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Executive Summary





The Proactive Discovery of Insider Threats Using Graph Analysis and Learning (PRODIGAL) team, comprised of Leidos 
Advanced Solutions Group and our university partners, Georgia Tech Research Institute / Georgia Institute of Technology, 
Oregon State University, University of Massachusetts, and Carnegie Mellon University, lead a research and development 
program focused on anomaly detection and explanation applied to the insider threat domain. This paper reports on our 
fundamental anomaly detection and explanation research, and the development and experimentation with our prototype 
PRODIGAL insider threat detection system as a testbed for exploring a range of detection and analysis methods. The data and 
test environment, system components, and the core method of unsupervised detection of insider threat leads are presented to 
document this work and benefit others working in the insider threat domain. We also discuss a core set of experiments 
evaluating the prototype’s ability to detect both known and unknown malicious insider behaviors. The experimental results show 
the ability to detect a large variety of insider threat scenario instances embedded in real data with no prior knowledge of what 
scenarios are present or when they occur.





Research activities of the PRODIGAL team under the ADAMS program fall into four major categories:


- Fundamental research into anomaly detection algorithms, models, and feature selection and normalization techniques;


- Domain-specific research to provide meaningful indicators and scenarios for detection and explanation of potential insider 
threat;


- Design and implementation of an experimental ensemble-based framework for research into insider threat detection, including 
all required engineering and data exploration over the ADAMS program database of user activities; and


- Experimentation over 16 months of program data seeded with dozens of inserted targets to compare, contrast, and combine 
detection methods.





Fundamental Anomaly Detection Research: Our university-based team members developed innovative algorithms for structural 
anomaly detection. Several employ statistical models and operate over populations of feature vectors in an unsupervised 
fashion to estimate the likelihood that a member was created by the same process that created the bulk of the population (e.g. 
RPAD, RIDE, RDE, Cross Prediction, Ensemble GMM). Significant effort was devoted to feature selection and normalization 
techniques, which have proven highly successful on the ADAMS program data. Temporal models were developed to find 
anomalous sequences of actions (Temporal-based Anomaly Detection, Vector Space Models). These approaches represent 
user activities as sequential patterns, possibly at multiple levels of granularity, and identify unlikely sequences. Additional 
research focused on leveraging the human analyst by providing methods for exploring huge graphs or high dimensional spaces 
for anomalous or unexplained behaviors (Oddball, Apolo). Finally, significant research efforts addressed ways of exploiting the 
graph structures inherent in large collections of human-computer transactions (STINGER, Community Detection, Seed Set 
Expansion).





Domain-Specific Insider Threat Detection Research: Based on prior research into insider threat, PRODIGAL team members 
developed a large set of features based on domain-specific concepts such as activity type and their use in known threat 
scenarios. These include measures of computer user activity levels, statistical outlier measures of these activities, and ratios of 
activities designed to uncover unusual behavior. Features were implemented within the PRODIGAL framework for use in 
statistical outlier detection as well as by other structural anomaly detection algorithms. Complex pattern detectors for known 
threat scenarios were also implemented using a novel, graphical Anomaly Detection Language (Fraudster, Sabotage, IP Theft, 
Ambitious Leader).





Ensemble-Based Research Framework: Leidos developed an ensemble-based, unsupervised technique for detecting potential 
insider threat instances. The PRODIGAL framework ingests computer usage activity observations, computes features, operates 
over 100 anomaly detectors, and combines the results from the multiple detectors using an ensemble technique that provides 
the analyst with a single score for each user, for each day, serving as a starting point for further investigation as illustrated in 
Figure 1.


Figure 1 Illustration of how PRODIGAL combines the results from multiple detectors with an innovative ensemble technique that 
provides the analyst a single anomaly score.


We have also begun incorporating explanation capabilities with the ensemble approach so that underlying reasons for detection 
from individual detectors can be combined in the final result presented to analysts. These explanations are made available to 
the analysts in a user interface, with preliminary methods for incorporating user feedback within the PRODIGAL dashboard 
based upon the rich set of available features and anomaly detector scores. The report further describes the architecture of the 
prototype system, the environment in which we conducted these experiments and potential transition environments.





Insider Threat Detection Experimentation: When run over 16 months of real monitored computer usage activity augmented with 
independently developed and unknown but realistic, insider threat scenarios, this technique robustly achieves results within five 
percent of the best individual detectors identified after the fact. We discuss factors that contribute to the success of the 
ensemble method, such as the number and variety of unsupervised detectors and the use of prior knowledge encoded in 
detectors designed for specific activity patterns. This experimentation represents more than 1800 runs of detectors, varying by 
type of user activity, structural model (vector, sequence, graph), baseline population (peer group, shared resources, shared 
communications), as well as over time. This variety supports evaluation of robustness as well as sensitivity of detection 



methods.





Figure 2 illustrates how these activities have interacted and supported one another over the course of the ADAMS program.
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Introduction 

This report highlights the key accomplishments and lessons learned by the Leidos PRODIGAL 

Team performing ADAMS tasks under contract W911NF-11-C-0088.  The period of 

performance for this report is May 2011 through November 2016. 

The report aligns with the the Research & Development elements from the PRODIGAL 

Statement of Work summarized below.  Research in Phase 1 focused on devising state of the art 

algorithms for structural anomaly detection, integrating them into a system, and testing against 

live ADAMS program data (commonly referred to in the report as “Vegas data”) with inserted 

red team targets.  In Phase 2, while continuing to advance the fundamental detection algorithms, 

the focus of efforts shifted to explaining and combining algorithm output, supporting end-user 

analysis of potential insider threat activities, and preparing the system for transition. We will 

refer to this outline in subsequent sections. 

 

1. Phase 1 Program Years 1 & 2 

1.1. Fundamental Research into Insider Threat Detection 

1.1.1. Research in scalable algorithms for network analysis (GTRI) 

1.1.2. Research in models of graph evolution (CMU) 

1.1.3. Research in ensemble methods for anomaly detection (OSU) 

1.1.4. Research in joint probability and causal reasoning models (UMass) 

1.2. Research Integration and Evaluation (Leidos) 

1.2.1. Counter-Intelligence Domain Analysis (Leidos) 

1.2.2. System Development, Integration, and Testing (Leidos) 

1.3. Surrogate and External (Program Data) Experimentation (Leidos) 

 

2. Phase 2 Program Years 3, 4, & 5 

2.1. Research 

2.1.1. Research in massive temporal and visual dynamic graph analytics  (GTRI)  

2.1.2. Research in graph summarization and understanding (CMU) 

2.1.3. Research in ensemble methods for anomaly detection and explanation (OSU)  

2.1.4. Research in causal dependence in complex domains (UMass) 

2.2. Research Integration and Experimentation (Leidos) 

2.2.1. End-User System Engineering (Leidos) 

2.2.2. Algorithm / Evidence Combination and Explanation (Leidos) 

2.2.3. Operational evaluation and transition preparation (Leidos) 
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Executive Summary  

The Proactive Discovery of Insider Threats Using Graph Analysis and Learning (PRODIGAL) 

team, comprised of Leidos Advanced Solutions Group and our university partners, Georgia Tech 

Research Institute / Georgia Institute of Technology, Oregon State University, University of 

Massachusetts, and Carnegie Mellon University, lead a research and development program 

focused on anomaly detection and explanation applied to the insider threat domain.  This paper 

reports on our fundamental anomaly detection and explanation research, and the development 

and experimentation with our prototype PRODIGAL insider threat detection system as a testbed 

for exploring a range of detection and analysis methods. The data and test environment, system 

components, and the core method of unsupervised detection of insider threat leads are presented 

to document this work and benefit others working in the insider threat domain.  We also discuss 

a core set of experiments evaluating the prototype’s ability to detect both known and unknown 

malicious insider behaviors. The experimental results show the ability to detect a large variety of 

insider threat scenario instances embedded in real data with no prior knowledge of what 

scenarios are present or when they occur. 

Research activities of the PRODIGAL team under the ADAMS program fall into four major 

categories:  

 Fundamental research into anomaly detection algorithms, models, and feature selection 

and normalization techniques;  

 Domain-specific research to provide meaningful indicators and scenarios for detection 

and explanation of potential insider threat; 

 Design and implementation of an experimental ensemble-based framework for research 

into insider threat detection, including all required engineering and data exploration over 

the ADAMS program database of user activities; and  

 Experimentation over 16 months of program data seeded with dozens of inserted targets 

to compare, contrast, and combine detection methods. 

Fundamental Anomaly Detection Research: Our university-based team members developed 

innovative algorithms for structural anomaly detection.  Several employ statistical models and 

operate over populations of feature vectors in an unsupervised fashion to estimate the likelihood 

that a member was created by the same process that created the bulk of the population (e.g. 

RPAD, RIDE, RDE, Cross Prediction, Ensemble GMM).  Significant effort was devoted to 

feature selection and normalization techniques, which have proven highly successful on the 

ADAMS program data.  Temporal models were developed to find anomalous sequences of 

actions (Temporal-based Anomaly Detection, Vector Space Models).  These approaches 

represent user activities as sequential patterns, possibly at multiple levels of granularity, and 

identify unlikely sequences.  Additional research focused on leveraging the human analyst by 

providing methods for exploring huge graphs or high dimensional spaces for anomalous or 

unexplained behaviors (Oddball, Apolo).  Finally, significant research efforts addressed ways of 

exploiting the graph structures inherent in large collections of human-computer transactions 

(STINGER, Community Detection, Seed Set Expansion). 

Domain-Specific Insider Threat Detection Research: Based on prior research into insider 

threat, PRODIGAL team members developed a large set of features based on domain-specific 
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concepts such as activity type and their use in known threat scenarios.  These include measures 

of computer user activity levels, statistical outlier measures of these activities, and ratios of 

activities designed to uncover unusual behavior.  Features were implemented within the 

PRODIGAL framework for use in statistical outlier detection as well as by other structural 

anomaly detection algorithms.  Complex pattern detectors for known threat scenarios were also 

implemented using a novel, graphical Anomaly Detection Language (Fraudster, Sabotage, IP 

Theft, Ambitious Leader).  

Ensemble-Based Research Framework: Leidos developed an ensemble-based, unsupervised 

technique for detecting potential insider threat instances.  The PRODIGAL framework  ingests 

computer usage activity observations, computes features, operates over 100 anomaly detectors, 

and combines the results from the multiple detectors using an ensemble technique that provides 

the analyst with a single score for each user, for each day, serving as a starting point for further 

investigation as illustrated in Figure 1.  

 

Figure 1 Illustration of how PRODIGAL combines the results from multiple detectors with an innovative     

ensemble technique that provides the analyst a single anomaly score. 

We have also begun incorporating explanation capabilities with the ensemble approach so that 

underlying reasons for detection from individual detectors can be combined in the final result 

presented to analysts. These explanations are made available to the analysts in a user interface, 

with preliminary methods for incorporating user feedback within the PRODIGAL dashboard 

based upon the rich set of available features and anomaly detector scores.  The report further 

describes the architecture of the prototype system, the environment in which we conducted these 

experiments and potential transition environments. 

Insider Threat Detection Experimentation: When run over 16 months of real monitored 

computer usage activity augmented with independently developed and unknown but realistic, 

insider threat scenarios, this technique robustly achieves results within five percent of the best 

individual detectors identified after the fact.  We discuss factors that contribute to the success of 

the ensemble method, such as the number and variety of unsupervised detectors and the use of 

prior knowledge encoded in detectors designed for specific activity patterns.  This 

experimentation represents more than 1800 runs of detectors, varying by type of user activity, 

structural model (vector, sequence, graph), baseline population (peer group, shared resources, 

shared communications), as well as over time.  This variety supports evaluation of robustness as 

well as sensitivity of detection methods.   

Figure 2 illustrates how these activities have interacted and supported one another over the course 

of the ADAMS program. 
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Figure 2 How PRODIGAL activities have interacted and supported one another. 

 

3. Fundamental Research 
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Fundamental Research  

1.1.Georgia Tech Research Institute (GTRI) Algorithm Research Activities  

1.1.1. Research in scalable algorithms for network analysis (GTRI SOW 1.1.1) 

GTRI-1: Massive-Scale Streaming Graph Algorithms 

Under this task, Georgia Tech and GTRI developed and delivered an implementation of the 

Spatio-Temporal Interaction Networks and Graphs Extensible Representation (STINGER) 

dynamic temporal and semantic graph analysis data structure and toolset. During the course of 

this project, STINGER was expanded to support additional semantic capabilities, data ingest and 

exploration functionality, and exploration. STINGER and the algorithms developed on 

STINGER have been released as open source tools for the benefit of the graph analysis 

community and other organizations. 

The core of STINGER was expanded to support multiple simultaneous analysis kernels running 

on the same massive graph set in shared memory space across processes. STINGER was also 

successfully integrated into the PRODIGAL framework and used to support the implementation 

of GTRI-2, GTRI-3, and GTRI-6. Analytics were implemented to aid in the use of STINGER to 

understand the results of other algorithms including breadth-first search, connected components 

tracking, methods of calculating local entropy, local-entropy based clustering, clustering 

coefficient tracking, k-core extraction, PageRank, and others. Support for additional properties 

and type tracking was added to STINGER. Participants in GTRI-1 were responsible for testing 

many of the other algorithms and running experiments on the Vegas dataset as well as 

performing a key portion of the integration task. 

Query tools for the shared-memory graph structure were developed to enable local exploration of 

the relationships in the data set in a graph-focused manor.  A web-based interface was developed 

to maintain control over the STINGER workflow and enable some level of visual exploration 

and analysis of the graph state.  Using open web technologies also allows many analysts to use 

the system at the same time and gives users an interface that can be used on most platforms.  

Java interfaces were also developed to support additional algorithms and productivity interfaces. 

This included a working interface to support running GTRI-5 directly off of the graph data 

source.  

Lastly, a large portion of this effort was spent examining the choice of graph structure and the 

mapping of events involving computers, files, people, emails, and more into graph substructures. 

Through mapping events into the graph in different ways, different community substructures and 

anomalous community transitions can be found. 

Performance improvements to STINGER were published in [Ediger 2012].  However, need for 

massive scale analytics using this infrastructure did not materialize due to the limited size of the 

data.  ADAMS opted for data to be limited in the number of users, but include as many events as 

possible (deeper and less broad).   

GTRI-2: Massive-Scale Community Detection 

GTRI-2 is a primarily a community detection algorithm that leverages fast safe parallel 

insertion/deletion in STINGER. Input graph is composed arbitrarily of email, printer, file, logon, 

url, domain, relationships as needed to produce different output communities. These can be used 

to determine what is typical behavior for a group to find anomalousness at finer granularity. The 
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detection is fully automated based on tight patterns of activity and resource sharing. The 

approach iteratively groups smaller community structures into larger communities to provide 

multiple resolutions. This exposes connections points between organizations and shifting 

allegiance. 

Early in the GTRI-2 task, an approach and algorithm were developed to perform dynamic 

discovery and tracking of community structures within a graph. These were quickly implemented 

on STINGER and used with early datasets in addition to the later Vegas datasets.  Through the 

course of the project, performance improvements to the algorithm were developed and the 

community detection was expanded to additional graph types including email, web, file, printing, 

logon, and combined graphs to provide groups and data to other parts of the PRODIGAL system 

for forming baseline comparisons. Different methods of scoring and optimizing community 

detection were explored and compared.  

Once the community detection was delivered and integrated, work began on approaches to score 

and maintain the betweenness centrality of vertices in unweighted and undirected graphs without 

recomputing. The approach removes unnecessary and redundant work through maintaining 

additional data structures and is based on [Brandes 2001]. The algorithm follows the significance 

of all players in the graph and is the first algorithm that allows online analysis as computation 

time has been significantly reduced. It is easily parallelizable and can be applied to both exact 

and approximate computation. This metric was also integrated into the PRODIGAL system. The 

GTRI team performed full evaluation and development of the approach which was published in 

[Green 2012] and [Green 2013]. The latter work focused on the effect of data structure choice on 

the performance of the algorithm. 

In order to better understand the evolution of community structure, the GTRI-2 team 

collaborated with CMU to examine graph generators. Specifically, the team set out to create 

generators that better mimic the development of the graphs of interest over time (as opposed to 

current generators which are designed to produce static graphs or graphs with a constant 

distribution).  

Lastly this effort produced a new method for maintaining a labeling of the connected 

components of a dynamic graph without full recomputation even in the face of deletions. It is up 

to 128X faster than static computation in some cases, has low memory requirements so that it 

can be used on massive-scale graphs, and is a vast improvement over previous approaches that 

necessitated recompute. 

The results of community detection were used in experiments on detector diversity (Section 1.9) 

GTRI-3: Seed-Set Expansion at Multiple Scales 

In the first few months of the project, GTRI-3 developed software that demonstrates a suite of 

graph algorithms for analyzing initial datasets and demonstrating immediate graph analysis 

capabilities within the PRODIGAL system.  The algorithms included: 

1. Graph Diameter – the longest geodesic (or “shortest”) path between any pair of vertices in 

the graph. 

2. Clustering Coefficients – for each vertex, the probability that the neighboring vertices are 

connected. A coefficient of 0 means that the graph is locally tree-like; a coefficient of 1 

means that the graph is locally a triangular mesh. 
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3. Connected Components – finds isolated subgraphs of the larger graph; the software computes 

the number of components, the number of vertices in the largest component, the average 

number of vertices per component, the average squared value of the number of vertices, the 

variance of the vertex number, and the standard deviation of the vertex number. 

4. K-Betweenness Centrality – for vertex v, the number of paths between any other pair of 

vertices that pass through v and have length equal to the shortest path length + k, where k is a 

nonnegative integer. 

5. Vertex Degree Distribution – the number of vertices with a specified number of edges. 

6. Community Detection – uses the McCloskey-Bader algorithm to partition the graph into 

groups of vertices, with minimal connections between the groups. 

Following this, GTRI-3 focused on seed set expansion for a streaming graph of batch updates 

and on detecting and executing the case of a community split without global recompute. This 

included looking at the effects of excluding low degree vertices from the initial community 

detection process. Examined datasets included the CERT data and the stack overflow datasets.  

Vegas data was included as it became available. 

Novel methods for computing seed set expansions optimizing a number of metrics were 

theorized and implemented. Performance test were run on the Vegas dataset to compare and 

improve update methods. The approach was also extended to weighted graphs. Streaming seed 

set expansion can identify which vertices change communities frequently and/or have strong ties 

external to the community. It also allows a local subgraph of evidence and interaction to be 

extracted for deeper analysis following anomaly detection by another PRODIGAL algorithm. 

Several de-agglomeration methods for updating communities after edge updates have 

implemented. Seed set expansion was also used to examine the area and interaction around 

known red team vertices to help understand anomaly reports and identify anomalous patterns.  

Although promising in support of analysis, this approach was not integrated into the PRODIGAL 

detection pipeline as a primary detector. 

GTRI-4 Vector Space Models for Unsupervised Activity Classification 

VSM breaks streams of discrete events into n-grams, and then compares the resulting feature 

vectors. In PRODIGAL, this is used to examine streams of logon logoff events, file access 

patterns, email frequency and more. The advance over previous incarnations of VSM is that we 

allow unsupervised anomaly detection. The algorithm can also process results produced by other 

algorithms to increase fidelity. The result is a score of the dissimilarity of the sequence to other 

sequences. On the September Vegas data, VSM ranked at least one actor in two scenarios very 

highly (top 5%) and four reasonably highly (top 30%). The lone actor in the final scenario was 

ranked at 41%. 

Early in the project, the GTRI-4 team quickly transitioned to work with the RUU dataset, which 

was abstracted from the RUU format into a per-process stream of discrete events to be processed 

by the Vector Space Model algorithm. Each of these events was chosen to represent a pair of 

values from the raw data: (system action, result). The team explored additional representations 

beyond n-grams to enhance the capabilities of the VSM algorithm with respect to detecting 

anomalies that may not be locally apparent, and/or avoiding false positives for minor, benign 

event sequence reorderings. An example of such an improvement would be to produce multiple 

alternative event abstractions and to intelligently decide which alternative is most pertinent for a 
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given context. A literature search was performed to generate ideas for these enhancements. The 

team created refined a descriptive taxonomy of dataset types. This described both the CERT and 

RUU datasets using this formalism, as well as the input accepted by the VSM algorithm. 

After this initial work on the RUU dataset, similar transformations and analysis were performed 

on the CERT dataset. Over two thirds of the malicious activity in the CERT set were detected by 

VSM. As the Vegas dataset became available it was also process. The VSM algorithm is 

completely integrated into the PRODIGAL framework. Members have also looked at the use of 

VSM in other flows/contexts and to extensions to the basic algorithm within PRODIGAL. Initial 

work was also performed on a clustering-based extension to VSM. 

VSM was included in the PRODIGAL detector suite in both daily and monthly variants. 

GTRI-5: Temporal-Based Anomaly Detection Exploiting Event-Sequences 

Temporal-Based Anomaly Detection (T-BAD) uses a multi-scale model of user behavior and 

detector of co-occurring anomalous activities and indicators of cognitive stress. The team 

developed a multivariate algorithm to detect anomalous frequencies of specific cognitive 

behaviors. Such anomalies are indicators of nefarious activity. A Markov model to characterize 

normal/abnormal behavior is developed around the dataset and used for classification of events 

in a stream. Where VSM classifies as stream as unusual compared to other streams, T-BAD 

detects specific events within a single stream or set of combined streams. This also can be used 

to extend and enhance results produced by other algorithms. The system was fully successfully 

integrated into the PRODIGAL framework. 

The team carefully tuned weights for logon, process anomaly scores and tested on all red team 

data. The algorithm is based around particle filtering techniques that improve results by more 

than three times on some datasets. It lends itself easily to heat map visualizations that can be 

quickly examined by analysts even over large datasets of users over longer periods of time. The 

stream processing can be tuned to detect anomalies at multiple scales with varying levels of 

resolution.  

GTRI-5 provided personnel for onsite testing with the Vegas data. This included developing and 

integrating HMM/mixture models for process and keyboard data.  

T-BAD was retired as not sufficiently accurate.  The possible source of the problem was lack of 

accurate timing data; hence it was placed on hold pending improvements in the data 

infrastructure. 

GTRI-6: Evidence Combination 

The primary evidence combination approach is based on a Bayesian approach commonly known 

as belief propagation. This uses the relational information in STINGER to identify anomalies 

that are connected and are reported consistently by different detectors. Anomaly reports are 

projected onto the graph and used to suppress or reinforce local anomaly reports. This improves 

the rate and the rank of true positives by combining results of various detectors over STINGER. 

It also decreases false positives by weakening the anomaly scores for disconnected evidence.   

GTRI-6 is fully integrated into STINGER and the PRODIGAL framework. Efforts included 

experimenting on the red team data within the CERT and Vegas datasets.  Performance analysis 

of evidence combination results with respect to individual algorithm results and a naive approach 
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for combining anomaly results obtained up to 60% improvement in the evidence combined 

rankings in one of the algorithms. 

Analysis of the performance aspects and parallelization opportunities within GTRI-6 was 

performed. GTRI-6 was tuned for fast performance and resolution so that new results can be 

added to the graph and resolved quickly as the data changes. Parameter tuning, optimization and 

sensitivity analysis experiments with evidence combination to monitor the quality of anomaly 

results on STINGER graph were also performed. 

Initially a different approach was studied that was shown to be highly successfully on the early 

datasets. It used looking for correlations and statistical deviations across parameters in a 

traditional and more straightforward statistical approach. This approach was not as strong of a 

performer in later datasets. As such, it was abandoned in favor of belief propagation. 

1.1.2. Research in massive temporal and visual dynamic graph analytics  (GTRI 

SOW 2.1.1)  

In June 2013, the ADAMS project transitioned from Phase I into Phase II. For Phase II GTRI 

was responsible for three tasks: 1) Dynamic Graphs, 2) Temporal Analytics, and 3) Learning 

Models for Anomaly Detection. Progress was steady during 2013. The GTRI team attended the 

ADAMS/SMIC PI meeting at DARPA Oct 2-4, 2013 presenting 4 posters and 1 partial oral 

presentation.  

At the end of 2013, it was decided that the direction of the ADAMS project was no longer 

congruent with the GTRI tasks, and the project was discontinued.  Below follows a short 

summary of the accomplishments of each of the three tasks.  

Task 1: Dynamic Graphs  

The goal of this task was to enhance the graph analytics to provide visualization of communities 

and influencers, interactive labeling and evidence combination, and online statistical analysis of 

graph kernels. The approach to this task was to identify anomalies as changes in group behavior 

or deviation in behavior from behavior of the group. This was accomplished by selecting a set of 

events by choosing feature types and temporal range, mapping events of each feature type to a 

set of edges and vertices representing the actors (user, PC, file, URL, etc.) and relationships 

involved, constructing the graph and applying an unguided community detection algorithm based 

on optimizing for dense communities that are sparsely connected to each other.  

Results: The STINGER server was integrated into PRODIGAL via MySQL, a multi-process 

dynamic persistent STINGER server was implemented as an update and replacement for the 

existing server, and a fully generic data ingest tools for JSON, and CSV formats with XML were 

implemented. These extensions allowed for several actions. One, STINGER functionality was 

added to support arbitrary metadata and non-graph-based algorithms. Data replay from 

MongoDB resulted in more detailed statistical analysis over temporal extents of various 

resolutions. Two, algorithms can register to receive the computed results of other algorithms. 

Three, web visualization tools were developed with variable temporal range and batch resolution 

supporting: subgraph extraction and exploration, and additional PRODIGAL event details. Four, 

easy adjustment of graph ontology are possible.  

Betweenness centrality was explored in two ways. One, research into better temporal 

approximations for betweenness centrality and possible visual extensions to community 

detection methods. This resulted in a new approach for root selection for approximate dynamic 
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between centrality being implemented, because improper root selection can lead to biased 

results. Two, parallel approximate betweenness centrality was implemented. A clustering 

coefficient algorithm was developed to support and combine optimizations of both 

implementations.  

Task 2: Temporal Analytics: Interactive Graph Exploration & Feedback Incorporation  

The goal of this task was to provide visualization of anomalous actions, and integration of 

statistical analysis. This task had three main approaches. One, perform statistical analysis of the 

temporal subgraph to allow identification of specific anomalous actions. Two, visualize 

connections among bad actors flagged by other algorithms. And three, aggregate “weak signals” 

using Belief Propagation to combine flags raised by algorithms into higher-confidence flags.  

Subtask 2.1: Graphical context construction (Adaptive Navigation) 

 Develop techniques that generate graphical context to help explain why an anomalous 

node is flagged (e.g., a small, relevant subgraph centered at the node). For example, a 

flagged user X may be a mastermind bridging five other suspicious users, and indirectly 

connected to another two.  

 Develop technique to visualize all these aforementioned suspicious users and their 

connections. The construction may be automatic (e.g., include no more than 2-step-away 

neighbors) or user-driven (e.g., user interactively requests more nodes and edges be 

added).  

Subtask 2.2: Interactive operations for manipulating graph visualization (GLO-STIX) 

 Given a flagged anomalous node and its graphical context (say, generated by our 

construction techniques above), it is unlikely that a single visualization can fully explain 

the graphical context that helps the analysts understand the causes. The end user may 

need user-friendly, lightweight interactive tools to explore the graph and manipulate the 

visualization (e.g., node ordering, grouping, filtering, etc.).  

 Develop graph-level operations (e.g., align or aggregate nodes by attributes, map visual 

elements like node sizes or colors to node attributes), which when combined and 

executed in sequence, can easily allow the user to transition from one familiar kind of 

graph visualization to another. Without these tools, analysts may need to user multiple, 

dedicated and independent visualization systems to perform similar analysts. 

Results: Both subtasks described above have produced significant practical new ideas in 

visualization, human-computer interaction data mining and visualization. We have published our 

work and their related ideas in 8 papers (1 journal, 3 conferences, 2 posters and 2 demos). Our 

research has also formed the foundations of two Computer Science PhD students’ theses (Mr. 

Robert Pienta, and Mr. Chad Stolper). Three undergraduate students have actively participated in 

this research and co-authored papers [Stolper 2014a] [Stolper 2014b] [Lin 2013] [Lin 2013a]. 

We disseminated our results via lectures in undergraduate and graduate classes at Georgia Tech 

and other universities, over 18 talks given nation wide and internationally at top venues (e.g., 

NIPS, CHI, SDM), and outreach talks for undergraduate students, and the general public.  

The researchers in this task collaborated with ADAMS team members at CMU on temporal 

graph generation. The feasibility of web-based visualization engines was researched. The results 

of this research were then used to build a prototype interactive visualization for graphical 

explanation of anomalies. The Apolo framework was extended to work on various graphs stored 
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in MySQL. Research was conducted on graphical explanations for machine learning algorithms 

and graphical explanation techniques were formalized for several classes of machine learning 

algorithms. On-demand sense-making tools were developed to group and rank nodes by 

attributes.  

Research contributions: 

Subtask 2.1: Graphical context construction (Adaptive Navigation) [Pienta 2015a] [Pienta 

2014] [Pienta 2015b] [Lin 2013] [Lin 2013a] 

 We aim to reduce the visual complexity and clutter commonly created by large graphs. 

For example, typical scale-free networks have high-degree nodes that, when visualized, 

are connected to their hundreds or thousands of neighboring nodes. We developed a 

framework for locally exploring a graph without clutter, showing only the most 

subjectively most interesting nodes, and hence being adaptive to the users’ interests (see 

Figure 3).   

 We introduced a formal notion of subjective interestingness for graph exploration taking 

both divergence between local and global distributions, and similarity to explored nodes 

into account.   

 A measure of surprise over neighborhoods – rather than local node attributes – to draw 

users in the direction of graph areas with subjectively interesting content.   

 This subtask has formed the foundation for Computer Science PhD student Robert 

Pienta’s thesis work on developing scalable visualization techniques for making sense of 

million and billion node graphs. 

 

Figure 3. (a) The Rotten Tomatoes movie graph shown using conventional spring layout (an edge connects two 

movie nodes if some users voted them as similar). Even for this relatively small graph of 17k nodes and 72k edges, a 

global visualization does not provide much insight. (b) A better way, using our FACETS approach, focuses on 

movies that are the most subjectively interesting, surprising, or both. For example, FACETS suggests Pretty Woman 

(romantic-comedy) as a interesting, surprising related movie of Miss Congeniality (crime-comedy). 

Subtask 2.2: Interactive operations for manipulating graph visualization  (GLO-STIX) 

[Stolper 2014a] [Stolper 2014b] 

 GLOs (Graph-Level Operations) is a new idea and model for specifying graph 

visualization techniques – they are like “LEGO blocks” for visualization. We provide 

these LEGO blocks; the user then flexibly combines them to create helpful visualization 

on demand. Example GLOs include: ranking a group of nodes by node attribute, 

grouping nodes into super nodes (see Figure 4 below). We contribute a method to identify 
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GLOs and demonstrate the flexibility of GLOs in re-creating canonical graph 

visualization techniques.  

 GLOs benefit researchers in helping them discover new network visualization techniques 

more easily and also benefit practitioners and developers in reducing engineering 

challenges. 

 Graph-Level Operations is such a novel idea that it has become Computer Science PhD 

student Chad Stolper’s thesis (co-advisors Prof. John Stasko and Polo Chau). 

 

Figure 4. A screenshot of the GLO-STIX user interface showing a user exploring the Les Miserables character co-

occurrence graph using graph-level operations (GLOs). Nodes are characters, and an edge connects two characters 

if they co-occur in a chapter. The original node-link view of the graph is saved by the user as a snapshot in the 

bottom pane. From the list of operations available (shown in left-most column), applying those selected in the 

middle column transforms the original graph into the PivotGraph visualization displayed in the main view. 

Task 3: Learning Models for Anomaly Detection  

The goal of this task was to implement, enhance, and integrate Optics-OF and SoNG and identify 

semantic interpretation of anomalies.  

 Develop a newer set of advanced methods for anomaly detection that leverage an 

iterative bottom-up and top-down approach to support automatic explanations of 

anomalies will be advanced. A mixed-initiative approach and interactive exploration of 

anomalies will be developed to support PRODIGAL in analyses where explanations do 

not have clear conclusions.  
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 Operate on a “sack-of-n-grams’’ (SoNG) representation. This preserves the local 

structural information in the event stream, and narrows the conceptual gap between BoW 

and sequential models. Experiments have shown that capturing some of the local 

temporal structure of events using n-grams does allow for the detection of inserted 

synthetic anomalies in a large corpus of collected data in many cases with reasonable 

confidence. More advanced algorithms for anomaly detection, applied on top of the 

SoNG representation, may allow for substantial improvement in detection accuracy. In 

particular, the application of density- based clustering methods (such as OPTICS) for 

outlier detection in insider threat scenarios may prove effective. These techniques can be 

combined with n-gram based feature vectors to effectively identify anomalous user 

behavior based on deviations in the local temporal structure of the event sequences they 

generate. That is, continue to capture local temporal structure in the event streams by 

using the SoNG approach for featurization of the streams. However, we propose the 

implementation of an outlier detection mechanism over these featurized streams based on 

OPTICS-style density based clustering. 

This task resulted in 3 publications including a best workshop paper [Sharma 2015] and formed 

part of the theses of two PhD students. This research explored several ideas based on activity 

modeling to find patterns and anomalies, such as applying SMO-KML (Sequential Minimal 

Optimization - Multiple Kernel Learning) to learn both the kernel and SVM parameters, and to 

aid in clustering and classifying activities [Sharma 2014], addressing the limitations of OPTICS 

frameworks. We also explored the applying concept of Sequential Motion Textures (SMT) to 

model repetitious activities, by leveraging the representation of movements to model dynamic 

information.  

Optics-OF. Optics-OF is an approach to anomaly detection within the framework of density-

based clustering. To learn more about the details of the algorithm, please see [Breunig, 1999]. 

For our purposes, the benefits of using this algorithm as opposed to the previous, more ad hoc 

method that had been layered on top of the VSM cosine similarity computation are twofold. 

First, OPTICS-OF allows us to move away from a more ad hoc approach that involves a “magic 

number” parameter and which makes assumptions about the distribution of the input data that 

may not hold. The ad hoc anomaly detection method layered over VSM would look at the 

average cosine similarity with the nearest k (usually, we chose k=10) neighbors, and used this 

value as the anomaly score. While this approach worked well in some settings, it is sensitive to 

scale and may make decisions about anomalousness that are intuitively quite odd if the density of 

the input distribution is far from uniform. Given that our data (variable-length vectors of discrete 

events representing user activity at workstations) is likely to have a non-uniform density, due in 

part to latent factors such as variable user roles within the larger organization, the ad hoc 

approach is likely to be insufficient for some subproblems (problem framings) that arise within 

the context of the ADAMS project. Outlier/anomaly detection built on density-based clustering 

provides a more principled approach, where a data point is considered anomalous if it is more 

distant from its neighbors than its neighbors are from each other – and thus it should address the 

issues of the ad hoc approach. Further, OPTICS(-OF) is more flexible than some other density-

based clustering approaches, in that it computes results that effectively test a range of parameter 

settings at once, thus decreasing the dependence on proper selection of “magic number” 

parameters.  
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Second, OPTICS-OF can serve as a springboard to more interactive, “human-in-the-loop” 

exploration and visualization of datasets, with a specific eye towards identifying anomalies. 

Again, this is because of the more limited reliance of OPTICS on specific parameter settings. 

The data gathered during a single run of the algorithm is sufficient to allow the user to browse 

the clusters that are formed at multiple scales (as in hierarchical clustering), effectively 

visualizing clustering results with multiple parameter settings. It is our sense that this kind of 

interactive data exploration may be useful as the ADAMS/PRODIGAL project moves towards a 

deployed system, in terms of allowing the human to guide processing (select problem framings 

to refine results).  

One notable extension to OPTICS-OF was needed for this setting. Specifically, the algorithm as 

designed does not deal well with duplicate points (in our case, exact duplicate event vectors). 

The authors suggest a method for dealing with the issue (only examining unique neighbors), but 

this method is not acceptable for our problem setting, because it will result in high anomaly 

scores for event vectors that are frequently duplicated but for which there are few “near misses”. 

Our solution is to add a small amount of “background radiation” – a very small positive value – 

to a part of the outlier measure computation. This avoids a divide-by-zero problem without 

impacting relative score computation.  

Initial Results. At this point, only a very preliminary set of results have been obtained and 

analyzed. A recent overhaul moved VSM from working at a scale of months to a scale of days, 

and it has not yet been possible to fully analyze these results and tune the algorithm appropriately 

(e.g. extend and adjust inputs as necessary for the altered time scale, see why “anomalous” users 

may have had anomalies detected more quickly on seemingly uninvolved days, etc.). Results for 

VSM-Ad Hoc (lift and ROC) are shown in Figure 5 and Figure 6.  

 

Figure 5. VSM-Ad Hoc lift 

 

Figure 6. VSM-Ad Hoc ROC 
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As can be seen, although when operating on a scale of months (scoring each user based on their 

most anomalous day within a month) VSM did reasonably well, it is not outperforming a random 

baseline in this new configuration. More analysis needs to be done to understand why this is the 

case, and make appropriate adjustments for this new configuration. Results for VSM-OPTICS-

OF are shown in Figure 7 and Figure 8.  

 

Figure 7. VSM-OPTICS-OF lift 

 

Figure 8. VSM-OPTICS-OF ROC 

Again, these results, while possibly slightly better, do not appear to be significantly better than a 

random baseline. Because VSM-OPTICS-OF has only been run in the user-day configuration, it 

is not clear how its performance would compare to that of VSM-Ad Hoc in the month-based 

configuration in which VSM has been able to exceed baselines. In both cases, more analysis and 

tuning will be required to understand and improve results.  

Running OPTICS-OF Over VSM. The current implementation of OPTICS-OF depends upon 

the previous execution of the main VSM code, in which an output file containing cosine 

similarity differences between vectors in the input dataset is created. This file is then used in the 

OPTICS-OF computations. Thus, the current procedure consists of first running VSM-Ad Hoc 

for the data in question, using the PRODIGAL framework as usual. This code has been 

baselined, and is described in detail in the baseline document. Then, OPTICS_OF_VSM.java 

should be adjusted to reflect the desired input/output directories and files. All relevant 

parameters can currently be found at the top of this java source file. This code can then be run to 

compute the OPTICS-OF anomaly scores for each user-day. Finally, OPTICSExpandData.java 

can be run to compute secondary metrics from these raw scores. Also included in the current 

codebase are OPTICS_VSM.java, which performs the basic density-based clustering (rather than 

computing anomaly scores), and a prototype GUI that enables visualization of the clusters, 

roughly in the manner described in [Ankerst 1999].  
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1.2.Carnegie Mellon University Algorithm Research Activities  

1.2.1. Research in models of graph evolution (CMU SOW 1.1.2) 

CMU-1: Oddball 

Oddball has been shown to work on large weighted graphs, without human intervention. The 

main idea behind Oddball is to summarize each node's neighborhood subgraph, called the node's 

"egonet" (which include all nodes within one step away, and all edges in the neighborhood), 

using a set of features.  

Oddball has been used in identifying the core set of features that successfully flagged anomalous 

nodes (and discovered patterns), such as the egonet's total edge weight, principal eigenvalue, and 

total number of edge.  It has also been used to devise unsupervised methods that automatically 

correlate pairs of features (e.g., edge weight vs. principal eigenvalue) and pinpoint nodes whose 

features deviate from the rest.   

In Phase 1, we delivered Oddball in Matlab to automatically flag anomalous/malicious nodes and 

have extended this effort of automatic anomaly detection in CMU-5: G-FADD. 

CMU-2, 4: Interactive local graph exploration and visualization (Apolo) 

Anomaly detection algorithms often only identify nodes of interest, providing little justifications. 

This implies analysts will likely need to reason or make sense of such detection results. In other 

words, they will need to engage in rapid, "bottom-up" sensemaking investigation to find 

supporting evidence, such as other potential nodes in the graph that may have attributed to the 

anomaly.   

Apolo supports this "bottom-up" graph mining task by using a mixed-initiative approach---

combining machine learning, visualization, and rich user interaction---to guide the user to 

incrementally and interactively explore and make sense of very large graphs.  Apolo engages the 

user in an inductive, bottom-up approach, where the user gradually builds up an understanding 

over time by starting small, rather than starting big and drilling down. The user specifies some 

nodes of interest in the graph and Apolo's machine learning method called Belief Propagation 

learn from these exemplars to infer which other nodes may also be of interest.   

During the course of the project, we have extended this interactive local graph exploration and 

visualization tool to incorporate analysts' relevant feedback and shipped Apolo package in Java. 

The ADAMS user will bring the source article into the interface, which initiates Apolo's Belief 

Propagation (BP) machine learning algorithm to find 10 most relevant articles and add them to 

the interface (so as not to overwhelm the user with too many articles). The user can categorize 

any number of the articles into an arbitrary number of user-specified groups (e.g., Information 

Visualization in blue, Collaborative Search in orange, Personal Information Management in 

green). Adding an article into a group makes it an exemplar for that group and causes the BP 

algorithm to infer the relevance of all other nodes in the network to the exemplar(s).  If the user 

agrees with the algorithm's inference, he can ask Apolo to suggest more relevant articles to 

deepen his understanding. Sometimes, BP does not label articles as intended.  The user can 

correct this by manually putting them into to the groups that he sees fit (making them 

exemplars). Apolo will support the ADAMS user in iteratively refining the groups; the user can 

split a group into finer groups, or merge multiple ones, and move articles between them.  



 PRODIGAL Final Report 

 

  19 

  

 

CMU-3: Peta-scale graph mining system (PEGASUS) 

Some of the ADAMS input data, hence the resultant graphs, may eventually become too large to 

fit in the main memory. As a result, many important algorithms that assume the graph would fit 

in memory will fail to run.   

During the course of the project, we conducted forefront research in reformulating and 

developing such algorithms (e.g., finding connected components, computing graph radius) so 

that they work on huge graphs by developing massively-scalable graph mining algorithms by 

extending the algorithm development of Pegasus, an open-source, petabyte-scale graph mining 

system. Pegasus runs in a parallel, distributed manner on top of Hadoop, an open-source cloud-

computing platform that implements the MapReduce framework.  

As a result, the PEGASUS package we shipped in Java can extract following from the given 

graph data: 

 PageRank: Measures the relative importance of nodes via the nodes that link to it.  

 Random Walk with Restarts (RWR): Defines a relevance score between two nodes in a 

graph.  

 Connected Components: Partitions the graph into groups of nodes mutually connected via 

their edges.  

 Diameter: Measures the distance of the furthest-apart nodes in the graph.  

 Degree distribution: The number of in- and out- edges among nodes of the graph.  

We also have produced research papers with the details and implemented several new, important 

algorithms on top of the Pegasus framework that can be used in a wide variety of anomaly 

detection algorithms,  

 Eigensolver: Finds the eigenvalue decomposition of the graph’s adjacency matrix. [Kang 

2011] 

 BP/FastBP: An efficient way to solve inference problems based on local message passing. 

[Koutra 2013b], 

 

CMU-5: Grid-based Fast Anomaly Detection Given Duplicates (G-FADD) 

Many traditional outlier detection methods are slow due to the big number of duplicate points 

that the outlier detection literature has ignored before. Given a cloud of multi-dimensional 

points, GFADD detect outliers in a scalable way by taking care of the major problem of 

duplicate points. Fast Anomaly Detection given Duplicates (FADD) solves duplicate problems 

by treating them as one super node rather than considering them separately. Moreover, Grid-

based FADD (GFADD) applies a k-dimensional grid on the k-dimensional cloud of points, and 

treats as super nodes only the grid cells that consist of more points than the number of nearest 

neighbors we are interested in. This method achieves near-linear runtime given duplicates, while 

Local Outlier Factor (LOF), the traditional outlier method that consists our baseline, has 

quadratic runtime. GFADD can spot anomalies in data sets with more than 10M data points, 

while the traditional LOF algorithm runs out of memory even for 20K data points. (See Figure 9) 
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Figure 9. FADD and GFADD vs LOF 

During the course of this project, Carnegie Mellon University developed and delivered an 

implementation of the G-FADD and experimented with PRODIGALNET dataset. Additionally 

with the work on G-FADD, a paper was published on CMU SCS Technical Report 2012 and a 

poster was presented on WWW 2013. 

Thirteen variants of this algorithm have been implemented in the standard PRODIGAL suite of 

detectors.  Each variant considers a pair of features found to be useful in detecting target insiders. 

1.2.2. Research in graph summarization and understanding (CMU SOW 2.1.2) 

The main idea is that compression and understanding go hand-in-hand: If a graph is, eg., a full 

clique with all N nodes connected to all others, we can easily describe/compress it, and  thus 

understand its structure. 

Most of the proposed subtasks are exactly based on this idea, that compression is understanding, 

and in-ability to compress a node or subgraph, is a sign of an anomaly. 

Subtask 1 - STATIC COMPRESSION: The goal is to automatically extract the few most 

important parts of the graph. For example, a few 'stars' with huge degrees; and a few near-cliques 

of 10-15 nodes (conspirators?) Our approach is to use entropy/compression arguments: a 

subgraph (eg., star) is worth mentioning, if it helps us compress (=understand) the large graph. 

Subtask 2 - VISUALIZATION: Following up, propose to allow visualization of a graph and its 

important subgraphs. We propose to study (and eventually, automatically choose) between two 

choices: (a) a spring-force layout of a (sub)-graph, which is suitable when a graph is small and 

(b) a careful 'spy-plot' of the adjacency matrix, which is more suitable for larger graphs. 

Subtask 1: Static Compression 

How can we succinctly describe a million-node graph? Given a graph with millions and billions 

of nodes and edges, how can we find its most “important” structures in a few sentences, and 

visualize its most important aspects? How can we measure the “importance” of a structure? 

These are exactly the problems we focus on.  

Our main ideas are to create a “vocabulary” of subgraph- types that we know often occur in real 

graphs (such as stars, cliques, chains) shown in Figure 10 below, and use this vocabulary to 

succinctly describe the large graph. We propose to measure success in a principled way, by 

means of MDL (Minimum Description Length). As such, a structure (= subgraph) is important, if 

it helps decrease the description length.   
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Figure 10. Examples of Star, Clique, and Chain graphs addressed through static compression. 

CMU contributions are three-fold: (a) formulation: we provide a principled (MDL-based) 

encoding scheme to choose which vocabulary sub-graphs to use; (b) algorithm: we propose VoG, 

an efficient and effective method to minimize the description cost and (c) applicability: we report 

experimental results on numerous multi-million-edge real graphs.  

Figure 11 shows that VoG is an efficient method. 

 

Figure 11. Efficiency of VoG 

Figure 2 shows effectiveness of VoG through experimental result on Wikipedia graph. 

 

Figure 2. Effectiveness of VoG through experimental result on Wikipedia. 

 

Subtask 2: Net-Ray 

How can we visualize billion-scale graphs? How to spot outliers in such graphs quickly? 

Visualizing graphs is the most direct way of understanding them; however, billion-scale graphs 

are very difficult to visualize since the amount of information overflows the resolution of a 

typical screen.  

CMU proposes NET-RAY, an open-source package for visualization- based mining on billion-

 

top-8 star structures: 

admins, heavy wiki users, 

bots 

top-1 and top-2 bipartite cores: edit wars. 
Left: warring factions changing each-other's edits. Right: 

between vandals 
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scale graphs. NET-RAY visualizes graphs using the spy plot (adjacency matrix patterns), 

distribution plot, and correlation plot which involve careful node ordering and scaling. In 

addition, NET-RAY efficiently summarizes scatter clusters of graphs in a way that finds outliers 

automatically, and makes it easy to interpret them visually. To the best of our knowledge, NET-

RAY is the first work for visual mining on billion-scale graphs.  

Extensive experiments show that NET-RAY handles very large graphs with billions of nodes and 

edges efficiently and effectively. Specifically, among the various datasets that we study, we 

visualize in multiple ways the YahooWeb graph which spans 1.4 billion webpages and 6.6 

billion links, and the Twitter who- follows-whom graph, which consists of 62.5 million users and 

1.8 billion edges. We report interesting clusters and outliers spotted and summarized by NET-

RAY.  

Figure 3 shows the experimental results of Net-Ray on Twitter and Yahooweb. The red circles are 

the outliers that Net-Ray has captured automatically. 

 

Figure 3. Experimental results on YahooWeb and Twitter. Outliers in correlation plots                                         give 

rich information on the structural patterns of graphs. 

 

1.3.Oregon State University Algorithm Research Activities  

1.3.1. Research in for anomaly detection (OSU SOW 1.1.3) 

During Phase I Oregon State University worked on the development and evaluation of novel 

anomaly detection algorithm as well as creating a novel framework for evaluating anomaly 

detection algorithms. Below work on the three most successful anomaly detection algorithms 

will be described, followed by a description of the new evaluation framework.  
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OSU-2: Cross Prediction 

The main idea of the cross prediction method is to learn models to predict the value of each 

feature in terms of other features. Given a new instance 𝑥 an anomaly score is then provided 

based on how well each of the features can be predicted in terms of the others. The assumption is 

that anomalous data will have certain attributes that do not exhibit the same conditional 

distribution characteristics as those attributes in normal data.  

More specifically given a set of data, most of which is assumed to be normal, a conditional 

probability model is learned for each feature 𝑥𝑖 in terms of the remaining features denoted by 

𝑥−𝑖. We denote this probability model as 𝑝(𝑥𝑖|𝑥−𝑖). Given a new instance with vector 𝑥 the 

anomaly score given to the instance is 𝑃(𝑥) = 1 − ∏ 𝑝(𝑥𝑖|𝑥−𝑖)𝑖 . This assigns a high score to 

instances where certain attributes are not well-predicted in terms of the others.  

A desirable feature of this approach is that it has the potential to automatically scale for 

systematic trends in the data. For example, some users have many more logins than other users 

and the corresponding statistics of other attributes will be correspondingly scaled. The cross 

prediction approach has the potential to learn the general correspondence between the number of 

logins and scales of other attributes. In contrast more traditional anomaly detections techniques 

would need to learn components that characterize the full range of scales.  

A potential weakness of the above approach is that the anomaly score can potentially be 

dominated by the scores of features that are inherently unpredictable. To address this issue a 

contribution of our approach is to develop a feature selection technique where we only consider 

features in the model that are predictable above a certain accuracy level. This improves 

performance substantially and also reduces the computational complexity of applying the model. 

Our current implementation uses regression trees as the base predictors, which are focused on 

predicting the quantiles of each attribute.  

Overall the performance of this approach is not as high as the approaches described below on the 

insider threat data. The precise reason for this is not clear and is a topic of current investigation.  

OSU-3: Ensembles of Gaussian Mixture Models (EGMM) 

Gaussian Mixture Models (GMMs) are a commonly-used parametric model for density 

estimation of vector-valued data. As such, a natural approach to anomaly detection would be to 

fit a GMM on a dataset and then rank instances according to the negative log-likelihood assigned 

by the GMM. Anomalous instances will generally be expected to have smaller log-likelihoods 

and hence will appear higher in such a ranking. Unfortunately a single GMM is not a very robust 

density estimator due to the non-convex form of the associated parameter optimization problem, 

which we solve via the Expectation-Maximization (EM) algorithm. Thus, the anomaly rankings 

provided by a single GMM will often not be very robust across multiple runs of EM. Further, the 

number of Gaussian components k in the model is a difficult parameter to set and the anomaly 

scores can depend very much on the precise value.  

To improve robustness, we generate a diverse set of models with multiple clustering assumptions 

about the value of k and random EM initializations and then combine those models to obtain the 

final anomaly score. Specifically, in our Ensemble GMM (EGMM) approach, instead of using a 

single value of k, we generate an ensemble of GMMs for a set of k values (denoted K). This is 

easier to specify and allows the algorithm to perform model selection automatically. For each 

value of k in K we use r runs of EM with random initializations to produce a set of r GMM 
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models. In addition, we use boostrap aggregation (bagging) to help ensure that models for an 

individual k are independent of one another. Ideally, all models should be independent if we 

expect to improve generalization by combining their results. 

Given the produced ensemble of GMMs and a data instance x we assign a likelihood to x by 

averaging the likelihoods assigned to across the ensemble. Note that this average score can be 

interpreted as a valid PDF since the average of a set of PDFs is also a PDF.  Note that this 

approach is highly parallelizable if desired since the training of individual GMMs is independent.  

More recently we have observed that an alternative model combination approach performs better 

on some benchmark datasets. In particular, averaging the log-likelihoods of the individual 

models improved performance over just averaging likelihoods. This combination method has an 

information theoretic interpretation as computing the average surprise (negative log likelihood) 

of each data point. 

OSU-8: Grouped Ensembles of Gaussian Mixture Models (GEGMM) 

The GMM and EGMM methods can be viewed as organizing data points into a collection of 

clusters. These algorithms treat every data point as independent. In the context of insider threat 

detection, each data point represents one user-day. The user-days corresponding to a single user 

should not be treated as independent. For example, consider a clerical worker whose computer is 

compromised so that the worker appears to start behaving like a system administrator as of 

March 1. A method such as EGMM that treats each day independently will cluster the days prior 

to March 1 with days from other clerical workers and cluster days after March 1 with system 

administrators. It will not detect the compromise. The Grouped-EGMM method extends EGMM 

to require that all user-days from the same user must be assigned to the same cluster. The data 

from the compromised clerical worker will not fit well in any cluster, so it will be detected as an 

outlier.  

We compared GEGMM to EGMM on data from Vegas, September 2012. Figure 4 shows that 

the AUC is substantially improved. 

 

Figure 4. Comparison of EGMM and Grouped EGMM on Vegas, September 2012 
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OSU-4: Repeated Impossible Discrimination Ensemble (RIDE) 

In machine learning, we often fit highly flexible models to training data. Such models can easily 

“overfit” the data, which means that the model discovers ad hoc patterns that do not generalize to 

new data and therefore lead to errors during prediction. As a general rule, outlier data points are 

easier to overfit than data points that belong to a tight cluster. The idea underlying the RIDE 

algorithm is to exploit overfitting as follows. Given a set 𝑆 of data points (vectors of features), 

randomly partition it into two equal-sized sets 𝑆1 and 𝑆2. Label all points in 𝑆1 as belonging to 

class “0” and all points in 𝑆2 as belonging to class “1”. Then apply a flexible learning algorithm, 

such as boosted regression trees, to learn a classifier that can discriminate the “0” data points 

from the “1” data points. This is an impossible discrimination task because, by construction, the 

two sets 𝑆1 and 𝑆2 have exactly the same probability distribution. A properly-calibrated classifier 

would therefore predict that the probability of any data point 𝑥 belonging to class “0”, denoted 

𝑃(𝑦 = "0"|𝑥), should be the same as the probability of belonging to class “1”, denoted 𝑃(𝑦 =
"1"|𝑥), and should be 0.5. However, if we allow the classifier to overfit the data, it will discover 

ad hoc reasons for why the data points in 𝑆1 are from class “0” and the data points in 𝑆2 are from 

class “1”. We can use the |𝑃(𝑦 = 1|𝑥) − 0.5| as a measure of how badly the classifier has 

overfit data point 𝑥.    

The Repeated Impossible Discrimination Ensemble (RIDE) method performs this random-split-

and-overfit process many times. For each data point 𝑥, it computes the average value of 

|𝑃(𝑦 = 1|𝑥) − 0.5| and uses this as an anomaly score. We call this general paradigm “Anomaly 

Detection by Overfitting” to contrast it with standard approaches, which can be viewed as 

“Anomaly Detection by Underfitting” because they fit a probability model and then score as 

anomalies those points that do not fit the model. An advantage of the RIDE approach is that it 

can work well when there are irrelevant features, because it can apply feature selection methods 

from supervised learning.  

OSU-5: Isolation Forest (IFOR) 

Our benchmarking study (see below) determined that the Isolation Forest algorithm of Liu, Ting 

& Zhou [Liu 2008] was an excellent anomaly detection algorithm, so we added it to our 

collection of anomaly detectors. An isolation tree is a randomized tree that recursively partitions 

the data space into axis-parallel rectangles. In each recursive step, the algorithm splits a node by 

selecting one dimension of the data at random, computes the minimum min and maximum value 

max of that dimension for the data points that have reached the current node, and selects a 

threshold uniformly at random between min and max. The data points are then sent to two child 

nodes according to this threshold. Splitting stops when there is exactly one data point reaching a 

node. The node is defined as a leaf node, and the data point is said to be isolated in that leaf. To 

compute the anomaly score for a query point, the point is dropped through the tree until it 

reaches a leaf, and the depth 𝑑 of the leaf is computed. The intuition is that points having low 

isolation depth are anomaly points that are easily separated at random from the normal data 

points. An isolation forest is an ensemble of 100 isolation trees. Each tree is built using only a 

random subsample of the full data set. Our experiments suggested that the optimal subsample 

size should be around 2000 (whereas Liu et al. suggest 256). To compute the overall anomaly 

score for a query point, the average isolation depth 𝑑̅ of the point is computed across all of the 

trees in the forest. The anomaly score is computed as 2
−

𝑑̅

𝜇, where 𝜇 is a theoretically-computed 

expected isolation depth. 
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A Framework for Benchmarking Anomaly Detection Algorithms 

Research in anomaly detection suffers from a lack of realistic and publicly-available problem 

sets. This makes it difficult to draw general conclusions about the relative effectiveness of 

different anomaly detection methods. With this motivation, we developed a framework for 

constructing anomaly detection benchmarks from real-world classification data sets.  

We started by identifying key properties that anomaly detection benchmarks should possess as 

follows:  

Requirement 1: Normal data points should be drawn from a real-world generating process. 

Generating data sets from some assumed probability distribution (e.g., a multivariate Gaussian) 

risks not capturing any real-world processes. Instead, as the field has learned from many years of 

experience with benchmark problems, it is important that the problems reflect the idiosyncrasies 

of real domains. 

Requirement 2: The anomalous data points should also be from a real-world process that is 

semantically distinct from the process generating the normal points. The anomalous points 

should not just be points in the tails of the normal distribution.  

Requirement 3: Many benchmark datasets are needed. If we employ only a small number of data 

sets, we risk developing algorithms that only work on those problems. Hence, we need a large 

(and continually expanding) set of benchmark data sets to ensure generality and prevent over 

fitting. 

Requirement 4: Benchmark datasets should be characterized in terms of well-defined and 

meaningful problem dimensions that can be systematically varied. An important goal for 

benchmarking is to gain insight into the strengths and weaknesses of the various algorithms. 

Ideally, we should identify those dimensions along which anomaly detection problems might 

vary and then generate benchmark data sets that vary these dimensions in a controlled fashion. 

There is currently no established set of problem dimensions for anomaly detection and we expect 

this set to evolve with experience. However, in this initial work we proposed a set of four 

dimensions: (a) point difficulty, (b) relative frequency, (c) clusteredness, and (d) feature 

relevance/irrelevance. The full paper on this research [Emmott et. al., 2013] defines these 

properties more formally. In addition it specifies an algorithmic methodology for generating 

anomaly detection datasets from real-world classification and regression data that can span the 

range of these properties.  

The result of our initial work is a set of thousands of anomaly detection problems derived from 

real-world data that span the range of the above properties. Our work in [Emmott et. al., 2013] 

also describes an empirical study where we apply a number of state-of-the-art anomaly detection 

methods to these datasets to identify trends. Our initial results show that the algorithms exhibit 

the expected performance trends with respect to the data set properties. This shows that our data 

set construction methodology is producing sets where the properties are meaningful. Further the 

results indicate that the isolation forest algorithm is particular effective and robust, though this is 

an early result that requires further investigation.  

We are currently expanding on this initial study in two ways. First, we are rebuilding the 

benchmark data sets to incorporate several minor improvements including a baseline setting in 

which no manipulation of the dimensions is performed. Second we are including more anomaly 

detection algorithms in the empirical evaluation.  
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Research in ensemble methods for anomaly detection  

Ensemble methods have been extremely successful in supervised learning and clustering. It is 

important to distinguish between homogeneous ensembles and heterogeneous ensembles. In a 

homogeneous ensemble, a single algorithm is executed multiple times (with injected 

randomness) to produce an ensemble. The EGMM and IFOR algorithms are good examples of 

this, and ensemble methods are very important to their good performance. A heterogeneous 

ensemble combines a diverse set of algorithms in an attempt to achieve robust performance 

across a wide range of problems. In supervised learning, heterogeneous ensembles typically 

involve training a “stacked” classifier that computes a weighted combination of the members of 

the ensemble. The training signal for this stacked classifier is provided by various hold-out 

techniques.  

The leading heterogeneous ensemble method for anomaly detection was developed by Schubert 

et al. [Schubert 2012]. It forms a consensus labeling of the data points (as anomalous or normal) 

using a simple consensus method in which each of the anomaly detectors in the ensemble is 

allowed to vote for K data points. Any point that receives a vote is labeled as anomalous. These 

consensus labels are then applied to learn weights for a stacked anomaly detector. 

Oregon State undertook extensive algorithm development and experimentation on methods for 

creating heterogeneous ensemble for anomaly detection with the goal of improving upon the 

Schubert method. Here is a summary of our findings: 

1. Most anomaly detectors agree on the anomalies; therefore, simple aggregation of ranks or 

scores (min, max, avg., median, geometric mean) strengthens signals from true anomalies. 

Geometric mean appears to be the most reliable and has some theoretical justification. 

2. Sophisticated methods that model the empirical rank/score distributions more accurately and 

preserve most anomaly signals (e.g., mixture of Gaussians, mixture of Gammas, Bayesian 

aggregation of Rank Data (BARD; [Deng 2014]), and Plackett-Luce (PL; [Plackett 1975])).  The 

mixture approaches did not show any AUC improvement even in cases where the score 

distributions were satisfactorily inferred. BARD was able to infer detector quality quite well, but 

its results are almost at the median of all detectors. PL, which uses straightforward rank 

aggregation, performed much worse than most base algorithms. 

3. Multiple types of anomalous patterns exist which leads to broad disagreement across 

specialized detectors. Simple aggregation of ranks or scores suppresses some of these patterns. A 

mixture model (such as rank-based topic models or mixtures of PL distributions) might instead 

untangle those patterns and report anomalies from each. It is however difficult to check if each 

mixture component corresponds to a particular pattern in real-world high dimensional data 

because the number of anomalies is typically small. In our experiments, evaluation did not show 

any improvement in AUC over the top-performing base algorithms. 
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4. One possible approach to learning ensemble weights would be to request and integrate 

feedback from the analyst. We developed two methods for employing expert feedback, one for 

the BARD algorithm and one based on learning weights using the Passive Aggressive (PA; 

[Crammer 2006]) algorithm. Feedback with BARD increased the variance in results and showed 

no overall improvement. The PA algorithm shows some promise. Two fundamental problems 

which need to be solved are (a) class imbalance which leads to almost one-sided feedback, and 

(b) inferring a decision boundary so that uncertainty sampling (shown to be very effective in 

active learning) might be used as a query strategy. This is where we are focusing our current 

research. Figure 4 and Figure 4 are two results that use random projection vectors from the LODA 

algorithm [Pevný 2016] as the ensemble components. The horizontal axis reports the number of 

cases for which the analyst has provided feedback. The vertical axis is the AUC. The dashed line 

is the AUC of LODA without ensemble reweighting, and the red curve reflects reweighted via 

the PA algorithm. In both of these benchmark problems, reweighting is able to achieve a small 

but significant increase in AUC.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Forest Cover 

 
Figure 5. Particle 



 PRODIGAL Final Report 

 

  29 

  

 

1.3.2. Research in anomaly explanations  

Oregon State conducted extensive research on methods for explaining anomalies to analysts. We 

studied a particular form of explanation which we call a Sequential Feature Explanation (SFE), 

which consists of an ordering over the features describing the anomalous case. The anomaly 

detection system explains why it has marked a case as anomalous by presenting the features in 

order until the analyst has enough information to make a decision about whether to open an 

investigation of the case. We imagine a user interface in which the analyst is shown the value of 

the first feature for the case (in the context of the value of the first feature for other cases). The 

analyst may be able to immediately see why the point was marked as anomalous. If the analyst is 

still not convinced, then the combination of the first and second features is presented (in 

context). If this is still not sufficient to allow the analyst to make a decision, the first three 

features are shown. Over time, we expect the analyst to become more and more certain that the 

point is (or is not) an anomaly. We summarize this as an Analyst Certainty Curve (see Figure 7). 

The horizontal axis records the features as they are incrementally revealed to the analyst. The 

vertical axis is the probability that the analyst assigns to the point being “normal”. 

 

Figure 7. Analyst Certainty Curve 

The goal of our explanation algorithms is to minimize the number of features that must be 

revealed to the analyst. We refer to this as the Minimum Feature Prefix (MFP). 

We developed four algorithms for constructing sequential feature explanations and compared 

them to randomly-ordered features and to an oracle that orders the features optimally. On 

benchmark problems, we create a simulated analyst by applying supervised learning to train 

classifiers to predict the probability that the data point is “normal”. We set a probability 

threshold (e.g., 0.3) below which the explanation process is terminated. 

Experiments showed that the best algorithm for SFEs is the Sequential Marginal algorithm, 

which is a form of greedy forward selection. In this work, we employed the EGMM anomaly 

detector, so we assume that it has computed a density estimate 𝑓(𝑥) over the data space. The 

Sequential Marginal algorithm computes the feature 𝑗1 that minimizes the marginal density 

𝑓(𝑥𝑗1
) and makes feature 𝑗1 the first feature in the sequential feature explanation. It then finds 

the feature 𝑗2that minimizes the pairwise marginal 𝑓(𝑥𝑗1
, 𝑥𝑗2

), and makes 𝑗2 the second feature in 

the explanation. This greedy selection process continues until all features have been placed into 

the SFE.  
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Figure  shows the performance of Sequential Marginal (SeqMarg) compared to Random and to an 

Oracle (OptOracle). We observe that the Random method requires many more features than the 

Sequential Marginal method. In some cases, the Sequential Marginal method comes close to 

matching the Oracle, but in other cases, it requires twice as many examples.  

 

 

Figure 18. Performance of Sequential Marginal (SeqMarg) compared to Random and to an Oracle (OptOracle). 

We studied additional algorithms that optimize the MFP globally instead of using a greedy 

algorithm. However, these algorithms did not provide a noticeable improvement over Sequential 

Marginal despite their much greater computational cost. This work was presented at the KDD 

2015 ODDx3 Workshop [Siddiqui 2015]. 

 

1.4.University of Massachusetts Algorithm Research Activities  

Research at the Knowledge Discovery Laboratory at the University of Massachusetts Amherst 

focused on developing several novel algorithms.  However, this work also produced evidence for 

several general conclusions about the task of anomaly detection for insider threat analysis as well 

as core concepts commonly used for anomaly detection. These conclusions included the 

following: 

Anomaly detection as joint probability estimation — Anomaly detection for insider threat 

analysis, as well as many other anomaly detection tasks, can be accurately defined as identifying 

data instances with low joint probability and can be solved by applying high-accuracy joint 

probability estimation.  This conclusion appears obvious to some investigators, but is far from 

universal in the existing literature on anomaly detection. 

Classifier-adjusted density estimation (CADE) — Remarkably efficient and effective anomaly 

detection can be performed using combinations of very simple joint probability estimators and a 

single conditional probability estimator. We implemented and evaluated a variety of such 

estimators, but the basic concept is quite simple: A very simple generative model is defined that 

approximates the joint probability distribution, and then a conditional probability estimator is 

used to “correct” the probability estimates of the simple joint estimator.  This approach has been 

previously proposed, but had not been widely used or empirically evaluated. 
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Normalization — Normalizing features generally improves anomaly detection for insider threat 

analysis, although no single normalization approach was uniformly superior.  We evaluated a 

large number of normalization approaches, and we defined a general framework for describing 

such approaches. 

Mixtures of dependency networks — Significant improvements in joint probability estimation 

can be obtained by learning latent groups of data instances.  Our approach to learning this latent 

structure (mixtures of dependency networks) obtained significant improvements over single 

dependency networks or a range of other joint probability estimators. 

Feature importance — Some information useful for explaining anomalies can be provided by 

joint probability estimators such as dependency networks.  A robust and relatively simple 

approach to explaining anomalies is to identify the features that, if they had an alternative value, 

would have greatly increased the joint probability of a given data instance (e.g., a user-day).  

Such features are those that have the greatest individual impact on whether a data instance is 

deemed an anomaly. 

1.4.1. Research in joint probability and causal reasoning models (UMass SOW 

1.1.4) 

UMass-1: Classifier-Adjusted Density Estimation (CADE) 

We developed a class of estimators for joint probability distributions, often referred to as density 

estimators, that are both highly accurate and computationally efficient to learn and apply.  This 

class of estimators, which we refer to as classifier-adjusted density estimation (CADE), 

overcomes key disadvantages of existing methods for joint probability estimation.  Many of the 

current joint probability estimators that are in wide are either: (1) based on unrealistic 

assumptions about the domain that impair their accuracy (e.g., feature independence); or (2) 

computationally inefficient to learn and apply.  In contrast, CADE-based estimators make few 

assumptions and are efficient to learn and apply. 

As we note above, joint probability estimators are directly useful for anomaly detection.  If the 

joint probability of a set of features can be accurately estimated, then data instances (e.g., user-

days) whose features have low joint probability are by definition anomalous.  Such instances 

don't necessarily represent insider threats (or any other specific underlying cause of 

anomalousness), but they are excellent candidates for further investigation. 
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Figure 8. Detecting anomalies using CADE 

CADE constructs a model of normal behavior by first taking a sample of the observed data 

instances, treating them as non-anomalous, and constructing an equal number of pseudo-

anomalies (Figure 8). Some initial joint probability estimator is constructed from training data 

and then used to generate synthetic data points that we call “pseudo-anomalies.”  This estimator 

often makes unrealistic or unlikely assumptions about the nature of the joint distribution (e.g., 

feature independence) in the interests of efficient learning and inference. CADE then constructs a 

conditional probability estimator (a "classifier") to distinguish the observed data instances from 

the pseudo-anomalies. 

When given a new instance, CADE combines the classifier’s prediction with the initial joint 

estimator’s distribution to determine whether the instance is anomalous. This approach produces 

a representation of the joint distribution that is sufficient for anomaly detection and that is highly 

efficient to learn and apply. For example, when using unoptimized code on commodity 

hardware, CADE learns the classifier and assesses all entities in less than 10 minutes on a data 

set of 131,729 entities with 83 features, and it outputs a score corresponding to the degree of 

anomalousness of an entity extent. 
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In the course of our work and refinement of the ideas behind CADE-based models, we 

discovered that the ideas behind CADE have been re-discovered several times, but the properties 

and performance of CADE-based models have not been widely understood. Hastie et al. [Hastie 

2001] presented this idea more than a decade ago with the still-appropriate remark that although 

it “seems to have been part of the statistics folklore for some time, it does not appear to have had 

much impact despite its potential to bring well-developed supervised learning method- ology to 

bear on unsupervised learning problems.” Our research under ADAMS was the first to compare 

a wide range of alternative specific technologies for the two components of CADE (a simple 

joint estimator and a conditional estimator), and our work was the first to compare its 

performance to several other candidates. 

We showed that several combinations of existing density estimators and classifiers can produce 

high-quality joint probability estimates, although some combinations perform quite poorly and 

should be avoided.  Our research also demonstrated that these density estimation methods scale 

well to data with high dimensionality and that they are robust to the problem of irrelevant 

attributes that plagues methods based on local estimates.  In addition, we showed that CADE is 

surprisingly robust to the addition of random "noise" attributes, particularly in comparison to 

another widely used method for anomaly detection ("local outlier factor").  Full details are given 

in a conference paper describing and evaluating CADE [Friedland 2014]. 

UMass-2: Relational Density Estimation (RDE) 

In addition to CADE, and largely for experimental comparison to CADE, we examined, 

implemented, and evaluated additional classes of density estimators.  Our goal was to support 

greater analysis and explanation of why particular instances were identified as anomalous, as 

well as learning and reasoning with the relational structure of the Vegas data.   

For example, one of these models assumed feature independence but focused on high-accuracy 

modeling of the marginal distributions. Each marginal distribution is modeled using a kernel 

density estimator, and the joint probability is assumed to be a simple product of these marginal 

distributions. The probability estimates themselves are biased when the independence 

assumptions are violated, although rankings can still be accurate despite these biases. While 

these methods were efficient to construct and apply, their performance was generally below that 

of CADE. 

Propositionalization and Normalization techniques 

As part of our research and data analysis, we realized that substantial improvements in anomaly 

detection could be realized by transforming data in two ways.  First, we applied relatively 

standard methods to convert between the multiple data tables available from Vegas (including 

inter-related users, machines, websites, email messages, etc.) and the single table of data 

necessary as input to most classifiers and density estimators. This process, often called 

"propositionalization" converts multiple tables to a single table. 

Second, we "normalized" data in several ways that minimize irrelevant variability in data values 

and more clearly highlighted individuals and days that vary with respect to a group of other 

individuals or days.  Specifically, we explored a range of feature normalizations: median-

difference and percentile of all users on all days in time period; median-difference and percentile 

of all the user's days in time period; median-difference and percentile of all users on same day; 
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median-difference and percentile of all users in group i on the same day; and median-difference 

and percentile of all users in group i’s days in a given time period.  

Intuitively, for a given feature: normalizing each day’s value to all the user’s days should 

highlight unusual days; normalizing each day’s value to all users on that same day should 

dampen day-to-day, across-the-board variations; normalizing each day’s value to a user’s group 

should heighten variation from peers. Unlike median-difference normalization, percentile 

normalization is insensitive to distant outliers.  

We found that percentile normalization by each user’s days gave the best results on the Vegas 

data.  This was, at some level, surprising.  Prior to obtaining these results, we had assumed that 

normalizing by workgroups or by all users in a time period would have been the most successful.  

The former case could have removed variability with respect to the behavior of peers, and the 

latter case could have removed variability associated with weekly, monthly, and yearly events.  

However, per-person variability appears to be the most important effect to represent and account 

for in normalization. 

1.4.2. Research in causal dependence in complex domains (UMass SOW 2.1.4) 

Dependency Networks and Mixtures of Dependency Networks 

Dependency networks (DNs) are a class of highly accurate joint probability estimators that are 

very efficient to learn [Heckerman 2001, Neville 2007].  Each DN consists of k conditional 

probability estimators (one per variable) that are learned independently. The structure of a DN 

indicates marginal dependence among variables, and can be quite sparse, particularly when 

selective conditional estimators are used for learning (Figure 20). 

A single dependency network offers an efficient and flexible method for modeling a joint 

distribution.  However, for complex distributions with large numbers of variables, single 

dependency networks may fail to provide the necessary representational power. Specifically, 

using a single dependency network model to represent a complex distribution can lead to 

problems in inference efficiency and interpretability.  
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Inference efficiency can be impaired because the quality of the approximation to the likelihood 

function is known to depend on sparsity of the underlying model for convergence rates. As the 

number of variables and the complexity of the underlying joint distribution grow, the sparsity of 

the dependency network representing it decreases. This is especially the case for distributions 

that contain instances of context-specific independence (CSI).  CSI describes a case in which two 

variables are dependent in some contexts, but independent in other contexts, where “context” 

usually refers to the value of some set of additional variables.  

Interpretability can be impaired because a single dense dependency network can be very difficult 

to interpret graphically. This is especially true in the case of CSI.  First, the existence of an edge 

between two variables implies that some dependence between the variables holds in all cases, 

even if the details of the conditional probability distributions imply that such dependence holds 

only for specific values of other variables.  Second, the dependency network will also imply that 

 

Figure 20. A dependency network (DN) for the September 2012 Vegas data learned using classification trees as 

the conditional estimator (alpha = 0.001). DNs can be used to estimate per-instance feature significance h by 

estimating the conditional log-likelihood of individual feature values (most anomalous insert, darker = higher). 
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the context-setting variables have a dependence with other variables, even though their role is 

merely to determine the context of other dependencies. 

To overcome these limitations, we developed the mixtures of dependency networks (MDN) 

framework shown below in Figure 21. MDNs follow the intuition of earlier work in mixtures of 

graphical models that, rather than attempting to model a single, dense network, induce sparsity 

by learning a mixture where each component is represented by a graphical model. MDNs 

distinguish themselves from other forms of graphical models by not relying on strong constraints 

about the dependence structure (as is the case in the mixture of trees) or expensive learning 

procedures for each component (as is the case in learning mixtures of Bayesian networks).  

 

Figure 21. An example of a mixture of dependency networks. The hidden variable z denotes membership to each 

component. Each component is a fully formed dependency network. 

MDNs are particularly appropriate for the data sets considered in ADAMS, where joint 

distributions are unlikely to be drawn from a single generating function.  Instead, data sets are 

likely to be mixtures of many different generating functions. To better model this, we used 

MDNs to learn sets of dependency networks that model such heterogeneity automatically.  We 

conducted experiments on a wide range of data sets that showed that MDNs systematically 

outperform single dependency networks and the three other state-of-the-art density estimators 

evaluated: mixture of trees (MOTs), sum-product networks (SPNs), and arithmetic-circuits 

Markov networks (ACMNs). These results are presented in detail in a paper under submission 

[Arbour 2016]. 

Feature sensitivity analysis 

Providing analysts with information about what caused an individual instance to be scored as 

anomalous (“explanation”) was an important objective of Phase 2. Our early, Phase 1, ADAMS 

models performed well, but they produced opaque joint probabilities that were used to score 

individual instances (e.g., user-day instances scored by CADE). A challenge in Phase 2 was to 

continue to use these effective models, but to develop techniques that could determine which 

features contributed most to an instance’s score in order to aid explanation and investigation. 
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Our approach to this explanation challenge was to measure how much the instance’s anomaly 

score would drop as feature values were adjusted slightly in the direction of “normal.” 

Specifically: 

 For each feature, create a variant instance where the original feature value is changed 

towards “normal” (e.g., highest conditional probability) 

 Use the joint probability model to score each of the instance’s feature variants and record the 

change from the original instance’s score 

 Normalize the sum of score changes to 1.0, rank the features by descending change, and 

present the top-ranked estimates of feature importance  

These feature-importance estimates could be computed on demand for individual instances or in 

batch (e.g., on the 200 most anomalous instances) in response to analyst needs. 
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Insider Threat Detection Research & Results 

1.5.Counter-Intelligence Domain Analysis (Leidos SOW 1.2.1) 

In Phase 1 we applied domain knowledge to the analysis of cyber observables to form patterns of 

activity that indicate known or suspected insider threats is central to our research.  Our 

hypothesis was that these patterns would serve as starting points for making inferences about 

user behaviors based on detected anomalies using the semantics (i.e., the attributes) and the 

structures (i.e., the graphs) in the data.   We categorized these patterns in three ways – indicators, 

anomalies, and scenarios, and each entails aspects of domain knowledge. Indicators are patterns 

of user behavior found in cyber observables that correlate with malicious insider actions as 

derived from case studies (e.g., abnormal removable media activity indicative of IP theft). 

Anomalies focus on unusual patterns in the data (e.g., logins after hours, large numbers of file 

events on network drives). The domain knowledge applied in this type of experiment draws on 

an understanding of the data as it relates to human-computer interactions and how abnormal 

patterns from a malicious insider might occur in cyber observables within single or multiple 

feature sets over different time ranges. Scenarios describe complex patterns of malicious insider 

actions that span data types (e.g., email, file access, login, and URL) and entity, population, and 

temporal extents and baselines. Examples of scenarios include Saboteur and IP Thief. We 

believe that these three starting points would enable top-down (i.e., domain knowledge-driven) 

and bottom-up (i.e., data-driven) experimentation.  

Our first step in the application of domain knowledge as part of ADAMS research entailed the 

identification of personality traits and workplace behaviors frequently associated with malicious 

insiders based on inputs from a subject matter expert and historical case studies.   Our subject 

matter expert, a retired intelligence operations officer, developed a list of 182 demographic 

descriptors (e.g., age ranges; education level; passed over for promotion or marginalized), 

personality traits (e.g., a sense of superiority in relation to peers; disassociation with the 

organization); and workplace behaviors (e.g., a disregard for security policies; unexplained 

absences).    Table 1 provides examples of these traits. 

  Table 1. Examples of traits of personality traits from domain knowledge for ADAMS. 

Shares private 

accounts and 

passwords with 

others or requests 

that others share 

private account 

information with 

them 

Request and/or 

obtains exceptional 

local or network 

privileges that are 

beyond assigned 

job duties (e.g., an 

intelligence analyst 

who asks for 

system 

administrator 

privileges) 

Use “backdoor” 

accounts to access 

computers or 

networks without 

permission 

 

Anti-virus 

software is 

perpetually out-

of-date; manually 

disables automatic 

updates  

 

Disables event 

logging, modifies 

firewall settings, 

removes anti-virus 

software without 

permission 

 

 

Frequently connects 

personal devices to 

their work PC and 

transfers files 

Participates in 

discussion forums, 

chats, and 

newsgroups using 

their company e-

mail address 

Manipulate system 

logs on workplace 

computers (e.g., 

delete personal history 

log of websites 

visited) 

Access machines 

on other networks 

(e.g., a home 

network) that 

circumvent 

company security 

measures to do 

Use an unauthorized 

device (PDAs, flash 

drives) to gain access 

to a system or 

network 
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personal tasks 

Frequently uses work 

computer/network for 

social media activity  

Frequently accesses 

unsecured wireless 

networks 

 

Gains unauthorized 

access to an internal 

or external system by 

bypassing established 

protocols 

 

Uses corporate 

computer, 

network, or other 

resources (e.g., 

email account) to 

post inflammatory 

or derogatory 

material about an 

individual or 

group 

 

Conveys information 

about personal 

distress (health, 

family, finance) from 

a work computer, 

network, or other 

resource (e.g., email 

address) 

Plays  

unauthorized/not 

approved web-based 

games using 

corporate systems 

during core business 

hours  

 

Conducts 

vulnerability 

research about 

specific computer 

systems or 

networks that is not 

part of assigned job 

duties 

 

The employee 

expresses sentiment 

that he/she is under 

used/under employed  

The employee is 

repeatedly passed 

over for 

promotion, or 

career progression 

lags behind peers 

(experience, skill 

level, 

demographic)\ 

Uses computer 

resources (to include 

internet connection) to 

conduct unauthorized 

or unapproved 

secondary 

employment/work 

activities  

We also classified malicious insider behavior into five stages of activity that addressed three 

broad categories of motivators, or goals.  We defined these as: Exploration; Experimentation; 

Exploitation; Exfiltration; and Escape and Evasion.  The goals we identified were: theft or 

misuse of data or systems; corruption of data; and destruction of data or systems. Figure 9 relates 

the stages of malicious insider activity to a motivation or goal.   

 

Figure 9.  Insider Scenario – Motivations and Stages 

Once we had defined the stages of behavior and motivations for each stage, we listed specific, 

cyber-related actions that occur at each stage.   We called these cyber-related actions indicators.  

Examples of indicators related the Exploration stage of malicious insider behavior include: 

mapping shared drives; listing network administrators; pinging protected servers; probing 
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protected files; and a user altering his/her accesses. Figure 10 lists the full list of indicators we 

developed.  Note that we developed our set of indicators to be general to malicious insider 

activity outside the Vegas dataset; therefore, we did not anticipate that all indicators would apply 

to the full range of experiments performed in Vegas.   

 

Figure 10. Indicators 

After we had developed the list of indicators, we inserted them in patterns of activity consistent 

with each PRODIGAL scenario (i.e., Saboteur; Intellectual Property Thief – Ambitious Leader; 

Intellectual Property Thief – Entitled Individual; Fraudster; Careless User; and Rager). Figure 24 

summarizes the PRODIGAL scenarios. Note that the gray font used for the Careless User and 

Rager scenarios indicates that we did not address fully these scenarios in Phase 1 as they 

extensively used unstructured text data and semantic and content analysis approaches, which we 

did not emphasize as part of our Phase 1 research thrusts.   
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We then aligned indicators with each scenario and analyzed the potential data types with each 

indicator.  See Figure 25.   

 

Figure 11. Insider Threat Scenarios 
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Figure 12. Aligned indicators with each scenario 

 

Figure 13. Insider threat actions and potentially associated data types. 
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When the Vegas data became available in Year 2 of the program, we performed exploratory 

analysis of the data types available for ADAMS (e.g., File, URL, Logon, Process, IM, Email, and 

Registry).  We also assessed the suitability of the data for PRODIGAL indicators and scenarios.  

We projected that the Vegas data could support experiments featuring twelve of the 33 indicators 

and all six scenarios.  For details on PRODIGAL experimentation, see section 1.8.   

Phase 2 insider threat domain analysis research concerned the analysis of PRODIGAL’s 

performance in the context of the Red Team scenarios, the presentation of PRODIGAL results to 

the analysts in domain terms, and preliminary research into the feature enrichment using 

attributes from Vegas data.   

For each dataset – over 90 in total – we decomposed the Red Team user behaviors in the context 

of the plain-language descriptions of the scenario and the inserted observations (for each Red 

Team user in the scenario) that represented the insider threat actions simulated in the data.   We 

used this scenario decomposition to support post-mortem analysis of PRODIGAL results by 

dataset and scenario (as there were multiple instances and variants of scenarios over multiple 

months’ of data).  Domain analysis characterized the types of malicious insider behaviors 

encompassed by the various scenarios, informing the researchers as to the relative difficulty of 

detecting insider threats, given the presence of specific combinations of observables.   

Figure 27 is an example of the domain analysis performed, relating the specific malicious insider 

action from a scenario (exfiltrating sensitive information using removable media) to an 

observable-based workflow.  Scenario decomposition at the user activity-level identified crucial 

observable types from the domain perspective.    

 

 

Figure 14. Example of exfiltration behavior: copying to removable media. 
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The following diagrams are examples of the post-mortem scenario analysis we performed to 

support the analysis of PRODIGAL results.  We began with plain-language description of the 

scenario (as summarized from the Red Team’s narrative).   

We then re-constructed the user’s malicious activities in the context of the scenario description, 

by data type and day, for each data set. Figure 29 summarizes the red team user activity for a 

“Manning Up Redux” scenario (dataset 36) in which a malicious insider who is a system 

administrator uses removable media to steal information.   

 

In Phase 2, to enhance the effectiveness of PRODIGAL results in the context of analytic use 

cases, we also performed domain analysis to inform our explanation research.  The objective of 

our explanation research was to the ensemble user-day scores, the primary output of the system, 

to the analyst in the context of domain terms.  Intuitive explanations support an analyst’s 

 

Figure 15. Example of the post-mortem scenario analysis.                                                                       

Manning up redux – answer key 1 of 2 March 2013. 

 

Figure 16.  Example of the post-mortem scenario analysis.                                                                          

Manning up redux – answer key 2 of 2 March 2013. 
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decision-making processes when interpreting a user’s behaviors in terms of specific, discrete 

activities on their computers.   When analyzing user anomaly scores, explanations should assist 

the analyst in determining whether a user’s behaviors are indicative of something concerning that 

should be investigated further or do they appear to be abnormal, but explainable in relation to the 

user’s assigned tasks.  Domain analysis tasks performed in support of explanation research 

entailed the development of analytic workflows using the PRODIGAL AI to perform mock-up 

investigations of Red Team user behaviors from various scenarios in the Vegas data.  At each 

step of the mock-up investigations of Red Team users’ behaviors, we described the type of 

information that an analyst would need to make a decision whether to investigate the user further 

for potential insider threat activities.   

Analysis of results against the Red Team data sets and developing analytic workflows to support 

explanation research identified the potential of finer-grained features from existing data types to 

improve PRODIGAL’s performance.   Finer-grained features would use subsets of attributes 

within a data type to specify new features that focus on discrete types of user activities.   For 

example, Feature 82 pertains to the count of file events.  Analyzing Vegas data, Red Team 

scenarios, and PRODIGAL results, we determined that identifying specific types of files created 

would be useful in detecting malicious insider behavior, and that the Vegas file data attributes 

would support the specification of such a feature.  Figure 30 gives an example of the different 

finer-grained features we believe we could extract based on Feature 82, File Event Count.   

We researched attributes from with all Vegas data types and designed over 300 potential new, 

finer-grained features that could be extracted and used as input to PRODIGAL anomaly and 

scenario-inspired detectors.  We did not, however, specify new features in Phase 2 as we focused 

engineering tasks on improving system performance to support transition activities.  Research on 

finer-grained features could be resumed in another, separate insider threat research with user 

activity monitoring data.   

1.6. Content Analysis Research (Leidos SOW 1.3) 

In the content analysis research, we tested the theory that terms, phrases, and concepts from 

instant messages (IM) in the Vegas data set would indicate users’ job functions or project roles 

and whether these semantic indicators could enhance the detection of malicious insiders (i.e., 

Red Team users in Vegas data).  We used IM data because we believe that users would be more 

 

Figure 17. Example of the different finer-grained features we believe we could extract based on Feature 82. 

82 DT_FILE_EVENT_COUNT

82_1
File_Event_Count_where_filename_extension_is_Text

Count of the number of file events where the extension is realted to a text application: 

.doc,.docx.,.log,.msg,.odt,.pages,.pages,.rtf,.tex,.txt,.wps,.wpd,.ttf,

82_2
File_Event_Count_where_filename_extension_is_Spreadsheet

Count of the number of file events where the extension is related to a spreadsheet application: 

.csv,.xls,.xlsx,.xlr

82_3
File_Event_Count_where_filename_extension_is_Presentation

Count of the number of file events where the extension is related to a presentation application: .ppt, 

.pptx,.pps

82_4
File_Event_Count_where_filename_extension_is_Data

Count of the number of file events where the extension is related to a data file: 

.dat,.sdf,.vcf,.ical,.log,.accdb,.db,.dbf,.mdb,.sql,.pst,.al,.dwg,.dxf,.kml,.kmz

82_5

File_Event_Count_where_filename_extension_is_Multimedia

Count of the number of file events where the extension is related to a multimedia application: 

.aif,.ai,.iff,.m3u,.m4a,.mp3,.mpa,.ra,.wav,.wma,.asx,.avi,.flv,.m4v,.mov,.mp4,.mpg,.rm,.swf,.vob,.wmv,.

3dm,.3ds,.max,.obj,.bmp,.gif,.jpg,.mpg,.png,.psd,.pspimage,.thm,.tif,.tiff,.ai,.dem,.gam,.nes,.rom,.sav,.

3g2,.3gp,.cdr,.torrent

82_6

File_Event_Count_where_filename_extension_is_Executable

Count of the number of file events where the extension is related to an Executable file: 

.apk,.app,.bat,.cgi,.com,.exe,.gadget,.jar,.pif,.vb,.wsf,.bim,.cmd,command,.cpl,.ins,.ipa,.isu,.job,osx,.ou

t,.prg,.reg

82_7
File_Event_Count_where_filename_extension_is_SystemFiles

Count of the number of file events where the extension is related to a System application: 

.cab,.cpl,.cur,.deskthemepack,.dll,.dmp,.drv,.icns,.ico,.lnk,.sys,.cfg,.ini,.prf,.sys

82_8
File_Event_Count_where_filename_extension_is_CompressedFiles

Count of the number of file events where the extension is related to a file compression application: 

.7z,.cbr,.deb,.gz,.pkg,.rar,.rpm,.sitx,.tar.gz,.zip,.zipx

82_9
File_Event_Count_where_filename_extension_is_Code

Count of the number of file events where the extension is related to software development: 

.c,.class,.cpp,.cs,.dtd,.fla,.h,.java,.lua,.m,.pl,.py,.sh,.sin,.vcxproj,.xcodeproj,..swift

82_10 File_Event_Count_where_filename_extension_is_Backup Count of the number of file events where the extension is related to file backups: .bak,.tmp

82_11
File_Event_Count_where_filename_extension_is_Internet

Count of the number of file events where the extension is related to the web: 

.asp,.aspx,.cer,.cfm,.csr,.css,.htm,.html,.js,.jsp,.php,.rss,.xhtml
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expressive and less guarded in their communication style than in corporate email.  We developed 

a training corpus of 500 IMs from 20 user days from September and October 2012 Vegas data 

(with no Red Team inserts)..  We divided the training set between IMs that contained negative 

and non-negative sentiments.  When applied a naïve Bayes classifier to extract labels and 

developed feature counts of negative expressions, and then processed the data on Vegas data 

with Red Team inserts.  We obtained accuracy of 70 percent in detecting negative sentiment 

using the negative sentiment classifiers developed through the training set.  For the detection of 

job roles by concept, we focused on system administrators, software developers, test engineers, 

and managers.  We identified over a dozen concepts that could fit in the context of a PRODIGAL 

scenario.  Examples of concepts (and related scenarios) include: (1) organizational changes (IP 

Thief); (2) disgruntlement (IP Thief, Saboteur); (3) time wasting (Careless User); (4) negative 

sentiment directed toward other employees (Rager, Saboteur, IP Thief); and (5) job changes (IP 

Thief, Saboteur).  We did not experiment with detecting job role based on topic in Phase 1 and 

did not perform additional content analysis research in Phase 2.   

1.7. Initial Experiments with Surrogate Data (All SOW 1.3) 

To jump start algorithm refinement and experimentation, the PRODIGAL team employed data 

from StackOverflow, a set of collaborative question-and-answer webs sites.  We chose this data 

for use prior to SureView data with red team inserts becoming available.  StackOverflow 

supports question, answer, and comment posts by a community of account-holders and provides 

several means of rewarding participation.  While the site is well policed by its community, there 

are known schemes for gaming the rewards.  StackOverflow published full data dumps every 

quarter for research in Social Network Analysis. 

We inserted several target scenarios into the database of activity in the largest StackOverflow 

site (Programming).  These scenarios simulated sabotage (Reputation Trashing), fraud 

(Reputation Gaming), and subterfuge (Cloning Accounts).  This enhanced dataset allowed initial 

algorithm refinement over a common problem domain.  Massive-scale graph analysis and 

community detection were run.  For example 785K communities of voters were identified in 4 

seconds.  Interactive methods for graph exploration were refined, and were shown to enable an 

analyst to find networks of cloned accounts.  Results from 5 anomaly detection algorithms were 

reported in October 2011 and several of these demonstrated enough promise to be continued into 

the SureView experiments.  For example, Relational Pseudo Anomaly detection ranked all 

inserted instances in the top 1% of ranked accounts and Relational Anomaly Detection with 

Markov Algorithms found 67 of 103 inserted clones (see Figure 18 and Figure 19). 

 

Figure 18. Relational Pseudo-Anomaly Detection Likelihood Estimates – StackOverflow 
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Figure 19. Relational Anomaly Detection with Markov Algorithms – StackOverflow Data.  

 

1.8. Experimentation with Live Data using the PRODIGAL Framework (All SOW 1.3; 

SOW 2.2) 

The following sections will describe in detail the experimental setup and results with which we 

evaluated the performance of a large, diverse suite of anomaly detection methods.  These 

methods included detectors based on the anomaly detection research previously discussed in this 

document as well as detectors designed to target specific scenarios and detectors based on 

statistical outlier feature values.  

The primary focus of our efforts in Phase 1 was the establishment and operation of the 

PRODIGAL experimental framework, and beginning to evaluate detectors performance in 

isolation.  With Phase 2, while continuing to experiment with detector performance in an 

increasingly diverse set of Red Team targets over accumulating data months, our research focus 

moved to three areas: 

 Designing and experimenting with methods to combine the results of the detector suite 

(described in section 1.11); 

 Developing and experimenting with methods by which the anomaly detection results 

could be explained to support both human and automated analysis (described in section 

1.12); and 

 Implementing an Analyst Interface (described in section 1.18) that could provide useful 

access and insight to a human counter-threat analyst of the data and threat estimates 

generated by our detectors. 

1.8.1. Test Data and Red Team Scenarios 

Test data for experimentation consists of a database of 5,500 users' computer usage. The data 

collection system, SureView (reference [SureView 2013]), records all user behaviors for 

specified activities, such as logon/logoff, email, file actions, instant message, printer, process, 

and URL events for a calendar month. On average, there are 1000 events per user per active day. 

Data are made available on a monthly basis. The data provider anonymizes all user identification 

# Reputation

PM

Reputation

DV

Badge Post

1 FigBug Col. Shrapnel errx SLaks

2 ScottE Gold Coding Kitten Robert Harvey

3 David Cour. There is noth. penelope Patrick H?se

4 Zaphod42 Blender Vlad Patryshev doahou

5 DustinDavis zjmll26 Jaydles Michael Mrozek

6 Jay Elston happysmile Zypher jjnguy

7 Chetan Gopal fud Tim Post

8 Michael Eas. moustafa Dorin Grecu Kev

9 Ivan Vu?ica Sentinel Hendrik Vogt Dave DeLong

10 Neil N Acme codelahoma George Stocker
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(ID) and other personally identifiable information (PII) in the data set and hashes all such 

information related to user events to randomly generated but internally consistent designators. 

Separately from the data collection process, an independent Red Team developed scenarios 

reflecting their field experience of threat behaviors. ([Cappelli 2012], [Wallnau 2014]) Scenarios 

encapsulated specific insider threat actions that are superimposed on the actions of real users 

identified as appropriate to particular roles in the scenario. The Red Team inserted up to five 

instances of scenarios (with variations) in a data month for a total of 54 instances of 28 distinct 

scenarios. [Wallnau 2014] Table 2 contains brief synopses of the inserted Red Team scenarios  

The Red Team, in an effort to avoid evaluation bias, designed its scenarios independently of our 

detection methods. Likewise, we did not review scenario specifics nor train our detectors on the 

test data to avoid over-fitting. Scenario descriptions in Table 2 were provided after the fact for 

purposes of evaluating our methods; the Red Team continually added new scenarios as the 

research was ongoing. Neither the Red Team nor our team claims that the set of scenarios 

included in Table 2 is complete. 

Table 2. Brief synopses of the inserted Red Team scenarios 

Scenario Name 

(No. of Instances) 

Scenario Synopsis 

Anomalous Encryption (2) An insider passes proprietary information to an outsider secretly encrypting files 

and emailing them from his work email to his personal email. 

Blinded Me With Science (1) 

 

(BENIGN) Subject is constantly trying to learn new things and often spends free 

time reading interesting research; uses Google Scholar and other tools. Subject 

downloads the article/document/file workstation; sends the document to a personal 

webmail address so that it can be reviewed while away from work. 

Bollywood Breakdown (1)  Subject is convinced by Indian official posing as a hospital administrator to 

exfiltrated IP and classified documents in exchange for preferential medical 

treatment for a family member. 

Bona Fides (2)  Espionage volunteer prints a bona fides package and takes it to a foreign embassy. 

Breaking the Stovepipe (3) Subject accidentally exposes his access to proprietary information of company A to 

company B. Company B’s contact bribes subject to share the information. 

Byte Me Middleman (2) 

 

Variation of Byte Me where all illicit electronic communication with Subject goes 

through CCA. Other co-conspirators communicate with Subject in person (so are 

unobserved). 

Byte Me (2)  Subject uses special access to badge entry system to profit by selling special access 

badges to smokers to be used at a more convenient unauthorized doorway. Subject 

regularly sweeps the database to remove these extra entries. 

Circumventing Sureview (20) A user circumvents SureView monitoring to commit a crime. 

Conspiracy Theory (2) Subject has been a model employee until very recently, when Subject stopped 

taking medications for treatment of paranoid schizophrenia. Over a period of 

several weeks, Subject begins displaying unusual behavior by claiming that the 

organization is having Subject followed outside of work. Subject shares his/her 

concerns with co-workers who ask if Subject has proof that this is happening. 

Subject claims that Subject's followers are "too smart for that" and that they always 

stay in parking lots "where they know there are no cameras that can record them." 

Subject writes down license plate numbers and descriptions of the followers "only 

to have them stolen" out of Subject's wallet/purse. Subject's paranoia becomes so 

acute that immediately following the end of a work day, Subject emails a supervisor 

stating simply "I quit! So stop having me followed or I will be forced to defend 

myself!!" One to two hours later Subject remotely logs back into the company 

network through the VPN and deletes vast amounts of files from the shared 

network directories. 
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Credit Czech (1)  Subject runs an illicit business trafficking in stolen credit card numbers using the 

organization’s IT resources. He acts as a middleman between various external 

purveyors of stolen numbers and a Russian operative who buys the collected 

numbers. 

Czech Mate (1)  Similar to Credit Czech but the new protocol calls for twice-daily emails to 

Subject’s Russian counterpart in order to keep the operation alive. 

Exfiltration of Sensitive Data 

Using Screenshots (3) 

An employee steals proprietary/sensitive docs by taking screenshots of specific 

pages recursively encrypting the files and emailing them to a webmail address. 

Exfiltration Prior to 

Termination (2) 

An employee is leaving the company and decides to take all of their emails and 

files with them. 

From Belarus With Love (2) A user circumvents SureView monitoring to commit a crime. 

Gift Card Bonanza (1)  Under financial pressure due to sister’s medical expenses subject uses co-worker’s 

email addresses to enter paying surveys and enlists help of email administrator to 

hide the mis-appropriation. 

Hiding Undue Affluence (2) An employee possesses undue affluence because of ongoing espionage activity. 

They need to hide the existence of the money from investigators and they perform 

research on how to do so. 

Indecent RFP (3) Subject uses an inappropriate relationship with another employee to illegally 

influence vendor selection for a lucrative catering contract in order to obtain 

personal financial gain. 

Insider Startup (7)  Three co-conspirators collude to steal company IP. They coordinate the 

synchronized theft of proprietary information before leaving the company. 

Job Hunter (1) Subject is having trouble getting through the counterintelligence scope polygraph 

(CSP) required for Subject’s job position.  Subject decides to find employment with 

a foreign company so that the CSP will not be required. Subject reaches out to a 

contact to ask if he or his sister have any contacts in the Israeli aerospace company 

“ISI.” Contact’s sister instructs Subject to contact a trade representative in the 

Israeli consulate. Subject follows up on the lead and ends up sharing 

sensitive/classified information with the consular in order to secure the new job 

with ISI. 

Layoff Logic Bomb (2)  An insider worried about layoffs uploads a logic bomb into the IT system that will 

detonate unless he disables it.  

Manning Up (2)  An insider emulates Bradley Manning and researching similar techniques while at 

work. 

Manning Up Redux (1)  An insider emulates Bradley Manning and researches detection counter-measures 

and scripts code that will upload large amounts of files through a custom DNS. 

Masquerading 2 (2)  Subject sets up a rogue SSH server on another user’s machine. They also make a 

copy of the local Windows password file and copy the file off over the network. 

Passed Over (2)  Subject learns that his/her project is being phased out in a re-org becomes 

extremely disgruntled makes demands and threats to his/her leadership and then 

installs malware on several machines before submitting a resignation. 

Naughty by Proxy (4) A disgruntled employee seeks revenge by logging on to her manager's computer 

and visiting questionable websites. 

Outsourcer's Apprentice (3) A software developer outsources his job to China and spends his workdays surfing 

the web. Some surfing activity occurs on his main workstation while the 

subcontractor is active, but most of it occurs on a second laptop he uses to try to 

minimize his interference with the subcontractor. He pays just a small fraction of 

his salary to a company based in China to do his job. The developer provides 

remote access to his machine by providing his VPN credentials to the Chinese 

company and enabling Terminal Services on his workstation. The Chinese 

consulting firm sends the developer PayPal invoices for the work performed, and 

the developer pays them. 
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Parting Shot (1) Subject was the first one into the office one morning and found a document on a 

printer that appeared to be a list of 12 people scheduled to be terminated in the next 

few months. The list was marked as "company most private" and stated that the 

terminations were in order to achieve company cost-reduction targets and that 

individuals would not be notified until their last day of work. The document 

provided no indication of severance pay or other monetary compensation being 

provided to the terminated individuals. Subject, as well as some friends of Subject, 

were named in the list of expected terminations. Subject then posts the information 

to the internal time sheet website and tells some co-workers to look there. 

Parting Shot 2 - Deadly Aim 

(1) 

Deadly Aim: Subject is disgruntled after finding out that Subject is on a list of 

employees that will be terminated without warning at an unknown point in the 

future. Subject previously conspired with CCA to make the whole list public to all 

employees. Subsequently, Subject found employment with another company and 

decided, as a parting shot, to embarrass the company's senior executives following 

Subject's resignation. Subject obtains a list of salaries for the senior executives 

(Presidents, C-Level staff, etc.) and posts the information where it can be accessed 

by all employees. 

Passed Over (4) Subject learns that his/her project is being phased out in a company re-organization. 

Subject becomes extremely disgruntled, makes demands and threats to his/her 

leadership, and then installs malware on several machines before submitting a 

resignation. 

Panic Attack (2) Subject was 'recruited in place' by a FIS in order to provide highly specialized U.S.-

developed zero-day exploit code that could be usable by FIS in offensive 

operations. Subject has displayed "low and slow" operational activity in order to 

evade detection by U.S. Counterintelligence. That is to say, Subject displays highly 

specialized tradecraft not normally observable by common collectors. For example, 

Subject is only "operational" on an aperiodic schedule and does not exfiltrate 

proprietary information through email, USB, printing, or other computer-

observable means. However, Subject is informed by a company security 

representative that Subject's position has been newly designated by the government 

customer as requiring a "Counterintelligence Scope Polygraph" (CSP). Subject does 

some research to determine what a CSP (a.k.a. CI Poly) covers and tries to discern 

countermeasures that would defeat the CSP, but ultimately decides it would be too 

risky and resigns in order to avoid detection. In his/her panic, Subject accidentally 

exfiltrates a large number of documents before resigning. 

Selling Login Credentials (1) One insider who has system privileges sells (with the unwitting help of two other 

insiders) dummy accounts and temporary access to outsiders. 

Snowed In (4) A sys-admin discovers and reports a website security vulnerability but is 

reprimanded for it. He then discovers a classified document about a secret 

government surveillance program and carefully exfiltrates the document along with 

legitimate duties. 

Strategic Tee Time (1) (BENIGN) A company executive has requested a two-day offsite strategic planning 

meeting with three other Directors or VPs. During the planning process, one of the 

participants recommends a golf outing directly following the offsite. The various 

admins have to exchange information concerning the agenda, hotel arrangements, 

and golf outing. Email attachments of agendas and itineraries are exchanged. 

Survivor's Burden (3) The subject is disgruntled after his team experienced layoffs (and a logic bomb), 

greatly increasing his workload. He hopes to become the team lead, but is passed 

over for the position and takes matters into his own hands by stealing company IP 

using DropBox. 

The Big Goodbye (1) (BENIGN) Admin is coordinating a farewell luncheon for an individual leaving the 

company (for retirement or other reasons). Admin wants to ensure that people 

submit meal choices for the luncheon, sign a farewell card and contribute toward a 

farewell gift should they desire. 
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1.8.2. A Diverse Suite of Anomaly Detectors 

Our approach built on the techniques described in [Senator 2013], [Young 2013] and [Young 

2014]. Nearly all detectors in PRODIGAL operate on vectors of domain-based features, each 

derived from a defined set of entities and a fixed period (extent).  Most experimentation in 

PRODIGAL was performed on user-days as a convenient and reasonable point in the vast set of 

possible targets for anomaly detection.   Table 3 lists the features implemented in the 

experiments described below. 

  Table 3 Features implemented in the experiments. 

URL_EVENT_COUNT  FILE_CD_DRIVE_EVENT_COUNT 

 URL_UPLOAD_COUNT  FILE_DISTINCT_REMOVABLE_DRIVE_COUNT 

 URL_DOWNLOAD_COUNT  FILE_COPIES_TO_REMOVABLE_COUNT 

 URL_DISTINCT_URL_COUNT  FILE_COPIES_FROM_REMOVABLE_COUNT 

 URL_DISTINCT_DOMAIN_COUNT  FILE_CREATION_COUNT 

 URL_DISTINCT_WORKSTATION_COUNT  FILE_FOLDER_CREATION_COUNT 

 URL_DOMAINS_PER_USER_COUNT  FILE_DISTINCT_FILES_COUNT 

 URL_FIRST_EVENT_TIME  FILE_DISTINCT_FILES_ON_REMOVABLE_COUNT 

 URL_LAST_EVENT_TIME  FILE_DISTINCT_WORKSTATION_COUNT 

 URL_UPLOAD_TO_ANOMALOUS_COUNT  FILE_FIRST_EVENT_TIME 

 URL_DOWNLOAD_TO_ANOMALOUS_COUNT  FILE_LAST_EVENT_TIME 

 LOGON_EVENT_COUNT  FILE_FIRST_REMOVABLE_EVENT_TIME 

 LOGON_DISTINCT_WORKSTATION_COUNT  FILE_LAST_REMOVABLE_EVENT_TIME 

 LOGON_FIRST_EVENT_TIME  FILE_SRC_FIXED_DRIVE_EVENT_COUNT 

 LOGON_LAST_EVENT_TIME  FILE_SRC_REMOVABLE_DRIVE_EVENT_COUNT 

 PRINTER_PAGES_PRINTED_COUNT  FILE_SRC_NETWORK_DRIVE_EVENT_COUNT 

 PRINTER_JOBS_SUBMITTED_COUNT  FILE_SRC_CD_DRIVE_EVENT_COUNT 

 PRINTER_DISTINCT_COUNT  FILE_DEST_FIXED_DRIVE_EVENT_COUNT 

 PRINTER_DISTINCT_WORKSTATION_COUNT  FILE_DEST_REMOVABLE_DRIVE_EVENT_COUNT 

 PRINTER_PER_USER_COUNT  FILE_DEST_NETWORK_DRIVE_EVENT_COUNT 

 PRINTER_FIRST_EVENT_TIME  FILE_DEST_CD_DRIVE_EVENT_COUNT 

 PRINTER_LAST_EVENT_TIME  FILE_FIX_EVENTS_VS_FILE_EVENTS 

 DEVICE_EVENT_COUNT  FILE_REMOVABLE_EVENTS_VS_FILE_EVENTS 

 DEVICE_DISTINT_WORKSTATION_COUNT  FILE_NETWOERK_EVENTS_VS_FILE_EVENTS 

 DEVICE_DISTINT_DEVICE_COUNT  FILE_CD_EVENTS_VS_FILE_EVENTS 

 DEVICE_FIRST_EVENT_TIME  FILE_FIX_DRIVE_VS_REMOVEABLE_DRIVE 

 DEVICE_LAST_EVENT_TIME  FILE_FIX_DRIVE_VS_NETWORK_DRIVE 

 EMAIL_EVENT_COUNT  FILE_FIX_DRIVE_VS_CD_DRIVE 

 EMAIL_RCVD_VIEWED_COUNT  FILE_DISTINCT_VS_DISTINCT_ON_REMOVE 

 EMAIL_RCVD_DISTINCT_COUNT  FILE_DISTINCT_WS_VS_FIXED_DRIVE_EVENTS 

 EMAIL_RCVD_DISTINCT_SENDER_COUNT  URL_DISTINT_VS_DISTINT_DOMAIN 

 EMAIL_RCVD_DISTINCT_WRKST_COUNT  URL_UPLOADS_VS_DOWNLOADS 

What's the Big Deal (1) Subject has been storing data on a cloud storage site so that she can work while at 

home and on vacation. Subject considers herself underpaid and is actively seeking 

employment with competitors. Subject learns that the cloud company she has been 

using has been hacked. Believing nothing bad is likely to happen, Subject decides 

not to report the fact that the company’s documents may have been compromised. 

Subject recognizes that she should delete the files sent to the third party server, but 

decides to keep a good number that she produced. She deletes only some of the 

more sensitive files. 
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 EMAIL_RCVD_ATTACHMENT_COUNT  URL_UPLOADS_VS_DISTINCT_WS 

 EMAIL_SENT_COUNT  URL_EVENTS_VS_UPLOADS 

 EMAIL_SENT_DISTINCT_RECIPIENT_COUNT  URL_EVENTS_VS_DOWNLOADS 

 EMAIL_SENT_TO_COUNT  URL_DISTINCT_URLS_VS_UPLOADS 

 EMAIL_SENT_CC_COUNT  URL_DISTINCT_URLS_VS_DOWNLOADS 

 EMAIL_SENT_BCC_COUNT  URL_DISTINCT_DOMAINS_VS_UPLOADS 

 EMAIL_SENT_DISTINCT_WORKSTATION_COUNT  URL_DISTINCT_DOMAINS_VS_DOWNLOADS 

 EMAIL_SENT_ATTACHMENT_COUNT  URL_DISTINCT_WS_VS_EVENTS 

 EMAIL_SENT_AVERAGE_RECIPIENT_COUNT  URL_DOWNLOADS_VS_DISTINCT_WS 

 EMAIL_SENT_FISRT_EVENT_TIME  DISTINCT_REMOVABLE_VS_URLS_EVENTS 

 EMAIL_SENT_LAST_EVENT_TIME  DISTINCT_REMOVABLE_VS_URLS_UPLOADS 

 EMAIL_RCVD_FROM_ANOMALOUS_SENDER_COUNT  DISTINCT_REMOVABLE_VS_URLS_DOWNLOADS 

 EMAIL_SENT_TO_ANOMALOUS_ADDR_COUNT  REMOVABLE_FILE_EVENTS_VS_URL_EVENTS 

 FILE_EVENT_COUNT  FIXED_FILE_EVENTS_VS_URL_UPLOADS 

 FILE_FIXED_DRIVE_EVENT_COUNT  FIXED_FILE_EVENTS_VS_URL_DOWNLOADS 

 FILE_REMOVABLE_DRIVE_EVENT_COUNT  RATIO_209_VS_RATIO_233 

 FILE_NETWORK_DRIVE_EVENT_COUNT  EMAIL_SENT_VS_RCVD_RATIO 

PRODIGAL employs a large number of diverse detectors of three types: (I) indicator-based, (A) 

anomaly-based, and (S) scenario-based. Table 3 lists the detectors configured in PRODIGAL.  

Indicator-based detectors use statistical outlier techniques over sub-sets of features related to one 

or two particular types of activity such as file or web access.  PRODIGAL computes a statistical 

outlier score for each value by comparing it against all other users for that date using the 

cumulative distribution function (CDF) of the logistic distribution with mean and variance of this 

population. This score is normalized to [0; 1] and is easily compared with other features’ scores. 

This score can be viewed as a “marginal” explanation of the anomaly of the user-day, because it 

estimates the likelihood that the feature value is greater than those of other users from the base 

population. An explanation of a scored entity is a list of features plus outlier scores. 

Anomaly detectors employ complex models that focus on different aspects of the data, e.g. 

structural features, semantic features, or temporal features, and then search through the entire 

feature space to identify potential anomalies. Features typically consist of observed actions, 

aggregates, or ratios, such as URLs accessed by a user, the number of print jobs by a user, or the 

ratio of the number of files copied to removable media compared to the total number of files 

actions. Relational features such as the email and text-message communication graphs are used 

to provide comparison groups in some detectors. Different approaches to feature normalization 

are incorporated into variants of the same detection models used in PRODIGAL [Senator 2013]. 

Scenario-based detectors are inspired by the scenarios described in [Cappelli 2012], but are 

developed independently of the Red Team scenario descriptions and inserts. They consist of a 

combination of indicator-based and anomaly-based detectors and classifiers in a specified 

workflow, structured to reflect a hypothesized combination of real world actions that are likely to 

discriminate between the scenario of interest and other, mostly legitimate, actions. Six scenario-

based detectors have been deployed in varying stages of development in PRODIGAL. They 

focus on particular sub-spaces of features that are relevant to a particular scenario, as well as 

subsets of target users and/or time periods, as suggested by the scenario. In this way, domain 

knowledge of both activity type and relevant comparison peer groups are incorporated into the 

detection. 
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A particular detector specification incorporates, in addition to the algorithm, a set of features, a 

baseline population for comparison (i.e., a peer group), a time period for the baseline activity, 

time granularity for potential detection, a particular approach to feature normalization, and other 

relevant aspects. Baselines for comparison may be cross-sectional (i.e., compare a users actions 

over a particular time period with that of other users in a peer group over some time comparable 

time period) or temporal (i.e., compare a user with his/her own behavior over different time 

periods), or both. 

We develop their specifications using the Anomaly Detection Language (ADL) that was 

introduced in [Senator 2013] and [Young 2013]. We have found specification of a complex 

planned detection in ADL to be extremely useful in the process of developing and testing 

combinations of feature sub-setting, classification, anomaly detection, and threat ranking 

mechanisms. We now describe the scenarios on which our scenario-based detectors were based 

and map each to RT scenarios to which we believe they best correspond. 

Saboteur: An insider uses corporate information technology (IT) resources to harm an 

organization or an individual. Saboteurs are technical, such as a system administrator, and have 

privileged access to systems. The saboteur plans his attack before leaving the organization and 

executes the attack as he leaves. Corresponding RT Scenario(s): Gift Card Bonanza, Layoff 

Logic Bomb, Passed Over. 

IP Thief : An insider uses corporate IT resources to steal IP. IP thieves are generally scientists, 

engineers, or salespeople, they generally steal what they consider to be their own work for their 

own private gain. Corresponding RT Scenario(s): Anomalous Encryption, Bona Fides, 

Bollywood Breakdown, Breaking the Stovepipe, Exfiltration Prior to Termination, Exfiltration of 

Sensitive Data Using Screenshots, Manning Up, Manning Up (Redux), Snowed In. 

Fraudster: An insider uses IT for destroying, denying, or degrading an organization’s 

information or systems for personal gain or to commit a crime. Fraudsters are lower-level 

employees, are often motivated by financial need - hardship, greed, etc. Sometimes they are 

recruited by outsiders in collusion with other insiders. Corresponding RT Scenario(s): Byte Me, 

Credit Czech, Czech Mate, Masquerading 2. 

Ambitious Leader : The Ambitious Leader is an IP thief who is motivated by ambition to steal as 

much as possible before leaving the organization. To do so, he recruits other insiders to get 

access to all parts of the IP being stolen. Corresponding RT Scenario(s): Insider Startup, Selling 

Login Credentials. 

Careless User: The insider is not intentionally malicious  but, through blatant disregard of 

corporate IT policies,  exposes the group to a comparable level of risk similar to the Saboteur 

scenario. Corresponding RT Scenario(s): None. 

Rager: The insider has outbursts of strong, vociferous, abusive, and threatening language in 

Email/Webmail/IM toward other insiders or against the organization in general. These outbursts 

coincide with anomalies in other data types, e.g., Logons, URL, indicating a potential 

fundamental change in behavior. Corresponding RT Scenario(s): None.  

Note that there are no Red Team scenarios corresponding to some of our detectors. Since we did 

not know what scenarios the Red Team might choose, we constructed a broad set of detectors to 

cover many envisioned scenarios. A reverse mapping from Red Team inserts to detector 

scenarios reveals examples of this: The Bona Fides datasets included espionage activities we had 
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not considered at the time; and the same is true for the system manipulations done by users in the 

Masquerading 2 and Circumventing SureView datasets. 

Table 4. User-Day Detectors in PRODIGAL 

Algorithm Type Description 

TBAD A Temporal Based Anomaly Detection 

VSM A Vector Space Models (User Day) 

GFADD:92-95-0 I Grid-based Fast Anomaly Detection with Duplicates (GFADD) (File creation vs. 

distinct file no grid) 

GFADD:95-96-8 I GFADD (Distinct file count vs. files on remov. count grid:8) 

GFADD:89-90-0 I GFADD (Copies to vs. from removable drives no grid) 

GFADD:89-90-8 I GFADD (Copies to vs. from removable drives grid:8) 

GFADD:82-84-8 I GFADD (File vs. removable drive events grid:8) 

GFADD:83-85-0 I GFADD (Fixed event count vs. network event count no grid) 

GFADD:83-85-8 I GFADD (Fixed event count vs. network event count grid:8) 

GFADD:83-84-8 I GFADD (Fixed vs. removable event counts grid:8) 

GFADD:85-88-0 I GFADD (Network events vs. distinct removable drives no grid) 

GFADD:84-88-0 I GFADD (Removable drive events vs. distinct no grid) 

GFADD:84-88-8 I GFADD (Removable drive events vs. distinct grid:8) 

GFADD:84-85-0 I GFADD (Removable drive events vs. network events no grid) 

GFADD:84-85-8 I GFADD (Removable drive events vs. network events grid:8) 

GMM:RD A Gaussian Mixture Model (Raw count features user-day scores) 

GMM:QD A Gaussian Mixture Model (Quantile features user-day scores)  

EGMM:RD A Ensemble Gaussian Mixture Model (Raw count features user-day scores) 

EGMM:QD A Ensemble Gaussian Mixture Model (Quantile features user-day scores) 

CROSS:RD A Cross Prediction (Raw count features userday scores) 

CROSS:(QD A Cross Prediction (Quantile features userday scores) 

RIDE:RD A Repeated Impossible Discrimination Ensemble (Raw count features user-day scores) 

RIDE:QD A Repeated Impossible Discrimination Ensemble (Quantile features user-day scores) 

IFOR:RD A Isolation Forest (Raw count features userday scores) 

IFOR:QD A Isolation Forest (Quantile features userday scores) 

CADE:R A Classifier-Adjusted Density Estimation (Raw features) 

CADE:UP A Classifier-Adjusted Density Estimation (UP features) 

PDE:R10K A Pseudo-likelihood Density Estimator (raw features 10k training) 

PDE:UP10K A Pseudo-likelihood Density Estimator (UP features 10k training) 

PDE:UP A Pseudo-likelihood Density Estimator (UP feature set) 

Saboteur S Scenario: Saboteur (Variant 2) 

IP Thief S Scenario: IP Thief (Variant 1) 

Fraudster S Scenario: Fraudster (Variant 1) 

Amb. Lead. S Scenario: IP Thief Ambitious Leader (Variant 1) 

File I Indicator: File Activity (Variant 1) 

URL I Indicator: URL Activity (Variant 1) 

File-URL I Indicator: File vs. URL (Variant 1) 

URL,File-Log. I Indicator: URL and File vs. Logon 

Careless S Scenario: Carless User 

Rager S Scenario: Rager 

1.8.3. Measuring Detector Performance 

By August 2012, with stability of the SureView database accomplished and the start of monthly 

insertion of target scenario instances by the CERT red team, we were able to apply the 

PRODIGAL Framework to ingest and transform data and to run the entire set of algorithms for 

graph analysis and community, outlier, and anomaly detection.  This allowed us to explore 

combinations of features, entities, baselines and peer groups, and detection methods for Insider 
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Threat Detection.  Our primary focus in this phase was on methods to detect starting points for 

further analysis. We used each available month of data independently.  Each month had an 

unknown number of independent red team inserts.  

Starting in August 2012, we ran more than 200 detection jobs each month using statistical 

outliers of single features, anomaly of activity indicator feature vectors, a variety of complex, 

inter-activity anomaly models, and scenario-based models involving all of these. A total of 1839 

runs produced rankings of observed entities and spans variation over background, non-target 

activity as well as target scenario.  We applied several performance metrics to understand the 

effectiveness and robustness of each method, and are beginning to explore the potential for 

combination of methods.   

Table 5. Two months of detection focused on a single scenario. 

 

Month Algo Detection Method 5(0) 10(0) 50(0) 100(0) 500(0) AUC AvgLift

Sept UMASS-1 RPAD up feature normalization 2 2 3 11 72 0.970 17.42

Sept UMASS-1 RPAD dp feature normalization 2 4 20 26 57 0.863 24.07

Sept UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 10 26 56 0.879 16.06

Sept SAIC-6 Indicator Anomaly Detection - File 0 1 17 33 54 0.881 10.58

Sept SAIC-3 Scenario - IP Thief 0 0 7 16 54 0.851 9.79

Sept SAIC-8 Indicator Anomaly Detection - File vs URL 1 2 4 9 50 0.732 6.04

Sept SAIC-5 Scenario - Ambitious Leader 9 12 43 46 48 0.806 34.05

Sept UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 7 12 42 0.864 10.75

Oct UMASS-1 RPAD up feature normalization 2 2 5 11 37 0.979 30.33

Oct SAIC-6 Indicator Anomaly Detection - File 0 0 2 14 31 0.874 8.42

Oct UMASS-1 RPAD g129dm feature normalization 0 0 1 3 29 0.914 13.70

Oct SAIC-8 Indicator Anomaly Detection - File vs URL 0 0 2 8 28 0.824 6.02

Oct UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 0 3 20 0.909 9.17

Sept SAIC-2 Scenario - Saboteur 0 1 4 6 20 0.746 3.79

Oct SAIC-3 Scenario - IP Thief 0 0 0 3 15 0.839 7.34

Oct SAIC-2 Scenario - Saboteur 0 0 0 0 15 0.810 3.07

Oct SAIC-5 Scenario - Ambitious Leader 6 7 12 12 15 0.789 80.20

Sept SAIC-1 Max(Cross & Long Outliers) 0 0 0 1 14 0.846 3.99

Sept OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 12 0.970 26.17

Oct GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 12 0.849 6.14

Sept OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 10 0.940 7.83

Sept OSU-4 RIDE via unusualness of counts vs. company 0 0 0 2 10 0.920 8.05

Sept SAIC-4 Scenario - Fraudster 0 0 0 1 10 0.693 1.62

Sept SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 3 4 8 0.530 1.26

Sept OSU-2 Cross Prediction via unusualness of counts, vs company 0 1 1 1 7 0.872 8.86

Oct SAIC-4 Scenario - Fraudster 0 1 1 1 7 0.713 4.57

Oct OSU-4 RIDE via unusualness of counts vs. company 0 0 1 3 6 0.981 26.18

Oct OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 6 0.970 15.84

Sept OSU-4 RIDE using Raw Counts 0 0 0 2 6 0.892 7.09

Oct UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 0 0 5 0.895 6.10

Sept SAIC-7 Indicator Anomaly Detection - URL 0 0 0 1 5 0.477 0.91

Sept CMU-6 Grid-based Anomaly Detection given Duplicates 2 5 5 5 5 0.301 2.19

Sept GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 3 0.502 1.00

Oct CMU-6 Grid-based Anomaly Detection given Duplicates 1 1 1 2 3 0.465 1.77

Oct OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 2 0.906 5.32

Oct OSU-4 RIDE using Raw Counts 0 0 0 0 2 0.888 4.69

Oct GTRI-4 Vector Space Models 0 0 1 2 2 0.694 8.64

Sept GTRI-4 Vector Space Models 0 0 1 1 2 0.618 2.61

Oct SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 0 0 2 0.425 0.87

Oct OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.881 4.18

Oct OSU-2 Cross Prediction via unusualness of counts, vs company 0 0 0 0 1 0.833 3.15

Sept OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 1 0.787 2.20

Sept OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.780 2.16

Oct OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 0 0.900 4.99

Oct SAIC-1 Max(Cross & Long Outliers) 0 0 0 0 0 0.828 3.27

Oct SAIC-7 Indicator Anomaly Detection - URL 0 0 0 0 0 0.507 0.93

Oct OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.388 0.92

Sept OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.287 0.66
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Experiments Focused on a Single Scenario 

For the data months of September and October in 2012, the red team inserted instances primarily 

of one scenario - three insiders who collude over instant messaging and corporate email to steal 

IP and form a new company. While the particular scenario was unknown to the detectors and to 

the research team prior to the experiments, it comprises several types of activity we have 

identified as important indicators of insider threat and is similar to the IP Thief Ambitious 

Leader scenario without the presence of an identifiable leader. We discovered that the red team 

had inserted two variants of this scenario over the months of September and October 2012, 

inserting a total of six instances. A single instance of a second scenario that simulated users’ 

circumventing SureView’s data collection was also inserted in September.   

We used this opportunity to study both effectiveness and robustness, and have analyzed the 

results of 484 detection runs over these two months.  Each month comprised approximately 5000 

active users with an average of 1000 evidence observations each user-day.  September’s red team 

targets consisted of 13 users with activity on 98 separate user-days and October had 6 target 

users with activity on 44 user-days. Table 5 shows several of our performance metrics, AUC, 

Average Lift, and # of target user-days at several cut-off ranks for each detector operating on 

these months' data. 

In the following sections, we will describe the results of continued experimentation with our 

suite of detectors over a period of 2 data years, and discuss a few examples of individual 

detection runs, which illustrate important findings. 

Measuring Overall Detector Performance 

The section above describes the data environment in which our prototype operates. Instances of 

Red Team scenarios are limited to one month duration and inserted as targets each calendar 

month. (CERT has found that 2/3 of known insider threat scenarios evolve over less than one 

month.) This allows for consistent, independent experiments. 

The experiments reported here measure detection performance on user-day entity extents, a data 

structure derived from the collection of activities of one user over one day. (We limit entity 

extents to this size for these experiments, although PRODIGAL is capable of representing many 

others.) We consider a hit to be the ranking of a user-day above some threshold, and can measure 

the hit/false-alarm tradeoffs using measures of the rate of true positives and false negatives. 

Addressing the Needs of Insider Threat Surveillance 

Metrics were chosen to measure both detection accuracy of the individual algorithms and their 

contribution to the overall task of providing leads to an analyst. For the former, we compute the 

Receiver Operator Characteristic (ROC) curve and area under the curve (AUC) as well as the 

Approximate Lift Curve and Average Lift. AUC estimates discrimination, or the probability that 

a randomly chosen positive entity extent will be ranked higher than a randomly chosen negative 

one. 

The choice of metric is critical to achieve the goal of providing workable leads to an analyst. 

Initial development has relied on the AUC metric, and that is what is reported here. However, 

that metric may be less suitable for a highly asymmetrical detection situation, where a very few 

positives must be identified high in the ranking to support an effective layered detection process 

in which analysts receive at least one lead from each (or most) scenarios near the top of the list 

and can then "connect the dots" to the rest of the malicious behavior. 
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Lift metrics, such as Average Lift, estimate the improvement in target density delivered to later 

stages of a multi-stage detection process. We also compute the number of positive hits ranked in 

the top k scored entity extents (for k = 5, 10, 50, 100, 500, etc.) and in the top p% of all scored 

entity extents (for p = .01, .05, .1, .5, 1, 5, etc.). The latter allow us to estimate anticipated 

detection success for fixed analyst workloads. 

We investigated a number of lift-focused approaches, aiming to improve the detection of leads to 

better support a layered detection process. Figure 20. Feasibility of Insider Threat Detection based on 

Anomaly Detection depicts how such processes, individually with very modest lift values, can be 

combined to solve the problem. The unsupervised anomaly detection and ensemble methods we 

describe subsequently in this paper can achieve the indicated performance - in 85% of inserted 

instances, the lift of the highest ranked target user-day is better than 10. Hence, a layered 

approach, which includes analytics to follow the leads provided by PRODIGAL, could provide 

acceptable performance.  

 

Figure 20. Feasibility of Insider Threat Detection based on Anomaly Detection 

The following sections report on our investigation of unsupervised anomaly detection, ensemble 

methods for combining diverse detection results, and the role that domain-specific detectors may 

or may not play in the acquisition of leads of insider threat surveillance. 

1.9. Experiments with Detector Diversity 

An example of the experiments, which the PRODIGAL framework enabled, was experiments in 

Detector Diversity. The key idea in these experiments was to apply the “Divide and Conquer” 

approach to statistical anomaly detection by running over meaningful sub-populations of entity-

extents.  Then results would be combined as a detector ensemble.  We noted that targeted user 

behavior is intermittent, interspersed with normal activities, and that aggregation of activities 

into features can “blur” significant values (aggregation over multiple generating processes 

decrease variance).  Also, finding anomalies may depend on context – e.g. time of day, day of 

week, comparison peer group.  Different malicious scenarios may appear as atypical behavior 

when viewed in certain contexts.  Finally, ensemble combination methods such as the method we 

use in PRODIGAL rely on having a diverse set of detectors scoring the same entity-extents. 
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Since many anomaly detection algorithms incorporate ensembles of statistical models, 

essentially performing a divide and conquer partitioning of the feature space, we wanted to 

divide the space along semantically meaningful lines – work vs. non-work days, email 

communities, division function, etc. 

The ensemble combination approach we are using relies on diversity among the input detectors 

for its power. Our hypothesis was that adding many variants of the same algorithms, run over 

diverse partitions of the data, could improve overall performance as compared to a single run of 

any detector or set of detectors. 

We divided the existing feature space along meaningful lines.  Entities were divided into peer 

groups as found by shared resources (see Figure 34) or by external information (Figure 35).  

Extents were divided by duration (day, week, partial day) and cycle (workdays, 

Sat/Sun/Holidays, all days). 

 

Preliminary results were promising.  Using only full day extents, three statistical anomaly 

detector models, and varying by cycle and peer group, generated 27 variant detectors.  The 

ensemble results of this set increased detection of one target scenario strongly, while weakly 

reducing another.  ROC curves in Figure 23 below show the results of each of the 3 detectors 

running on un-divided data and by comparison, the results of the ensemble of the 27 variants. 

 

Figure 21. Email communities (per GTRI 

Community Detection) 

 

Figure 22. Division function (per LDAP data) 
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Figure 23. Preliminary Results of Diversity Experiments 

These experiments were placed on hold pending enhancements to the PRODIGAL framework to 

allow computation of partial-day and multi-day features.  We consider this a promising area for 

future research. 

1.10. Temporal Aggregation Experiments (Leidos SOW 2.2.2) 

1.10.1. Background  

PRODIGAL scores user days, that is, days in which users are active on their computers.   

Scoring user days provides the analyst the most unusual individual days for the month, ranked 

from the highest to lowest (i.e., from the most to the least unusual days).  However, we do not 

systematically apply the user day scores to find which users who repeatedly display the most 

unusual behavior.  For example, ranking user days does not users who had multiple, high-scoring 

days in a time period whereas an analyst, visually reviewing the output from PRODIGAL’s 

ensemble would likely recognize patterns (e.g., a user who exhibits anomalous behavior on 

consecutive days, or a week apart on the same day).   Our goals in temporal aggregation 

experimentation were to develop a detector, D, that (1) used output from the ensemble (user ID, 

rank, and day) to find the most unusual users in a time period and (2) could serve as another 

detector in the PRODIGAL system.   

Our experiments differ from traditional and recent research focused on the assessment of 

temporal aggregation techniques in the context of time series analysis.  Traditionally, this 

IForest - Standard   CADE- Standard 

 

RIDE- Standard      Schubert (27 variants) 

 



 PRODIGAL Final Report 

 

  60 

  

 

research has focused on topics in economics and finance such as modeling interest and exchange 

rates.  Recent research has extended the previous work in temporal aggregation time series 

analysis to agronomy and meteorology and some in the social sciences (e.g., traffic patterns).  

We believe that in the context of insider threat detection, our research for temporal aggregation is 

novel.   

1.10.2. Methodology  

Designing the temporal aggregation model 

As the PRODIGAL system consists of over a hundred of features and detectors, we wanted a 

simple approach for temporal aggregation detector that used information that was already 

available.  Therefore, we used the following output from our ensemble detector: user ID; user 

day rank (i.e., rank); and date (i.e., day).   We combined these outputs into two parameters for 

temporal aggregation: rank cutoff (1) and the number of days (2) that a user has at a given rank 

cutoff point. Table 5 below describes how we set these parameters.  

Table 5. How we set parameters for temporal aggregation. 

Name Definition Possible values 

1 The rank of a user day score; 

interpreted as a cutoff point  

The number of user day ranks in the top 5, 10, 20, 50, 100, 

200, 500, 1000, 5000, and 10000; 10 values in total 

2 The count of the number of user 

days a specific user has at rank r   

The number of days in the time period that a user has at or 

higher than a given rank cutoff point; for a month, 1 – 31   

We selected the values of 1 primarily for two reasons: first, we believe that analysts expect to 

see “top n” in operational environments and, second, after analyzing the distribution of user days 

scores, these ranks resulted in near-linear increases in the number of users.  As detector 

parameter 2 relates the number of times that a user has a day at a specific rank, the value of 2 is 

the range of days in the time period; thus, in our experiments, the values of 2 varied from 1 to 

31, depending on the number of days in the month.  For a month, there are between 280 and 310 

possible detectors. 

Specifying the detector 

Figure 24 depicts our temporal aggregation model development methodology.  For each month, 

we (1) obtain the count of all distinct user IDs (including RT users), ranks, and days from the 

ensemble detector. Using those inputs, we (2) find the count of the all users at each value of 1 

and the count of days for all users at by rank cutoff point (2). We form combinations of each 

parameter (4) and develop the detectors (D) for the period of analysis; examples of D include: 

Top 5, 1 Day; Top 10, 3 Days; Top 50, and 4 Days.  
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Figure 24. Our temporal aggregation model development methodology. 
 

Program Data  

We used 21 full months of ADAMS test data (approximately 165,000 total user days 

scores/month) from September 2012 and July 2014 to populate the model.   We aggregated all 

user behavior for the month and did not distinguish between a Red Team user’s “normal” (i.e., 

the days for which there were no synthetic observables for the Red Team user) and “malicious 

days” (i.e., days with synthetic observables inserted to simulate insider threat behavior).  In an 

operational context, we believed that this approach was suitable for temporal aggregation as an 

analyst could, by starting with a higher-ranked day, discover low-signal malicious insider 

behavior.   Output from PRODIGAL’s ensemble algorithm served as ground truth for our 

experiments.   Specifically, we used the ensemble ranks by parameter value (e.g., “count of 

distinct users who have user days at rank equal to or less than 50”) and count of days at rank of 

Red Team user days (e.g., “count as inputs to model parameters, grouping all days within the 

period by user ID.   Ensemble ranks were the input for the model parameter (1) and the count of 

user days at each rank (2).   The count of all RT users per month from the evaluation tea’s 

answer keys provided input to the model’s metric, lift (see metrics and evaluation section).   

1.10.3. Metrics and evaluation  

We used lift, a data mining metric, as the value of the detector, k.  Lift characterizes the 

improvement offered by a classifier over random choice, and is an appropriate method to apply 

in our temporal aggregation.  As lift measures the amount of data enrichment offered by a 

classifier, it enables us to assess the improvement in detecting malicious insiders by looking at 

focused subsets (e.g., the number of users who have a rank at or above 50 three days in the 

month) of the overall population.  In our experiments, we defined lift as:   



 PRODIGAL Final Report 

 

  62 

  

 

 

We evaluated the temporal aggregation detector’s performance in two ways:  (1) average lift 

across all months and (2) average lift by specific Red Team scenario.  In the first approach we 

calculated the lift by data month (across multiple and different scenarios) and averaged lift of 

each classifier across all months in the set (i.e., 21 months between September 2012 through July 

2014).  In the second approach, we calculated lift by each scenario type, averaging lift of each 

classifier across scenario instance.  There are 36 scenarios and 74 distinct data sets in the data 

range.  For example, we averaged lift by classifier for the five instances of the Snowed In 

scenario, spanning multiple data months (July and October 2013 and July 2014).   

Experiment results  

Table 6 shows the final results of the model across all months. 

Table 6.  Final results of the temporal aggregation model across all months. 

 

Days Top5 Top10 Top20 Top50 Top100 Top200 Top500 Top1000 Top5000 Top10000

31 0.000

30 0.000 0.000 0.000

29 0.000 0.000 0.000 0.000 0.000

28 0.000 0.000 0.000 0.000 0.000 0.000

27 0.000 0.000 0.000 0.000 0.000 0.000

26 0.000 0.000 0.000 0.000 0.000 0.000

25 0.000 0.000 0.000 0.000 0.000 0.000

24 0.000 0.000 0.000 0.000 0.000 0.000

23 0.000 0.000 0.000 0.000 2.028 3.031

22 0.000 0.000 0.000 4.391 1.716 1.613

21 0.000 0.000 0.000 0.000 3.991 1.616 1.967

20 0.000 0.000 0.000 0.000 4.803 1.313 1.451

19 0.000 0.000 0.000 0.000 2.689 1.001 1.847

18 0.000 0.000 0.000 0.000 1.880 0.876 3.580

17 0.000 0.000 0.000 0.000 1.566 0.725 2.866

16 0.000 0.000 0.000 0.000 1.314 1.519 2.537

15 0.000 0.000 0.000 0.000 1.164 1.419 2.459

14 0.000 0.000 0.000 0.000 0.885 3.023 2.982

13 0.000 0.000 0.000 7.391 3.999 2.617 2.446

12 0.000 0.000 0.000 5.207 5.196 3.434 2.230

11 0.000 20.828 11.456 6.832 4.750 3.099 2.054

10 31.242 17.624 8.486 6.832 3.575 2.872 1.858

9 20.828 15.801 7.050 6.547 3.138 2.533 2.063

8 0.000 20.828 11.456 7.050 8.072 2.513 2.828 1.994

7 42.958 18.329 8.331 6.641 5.726 1.890 2.970 2.008

6 42.958 13.886 6.943 12.911 4.028 1.458 2.707 1.954

5 0.000 34.367 8.812 6.641 11.900 3.048 1.938 2.882 2.350

4 114.556 20.828 7.637 6.641 7.781 2.025 3.079 2.753 2.288

3 91.644 29.884 14.319 6.641 4.981 3.597 1.567 2.970 2.704 2.116

2 37.153 12.274 10.108 5.054 4.122 1.862 2.550 4.301 2.341 1.769

1 6.839 4.103 4.238 2.022 3.436 1.918 3.233 3.101 1.883 1.562
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Table 7 shows the top ten, most frequently –occurring temporal aggregation classifiers across all 

months.   

Table 7. The top ten, most frequently –occurring temporal aggregation classifiers across all months. 

Rank Lift Detector  Rank Lift Detector 

1 114.50 Top 10, 4 Days 6 34.367 Top 20, 5 Days 

2 91.64 Top 5, 3 Days 7 31.242 Top 50, 10 Days 

3 42.958 Top 20, 7 Days 8 29.844  Top 10, 3 Days 

4 42.958 Top 20, 6 Days 9 20.828 Top 50, 9 Days 

5 31.153  Top 5, 2 Days 10 20.828 Top 50, 8 Days 

A review of the most frequently occurring temporal aggregation classifiers suggests that analysts 

focus on users who are often highly unusual within a given time period. Table 8 shows the 

performance of the temporal aggregation detector by scenario, with lift averaged across the 

distinct instances within a scenario.  
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Table 8. Performance of the temporal aggregation detector by scenario, with lift averaged                                        

across the distinct instances within a scenario. 

 

Table 9 lists the temporal aggregation detectors that produced the highest and lowest lift values 

by scenario and relates the number of red team and all users for each detector and the number of 

all users in the month of the best detector.  

Table 9. The temporal aggregation detectors that produced the highest and lowest lift values by scenario. 

Scenario name 

Average 

lift, best 

detector 

Best detector 

(D) for this 

scenario 

#/RT 

users 

at D 

#/All 

users 

at D 

#/All users 

for the 

month 

Snowed In 1347.667 Top 5, 3 days 1 1 4124 

Anomalous Encryption 
147.842 

Top 1000, 7 

days 
1 19 5618 

Scenario Name

Count of 

scenario 

instances

Averge lift of D 

across scenario 

instances
Snowed In 5 1374.667

Anomalous Encryption 2 147.842

Exfiltration Prior to Termination 2 146.842

Selling Login Credentials 1 109.442

Czech Mate 1 51.47

Manning Up Redux 1 36.036

Byte Me 2 30.208

Breaking the Stovepipe 3 25.663

Credit Czech 1 23.89

Blinded Me With Science 1 23.387

Survivor's Burden 3 21.517

Job Hunter 1 21.44

What's the Big Deal 1 16.029

The Big Goodbye 1 12.468

Insider Startup 7 11.488

Bona Fides 2 9.932

Conspiracy Theory 2 9.571

Bollywood Breakdown 1 7.918

Layoff Logic Bomb 2 7.717

Parting Shot 1 6.91

Masquerading 2 2 6.487

Circumventing Sureview 2 6.052

Strategic Tee Time 1 4.747

Indecent RFP 2 2 4.078

Indecent RFP 1 4.078

Passed Over 4 3.761

Exfiltration of Sensitive Data Using Screenshots 3 2.877

Gift Card Bonanza 1 2.82

Byte Me Middleman 2 2.63

Naughty by Proxy 4 2.445

Outsourcer's Apprentice 3 2.445

Hiding Undue Affluence 2 2.22

Parting Shot 2 - Deadly Aim 1 2.22

From Belarus With Love 2 2.205

Manning Up 2 1.99

Panic Attack 2 0.855
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Exfiltration Prior to Termination 146.842 Top 20, 1 day 1 13 4372 

Selling Login Credentials 
109.442 

Top 10000, 23 

days 
1 4 5691 

Czech Mate 51.47 Top 500, 2 days 1 83 4272 

Hiding Undue Affluence 
2.22 

Top 5000, 2 

days 
1 867 5721 

Parting Shot 2 - Deadly Aim 
2.22 

Top 5000, 2 

days 
1 635 4230 

From Belarus With Love 
2.205 

Top 10000, 5 

days  
1 723 4392 

Manning Up 
1.99 

Top 10000, 4 

days  
1 959 5729 

Panic Attack 
0.855 

Top 10000, 5 

days  
1 700 4286 

 

1.10.4. Follow-on work 

We have implemented a temporal aggregation filter in our analyst interface (AI) and intend to 

present highly-anomalous users identified by the temporal aggregation to CI analysts from the 

data provider and determine the number of those users whose actions are of interest.  Also, in 

reviewing our results in the data laboratory, we noticed that a high percentage of frequently 

anomalous users (e.g., users who have multiple days in the top 20 user days) appear to perform 

tasks associated with job roles and functions categorized as high-risk for insider threat (e.g., 

system administrators).  We will review the highly anomalous users from our temporal 

aggregation method and determine the percentage of users in the top 20 at 1 and more than 1 day 

and assess the ability of the temporal aggregation method to identify users who are system 

administrators.  
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Algorithm / Evidence Combination and Explanation (Leidos SOW 2.2.2) 

1.11. Exploiting a Diverse Ensemble of Detectors 

The PRODIGAL system is the result of substantial original research to find relevant anomalies in 

data, resulting in a number of new methods.  Because PRODIGAL was evaluated in a rigorous, 

consolidated test environment, it became critical to understand how to combine those methods 

into a single system with good performance and to be able to produce explanations for those 

results.  This section summarizes our research results in these areas on the ADAMS test data.  

1.11.1. A Language for Combining Detectors and Specifying User Contexts 

Using anomaly detection in PRODIGAL, it is critical to construct contexts around individuals.  

By contexts we mean the linking of users' traits, roles and activities to relevant baseline 

populations and baseline time periods to compare against.  Useful contexts simultaneously 

reveal threats and minimize false positives.  To do this we developed representations of activities 

of users and have techniques for designing relevant baselines for specific activity scenarios and 

we specified them using Anomaly Detection Language (ADL). We developed this new language 

to take advantage of having multiple base detectors in PRODIGAL that can be used together.  

We also developed it to have a formal way to specify multiple detectors using the same base 

algorithm.  We presented this work in [Memory 2013] and we summarize it here. 

In anomaly detection, we detect anomalies associated with some entity, which may be an 

individual insider, i.e. system user, or the anomalies may be associated with a group of entities, 

so we adopt the more general entity extent.  Similarly, the anomaly may be associated with a 

particular period of time, known as a temporal extent, and the combination of these two is an 

extent.  The inputs to our analysis are records of (trans)actions by entities comprising values of 

fields known as features, and the outputs are scores on the extents. Additionally, because the 

analysis is done in stages, scores themselves are treated as features.  We use this vocabulary to 

define the ADL syntax, which is shown in Figure 25. 

 

Figure 25. Anomaly Detection Language (ADL) Syntax 

Components in the language, are rectangles connected by lines representing sets of records 

passed between them and have types, such as statistical anomaly detector type (denoted by the 

symbol S), group detector (G) which discovers communities of entities which can be used as 

baseline populations, classifier (C) which filters and partitions input records, aggregator (A) 

which summarizes records into features, normalizer (N) which rescales records and features with 

respect to some context, AND and OR used when sets of records are joined and contain different 

values for the same feature, and union and intersection when no combinations are necessary.  
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The inputs to the component enter on its left, with the input time period placed below the input 

line, and the optional baseline drawn as a second line on the left with the baseline population and 

time period placed above and below that line, respectively. The output entity and temporal 

extents are super- and sub-scripts on the component type, respectively and exit on the 

component's right that, when joined, represents a join of the records, in the sense that tables of a 

database are joined.   

If a baseline is provided, a baseline type specifies how the baseline is used by the component.  In 

a cross-sectional baseline (C) entity extents are compared to others within the same temporal 

extent; in a longitudinal baseline (L) each entity will be handled individually and different 

temporal extents for that entity are compared to one another; and a simultaneous baseline (S) 

combines the first two and compares each input extent to all baseline extents. Table 10. Expected 

behavior of an anomaly detector with a variety of inputs and baselines lists the expected behavior of an 

anomaly detector with a variety of inputs and baselines.   

Table 10. Expected behavior of an anomaly detector with a variety of inputs and baselines 

 

For example, if the input user data we are analyzing are from the month of November and the 

baseline population against which we are comparing is all other users from the same month, then 

the anomaly detector will score each user in November, i.e. each user-month, which makes this a 

cross-sectional baseline. 

Whenever a component may output more than one output class of records, e.g., a binary 

classifier has (+) and (-) output classes, they should be placed to the right of the component 

inside circles connected to output lines, unless only one class of output is needed and that class is 

clear from context, in which case the output class can be omitted. Weights are scalars in the unit 

interval used to transform features -- usually scores -- and are drawn as the letter w inside a 

rectangle.  The type of weighting should be put in a description above the rectangle.  Finally, the 

output of the system is drawn as the letter O inside a circle.  

Consider a small example in the language, in which we specify a relevant context as features and 

baselines.  In Figure 26, we find anomalous users based on the number of blacklist web sites they 

visit.   

 

Figure 26. A small example of ADL. 

We (a) retrieve all the URL access records, (b) keep only accesses to URLs on a blacklist with 

C
URL

, (c) count the number of such accesses for each user for each month and (d) run a statistical 
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anomaly detector over all users in the month using the counts of blacklist URL.  Finally, we (e) 

return anomaly scores for each user. In Figure 40 we extend the previous example with baseline 

populations based on the divisions of the organization (b) from user records, e.g., Lightweight 

Directory Access Protocol (LDAP) (a) in which users are compared cross-sectionally (c). 

 

Figure 40. A small example of ADL, extended. 

Consider a more realistic, but still notional, example.  In the Saboteur scenario, [Cappelli et al., 

2012], shown in Figure 27, we look for users with administrator access that could be sabotaging 

(or preparing to sabotage) systems.   

 

Figure 27. Example of Saboteur scenario in ADL. 

We count times when security-related processes, e.g., antivirus, are stopped and high-risk files 

are modified at atypical intervals, add the length of time worked and whether it was a non-work 

day, then normalize w.r.t. the users' history.  To limit the baseline to administrators, we find 

them in LDAP and combine that set with those who act like administrators according to the file 

types they access compared to the users' work group in email.  Finally, we score the user-days 

and weight days leading up to a user's departure from the organization more heavily. 

The ADL language was used across the PRODIGAL team to specify combinations of detectors 

and to specify contexts of users that were relevant for finding anomalies associated with insider 

threats, as seen in other sections of this report.  Future research directions would be to implement 

a parser of the language as an extension of relational algebra, which could then be automatically 

compiled into PRODIGAL flows. 
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1.11.2. Unsupervised Ensemble-Based Anomaly Detection 

Methods 

Having multiple anomaly detection results for the same data naturally leads to the need to 

combine those results to take advantage of the distinct perspectives embodied in different 

detectors. Further, an analyst responsible for insider threat detection desires a single ranked list 

rather than many different result sets from different detectors whose detailed operation he/she 

may not fully understand. Anomaly detector ensembles combine the results (i.e., scores) from 

multiple detectors in a way that is analogous to how classifier ensembles combine predictions 

from multiple classifiers [Dietterich 2000]. 

Because when building ensembles, we assume that we do not have access to ground truth, it is 

not known whether one of the individual detectors always performs well; in fact, in our 

experiments where we have ground truth we found that the best detector varied across data sets. 

Therefore, one goal of ensemble building is to perform at least as well as the best detector. It is 

also possible for an ensemble to outperform all of the individual detectors, which is analogous to 

how some classifier ensembles are able to outperform their individual classifiers. 

Selecting an approach for building ensembles depends upon the types of detectors that are used. 

If all the detectors share an underlying model, then the ensemble approach can leverage that 

commonality to improve performance, e.g., the method reported in [Lazarevic  2005] varies the 

features used as input to a single anomaly detection model to build an ensemble. Another way of 

leveraging a common model is to use the same input features, but alter hyperparameters, which 

determine how the model is built in each detector [Lazarevic 2005], [Dietterich 2000]. 

If, however, the detectors do not share a common underlying model then the ensemble-building 

approach may only assume that the scores from the detectors are given as input, i.e., the features 

used as input to detectors and the hyperparameters of the detectors are unknown. Because our 

individual detectors employ a variety of models, we chose an approach that is consistent with 

this setting [Schubert  2012]. The following paragraphs describe the approach. 

Some approaches for ensemble building, including the method we used, employ the following 

two high-level heuristics. First, if a consensus about which points are most anomalous can be 

drawn from the individual detectors, then that consensus should be preserved in the final 

ensemble. Second, because each individual detector is subject to unavoidable biases stemming 

from the choice of model, choice of input features, hyperparameter settings, etc., the ensemble 

should prefer combinations of results from detectors with uncorrelated biases. 

These heuristics are implemented in two distinct phases in this method. In the first phase they 

extract a consensus across all detectors from the union of the top k most-anomalous points from 

each detector. All points in this union are given a score value of 1 and all others are given a score 

of 0. We chose a value for k for each dataset that included the top 1% of the points. The method 

then initializes the ensemble with scores from the detector that is most correlated with the 

consensus. The correlation between detectors and the consensus is found by viewing each as n-

length vectors of scores, where there are n points in the dataset, and then using a simple 

correlation metric to compare the vectors. We used the Pearsons r correlation metric for this.  

In the second phase, the method greedily selects candidate detectors to combine with the initial 

ensemble by preferring the detectors that are least correlated with the current ensemble. The 

same correlation metric used before is used again here. The candidate detectors scores are 
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combined with the current ensemble using a point-wise combination function. For this the 

method uses the average over scores for each point; we also experimented with other functions 

including the maximum of scores. The algorithm proceeds to accept a candidate detector if the 

resulting ensemble is no less correlated with the consensus than the previous ensemble; if it is, 

then the candidate detector is discarded. This phase continues until all detectors are either 

accepted or discarded. 

Results and Discussion 

Our initial experiments evaluated our detection results based on our ability to detect user-days 

with red-team inserted activity. We used a wide variety of detectors, described in reference 

[Senator 2013], and the ensemble technique described above. Results are summarized in Table 

11. For each month, we report the area under the ROC curve for our best detectors, for the 

ensemble, and the ratio of the two, indicating how close the ensemble came to the best. The 

AUCs reflect the ability of the detectors to find all of the user-days of the union of all scenarios 

present in the month. These results illustrate that the unsupervised ensemble-based anomaly-

detection technique had performance that is close to that of the best of the individual anomaly 

detectors. The AUC for the ensemble technique was within 5% of the AUC of the best detector, 

with a 95% confidence interval of +/- 1.5% around a linear regression fit of ensemble to best 

AUC over 54 individual RT scenario instances. Interestingly, the ensemble-based technique 

appeared to have results that were similar across datasets, while the best detector varied widely. 

Figure 28 illustrates the differences in performance between the ensemble and the best-

performing detector for selected months. These 8 months have been selected to show instances 

when a wide variety of detectors were best performer. 
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In September and October 2012 (Figure 42(a) and Figure 42(b)) there were 6 instances of the 

same RT scenario (14-17, 20-21), and one of the CADE detectors was best both times. Although 

neither CADE nor the Ensemble were able to score all inserted user-days very high, all inserted 

scenarios had several user-days in very high rankings, supporting the expectation that a later 

stage of analysis would easily find the rest given these leads. 

Figure 28(c) through e and g show months where different detector models performed best. In 

each case the Ensemble was able to approximate performance of the best detector. These months 

contained 12 instances of 10 different RT scenarios. 

Figure 28(f) shows Ensemble performance significantly lower than the best detector, although the 

top few user-days are ranked highly by both. However, this detector, PDE:UP, averaged only 

85% of the Ensemble’s AUC values over all 16 months, and so could not be relied upon for 

consistent detection. This is the case for all detectors of all three types and is the principal reason 

why even an ensemble method that fails to improve on the best score is still valuable. 

Finally, we note for the month shown in Figure 28(h), the best detector – GFADD with no grid 

over the feature pair, # file events on removable drives vs. # distinct removable drives  – only 

returns a score for user-days it finds anomalous, so the value of an AUC is questionable. The 

Table 11. Ensemble and Best Detector Results by Month. 

Month Ensemble 

AUC 

Best 

Detector 

Best Det. 

AUC 

Ens. / 

Best RT 

Scenarios 

12-Sep 0.8973 CADE:UP  0.9703 92.47% Circumventing SureView Insider Startup 

12-Oct 0.9319 CADE:UP  0.9804 95.05% Insider Startup 

12-Nov 0.7542 File  0.7895 95.53% Anomalous Encryption, Layoff Logic Bomb, 

Masquerading 2 

12-Dec 0.8646 GMM:QD  0.8677 99.64% Anomalous Encryption, Layoff Logic Bomb, 

Outsourcer’s Apprentice 

13-Jan 0.8594 RIDE:RD  0.9015 95.34% Hiding Undue Affluence, Outsourcer’s 

Apprentice, Survivor’s Burden 

13-Feb 0.7632 EGMM:QD  0.7793 97.94% Bona Fides, Manning Up, Survivor’s Burden 

13-Mar 0.8853 IFOR:QD  0.8963 98.77% Bona Fides, Hiding Undue Affluence, Manning 

Up Redux 

13-Apr 0.8635 RIDE:QD  0.8619 100.19% Circ. SureView, Indecent RFP, Selling Login 

Cred., Survivor’s Burden 

13-May 0.8469 PDE:UP  0.9718 87.14% Credit Czech, Exfiltration Prior to Termination 

13-Jun 0.8852 IFOR:QD  0.9103 97.24% Czech Mate, Exfiltration of Sensitive Data Using 

Screenshots 

13-Jul 0.8498 RIDE:RD 0.8769 96.90% Breaking the Stovepipe, Snowed In 

13-Oct 0.8938 GMM:RD 0.8972 99.62% Breaking the Stovepipe, Snowed In 

13-Nov 0.8479 RIDE:RD  0.8459 100.23% Byte Me, Naughty by Proxy 

13-Dec 0.8034 EGMM:RD  0.828 97.02% Byte Me Middleman, Indecent RFP 2, Passed 

Over 

14-Jan 0.8425 IFOR:RD  0.8242 102.22% From Belarus With Love, Passed Over, What’s 

the Big Deal 

14-Feb 0.847 GFADD:84-

88-0  

0.9775 86.65% Bollywood Breakdown, Breaking the Stovepipe, 

Gift Card Bonanza, Naughty by Proxy 
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second best detector is also shown. Again, the Ensemble comes close, in fact exceeding its AUC 

value slightly. 

 

Figure 28. ROC curves vs. all RT inserts for the Ensemble and the best detector for various months. 

 

 

Table 12. Comparison of Scenario-Based Detector to Ensemble Performance, by Red Team Scenario Inserts 

Month Inserted RT Scenario Ensemble 

AUC on 

RT Inserts 

Relevent 

Scenario 

Detector 

Decenario 

Detector 

AUC 

Ratio 

(Ensemble / 

Insert AUC) 

12-Sep Insider Startup  0.8731 Amb. Lead. 0.9176 95% 

12-Sep Insider Startup  0.88 Amb. Lead. 0.6887 128% 

12-Sep Insider Startup  0.9257 Amb. Lead. 0.9117 102% 

12-Sep Insider Startup  0.9097 Amb. Lead. 0.8389 108% 

  

 (a) September 2012  (b) October 2012   (c) December 2012 

  

 (d) January 2013   (e) March 2013   (f) May 2013 

 

 (g) December 2013  (h) February 2014 
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Additionally, we see that the ensemble generally outperformed the scenario-focused detectors, 

including the scenario-focused detectors that we determined later to have been a likely fit to the 

red team scenario that was actually inserted. In  

 

Table 12 we see AUC performance on individual inserted scenario instances. Ensemble AUC 

over these instances averages 0.87 and consistently outperforms the selected relevant scenario-

focused detector; in 3 of the 41 by over 150%. There is considerable variation in the results, even 

over instances of the same RT scenario, suggesting the inherent variability of the RT threat 

simulation process. 

 

12-Sep Circumventing SureView  0.9789 Saboteur 0.9465 103% 

12-Oct Insider Startup  0.9171 Amb. Lead. 0.9258 99% 

12-Oct Insider Startup  0.9466 Amb. Lead. 0.8233 115% 

13-Mar Manning Up Redux  0.9041 IP Thief 0.7575 119% 

13-Mar Hiding Undue Affluence  0.8458 Fraudster 0.8115 104% 

13-Mar Bona Fides  0.8447 IP Thief 0.6571 129% 

13-Apr Survivor’s Burden  0.8806 Saboteur 0.687 128% 

13-Apr Selling Login Credentials  0.8594 Amb. Lead. 0.6166 139% 

13-Apr Indecent RFP  0.8405 Fraudster 0.6542 128% 

13-May Credit Czech  0.8314 Fraudster 0.8594 97% 

13-May Exfiltration Prior to Termination  0.8476 IP Thief 0.808 105% 

13-May Exfiltration Prior to Termination  0.9994 IP Thief 0.9988 100% 
13-Jun Exfiltration of Sensitive Data Using 

Screenshots  
0.8114 IP Thief 0.4703 173% 

13-Jun Exfiltration of Sensitive Data Using 
Screenshots  

0.9935 IP Thief 0.9769 102% 

13-Jun Exfiltration of Sensitive Data Using 
Screenshots  

0.9251 IP Thief 0.4703 197% 

13-Jun Czech Mate  0.8702 Fraudster 0.6021 145% 

13-Jul Breaking the Stovepipe  0.8176 IP Thief 0.8017 102% 

13-Jul Snowed In  0.8578 Fraudster 0.7243 118% 

13-Oct Snowed In  0.8645 Fraudster 0.8245 105% 

13-Oct Snowed In  0.927 Fraudster 0.694 134% 

13-Oct Snowed In  0.8706 Fraudster 0.8121 107% 

13-Oct Breaking the Stovepipe  0.9313 IP Thief 0.8403 111% 

13-Nov Naughty by Proxy  0.7904 Saboteur 0.5711 138% 

13-Nov Naughty by Proxy  0.718 Saboteur 0.4872 147% 

13-Nov Byte Me  0.8607 Fraudster 0.7205 119% 

13-Nov Byte Me  0.8872 Fraudster 0.7387 120% 

13-Dec Indecent RFP 2  0.9449 Fraudster 0.7217 131% 

13-Dec Byte Me Middleman  0.8279 Fraudster 0.6246 133% 

13-Dec Passed Over  0.7451 Saboteur 0.4951 150% 

14-Jan Passed Over  0.8571 Saboteur 0.6602 130% 

14-Jan What’s the Big Deal  0.903 Careless 0.6938 130% 

14-Jan From Belarus With Love  0.7206 IP Thief 0.6269 115% 

14-Feb Bollywood Breakdown  0.9286 IP Thief 0.7904 117% 

14-Feb Gift Card Bonanza  0.7705 Fraudster 0.6438 120% 

14-Feb Breaking the Stovepipe  0.9497 IP Thief 0.835 114% 

14-Feb Naughty by Proxy  0.812 Saboteur 0.5742 141% 
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Table 12 reports results on all months where the comparison was possible, not only months where 

the ensemble performed well. Figure 29 depicts the performance of the ensemble method 

compared to the corresponding scenario-focused detectors for 4 of these months. Figure 29(a) 

shows a month where the inserted scenarios and the scenario-base detectors correspond fairly 

well. The typical response of the scenario detector is to score some of the best matching user-

days well, often better than the Ensemble, but then drop off rapidly in the remainder of inserted 

targets. IP Thief in Figure 29(a) through Figure 29(d) shows some of this behavior, although the 

presence of other scenarios in the month masks its performance on the relevant inserts. We have 

reviewed individual scenario-based detectors on separate inserted RT scenarios and see the same 

response, but the data are too cumbersome to present graphically in this paper. However, it is 

worthwhile to note the number of instances in  

 

Table 12 where scenario-based detectors performed close to the Ensemble cases where the 

detector does well on a few high ranking user-days at the expense of not identifying others. We 

are investigating ways to make use of these targeted responses. 

 

Figure 29. ROC curves for the Ensemble and the Scenario-Based Detectors for various months. 

Figure 44 identifies the sets of detectors selected by the ensemble each month and compares them 

to the best performing detectors for that month. The best-performing detector was included in the 

ensemble in only 4 of the 22 months of data. And because in those months there are on average 

more than six detectors selected for the final scoring step, and all ensembles comprise equally-

weighted detectors, the best detector is never given more than one sixth of the weight in this 

ensemble result. Therefore, the ensemble technique is able to achieve comparable performance to 

the best detector by combining detectors and with those detectors often excluding the best 

    

(a) September 2012  (b) March 2013 

 

(c) May 2013   (d) February 2014 
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performing detector. Recall that the heuristics followed by the ensemble technique favor 

detectors that are either most close to the consensus or those that are able to add diversity to the 

ensemble (least correlation with the ensemble) without reducing correlation with the consensus. 

Thus in these data sets the best-performing detector generally disagrees with the consensus from 

other detectors, yet a combination of those other detectors can be built automatically that 

performs nearly as well as that best detector. 

 

In 10 out of 16 months at least one of the accepted detectors used an underlying model that was 

shared with the best-performing detector. For example, in Dec-12 the best performing algorithm 

is GMM Density Estimation via unusualness of counts vs. company, which shares the same 

underlying model Gaussian mixture models as one of the accepted detectors, GMM Density 

Estimation using Raw Counts; the difference between these two detectors is the method of 

normalizing input features, which we mentioned as an important element of detector 

configuration and a source of diversity in our detection suite. 

These apparently contradictory results, good performance of the ensemble without participation 

of the best detector in the final scoring step, led us to devise a series of simulation experiments to 

thoroughly understand the role of the participating detectors in ensemble methods. It is clear that 

 

Figure 30. Ensemble Composition and Best-Performing Detector, by Month 
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the best detector plays a role in driving ensemble performance. When the best detectors perform 

poorly, so does the ensemble. So their role in constructing the consensus is important. We aim to 

improve ensemble performance significantly through this research by applying the two heuristics 

more effectively as well as through continued improvement of the individual detectors. 

Finally, Table 13 displays the results of running more ~40 detectors, and the Ensemble, over 22 

months of live data, showing the AUC achieved on each inserted red team scenario. 
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Table 13. Performance by Scenario Instance of PRODIGAL's Detectors over 22 months. 
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14 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

15 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

16 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

17 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

18 Circumventing	Sureview ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

20 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

21 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

22 Anomalous	Encryption ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

23 Masquerading	2 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

24 Masquerading	2 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

25 Layoff	Logic	Bomb ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

26 Layoff	Logic	Bomb ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

28 Anomalous	Encryption ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

29 Outsourcer's	Apprentice ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

30 Outsourcer's	Apprentice ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

31 Survivor's	Burden ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

32 Hiding	Undue	Affluence ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

33 Survivor's	Burden ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

34 Bona	Fides ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

35 Manning	Up ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

36 Manning	Up	Redux ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

37 Hiding	Undue	Affluence ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

38 Bona	Fides ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

39 Survivor's	Burden ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

40 Circumventing	Sureview ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

41 Selling	Login	Credentials ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

42 Indecent	RFP ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

43 Credit	Czech ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

44Exfiltration	Prior	to	Termination ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

45Exfiltration	Prior	to	Termination ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

46 Exfiltration	of	Sensitive	Data ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

47 Exfiltration	of	Sensitive	Data ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

48 Exfiltration	of	Sensitive	Data ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

49 Czech	Mate ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

50 Breaking	the	Stovepipe ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

51 Snowed	In ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

52 Snowed	In ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

53 Snowed	In ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

54 Snowed	In ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

55 Breaking	the	Stovepipe ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

56 Naughty	by	Proxy ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

57 Naughty	by	Proxy ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

58 Byte	Me ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

59 Byte	Me ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

60 Indecent	RFP	2 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

61 Byte	Me	Middleman ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

62 Passed	Over ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

63 Passed	Over ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

64 What's	the	Big	Deal ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

65 From	Belarus	With	Love ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

66 Bollywood	Breakdown ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

67 Gift	Card	Bonanza ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

68 Breaking	the	Stovepipe ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

69 Naughty	by	Proxy ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

70 Outsourcer's	Apprentice ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

71 Manning	Up ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

72 Panic	Attack ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

73 Parting	Shot ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

74 Passed	Over ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

75 Conspiracy	Theory ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

76 Job	Hunter ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

77 Naughty	by	Proxy ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

78 Indecent	RFP	2 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

79 Parting	Shot	2	-	Deadly	Aim ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

80 Strategic	Tee	Time ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

81 Conspiracy	Theory ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

82 Panic	Attack ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

83 The	Big	Goodbye ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

84 Blinded	Me	With	Science ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

85 Byte	Me	Middleman ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

86 Snowed	In ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

87 From	Belarus	With	Love ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

88 Insider	Startup ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

89 Passed	Over ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
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1.11.3. A New Ensemble Using Explanations 

Like other systems using anomaly detection, the PRODIGAL system includes a number of base 

anomaly detectors and combines them into an ensemble.  So far, much of the prior work using 

these ensembles has used a limited number of base detectors and, for good reason, the detectors 

shown to work well across many problem domains are the first to be picked, e.g., local outlier 

factor and Isolation Forest.  For PRODIGAL, we had to expand the set of base detectors beyond 

those tried and true detectors to be able to handle, for example, detectors that are specialized for 

a particular insider threat scenario.  When we do this, however, it is important to know whether 

the ensemble model we use can accommodate a larger number of detectors and to know what 

will happen if some of those detectors have lower accuracy than the typical set of base detectors.   

To study this problem, we studied whether the [Schubert 2012] ensemble method is robust to 

additional base detectors.  In the process, we developed a new ensemble model using detector 

explanations as input that is more robust to errors in base detectors.  In our tests, the new model 

showed potential for the robustness needed to permit a broader range of base detectors than was 

possible previously.  We presented our results in [Memory 2015], which we summarize here. 

For our experiments, we used PRODIGAL’s base detectors, which have the ability to generate 

anomaly scores and also explanations.  To determine whether or not PRODIGAL’s base 

detectors with varying accuracy reduce the accuracy of the ensemble model using them, we 

considered three different combinations of synthetic, erroneous base detectors, which we added 

to an ensemble to test its robustness.  For the first combination, we random base detectors, which 

have random and unrelated scores and explanations.  The scores are drawn uniformly from [0,1]. 

The explanations are drawn from [0,1] in D dimensional space, i.e., there are D features drawn 

from the dataset.  A second combination occurred when we added copies of the same base 

detector; in this case, all scores for the same point were equal and all explanations for the same 

point were identical. Our third combination consisted of adding detectors that varied only by 

score or by explanation.  Our goal was to find an ensemble model that is robust to each of those 

forms of synthetic base detectors.   

We considered four preferences to guide the operation of the new ensemble model.  

Agreement. For each point, the model will only select detectors that have similar explanations for 

that point. Conceptually, a perfectly normal point has no explanation but we force one to be 

generated and it can be heavily influenced by noise.  So, agreement should be unlikely for 

normal points and more likely for anomalous points.   

Independence. The model will not treat base detectors that always agree as independent sources 

of information.  In an extreme case that we consider, base detectors can be identical and their 

agreement will not be an indication of a true anomaly.  Base detectors with overall agreement on 

explanations are dependent detectors.   

Plurality. Except in the case of dependent detectors, a grouping of multiple, tightly agreeing 

detectors is less likely to happen by chance than a single pair in agreement.  Having a pair of 

agreeing detectors is likely if detectors are numerous (cf. the birthday paradox).  As a result, a 

plurality of independent and agreeing detectors is an indication of a true anomaly. A pair of 

detectors is more likely to be selected if, all else being equal, there exist two other detectors 

having explanations that agree with the first pair. 
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Strongest Response. Among selected detectors for a point, choose the strongest response -- the 

highest score -- as the final score for that point. 

As we have done for other PRODIGAL experiments, we measured the performance of ensemble 

models using the benchmark from OSU. We used four randomly selected problems from each 

available difficulty level of the abalone, concrete, fault, imgseg, opt.digits, pageb and yeast 

datasets, totaling 84 problems.   

We chose multiple configurations of two PRODIGAL base anomaly detection algorithms with 

two goals in mind: (1) some base detectors perform well and others do not.  (2) There is varying 

dependence among detector pairs; some are generally dependent and others are not.  The two 

algorithms we use were Isolation Forest and Repeated Impossible Discrimination Ensemble 

(RIDE). We chose three configurations of Isolation Forest by setting the size of the random 

forest used in the detector. We also chose three configurations of RIDE by setting the epsilon 

parameter.   

We used two versions of the new ensemble model.  The first version (E1) used all four 

preferences while the second (E2) removed the independence and plurality preferences.  We 

compared against the [Schubert 2012] ensemble. We also compare against a simple ensemble in 

which the final score for a point is the average of scores for the point from all base detectors (A). 

For each ensemble, we found the area under the receiver operating characteristic (ROC) curve 

(AUC) for each of the 84 problems with only the real base detectors included, then with 2, 10 or 

100 additional synthetic base detectors. Figure 31 shows the robustness of ensembles to synthetic 

base detectors with random scores.   

 

Figure 31. Robustness of ensembles to synthetic base detectors with random scores 

As the number of additional base detectors increases, the area under the ROC curve (AUC), 

shown on the vertical axis, for the greedy ensemble G (purple dash) eventually falls. The 

explanation-based ensemble E1 (blue solid) is relatively unaffected, while the average-based 

ensemble A (green dotted) and E2 (orange dot-dash) are strongly affected. To examine the 

effects of scores and explanations separately, this configuration started with a set of identical, 

erroneous detectors then varies their scores only.  The G ensemble is not robust for this case, as 

its accuracy is ultimately affected by the random scores.  

Figure 32 shows robustness to detectors with randomly varying scores and explanations.   
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Figure 32. Robustness to detectors with randomly varying scores and explanations 

As we added base detectors, the AUC for all ensembles decreases, with E1 (blue solid, circle 

markers) least of all.  A variant of E1 without the plurality preference (green solid, triangle 

markers) reveals the effect of plurality on robustness. G is again affected by the random scores; 

E1 would also be strongly affected by this case due to the random explanations (given enough 

random explanations, some are likely to agree); however, the preference for plurality helped E1 

be robust for this case.  The figure also shows a variant of E1 (solid triangle markers) that has the 

plurality preference disabled; the variant is less accurate than E1, as expected.   

With this new ensemble, we showed important ways that explanations could improve robustness 

of the ensemble over the ensemble we have used in PRODIGAL.  A future direction for research 

would be to study whether this ensemble approach could produce a combined list of explanations 

in addition to the combined list of scores. 

1.12. Explanations 

During Phase 2, the PRODIGAL team directed significant effort towards developing methods of 

explaining the results of anomaly detection, presenting those explanations to human analysts, and 

using the explanations to improve downstream automated processes, such as ensemble score 

combination.   

1.12.1. A Common, Understandable Representation for Anomaly Explanations 

In PRODIGAL, explanations of an anomaly score are defined as lists of the domain-knowledge-

based features with associated weights.  This was chosen as the simplest representation of 

knowledge about the scored entity-extents common to all detection algorithms.  Furthermore, by 

explaining anomaly scores in terms of features derived from known activities, an analyst does 

not have to understand details of the algorithms. 

We conducted a study of the utility of feature-based explanations, which is summarized in 

Section 1.12.2 and included in [Goldberg 2016]. 

Level 0 Explanations 

We implemented explanations in a staged approach, beginning with a simple enumeration of the 

outlier scores of pre-computed features.  Each entity receiving a score in PRODIGAL has 

associated with it a large number of feature values, V(U,D,F), where U = user ID, D = date, and 
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F = feature ID.  PRODIGAL computes a statistical outlier score for each value by comparing it 

against all other users for that date, the comparison population being {V(x,D,F)}.  We compute 

an outlier score using the cdf of the logistic distribution with mean and variance of this 

population.  This score is normalized to [0,1] and is easily compared with other features’ scores.  

We might think of this score as the pseudo-likelihood of outlier status since it estimates the 

likelihood that the feature value is greater than others from the base population.  A Level 0 

explanation of a scored entity is a weighted list of features, where weights are equal to the outlier 

scores.  

Pre-computed features were selected from a wide range of user behaviors identified by 

intelligence analysts, and thus represent specific behaviors meaningful to an analyst.  Some 

examples include: URL upload count, email event count, average recipient count per email sent, 

fixed drive file event count, and upload /distinct URL domain ratio.  A sample of the values and 

outlier scores computed for the last example is shown in Figure 33 and Figure 34. 

 

Figure 33. Histogram of values for the feature: Upload / Distinct URL domain ratio 

 

Figure 34. Histogram of outlier scores for the feature: Upload / Distinct URL domain ratio 

For these examples of pre-computed features, the first histogram shows the raw feature value 

with the density and cdf of the fitted logistic distribution.  The second histogram shows the 

resulting outlier scores.  

Level 1 Explanations 

A number of anomaly detection algorithms incorporated into PRODIGAL were modified to 

produce explanations specific to their own score, their estimation of the anomalousness of each 

entity-extent.   Four general approaches were explored. (Note: 𝑓(𝑥𝑖) below is the learn "normal" 
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density of entity-extents.) 

Sequential Marginal (SeqMarg) 

 Choose First feature 𝑖 that minimizes 𝑓(𝑥𝑖) 

 Choose Second feature 𝑗 that minimizes 𝑓(𝑥𝑖, 𝑥𝑗) 

 etc. 

Independent Marginal (IndMarg) 

 Order features according to increasing 𝑓(𝑥𝑖) 

 I.e. order according to independent anomalousness of each feature 

Independent Dropout (IndDO) 

 Order features according to decreasing 𝑓(𝑥−𝑖) 

 I.e. order according to how much more normal x looks after removal 

Sequential Dropout (SeqDO) 

 Select first feature 𝑖 as one that maximizes 𝑓(𝑥−𝑖) 

 Select second feature j as one that maximizes 𝑓(𝑥−𝑖−𝑗) 

 etc. 

Figure 35 shows results of a comparative study in which these four methods were used to produce 

a "sequential feature explanation (SFE)".  A SFE is an explanation in which the features are 

ordered by importance to the anomaly detector.  A simulated expert was presented with one 

feature at a time, until it was able to detect anomalies. 

 
Figure 35. Results of a comparative study in which four explanation methods were used                                                  

to produce a  "sequential feature explanation (SFE)".   

Combining Explanations 

The most effective available method for generating Level 1 explanations was implemented in 

PRODIGAL anomaly detectors where computationally feasible.  The PRODIGAL team 

developed mechanisms for combining and presenting these Level 1 explanations from the 

detectors constituting the system's detection ensemble.  The Analyst's Interface can display, not 

only the single feature outlier scores described earlier, but also these combined explanations 

from the detectors chosen to represent PRODIGAL's best ensemble.   

In addition to combining Level 1 features as output from the ensemble process, research was 

undertaken to develop methods that use component algorithms' explanations as input to the 

ensemble process.   

1.12.2. Evaluating Explanations (Leidos SOW 2.2.1) 

As described in Section 1.12.1, explanations of anomaly scores in PRODIGAL are drawn from 

single feature outlier scores or generated by anomaly detection algorithms.  In either case, they 
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comprise a list of weights associated with a large number of, frequently inter-dependent, low 

level features.  While these features are derived from domain knowledge about potential insider 

threat activity, they may be confusing as well as redundant - giving the analyst too much detail to 

get a good picture of where to look. 

We explored the idea of transforming PRODIGAL's explanations to a vector of weights on 

analyst-originated explanations (which we’ll call labels to distinguish them from features).  We 

learned a transformation from the feature vectors to label vectors over a set of manually labeled 

user-days.  Particular explanation methods were evaluated using vector similarity measures to 

determine how well the label vectors resulting from this learned transform match the original 

label vectors.  (A cross-validation protocol was employed to avoid over fitting.) 

Figure 36 shows preliminary results suggesting that feature used in PRODIGAL can generate 

meaningful explanations for analysts, i.e. explanations that an analyst would give to another. 

The study is described in more detail in [Goldberg 2016]. 

 

Figure 36. Preliminary results suggesting that feature used in PRODIGAL can generate meaningful         

explanations for analysts 

Average similarity of labels transformed from Single Feature Outlier Scores (SFOS), and IForest 

- Independent Drop Out explanations.  The second label is the type of explanation used to learn 

the transform. 
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System Development & Integration (Leidos SOW 1.2.2) 

1.13. ADAMS Program Environment 

Research work within the ADAMS research program required a large amount of data processing.  

This processing was conducted in an experimental environment where detection algorithms, 

source data, and operations were in flux based upon knowledge gained from previous activities.  

Each stage of research investigation required changes in processing, and the PRODIGAL system 

was developed to accomplish this with a minimum level of reconfiguration.  A loosely coupled 

information system framework based upon the Spring Framework [Arthur 2005] provided a 

baseline data processing capability while simplifying the process of modifying the system as a 

whole. 

PRODIGAL operates in the research environment as a manually controlled pipeline as illustrated 

in Figure 37. In this research environment, it was executed monthly to correspond with the red 

team scenario insertion and evaluation processes. As new versions of components were 

developed, tested, and considered for incorporation in the prototype, different versions and 

configurations modules were executed.  For potential production environments, PRODIGAL can 

be configured to execute more frequently on different data periods (e.g., weekly execution on a 

rolling four-week period). This section describes the PRODIGAL components and the 

controlling software framework that enables this variety of different execution methods, 

beginning with the details of the components in the context of the monthly test bed processing 

that generated the majority of the results reported in this document. 

 

Figure 37. Monthly PRODIGAL Pipeline Processing. 

Processing began with monitoring of events by SureView on user workstations and 

organizational servers. (boxes 1-3) Information collected by SureView was warehoused in an 

Oracle database at the SureView server and was used for regular monitoring by security 

personnel. A copy of the data was transmitted to the ADAMS test bed environment, where it was 

anonymized by removal or hashing of personally identifying information (PII) and stored in an 

instance of the SureView warehouse schema. In parallel, the Red Team created additional 

SureView events (boxes 4-5) that were inserted into a separate partition for merger with the 

collected data. 
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PRODIGAL processing began with an ETL component (box 8) that extracted data from the 

Oracle SureView database and (box 9) transformed and loaded it into the PRODIGAL schema in 

a MySQL database. The purpose of this transformation was to convert the data from SureView 

observations into user activities. The same ETL processes (boxes 6 and 7) were executed on the 

real user data and on the Red Team insert data. 

The real and Red Team data were merged using table views, and PRODIGAL loaded this 

combined data into its MySQL database. This area of the PRODIGAL database is referred to as 

the PRODIGAL Observation Store. PRODIGAL next computed the features that served as the 

basis for its detectors and augmented the PRODIGAL Observation Store with these computed 

features (box 10). 

Detectors, consisting of algorithms and their associated parameterizations, created anomaly 

scores for all user-days in the data set (box 11). Each detector separately scored each user-day, so 

there are many scores for each user-day. These scores are stored in a separate MySQL database 

called the PRODIGAL Results Store, and are indexed by algorithm id value, user id value, and a 

sequential run id value. The algorithm id specifies the exact algorithm used to generate a score. 

Algorithms read in many feature values from a user, a time period, or a population to assess how 

anomalous a behavior set is. The PRODIGAL prototype uses a user id numeric hash as a unique 

identifier for a specific person operating a computer.  

The next step in the processing flow, also included in box 11, is the execution of the ensemble 

algorithm, which produces the official single score for each user-day. A user with a very high 

anomaly scores represents a candidate for further security investigation activities. The Red Team 

provided an answer key to the team after the pipeline was run (box 12). These labels are inserted 

into the database (box 13) and used to determine how accurate the output scores were and to 

compute the detection metrics discussed in this document (box 14). 

1.14. ADAMS Environment Extensions 

The ADAMS test bed environment interacted with two other environments as an extension of the 

research; 1) a research and development environment in which algorithm experimentation 

occurred on fully anonymized data and statistical summaries, and 2) an operational test 

environment in which the real data were processed (without the red team inserts) for evaluation 

by security personnel, with feedback on the highly-scored user-days provided back to the 

research team. Each environment was composed of multiple computers with different hardware 

configurations and source data sets. 

Figure 38 shows a high level view of these environments and data sources. Arrows depict the 

flow of data from data sources to data recipients. The test bed environment contains all pipeline 

components shown in Figure 37. The research and development environment received data from 

the test bed environment subsequent to the processing step depicted in box 11 of Figure 37. The 

operational test environment received source data directly, with no anonymization, and executed 

the full pipeline. Researchers had no access to this environment.  

Researchers used the research and development environment to create new framework and 

algorithm software. It is housed within a development network that is separate from all other data 

sources. It received data exports from the test bed environment, and acted as a development 

platform used by data analysts to explore results using novel and experimental processes. An 

engineering team used this to develop framework code to manage the overall PRODIGAL 
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prototype. Algorithm designers used this to experiment with algorithms, test approaches, and 

create production quality anomaly detection algorithms within a test environment. 

 

Figure 38. Illustration of PRODIGAL R&D environment. 

1.15. Component Architecture 

The PRODIGAL research framework allows researchers to create the components of the system 

separately.  The PRODIGAL framework provided a computing system that connected 

components and orchestrated data processing stages between them.  A set of configuration files 

were used by PRODIGAL to specify which components would execute during which phase of 

processing.  These standardized configuration files, called Flow files, gave analysts the ability to 

rapidly swap out different ETL (“Overview of Extraction, Transformation, and Loading” 2014) 

processes, feature generation [Siddiqui 2015] calculations and machine learning [Jordan 2015] 

algorithm executions.  The flexible nature of system definition mandated a mature configuration 

management process within the program, but also added the ability to approach a plug-and-play 

research environment. 

The organization of PRODIGAL execution by way of Flow files provided a method to define the 

system data processing state.  It also uses standard Spring dependency injection processes so the 

Flow files have some level of standardization beyond PRODIGAL.  This simplifies learning how 

to execute the system components.  System components did not reside in the same process space 

within PRODIGAL.  Cross process communication was necessary to orchestrate the different 

concurrently executing processes based upon the configuration defined in the Flow file.  

PRODIGAL used a message transport layer based upon ActiveMQ [ActiveMQ 2016] to 

orchestrate the data processing flow. 

The PRODIGAL framework ingests data that describe user activities on a computer.  This user 

executes computer functions within a network of other users computers.  Some of the users 

involved in activities are members of a single group of people (e.g. a workgroup), and some exist 

entirely outside of the purview of the PRODIGAL system and its stakeholders.  The PRODIGAL 

data set is generated by a third party product, SureView™ [SureView 2010], which has been 

modified to protect user identity information.  The ADAMS program collects data that describes 

user activities, and then further de-identifies PII data within that data set, exporting the results to 

JSON [JSON 2014] files which are indexed by event type, date, and time.  Figure 39 shows an 

example of this process. 
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Figure 39. ETL Process 

The feature generation reads in these event files and calculates numeric feature values based 

upon the content of these files.  These feature values are generated based upon different temporal 

extents.  Temporal extents refer to timespans of interest.  For example, features may be 

calculated for each user based upon the events of a single day, or for that same user based upon 

the events within a week. 

Feature values are stored within a MySQL [Oracle 2014a] relational database. These feature 

values are used by algorithm components to calculate scores.  Each algorithm component uses 

the temporal based feature values to generate a score value that represents a degree of anomaly 

of this users behavior with their own past behavior, and the behavior of the general population.  

Algorithm calculations are stored within the results database as well.  After all algorithms have 

been executed, an ensemble algorithm executes.  The ensemble algorithm uses the results from 

all previously executed algorithms to assign an overall anomaly score to a users behavior. 

 

Figure 40. Results database within system architecture. 

The ensemble-based scores allow system security specialists to rank user behaviors within the 

general population and across diverse time spans, and then select events of interest for 

investigation. 

Many algorithms have the ability to generate explanation content as well.  Explanation content 

describes what features provided a basis to developing an overall score.  Algorithms seek to 

describe the anomalousness of a user’s behavior.  Explanations seek to describe why that score 

was generated.   

The algorithms that generate explanations require a significant increase in run time.  To mitigate 

this effect, only a subset of all user days generates explanation output.  This subset is based on a 

percentage of top-scoring ensemble scores.  PRODIGAL will typically create an explanation file 

for users scoring in the top 10% scoring population members. 
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1.16. Executing PRODIGAL 

PRODIGAL data processing is executed via command shell.  Each type of data processing (ETL, 

Feature Generation, Algorithms, or Metrics) is triggered by running a command to trigger a 

Spring Framework dependency injection process [Yang 2008].  Two java applications provide an 

ability to read in a configuration XML flow file (shown in Figure 41) and dynamically load in a 

diverse set of Java software classes.  Some of these classes will execute non-java applications 

through automated shell commands. 

 

Figure 41. Example configuration XML flow file 

The application WrapperExecutor.jar is used to process a flow file and dynamically create 

software that may access the MySQL results database.  The DBPrepExecutor.jar file is used 

within the Vegas experiment environment to access the Oracle SureView database, and 

transform that data into the JSON data.  Each of the flow files will have the same type of format. 

The flow file is defined by a hierarchy with a top level called Flow.  The Flow section contains a 

set of names that correspond to configuration files.  Those configuration files are parameterized 

to ensure that the correct inputs to different processes are made, even when they share common 

software components.  Each of the software components is contained in a section named 

wrapper.  The wrapper software execution loads each wrapper item, and ensures that a proper 

precedence order is kept. 

1.17. Transitioning PRODIGAL to a real-world enterprise 

Prodigal is designed as a research platform.  When needed, engineers may transition 

PRODIGAL into a real-world environment.  This section discusses the different tasks that may 

be required prior to performing a successful transition.  The list below summarizes the updates 

needed to deploy into an environment that does not match the existing PRODIGAL environment. 

1. Aquire data – this usually requires a method of collecting different data elements from 

users as they perform their normal daily functions.  PRODIGAL uses SureView to 

perform this function.  Not all environments will have access to SureView.  SureView 

may be configured to collect data differently than the experimental environment as well.  

<?xml version="1.0" encoding="UTF-8"?> 

<Flow id="2314" name="OSU1AlUdCoUqCROSS" xmlns="http://prodigal.saic.com/flow" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    xsi:schemaLocation="http://prodigal.saic.com/flow ../../main/xsd/flow.xsd " 

temporalStartDate="03-01-2013" 

    temporalEndDate="03-31-2013" temporalType="6"> 

    <wrapper> 

        <name>DTAllUdCoUvq</name> 

                <algorithm> 

            <precedence> 

                <creator>TemporalRange</creator> 

            </precedence> 

        </algorithm> 

    </wrapper> 

   <wrapper isTerminator="true"> 

        <name>CrossPrediction</name> 

                <algorithm> 

            <precedence> 

                <creator>DTAllUdCoUvq</creator> 

            </precedence> 

        </algorithm> 

    </wrapper> 

</Flow> 
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A transition environment will need to export its data set to a the JSON format that 

PRODIGAL ingests.  This format contains the date, hour, data type, and an array of all 

events for that data type within a 1-hour time frame.  Stakeholders must export their data 

to a directory to allow for feature generation.   

2. Generate features – In the event that new data types or content exists, then software must 

read in the raw JSON event files and create feature values.  Feature values are normally 

calculated by counting events or values with the period, finding maximums or minimums 

across the time period, or by performing statistics within a time period.  These feature 

values must be given a unique integer ID value then stored in the results database.  Each 

of the feature generation processes that requires new software should be added to a flow 

file. 

3. Calculate Scores – The algorithms supplied with PRODIGAL can be quickly 

reconfigured.  This is necessary when new feature types have been added to the system.  

Transition teams must update the Spring framework dependency injection resources if 

new feature types have been added.  If new algorithms have been added to the system, 

then those algorithms must be paired with a new Spring framework dependency injection 

resource.  

PRODIGAL is built in Java, and installed using a Redhat Package Manager (RPM) [RPM 

2014] software package.  Additional algorithms may be installed as well.  This is done as a 

simple file copy process.   

PRODIGAL is run in the experimental environment as a large batch process that reads in an 

entire data set and then processes it.  Real world operations may have time constraints that 

preclude this.  In a real world deployment, PRODIGAL data processing should be executed 

daily or hourly. 
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Supporting the End User (Leidos SOW 2.2.1) 

1.18. The Analyst Interface 

The PRODIGAL analyst interface focuses on the data most likely to contain true anomalies that 

are indicative of insider threat activity and providing a starting point for investigation.  The AI 

presents analysts with a list of users that is ranked by PRODIGAL’s ensemble algorithm.  

Analysts are able to select a user, compare the user’s behavior for a given day compared to all 

users for all features, and then drill down into specific activities by data type.  If the analyst finds 

any of these behaviors of interest, he or she can then explore those behaviors further in 

SureView.   

1.18.1. Presenting Ensemble Scores in Context 

This section presents examples of the use of single feature outlier scores in the PRODIGAL 

Analyst Interface (AI).  Analysis starts with a list of entity extents (user-days) sorted by highest 

ensemble anomaly score. The analyst compares these scores with others for the date or the entire 

month using the display shown in Figure 42. The AI presents user day scores using a box plot, 

with the upper whisker representing the top 5 percent of scores in order to highlight the most 

anomalous behaviors. The black squares represent the selected user’s scores for every day. User 

410400 has scores that are in the top 5 % for several days in the month. The day highlighted by 

the green box is the highest-ranked day for the entire month.   

 

Figure 42. User #410400’s scores compared to the baseline population for the month.   The black squares represent 

the user’s scores.  The red box highlights the day in question for the user, which is September 9, 2014. 

For a given day of interest, the AI enables the analyst to view the individual features associated 

with the ensemble score, allowing the analyst to focus on specific anomalous behaviors while 

investigating a particular scored entity, as shown in Figure 43. The AI lists the data type 



 PRODIGAL Final Report 

 

  91 

  

 

associated with the feature score (e.g., file, email, URL, printer, logon), a summary description 

of the feature name, and the normalized score for that feature.   

 

Figure 43. The individual feature scores for user 410400 on September 9, 2014.  The user is in the less than 

0.0001% percentile of all users on this day with respect to multiple file features. 

Finally, drill-down to underlying user-computer transactions is included to let the analyst view 

the behavior from which features and ultimately anomaly scores were computed.  (Figure 44) 

(Note, to preserve privacy in the research database, numerical hash keys replace unique user 

names, file names, domain names, and email addresses. A live implementation of PRODIGAL 

would present these to the analyst.) Inclusion of the underlying observations associated with the 

feature scores enables the analyst to visually inspect the data and assess whether the user’s 

unusual behavior is concerning and merits further exploration (outside of PRODIGAL). 

 

Figure 44. Individual observations and select attributes associated with the top-ranked                                         

individual feature score, “Distinct Files Count”. 
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1.19. Explaining Anomaly Scores 

Level 0 Explanations were integrated into the Analyst’s Interface. The AI starts with a list of 

entity extents (user-days) sorted by highest ensemble anomaly score.  The analyst may compare 

these user scores with others for the date or the entire month using the display shown in Figure 

45. 

 

Figure 45. Overall user-day scores compared to all users over the month. 

The list of explanations is presented to the analyst, sorted by outlier score (not shown).  Selecting 

the features with highest outlier score further allows the analyst to focus on the most anomalous 

behavior while investigating a particular scored entity.   

 

Figure 46. URL upload outlier scores compared to all users over the month. 
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Figure 47. Detailed drill-down of file access events. 

Finally, drill-down to underlying user-computer transactions is included to let the analyst view 

the behavior from which features and ultimately anomaly scores were computed. (Figure 47) 

(Note, to preserve privacy in the research database, numerical keys replace unique usernames, 

filenames, domains, and email addresses.  A live implementation of PRODIGAL would present 

these to the analyst in clear text.) 

Level 1 explanations, when computed can also be displayed by the AI, however this is not a 

feature of the standard PRODIGAL release.  
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Transition Preparation and Recommendations for Future Operational 

Evaluation Efforts (Leidos SOW 2.2.3) 

1.20. Operational Evaluation Framework. 

Despite the promising results, the DARPA evaluation did not allow for the performers to 

investigate specific beyond the Red Team inserts due to the nature of the ADAMS program data. 

An operational evaluation will provide transition partners an opportunity to assess the 

suitability and utility of PRODIGAL as the back-end machine-learning, triage analytics 

system in the context of insider threat detection.  Evaluation of PRODIGAL’s capabilities in 

the context of operational workflows also facilitates exploration of concepts of operations for 

integrating analytics with user activity monitoring data, as well as opportunities for incorporating 

new data types (e.g., badge-in/badge-out data).    

1.20.1. Task 1: Installation and Configuration.   

The installation and configuration of PRODIGAL occurs at a facility as designated by the 

sponsoring organization, especially one that already uses InnerView for its user activity 

monitoring capability.   The major components are database; the extract, transform, and load 

(ETL) pipeline; PRODIGAL analytics – a software suite that includes anomaly detectors (over 

100 in total), algorithms that provide explanations of detector results, and the ensemble 

algorithm; and the front-end, web-based Analyst Interface.   PRODIGAL hardware requirements 

is dependent on size of the evaluation user base, with a Red Hat 64 operating system (OS) with 

16 cores, 128 GB of RAM, and at least 8 TB or hard drive space required for a 5500 user 

population.  Software requirements include Java 1.7, JMS, MySQL, Apache Tomcat 8, R, python 

and various python packages, and Lisp.  Leidos has documentation to support installation, and 

the PRODIGAL team would work with the sponsor’s engineering and security personnel to 

identify and resolve information assurance issues related to installation and configuration tasks.   

1.20.2. Task 2: Extract and Process Features.   

Leidos engineers assess the sponsor’s user activity monitoring data, characterizing the data types 

and attributes collected prior to ingest by PRODIGAL.  PRODIGAL supports features specified 

from count-based observations (e.g., the number of logon events by user, the number of email 

sent by a given user).  Feature design incorporated domain knowledge provided by subject 

matter experts and are intended to reflect behaviors of relevance to known and unknown but 

plausible insider threat scenarios.  Features consist of an entity extent (e.g., user; a file; a 

workstation ID; and a temporal extent.  The default temporal extent in PRODIGAL is a user day, 

which is defined as a 24-hour period (i.e., not a business day).  Currently, there are 111 features 

in PRODIGAL based on email, file, groups (based on LDAP information and shared entities 

such as printers, files, and workstations), logon, printer, process, and URL data types.  

PRODIGAL also has over 20 ratio features that compare activities within and across data types 

(e.g., the ratio of the number of all URL events to the number of URL upload events.  Table 14 

below summarizes the features already specified in PRODIGAL.    

Table 14. Feature Summary for Operational Evaluation of PRODIGAL. 

Observation Type Number of  

Features 

Examples 

Email 18 Count of attachments on sent emails 

File 28 Count of file events to removable drives 
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Group 11 Shared printers 

Login 4 Count of distinct workstations logged onto 

Printer 9 Count of print jobs submitted 

URL 13 Count of Blacklist events 

Ratio 28 Ratio of file events on removable drives to all file events 

Ratio of URL uploads to URL downloads  
 

Leidos engineers configure PRODIGAL’s ETL pipeline to process observations in either 

batch/stand-alone mode or as a feed from an instance of IV.  As part of the feature extraction 

process, Leidos data scientists perform exploratory data analysis to identify meaningful peer 

groups, look-back periods, and distributions of activities involving monitored information 

technology resources, which are the necessary parameters for baselining user behaviors.  Leidos 

data scientists and engineers also test and assess the quality of the feature extraction prior to 

processing by analytics, comparing ETL pipeline processing times, throughput, and output in the 

operational environment to results achieved in lab or other experimental settings.   

1.20.3. Task 3: Run analytics, present results to analysts, assess findings.    

PRODIGAL’s anomaly detectors run on the features extracted from user activity monitoring 

data, providing inputs to the ensemble algorithm, which in turns fuses the detector output into a 

single score.  The single score indicates the unusualness of a given user compared to all users on 

any given day in a time period.    PRODIGAL analytics also provide feature-based explanations 

to the analyst, providing additional context to support the interpretation of results in domain 

terms.  The PRODIGAL Analyst Interface (AI) is the system’s front-end component that exposes 

the analyst to both the ensemble output and feature-based explanations.  While PRODIGAL 

analytics are automated, Leidos data scientists configure the detectors and the ensemble and 

explanation algorithms and assess the quality and performance of the output.  Leidos data 

scientists with support from university researchers also adjust PRODIGAL analytics to 

previously un-encountered but suspected simple or complex behaviors (e.g., malicious insider 

activity involving a single data type or threaded activities involving multiple data types).   

1.20.4. Task 4: Collect, compute, and interpret metrics.   

Task 4 goal is to demonstrate PRODIGAL AI capabilities and functionality to analysts at the 

host agency.  Operational evaluation performers will assist with the integration of PRODIGAL 

analytics (the components and the information presented to analysts) into the host agency’s 

workflows and procedures.  Candidate metrics entail utility and effectiveness.   We propose two 

measures of utility.  The first is relevance, which we define as a ratio of the number of user days 

that an analyst labels as being actually unusual to a cutoff point in the ranked list of PRODIGAL 

results as determined by the analyst (e.g., top 10, top 20, top 50 user days).  The second measure 

of utility is the error rate, which is a ratio of the number of user days that the analyst labels as not 

unusual or otherwise of interest to a cutoff point in the ranked list of PRODIGAL results.  

Effectiveness include time-based measures such as the time needed to determine whether a 

user’s behaviors on a given individual user days is either unusual, but explainable, or unusual 

and meriting further investigation.   

1.20.5. Proposed Operational Evaluation Schedule. 

Table 15 presents nominal milestones and associated deliverables for the project, along with the 

delivery date based on a 4 FTE team of engineers, data scientists, and insider threat researchers 
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with university researcher support.  Deliverable types include a demonstration (D), product (P) 

or report (R), where a report may constitute a document, presentation, or spreadsheet, following 

on the sponsor’s preference.   

Table 14. Nominal PRODIGAL Operational Evaluation Schedule. 

Milestone (deliverable type) Date 

Initial integration with local SV/IV data for scale of 1K users (D, P).  Initial 

data schema map and feature definition.  (P) 

Month 4 

Hardening, scaling of PRODIGAL to meet user demand (5K users) (D). 

Completion of new feature generation (P). 

Month 8 

Results and findings from user-based evaluations (P, R)   Months 10 through 16 

Report progress against Red Team inserts (optional) Months 12 though 16 

Status reports (R), final report (R) Monthly, Month 12, 18 
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Appendix A – PRODIGAL Installation Guide 

PRODIGAL comprises back-end anomaly detection analytics that evaluate computer usage data 

collected by SureView and produce single scores for each user on each day that indicate the 

likelihood of potential malicious insider threat activities.  PRODIGAL analytics consist of 

dozens of detectors that look for specific patterns of behavior (e.g., copies of files to removable 

media) and more general anomalies in the data.  PRODIGAL enables analysts to focus on the 

data most likely to contain true anomalies indicative of insider threats.   

1.1.  System Requirements. 

The document presents the hardware and software requirements and describes how features are 

specified (i.e., the data requirements) in PRODIGAL.   

Hardware and software requirements: The following Table A-1 summarizes the hardware and 

software requirements for installing PRODIGAL.    
 

Table 1-1. PRODIGAL hardware and software architecture requirements. 

Hardware Software (*provided by leidos) 

Red Hat 64 OS Java 1.7 

16 cores JMS * 

128 GB RAM  MySQL 

8TB+ hard drive space (solid state) Apache Tomcat 8 

 R * 

Anaconda Python* 

Lisp * 

 

The guidelines for installing the PRODIGAL system (i.e., the extract, transform, and load [ETL] 

workflow and analytics) follow at the end of this document.   

Feature specification/data: Features in PRODIGAL are derived from data collected in 

SureView.  PRODIGAL analytics support features specified from count-based observations (e.g., 

the number of logon events by user, the number of email sent by a given user).  Feature design 

incorporated domain knowledge provided by subject matter experts and are intended to reflect 

behaviors of relevance to known and unknown but plausible insider threat scenarios.  Features 

consist of an entity extent (e.g., user, file, workstation ID) and a temporal extent.  The default 

temporal extent in PRODIGAL is a user day, which is defined as a 24-hour period (i.e., not a 

business day).   

Currently, there are 111 features in PRODIGAL based on email, file, groups (based on LDAP 

information and shared entities such as printers, files, and workstations), logon, printer, process, 

and URL data types.  PRODIGAL also has over 20 ratio features that compare activities within 

and across data types (e.g., the ratio of the number of all URL events to the number of URL 

upload events).  Table A-2 summarizes table below summarizes the features already specified in 

PRODIGAL.     
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Table A-2. PRODIGAL feature specifications. 

SV Observation 

Type 

Number of  

Features 

Examples 

Email 18 Count of attachments on sent emails 

File 28 Count of file events to removable drives 

Group 11 Shared printers 

Login 4 Count of distinct workstations logged onto 

Printer 9 Count of print jobs submitted 

URL 13 Count of Blacklist events 

Ratio 28 Ratio of file events on removable drives to all file events 

Ratio of URL uploads to URL downloads  

Ratio of distinct removable drives to URL upload/download events 
 

Operators may customize features (by either modifying existing features or specifying new ones) 

in PRODIGAL.  At this point, feature customization requires technical assistance from the 

PRODIGAL engineering team.  Existing features may be modified based on available SureView 

parameters (e.g., adding/removing observation types or previously unused attributes).  The 

primary requirement for defining new features in PRODIGAL is that they must be expressed as a 

count (e.g., the number of times an event occurs).   Non-SureView data types can be integrated 

into the PRODIGAL ETL workflow but the attributes of the non-SureView data types have to 

relate to those in the SureView data.  For example, facility access records (e.g., badge-in/badge-

out data) can be integrated with PRODIGAL’s ETL workflow so long as entities in the facility 

access records are also present in the SureView data.   

1.2.  Installation Guidelines. 

NOTE: These Install Instructions assume that Centos 6 and Java 7 have been installed on your 

system (Centos Version 6.5 has been tested) and the user “leidos” has been created with group 

id of “leidos”.
1
 

MySQL Installation and Configuration  

1. Remove the current version of mysql from the server. 

a. sudo rpm –e –nodeps mysql-libs 

2. Install the latest mysql server rpm. 

a. sudo rpm –i mysql-server-5.6.20-1.linux_glibc2.5.x86_64.rpm 

3. Install the latest mysql client rpm 

a. sudo rpm –i mysql-client-5.6.20-1.linux_glibc2.5.x86_64.rpm 

4. Start the mysql server. 

a. sudo service mysql start 

5. Change the root password for mysql 

a. There will be a temporary password in the /root/.mysql_secret file 

b. Run the secure installation script which will allow you to change the root 

password: 

i. /usr/bin/mysql_secure_installation 

                                                 
1
 Java may be obtained from http://www.oracle.com/technetwork/java/javase/downloads/java-se-jre-7-download-

432155.html. The Linux x64 - RPM Installer should be used. 

http://www.oracle.com/technetwork/java/javase/downloads/java-se-jre-7-download-432155.html
http://www.oracle.com/technetwork/java/javase/downloads/java-se-jre-7-download-432155.html
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ii. Enter the temporary root password from above when prompted 

iii. Create a new root password: Y   

iv. Enter the new mysql root password 

v. Confirm the new mysql root password by reentering it. 

vi. Remove anonymous users: Y 

vii. Disallow root login remotely: Y 

viii. Remove Test DataBase and access to it: Y 

ix. Reload privilege tables: Y 

6. Create the prodgialobservation and prodigalresult databases by performing the following: 

a. mysql –u root –p –e 'create database prodigalobservation' 

i. Enter mysql root password when prompted 

b. mysql –u root –p –e 'create database prodigalresult' 

i. Enter the mysql root password when prompted 

7. Create a MySQL (non-root) user to give access to these database tables. 

a. mysql –u root –p –e "create user 'someuser'@'%' IDENTIFIED BY 

'somepassword'" 

i. where someuser is the name of the desired db user and somepassword is 

the corresponding password for that user 

8. Grant the appropriate permissions to the newly created DB User 

a. mysql –u root –p –e "GRANT ALL PRIVILEGES ON *.* TO 'someuser'@'%'" 

i. where someuser is the name of the user created in the previous step. 

9. Install the mysqlConfiguration RPM 

a. sudo rpm –i mysqlConfiguration-1.0.1.x86_64.rpm 

10. Run the installMysql script to create the database tables and partitions. 

a. /teams/saic/prodigal/dbScripts/installMysql.sql 

b. Enter the mysql user created above and the respective password when prompted. 

i. Note: Password will be requested 4 times 

Active MQ Installation and Configuration 

1. Install the wrapper and activeMQ rpms 

a. sudo rpm –i jmsConfiguration-1.0-1.x86_64.rpm 

2. Start ActiveMQ 

a. cd /opt/activemq/apache-activemq-5.9.0/bin 

b. ./activemq start 

Tomcat Installation and Configuration 

1. Install the tomcat installation and the required security certificates 

a. sudo rpm –i tomcatConfiguration-1.0-1.x86_64.rpm 

b. cd /etc/pki/java 

c. keytool -import -alias ca -file /etc/ssl/tomcat.cer -keystore cacerts –storepass 

changeit 

2. Start the tomcat application 

a. sudo service tomcat start 

Framework Installation  

1. Install the framework RPM 

a. sudo rpm –i framework-1.9-1.x86_64.rpm 
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2. Copy the tomcat war files into the tomcat webapps directory 

a. cp /teams/saic/prodigal/bin/*.war /opt/tomcat/apache-tomcat-7.0.55/webapps 

i. May need to use sudo depending on tomcat permissions 

Algorithm Installation  

1. Install the GTRI RPM 

a. sudo rpm -i GTRI-1.0-1.x86_64.rpm 

2. Install the OSU RPM 

a. sudo rpm -i OSU-1.0-1.x86_64.rpm 

3. Install the UMASS RPM 

a. sudo rpm -i UMASS-1.0-1.x86_64.rpm 

4. Install the CMU RPM 

a. sudo rpm -i CMU-1.0-1.x86_64.rpm 

5. Install the Leidos RPM 

a. sudo rpm -i Leidos-1.0-1.x86_64.rpm 

PRODIGAL Web Configuration  

Visit this page in your web browser: 

https://localhost:8443/prodigal-security-service/form.jsp  

You may need to add a security exception the first time you visit this page. For example, with 

Firefox:  

1. Click “Add Exception”  

2. Uncheck “Permanently store this exception”  

3. Click “Confirm Security Exception”  

You should see a form like Figure A-1. 

Fill in the form as follows. In Prodigal Configuration: 

1. Username: prodigal 

2. Password: prodigal 

3. IP Address:  

4. Port Number: 8080 

5. Observation Database: prodigalobservation 

6. Results Database: prodigalresult 

In Sureview Configuration: 

1. Username:  

2. Password:  

3. IP Address:  

4. Port Number:  

5. SID:  

In JMS Configuration: 

1. IP Address:  

2. Port Number:  

Then click “Submit Form.” 

https://localhost:8443/prodigal-security-service/form.jsp
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Figure A-1. PRODIGAL Web Configuration template. 
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Appendix B – PRODIGAL Introduction for Transition Partners 

1.1. The Insider Threat Problem and PRODIGAL  

DARPA’s Anomaly Detection At Multiple Scales (ADAMS) program sponsored research in the 

characterization and detection of anomalies in large datasets.  The application domain was 

insider threat detection; specifically, insider behaviors manifested in computer usage data.  

Malicious insider activities in the context of the ADAMS program were characterized by low 

signal-to-noise ratios between malicious and non-malicious activities; patterns of activity that 

evolve over weeks; and collaboration between an unknown number of groups that consisted of 

users who spanned organizational, functional, and project boundaries.   

The ADAMS program began in 2011 and ended in 2016, and was managed out of DARPA’s 

Information Innovation Office (I2O).   Leidos’ solution developed for the ADAMS problem is 

PRODIGAL (PROactive Detection of Insider Threats with Graph Analysis and Learning).     

Members of the PRODIGAL team included researchers from Leidos, Oregon State University, 

the University of Massachusetts at Amherst, Georgia Tech University, and Carnegie Mellon 

University.   

PRODIGAL aggregates and compares observations over users, peer groups, and time periods, 

yielding features that are relevant to detecting malicious insiders based on the semantics (i.e., 

metadata) and structure of the data.  PRODIGAL features include transactions (e.g., logons), 

interactions (e.g., emails, IMs), person-person and person-resource (e.g., printer usage) graphs, 

and counts and ratios (e.g., URL uploads to downloads). PRODIGAL applies multiple (>100) 

detectors including scenario-inspired detectors for known scenarios and machine learning-based 

anomaly detectors for unknown scenarios.  

PRODIGAL combines the results from the multiple detectors using an ensemble technique that 

provides the analyst with a single score for each user, for each day, which serves as a starting 

point for further investigation.  A practical goal of the PRODIGAL approach was to find the 

most unusual users, when those users are unusual, and provide explanations that are intuitive to 

analysts as to the activities that makes users so unusual.  By providing the analyst with a list of 

the most anomalous users, PRODIGAL reduces the search space and focused the analyst on the 

data that are most likely to contain true anomalies indicative of insider threat behaviors. 

1.2. Overview of the PRODIGAL Prototype System  

The PRODIGAL prototype system consists of three major components: extract, transform, and 

load (ETL); analytics; and the analyst interface (AI).  The ETL component ingests raw 

observations collected from user activity monitoring technology and extracts features for 

processing by the analytics.   In the context of PRODIGAL, features combine attributes of UAM 

data types (e.g., the count of URL uploads, the count of file copies to removable media) that 

expose malicious insider activities.    We derive features by “user day” – that is, we aggregate 

activities by data type, user, and calendar day.   PRODIGAL specifies over 100 features that, 

given the incorporation of domain knowledge in the feature design process, may be customized 

given activities of interest.   

PRODIGAL analytics encompass a suite of diverse, machine learning-based and domain-

inspired detectors and the ensemble algorithm.  In PRODIGAL, a detector connotes a specific 

algorithm that ingests features given a comparison group over a period of time.  Machine 

learning-based detectors include graph analytics, vector space models, decision trees, Gaussian 
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Mixture Models, and density space estimation.  PRODIGAL includes machine learning 

techniques adapted to look for specific known or suspected complex insider threat behaviors.  

Examples of domain-inspired detectors include the Intellectual Property (IP) Thief, Saboteur, the 

Careless User, and the Rager.  The PRODIGAL ensemble algorithm, also included in the 

analytics suite, represents an extension to the state-of-the-art technology in unsupervised 

anomaly detection.   The ensemble algorithm, a machine-learning approach, uses the output of 

the 100+ detectors as input and produces a single score based on the detectors whose output 

consensus correlates best among themselves and to a surrogate answer key.    

The Analyst Interface (AI), a lightweight, web-based graphic visualization application, presents 

the results of the analytics suite without overwhelming the analyst with details of the underlying 

detectors.  The AI enables the user to drill-down into an ensemble score and view the results of 

the individual detectors and features in domain terms, allowing the analyst to understanding 

intuitively which users are the most unusual compared to their peers, when, and the specific 

actions that made the users so anomalous.  The AI also allows analysts to focus on users’ 

behavior over multiple days, supporting inferences into complex behaviors. Figure B-1 depicts 

process by which PRODIGAL’s components generate anomalies from user activity monitoring 

data.   

 

Figure B-1. PRODIGAL encompasses an end-to-end workflow 

 

1.3. Background: ADAMS program evaluations 

The ADAMS program evaluation approach represents a significant contribution in the area of 

insider threat detection research.  The ADAMS program featured a closed data laboratory as a 

test bed and UAM data collected through a single instance of SureView from a 5500-person 

organization.  The data consisted of all actions that occurred on users’ workstations for 24 

months.  Estimating that users have, on average, 1000 observations a day, each month contained 

165 billion observations.   The data provider anonymized and hashed all users to protect 

personally-identifiable information (PII), and all processing and analysis occurred in the data 

laboratory.   

 Separately from the data collection process, the evaluation team (Carnegie Mellon University’s 

Computer Emergency Response Team/Software Engineering Institute) developed scenarios 

reflecting their field research in insider threat. Scenarios encapsulated specific insider threat 

behaviors comprised of complex, multi-stage activities.  The Red Team developed and 

superimposed observables on to the actions of real users identified as appropriate to particular 

roles in the scenario, blending the synthetic observations with the users’ normal ones.    

The evaluation team designed the scenarios to reflect their research, which indicate that insider 

threat behaviors constitute a very small portion of malicious insiders’ observable behaviors, the 

Red Team inserted a relatively small number of malicious activities compared to the users’ 
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natural observation.  For example, in two scenarios the number of inserted malicious behaviors 

(~500) represented less than 1 percent of the user’s total behaviors for a month.   Likewise, the 

number of insiders identified as being malicious by the Red Team was also less than 1 percent of 

the total population (e.g., 12 malicious insiders out of the population of 5500) in each data set.   

Examples of malicious insider behavior addressed in the scenario include theft of intellectual 

property by technical personnel; insertion of malware by privileged users; unauthorized, 

surreptitious removal of sensitive files by privileged users using removable media; spoofing of 

privileged users’ credentials to commit fraud; and transfer of sensitive files using email and 

uploads to file sharing websites.  The Red Team, to avoid evaluation bias, designed its scenarios 

independently of the detection methods developed by the research teams. Likewise, PRODIGAL 

researchers did not review scenario specifics nor train our detectors on the test data to avoid 

over-fitting.  Figure B-2 provides examples of ADAMS scenarios.      

 

Figure 48.  Malicious insider scenarios developed to evaluate ADAMS research 
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  Evaluation approach and metrics 1.3.1.

The Red Team created 28 distinct scenarios, varying elements of the scenarios to produce 

variants (e.g., three insiders collaborate to steal sensitive files using personal webmail, then five 

insiders steal sensitive files using a combination of removable media and printing before or after 

core business hours).  The Red Team produced over 85 data sets in total (i.e., all scenario 

variants), inserting multiple data sets covering different scenarios in each month of test data from 

September 2012 to October 2014.  Instances of Red Team scenarios are limited to one month 

duration and inserted as targets each calendar month. (CERT has found that 2/3 of known insider 

threat scenarios evolve over less than one month.) This allows for consistent, independent 

experiments. 

For each data set, the Red Team provided an answer key, a list of the observations that the Red 

Team inserted as the “malicious” activities that specific users undertake which served as ground 

truth when assessing system output.  Researchers received credit for identifying users’ malicious 

activities (i.e., the Red Team inserts) but not users’ other, “non-malicious” days.  Thus only the 

behaviors directly associated with the insider threat activities encompassed by the scenario were 

“hits” when examining system output and the users’ other activities (i.e., non-synthetic 

observations) were false positives.   

Metrics were chosen to measure both detection accuracy of the individual algorithms and their 

contribution to the overall task of providing leads to an analyst. Traditional measures of utility 

(e.g., precision, recall, and the F1 measure) did not provide meaningful insights into system 

performance for the insider threat problem.    However, given the small number of both 

malicious insiders and their nefarious activities, we concluded that measures of performance 

were not insightful.   The false positive rate is exceptionally high given the imbalance issue 

between the two classes of the dependent variable (i.e., 1 = malicious insider user day, 0 = non-

malicious user day).   Key metrics for PRODIGAL are compute the curve and area under the 

Receiver Operator Characteristic (ROC) and lift. 

ROC curve analysis, which measures the correctly classified instances in the context of the false 

alarm, was developed during World War II to assess the performance of radar operators at 

distinguishing aircraft from other signals (e.g., flocks of birds).  ROC curve analysis is 

commonly applied in machine learning for assessing the utility of classifiers, yet the 

interpretability of the technique still bears relevance for operational settings.  Area under the 

curve (AUC) is the geometric area (a value from zero to 1) of the space below the plot, and 

characterizes the utility of a classifier at identifying a target compared to a random choice.  Thus 

AUC is insightful for the insider threat detection domain as the metric characterizes the 

performance of a classifier in a manner consistent with that of a human analyst in real-world 

settings; correct detection of threats earlier is preferable.   

Another metric used was lift to analyze PRODIGAL’s performance.  In data mining, lift 

characterizes the ability of a classifier to enhance the likelihood of instances of the target class 

given a subset of the data compared to random selection across the entire data set.  Lift is often 

used in marketing.  For example, firms use focused tactics (e.g., emailing coupons to shoppers) 

to increase sales volume among the target group (e.g., emailing coupons or advertising 

discounted items to shoppers who purchased particular items recently).  In the context of 

PRODIGAL, lift characterized the ability of the system to find malicious insiders in subsets of 

the population – that is, the increase in predictive value that a detector showed for finding 
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malicious insiders in the top 50 anomalous user days compared to of the likelihood of detecting 

the target class in a normal distribution.   Lift is measured as a continuous variable, with the 

value representing the number of times the detector is at finding malicious insiders than random 

choice.    

 Evaluation Results  1.3.2.

Analysis of system performance addressed the ability of PRODIGAL to detect the days in which 

Red Team users conducted malicious activities with no prior knowledge of the scenario details.  

Given our focus, we reported the area under the ROC curve and lift for each data set for the 

ensemble technique, the single best detector, and the ratio of the ensemble’s performance to that 

of the best detector.   As the scenarios details varied from month to month, and our approach was 

unsupervised machine learning-based, the best detector varied from month to month as well, the 

ratio of the ensemble’s performance to that of the best detector gave insight into the reliability of 

our ensemble technique.  The AUC of the ensemble technique was within 5% of the AUC of the 

best detector.  Figure B-3 presents PRODIGAL’s results over multiple months of test data and 

various scenarios.    

 

Month Ensemble 

AUC 

Best 

Detector 

Best Det. 

AUC 

Ens. / Best 

RT 

Scenarios 

12-Sep 0.8973 CADE:UP  0.9703 92.47% Circumventing SureView Insider 

Startup 

12-Oct 0.9319 CADE:UP  0.9804 95.05% Insider Startup 

12-Nov 0.7542 File  0.7895 95.53% Anomalous Encryption, Layoff Logic 

Bomb, Masquerading 2 

12-Dec 0.8646 GMM:QD  0.8677 99.64% Anomalous Encryption, Layoff Logic 

Bomb, Outsourcer’s Apprentice 

13-Jan 0.8594 RIDE:RD  0.9015 95.34% Hiding Undue Affluence, 

Outsourcer’s Apprentice, Survivor’s 

Burden 

13-Feb 0.7632 EGMM:QD  0.7793 97.94% Bona Fides, Manning Up, Survivor’s 

Burden 

13-Mar 0.8853 IFOR:QD  0.8963 98.77% Bona Fides, Hiding Undue Affluence, 

Manning Up Redux 

13-Apr 0.8635 RIDE:QD  0.8619 100.19% Circ. SureView, Indecent RFP, 

Selling Login Cred., Survivor’s 

Burden 

13-May 0.8469 PDE:UP  0.9718 87.14% Credit Czech, Exfiltration Prior to 

Termination 

13-Jun 0.8852 IFOR:QD  0.9103 97.24% Czech Mate, Exfiltration of Sensitive 

Data Using Screenshots 

13-Jul 0.8498 RIDE:RD 0.8769 96.90% Breaking the Stovepipe, Snowed In 

13-Oct 0.8938 GMM:RD 0.8972 99.62% Breaking the Stovepipe, Snowed In 
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Month Ensemble 

AUC 

Best 

Detector 

Best Det. 

AUC 

Ens. / Best 

RT 

Scenarios 

13-Nov 0.8479 RIDE:RD  0.8459 100.23% Byte Me, Naughty by Proxy 

13-Dec 0.8034 EGMM:RD  0.828 97.02% Byte Me Middleman, Indecent RFP 2, 

Passed Over 

14-Jan 0.8425 IFOR:RD  0.8242 102.22% From Belarus With Love, Passed 

Over, What’s the Big Deal 

14-Feb 0.847 GFADD:84

-88-0  

0.9775 86.65% Bollywood Breakdown, Breaking the 

Stovepipe, Gift Card Bonanza, 

Naughty by Proxy 

Figure 49. Ensemble results and best individual detector result by month and scenario 

Figure B-4 is a set of ROC curve plots depict the results presented in Figure 3 and illustrate our 

analysis approach.  Each plot represents a month of data into which the Red Team inserted 

between two and five scenarios.  The plot lists scenarios by the designation given to them by the 

Red Team (reference Figure B-2).   
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1.4. Findings and future research 

Analysis of PRODIGAL’s performance on the test data indicate that our approach, which 

consists of a diverse suite of unsupervised, machine-learning based detectors, show promise 

given the presence of unknown malicious insider threat behaviors in user activity monitoring 

data at scale (i.e., extremely low signal-to-noise ratios of threat to normal activity and a very 

small number of malicious users compared to the entire population).   Our ensemble approach 

appears robust, scoring within 5% (confidence level of +/- 1.5%) of the best detector for any 

scenario, where the scenario details vary from period to period and are unknown prior to 

processing.   PRODIGAL’s performance against the test data demonstrated that our analytics 

suite enriches the target environment and narrows the insider threat search space to identify the 

  

 (a) September 2012  (b) October 2012   (c) December 2012 

  

 (d) January 2013   (e) March 2013   (f) May 2013 

 

 (g) December 2013  (e) February 2014 

Figure B-4. ROC curves vs. all RT inserts for the Ensemble and the best detector for various months 
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most unusual users, when they are unusual, and highlights their most unusual activities.  The 

features that PRODIGAL extracts from user activity monitoring data Incorporate domain 

knowledge of previously observed and suspected threat behaviors to find similar or analogous 

patterns that enables the detection of unusual behaviors based on combinations of activities that, 

individually, would not be noticed by tripwire-based approaches.  The innovative ensemble 

algorithm to combine results from the analytics suite into a single score, providing analysts with 

a starting point for investigation. 

While PRODIGAL showed potential utility in research settings, future work lies in evaluations 

that demonstrate the system’s capabilities in operational settings.  This focus enables potential 

transition partners the opportunity to assess the suitability and utility of PRODIGAL as the back-

end analytics system in the context of insider threat detection and investigation in the context of 

an IC environment.  Assessments of PRODIGAL using real, Intelligence Community (IC) data 

and operated by real analysts enable the development of metrics for characterizing the utility of 

PRODIGAL for insider threat detection and investigation activities.  Evaluation of 

PRODIGAL’s capabilities in the context of operational workflows also facilitates exploration of 

concepts of operations for integrating analytics with user activity monitoring data, as well as 

opportunities for incorporating new data types (e.g., badge-in/badge-out data).   Operational 

evaluation also gives insight into the level of effort for installing, configuring, and operating 

PRODIGAL extract, transform, and load (ETL) component, as well as integration requirements 

for the implementation of PRODIGAL in an architecture.  


