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FINAL REPORT (W911NF1410179):

SCALING LIMITS IN STOCHASTIC INTERACTING SYSTEMS

SUNDER SETHURAMAN

1. Overview

The proposed project considered the large scale structure of several stochas-
tic models used to understand features of traffic, fluids, social networks, trapping
phenomena, data clustering etc. By connecting microscopic behaviors, that is the
interactions of individual agents at the ‘street level’, to continuum descriptions, that
is a ‘bird’s eye’ view of the system, the project identified high-level, macroscopic
rules of behavior, and explained how they can be categorized in terms of types of
microscopic interactions.

Problems studied included scaling behaviors of the following objects, fundamen-
tal in diverse real-world settings.

(1) The space-time distribution of mass in systems of interacting particles.
Understanding how ‘traffic’ in an interacting system evolves is crucial

in applications, for instance.
(2) The degree sequence, or counts of nodes with varying numbers of connec-

tions in random network growth models.
Capturing the structure of social media, modeled by random network

growth processes, is of interest.
(3) Data clustering in random geometric graphs.

It is of interest to establish benchmarks on naturally generated data sets,
such as random point clouds, for popular clustering methods on which there
is little theoretical foundation.

(4) Final times of collision in a system of particles.
In systems of particles moving by Newtonian laws, for instance, it is of

interest to understand, in terms of the system size, the scales of the final
times of collision.

(5) The range or number of locations visited by a random walk up to the time
of exit from a domain,

It is a basic concern to understand the extent of visitation of an individual
before exit from a region.

(6) Polygonal approximations of geodesic or shortest paths in spatially varying
fields via random points.

For instance, in moving optimally between two points through a ‘mine-
field’ restricted to certain roads, it of interest to understand how close such
a path is to the one without restriction.

Key words and phrases. scaling limits, interacting particle systems, random networks, degree
distribution, modularity, clustering, random geometric graph, kelvin tiling, range of random walk,
geodesic approximation.
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2 SUNDER SETHURAMAN

In terms of significance with respect to the Army Research Office (ARO) and
broader effects, the project found several innovative connections between the dif-
ferent mathematical subareas, highlighted in the solicitation, of ‘stochastic partial
differential equations’, ‘measure-valued stochastic processes’, and ‘interacting par-
ticle systems’, as well as ‘random graph/network structures’, which helped reveal
basic phenomenology, salient to applications. Moreover, aspects of the work ad-
vanced interests in other fields, such as physics and data science.

In terms of education, the project has been a source of good questions for par-
ticipation and training of PhD/MS graduate (3 PhD, 1 MS) and undergraduate
students (1), and postdocs (1), who look forward to entering the STEM workforce
after graduating. Two PhD students graduated in 2016, 2017 and the undergradu-
ate finished in 2017. 4 of the students won the top scholar award in their respective
programs in the years 2016, 2017.

From a more mathematical view, the challenge in the proposal has been to
understand how ‘averaging’ occurs in different contexts, that is the ‘coarsening’
process which allows to approximate noisy/rough ‘on the street’ behaviors by ‘bird’s
eye’ large scale limit laws, which govern the essential features. Since many of the
problems studied, although stochastic in nature, could be recast in terms of other
disciplines, such as dynamical systems and geometry, there was the opportunity for
cross-fertilization of ideas, which allowed to develop new techniques. Part of the
significance of the results is that they often make conclusions in other disciplines
in unexpected ways.

The report is organized as follows. In Section 2, in 6 subsections, the problems
above are discussed in more detail. In Section 3, the education aspect of the project
is discussed. In Section 4, dissemination in terms of talks is listed. In Section 5,
the papers/manuscripts produced is listed. References are collected at the end.

2. Specific projects

We discuss now specific problems, based on 9 papers/manuscripts listed in Sec-
tion 5.

2.1. Scaling limits in interacting particle systems, which model traffic,
queues, fluids etc. Given the interest in traffic of various sorts, queues, fluids,
etc., it is a basic concern in applications to understand how the the mass in a system
of interacting components (particles) evolves in space and time. For instance, one
may like to know what fraction of the system would be in a certain region at a
certain time.

The first-order behavior of the mass, that is the ‘law of large numbers’ (or ‘hy-
drodynamics’ by another name), and the ‘fluctuations, that is the second-order
behavior or error made in the first-order estimate, in models where the particles
interactions are local in short time-windows is well known since the ’90s. These ‘hy-
drodynamic limits’ and ‘fluctuations show that the space-time mass density solves
a partial differential equation with parameters reflecting the local individual parti-
cle interactions, and that associated errors are understood in terms of a stochastic
partial differential equation. See [1] for more discussion.

However, hydrodynamics and fluctuations are not well understood when individ-
ual particles may interact with others very far away in short time-windows, that
is when there are ‘long-range interactions’. Such systems however find use in the



SCALING LIMITS IN STOCHASTIC INTERACTING SYSTEMS 3

modeling of various applied problems, such as with respect to communication, tem-
perature distribution in nuclear reactors for instance; see [2] and references therein.
Here, information or particles may displace in one jump long distances at some
rate, depending on the configuration of the other particles.

Our results, described below, find novel equations and behaviors depending on
the scope of the long-range interactions. Such knowledge is crucial in applied mod-
eling, and was hitherto unknown before.

More technically speaking, we consider systems acting on the d-dimensional grid
Zd, where a particle displaces by x with rate of the order of c(η)|x|−d+α; here,
α > 0 is a parameter reflecting the strength of the jump, and c(η) reflects a particle
interaction term. That is, when α is small, long jumps happen more often than
when α is large.

Examples of interactions studied include ‘exclusion’, ‘zero-range’ and ‘misan-
thrope’ processes, which follow particles on grids Zd. In the exclusion process, the
interaction is spatially given in that particles can only jump to unoccupied loca-
tions. In zero-range processes, the interaction is temporal in that the time of jump
of a particle depends on the number of particles nearby it. Misanthrope processes
combine exclusion and zero-range features in that the interaction is both spatial
and temporal. See [3], [4] and [5] for more discussion of these models.

N(x-ε) N(x+ε)

x-ε x+ε

(micro) at time 𝑵αt

(macro)ρ(t,x)

. . . . . . . . . .

The figure depicts a cartoon, for 1D interacting particle systems, of the relation
between microscopic and macroscopic scales with respect to the space-time mass
density ρ(t, x). Microscopically, one is looking at particles in the system moving
between grid points N(x − ε) and N(x + ε) in the rapid time scale Nαt. In the
macroscopic view, a bird would see the system smeared out in a coarse-grained
sense where the flow of mass density between locations x − ε and x + ε is on a
slower time scale t. The function ρ(t, x) represents the smoothed/averaged density
of particles in this view.

(A) In [Paper 8], for systems where the particles jump asymmetrically, that is
when jumps are allowed only in certain positive directions, we derive, depending
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on the strength of the long-range interactions, two types of equations for the law
of large numbers or hydrodynamics. In the ‘weak regime, that is when α ≥ 1, a
nonlinear equation for the mass density is recovered similar to that known in the
local interactions setting. However in the ‘strong case, when α < 1, a new nonlinear
fractional equation, under an anomalous scaling, is found. This is part of the PhD
work of Doron Shahar.

(B) In [Paper 1], with respect to certain initial configurations and jump rate
asymmetries, we derived new stochastic partial differential equations governing the
macroscopic fluctuation field, associated to second-order errors made in the law of
large numbers approximation of the mass density by its mean. Again, depending
on the strength of the long-range interactions, the type of equation found differs. In
particular, interestingly, this dichotomy is not the same as for the hydrodynamics.

When the interactions are strong, that is α < 3/2, the equation is a stochastic
fractional heat equation. However, when the interactions are weak, that is α ≥ 3/2,
the equation is a type of Kardar-Parisi-Zhang Burgers stochastic partial differential
equation, on which there has been much recent activity, and which has scaling
behaviors different than the equation when the interactions are strong. Moreover,
we note that this dichotomy was unexpected as the role of ‘3/2’ was not understood
even in the physics literature.

(C) Instead of the mass density, which corresponds to the ‘bulk in the system,
one is also interested in fluctuations of the time that a single location is occupied.
For instance, what are the statistics of when a cafe is occupied? In [Paper 2], we
derived the fluctuation scales and limits in models with all types of long range
interactions. In fact, this was the first paper suggesting that anomalous behaviors
were possible depending on the strength of the long range interactions, and was a
precursor to the discussion in the previous paragraphs.

Technical Methods. To handle, in particular, the fluctuations work in [Paper 2],
we developed an analytical machinery, dubbed ‘H−1 norm analysis, which can esti-
mate the level of volatility or mixing in the system, the main technical challenge. In
[Paper 1], we formulated a ‘martingale problem’ to identify the nonlinear, nonlocal
limit of the long-range fluctuation fields, which is of interest itself, given that such
characterizations are in their infancy in comparision with martingale problems for
linear, local evolutions. In [Paper 8], several estimates, reflecting the long-range
character of the model, needed to be developed, which should be of use in other
problems.

2.2. Limits of the degree structure in random graphs which model social
networks and other ‘real world’ systems. In a social network, individuals with
a large number of ‘friends’, since their reach is more, have a larger chance to gain
more ‘friends’ than individuals with few ‘friends’. One of the basic models of this
phenomenon is as follows: Start with a small network, and grow the network by
adding vertices and/or links, one at a time, to locations in the network selected with
chance according to their connectivity. The form of the selection chance depends on
the application, but in social networks it is proportional to an increasing function
of the connectivity–so already well connected individuals tend to become even more
well connected, the reinforcement phenomenon mentioned earlier. See [6] and [7]
in this context.



SCALING LIMITS IN STOCHASTIC INTERACTING SYSTEMS 5

In these models, sometimes called ‘preferential attachment’ models, it is of in-
terest to characterize the growth of the count of nodes of degree 1, 2, . . ., or so to
speak the ‘degree distribution’ of the network. For instance, how many individuals
have only one ‘friend’, two ‘friends’, or 100 ‘friends’? From an applied perspective,
given a social or a ‘real world’ network, one can compute the empirical degree dis-
tribution as a histogram–so many individuals have 1 connection, so many have 2
connections, etc. Then, if one knew the degree distribution for a class of models,
one could fit one of these theoretical models to the data, based on the empirical de-
gree distribution, justifying a virtual model of the applied setting for more detailed
analysis.

Previously, degree distribution limits have been found when the selection is done
linearly, that is when a node with k connections is chosen with chance proportional
to k. However, there is little work on models with nonlinear selection functions,
that is say when a node with k connections is chosen with chance proportional to a
nonlinear function of k such as kβ where β is an arbitrary exponent. Such nonlinear
models are quite natural, and important to characterize for applications.

Below, our results describe in detail the law of large numbers and fluctuation be-
haviors of the degree distribution in a large class of nonlinear models. It turns out
there is a dichotomy depending on when the nonlinearity is ‘sublinear’ or ‘superlin-
ear’. In sublinear models, the degree counts depend on each other in an interesting
way and are all of the same proportionate size. While in superlinear models, there
is a certain ‘explosion’, and growth behavior, different than in sublinear models,
which shows the counts have varying asymptotics.

(D) For a general class of schemes, when the selection function is sublinear, that
is say when a node with k connections is selected with chance proportional to kβ

where β < 1, in [Paper 3], we derived a system of coupled ordinary differential
equations, governing the limiting degree distribution. Here, interestingly, every
count of nodes with k connections depends on every other count, unlike in the
linear case where the dependency is more restricted. This work is robust and does
not rely of specific features of the evolution.

(E) When the selection function is superlinear, that is when the selection chance
of a node with k connections is proportional to kβ for β > 1, it is known that the
preference given to highly connected nodes is so strong that the network condenses,
in that after some time one (random) vertex gobbles up most of the incoming
connections, obtaining an infinite number of links in the limit, whereas all other
nodes have bounded degree. However, the specifics of how the graph converges to
such a limit was not known.

In [Paper 5], we derived the precise orders of growth of the counts of nodes with
degrees 1, 2, . . ., and also show how these quantities fluctuate. In particular, the
count of the ‘leaves’, the count of nodes of degree 1, is of order N at time N , as
might be expected, as they mostly connect to the condensing vertex. However,
there are not so many nodes of degree 2 and higher, whose counts are sublinear in
N , and depend on the power β.

The figure shows a cartoon of a growing preferential attachment graph where an
incoming node seeks to attach to an existing node with probability proportional to
a superlinear function of its degree. After some lead in time, one of the nodes will
accumulate a large number of connections, and this node will more likely be picked
at all later times, leading to its explosion.
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How does it grow and scale?

Attaches to nodes with

chance proportional to a 

function of the degree.

Technical Methods. In [Paper 3] and [Paper 4], we introduced martingale and
dynamical system analysis, allowing to treat robustly a large class of models. Most
of the previous work on these problems has been combinatorial or from a branching
process view which applies to a limited type of model. However, the martingale
approach used seems flexible, allowing vistas into the growth process, capturing
even lower order terms in growths and fluctuations, the first such results in nonlinear
selection models.

2.3. Data clustering and connections to geometric tilings. Clustering data
into groups of similar points is an old but still quite a relevant problem with myriad
important applications. For instance, in a large collection of images of people, one
may like to organize the collection into groups where each group consists of images
of the same person. See [8] for a taste of this literature.

In the last 10 years, new methods have emerged which involve treating the data
as nodes of a graph where links between vertices, any two images say, are assigned
weights depending on how similar they are. A popular method is then to optimize
a ‘modularity’ functional of a partition, or grouping, of the data. This functional
favors partitions which are ‘well-connectedness’ inside sets in the partition, and
‘lack of connectedness’ across sets in the partition. The optimizer, which can be
found automatically from a computer program, is declared the best ‘clustering’.
See [9], [10].

However, it is not known what to expect from the ‘modularity’ or other clustering
procedures, even with respect to basic, known data sets. Our results, in a nutshell,
establish as a useful benchmark what modularity clustering optimally selects when
the data is given geometrically as a point cloud in the space Rd. Interestingly, the
answer connects to classical and still relevant questions in tiling geometry, which
was unexpected.

(F) In [Paper 4], we show that modularity clustering is ‘consistent’, and derive
a continuum functional associated to it, relating to a certain tiling optimization
problem. That is, suppose the data is given as N independent samples, uniformly
drawn from a region of space, and that two points are connected only if they are
within a small distance ε of each other. One would like to know how the ‘modu-
larity’ method behaves on such ‘known’ data to develop benchmarks. Colloquially
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speaking, if the points are locations of people, what are the ‘county lines’ drawn by
the modularity procedure?

In an appropriate scale ε = εN ↓ 0, we show the best modularity clustering, as
the number N of data points grows, converges to a partition of the underlying space
where each partition set has the same volume, but that the boundary perimeter of
the sets are minimized.

Such geometric tiling problems go back to Lord Kelvin in the 1800’s (see [11]
for a survey). The answer in dimension d = 2 is a type of ‘honeycomb’ tiling, but
the answer is not explicit in d ≥ 3! It was unexpected to make such a geometric
connection in this statistical problem. Interestingly, from the viewpoint of geometry,
this work allows to approximate such optimal partitions, which is difficult to do
directly from the continuum problem numerically. This was part of the PhD work
of Erik Davis.

 

n = 200, n = 400, n = 1000, n = 4000, n = 16000, n = 64000, 
Q = 0.490482 Q = 0.491295 Q = 0.491443 Q = 0.495576 Q = 0.494430 Q = 0.495972 

 
 
 
 
 
 

 

 

The figure shows a run of the modularity clustering algorithm to separate the
data into two clusters as the number of data points grows with εn = n−0.3. The
modularity functional Q has a maximum of 1/2 when used to separate the data
into two clusters. The continuum partioning problem is to separate the domain
into two pieces of equal area which minimizes the length of the boundary between
them, which in this case is to cut the slender rectangle in in the middle of the long
side. As seen, the data points do indeed segregate into two clusters approaching
the optimal cut, with optimal Q values nearing 1/2.

Technical Methods. One of the main vehicles used is ‘Gamma convergence’, a
technique from analysis, however less known in the probability community, which
allows to identify a limit optimization problem from a sequence of optimizations.
Importantly, we introduce a probabilistic form of Gamma convergence, which may
be of use in other problems.
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2.4. Final collision times in a 1D model of particle interactions. By New-
ton’s laws, the movement of a collection of particles on d-dimensional space Rd,
each with unit mass, can be modeled as follows. Between collisions, the particles
move by free flight according to their positions and velocities. When they collide,
some part of their velocities are exchanged. ‘Kinetic theory’ is devoted to the study
of such systems, which has much application in material science and other domains
(see [12]). For instance, one can think of the system as a group of messengers in
space, exchanging information when they meet.

However, to our knowledge, if there are N particles in the system, the dependence
on the system size N , of the times of final collision of a given particle tN and that
in the whole system TN , has not been studied. In the messenger example, when
is the last time of exchange of information? We remark this seems to be a new
and important problem, given the relevance to know when the system enters a
steady-state solution.

Our results capture the scale of tN and TN , in d = 1, when the particles begin
with random initial positions and velocities (the only stochasticity in the system),
and the collision rule is either elastic, that is when the particles exchange veloci-
ties, or nonelastic when the exchange is only partial. Beyond kinetic theory, this
problem connects with ‘sorting’ of velocities, which after a moment’s thought seems
reasonable, but is interesting nonetheless.

(G) In [Paper 6], we derive the scaling limits for these times in terms of N ,
for a class of interactions. Comprehensive results are found when the collisions
are elastic, that is when the particles exchange velocities. Detailed numerics are
given in nonelastic scenarios. In both situations, the results connect with ‘sorting:
Eventually, for each fixed N , after the final collision time TN , the particles are
sorted according to their velocities, the particles at the end with largest velocities
being to the far right, and those with the least velocities to the far left.

In the elastic case, the limit laws, in scale N for tN and scale N2 for TN , are
mixtures of Frechet type distributions, which arise in order statistics theory, de-
pending on features of the initial position and velocity distributions. The scales
reflect that an individual particle crosses order N other particles, and that there
are order N2 collisions in the system.

On the other hand, in the nonelastic case, velocities exchanged are amped or
damped, that is when two particles meet with velocities v1 and v2, and particle
one now takes on velocity (1− ε)v2 and particle two takes on velocity (1− ε)v1, for
ε < 1. We show the associated scalings of the final times depend on the strength of
this amping/damping ε and involve exponential (!) corrections to the elastic scales,
something further to explore. This was part of the PhD work of Alex Young.

The figure below shows how two particles in one dimension interact by elastic
collision. When they meet, they simply exchange their velocities, moving however
on the lines depicted. One can infer that all collision times correspond to the times
the N lines intersect.

Technical Methods. As mentioned, in the case of elastic collisions, the collision
times of the particles can be understood in terms of the intersection times of lines
with random y-intercepts (initial positions) and random slopes (initial velocities).
Then, the problem interestingly may be put in the framework of order statistics
of exchangeable random variables, which allowed some calculation. The numerical
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We start by proving that all collisions occur within a finite time T (N), as long as N remains finite. In
the process, we recast the problem of identifying the limiting distribution for T (N) into finding limiting
properties for the distribution of ratios of independent random variables.

Let Yi(t) be the position of the ith particle at time t. Prior to the first collision experienced by particle i,

Yi(t) = Xi + tVi.

Suppose that particles i and j are the first to collide and they do so at time t∗. In the case of elastic collisions,
the particles, which we have assumed have equal mass, switch velocities so that their paths appear as in Fig.
1a. Now, if we also swap the particle labels at time t = t∗, leading to the diagram shown in Fig. 1b, instead
of a collision in which two point particles change speed, we now have a simple crossing of the trajectories
of two noninteracting particles identified by their labels. Let `i(t) = Xi + tVi denote the position of the ith
particle when it does not interact with others.

t

Y (t)

t∗

(a)

xi

xj

t

Y (t)

t∗

(b)

xi

xj

Figure 1: (a) Trajectories of particles i (in red) and j (in blue) before and after their collision. The elastic
collision results in an exchange of velocities at t∗, the time of the collision. (b) Paths of particles i (in red)
and j (in blue) if they do not interact. Paths intersect at time t∗.

This point of view gives a simple way of calculating all the collision times, past and present, in terms of
the initial data only. Indeed, let τi,j denote the time of intercept of the paths `i(·) and `j(·) of particles i
and j. Then,

τi,j =
Xj −Xi

Vi − Vj
and the set of all the line intersection times, {τi,j : 1 ≤ i 6= j ≤ N} is in 1 : 1 correspondence with the set
of all collision times of the particles undergoing elastic collisions if we consider both positive and negative
times. We remark, since the distributions of the initial positions and velocity are continuous, these times
are distinct almost surely. Also, although these intersection times are not independent random variables, for
example τ1,2 and τ1,3 both depend on (X1, V1), these times are ‘exchangeable’ in that if π is a permutation
of {1, . . . , N}, then {τi,j : 1 ≤ i 6= j ≤ N}=

d
{τπ(i),π(j) : 1 ≤ i 6= j ≤ N}.

We see also that, as the collection of collision times consists of
(
N
2

)
terms, after the final (random) time

TN := maxi6=j τi,j , there will be no more collisions between particles. After this time, the labels of the lines
have been sorted according to their speeds: In a vertical cross-section of the space time diagram, labels of
the lines from top to bottom are in order from the largest to the smallest initial velocities. In terms of the
particles, after time, T (N), all particles are arranged on the one-dimensional line in order of increasing speed,
moving only by free flight since no further collisions can occur.

The intersection times, τi,j , are examples of ratio distributions. One can construct an integral represen-
tation of the distribution of such a ratio, although evaluating the integral in closed form is often difficult.
However, for example, if {Xi}Ni=1 and {Vi}Ni=1 are all iid N(µ, σ), then any τi,j follows a Cauchy distribution.

The main focus of this paper is on the scaling properties, in the system of N particles undergoing elastic

collisions, of the last collision time, T (N), and the last time the ith particle interacts with others, t
(N)
i .

3

work, for the nonelastic collisions, was a full molecular simulation, as in this case
no memory is lost in the system.

2.5. The range of random walk in a domain. In applications, say with chemi-
cal traces, or tracking of individuals, the number of locations visited up to a certain
time, the ‘range’ of the trace or individual, is an important variable. One can ab-
stract in the following way: Consider a random walk on the lattice Zd which moves
to a nearest-neighbor grid point at each step with equal chance. Denote the number
of nodes that the random walk visits in the first N steps, the range of random walk,
by RN .

Although the behavior of the range, for unrestricted walks, is a well-studied
problem [13], less is known when the walk is restricted in a certain sense, although
such walks would seem relevant for applied trapping concerns. For instance, what
is the range of the walk before it exits a cube in Zd with side length N?

The answers depend on the dimension d, and also importantly the starting point
of the random walk. In dimension d = 1, it is known that RN scales as N , and
special properties help solve this problem [14]. However, in dimension d = 2, as
the walker can loop around a point, the problem is harder, and importantly of a
different character, and as we see in our results connects with Brownian motion in
an interesting way.

(H) In [Paper 7], we show that the mean behavior of RN , starting from a point
near (aN, bN), where 0 < a, b < 1, scales as c(a, b)N2/ log(N) where c(a, b) =
const.Ea,b[T ], Ea,b[T ] is the expected time of exit of a Brownian motion from a
cube of side length 1 starting from (a, b), and const. is an explicit constant. The
form of the coefficient c(a, b) was unexpected! The next step in this problem, which
we are pursuing presently, is push to higher dimensions, and an almost sure result.
This was part of the senior thesis of Thomas Doehrmann.

The figure below shows a cartoon of a random walker, starting at the red dot in
the square with side length N , moving inside until exiting at the right. The range
RN would be the number of grid points visited before exit, that is the number of
pixels shaded by the path of the walk, counting each pixel crossed not more than
once, even if it is crossed several times.

Technical Methods. As mentioned, in dimensions larger than 1, one cannot use
ordering of the underlying space to help estimates. However, in [Paper 7], we have
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used discrete harmonic analysis to obtain the scaling of the mean of RN , and the
dominant prefactor. The techniques border on potential theory, and we feel there
is much more to do on this and related problems.

2.6. Approximating geodesics. Given a distance function on a space with an
underlying metric, one can define the shortest path between points a and b, namely
the geodesic path (see [15] for a technical definition). It is of interest to study
approximations of this distance and the associated geodesics. For instance, one
may like to compute the optimal way to navigate a ‘minefield’ using existing trails,
and to know if the trails are dense enough so that this path is close to the geodesic
path computed without restrictions.

We now abstract the problem in the setting of a random point cloud. In a space
Rd, consider N points drawn at random. We will say that two points are connected
if they are within ε Euclidean distance of each other. If we insist that paths from a
to b must be formed by linear interpolations through connected points, the question
above is rephrased as follows: How close are these shortest paths to the underlying
geodesic? Although such questions are natural, there is little work on them.

Previously, for some type of underlying metrics, the distance of the interpolating
path has been shown to converge to the distance of the geodesic as N grows [16].
However, the convergence of the actual interpolating paths to the geodesic path
has not been treated, although it would seem to be a natural concern.

We note part of our results is to treat for the first time convergence of these paths
in various senses. Interestingly, some of the methods involve results on Hilbert’s
4th problem, stated famously in 1900, which asks for what underlying metrics is
the geodesic between points a and b a straight line [17].

(I) In [Paper 9], we show for a large class of underlying metric, as ε = εN van-
ishes, that shortest interpolations converge in various senses, both in uniform and
Hausdorff norms, to the geodesic with probability 1. Convergence of the associated
distances is also immediate from this result. This was part of the postdoc project
of Erik Davis.
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The figure shows the shortest path, through N = 400 points sprinkled on a
square with side length 2 with εn = n−0.3, with the usual underlying Euclidean
metric, which approximates the straight line continuum geodesic path between the
extreme red points.

Technical Methods. We use a form of probabilistic Gamma convergence, men-
tioned earlier to show convergence of the optimal interpolation to the geodesic.
Several detailed geometric and probabilistic estimates on the structure of the point
cloud, including as mentioned, results on Hilbert’s 4th problem, may be of interest
themselves.
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3. Education

The project has been a good source of problems for students who I have been
fortunate to work with (3 PhD, 1 MS, 1 Undergrad) and postdocs (1 Postdoc). Two
PhD students graduated in 2016, 2017, and the undergraduate finished in 2017. 4
of the students have won the top scholar award in the years 2016, 2017.

• Erik Davis (PhD in Math, graduated 2016, postdoc in 2017). Bartlett Prize
2016 for top Math student. Next: Conversant Data Science in Chicago.

• Alex Young (PhD in Applied Math, graduated 2017). Al Scott Prize 2015
for top AMath student. Next: Postdoc at Duke U.

• Doron Shahar (PhD expected 2017). Bartlett Prize 2017 for top Math
student.

• Thomas Doehrman (UG graduated 2016). Top senior in Math award 2017,
Harvill Fellowship 2017. Next: Grad student at U. Arizona

• Derick Bishop (MS expected 2018).

4. Dissemination

In total there were 13 invited talks given at various conferences and universities
on the work in the grant.

There were 7 outside seminars:

• AMS Sectional Conference, East Lansing, March 16-20, 2015.
• SIAM conference on PDE, Scottsdale Dec 7 - 10, 2015.
• Conference in honor of Prof SRS Varadhan, TU Berlin, August 15-19, 2016
• Asia Pacific Rim IMS conference, CUHK, Hong Kong, June 27-30, 2016
• Discrete Geometry and Statistics, Chulalongkorn U., Bangkok, Jan 31- Feb

4, 2017.

There were 5 lectures in conferences:

• Indian Statistical Institute Kolkata, India, July 11, 2014.
• Indian Institute of Science (two talks) Bangalore, India, July 15, 2014
• U. Tokyo, July 26, 2014.
• U. Michigan, Mar 18, 2015.
• CIMAT, Guanajuato, MX, Jan. 18, 2016
• Indian Statistical Institute Delhi, July 14, 2016
• Bangalore Probability Seminar Indian Statistical Institute,July 25, 2016.

There was 1 outside colloquium:

• Iowa State University, April 21, 2017.
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5. Papers/Manuscripts

There were 9 papers/manuscripts written. 4 were published/accepted (40, 64,
28, 66 pages) in the top journals in probability, combinatorics, and mathematical
physics. 2 papers are submitted, and available on the arXiv. 2 other papers are
close to final form. 1 more, although a part of it is in final form as a thesis, is also
nearing completion as a more general paper.

[Paper 1 ] S. Sethuraman, On microscopic derivation of a fractional stochastic Burg-
ers equation (2016) Commun. Math. Phys. 341, 625–665.

[Paper 2 ] C. Bernardin, P. Goncalves, S. Sethuraman, Occupation times of long-
range exclusion and connections to KPZ class exponents. (2016) Prob.
Theory Rel. Fields. 166, 365–428.

[Paper 3 ] J. Choi, S. Sethuraman, S. Venkataramani, A scaling limit for the degree
distribution in sublinear preferential attachment schemes. (2016) Random
Structures and Algorithms, 48, 703731.

[Paper 4 ] E. Davis, S. Sethuraman, Consistency of modularity clustering on random
geometric graphs. (2016) To appear in Ann. Appl. Probab. (66 pgs).
Available at arXiv: 1604.03993

[Paper 5 ] S. Sethuraman, S. Venkataramani, On the asymptotic growth of superlin-
ear preferential attachment random graphs. (2017) Submitted to Springer
volume in honor of Prof. SRS Varadhan. Available at arXiv: 1704.05568

[Paper 6 ] J. Lega, S. Sethuraman, A. Young, On collisions times of self-sorting in-
teracting particles in one-dimension with random initial positions and ve-
locities. (2017) Submitted to J. Stat. Phys. Available at arXiv: 1704.01251

[Paper 7 ] T. Doehrman, S. Sethuraman, S. Venkataramani, The range of random
walk up to the time of exit from a domain. (2017) Part is the senior
honors thesis of T. Doehrman. We are working on a more involved version.
Available at the ARO technical reports site.

[Paper 8 ] S. Sethuraman, D. Shahar, Hydrodynamics for long-range asymmetric par-
ticle systems. (2017) Manuscript, all results there, to be polished/finished
Summer 2017. See ARO technical reports site.

[Paper 9 ] Approximating geodesics via random points. (2017) Manuscript, all re-
sults there, to be polished/finished Summer 2017.
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