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A commentary on

What Is the Link between Stringent Response, Endoribonuclease Encoding Type II

Toxin-Antitoxin Systems and Persistence?

by Ramisetty, B. C., Ghosh, D., Roy Chowdhury, M., and Santhosh, R. S. (2016). Front. Microbiol.
7:1882. doi: 10.3389/fmicb.2016.01882

In a recent paper published in Frontiers in Microbiology, Ramisetty et al. (2016) questioned
the mainstream model regarding bacterial persistence proposed by the group of K. Gerdes
(Maisonneuve et al., 2011, 2013). Persistence is an important phenomenon thought to contribute
to infectious diseases chronicity and antibiotic resistance selection (Michiels et al., 2016). This
reversible and low frequency phenotypic switch allows bacteria to enter a particular physiological
state in which they can sustain the presence of a given antibiotic (Kaldalu et al., 2016; Wood, 2016).
It is commonly thought that persister cells are “dormant” i.e., non-replicating and metabolically
inactive. Therefore, the idea that toxin-antitoxin systems (TAs) could be involved in persistence was
quite tempting since toxins from type II TAs are cell growth inhibitors (Hayes and Van Melderen,
2011). To test this appealing hypothesis, Maisonneuve et al. deleted 10 systems comprising
endoribonucleases as toxins in the E. coli lab strain (note this is only about 25% of the known
E. coli TAs) and presented results that indicate that the resulting 110 strain was strongly affected
for persistence upon treatment with ciprofloxacin or ampicillin (Maisonneuve et al., 2011). This
was not attributable to deletion of any specific system. On the contrary, successive deletion of
systems (any among the 10 systems studied) progressively diminished persistence frequency,
showing that TAs are redundant and have a cumulative effect. Moreover, testing the persistence
frequency in 1lon, 1relA1spoT, and 1ppk-ppx mutants, the authors claimed that persistence is
also dependent on the Lon protease, on guanosine tetraphosphate (ppGpp) and polyphosphate
(polyP) (Maisonneuve et al., 2013). The proposed model is that under stress conditions, ppGpp
concentration increases thereby inhibiting polyphosphatase (Ppx). As a result, polyP accumulates,
activates Lon, which in turn degrades efficiently the antitoxins from the 10 TAs. Toxins are then
liberated and able to degrade bulk mRNAs leading to translation inhibition and persistence.

While Ramisetty et al. actually confirmed that the 110 strain is less persistent than the
wild-type strain when treated with ciprofloxacin or ampicillin (Ramisetty et al., 2016), they
also showed that the 110 strain presents a reduced minimal inhibitory concentration (MIC)
to ampicillin and ciprofloxacin, showing that this strain presents intrinsic susceptibility to
these antibiotics. Note that on the contrary to resistance, MIC should not influence persistence
(Brauner et al., 2016). The 110 strain also appears to be affected for growth at least in
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the conditions tested (LB medium, 37◦C). Maximum growth
rate and CFU/ml after 12 h of growth are significantly lower
as well as the capacity to form biofilms. Altogether, these data
show that the 110 strain is less fit than the wild-type strain.
The authors proposed that deletion of TAs might have a polar
effect and thereby affect downstream gene expression and strain
fitness. To confirm this, whole genome sequencing as well
as gene expression analysis should be performed. One should
also be careful with approaches that involve multiple deletions.
Genome manipulation using the λRed system and counter-
selection methods based on parE toxin expression might have
generated multiple genomic rearrangements and therefore lead
to a fitness decrease.

Other groups investigated the implication of the 10 TAs as well
as that of Lon, ppGpp, and polyP in persistence to various classes
of antibiotics. While the 110 strain was less persistent upon
gentamycin treatment (contrary to what is reported in Ramisetty
et al., 2016), the 1lon, 1relA1spoT, and 1ppkmutants were not
affected (Shan et al., 2015). Moreover, β-lactam treatment did
not affect persistence of a 1lon mutant (Theodore et al., 2013;
Chowdhury et al., 2016), on the contrary to what was previously
reported by the Gerdes lab (Maisonneuve et al., 2011). Finally, for
ciprofloxacin, persistence of the 1lon strain was strongly affected
but the decrease in persistence was solely dependent on SulA, a
SOS cell division inhibitor and Lon substrate, since the double
1lon1sulAmutant presents similar persister frequency to that of
the wild-type strain (Theodore et al., 2013). It is well described
that Lon mutants are unable to recover from an SOS-inducing
treatment, such as ciprofloxacin, due to SulA accumulation and
incapacity of cell division to resume (Mizusawa and Gottesman,
1983; Schoemaker et al., 1984).

This body of data from different groups casts serious doubts
about the polyP-dependent TAs regulation model. Strikingly, this
model implies that the Lon protease degrades the antitoxins
of interest in a polyP-dependent manner and at comparable
rates. While most antitoxins appear to be indeed susceptible
to Lon (Christensen et al., 2001, 2003, 2004; Jørgensen et al.,
2009; Prysak et al., 2009; Christensen-Dalsgaard et al., 2010),
at least four of them (MazE, DinJ, MqsR, and HigA) have
been described to be also susceptible to Clp proteases (Prysak
et al., 2009; Christensen-Dalsgaard et al., 2010), indicating that
Lon might not be solely responsible for these TAs activation.
Moreover, for most antitoxins, polyP-dependency was not tested.
Ramisetty et al. have probed YefM (antitoxin from one of the
10 systems of interest) degradation using primer extension as
a proxy (Ramisetty et al., 2016). This method relies on the
fact that TAs are autoregulated at the level of transcription
by a complex formed of antitoxin and toxin proteins (Hayes
and Van Melderen, 2011). It is commonly thought that upon
antitoxin degradation, transcriptional activation of the cognate
TA operon is observed and can be detected by northern blots
and/or primer extension. The data obtained by this method
indicate that YefM is indeed degraded by Lon but in a ppGpp
and polyP-independent manner, in contrast to what was reported
by the Gerdes group (Maisonneuve et al., 2011, 2013). Moreover,
using overexpression of Lon as way to probe TAs activation, Van
Melderen’s lab in collaboration with Gerdes lab showed that the

yefM-yoeB TAs appears to be the only system producing mRNA
cleavage (Christensen et al., 2004). These data were confirmed
by Ramisetty et al. (2016). Critically, Ramisetty et al. showed
that mRNA cleavage by YoeB during Lon production is still
observed in a 1ppk-ppx strain, thereby confirming that polyP is
not required to activate the yefM-yoeB system (Ramisetty et al.,
2016). Also, in vitro, polyP deactivates Lon rather than activating
it (Osbourne et al., 2014).

Still regarding antitoxin degradation, surprising discrepancies
between papers of Maisonneuve et al. (2011, 2013) and previous
works of the Gerdes group were noted by Ramisetty et al. (2016).
In papers published in 2001 (Christensen et al., 2001) and 2003
(Christensen et al., 2003), the Gerdes group clearly demonstrated
using northern blot, primer extension and/or Western blot
analyses that degradation of RelB and MazE (antitoxins from
the 10 systems of interest) is Lon-dependent but independent
of ppGpp. However, according to the current model proposed
by the same group, degradation of these antitoxins requires
ppGpp and polyP. The reasons for these discrepancies were never
discussed in the concerned papers.

As a conclusion, the link between the stringent response,
endoribonuclease encoding type II toxin-antitoxin systems and
persistence appears to be weak. Type II endoribonucleases toxins
and ppGpp are clearly not the only players for generating
persister cells. Multiple reports indicate that other molecular
mechanisms are involved in persister cell formation such as type
II toxins with cell wall synthesis inhibition activity or type I toxins
as well as the SOS response (Lioy et al., 2012; Kaldalu et al., 2016;
Wood, 2016). In addition to antitoxin degradation, the polyP-
dependent TA regulation model raises important unanswered
questions, among them: (1) what is the expression level of
the 10 different TAs in steady-state (repression) and activation
(derepression) conditions, (2) how is Lon activated to degrade
antitoxins in toxin-antitoxin complexes, (3) what are the kinetics
of toxin release from antitoxin-toxin complexes, and (4) what is
the affinity of toxins for their respective targets. In addition, the
upstream part of themodel is also surprisingly little-documented,
notably how polyP affects Lon substrate degradation (if at all),
and how ppGpp is affecting persistence. For example, it was
recently shown that persister cells can form in the absence of
ppGpp, although to a lower level (Chowdhury et al., 2016).
Hence, how persister cells form in clinically-relevant settings and
whether persister cells are chiefly responsible for antibiotic failure
remains to be elucidated.

Knowing that TAs are very diverse and abundant in
prokaryotic genomes, that they are part of the accessory genome
and they move by horizontal gene transfer (Anantharaman and
Aravind, 2003; Makarova et al., 2009; Guglielmini and Van
Melderen, 2011; Leplae et al., 2011; Ramisetty and Santhosh,
2016), trying to squeeze them all in the same functional model
is very reductive. We believe that these small, evolutionary-
successful systems deserve better consideration!
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