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Abstract 

The premise of this research is to identify and model modifications to the 

prescribed learning curve model, provided by the Air Force Cost Analysis Handbook, 

such that the estimated learning rate is modeled as a decreasing learning rate function 

over time as opposed to the constant learning rate that is currently in use. The current 

learning curve model mathematically states that for every doubling of units there will be 

a constant gain in efficiency.  

The purpose of this thesis was to determine if a new learning curve model could 

be implemented to reduce the error in the cost estimates for weapon systems across the 

DoD. To do this, a new model was created that mathematically allowed for a “flattening 

effect” later in the production process. This model was then compared to Wright’s 

learning curve, which is the prescribed method to use throughout the Air Force.  

The results showed a statistically significant reduction in error through the 

measurement the two error terms, Sum of Squared Errors and Mean Absolute Percent 

Error. This paper will explain in detail how the new learning curve was formulated as 

well as how the testing was conducted to compare the different learning curve 

methodologies. 
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AN ANALYSIS OF LEARNING CURVE THEORY AND THE FLATTENING 
EFFECT AT THE END OF THE PRODUCTION CYCLE 

 
I.  Introduction 

Background 

The United States Department of Defense (DoD) operates in a fiscally constrained 

and financially conscious environment. The Budget Control Act of 2011 magnified these 

financial concerns while demand for new and updated weapon systems continues to rise. 

Managers throughout the DoD are expected to maximize the utility out of every dollar as 

the Department’s budget continues to shrink. The increased scrutiny adds greater 

emphasis on the accuracy of program office estimates to ensure acquisition programs 

across the DoD are sufficiently funded.  

To ensure the DoD produces reliable cost estimates, cost estimating models and 

tools used by the DoD must be evaluated for their relevance and accuracy. Specifically, 

the DoD’s cost estimating procedures for learning curves were developed in the 1930s 

(Wright, 1936). As automation and robotics increasingly replace human touch-labor in 

the manufacturing process, the current 80 year old learning curve model may no longer 

provide the most accurate approach for estimates. New learning curve methods that 

incorporate automated production or other factors that could lead to reduced learning 

should be examined as a possible tool for cost estimators in the acquisition process. Since 

the original learning curve model was developed, researchers have found other functions 

to model learning within the manufacturing process. The purpose of this research is to 

investigate new learning curve estimating methodology, develop the learning curve 
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theory within the DoD, and pursue a more accurate and complete suite of cost estimation 

models.  

Research Objectives/Questions/Hypotheses 

The premise of this research is to identify and model modifications to the 

prescribed learning curve model, provided by the Air Force Cost Analysis Handbook, 

such that the estimated learning rate is modeled as a decreasing learning rate function 

over time as opposed to the constant learning rate that is currently in use. The current 

learning curve model in use today mathematically states that for every doubling of units 

there will be a constant gain in efficiency. For example, if the manufacturer observed a 

10% reduction in man hours in the time to produce unit 10 from the time to produce unit 

5, then they should expect to see the same 10% reduction in man hours in the time to 

produce unit 10 to the time to produce unit 20.  

The basis of this research is that more accurate cost estimates could be made if a 

decay factor was taken into consideration in developing the learning curve model. The 

proposed modification may take this form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) =   𝑎𝑎𝑋𝑋𝑓𝑓(𝑥𝑥) =
𝑎𝑎

𝑋𝑋𝑓𝑓(𝑥𝑥) 

Where: 

Cost(X) = the cumulative average time (or cost) per unit 
X = the cumulative number of units produced 
a = time (or cost) required to produce the first unit 
f(x) = the learning curve slope represented as a function of units produced 
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The function to be used for the slope is what this research will attempt to discover. Figure 

1 shows the phenomena this research will attempt to model where the black (flatter) line 

depicts the traditional curve used to model learning and the Red (steeper) line represents 

the hypothesized learning structure, and the blue line represents actual data. 

 

Figure 1: Learning Curve Depiction 

This research aims to model a function that has the added precision of diminishing 

learning effects over time by answering the following questions: 

1.  How does the incorporation of a decay factor impact the accuracy of DoD cost 

estimates? 

2.  At what point in the production process does Wright’s Learning Curve no longer 

reflect accurate costs compared to other learning models? 

3.  How will the development of a new model affect the amount of error compared to 

the current estimation models? 



4 

If the hypotheses are supported and diminishing learning effects are found to be 

significant, then this research may contribute by increasing the DoD cost estimating 

communities understanding by: 

1.  Developing a modeling tool that incorporates a decay factor into cost estimation 

techniques. 

2.  Providing the framework for a software tool that will allow cost estimators to 

easily calculate estimates based on the data they have available.  

3.  Refining the methodology of the estimation process so that it can be used in other 

areas of the finance and accounting world for the benefit of not only the DoD, but 

the public at large. 

Methodology 

Learning curves, specifically when estimating the expected cost per unit of 

complex manufactured items such as aircraft, are frequently modeled with a 

mathematical power function. The intent of these models is to capture the expected 

reduction in costs over time due to the learning effects, particularly in areas with a high 

percentage of human touch labor. Typically as production increases, manufacturers 

identify labor efficiencies and improve the process. If labor efficiencies are identified, it 

translates to unit cost savings over time. The general form of the learning curve model 

used today, as prescribed by the Air Force Cost Analysis Hand Book, is shown below: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) =   𝐴𝐴𝑥𝑥−𝑏𝑏 =
𝐴𝐴
𝑥𝑥𝑏𝑏

 

Where: 

Cost(x) = the cumulative average time (or cost) per unit 
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X = the cumulative number of units produced 
A = time (or cost) required to produce the first unit 
B = slope of the function when plotted on log-log paper 
    = log of the learning rate/log of 2 

 

The cost of a particular production unit is modeled as a convex curvilinear 

function that decreases at a constant exponential rate. The problem is that the rate of 

decrease is not likely to be constant over time. It is proposed that the majority of cost 

improvements are to be found early on in a program, and fewer revelations are made later 

in the program as the manufacturer becomes more familiar with the process. As time 

progresses, the production process should normalize to a steady state and additional cost 

reductions prove less likely. For relatively short production runs, the basic form of the 

learning curve may be sufficient because the hypothesized efficiencies will not have yet 

been gained. 

However, when estimating production runs over longer periods of time, the basic 

learning curve would likely underestimate the unit costs of those farthest out in the 

future. The underestimation would occur because the model would calculate a constant 

learning rate, while actual learning would diminish, causing the actuals to be higher than 

the estimate. The current learning curve could miss a significant cost when dealing with 

high unit cost items such as those in major acquisition programs, because a small error in 

the percentage an estimate is off can still be large in terms of dollars. The goal is to add to 

previous research to determine what modifications can be made to the above function to 

make the model more accurate. By using curve fitting techniques, a comparison can be 

made to determine which models best predict learning within the production process. 

These curve fitting techniques include minimizing the sum of squared error (SSE) terms 
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and changing the parameters within the equations previously listed. Minimizing the sum 

of squared error is common practice in regression analysis. Many programs like 

Microsoft excel will do this for you by manipulating the variables in the equation to 

minimize this error term. As stated above, the intent of this research is to model the 

learning curve slope as a function of the number of units produced to allow for a slowing 

of learning over time. 

Implications 

The goal of this research is to address questions immediately relevant to 

understanding the links between learning curve models and program cost estimation. 

Collectively, the proposed work will improve the understanding of how production cycles 

and time influence the accuracy of current cost estimation techniques, as well as what 

parameters should be used when making estimates to deliver the most accurate 

predictions possible. Beyond the Department of Defense, the researchers believe other 

branches of the government, both state and federal, as well as the civilian sector might 

use the results of this research to improve their acquisition processes and cost estimating 

techniques, specifically as they relate to learning. By generating more accurate estimates 

the DoD will be able to more adequately manage its many projects by giving the 

programs the resources they need when they need them. 
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II. Literature Review 

Chapter Overview 

This chapter will highlight the current theory behind Learning Curve analysis by 

summarizing published works in the field and it will examine how it applies to the DoD 

today. It will also lay the groundwork for a discussion on how the production process has 

changed over the years and how this may or may not affect the way the DoD predicts the 

effects of learning on the production process. Learning curve research dates back to 1936 

when Wright published the original learning curve equation that predicted the effects 

learning had on production. 

Learning Curve Theory Review 

First published in 1936, Theodore Paul Wright recognized the mathematical 

relationship that exists between the time it takes for a worker to complete a single task 

and the number of times the worker has previously performed that task (Wright, 1936). 

The mathematical relationship developed from this hypothesis is that as workers 

completed the same process, they get better at it. Specifically, he realized that the rate at 

which they get better at that task is constant. The relationship between these two 

variables is as follows:  as the number of units produced doubles, the worker will do it 

faster by a constant rate (Wright, 1936). He proposed that this relationship takes the form 

of: 

𝐹𝐹 =   𝑁𝑁𝑥𝑥   Or   X =   𝐿𝐿𝐶𝐶𝐿𝐿𝐹𝐹/𝐿𝐿𝐶𝐶𝐿𝐿𝑁𝑁 

“Where F = a factor of cost variation proportional to the quantity N. The reciprocal of F 

then represents a direct percent variation of cost vs. quantity.” (Wright, 1936) The 



8 

relationship between these variables can be modified to find the expected cost of a given 

unit number in production by multiplying the factor of cost variation by the theoretical 

first cost of the aircraft. That equation takes the form of: 

𝑌𝑌 =   𝑎𝑎𝑋𝑋𝑏𝑏 

Where: 

Y = the cumulative average time (or cost) per unit 
X = the cumulative number of units produced 
a = time (or cost) required to produce the first unit 
b = slope of the function when plotted on log-log paper 
    = log of the learning rate/log of 2 
 

Visually this function is be modeled by the figure below. 

 

Figure 2: Wright's Learning Curve Model (Martin, N.d.) 
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As previously stated, this relationship is a log linear relationship through an algebraic 

manipulation. The logarithmic form of this equation (taking the natural log of both sides 

of the equation) allows practitioners to run linear regression analysis on the data to find 

what slope best fits their data using a straight line. (Martin, N.d.) 

The goal of using learning curves within the DoD is to increase the accuracy of 

cost estimates. Having accurate cost estimates allows the government to efficiently 

budget while providing as much operational capability as possible. According to the 

GAO Cost Estimating and Assessment Guide, “The ability to generate reliable cost 

estimates is a critical function, necessary to support the Office of Management and 

Budget’s (OMB) capital programming process.” The guide also states “cost increases 

often mean that the government cannot fund as many programs as intended or deliver 

them when promised.” Even though the use of learning curves focuses on creating 

accurate cost estimates learning curves often use the number of labor hours it takes to 

perform a task. When the theory originated, Wright proposed the theory in terms of time 

to produce, not production cost.  However, the DoD does learning curve analysis on both 

production cost and time to produce, depending on the data available. Even when using 

labor hour data, the cost estimator still uses that information to estimate a cost based on 

other factors such as labor rates, and other associated values. Using labor hours allows a 

common comparison over time without the effects of inflation convoluting the results, 

but the same goal can be achieved by using inflation adjusted cost values. 

 Wright’s model has been compared to some of the more contemporary models 

that have surfaced in the years since the original learning curve theory was established 

(Moore, 2015). Moore compared the Stanford-B model, Dejong’s model, and the S-
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Curve Method to Wright’s model to see if any of these functions could provide a more 

accurate estimate of the learning phenomenon (Moore, 2015). In his research, he used 

data from the F-15 C/D/E programs.  His rationale was that using models that incorporate 

incompressibility factors would allow for more accurate estimation (Moore, 2015). Both 

the Dejong model and the S-curve take incompressibility factors into account. 

 The incompressibility factor is used to account for the percentage of automation 

in the production process. Therefore, values of the incompressibility factor can range 

from zero to one where zero is all touch labor and one is 100% automation. Moore found 

that when using an incompressibility factor between zero and .1, the Dejong and S-Curve 

models were more accurate (Moore, 2015). Therefore, when a production process has 

very little automation and high amounts of touch labor, the newer learning curve models 

are more accurate. For all other incompressibility factors, Wright’s model was more 

accurate. Moore proposed that further research should be conducted on the 

incompressibility factor values within different DoD industries (Moore 2015). Knowing 

how much automation is in a process could allow the DoD to use different methods for 

different industries and ultimately end up with more accurate estimates in industries with 

low incompressibility factors. 

 Recently Johnson (2016) followed on Moore’s research.  Johnson hypothesized 

that there was a flattening effect at the end of the production process and that learning 

does not continue to happen at a constant rate toward the end of a production cycle. 

Johnson also states “it is human nature for people to lose focus or concentration at certain 

times when performing repetitive tasks.” (Johnson, 2016) A loss in concentration could 

be one of the reasons for the flattening effect Johnson referred to in his research. Using 
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the same models as Moore, Johnson explored the difference in accuracy between 

Wright’s model and contemporary models early in the production process versus later in 

the production process. He had similar findings to Moore in that Wright’s model was 

most accurate except in cases where the incompressibility factors were extremely low. 

When the incompressibility factor is low there is more touch labor in the process, and 

when there is more touch labor in the process more learning can occur. He also found that 

Wright’s learning curve was more accurate early in the production process and Dejong’s 

model and the S-Curve were more accurate later in the production process (Johnson, 

2016). Johnson suggested that further research should look into finding a heuristic for 

when to use one of the more advanced learning curve methods. He believed this would 

give a more accurate estimate compared to just using Wright’s learning curve throughout 

the production process. 

 Another key concept in learning curve estimation and modeling is the idea of a 

forgetting curve (Honious, 2016). A forgetting curve explains how configuration changes 

in the acquisition of a product can cause a break in production and cause the producer to 

lose some of the efficiency that they had previously gained. When a configuration change 

occurs the production process changes. This change could be using different material, 

different tooling, adding additional pieces to the process, or could even be attributed to 

workforce turnover. This new process affects how the workers do their work, which 

causes some of what they had learned to be lost and new potential efficiencies to be 

available. This research looked into the aspect of the learning curve with the goal of 

providing the DoD an idea of how configuration changes affect the learning process 

(Honious, 2016). If the DoD does not take into account a break in learning when a 
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configuration change or any other production break occurs, then they will underestimate 

the total effort by the contractor to produce the product. She found that configuration 

changes do significantly change the learning curve and that the new learning curve slope 

is steeper than the previous steady slope before the configuration change (Honious, 

2016).The distinction between pre and post configuration change is important when 

developing the heuristics mentioned above by Johnson (2016) in order to make sure both 

effects are taken into account. If practitioners use a flatter learning curve slope later in a 

project and begin using a different model that more accurately reflects this flatness, then 

they should also be sure to look at which model is used after a configuration change. It 

may not be appropriate to use a new model late in a production process after a 

configuration change. 

 Prior to Honious’s research on forgetting due to configuration changes, Badiru 

(2012) looked into the impact of forgetting caused by natural effects. Badiru concluded 

that forgetting was important to factor into a learning curve evaluation and that half-life 

analysis is important to consider when estimating the effects of the learning curve. The 

concept of half-life is “the amount of time it takes for a quantity to diminish to half of its 

original size through natural processes.” (Badiru, 2012) Forgetting in the production 

process can be caused by both internal and external factors (Badiru, 2012). Internal 

events can range anywhere from complacency of the workforce to policy changes. 

External impacts include anything from natural disasters to drastic market swings that 

cause a halt in production. Badiru focused on the actual phenomenon of learning that is 

apparent in production and less on how the government can use that analysis to generate 

accurate cost estimates. Nevertheless, his work on half-life learning interpretations and 
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forgetting within the production process put a spotlight on how important it is to 

accurately estimate the amount of time it will take to produce a product and how this 

analysis should be viewed moving forward (Badiru, 2012). Ultimately Badiru (2012) 

recommends that “future efforts to develop learning curve models should also attempt to 

develop the corresponding half-life expressions to provide full operating characteristics 

of the models.” (Badiru, 2012) This research will help form how we look for a heuristic 

to apply different learning curve models. If the learning curve behaves differently after 

reaching its half-life, then the DoD should take that into account and incorporate that 

modeling technique. 

 The International Cost Estimating and Analysis Association (ICEAA) published a 

learning curve guide/training in 2013. While presenting the basics of learning curves, 

they also presented some rules of thumb for learning. The first rule is that learning curves 

are steepest when the amount of touch labor is the highest in the production process. 

Conversely, learning curves are the flattest when the production process is “highly 

automated” (All, 2013). These rules of thumb make sense when you consider machines 

do not learn or necessarily improve at a process like humans do. Another key piece of 

information is that adding new work to the process can affect the cost. ICEAA states new 

work essentially adds a new curve for the added work and increases the time associated 

with the new work to the original curve (All 2013). The equation is as follows: 

𝑌𝑌 =   𝑎𝑎1𝑋𝑋𝑏𝑏1 + 𝑎𝑎2(𝑋𝑋 − 𝐿𝐿)𝑏𝑏2 

Where: 
Y = Unit Cost 
𝑎𝑎1 = Original Theoretical first cost 
𝑎𝑎2 = New Work Theoretical first cost 
𝑋𝑋 = Current Unit Number 
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𝐿𝐿 = Last unit before addition of new work 
𝑏𝑏1 = exponent for original Learning Curve Slope 
𝑏𝑏2 = exponent for new work Learning Curve Slope (Typically the same as 𝑏𝑏1) 
 

This equation is important to take into consideration when generating an estimate after a 

major configuration change or engineering change proposal (ECP).  An example of this 

would be while producing the 8th unit of an aircraft the government realizes they need to 

drastically change the radar on the aircraft. Learning has already taken place on the first 8 

aircraft; the new radar has not yet been installed and therefore there has been no learning. 

To accurately take into account the new learning the radar would be treated as a second 

part to the equation ensuring we account for the learning on the 8 aircraft while also 

accounting for no learning on the new radar. 

Lastly, the ICEAA guide speaks to production breaks and the effects they have on 

a learning curve. These production breaks can cause a direct loss of learning which can 

fully or partially reset the learning curve. For example, a 50% loss of learning would 

result in half of the cost reduction that has occurred to be lost (All, 2013). This 

information is important when analyzing past data to ensure that these breaks in 

production are accounted for. Without accounting for these breaks within the data, one 

could inadvertently end up with a model that does not represent the scenario that actually 

occurred.  

In this portion of the chapter, we laid out the fundamental building blocks for 

learning curve theory and how they will apply to the research in this paper. Wright’s 

learning curve formula established the method by which the DoD estimates the effects of 

learning in our procurement process. Since Wright’s findings, many have proposed and 



15 

developed new methods for estimating learning. Those methods include accounting for 

breaks in production, natural loss of learning over time, incompressibility factors, and 

half-life analysis. This research will add to the discussion by diving deeper into the 

flattening affect and how different models predict learning at different times in the 

production process. 

Production Process Theory Review 

When discussing learning curve theory and the effects learning has on production, 

one must look into the production process they are trying to estimate. Since Wright 

established learning curve theory in 1936, automation and technology in factories have 

grown tremendously and continue to grow. Contemporary learning curve methods try to 

account for this automation. To get the best understanding, we must look at how things 

are produced in general and how the aircraft industry, specifically, behaves in relation to 

the rest of the manufacturing industry.  

 The aircraft industry, when compared to other industries, has relatively low 

automation (Henneberer and Kronemer, 1993). Kronemer and Henneberer state 

“although the industry assembles a high-tech product, its assembly process is fairly labor 

intensive, with relatively little reliance on high-tech production techniques.” (Henneberer 

and Kronemer, 1993) Specifically, they list three main reasons why manufacturing 

aircraft is so labor intensive. First, aircraft manufacturers typically build multiple models 

of the same aircraft just for the commercial sector alone. These different aircraft models 

mean different tooling and configurations are needed to meet the demand of the 

customer. Second, aircraft manufacturers deal with a very low unit volume when 
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compared to other industries in manufacturing. The final reason for low levels of 

automation is the fact that aircraft are highly complex and have very tight tolerances. In 

order to attain these specifications, manufacturers must continue to use highly skilled 

touch laborers or spend extremely large amounts of money on machinery to replace them 

(Henneberer and Kronemer, 1993). For these reasons, we should typically see or use low 

incompressibility factors in the learning curve models when estimating within the aircraft 

industry. This conclusion, combined with the previous research that stated contemporary 

learning curve models are more accurate at low incompressibility factors, provides the 

basis for looking at models other than Wright’s to estimate cost within the DoD (Moore, 

2015). 

 Although the aircraft industry remains largely unaffected by the shift to machine 

production from human touch labor, most industries are seeing a rise in the percentage of 

the manufacturing process that is automated. In an article posted in 2012 by the Wall 

Street Journal, the author shows how companies have been increasing the amount of 

money spent on machines and software while spending less on manpower. They propose 

part of the reason behind this shift is a temporary tax break “that allowed companies in 

2011 to write off 100% of investments in the first year.” (Aeppel, 2012) Combining that 

tax incentive with extremely low interest rates has given industry incentive to invest 

toward future production (Aeppel, 2012). With the burden of the initial investment being 

softened by the government, the manufacturing industry is investing in technology. This 

investment is increasing the incompressibility factor that would be used when estimating 

the effects of learning in production. 
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 In a separate article for the Wall Street Journal, Kathleen Madigan also pointed 

out the increase in spending on capital investments in relation to labor. She states that 

“businesses had increased their real spending on equipment and software by a strong 

26%, while they have added almost nothing to their payrolls.” (Madigan, 2011) Figure 3 

illustrates that statement from 2009 to 2011: 

 

Figure 3: Capital vs Payroll Growth 

Again, this figure illustrates an ever changing manufacturing process that continues to 

transition away from touch labor in favor of a more automated machine oriented process. 

 An article published by The Economist in 2012 lays out how machines and robots 

are taking over major sections of the manufacturing sector, however we are still a long 

way from a world where manufacturing floors are 100% automated. There are some 

areas, of the manufacturing process that need little to no human intervention for days or 

even weeks. Laser cutting machines and additive manufacturing machines, also known as 

3D printers, can run without humans. Therefore, shops that specialize in these tasks have 

0.9
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been able to eliminate the need for human touch labor (“Making the Future The 

Economist” 2012). Some issues with assembly robots include that they are still “too 

costly and too inflexible” (“Making the Future The Economist” 2012). These issues show 

that for a highly unique sector, like aircraft manufacturing, the percentage of automation 

will be low and should remain low in the near future. This fact may change as technology 

continues to advance but for now humans are still a necessary part of the manufacturing 

and assembly process, especially in highly unique and technical sectors. 

Summary 

In this chapter we discussed the fundamental theory behind Learning Curves as 

well as the basis for the argument that the production process is becoming more 

automated as we move toward a more technologically advanced society. Learning curves 

are a significant part of the estimation process for the DoD and as such should be 

modeled in the most effective manner possible. This thesis will focus on the models that 

account for incompressibility factors, learning decay, and shifts in the production process 

and testing whether those models are in fact more accurate than Wright’s model 

developed approximately 80 years ago. Specifically, this research will explain how a new 

model, utilizing the ideas of existing models, can affect the accuracy of cost estimates. 

The next chapter focuses on the methodology used in this research and will include the 

data used, the methods performed, and the general assumptions made while doing the 

research. 
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III. Methodology 

Chapter Overview 

This chapter will focus on the methods used to select, collect, and analyze the 

data. The goal is to show how the methods used are appropriate to answer the research 

questions and hypotheses presented in this paper. Learning curve analysis is crucial in 

accurately predicting the cost of a weapon system over time. Regression analysis is often 

performed when measuring the accuracy of a learning curve and that methodology holds 

true in this analysis as well. This chapter will also lay out how the researchers measure 

the significance of these tests using statistical tools. By using a wide range of historical 

weapon systems cost and labor hour data, we hope to gather a broad picture of how the 

DoD can more accurately predict the effects of learning within the defense community. 

Research Questions and Hypotheses 

As stated in the introduction of this thesis, this research hopes to answer the following 

questions: 

• How does the incorporation of a decay factor impact on the accuracy of DoD cost 

estimates? 

• At what point in the production process does Wright’s Learning Curve no longer 

reflect accurate costs compared to other learning models? 

• How will the development of a new model reduce error compared to the current 

estimation models? 
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The following sections of this chapter lay out how the research addressed each of these 

questions and the methodology used to address them. 

Model Formulation 

 In order to come up with a new learning curve equation the first step was to figure 

out the characteristics of the curve we expected to best fit the data. The hypothesis is that 

a curve whose slope decreases over time would fit the data better than Wright’s curve. In 

order to change the rate at which the curve flattens, the “b” value from Wright’s learning 

curve, or the exponent in the power function, needs to be adjusted. Specifically, to make 

the curve get flatter the exponent in the power curve must decrease as a function of some 

value. As stated in the introduction chapter, our goal was to have the exponent value vary 

as a function of “x” the unit number, or time. Initially we modified Wright’s existing 

formula by dividing by a modifier of X, with an equation of: 

𝑌𝑌 =   𝑎𝑎𝑋𝑋𝑏𝑏/𝑋𝑋 

Where: 

Y = the cumulative average time (or cost) per unit 
X = the cumulative number of units produced 
a = time (or cost) required to produce the first unit 
b = slope of the function when plotted on log-log paper 
    = log of the learning rate/log of 2 
 

The change in the exponent value was too dramatic and the resulting prediction line did 

not meet the intent of the research in this form. In order to lessen the effect of the 

modifying value we added a qualifier by changing the denominator from “X” to 

“(1+X/c)”. The addition of the c term allows the exponent to change by 1/c for each 
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additional unit produced rather than by 1 for each unit produced. The new equation took 

the form of: 

𝑌𝑌 =   𝑎𝑎𝑋𝑋𝑏𝑏/(1+𝑋𝑋𝑐𝑐) 

Where: 

Y = the cumulative average time (or cost) per unit 
X = the cumulative number of units produced 
a = time (or cost) required to produce the first unit 
b = slope of the function when plotted on log-log paper 
    = log of the learning rate/log of 2 
c = Boone’s Decay Value (Range from 0-5000 in this research) 
 

This equation allows for a decrease in the slope as the number of units increases and 

ultimately provides a curve that can be steeper in the early stages of production and 

flatter in the later stages of production when compared to Wright’s learning curve. The 

decay variable was added to ensure the rate at which the slope decreases best fit the data 

for a specific aircraft. 

Population and Sample 

 In order to answer these questions, the researchers looked at quantitative data 

from several airframes in order to give a comprehensive understanding of how learning 

affects the cost of lot production. The costs used in this analysis are the direct cost for a 

single unit and excludes things such as Research, Development, Test, & Evaluation 

(RDT&E), support items, and spares. This data specifically includes Prime Mission 

Equipment (PME) only as the researchers believed these cost are the cost that experience 

an effect due to learning. To ensure we were only comparing things that should be 

compared, we used inflation and rate adjusted PME cost data for each production lot of 
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the selected weapon systems.  The PME cost data was adjusted using escalation rates for 

materials using the Office of Secretary of Defense (OSD) rate tables when applicable. In 

order to remain unbiased, we looked at all of the data we could find on major weapon 

systems.  Initially the only requirement for the data to be included in the analysis was that 

there were at least three production lots. The requirement for three lots was put in place 

to ensure that either curve wasn’t over-fitting the data. After some analysis however we 

decided to also re run the analysis using only production runs with at least 5 lots. The 

change to 5 lots was to again ensure we were not overfitting a curve with so few data 

points. We used data from fighters, bombers, and cargo aircraft, as well as missiles and 

munitions. Using a diverse dataset ensures that we provide a full picture when discussing 

whether it is appropriate to use different learning curve estimation techniques. All of the 

data used for this analysis came from Air Force weapon systems and was pulled from 

government form 1921s as described in the next section. 

Data Collection 

 Most of the data used was pulled from the Cost Assessment Data Enterprise 

(CADE) through form 1921s by a member of the Air Force Life Cycle Management 

Center cost staff.  CADE is a resource available to DoD cost analysts that stores historical 

data on weapon systems. Some of the older data also came from AFLCMC/FZC 

Research Library in the form of cost summary reports.  The data used can be broken out 

by Work Breakdown Structure (WBS) or Contract Line Item Number (CLIN). For this 

research the PME cost data was broken out by work breakdown structure element, then 

rolled up into top line, finished product elements and used for the regression analysis. 
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This system, as previously stated, provides access to a variety of aircraft models as well 

as missiles and munitions. It was important to include a wide variety of data to give the 

Air Force and the DoD a broad sample in order to draw conclusions on the appropriate 

learning curve methodology. In total we analyzed 46 weapon system platforms. This data 

can be seen in Table 1. 

Data Analysis 

 In order to test which model is most accurate in estimating the data, we performed 

regression analysis. When testing how well a model estimates a given set of data using 

regression analysis, the goal is to minimize the sum of squared errors (SSE). The sum of 

squared errors is calculated by taking the vertical distance between the actual data point, 

in this case lot midpoint PME cost, and the prediction line, or estimate. That error term is 

then squared and the sum of those squared error terms is the value for comparing which 

model is a more accurate predictor. However, when creating a new model that is similar 

to the old model with an extra variable the new model should be able to maintain or 

decrease the SSE in every case. In the case of this research as the decay factor in Boone’s 

learning curve equation approaches infinity the equation approaches Wright’s learning 

curve formula. With this in mind the researchers also looked at the Mean Absolute 

Percent Error (MAPE). MAPE takes the same error term that is found in the SSE 

equation and divides it by the actual value of the unit, then takes the mean (arithmetic 

average) of all of the data points. By putting the error in terms of a percentage it allows a 

comparison of how the model works between aircraft as well as the accuracy of different 

learning curve models. Using MAPE could allow the researchers to determine if the 
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equation works better for different groups of aircraft such as Cargo/Fighter/Munitions or 

if it works better based on another factor such as total cost. If the new model reduces both 

SSE and MAPE when compared to the SSE and MAPE of Wright’s prediction, then the 

researchers would conclude that the new model would be a more accurate / better model 

to use when conducting learning analyses. 

 As stated in previous chapters, Wright’s learning curve follows a log-linear curve. 

A log linear curve is a curve that when one looks at the log of the x-axis and the log of 

the y-axis, the curve is a linear function. As Wright proposed, this linear transformation 

occurs because learning happens at a constant rate throughout the production cycle. If 

learning happens at unequal rates, then the curve in log-log space would no longer be 

linear. This conclusion means the regression used to compare models will not be linear 

regression in log space, and we will instead use the tools in Microsoft excel to fit the 

curves on a standard x and y axis. 

 Specifically, we used Microsoft Excel’s Solver package to minimize the SSE by 

adjusting the factors for T1 (the theoretical first unit), b (the learning curve slope), and C 

(Boone’s decay value). Using the GRG Non-linear Solver model, Excel cycles values for 

those 3 variables with the goal of minimizing the sum of squared errors. In order to solve 

in this format each of the variables needs bounds. The bounds set for each of the 

variables were based off of the values a cost estimator would use for Wright’s curve. 

These are values that are easy to obtain for any dataset, as they are provided by Microsoft 

Excel when fitting a power function or by using the “linest()” function in Excel. The 

researchers used this as a starting point because Wright’s curve is currently used 
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throughout the DoD. For the T1 variable, the lower bound was one half of Wright’s T1 

and the upper bound was 2 times Wrights T1. These values were used to give the solver 

model a wide enough range to not limit the value but small enough to ease the search for 

the optimal values. Neither of these limits were found to be binding limits. For the 

exponent variable values we used between 3 and -3 times Wright’s exponent value. In 

theory the value of the exponent should never go above 0 due to positive learning leading 

to a decrease in cost, but in practice there are some data sets that go up over time and we 

wanted to be able to account for those scenarios if necessary.  Again, these values 

between 3 and -3 times Wright’s exponent value were never found to be binding limits 

for the model. Lastly, for the decay variable, values were used between 0 and 5000. 

These numbers were estimated through initial observation. As Boone’s decay value 

approaches infinity, Boone’s learning equation approaches Wright’s learning curve 

equation. Only positive values were used because positive values decrease the slope over 

time while negative values would have negative learning over time, which is not the 

focus of this research. The 5000 value was found to be a binding constraint in the solver 

on several of the data observations. In practice analysts should bound the value as high as 

possible to reduce error, but in the case of this research we used 5000 as we did not see a 

significant change from 5000 to infinity. 

Statistical Significance Testing 

Once the SSE and MAPE values are collected for each learning curve equation 

the researchers will test for significance to decide whether the difference between the 

error values for the two equations are statistically different, or if the difference is due to 
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random chance. Specifically, the researchers conducted a T-test on the distribution of the 

differences in error terms between Wright’s and Boone’s learning curve equations. The 

T-test used an alpha value of .05. If the p-value for the test is less than .05 then the results 

will be considered significant. This T-Test was conducted for both SSE and MAPE 

values separately. 

Summary 

This chapter explained how the researchers collected the data, what data was used 

in this research, and how the data was analyzed. Using regression analysis, the 

researchers will be able to conclude if Boone’s learning curve model provides more 

accuracy in estimation than the currently prescribed Wright’s learning curve model. This 

comparison will test which model has better SSE and MAPE values and test to see if 

there is a statistically significant difference between models across different portions of 

the data. Specifically, we will test which model is better overall and if the models predict 

better with different weapon system types due to various factors. The next chapter will 

provide the results and analysis of this research. 
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IV.  Analysis and Results 

Chapter Overview 

The following section contains the results from the methodology described in the 

previous section. Chapter IV attempts to answer the three primary research questions 

proposed earlier in this research: first, how does the incorporation of a decay factor 

impact the accuracy of DoD cost estimates; second, at what point in the production 

process does Wright’s Learning Curve no longer reflect accurate costs compared to other 

learning models, and third, how will the development of a new model affect the amount 

of error compared to the current estimation models? The following graphs and charts will 

attempt to explain how we used the methodology laid out previously to answer our 

research questions. This analysis, as previously explained, was conducted on data from 

46 weapons systems across the Air Force. This Chapter will focus only on displaying the 

results and analysis while drawing conclusions from these results and the implications 

this research may have will be discussed in Chapter V. 

Direct Comparison Wright’s vs Boone’s 

Table 1 shows a list of each of the programs used as well as the SSE and MAPE 

values for Wright’s learning curve and Boone’s learning curve for each program. This 

Table can also be seen in the Appendix sorted by Boone’s MAPE, SSE Difference, and 

MAPE difference. The last two columns are the difference in SSE and Difference in 

MAPE in terms of percentage. This percentage was calculated by taking the difference of 

Boone’s error term minus Wright’s error term divided by Wright’s error term. Negative 

values represent programs where Boone’s learning curve had less error than Wrights 
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learning curve, and positive values represent programs where Wright’s curve had less 

error than Boone’s curve.  

Table 1: Results 

 

 

Based on these results, we observed that Boone’s learning curve equation reduced the 

sum of squared error in approximately 84% of programs and reduced MAPE in 67% of 

programs. The mean amount off SSE reduced was 27% and the mean amount of MAPE 

was reduced by 17%. As previously mentioned these values were based on using both 

PROGRAM Wright's SSE Wright's MAPE Boone SSE Boone MAPE SSE Difference MAPE Difference

F-35 - Joint Strike Fighter (JSF) Program 2.78E+08 5.3% 2.17E+08 4.8% -22% -10%

F-22A Production 4.88E+08 5.4% 4.90E+08 5.6% 0% 5%

A-10 Aircraft Production 1.58E+07 10.8% 4.51E+05 2.1% -97% -80%

C-17 Production 6.56E+10 22.1% 6.02E+10 24.5% -8% 11%

B-1B System 1.14E+09 6.2% 1.10E+09 5.6% -4% -9%

AEA - Prime - E/A-18G - Electronic Variant of the F/A-18 Aircraft 1.94E+06 4.6% 1.95E+06 4.6% 0% 1%

F-18A Production 7.14E+08 13.6% 6.28E+08 12.9% -12% -5%

F/A-18E/F Production 5.49E+06 4.6% 5.00E+06 4.0% -9% -13%

T-45TS Production 1.30E+09 18.6% 1.21E+09 23.8% -7% 28%

F-15A/B Production 7.90E+06 3.9% 6.12E+06 3.6% -23% -8%

S-3A Production 2.18E+07 6.0% 7.48E+06 3.2% -66% -47%

EA-6B Production 1.06E+08 9.6% 1.05E+08 9.7% -1% 0%

F-4B Production 1.49E+07 10.7% 1.48E+07 13.4% 0% 26%

A-6A Aircraft Production 9.92E+08 16.3% 7.67E+07 10.0% -92% -39%

A-6E Aircraft Production 1.81E+08 13.0% 1.78E+08 14.0% -1% 7%

KC-135A Production 1.71E+07 6.3% 7.96E+06 4.7% -53% -26%

A-7D Production 8.00E+06 10.1% 4.11E+06 7.6% -49% -25%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

F-14A Production 5.00E+07 6.2% 4.89E+07 6.1% -2% -2%

F-16A/B Production 4.01E+07 11.1% 5.45E+06 6.5% -86% -41%

T-38A Production 1.19E+06 8.8% 1.34E+06 7.8% 13% -11%

C-5A Production 1.60E+09 10.6% 1.74E+02 0.0% -100% -100%

C-5B Production 1.39E+09 6.4% 1.38E+09 6.4% -1% 0%

C-141A Production 7.61E+08 18.1% 3.18E-01 0.0% -100% -100%

F-16C/D Production 6.81E+05 3.3% 1.10E+06 4.1% 62% 26%

F-16A/B Production Blk 25 2.12E+06 7.5% 1.57E+06 6.8% -26% -9%

P-3C Production 2.66E+07 5.0% 2.73E+07 5.5% 2% 10%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

F-14D Production 3.81E+07 5.9% 2.45E+07 4.5% -36% -24%

B-2A Production 3.03E+11 21.9% 1.34E+11 16.7% -56% -24%

E-6A Production 1.04E+09 10.0% 1.03E+09 10.3% -1% 3%

AEA - E/A-18G - Electronic Variant of the F/A-18 Aircraft 9.01E+05 5.1% 6.94E+05 4.0% -23% -23%

C-5 Wing Modi fication 8.20E+06 5.9% 1.77E+06 3.7% -78% -37%

AWACS Blk40/45 Upgrade 6.40E+06 10.8% 6.11E+06 9.8% -4% -9%

MH-60S VERTICAL REPLENISHMENT HELICOPTER 1.47E+07 8.2% 5.22E+06 5.4% -65% -35%

MH-60R Naval  Hawk Hel icopter 4.95E+07 10.0% 4.98E+07 10.7% 1% 6%

MH-60R Avionics 5.99E+07 19.8% 5.69E+07 20.4% -5% 3%

JSTARS Radar Subsystem (E-8C) 1.50E+10 12.9% 1.43E+10 14.8% -5% 15%

H1 UPGRADE Production Program - AH-1Z 1.29E+07 5.5% 1.28E+07 5.4% -1% -3%

H1 UPGRADE Production Program - UH-1Y 4.99E+06 3.7% 3.02E+06 3.4% -39% -9%

F-35 Joint Strike Fighter (JSF) Program - F-135 Engine 9.63E+07 21.9% 9.45E+07 21.5% -2% -2%

F-22 Propuls ion (F119 Engine) 1.18E+06 3.1% 1.22E+06 3.4% 3% 7%

B-1B COMPUTER UPGRADE PROGRAM 2.77E+03 3.4% 1.19E-05 0.0% -100% -100%

C-5 Avionics  Moderization Pgm 1.84E+06 17.3% 1.82E+06 18.0% -1% 4%

C-5 Rel iabi l i ty Enhancement & Reengineering (RERP) 3.27E+06 1.3% 1.09E+00 0.0% -100% -100%

Advanced Anti -Radiation Guided Miss i le (AARGM) Program 1.98E+03 2.8% 1.19E+03 1.7% -40% -40%
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learning curve equations to minimize the SSE for each aircraft data set. This is standard 

practice in the DoD as prescribed by Air Force Cost Analysis Handbook when predicting 

the cost of subsequent units or subsequent lots. 

Statistical Difference Testing 

  The results of the significance testing can be seen in Figures 4 & 5. The 

researchers were testing against an alpha value of .05. P-values, as seen in the Prob > [t] 

line, that are less than .05 would be considered significant. When testing the significance 

of the difference in SSE we see that the mean is -.27 which translates to Boone’s learning 

curve having 27% less SSE on average. Figure 4 also shows a 95% confidence interval 

that ranges from -.16 to -.39. The p-value, highlighted in orange, shows “<.0001”. Since 

this value is less than .05 we can conclude that these results are statistically significant. 

 

Figure 4: Difference in SSE 

 We applied the same test to the difference in the MAPE values from Boone’s 

learning curve and Wright’s learning curve where negative values represent Boone’s 

curve having a lower MAPE value. Figure 5 shows a mean of -.17 which translates to 

Boone’s curve reducing MAPE by 17% on average. The 95% confidence interval listed 
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ranges from -.07 to -.27. The p-value, highlighted in orange, shows “.0011”. Since this 

value is less than .05 we can conclude that these results are statistically significant as 

well. 

 

Figure 5: Difference in MAPE 

Summary 

The purpose of this chapter was to present the results from the analysis for both 

determining if the new learning curve equation could reduce error over Wright’s learning 

curve and if the reduction in error is statistically different across the data set. The tables 

and figures in this section show how using Boone’s learning curve equation affected the 

error in the cost estimate for each production run as well as if these results were 

statistically significant. The results showed that in both SSE and MAPE, Boone’s 

learning curve reduced the error and that each of those values were statistically 

significant when using an alpha value of .05. Chapter V will show the practical 

significance of this research as well as recommendations for the DoD cost analysis 

community, and potential follow-on research topics to further enhance our understanding 

of the effects of learning in the manufacturing process.  
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter will contain the context for the results provided in the previous 

chapter and the conclusions of the research. The significance of this research will be 

explained along with recommendations for the DoD cost analysis community and 

recommendations for further research in this area. The purpose of this thesis was to 

determine if a new learning curve model could be implemented to reduce the error in the 

cost estimates for weapon systems across the DoD. To do this, a new model was created 

that mathematically allowed for a “flattening effect” later in the production process. This 

model was then compared to Wright’s learning curve, which is the prescribed method to 

use throughout the Air Force. Along with conclusions and recommendations drawn from 

this research, the limitations of this study will also be addressed in this chapter. 

Conclusions of Research 

As stated in chapter 4 there was, on average, a 27% reduction in the SSE among 

the 46 programs analyzed. It was also concluded that these results were statistically 

significant. There was also a 17% reduction in the MAPE among the programs analyzed 

that was also found to be statistically significant. With this information we can conclude 

that Boone’s learning curve equation is able to reduce the overall error in our cost 

estimates, and allow the DoD to better allocate its resources. These conclusions answer 

the first and third question that this research set out to investigate. Also by finding that 

there is a model that is statistically more accurate throughout the production process we 

found an answer to question two. Specifically, we were looking for the point where 
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Wright’s model became less accurate than other models but found a curve that was more 

accurate throughout the entire process. By doing the comparison to Wright’s curve we 

also made the assumption that Boone’s curve was more accurate than other learning 

curves through the conclusions of previous research that stated those curves were not 

statistically better than Wright’s. We also could not directly compare Boone’s curve to 

Dejong’s curve because we did not have the incompressibility data needed for the 

analysis.  By reducing the error in the estimates and properly allocating their resources, 

the DoD could potentially save large amounts of money over time and have better 

leverage in negotiations with contractors when awarding subsequent lots. 

Limitations 

Understanding the limitations of the research conducted is important when 

drawing conclusions and making recommendations. One limitation of this study is that all 

of the 46 weapon systems used were Air Force systems. While the list included many 

platforms spanning decades, it would be hard to draw conclusions outside of the Air 

Force without further research and analysis, however there is no reason to expect Boone’s 

learning curve wouldn’t generalize to other production settings. Another limitation in this 

research is the use of PME cost as opposed to man hours. Man-hour data is not readily 

available across many platforms, which lead to the use of PME cost. Additionally, the 

programs used in this study were limited to production lot data. There are inherently less 

lots than units so this may affect how the equation behaves when used on units. For this 

research we used the lot midpoint formula/method but further research should be 

conducted to ensure that the formula operates the same way with unitary data. 
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Recommendations for Action 

By creating an add-in or macro in Microsoft Excel, the entire cost analysis 

community could have access to this learning curve method. By creating an add-in of 

some kind, it would make it easy to roll out and for cost estimators to be able to use. 

Currently, Excel makes it very simple to solve for the parameters in Wright’s curve, since 

it uses the basic form of a power function. A cost estimator can either graph the points 

and fit a trend line, or use the “linest()”  function to provide the intercept and slope 

parameters. We suggest an add-in similar to the “linest()” function be created to provide 

the intercept, slope, and decay parameters for Boone’s equation as well. Logically, the 

use of a decay variable is easy to explain to the community as it accounts for the amount 

that learning decreases over time. 

Recommendations for Future Research 

As mentioned in the limitations section there is still more research that could be 

done to ensure the analysis is robust. Data outside of the Air Force should be examined in 

order to confirm that this equation applies broadly to programs, and not just to Air Force 

programs. Also, conducting the analysis with unitary data could confirm that this works 

for predicting subsequent units as well as subsequent lots, while reducing error over 

Wright’s method. Additional research could also include modifications to Boone’s 

formula to try and further reduce the error types listed in this research. Lastly, further 

research could examine whether the incorporation of multiple learning curve equations at 

different points in the production process would be beneficial to reducing additional error 

in the estimates. 



34 

Summary 

In conclusion, all three research questions were answered in this research. A new 

learning curve equation was created utilizing the concept of learning decay. This equation 

was tested against Wright’s learning equation to see which equation provided the least 

amount of error when looking at both the sum of squared errors and the mean absolute 

percent error. It was found that the Boone’s learning curve reduced error in both cases 

and that this reduction in error was shown to be statistically significant. With the 

understanding that Boone’s learning curve is more accurate than Wright’s, the Air Force 

could build an add-in in Microsoft Excel to be used by the Air Force cost community at 

large. Follow-on research in this field could lead to further discoveries and allow for 

broader use of this equation in the DoD cost community.  
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Appendix A: Results Boone’s MAPE 

 

PROGRAM Wright's SSE Wright's MAPE Boone SSE Boone MAPE SSE Difference MAPE Difference

B-1B COMPUTER UPGRADE PROGRAM 2.77E+03 3.4% 1.19E-05 0.0% -100% -100%

C-141A Production 7.61E+08 18.1% 3.18E-01 0.0% -100% -100%

C-5 Rel iabi l i ty Enhancement & Reengineering (RERP) 3.27E+06 1.3% 1.09E+00 0.0% -100% -100%

C-5A Production 1.60E+09 10.6% 1.74E+02 0.0% -100% -100%

Advanced Anti -Radiation Guided Miss i le (AARGM) Program 1.98E+03 2.8% 1.19E+03 1.7% -40% -40%

A-10 Aircraft Production 1.58E+07 10.8% 4.51E+05 2.1% -97% -80%

S-3A Production 2.18E+07 6.0% 7.48E+06 3.2% -66% -47%

F-22 Propuls ion (F119 Engine) 1.18E+06 3.1% 1.22E+06 3.4% 3% 7%

H1 UPGRADE Production Program - UH-1Y 4.99E+06 3.7% 3.02E+06 3.4% -39% -9%

F-15A/B Production 7.90E+06 3.9% 6.12E+06 3.6% -23% -8%

C-5 Wing Modi fication 8.20E+06 5.9% 1.77E+06 3.7% -78% -37%

F/A-18E/F Production 5.49E+06 4.6% 5.00E+06 4.0% -9% -13%

AEA - E/A-18G - Electronic Variant of the F/A-18 Aircraft 9.01E+05 5.1% 6.94E+05 4.0% -23% -23%

F-16C/D Production 6.81E+05 3.3% 1.10E+06 4.1% 62% 26%

F-14D Production 3.81E+07 5.9% 2.45E+07 4.5% -36% -24%

AEA - Prime - E/A-18G - Electronic Variant of the F/A-18 Aircraft 1.94E+06 4.6% 1.95E+06 4.6% 0% 1%

KC-135A Production 1.71E+07 6.3% 7.96E+06 4.7% -53% -26%

F-35 - Joint Strike Fighter (JSF) Program 2.78E+08 5.3% 2.17E+08 4.8% -22% -10%

MH-60S VERTICAL REPLENISHMENT HELICOPTER 1.47E+07 8.2% 5.22E+06 5.4% -65% -35%

H1 UPGRADE Production Program - AH-1Z 1.29E+07 5.5% 1.28E+07 5.4% -1% -3%

P-3C Production 2.66E+07 5.0% 2.73E+07 5.5% 2% 10%

F-22A Production 4.88E+08 5.4% 4.90E+08 5.6% 0% 5%

B-1B System 1.14E+09 6.2% 1.10E+09 5.6% -4% -9%

F-14A Production 5.00E+07 6.2% 4.89E+07 6.1% -2% -2%

C-5B Production 1.39E+09 6.4% 1.38E+09 6.4% -1% 0%

F-16A/B Production 4.01E+07 11.1% 5.45E+06 6.5% -86% -41%

F-16A/B Production Blk 25 2.12E+06 7.5% 1.57E+06 6.8% -26% -9%

A-7D Production 8.00E+06 10.1% 4.11E+06 7.6% -49% -25%

T-38A Production 1.19E+06 8.8% 1.34E+06 7.8% 13% -11%

EA-6B Production 1.06E+08 9.6% 1.05E+08 9.7% -1% 0%

AWACS Blk40/45 Upgrade 6.40E+06 10.8% 6.11E+06 9.8% -4% -9%

A-6A Aircraft Production 9.92E+08 16.3% 7.67E+07 10.0% -92% -39%

E-6A Production 1.04E+09 10.0% 1.03E+09 10.3% -1% 3%

MH-60R Naval  Hawk Hel icopter 4.95E+07 10.0% 4.98E+07 10.7% 1% 6%

F-18A Production 7.14E+08 13.6% 6.28E+08 12.9% -12% -5%

F-4B Production 1.49E+07 10.7% 1.48E+07 13.4% 0% 26%

A-6E Aircraft Production 1.81E+08 13.0% 1.78E+08 14.0% -1% 7%

JSTARS Radar Subsystem (E-8C) 1.50E+10 12.9% 1.43E+10 14.8% -5% 15%

B-2A Production 3.03E+11 21.9% 1.34E+11 16.7% -56% -24%

C-5 Avionics  Moderization Pgm 1.84E+06 17.3% 1.82E+06 18.0% -1% 4%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

MH-60R Avionics 5.99E+07 19.8% 5.69E+07 20.4% -5% 3%

F-35 Joint Strike Fighter (JSF) Program - F-135 Engine 9.63E+07 21.9% 9.45E+07 21.5% -2% -2%

T-45TS Production 1.30E+09 18.6% 1.21E+09 23.8% -7% 28%

C-17 Production 6.56E+10 22.1% 6.02E+10 24.5% -8% 11%
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Appendix B: Results SSE Difference 

  

PROGRAM Wright's SSE Wright's MAPE Boone SSE Boone MAPE SSE Difference MAPE Difference

C-141A Production 7.61E+08 18.1% 3.18E-01 0.0% -100% -100%

B-1B COMPUTER UPGRADE PROGRAM 2.77E+03 3.4% 1.19E-05 0.0% -100% -100%

C-5A Production 1.60E+09 10.6% 1.74E+02 0.0% -100% -100%

C-5 Rel iabi l i ty Enhancement & Reengineering (RERP) 3.27E+06 1.3% 1.09E+00 0.0% -100% -100%

A-10 Aircraft Production 1.58E+07 10.8% 4.51E+05 2.1% -97% -80%

A-6A Aircraft Production 9.92E+08 16.3% 7.67E+07 10.0% -92% -39%

F-16A/B Production 4.01E+07 11.1% 5.45E+06 6.5% -86% -41%

C-5 Wing Modi fication 8.20E+06 5.9% 1.77E+06 3.7% -78% -37%

S-3A Production 2.18E+07 6.0% 7.48E+06 3.2% -66% -47%

MH-60S VERTICAL REPLENISHMENT HELICOPTER 1.47E+07 8.2% 5.22E+06 5.4% -65% -35%

B-2A Production 3.03E+11 21.9% 1.34E+11 16.7% -56% -24%

KC-135A Production 1.71E+07 6.3% 7.96E+06 4.7% -53% -26%

A-7D Production 8.00E+06 10.1% 4.11E+06 7.6% -49% -25%

Advanced Anti -Radiation Guided Miss i le (AARGM) Program 1.98E+03 2.8% 1.19E+03 1.7% -40% -40%

H1 UPGRADE Production Program - UH-1Y 4.99E+06 3.7% 3.02E+06 3.4% -39% -9%

F-14D Production 3.81E+07 5.9% 2.45E+07 4.5% -36% -24%

F-16A/B Production Blk 25 2.12E+06 7.5% 1.57E+06 6.8% -26% -9%

AEA - E/A-18G - Electronic Variant of the F/A-18 Aircraft 9.01E+05 5.1% 6.94E+05 4.0% -23% -23%

F-15A/B Production 7.90E+06 3.9% 6.12E+06 3.6% -23% -8%

F-35 - Joint Strike Fighter (JSF) Program 2.78E+08 5.3% 2.17E+08 4.8% -22% -10%

F-18A Production 7.14E+08 13.6% 6.28E+08 12.9% -12% -5%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

F/A-18E/F Production 5.49E+06 4.6% 5.00E+06 4.0% -9% -13%

C-17 Production 6.56E+10 22.1% 6.02E+10 24.5% -8% 11%

T-45TS Production 1.30E+09 18.6% 1.21E+09 23.8% -7% 28%

MH-60R Avionics 5.99E+07 19.8% 5.69E+07 20.4% -5% 3%

JSTARS Radar Subsystem (E-8C) 1.50E+10 12.9% 1.43E+10 14.8% -5% 15%

AWACS Blk40/45 Upgrade 6.40E+06 10.8% 6.11E+06 9.8% -4% -9%

B-1B System 1.14E+09 6.2% 1.10E+09 5.6% -4% -9%

F-14A Production 5.00E+07 6.2% 4.89E+07 6.1% -2% -2%

F-35 Joint Strike Fighter (JSF) Program - F-135 Engine 9.63E+07 21.9% 9.45E+07 21.5% -2% -2%

A-6E Aircraft Production 1.81E+08 13.0% 1.78E+08 14.0% -1% 7%

C-5 Avionics  Moderization Pgm 1.84E+06 17.3% 1.82E+06 18.0% -1% 4%

E-6A Production 1.04E+09 10.0% 1.03E+09 10.3% -1% 3%

C-5B Production 1.39E+09 6.4% 1.38E+09 6.4% -1% 0%

H1 UPGRADE Production Program - AH-1Z 1.29E+07 5.5% 1.28E+07 5.4% -1% -3%

EA-6B Production 1.06E+08 9.6% 1.05E+08 9.7% -1% 0%

F-4B Production 1.49E+07 10.7% 1.48E+07 13.4% 0% 26%

AEA - Prime - E/A-18G - Electronic Variant of the F/A-18 Aircraft 1.94E+06 4.6% 1.95E+06 4.6% 0% 1%

F-22A Production 4.88E+08 5.4% 4.90E+08 5.6% 0% 5%

MH-60R Naval  Hawk Hel icopter 4.95E+07 10.0% 4.98E+07 10.7% 1% 6%

P-3C Production 2.66E+07 5.0% 2.73E+07 5.5% 2% 10%

F-22 Propuls ion (F119 Engine) 1.18E+06 3.1% 1.22E+06 3.4% 3% 7%

T-38A Production 1.19E+06 8.8% 1.34E+06 7.8% 13% -11%

F-16C/D Production 6.81E+05 3.3% 1.10E+06 4.1% 62% 26%
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Appendix C: Results MAPE Difference 

 

  

PROGRAM Wright's SSE Wright's MAPE Boone SSE Boone MAPE SSE Difference MAPE Difference

C-141A Production 7.61E+08 18.1% 3.18E-01 0.0% -100% -100%

B-1B COMPUTER UPGRADE PROGRAM 2.77E+03 3.4% 1.19E-05 0.0% -100% -100%

C-5A Production 1.60E+09 10.6% 1.74E+02 0.0% -100% -100%

C-5 Rel iabi l i ty Enhancement & Reengineering (RERP) 3.27E+06 1.3% 1.09E+00 0.0% -100% -100%

A-10 Aircraft Production 1.58E+07 10.8% 4.51E+05 2.1% -97% -80%

S-3A Production 2.18E+07 6.0% 7.48E+06 3.2% -66% -47%

F-16A/B Production 4.01E+07 11.1% 5.45E+06 6.5% -86% -41%

Advanced Anti -Radiation Guided Miss i le (AARGM) Program 1.98E+03 2.8% 1.19E+03 1.7% -40% -40%

A-6A Aircraft Production 9.92E+08 16.3% 7.67E+07 10.0% -92% -39%

C-5 Wing Modi fication 8.20E+06 5.9% 1.77E+06 3.7% -78% -37%

MH-60S VERTICAL REPLENISHMENT HELICOPTER 1.47E+07 8.2% 5.22E+06 5.4% -65% -35%

KC-135A Production 1.71E+07 6.3% 7.96E+06 4.7% -53% -26%

A-7D Production 8.00E+06 10.1% 4.11E+06 7.6% -49% -25%

B-2A Production 3.03E+11 21.9% 1.34E+11 16.7% -56% -24%

F-14D Production 3.81E+07 5.9% 2.45E+07 4.5% -36% -24%

AEA - E/A-18G - Electronic Variant of the F/A-18 Aircraft 9.01E+05 5.1% 6.94E+05 4.0% -23% -23%

F/A-18E/F Production 5.49E+06 4.6% 5.00E+06 4.0% -9% -13%

T-38A Production 1.19E+06 8.8% 1.34E+06 7.8% 13% -11%

F-35 - Joint Strike Fighter (JSF) Program 2.78E+08 5.3% 2.17E+08 4.8% -22% -10%

F-16A/B Production Blk 25 2.12E+06 7.5% 1.57E+06 6.8% -26% -9%

H1 UPGRADE Production Program - UH-1Y 4.99E+06 3.7% 3.02E+06 3.4% -39% -9%

AWACS Blk40/45 Upgrade 6.40E+06 10.8% 6.11E+06 9.8% -4% -9%

B-1B System 1.14E+09 6.2% 1.10E+09 5.6% -4% -9%

F-15A/B Production 7.90E+06 3.9% 6.12E+06 3.6% -23% -8%

F-18A Production 7.14E+08 13.6% 6.28E+08 12.9% -12% -5%

H1 UPGRADE Production Program - AH-1Z 1.29E+07 5.5% 1.28E+07 5.4% -1% -3%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

B-58A Production 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

F-35 Joint Strike Fighter (JSF) Program - F-135 Engine 9.63E+07 21.9% 9.45E+07 21.5% -2% -2%

F-14A Production 5.00E+07 6.2% 4.89E+07 6.1% -2% -2%

C-5B Production 1.39E+09 6.4% 1.38E+09 6.4% -1% 0%

EA-6B Production 1.06E+08 9.6% 1.05E+08 9.7% -1% 0%

AEA - Prime - E/A-18G - Electronic Variant of the F/A-18 Aircraft 1.94E+06 4.6% 1.95E+06 4.6% 0% 1%

MH-60R Avionics 5.99E+07 19.8% 5.69E+07 20.4% -5% 3%

E-6A Production 1.04E+09 10.0% 1.03E+09 10.3% -1% 3%

C-5 Avionics  Moderization Pgm 1.84E+06 17.3% 1.82E+06 18.0% -1% 4%

F-22A Production 4.88E+08 5.4% 4.90E+08 5.6% 0% 5%

MH-60R Naval  Hawk Hel icopter 4.95E+07 10.0% 4.98E+07 10.7% 1% 6%

A-6E Aircraft Production 1.81E+08 13.0% 1.78E+08 14.0% -1% 7%

F-22 Propuls ion (F119 Engine) 1.18E+06 3.1% 1.22E+06 3.4% 3% 7%

P-3C Production 2.66E+07 5.0% 2.73E+07 5.5% 2% 10%

C-17 Production 6.56E+10 22.1% 6.02E+10 24.5% -8% 11%

JSTARS Radar Subsystem (E-8C) 1.50E+10 12.9% 1.43E+10 14.8% -5% 15%

F-16C/D Production 6.81E+05 3.3% 1.10E+06 4.1% 62% 26%

F-4B Production 1.49E+07 10.7% 1.48E+07 13.4% 0% 26%

T-45TS Production 1.30E+09 18.6% 1.21E+09 23.8% -7% 28%
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Appendix D: Wright vs Boone Comparison Examples 
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