displays 


the resulting LAES system energy efficiency when using state 2 and 7 pressures and state 


2’ temperature as chosen factors.  There is a clear increase of system efficiency as the state 


2’ temperature is reduced and state 7 pressure is increased.  Similar to the compressor work 


per unit mass liquefied results in Figure 21, the LAES system efficiency peaks at state 2 


pressures around 20 and 50 MPa.   


 


Figure 24.  Resulting LAES System Energy Efficiency with Varying 
State 2 and 7 Pressures and Three State 2’ Temperatures. 


Figure 25 presents a narrower view of Figure 24 by reducing to only three state 2 


pressures of 10, 20, and 100 MPa.  This figure depicts a clear gain in energy efficiency 


choosing 20 MPa and lower state 2’ temperatures.  Although, the ranges presented on the 


figure may not be achievable in a building-scale LAES system.  Maximum state 7 pressure 


is likely to be approximately 100 MPa given size restrictions for a building-scale system.  


A state 2’ temperature of 250K is likely to be attainable.  At these factors, the approximate 


5 10 20 50 100 5 10 20 50 100 5 10 20 50 100
0.0


0.1


0.2


0.3


0.4


0.5


0.6


510
20


5010
020


050
0


10
00


LAES System Energy Efficiency


0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6


300 K
250 K


200 K


LA
ES


Sy
st


em
 E


ffi
ci


en
cy







 48 


LAES system efficiency at 20 MPa is 18.4%.  Increasing the temperature into the turbine 


inlet increases the energy efficiency of the LAES system.  Figure 26 depicts this increase 


in energy efficiency using a state 2’ temperature of 250 K and state 7 pressure of 100 MPa. 


 


Figure 25.  Resulting LAES System Energy Efficiency over Full Range 
State 7 Pressures and three Selected State 2’ Temperatures and State 2 


Pressures. 
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Figure 26.  Effects of Increasing State 8 Temperature on LAES Energy 
Efficiency at a State 2’ Temperature of 250K and State 7 Pressure of 100 MPa. 
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Figure 27.  JT Valve Exergetic Efficiency with Varying State 2 Pressures 
and State 2’ Temperatures. 
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Figure 28.  HX-1 Exergetic Efficiency with Varying State 2 Pressures 
and State 2’ Temperatures. 


 


Figure 29.  Exergy Destruction Comparison of the JT Valve and HX-1 at 
a State 2 Pressure of 20 MPa over varying State 2’ Temperatures. 
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Figure 30 shows the exergetic efficiency of the liquefaction subsystem.  This figure 


again shows that 20 MPa to 50 MPa are an optimum pressure range.  Figure 31 displays 


the changes in the LAES system exergetic efficiency when changing the state 2’ 


temperature and pressure.  The optimum pressure displayed on the figure is 20 MPa.  


 


Figure 30.  Exergetic Efficiency of the Liquefaction Subsystem. 
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Figure 31.  LAES System Exergetic Efficiency at a State 7 Pressure of 
100 MPa and State 8 Temperature of 300 K. 


G. CONCLUSION 


This paper conducted an energy and exergy analysis of an ideal liquid air energy 


storage system.  The results showed that the pre-cooled Linde-Hampson subsystem was 


superior to the simple Linde-Hampson subsystem, and heating liquid air beyond ambient 


temperature was superior to heating to only ambient.  The optimal state 2 pressure range 


was 20 to 50 MPa where there was maximum liquid yield.  Pre-cooling resulted in an 


increase in liquid yield, energy efficiency, and exergetic efficiency.  Although, pre-cooling 


below 150 K will result in increased total work per unit mass liquefied.  Heating the liquid 


air beyond ambient temperature results in increased electrical generation and increases the 


overall efficiency of the system.   


Additional improvement of the energy and exergetic efficiency may be found with 


alternative liquefaction subsystems, which utilize an expander, such as the Claude and 


Heylandt systems.  The system would be improved further by incorporating cold and heat 


recovery systems, as used by previous work which achieved round trip efficiencies of 45-


57%.   
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V. NIST CADDIE 


A. BACKGROUND AND INTRODUCTION 


When performing any thermodynamic analysis, the user needs data tables or 


formulas to determine the needed fluid properties, such as the enthalpy and entropy, at any 


given temperature, pressure, or density.  The National Institute of Standards and 


Technology maintains the NIST Chemistry WebBook, SRD 69, which provides 


thermophysical properties for 74 different fluids.  A user selects a fluid, chooses the units  


desired, the type of data, the database, and the range of values to look up.  A limitation of 


the webpage is that data tables are limited to approximately 600 data points.  If a user 


selects a large range of data, the website will adjust the intervals to meet this 600 data point 


restriction, regardless of the interval selected.  Depending on the range of data selected, 


this would cause a low resolution between data points.  The user may choose a smaller 


range to have a more refined interval between data points, although, this may not cover the 


entire range desired.  The user would then need to download multiple data tables to cover 


the complete range needed.  An additional limitation is that the webpage provides the data 


in an html table or in a tab-delimited text file format only.  If the user is utilizing Excel to 


conduct calculations, as this thesis did, transferring data tables to Excel becomes 


cumbersome and time consuming.   


The NIST Caddie tool provides a solution to this problem.  The tool utilizes Excel 


user forms to match the experience of the NIST website.  The NIST Caddie is an Excel-


add-in requiring a user simply to download a single file and install it.  Users can seamlessly 


select from the same fluids, choose the same units, and reference data from the same data 


types.  It can support any range of data that is allowable by the NIST website.   


Figure 32 displays a general flowchart of the NIST Caddie.  Once a user has 


selected the fluid parameters, the add-in first determines if the range of data selected 


exceeds 600 data points.  If the data range is less than 600, then it is a single set and the 


program executes a single query from the NIST webpage.  If the data range exceeds 600, 
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then the program determines the required number of sets, creates a primary worksheet, and 


loads a progress bar.   A number of sets is the total number of data points divided by 600.   


 


Figure 32.  NIST Caddie Flowchart. 


The program then enters the download loop based on the number of sets calculated.  
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tables.  The National Institute of Standard and Technology utilizes the most recent research 


to create and compile their tables.  Downloading these tables into an Excel worksheet 


makes the tables usable for easy calculations and generation of charts and figures.  


Researchers will find this tool useful when faced with limited resources or when 


conducting fundamental analyses to validate simulations.  Educators will find this tool 


useful when teaching thermodynamic subjects and wish to have a visual representation of 


different cycles or the impact of changing different parameters in an analysis.   


B. NIST CADDIE SETUP AND INSTRUCTIONS 


Those interested in using the NIST Caddie should see the Supplemental section to 


locate a copy of the add-in.  The setup instructions provided in this section assume the user 


is using Excel 2016.  If a different version is in use, the author recommends going to the 


Microsoft help webpage to complete the setup.  To add an Excel add-in, with an Excel 


worksheet open, go to File  Options.  On the left hand side, select “Add-ins.”  At the 


bottom, under the drop down for “Manage,” select “Excel Add-ins” and press the button 


“Go.”  Next select “Browse,” locate and select the file location of the NIST Caddie add-in, 


and select “Ok.”   


In order to execute NIST Caddie, the user must add a button to the Excel ribbon.  


To add a button to the ribbon, go to File  Options.  Next, select “Customize Ribbon” 


from the left hand side.  The user will now see on the right hand side a list of all the ribbon 


options under the “Main Tabs.”  Next, expand the “Home” tab and create a new group 


button selection the button below name “New Group.”  The user will now see a new group 


created, highlight by selecting this new group.  On the left under “Choose commands 


from:” select the option macros from the drop down bar.  Next, scroll and find the macro 


named “NIST_Caddie,” select this macro, and select the button in the center named “Add.”  


At the bottom right select “Ok” and the new button will be located under the Home tab. 


In order to generate a data table, select the new button in the ribbon named 


“NIST_Caddie.”  Figure 33 shows the primary Excel user form where the user will select 


the fluid, units, and data type.   
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Figure 33.  Image of the Primary Excel User Form in the NIST Caddie. 


After selecting “Select Parameters,” the next user form will appear based on the 


data type selected and allow the user to input the range of data needed.  Figure 34 displays 


the options available if the user selected all options from Figure 33.  This user form displays 


the data type and fluid chosen in the title bar, “Isothermal Properties for Water.”  This 


provides confirmation to the user that the program is referencing the correct fluid.  The 


user must adhere to the allowable data ranges displayed on the user form.  The number of 


digits option is the number of significant digits required by the user.  Be warned, if a user 


requests a large data range at small intervals with the maximum number of digits, the file 


size for the data table will easily exceed 100 MB.   
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Figure 34.  NIST Caddie Isothermal Data Type User Form. 


The NIST Caddie add-in has some user error safeguards built in, although, the add-


in is not fully coded to prevent errors.  For example, the input options shown in Figure 34 


will not allow the user to enter anything but numbers or a decimal after the number zero.  


The add-in will not prevent a user from entering values beyond the shown ranges.  If a user 


entered a range outside the values shown, the program will crash.  The author has not 


completed testing VBA code to prevent this error from occurring.  One final feature 


included in this add-in is the ability for the user to view the data downloaded from the NIST 


webpage.  Once the user has downloaded a data table, the right of the table includes links 


to the NIST webpages where the program downloaded the data.  This allows the user the 


ability to validate the program downloaded the correct data. 


In summary, the NIST Caddie is a useful tool that downloads and compiles 


thermophysical fluid properties from the NIST Chemistry Fluid WebBook into a single 


Excel worksheet.  This tool provides researchers and educators a valid and usable data 


tables on any fluid provided by the National Institute of Standards and Technology.   
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VI. CONCLUSION AND FUTURE WORK 


This thesis presented the motivation and background for liquid air energy storage 


systems, description and dynamics of the current NPS LAES system, and multiple tools 


for use during the system conceptualization and development stage of designing a LAES 


system.  The development of a unique system such as LAES requires systems engineers to 


have a basic understanding of the physics and thermodynamics of the system.  The 


fundamental analyses conducted in this thesis provides this understanding assuming the 


systems engineer has some background in thermodynamics.  A systems engineer can use 


the two papers and Excel add-in presented in this thesis in the early stages of development 


of a LAES system.  Systems engineers conducting future modeling and simulation of a 


LAES system may reference the equations and methodology presented in this thesis to 


validate that their models are within the expected performance parameters shown. 


The current LAES system in possession of NPS did not previously create liquid air 


as the system design intended.  Previous data of test runs of this system were not available 


at the time of this thesis.  Through the energy and exergy analysis performed in Chapter 


IV, the heat exchangers are a vital component of the system.  It is the opinion of the author 


that a likely failure point in the current LAES system was the low effectiveness of the 


existing heat exchangers. 


The Chapter III presented a closed-form solution to analyze a vast array of non-


reacting binary mixtures in a modified Linde-Hampson system.  The usefulness of this 


paper to a systems engineer is the ability to perform analysis and comparison of an array 


of different possible cryogenic mixtures at any varying composition.  This enables the 


systems engineer to complete a holistic check of different binary mixtures alternative to 


air.  Additionally, this paper enables the research into the best mixtures to act as the 


working fluid for the black box Qout presented in the Chapter IV.  A Linde-Hampson 


refrigeration cycle may act as this black box system and a systems engineer may use the 


Chapter III to find the best mixture to achieve the required heat removal. 
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The Chapter IV presented an energy and exergy analysis of a LAES system in order 


to identify optimum operating ranges.  This paper found pressures of 20 to 50 MPa as the 


optimum pressure range exiting the air compressor.  Additionally, this paper showed that 


the addition of a pre-cooling heat exchanger in the liquefaction subsystem and the addition 


of a heat exchanger to heat beyond ambient temperatures in the energy production 


subsystem overall increases the performance of the LAES system.  The lowest pre-cooling 


temperature that increased performance was 150 K, at which continued cooling increased 


the work required of the liquefaction subsystem.  Although, this temperature is impractical 


achieve, and therefore, a systems engineer should consider a suitable subsystem that can 


achieve temperatures of 200 to 250 K.  The operating ranges and additional figures 


presented in the paper offer insights into potential measures of performance and 


effectiveness of the LAES system for use in development of system requirements.  The 


current system incorporates recovery of waste heat from the compressor to heat and 


evaporate liquid air using an antifreeze system.  This is a practical solution, although 


additional analysis is required to determine the antifreeze system effectiveness in heating 


liquid air beyond ambient pressure. 


Chapter V presented the NIST Caddie Excel add-in tool.  This tool interacts with 


the NIST webpage to download large data tables of thermophysical properties of various 


fluids.  In order to conduct the additional research into different binary mixtures, a research 


would need to acquire the fluid data on these mixtures.  The NIST Caddie is a perfect tool 


to quickly download these tables and perform calculations based on the methodology 


presented in the Chapter III.  The NIST Caddie provides any needed resolution of data, 


which negates the need to conduct arduous linear interpolation of data for Excel 


calculations.  Furthermore, other researchers and educators will find value of the NIST 


Caddie when there is a need to download fluid data tables into Excel for calculations and/or 


graphical presentations. 


LAES systems are directly supportive of the goal to reduce the demand on fossil 


fuels stated by both the Marine Corps and U.S. Army.  The work presented in this thesis 


provides the foundation to continue research into the design and development of a LAES 


system at the Naval Postgraduate School.  Subsequent research includes modeling and 
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simulation of a LAES system, which provides additional research into the system 


dynamics.  Additionally, modeling and simulation enables trade off analyses of different 


subsystems and components and the eventual optimization of a LAES system.  Culminating 


future work would be the detailed design and building of a LAES system, followed by 


testing and continued optimization. 
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APPENDIX A. NOMENCLATURE FOR CHAPTER III AND IV 


1. CHAPTER III NOMENCLATURE 


 


Figure 35.  Nomenclature for Chapter III. 


2. CHAPTER IV NOMENCLATURE  


 


Figure 36.  Nomenclature for Chapter IV. 
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APPENDIX B.  SUPPLEMENTAL NIST CADDIE EXCEL ADD-IN 


As described in Chapter V, the supplemental file containing the NIST Caddie is an 


Excel add-in that downloads large amounts of data tables from the NIST Chemistry 


WebBook.  There are six main Excel user forms developed in support of the NIST Caddie.  


Figure 37 displays these user forms and user input options available on each user form.  


Those interested in using the supplemental NIST Caddie Excel add-in should contact 


the NPS Dudley Knox Library to acquire the add-in file.  


Updates will occur to the NIST Caddie after publication of this thesis.  The author 


intends to publish a future update to the NIST Caddie along with examples of how 


researchers and educators may take advantage of this tool. 


 


Figure 37.  Six Main Excel User Forms with User Input Options in NIST 
Caddie 
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