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Abstract 

The ability to test and evaluate spacecraft designs is limited by the challenges of 

getting to (and operating in) the mission environment, and thus modeling and simulation 

is one way the space industry drives down risk and assists development of new 

technologies. The more accurate these models and simulations become, the more useful 

they are to the designer. While there are many choices for orbital propagation software, 

there are not many that allow dynamic modeling of both the spacecraft (to include its 

mode states) and its interactions with the environment in which it operates. The 

environmental model includes the spacecraft’s orbit and spatial relationship to other 

agents in the simulation as well as non-agent entities such as planets and stars. The in-

house AFIT modeling and simulation software, the Logic-Based Mission Modeling Tool 

(LMMT), has introduced the capability of behavior-based modeling by defining the 

spacecraft’s modes as logical states in a state machine, however, in its current form it 

does not allow for changes the satellite or other entities may make in how they interact 

with the environment in which it operates.  

This thesis research evaluates the usefulness of dynamic modeling as compared 

with static modeling (such as that which is already possible with the LMMT). When 

changes occur which make the spacecraft’s method of interacting with the environmental 

model no longer relevant, due to either spacecraft mode changes or other agents in the 

simulation, the model should be dynamically updated to include these changes by means 

of repropagating the environmental model.  

This research’s focus is to ideate and then evaluate a subset of use-cases that 

would create changes in the environmental model. Through this research, it is hoped to 

develop a method for identifying when a static model such as the LMMT should be 

utilized versus a dynamic model such as that developed specifically for this research.  
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DYNAMIC LOGICAL MISSION MODELING TOOL 
 

I Introduction 

1.1 Overview 

The challenges of operating a spacecraft in its design environment and the barriers 

to entering space itself have always made spacecraft design a fertile ground for 

constructing and evaluating models and simulations, and it is this modeling and 

simulation effort that this research focuses on. As is stated in Simulation Modeling 

Handbook: A Practical Approach [1], “Simulation modeling and analysis is the process 

of creating and experimenting with a computerized mathematical model of a physical 

system.” Given the cost of testing inside the operational space environment alongside the 

difficulties of replicating the same conditions on Earth (cost-effectively or otherwise), 

modeling and simulation is a valuable addition to most missions. Currently, however, 

commercial orbital propagation software available to space professionals has limited or 

no capability to handle logical decision-making effects. This research focuses on 

considering the possibilities afforded by software which allows such logical decision-

making to have direct impacts upon the environmental model (as defined later).  

Very few missions today utilize spacecraft that are only ever in one mode of 

operation. And, as may be intuitive, the more accurate a model is, the more useful and 

pertinent the predictions produced will be and thus the more-informed decisions based off 

those predictions will be. As discussed above, commercial orbital propagation software 

has limitations regarding its ability to include logical decision-making capabilities within 

the simulations themselves. Software such as Analytical Graphics, Inc.’s Systems 
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ToolKit (STK) [2], The Aerospace Corporation’s Satellite Orbit Analysis Program [3], or 

code written in MATLAB does not typically provide a comprehensive method to evaluate 

an on-orbit spacecraft as it proceeds through differing modes of operation. Therefore, in 

the course of this research, a feedback mechanism is developed which will allow a model 

to change how the spacecraft interacts with the environment and vice versa over the 

course of a simulation, with the goal of better reflecting the actual operation of a 

spacecraft. This dynamic approach to modeling can then be utilized to evaluate whether a 

dynamic or static approach is better suited to the chosen use-cases as they exhibit 

expected spacecraft behaviors.  

By allowing a model to logically decide how it will respond to certain stimuli or 

triggers in the environment in a dynamic fashion (e.g. when a UAV enters an airspace, a 

targeting radar switches from search mode to target track mode) extra information can be 

gained from the simulation about the suitability of the chosen concept of operations 

(CONOPS) for the system. In the actual operational life of a system, responses to the 

environment are not made in a void where nothing in the environment responds back or 

changes. The architecture built by three prior AFIT students [4–6] as a result of their 

thesis research serves as a solid foundation for further research into this area, and the 

focus of this research is to ideate and then evaluate a subset of use-cases that create 

changes in the environmental model. This research will first build a new capability onto 

the existing ones provided by the Logic-Based Mission Modeling Tool (LMMT) [6]; a 

feedback mechanism which can drive an ‘environmental repropagation’ or a regeneration 

of the data provided by the environmental model (as defined in the following section). 

Following this, a non-inclusive list of events and/or actions by an agent which would 
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have an impact on how the spacecraft interacts with the environmental model during a 

simulated spacecraft mission are conceived. A subset of these events and/or actions is 

chosen to be replicated in use-cases to be evaluated by the software, and conclusions are 

drawn determining what sort of modeling projects would benefit from a dynamic 

approach as opposed to the simpler static approach. 

1.2 Definitions 

To add some clarity to this research endeavor, a brief glossary of key terms used 

and their meaning in the context of this research follows. Throughout this thesis, where 

any term’s definition may be in question, italicization will denote that the definition listed 

below is to be used. These definitions are not by any means considered standard or 

widely-used throughout the modeling world. Environmental Model in particular is simply 

a chosen set of words to reflect a concept that was otherwise not easily explained in a 

clear and concise manner. 

Mode: a state of operation of a system, specifying certain actions or responses to stimuli 

(e.g. during Survival, the spacecraft’s attitude and determination control subsystem 

(ADACS) will be powered down and the spacecraft will tumble). Jewell [5] took a 

different approach and delineated a difference between the ‘state’ of a system and 

‘mode,’ which is deemed unnecessary for this particular research’s purposes. ‘Mode 

state’ is sometimes used to illustrate this blending. 

State Machine: a logic-based decision-making set of triggers and responses that allows 

an agent’s behavior to be regulated by a series of rules derived from the desired concept 

of operations (CONOPS), operating in discrete time steps 
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Agent: a system or subsystem whose actions or interactions could be governed by a state 

machine (e.g. a satellite, a subsystem, a ground station) 

Environmental Model: the model that replicates the physical world in order to govern 

how agents interact within a simulation (e.g. orbit propagator, RF link suite, weather 

model), to be held as distinct from the model of the system, such as the satellite or other 

agent 

1.3 Background 

This section begins by providing the reader more depth about modeling and 

simulation, further developing this research’s validity of purpose. Next, an overview of 

prior AFIT students’ research into this area, with an emphasis on the software this 

research is built upon is provided. The section concludes with a high-level discussion of 

what a state machine is and how it applies to modeling spacecraft behavior. This provides 

the reader a better understanding of the type of models which form the logical decision-

making segment of the software this research focuses on.  

1.3.1 Modeling and Simulation 

Modeling and simulation, as a tool for risk reduction and design validation, has 

been heavily leveraged by the space community because of the operationally challenging 

environment most spacecraft face as well as the high cost of entry into that environment 

(i.e. cost of launch) [7]. Beyond the expense of the materials and electronics suitable for 

the space environment, launch costs run in the thousands per kilogram. SpaceX’s Falcon 

9 [8] can launch to geostationary transfer orbit at ~$11,300 per kilogram while the United 

Launch Alliance’s Atlas V [9] can launch to the same orbit at ~$18,600 per kilogram. 
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This price gets even more expensive when measured not by pure, amorphous mass but by 

mass and volume, which is a more relevant/realistic measure of launch cost. When 

measured in units of CubeSat volume (with one U equal to a 10x10x10cm cube [10]), one 

12U, 20 kg spacecraft costs nearly $3M to launch into the same geostationary transfer 

orbit [11], and this is while using a ride-share program to save on costs. Clearly, there are 

severe entry barriers to getting into space.  

According to Space Mission Engineering [7], modeling is “the art and science of 

creating virtual builds (or, models) of systems of varying complexity and levels of 

integration.” Simulation then refers to evaluating how a model changes/interacts over 

time. The text continues, “Today’s space systems are designed and deployed in the 

context of existing surface-based and space-based systems. Interactions within the subject 

mission and with these existing systems should be exercised early and often…” 

Furthermore, “It is rarely practical to exercise an end item or test article in the full 

mission environment and durations before committing it to space deployment and fielded 

service.” As discussed at the beginning of this subsection, to even get into actual space 

incurs a program severe cost penalties, which apply whether the spacecraft is intended for 

operational use or just for testing. But even once there, the spacecraft is subjected to a 

variety of hardships not easily replicable on earth (i.e. vacuum, thermal loading, 

radiation, etc.). As a result, models are used to gain insight into predicted behavior of 

designs and stretch limited resources further. Given that modeling and simulation are 

firmly entrenched in the space industry, improving the fidelity of these models is an area 

of continuing research, including this research.  
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1.3.2 AFIT Student Efforts Overview 

Students of the Air Force Institute of Technology (AFIT) have been designing and 

refining a suite of spacecraft-specific modeling tools written in MATLAB since 2012 

[12]. The latest three of these produced the pieces of and then the integrated software 

suite of the LMMT [4–6]. These efforts have resulted in a software suite that leverages 

the simulation capabilities of Simulink, the analytical and display capabilities of 

MATLAB proper, and the logic-based decisions capability afforded by Stateflow. Most 

recently, Loudermilk [6] combined the logical decision capabilities of the CubeSat State 

Analysis Tool (CSAT) [5] with the analytical processing of the Mission Modeling Tool 

(MMT) [4]. Driven by an initial (and importantly, static) set of data reports from STK, 

the integration of both tools into a single software suite allowed Loudermilk to pave the 

way for further research into mode-based CubeSat mission analysis. More information on 

the initial CSAT and MMT can be found later in this thesis, in their respective 

developers’ theses, and, most recently, in Loudermilk’s thesis, A Logic-Based Mission 

Modeling Tool for Designing CubeSats [6]. More details about the lineage of these efforts 

is found in Section 2.2 and Table 1. 

1.3.3 Finite State Machine 

This subsection draws on knowledge and definitions provided in the Encyclopedia 

of Computer Science and Technology [13]. Finite-State Machines (or more simply, state 

machines) are ways of looking at a system as a black box with a discrete number of input 

and output ports. This concept applies whether the system being modeled is defined as 

software, hardware, or some sort of hybrid. In respect to spacecraft modeling, these 
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systems are the modes in which a spacecraft exists. The action of the system (the 

response to inputs) is constrained to occur at discrete time-steps, which is important to 

note when constructing these models in environments such as Stateflow/Simulink, which 

can only process actions in discrete time steps. State machines, therefore, fit well into this 

constraint/design consideration. While not as “strong” as the Turing model of computing, 

state machines prove useful in modeling the behavior of systems that react to outside 

stimuli in a consistent and pre-planned fashion. Simply stated, the “strength” of a 

computational model is a measure of its ability to solve problems. Turing models can be 

described as abstract computational models which are the most capable; able to solve any 

problem [that is solvable by means of an algorithm].  

 
Figure 1: Relative Complexity of Classes of Automata –  Further-Out Layers are 

More Complex/More Capable [14] 

Modeling spacecraft, however, allows the use of the lower-tier (as relative to the 

graphic in Fig. 1) state machine class as there are indeed only a finite series of states the 

spacecraft can be in. State machines can be used to represent the spacecraft in its entirety 
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or can be nested in layers to represent individual subsystems; each different state defined 

by the logic it uses to process the inputs and outputs it receives and produces. In this 

research, the spacecraft’s modes are represented as states, with triggers leading to entry 

and exit from each state and actions accomplished while in that specific mode state. For 

example, the spacecraft will enter SunSafe mode state when the battery depth of 

discharge reaches a set, user-input, level. State machines accurately and efficiently model 

the behavior of a spacecraft which operates within a predefined set of modes. 

1.4 Problem Statement 

This thesis research evaluates the usefulness of dynamic modeling as compared 

with static modeling (such as that which is already possible with the LMMT). When 

changes occur that make the spacecraft’s interactions with the environmental model no 

longer relevant, due either to the spacecraft’s actions (such as spacecraft maneuvers) or 

that of other agents in the simulation, the environmental model should be updated and 

repropagated to account for these changes. This research’s focus is to ideate actions and 

events that would create changes in the spacecraft’s interactions with the environmental 

model and then evaluate a subset of these actions in use-cases via a software which 

includes the capability to repropagate the environmental model. Through this research, it 

is intended to develop a method for identifying when a static model such as the LMMT 

should be utilized versus a dynamic model such as that developed specifically for this 

research.  
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1.5 Methodology 

1.5.1 Research Objective 

The research’s objective is to develop a method of identifying when a dynamic 

modeling approach would provide more value than a simpler static approach to spacecraft 

modeling. Included in this objective is the development of software that will add the 

capability to dynamically model and simulate a spacecraft over a given mission, 

repropagating the environmental model autonomously when necessary. This software will 

allow use-cases to be run to illustrate some of the possible actions or events which would 

invite repropagation. The LMMT does not (by design) allow for any changes to its 

environmental model data as the original desire during its inception was to develop a 

‘fast’ simulation which still included the orbital propagation and behavior [12]. It does, 

however, form a starting point from which additional repropagations can be introduced 

into the model. 

1.5.2 Scope, Assumptions, and Limitations 

There are three primary limiting factors in this research.  

• The decision-making that goes into what change in the satellite model is 

significant enough to justify repropagation will not be investigated in this 

research. It should be left up to the individual spacecraft designer to determine 

what necessitates repropagation and when said repropagation should occur. 

For this research, a set of mode changes deemed ‘significant’ is selected and 

implemented.  



10 

• Although more than just spacecraft mode changes may give impetus to 

repropagate the environmental model (i.e. mobile ground stations, moving 

targets) this research will not provide them the separate state machines that 

would be necessary to allow them to drive repropagations, nor will this 

research include them in the environmental model. 

• The calculations made within the framework of the MMT 2015 (the 

MATLAB post-processing work) have not been validated [6], and this 

research does not seek to do so. Whatever values provided to the state 

machine side of the LMMT are assumed to have been derived correctly for the 

purposes of this research.  

1.6 Thesis Overview 

 This thesis follows a five-chapter format. This section concludes Chapter 1: 

Introduction and Background. A review of the relevant literature and others’ research is 

provided in Chapter 2 in order to frame the research in its appropriate context, and 

Chapter 3 discusses the methodology and means by which the research was conducted. 

Chapter 4 provides the reader with the results of the use-cases chosen to demonstrate the 

new software’s functionality and discusses their behavioral repercussions of certain 

design choices. Chapter 5 presents the larger significance of the results in Chapter 4, 

discusses remaining work, suggests future research, and concludes the thesis. 
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II Literature Review 

2.1 Chapter Overview 

First, this chapter will discuss the software this research is built upon, the LMMT, 

to include a more in-depth look at the two progenitors of the LMMT and a discussion of 

similar software capabilities provided by a commercial modeling plug-in to STK. The 

chapter concludes with a discussion of AGI’s AMOEBA plug-in, which seeks to utilize 

state machines and a commercial simulation tool kit to accomplish many of the same 

aims as this research. The AMOEBA initiative, which was not available for evaluation 

and testing at the time of this research, was a driving consideration in developing the 

focus of this research. 

2.2 Foundational Software 

This section details the LMMT and the two immediately-preceding efforts that led 

to its creation. Additionally, a table is provided below cataloging the complete efforts of 

the AFIT ENY spacecraft modeling and simulation effort as begun in 2006 with Project 

Insight [15].  Table 1 presents a list of the previous thesis work on the AFIT modeling 

efforts starting from 2006. Efforts are generally listed in chronological order when 

applicable – when multiple theses were completed in the same year, they are listed 

alphabetically with respect to their author.  
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Table 1: Timeline of AFIT Spacecraft Modeling Efforts 

Thesis/Effort Primary Author/Researcher Year 
Project Insight: Threat Modeling And 

Assessment For Earth-Orbiting Satellites [15] Reed M. Bond et al. 2006 

A Simulink Based Tool for Design Reference 
Mission Modeling [16] Jusdon E. McCarty 2010 

A Colony II CubeSat Mission Modeling Tool 
[17] Blythe Andrews 2012 

Electrospray Propulsion Interface and Mission 
Modeling for CubeSats [18] Angela Hatch 2012 

Applying Model-Based Systems Engineering 
to CubeSats: A Tailored Approach for a 

Reusable State Analysis Tool [5] 
Benjamin A. Jewell 2015 

A CubeSat Mission Modeling Tool [4] Heather M. Udell 2015 
A Logic-Based Mission Modeling Tool for 

Designing CubeSats [6] Joshua R. Loudermilk 2016 

 

2.2.1 The Mission Modeling Tool 2015 

Udell [4] upgraded the Mission Modeling Tool from the uncompiled standalone 

computer-based research code that it was into a MATLAB-based classroom-ready tool 

for students to analyze CubeSat designs and architectures. Originally written with the 

Colony II bus (as designed by Boeing) in mind, Udell updated the MMT to remove many 

of the elements that were hard-coded to specifics of the Colony II bus, allowing for a 

wider range of CubeSat designs to be evaluated. The MMT 2015 would take a set of STK 

scenario data and post-process it, generating plots detailing various telemetry data points 

of interest to the modeler and demonstrating if the chosen design met the chosen mission 

parameters. Modes were not so much switched between as triggered on and off based on 

values that were set by the modeler. For instance, the bus voltage could be set such that 
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when a certain value was passed, the MMT would report the satellite in ‘Survival Mode’. 

No changes to either the satellite or the environmental model would occur, and the 

simulation would continue logging data. Should the voltage rise above the threshold level 

again, the satellite would be logged as no longer existing in Survival Mode. As Udell 

wrote, “In an actual mission, the modeler would not want the satellite to eternally switch 

between these two modes. Instead, they would want the satellite to stay in one mode or the 

other long enough to recharge the batteries, reset, or otherwise correct the issue. However, 

the MMT is designed merely to indicate potentially detrimental orbit conditions or 

improperly sized hardware early in the design process. Any triggering of sun safe, and 

especially of survival mode, signifies that there is a problem with the design that needs to be 

resolved.” The intent of the MMT 2015 was not to evaluate CONOPS choices or the response 

of the satellite in a hierarchical mode structure. In Loudermilk’s modification, the MMT 

2015 essentially became the trigger generator for the CSAT state machine, replacing the task 

list and adding further realism to the simulation.  

 While STK proper does not allow for the sort of calculations the MMT 2015 

provides to the LMMT, a plug-in is available called SOLIS [19]. This third-party 

software from Advanced Solutions Inc. allows a long list of modeling and simulation 

techniques to be run inside the STK environment, as detailed in the list on their website 

[19]. For example, under the Attitude Determination Modeling, the plug-in touts its 

ability to model sun sensors, horizon sensors, rate sensors, magnetometers, and star 

trackers with options for perfect attitude determination, fixed-gain filters, and/or Kalman 

filters being applied.  
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SOLIS is a relatively new plug-in, first introduced in 2011 [20], and new features 

are being added as they are coded and tested, so in a few years it is planned to be even 

more capable. However, even with the added capability, SOLIS will not be suitable for 

the focus of this research, as it does not support STK Connect scripting (as of this 

writing). Due to the autonomous nature of the desired feedback loop, some sort of script-

based initialization is a required feature. 

2.2.2 CubeSat State Analysis Tool (CSAT) 

Jewell’s thesis [5] led to the state machine controller of the LMMT. Jewell 

created a working model of a satellite bus and its operations based on a representative 

CubeSat mission within Stateflow/Simulink, and the CSAT was the result. Applying 

Model-Based Systems Engineering principles, Jewell created a tool that provided 

“reusable states, modes, and logic in a CubeSat modeling framework.” One drawback 

that Jewell had to contend with was that by running the state machine as a standalone 

simulation, the operator had to inject change events and triggers manually into a ‘task 

list’ to validate how the logical models interacted. Loudermilk, when integrating the 

CSAT into the MMT architecture, was able to do away with manual triggering by setting 

up the MMT to provide the necessary injects to the state machine at each discrete step 

throughout the simulation.  

2.3 The Logic-based Mission Modeling Tool 

Because this research is built upon the work done to produce the LMMT, a 

description of its evolution is provided in this section and its subsections. In Swartwout’s 

article [21], it is noted that the vast majority of the failed CubeSat missions were 
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university-led projects, and, more tellingly, nearly half of all university-led CubeSat 

missions (even of just those that reach orbit) fail to achieve mission success. The 

information provided in this 2013 article was cited as a driving consideration for several 

of the student research efforts into developing software that could be used at government 

locations (to include AFIT) to help design and model CubeSats. The latest generation of 

these efforts is the LMMT; designed and coded by Loudermilk [6] in the Spring of 2015. 

The LMMT allows a student to test a specified physical design against a basic mission as 

outlined in an STK scenario that is run prior to the simulation. Given the inherent 

simplicity of the LMMT framework, it could serve to help size major components for 

initial design and a first-pass look at requirements. However, because the LMMT only 

requires one run of STK and its reports, it cannot incorporate and propagate any changes 

in the environmental model (as discussed in Section 1). This research seeks to evaluate if 

this can be changed. 

2.3.1 LMMT: High-level Operation 

Loudermilk’s [6] LMMT ingests data reports generated by STK (with the reports 

being run prior to the simulation) at the beginning of each simulation run and then 

references the information at each time step along the simulation. This data remains static; 

following the initial ingest nothing more is done with the environmental model data files. 

The content of these data files includes the sun and moon vectors, ground station access, 

target-in-view windows, and the attitude and ephemeris of the spacecraft. These files are 

the only means by which the spacecraft model can ‘see’ the outside world. Once the initial 

generation scenario has been run in STK and the requisite reports generated, the 
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environmental model data is treated as unchanging – referenced but never regenerated. The 

focus of this research is to test the feasibility of a method that would allow this data to 

remain relevant by providing the capability to repropagate (where needed) during the 

simulation itself. Since the LMMT was initially two pieces of software that were integrated 

together (the MMT 2015 [4] and the CSAT [5]), this thesis will refer to one portion or the 

other as separate elements, even though they are fully integrated and work seamlessly 

together to produce the outputs from LMMT. The former CSAT can be thought of as the 

logical “brain” of LMMT, and will henceforth in this thesis be referred to as the logical 

side or the state machine. The former MMT 2015 can be thought of as a series of 

calculations that are run at each time step (which, for this research, is set to 60 seconds) 

utilizing the environmental model data, preparing higher-level values such as battery depth 

of discharge from said raw data and modeler inputs detailing the spacecraft’s physical 

characteristics. Loudermilk, while integrating the MMT 2015 and CSAT, highlighted 

modeler input locations in blue in the software (see Fig. 2 as an example), and this 

convention continues to be utilized in this research.  
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Figure 2: Close-up of Blue Modeler-Input Block in EPS, DyLoMMT 

(Simulink screenshot) 

These modeler inputs are what allow the modification of the software to fit 

new/different designs and provides a flexibility that greatly aids in the design and 

development process. Also of note is that the LMMT software is designed to be opened, 

values for the spacecraft entered, and then a simulation run of the model – in that order. 

The environmental model creation and data report generation have to be accomplished 

prior to running the MATLAB/Simulink simulation, in a related but unconnected process.  

2.3.2 LMMT: Pre-Simulation Initialization Stage 

Before any simulation run can be started in LMMT, the modeler first generates a 

mission-representative environmental model. Loudermilk provided an excellent user’s 

guide [22] describing how to use the STK graphical user interface (GUI) to generate 

basic scenarios and, even more helpfully, how to produce the specific reports the LMMT 

relies upon for its environmental model data. After the reports are generated correctly 

(formatted to meet the specific guidelines described in the How to Use Manual [22]), the 
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modeler places them into the folder the LMMT is expecting, and processes them (by 

means of provided code) into a format recognizable by the rest of the software. The 

modeler then opens (as opposed to runs) the LMMT Simulink model and adjusts the 

physical parameters of the spacecraft inside the model.  

Once both the environmental model and physical model have been input into the 

LMMT (the former through creation and processing of reports, the latter by direct entry 

into the LMMT model in Simulink), the modeler can now actually run the LMMT 

simulation – the logical state machine operations and concurrent data calculations. 

2.3.3 LMMT: Logical Processing 

The logical “brain” of the LMMT is a series of interconnected states diagrammed 

in a Stateflow chart as seen in Fig. 3 and fed through the Simulink simulation in 

accordance with the wiring as seen in Fig. 4. It is this state machine (Fig. 3) that decides 

which mode the spacecraft should exist in at each time step, as defined by its logic (as it 

evaluates the higher-level values provided for it by the ongoing calculations). The 

calculations are generated by means of various Simulink block diagrams and the 

occasional MATLAB function block when more complicated mathematical operations 

are desired. These calculations are leveraged again in the DyLoMMT; mostly in their 

original format, as discussed in the research limitations (Section 1.5.2). 
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Figure 3: Full State Machine Diagram, LMMT  

(Stateflow screenshot) 
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Figure 4: Wiring Diagram of State Machine, LMMT 

(Simulink screenshot) 
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2.4 AGI’s AMEOBA Plug-in 

Haun [23] (of AGI) has conceptualized and then led the development of a plug-in 

for STK that allows the environmental model to interface with a No Magic product called 

Cameo Systems Modeler [24], running its Cameo Simulation Toolkit [25]. “Cameo 

Systems Modeler ™ is an industry leading cross-platform collaborative Model-Based 

Systems Engineering (MBSE) environment, which provides smart, robust, and intuitive 

tools to define, track, and visualize all aspects of systems in the most standard-compliant 

SysML models and diagrams.” The Cameo Simulation Toolkit plug-in plays a role in 

allowing the models to be run within the Cameo Systems Modeler – all of which gives 

AMEOBA the state machine functionality that Stateflow provides the LMMT.  

The AMOEBA plug-in functions by means of a series of state machines built 

inside Cameo Systems Modeler which control their respective agent’s behavior inside the 

STK environmental simulation. This constant feedback system is accomplished with the 

assistance of the AMOEBA plug-in’s Information Layer, which allows the Cameo state 

machines to be built using a language such that environmental stimuli or triggers will be 

read into Cameo from STK and commands from the various agent’s state machines will 

be translated back into commands that STK can interpret and act upon. The Information 

Layer serves as a library of terms that can be used to port information back and forth 

between Cameo’s state machines and the STK environmental model simulation, allowing 

modelers not fluent in Java programming to use the same interface without having to 

code their own ‘translators’. This effort will allow Cameo and STK to communicate more 

seamlessly, much like the methods already developed for the MATLAB/STK connection 

[26] that are leveraged in this research.  
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2.5 Other State-Machine-Driven Software Suites 

As of this writing, no other commercially-available satellite design suites that are 

driven by state machines have been found. It is thought, however, that many major 

satellite development programs utilize some level of state behavioral analysis during their 

design and test phase, but due to the proprietary nature of many satellite designs, their 

approaches are not openly advertised. What has been discovered is presented below.  

Some university satellite design programs discuss using state machines to model 

the behavior of their spacecraft or subsystems therein. For example, a NASA PowerPoint 

presentation [27] describes a CubeSat systems engineering example (that of the 

AubieSat-1 from Auburn University’s Student Space Program) where state machines are 

suggested as a modeling technique to assist the designers in the down-selection and 

optimization processes.  

In their book Solar Tracking, Prinsloo and Dobson [28] suggest automating solar 

tracking control systems with state machines, which would correspondingly be easily 

modeled by the same. Furthermore, model checking methods work by representing the 

software as state machines [29], and this task is made easier if the model is already 

represented as such.  

The presumption that state machines are indeed a useful tool for modeling 

spacecraft is supported by Kaslow’s [30] work with the International Council of Systems 

Engineering’s (INCOSE) Space Systems Working Group. The group has set out a path 

toward providing a CubeSat reference model in which state diagrams are used to model 

“behavior in response to internal and external events.”  The trend is indeed toward 
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utilizing state machine modeling in conjunction with environmental models to replicate 

on-orbit behaviors.  

Given these examples, it is presumed that state machines will continue to be used 

to model the behaviors of spacecraft in academia and industry. The next step is seen as 

introducing the ability to dynamically model these states and any changes they may 

introduce to the environmental model; this research seeks to identify when this new 

approach should be considered. 

2.6 Summary 

This chapter discussed the foundational efforts that the research software 

developed here was based upon in order to provide a background on the previous work in 

the area of spacecraft modeling and simulation. Extra information was provided on the 

immediate predecessor to the DyLoMMT (the LMMT) as it provides much of the 

functionality of the new software and because its merits are reviewed in the conclusions 

of this thesis. This chapter also summarized the findings of other software using state 

machine modeling of spacecraft, most notably the AGI AMEOBA plug-in, whose fully-

dynamic approach to modeling provided the impetus to engage upon this research. With 

ever-increasing options for dynamic modeling available, answering the question of when 

or in what cases is dynamic modeling desired/required becomes ever more pertinent. 
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III Methodology 

3.1 Chapter Overview 

The purpose of this chapter is to discuss how the research objective from 

Subsection 1.5.1 is addressed: identifying when a dynamic or static modeling approach 

should be chosen. To achieve this objective, it is necessary to develop software which 

will allow the capability of using either a dynamic or static approach to model spacecraft 

behaviors, and this effort will be briefly discussed in this chapter. The chapter begins 

with sections detailing the two commercial software programs (STK and MATLAB) that 

this research utilizes to accomplish its goal (Fig. 6). Of note to the reader is that these 

software programs are needed only in terms of their functionality (i.e. environmental 

model propagation and state machine logic/calculations, respectively). Any other 

software capable of performing these functions as defined within this research could be 

used in their stead, and this idea is discussed further at the end of each of software 

sections. When discussing the software in terms specific to the configuration used in this 

research, the respective name (e.g. STK) is used. However, when relating to these 

programs in their more general sense, state machine and environmental model are used 

instead with the aim to further aid outside application of this research’s presented 

information.  Figure 5 is presented as a top-level visual depiction of the concept used to 

conduct this research. 
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Figure 5: Top-Level Feedback Loop Flowchart 

The ‘Data Reports’ seen in Fig. 5 are the environmental model data used to link 

the two sides of the software together. In the case of the LMMT, this is the series of 

reports generated by STK mentioned earlier and discussed again in Section 3.2. 

Significant effort went into determining how (and in what ways) to modify the LMMT in 

order to support the research objective, but that effort is not discussed in detail in this 

thesis. The new software developed for this research is called the Dynamic Logical 

Mission Modeling Tool (DyLoMMT), paying homage to the hard work of the other 

students whose efforts it is built upon while delineating its signature difference. The 

chapter concludes with a description of the representative mission and the series of use-

cases which are used to achieve the research objective. 
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Figure 6: Two Pieces of Software Integrated Together [31] [32] 

3.2 STK 

Analytical Graphics Inc.’s [33] general mission as a company is to provide 

software to model, analyze and visualize space, defense, and intelligence systems. Their 

Systems ToolKit (STK) [2] software serves as the environmental model for the LMMT 

and plays an even bigger role in this research’s work. Billed in AGI’s STK flyer [31] as a 

physics-based modeling, simulation and analysis tool that allows visualization through its 

integrated 4D (X, Y, Z, and Time) interactive globe, STK is used in this research to 

generate text-formatted reports about target and ground station access and directional 

vectors to the Sun and the Moon. These reports are then used by the calculations side of 

the LMMT to inform logical arguments such as “target in view of payload”, or the angle 

the sun vector forms with the vector normal to the solar arrays for power generation 

[31] 

[32] 
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statistics. Again, the information these reports provide is the only way in which the 

spacecraft model can ‘see’ what is happening in the environmental model. Finally, while 

not useful to the simulation itself, the visualization capability of STK allows easier 

evaluation of the mission scenario for obvious coding errors (e.g. missing spacecraft or 

incorrectly located ground stations). While STK is the environmental model used by the 

DyLoMMT and its progenitors, any software which produces the same information that 

the DyLoMMT ingests and is capable of being autonomously controlled via scripting 

could be utilized in this capacity. The concept remains the same, although the 

connections and implementation may be completely different. 

3.3 MATLAB 

While the LMMT uses the series of initial reports from STK (Sun and Moon 

vectors, access to ground stations and targets, attitude and ephemeris, etc.) described in 

the preceding section to feed (in one direction) the spacecraft model, the main analytical 

computation of this modeling and simulation software is completed inside a software 

suite programmed over the years by several prior students [4–6]. This software suite is 

written in MATLAB and makes use of products from the Simulink family (both Simulink 

main and Stateflow). 

MathWorks is the developing company for both the MATLAB Product Family 

[34] and the Simulink Product Family [32] (which includes Stateflow [35]), and both are 

used in tandem to create the main analysis engine of the LMMT. Each of these continues 

their functions as such in this research. Self-identified as “the Language of Technical 

Computing,” MATLAB began as a large matrix manipulator and calculator (with 
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MATLAB initially standing for MATrix LABratory) and has since grown into its own 

programming language with a variety of pre-coded capabilities that are provided by 

MathWorks as add-ons, or toolboxes.  While not the most efficient of programming 

languages, MATLAB’s emphasis on data handling and more colloquial syntax make it a 

favorite among engineers who do not possess other, more traditional, programming skills. 

Simulink is a block diagram environment that runs inside MATLAB proper and is 

designed specifically to run finite time step simulations. A feature of Simulink heavily 

utilized by both the LMMT and the DyLoMMT is Stateflow, which is an environment 

that allows modeling and simulation of combinatorial and sequential decision logic, all 

based on state machines and flow charts. Stateflow forms the state machine model 

portion of the LMMT and continues to play said role in this research.  

3.4 Development of the DyLoMMT 

As part of this research was the development of a feedback mechanism that would 

allow dynamic repropagation of the environmental model, a brief discussion of the 

modifications to the LMMT are included in the following subsections. 

3.4.1 Adding Autonomy and the Feedback Mechanism 

Under the LMMT framework, the STK-generated data reports are collected once 

at the beginning of the simulation, and the STK scenario to generate them is 

accomplished by means of STK’s graphical user interface. In order for the software to 

dynamically regenerate the spacecraft’s perception of the environmental model data, this 

process needed to be automated. Using the Connect [36] library of commands available 

from AGI, a script was developed which created a full mission-representative scenario 
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and produced the necessary reports to initialize the LMMT. This code could then be 

called from other script files to enable it to be run autonomously from within the 

simulation. An example of this code is included in the Appendix. A visualization of the 

DyLoMMT running a simulation is presented in Fig. 7. 

 

Figure 7: DyLoMMT Simulation Flowchart 

These automation scripts then allowed for the logical side of the DyLoMMT to be 

modified to allow it to call for repropagations as necessary/defined by the state diagram’s 

logic. Stateflow [37], in which the state machine runs, allows outside MATLAB 

functions to be called by means of the aptly-named function-call block, which itself must 

be called by one of the operational states (Fig. 8).  
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Figure 8: Function Call Block and Calling State, DyLoMMT  

(Stateflow screenshots, combined with additions) 

 Upon the spacecraft model entering a new state/mode, the DyLoMMT calls the 

related function block and this starts a separate function script inside MATLAB. The 

Simulink part of the simulation then pauses until the completion of this function call, and 

then continues to step forward in time. This cycle continues as many times as 

commanded by the state machine until the simulation reaches the end of the scenario. 

Neither the details of these scripts, the mechanics of their function within the 

DyLoMMT, nor their development is provided in this thesis. 

3.4.2 The Processing Capabilities of the LMMT and the new DyLoMMT 

In between pauses to change the environmental model data, the calculation side of 

the simulation continues in its linear step fashion, determining higher-level values needed 

by the state machine to evaluate its logic. As this research is focused on the relative 
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merits of static and dynamic approaches to modeling, the calculations side of the LMMT 

has been modified only when necessary. The calculations, therefore, run as designed by 

the previous coders working on the software, with the exception of unavoidable 

alterations, such as when the initial date and time chosen for the scenario start was 

required to be passed into the state machine, or when the Survival Overcharge modeler 

input was added. The spacecraft model in the DyLoMMT is best visualized from the 

‘dashboard’ view provided in Fig. 9, which is where the modeler interacts with the 

subsystem mask they wish to edit (via double-clicking) and inputs his/her own values for 

that subsystem. By editing each of the subsystems’ parameters in this fashion, the model 

is ‘built’ according to those specifications. Currently, the configuration possibilities are 

limited to those provided in these masks. Adding new possibilities requires further 

alteration of the Simulink code/blocks underneath the mask. The other modeler-editable 

values are those related to the state machine’s operation and presented via the state 

diagram chart, as discussed previously. Of note are the ports leading into and out of the 

dashboard view block (seen at the bottom of Fig. 9); these ports/tags are explained in 

more detail in Loudermilk’s thesis [6]. Since the repropagation scripts edit the main 

environmental model files and overwrite new data during a pause in the simulation, the 

calculations proceed as they did in the LMMT, time step by time step, pausing as the 

state machine pauses.  
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Figure 9: Dashboard view, DyLoMMT 

(Simulink screenshot) 

3.5 Additional Changes Made 

The changes made to the LMMT described above, while of main import to this 

research as they enable the dynamic modeling approach, are not the only changes made 

to the LMMT. These next changes had to do with the operation of the model inside the 

simulation, and were guided by lessons learned from discussions in the ASYS 632 [38] 

satellite design course offered at AFIT. First of note is that the mode transition from 

Mission to either SunSafe or Survival is now triggered by the Depth of Discharge of the 

battery pack (as simulated) instead of by the Bus Voltage. This replaces the state 

transition that used to be triggered by the bus voltage reaching a certain, modeler-defined 
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level. Now, instead of a critical bus voltage to reach, the modeler is asked to input a depth 

of discharge at which SunSafe will be triggered as well as a recharge percentage required 

before returning to Mission mode (the Overcharge value). Inside the SunSafe mode, the 

Sun Soaking/Contacting Ground Station loop is added as the spacecraft should be able to 

communicate with the ground station(s) even while in this fault mode. The TandC 

configuration state was also modified to account for this change. Finally, the Payload 

configuration state loop is updated in the following manner. The initial attempt of 

modification now has the payload begin in the Off configuration, but transition to the 

Standby state after a period of ten time steps has passed. The Payload then remains in 

Standby until the spacecraft registers that it is in range of a target. Upon this triggering, it 

proceeds to the On state. It remains in the On state (unless the spacecraft enters a fault 

mode) until the spacecraft no longer has access to (a) target(s), at which time it returns to 

Standby and remains powered. The Payload then remains in the Standby state until the 

next imaging opportunity (or until a fault mode is entered), as is shown in Fig. 10. In 

good practice, no subsystem should be powered down completely in normal operations 

once it was successfully initialized [38], as sometimes components and/or entire 

subsystems don’t come back on again if power is toggled. Further significant changes to 

the state machine of the LMMT are discussed in their applicable use-cases.  
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Figure 10: Payload Configuration State, DyLoMMT 
(Stateflow screenshot) 

3.6 Concept of Operations for Representative Mission 

To use the DyLoMMT, a mission representative scenario was chosen. It was 

decided that a simple imaging mission where a single-payload imaging spacecraft would 

be launched into Low Earth Orbit (LEO) to monitor a series of target locations scattered 

around the world would provide opportunities to examine both static and dynamic 

approaches. A notional orbit was defined, and the scenario was coded into the .m files 

that control the initial and repropagation runs of the environmental model. These 

parameters are hard-coded into the scripts the DyLoMMT uses to function, however, the 

initial Scenario_Creation.m file is the model from which the other modes’ scripts are 
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generated, and would be the place to start when designing in a new mission to be 

evaluated. 

 
Figure 11: Notional LEOSat 1 Passing Over AFIT Ground Station 

3.7 Use-Cases 

A series of use-cases designed to help answer the question of when a static vs 

dynamic approach is best applied is now presented to the reader. Each use-case is run 

once with its designed repropagations, and then again with these repropagations disabled 

to provide the comparison of static vs dynamic modeling. The scenario length remains set 

at 10 days and the environmental model initial generation script are not modified from 

use-case to use-case to provide more easily comparable results. However, the modeler-

input values and the state diagrams for each use-case do generally vary and the 

differences are highlighted to the reader in each subsection.  
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3.7.1 Generalized Imaging Mission: Use-Case #1 (UC1) 

Using the values derived from [39] and the CONOPS specified in the state 

diagram as shown in Fig. 12, this case shows a baseline for the new software, reassuring 

the reader that the same functionality exists in the DyLoMMT that was available in the 

LMMT. These parameters are meant to be realistic values, and are not contrived for the 

purposes of illustrating the software’s functionality.  

 
Figure 12: UC1 State Diagram, DyLoMMT 

(Stateflow screenshot) 
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Table 2: UC1 – CD&H and TT&C Parameters 
CD&H 

 
TT&C 

Bus SoH Data Rate 10 bytes/sample time 
 

Rx: Power On 0.7 W 
Payload SoH Data Rate 10 bytes/sample time 

 
Rx: Standby Power 0.7 W 

Extra Data Rate 0 bytes/sample time 
 

Tx: Power On 16 W 
Memory Full Status 10 MB 

 
Downlink Data Rate 8000 (kbps) 

CDH On Power 3.5 W 
 

  
Memory Initial Status 0 bytes 

 
  

 

Table 3: UC1 – EPS and Payload Parameters 
EPS 

 
Payload(s) 

Battery Initial Fill 70 Amp-Hours 
 

Payload 1: Power On  27 W 
Battery Capacity 80 Amp-Hours 

 
P1: Operating Data Rate 20 kilobytes/sample time 

Solar Panel Area 0.2 m^2 
 

P1: Standby Power  9 W 
Solar Panel Efficiency 0.23 (%/100) 

 
P1: Standby Data Rate 0 bytes/sample time 

Solar Panel Voltage 24 V 
 

Payload 2: Power On 0 W 
Depth of Discharge 50% 

 
P2: Operating Data Rate 0 bytes/sample time 

Overcharge 15% 
 

P2: Standby Power 0 W    
P2: Standby Data Rate 0 bytes/sample time 

 

Table 4: UC1 – ADCS and Structures Parameters 
ADCS 

 
Structures 

Magnetometer: Power On 1 W 
 

Ixx MOI 0.188 kg-m^2 
Star Tracker: Power On 1 W 

 
Ixy MOI 0 kg-m^2 

Sun Sensor: Power On 1 W 
 

Ixz MOI 0 kg-m^2 
Torque Coil X: Power On 2 W 

 
Iyy 0.183 kg-m^2 

Torque Coil Y: Power On 2 W 
 

Iyz 0 kg-m^2 
Torque Coil Z: Power On 2 W 

 
Izz 0.009968 kg-m^2 

Reaction Wheels: Max Power 5.5 W 
 

Center of Mass X 0.122 m 
RW: Zero-torque Power 1.12 W 

 
Center of Mass Y 0.110 m 

RW: Max Momentum 0.015 N-m-s 
 

Center of Mass Z 0.183 m 
RW: Moment of Inertia 2.1e-5 kg-m^2 

 
Total Mass 10.9 kg 

RW: Initial RPM 0 rpm 
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3.7.2 Straight into Fault: Use-Case #2 (UC2) 

The next use-case demonstrates a spacecraft designed such that it cannot support 

mission operations for the entirety of the representative scenario, and proceeds rapidly 

from Mission mode, through SunSafe, and into Survival. This use-case shows the ability 

of the DyLoMMT to cycle through different modes in simulation and generate additional 

environmental model runs, as well as appending the main data files used by the 

simulation with the newly-updated information specific to that mode. For ease of 

comparison, the altered parameters have been highlighted in their respective tables. No 

change has been made to the state diagram from UC1. 

Table 5: UC2 – CD&H and TT&C Parameters 
CD&H 

 
TT&C 

Bus SoH Data Rate 10 bytes/sample time 
 

Rx: Power On 0.7 W 
Payload SoH Data Rate 10 bytes/sample time 

 
Rx: Standby Power 0.7 W 

Extra Data Rate 0 bytes/sample time 
 

Tx: Power On 16 W 
Memory Full Status 10 MB 

 
Downlink Data Rate 8000 (kbps) 

CDH On Power 3.5 W 
 

  
Memory Initial Status 0 bytes 

 
  

 

Table 6: UC2 – EPS and Payload Parameters 
EPS 

 
Payload(s) 

Battery Initial Fill 70 Amp-Hours 
 

Payload 1: Power On  40 W 
Battery Capacity 80 Amp-Hours 

 
P1: Operating Data Rate 20 kilobytes/sample time 

Solar Panel Area 0.2 m^2 
 

P1: Standby Power  15 W 
Solar Panel Efficiency 0.11 (%/100) 

 
P1: Standby Data Rate 0 bytes/sample time 

Solar Panel Voltage 24 V 
 

Payload 2: Power On 0 W 
Depth of Discharge 50% 

 
P2: Operating Data Rate 0 bytes/sample time 

Overcharge 15% 
 

P2: Standby Power 0 W    
P2: Standby Data Rate 0 bytes/sample time 
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Table 7: UC2 – ADCS and Structures Parameters 
ADCS 

 
Structures 

Magnetometer: Power On 1 W 
 

Ixx MOI 0.188 kg-m^2 
Star Tracker: Power On 1 W 

 
Ixy MOI 0 kg-m^2 

Sun Sensor: Power On 1 W 
 

Ixz MOI 0 kg-m^2 
Torque Coil X: Power On 2 W 

 
Iyy 0.183 kg-m^2 

Torque Coil Y: Power On 2 W 
 

Iyz 0 kg-m^2 
Torque Coil Z: Power On 2 W 

 
Izz 0.009968 kg-m^2 

Reaction Wheels: Max Power 5.5 W 
 

Center of Mass X 0.122 m 
RW: Zero-torque Power 1.12 W 

 
Center of Mass Y 0.110 m 

RW: Max Momentum 0.015 N-m-s 
 

Center of Mass Z 0.183 m 
RW: Moment of Inertia 2.1e-5 kg-m^2 

 
Total Mass 10.9 kg 

RW: Initial RPM 0 rpm 
   

3.7.3 Into and Out of SunSoak, Then Survival: Use-Case #3 (UC3) 

This use-case examines the design of a spacecraft that, under these mission 

parameters, slips into SunSafe mode, but is able to recharge its batteries to the point 

where it returns to Mission mode. However, upon reenabling the payload (and associated 

power draw) the spacecraft immediately drains its batteries past their fault depth of 

discharge yet again, which this time sends the spacecraft into Survival. This immediate 

move from Mission mode into Survival is brought about by a change in the state diagram, 

changing the option to enter Sun Safe mode twice during the simulation before being 

forced into Survival to only allowing one Sun Safe occurrence before the next depth of 

discharge fault sends the spacecraft into Survival. Figure 13 gives a close-up of the 

SunSafe mode and its triggers that send it to Survival. The faultcounter logic statement is 

altered to trigger at 2, as opposed to 3 from the previous use-cases. The if statement found 

in the entry conditions for SunSafe is necessary to avoid beginning a repropagation run 

for SunSafe while conditions have been met to skip to triggering Survival (and its 

associated repropagation run). Otherwise, the runs will conflict as the scripts attempt to 
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use the same information port to communicate with STK. Thus, the if statement skips 

over any SunSafe repropagation when the conditions for Survival are met, and care must 

be taken to ensure it remains in agreement with the entry to Survival condition. Finally, it 

should be noted that this case does not allow for an autonomous recovery from Survival 

mode, nor do the previous two cases. In the tables following, the values changed from the 

immediately preceding use-case are again highlighted in their respective tables.  

 
Figure 13: UC3 State Diagram, DyLoMMT 

(Stateflow screenshot, with additions) 
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Table 8: UC3 – CD&H and TT&C Parameters 
CD&H 

 
TT&C 

Bus SoH Data Rate 10 bytes/sample time 
 

Rx: Power On 0.7 W 
Payload SoH Data Rate 10 bytes/sample time 

 
Rx: Standby Power 0.7 W 

Extra Data Rate 0 bytes/sample time 
 

Tx: Power On 16 W 
Memory Full Status 10 MB 

 
Downlink Data Rate 8000 (kbps) 

CDH On Power 3.5 W 
 

  
Memory Initial Status 0 bytes 

 
  

 

Table 9: UC3 – EPS and Payload Parameters 
EPS 

 
Payload(s) 

Battery Initial Fill 70 Amp-Hours 
 

Payload 1: Power On  40 W 
Battery Capacity 80 Amp-Hours 

 
P1: Operating Data Rate 20 kilobytes/sample time 

Solar Panel Area 0.2 m^2 
 

P1: Standby Power  15 W 
Solar Panel Efficiency 0.17 (%/100) 

 
P1: Standby Data Rate 0 bytes/sample time 

Solar Panel Voltage 24 V 
 

Payload 2: Power On 0 W 
Depth of Discharge 50% 

 
P2: Operating Data Rate 0 bytes/sample time 

Overcharge 15% 
 

P2: Standby Power 0 W    
P2: Standby Data Rate 0 bytes/sample time 

 

Table 10: UC3 – ADCS and Structures Parameters 
ADCS 

 
Structures 

Magnetometer: Power On 1 W 
 

Ixx MOI 0.188 kg-m^2 
Star Tracker: Power On 1 W 

 
Ixy MOI 0 kg-m^2 

Sun Sensor: Power On 1 W 
 

Ixz MOI 0 kg-m^2 
Torque Coil X: Power On 2 W 

 
Iyy 0.183 kg-m^2 

Torque Coil Y: Power On 2 W 
 

Iyz 0 kg-m^2 
Torque Coil Z: Power On 2 W 

 
Izz 0.009968 kg-m^2 

Reaction Wheels: Max Power 5.5 W 
 

Center of Mass X 0.122 m 
RW: Zero-torque Power 1.12 W 

 
Center of Mass Y 0.110 m 

RW: Max Momentum 0.015 N-m-s 
 

Center of Mass Z 0.183 m 
RW: Moment of Inertia 2.1e-5 kg-m^2 

 
Total Mass 10.9 kg 

RW: Initial RPM 0 rpm 
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3.7.4 Into and Out of SunSafe Multiple Times: Use-Case #4 (UC4) 

 This case demonstrates a situation where the spacecraft oscillates between the 

Mission and SunSafe modes, never settling into Survival. To accomplish this, the depth 

of discharge recharge level required to reenter Mission mode is halved to 7% and the 

state diagram is modified (as is illustrated in Fig. 14) to allow for repeated triggers of 

SunSafe, without dropping into Survival. Note that in this case the trigger in question is 

not removed entirely because the same result can be accomplished when the count of 

needed cycles before heading straight to Survival is artificially placed at a level high 

enough (arbitrarily chosen to be 20) to be out of reach for the simulation. Again, care is 

needed to ensure the if statement’s conditions match up with the corresponding entry 

conditions as boxed in red in Fig. 14. While this method is simpler, for a longer 

simulation for which the same behavior is desired, it is recommended that this 

counter/trigger be removed entirely (leaving only the time as the sole SunSafe trigger). 

This will require the ‘if’ statement inside the SunSafe mode to be also altered 

correspondingly to ensure the repropagation would run correctly.  
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Figure 14: UC4 State Diagram, DyLoMMT 

(Stateflow screenshot, with additions) 

Table 11: UC4 – CD&H and TT&C Parameters 
CD&H 

 
TT&C 

Bus SoH Data Rate 10 bytes/sample 
time 

 
Rx: Power On 0.7 W 

Payload SoH Data Rate 10 bytes/sample 
time 

 
Rx: Standby Power 0.7 W 

Extra Data Rate 0 bytes/sample time 
 

Tx: Power On 16 W 
Memory Full Status 10 MB 

 
Downlink Data Rate 8000 (kbps) 

CDH On Power 3.5 W 
 

  
Memory Initial Status 0 bytes 
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Table 12: UC4 – EPS and Payload Parameters 
EPS 

 
Payload(s) 

Battery Initial Fill 70 Amp-Hours 
 

Payload 1: Power On  40 W 
Battery Capacity 80 Amp-Hours 

 
P1: Operating Data Rate 20 kilobytes/sample time 

Solar Panel Area 0.2 m^2 
 

P1: Standby Power  15 W 
Solar Panel Efficiency 0.17 (%/100) 

 
P1: Standby Data Rate 0 bytes/sample time 

Solar Panel Voltage 24 V 
 

Payload 2: Power On 0 W 
Depth of Discharge 50% 

 
P2: Operating Data Rate 0 bytes/sample time 

Overcharge 7% 
 

P2: Standby Power 0 W 
 

  
P2: Standby Data Rate 0 bytes/sample time 

 

Table 13: UC4 – ADCS and Structures Parameters 
ADCS 

 
Structures 

Magnetometer: Power On 1 W 
 

Ixx MOI 0.188 kg-m^2 
Star Tracker: Power On 1 W 

 
Ixy MOI 0 kg-m^2 

Sun Sensor: Power On 1 W 
 

Ixz MOI 0 kg-m^2 
Torque Coil X: Power On 2 W 

 
Iyy 0.183 kg-m^2 

Torque Coil Y: Power On 2 W 
 

Iyz 0 kg-m^2 
Torque Coil Z: Power On 2 W 

 
Izz 0.009968 kg-m^2 

Reaction Wheels: Max Power 5.5 W 
 

Center of Mass X 0.122 m 
RW: Zero-torque Power 1.12 W 

 
Center of Mass Y 0.110 m 

RW: Max Momentum 0.015 N-m-s 
 

Center of Mass Z 0.183 m 
RW: Moment of Inertia 2.1e-5 kg-m^2 

 
Total Mass 10.9 kg 

RW: Initial RPM 0 rpm 
   

 

3.7.5 Power Positive in Survival: Use-Case #5 (UC5) 

In this case, a spacecraft ends up in Survival mode, but the CONOPS allows for it 

to recover to SunSafe if it meets certain criteria. This case is useful to determine if the 

spacecraft is power positive in tumble; a key performance parameter of any spacecraft 

design. Several modifications are needed to the state diagram to accomplish the desired 

behavioral response, as can be seen in Fig. 15.  
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Figure 15: UC5 Fault Mode State Diagram, DyLoMMT 

(Stateflow screenshot, with additions) 

First, the Survival state is modified to allow for autonomous spacecraft recovery 

from Survival mode. This is designed to be an overcharge-based trigger, like the one that 

allows recovery from SunSafe. However, a new value is added to allow the modeler to 

set a different overcharge requirement to recover from Survival, as since Survival is a 

more serious fault mode, extra recovery of the batteries should be allowed for. This 

recovery from Survival does not return straight to Mission mode, but instead back to 

SunSafe, from which the spacecraft can be in contact with its ground station(s) and then, 

if the recovery trigger is met, the spacecraft will continue to recover to Mission mode.  

Next, the criteria which thrusts the spacecraft into Survival is modified. The 

faultcounter value, which previously kept a running tally of fault modes entered, is now 
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reset each time the spacecraft enters Mission mode or exits Survival. This allows the 

faultcounter to serve as an indication of multiple fault states existing simultaneously 

(SunSafe and RWALimit in this case). When the spacecraft is already in the SunSafe 

fault mode, should the reaction wheels become saturated, the RWALimit fault mode will 

be entered, only now the faultcounter value will not have been reset, triggering the 

spacecraft to enter Survival. In Survival, the spacecraft cuts power to everything but the 

CD&H and Receiver systems, which is reflected in its environmental model which sets 

the spacecraft spinning about each body axis at 2 degrees per second to represent 

tumbling.  

The final changes made are those allowing the spacecraft to enter the RWALimit 

mode from either Mission mode or SunSafe. Again, if entering from SunSafe, the 

spacecraft will then proceed into Survival and will only recover once/if the recovery 

conditions are met. To engage the extra cycling of the RAWLimit mode, the reaction 

wheels’ moment of inertia is reduced by approximately 20%.   

 

Table 14: UC5 – CD&H and TT&C Parameters 
CD&H 

 
TT&C 

Bus SoH Data Rate 10 bytes/sample time 
 

Rx: Power On 0.7 W 
Payload SoH Data Rate 10 bytes/sample time 

 
Rx: Standby Power 0.7 W 

Extra Data Rate 0 bytes/sample time 
 

Tx: Power On 16 W 
Memory Full Status 10 MB 

 
Downlink Data Rate 8000 (kbps) 

CDH On Power 3.5 W 
 

  
Memory Initial Status 0 bytes 
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Table 15: UC5 – EPS and Payload Parameters 
EPS 

 
Payload(s) 

Battery Initial Fill 70 Amp-Hours 
 

Payload 1: Power On  40 W 
Battery Capacity 80 Amp-Hours 

 
P1: Operating Data Rate 20 kilobytes/sample time 

Solar Panel Area 0.2 m^2 
 

P1: Standby Power  15 W 
Solar Panel Efficiency 0.17 (%/100) 

 
P1: Standby Data Rate 0 bytes/sample time 

Solar Panel Voltage 24 V 
 

Payload 2: Power On 0 W 
Depth of Discharge 50% 

 
P2: Operating Data Rate 0 bytes/sample time 

Overcharge 15% 
 

P2: Standby Power 0 W 
Survival Overcharge 20% 

 
P2: Standby Data Rate 0 bytes/sample time 

 

Table 16: UC5 – ADCS and Structures Parameters 
ADCS 

 
Structures 

Magnetometer: Power On 1 W 
 

Ixx MOI 0.188 kg-m^2 
Star Tracker: Power On 1 W 

 
Ixy MOI 0 kg-m^2 

Sun Sensor: Power On 1 W 
 

Ixz MOI 0 kg-m^2 
Torque Coil X: Power On 2 W 

 
Iyy 0.183 kg-m^2 

Torque Coil Y: Power On 2 W 
 

Iyz 0 kg-m^2 
Torque Coil Z: Power On 2 W 

 
Izz 0.009968 kg-m^2 

Reaction Wheels: Max Power 5.5 W 
 

Center of Mass X 0.122 m 
RW: Zero-torque Power 1.12 W 

 
Center of Mass Y 0.110 m 

RW: Max Momentum 0.015 N-m-s 
 

Center of Mass Z 0.183 m 
RW: Moment of Inertia 1.7e-5 kg-m^2 

 
Total Mass 10.9 kg 

RW: Initial RPM 0 rpm 
   

3.7.6 Mission with Thruster Burn: Use-Case #6 (UC6) 

This final use-case leverages the adjustments to the state machine developed for 

UC5 with the initial parameters used in UC1 to evaluate a mission-capable spacecraft 

design over a mission that now involves a thruster burn five days into the simulation. 

This is intended to initiate a repropagation based on not a mode change, but a maneuver 

completed by the spacecraft. To accomplish this new feature, the state machine was again 

modified to include a time-triggered state called Thrusting (Fig. 16) to generate the 

necessary repropagation script. To allow for easier visualization of the change to the data, 
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the change in velocity imparted via the burn is set to 150 m/s along each principle 

direction, or a combined thrust magnitude of 260 m/s, which is a little large for a 

spacecraft of this size.  

 
Figure 16: UC6 State Diagram, DyLoMMT 

(Stateflow screenshot) 

 

Table 17: UC6 – CD&H and TT&C Parameters 
CD&H 

 
TT&C 

Bus SoH Data Rate 10 bytes/sample time 
 

Rx: Power On 0.7 W 
Payload SoH Data Rate 10 bytes/sample time 

 
Rx: Standby Power 0.7 W 

Extra Data Rate 0 bytes/sample time 
 

Tx: Power On 16 W 
Memory Full Status 10 MB 

 
Downlink Data Rate 8000 (kbps) 

CDH On Power 3.5 W 
 

  
Memory Initial Status 0 bytes 
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Table 18: UC6 – EPS and Payload Parameters 
EPS 

 
Payload(s) 

Battery Initial Fill 70 Amp-Hours 
 

Payload 1: Power On  27 W 
Battery Capacity 80 Amp-Hours 

 
P1: Operating Data Rate 20 kilobytes/sample time 

Solar Panel Area 0.2 m^2 
 

P1: Standby Power  9 W 
Solar Panel Efficiency 0.23 (%/100) 

 
P1: Standby Data Rate 0 bytes/sample time 

Solar Panel Voltage 24 V 
 

Payload 2: Power On 0 W 
Depth of Discharge 50% 

 
P2: Operating Data Rate 0 bytes/sample time 

Overcharge 15% 
 

P2: Standby Power 0 W 
Survival Overcharge 20% 

 
P2: Standby Data Rate 0 bytes/sample time 

 

Table 19: UC6 – ADCS and Structures Parameters 
ADCS 

 
Structures 

Magnetometer: Power On 1 W 
 

Ixx MOI 0.188 kg-m^2 
Star Tracker: Power On 1 W 

 
Ixy MOI 0 kg-m^2 

Sun Sensor: Power On 1 W 
 

Ixz MOI 0 kg-m^2 
Torque Coil X: Power On 2 W 

 
Iyy 0.183 kg-m^2 

Torque Coil Y: Power On 2 W 
 

Iyz 0 kg-m^2 
Torque Coil Z: Power On 2 W 

 
Izz 0.009968 kg-m^2 

Reaction Wheels: Max Power 5.5 W 
 

Center of Mass X 0.122 m 
RW: Zero-torque Power 1.12 W 

 
Center of Mass Y 0.110 m 

RW: Max Momentum 0.015 N-m-s 
 

Center of Mass Z 0.183 m 
RW: Moment of Inertia 2.1e-5 kg-m^2 

 
Total Mass 10.9 kg 

RW: Initial RPM 0 rpm 
   

ThrusterON Power 20 W    

3.8 Summary 

This chapter described how this research intends to meet the objective of 

identifying when a dynamic modeling approach should be chosen over a static approach.  

The start of the chapter discussed the working details of the two main software programs 

utilized by the LMMT (and therefore the DyLoMMT), followed by a brief overview of 

the changes developed for the DyLoMMT. Finally, it described a mission representative 

reference scenario chosen for this research and diagrammed the six use-cases developed 
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to evaluate the software with. Section 3.7 (which covered the use-cases chosen) provides 

the structure by which Chapter 4: Analysis and Results is constructed. This list of use-

cases is not an exhaustive one, and several opportunities have arisen for future work in 

this area. More details on applicable future work can be found in Sections 5.3 and 5.4. 
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IV Analysis and Results 

4.1 Chapter Overview 

This chapter details the results of the use-cases introduced in Chapter 3. Each 

DyLoMMT simulation generates a full set of telemetry, but only certain values are 

selected for display in figures. This was how the software preceding the DyLoMMT 

output its figures via the makefigures.m file, and this file remains generally unchanged 

(some formatting was altered to dock the figures instead of displaying them in a free-

floating manner, as it originally coded). Each section will discuss the respective use-

case’s results and then present the figures. It may be of note to the reader that each use-

case went through a series of iterations until arriving at the parameters and state diagrams 

reported in Chapter 3. Therefore, while there are no ‘failed’ use-cases reported in this 

chapter, this does not imply that these parameters/state diagrams were simply an 

unbroken string of good guesses which happened to achieve their respective behavioral 

goals, or that the software somehow guides the modeler into designing the correct 

mission. Varying degrees of effort were required to construct and then tune each use-

case. 

4.2 Generalized Imaging Mission: UC1 

This use-case is a baseline whose results should be similar to something produced 

with the LMMT, as no repropagation runs should be initiated. As can be seen in Fig. 17, 

the only Fault Mode triggered was a brief RWALimit status as the reaction wheels 

became saturated late in the simulation (~6.8e5 epoch seconds). The remaining figures 

show exactly what one would expect for a fully mission-capable design: cyclic power 
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generation from the solar arrays, cyclic ground station downlink rates, cyclic imaging 

data rates as the spacecraft passes over targets, cyclical reaction wheel rates, and good 

charge on the batteries throughout the length of the simulation. Figures 17 – 20 make up 

the full standard output produced by the LMMT’s makefigures.m file. In subsequent use-

cases in this thesis, only the relevant figures are included. 

 
Figure 17: Fault Modes Triggered – UC1, DyLoMMT 

 
Figure 18: EPS Telemetry – UC1, DyLoMMT 



53 

 
Figure 19: Data Usage – UC1, DyLoMMT 

 
Figure 20: ADACS Readings – UC1, DyLoMMT 

 The static variant of this use-case was also run, and a comparison plot of the X 

vector magnitude is provided in Fig. 21. The two sets of data overlap each other 

perfectly, indicating that a dynamic approach to this use-case would not provide extra 

fidelity. This is to be expected, as there were no repropagations. There are many other 

factors to be compared between the static and dynamic approaches environmental model 

data, but they are left out from this thesis.  
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Figure 21: Static vs Dynamic Plot, X Magnitude – UC1, DyLoMMT 

4.3 Straight into Fault: UC2 

As this use-case was to demonstrate the spacecraft’s mode state moving 

downward into the fault modes, a new payload power requirement was levied on the 

design (40 Watts while operating, 15 Watts while in standby), and the solar panel 

efficiency was dropped to a much lower/more conservative value (11%). The latter could 

represent cheaper solar cells, faults in manufacturing, on-orbit degradation, or perhaps 

some combination of the set. With these new parameters input to the model, Fig. 22 

reports the spacecraft’s mode state moving from normal ops (no Fault Status) into 

SunSafe (~1.0e5 epoch seconds) and then into Survival mode (~4.4e5 epoch seconds). It 

is important to remember that the spacecraft cannot exist in two of these states 

simultaneously, though Fig. 22 may appear to suggest otherwise. Both the transition into 

SunSafe as well as that into Survival triggered repropagations as per the state machine 

logic.  
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Figure 22: Fault Modes Triggered – UC2, DyLoMMT 

Figure 23 clearly shows the effects of the mode changes on the rate of the Battery 

Depth of Discharge. At ~1.0e5 seconds, the rate of discharge noticeably decreases, and at 

~4.4e5 seconds the batteries begin to recharge in Survival. This syncs with the Total 

Component Power graph detailing the power being used by the spacecraft. 

 
Figure 23: EPS Telemetry – UC2, DyLoMMT 
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Figure 24: Static vs Dynamic Plot, X Magnitude – UC2, DyLoMMT 

 While the data in Fig. 24 overlaps perfectly as in UC1, there were repropagations 

run during this use-case’s simulation, and so another environmental model data metric is 

checked for differences. This metric is the q1 quaternion of the spacecraft’s attitude 

throughout the simulation. Figure 25 clearly shows that after the first repropagation at 

~1e5 seconds, the dynamic model’s q1 differs completely from its static counterpart. It 

also clearly shows the different state’s attitude requirements (e.g. SunSafe: sun-pointing, 

Survival: tumble, etc.) as the spacecraft cycles through them. Therefore, if attitude is of 

interest to the modeler, a dynamic approach must be used in this case. 
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Figure 25: Static vs Dynamic Plot, q1 Quaternion – UC2, DyLoMMT 

4.4 Into and Out of SunSafe, Then Survival: UC3 

The purpose of this use-case is to demonstrate the capability of the DyLoMMT to 

cycle between normal operation and fault modes. The Survival mode has still not been 

modified to allow for autonomous recovery of the spacecraft, so the simulation moves 

between the SunSafe and Mission modes until Survival is triggered, which the spacecraft 

then remains in until the end of the simulation, as depicted in Fig. 26.  
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Figure 26: Fault Modes Triggered – UC3, DyLoMMT 

Figure 27 details how the batteries sink to below the chosen DoD cutoff (50%), 

recharge in the SunSafe mode, and then dip back below the cutoff upon resumption of 

Mission mode power draw. Of note is the spacecraft’s total power consumption as shown 

by the Total Component Power graph in Fig. 27; it is clear to see that, even in Survival 

mode, the spacecraft does not shut down all subsystems, instead attempting to keep the 

CD&H and receiving capability of the TT&C alive while there is power.  

 
Figure 27: EPS Telemetry – UC3, DyLoMMT 
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Figure 28 shows how the payload data rate, the download rate, and the memory 

fill are all effected by the different modes. The memory storage needed climbs during 

orbits where no contact is made with the ground stations and decreases rapidly as soon as 

communication with the ground is reestablished. 

 
Figure 28: Data Usage – UC3, DyLoMMT 

 Figure 29 shows that once again the spacecraft’s orbit remains virtually 

unchanged, with the only variation being a single time step lag introduced into the data 

by means of the time step used to initiate the repropagation. However, as in UC2, if the 

attitude of the spacecraft is of interest to the modeler, the static and dynamic approaches 

provide very different results (Fig. 30), and the dynamic approach may be more useful. If 

attitude is of no consequence to the modeler, then the repropagation triggers should 

reflect this and only be called if a spacecraft’s action will have an impact on other 

environmental model metrics. 
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Figure 29: Static vs Dynamic Plot, X Magnitude – UC3, DyLoMMT 

 
Figure 30: Static vs Dynamic Plot, q1 Quaternion – UC3, DyLoMMT 

4.5 Into and Out of SunSafe Multiple Times: UC4 

This next use-case demonstrates the ability to program the spacecraft CONOPS 

such that SunSafe can be entered as many times as triggered, with Survival only being 

triggered if other issues arise. This allows the repeated generation of Mission and 
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SunSafe environmental model repropagations that are spliced into the main data files as 

the simulation continues. UC4 clearly shows that the DyLoMMT can handle a repeated 

set of mode switches. The results are consistent with a spacecraft which has undersized 

solar arrays – when it operates in Mission mode, it drains its batteries, but upon 

assumption of SunSafe orientation and functionality, it recharges them and returns to 

Mission mode. However, it is easy to see in Fig. 31 that the spacecraft spends 

considerably more time in the SunSafe mode than it does accomplishing its mission, 

which suggests that while the spacecraft bus operations require less electrical power than 

the payload, they still use a large amount of the power generated via the solar arrays, 

causing a slow recharge rate. Or, this may be a limitation of the battery packs themselves, 

as the DyLoMMT will only allow them to charge at the rate specified by the modeler (in 

this case, 5.2 Amps per time step). This sort of analysis is what the DyLoMMT is well-

suited to assist with. 

 
Figure 31: Fault Modes Triggered – UC4, DyLoMMT 
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Figure 32: EPS Telemetry – UC4, DyLoMMT 

 
Figure 33: Static vs Dynamic Plot, X Magnitude – UC4, DyLoMMT 

 Figures 33 and 34 show the same trend as in the preceding use-case, the physical 

orbit of the spacecraft does not change, even with repropagations, but the spacecraft’s 

attitude very much does. 
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Figure 34: Static vs Dynamic Plot, q1 Quaternion – UC4, DyLoMMT 

4.6 Power Positive in Survival: UC5 

This next use-case demonstrates what is the most complicated state machine 

diagram designed for the DyLoMMT yet, as well as the capacity for the spacecraft to 

autonomously switch from Mission, SunSafe, RWALimit, and Survival modes. The state 

machine operates with the logic that the spacecraft would not be able to maintain SunSafe 

attitude if its reaction wheels were saturated.  

Many of the improvements needed to the state machine of the DyLoMMT were 

discovered while iterating this use-case. For example, this use-case’s set of iterations are 

where the issues with the payload configuration state loop were identified and fixed. The 

10 time steps delay on wakeup for the payload (designed with only initial startup in 

mind) led to the payload repeatedly returning to the Standby state after being powered 

down, even during a fault mode, draining the spacecraft’s batteries and sending it rapidly 

into Survival mode with no chance of return due to the continuous heavy power draw. 
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For detail on the solution, compare the initial attempt shown in Fig. 10 with the fully-

updated version in Fig. 35. Figures 36 and 37 show the cycling of the spacecraft’s mode 

states as SunSafe is triggered, the wheels saturate (which triggers Survival), then the 

batteries are allowed to recharge to the point where the spacecraft climbs back up to 

Mission mode, only to again cycle back down through to Survival. 

 
Figure 35: Payload Configuration State, DyLoMMT 

(Stateflow screenshot) 

 An interesting result is produced by UC5 – the spacecraft logically is triggered 

from SunSafe to Survival mode if its reaction wheels saturate, but once set into a sun-

pointing attitude, very minor corrections should be needed from the wheels to keep this 

orientation, unless there is an outside torque present. There is no such torque coded into 

this use-case, so something else is causing the wheels to spin up and saturate. It appears 
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this is because the DyLoMMT’s calculation side views the attitude passed in from the 

environmental model as a series of discrete positions to be moved between. So when 

faced with a constant motion orientation, the software still calculates that the wheels are 

required to continually update this orientation, when physically this is not the case. 

 
Figure 36: Fault Modes Triggered – UC5, DyLoMMT 

 
Figure 37: EPS Telemetry – UC5, DyLoMMT 

 As for a dynamic or static approach, the previous trend continues, with nothing 

perturbing the orbit of the spacecraft over the repropagations (Fig. 38) but dramatic 
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differences recorded in the spacecraft’s attitude (Fig. 39). This use-case’s q1 quaternion 

graph also provides a good example of the attitude requirements of each fault mode, with 

the SunSafe mode introducing a slow change in attitude, followed by the quick, cyclical 

changes seen in Survival mode as the spacecraft tumbles. This information is only seen in 

the Dynamic data of these use-cases. 

 
Figure 38: Static vs Dynamic Plot, X Magnitude – UC5, DyLoMMT 

 
Figure 39: Static vs Dynamic Plot, q1 Quaternion – UC5, DyLoMMT 
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4.7 Mission with Thruster Burn: UC6 

This final use-case introduces a repropagation not related to a fault mode, but 

instead to an action by the spacecraft, namely, firing a thruster five days into the mission. 

As Fig. 40 shows, only the occasional RWALimit fault was encountered, and therefore 

no mode change repropagations occurred. However, the day five thruster burn did occur 

and is seen in the power drop during the burn, when the payload was powered off and 

remained off until the next imaging opportunity (Fig. 41). 

 
Figure 40: Fault Modes Triggered – UC6, DyLoMMT 

 
Figure 41: EPS Telemetry – UC6, DyLoMMT 
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 This final case also demonstrates the first utility of the X coordinates metric. 

Clearly seen in Fig. 42 is the thruster burn’s resulting change in the spacecraft’s orbit. 

Again, while this change in velocity may be a little high for a spacecraft weighing in at 

just over 10kg, it serves to illustrate the utility of the repropagation. Of interest is the 

unexpected result of different attitudes between the static and dynamic simulations 

displayed in Fig. 43. This is understandable, as a new orbit would induce new pointing 

requirements for the various targets, but it is an interesting result as the repropagation did 

not induce an attitude change directly as in UC2–UC5, but it still appeared as an 

emergent response to the change in orbit. 

 
Figure 42: Static vs Dynamic Plot, X Magnitude – UC6, DyLoMMT 
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Figure 43: Static vs Dynamic Plot, q1 Quaternion – UC6, DyLoMMT 

4.8 Research Objective Revisited/Impact of Results 

This research sought to develop a method of identifying when a dynamic 

modeling approach would be more appropriate than a static modeling approach. The use-

cases presented in this chapter illustrate that how a modeler defines the triggers for 

repropagation will often inform when a dynamic model should be utilized for added 

fidelity. For instance, if the modeler is only interested in coming up with a design that 

experiences no fault modes, then a simple static model will suffice, as the model will be 

iterated until no repropagation runs are exhibited and the data following a repropagation 

is of no interest. However, if it is the behaviors of the spacecraft in all modes of operation 

(some of which require repropagation runs) that is of interest to the modeler, then a 

dynamic approach will provide a more complete picture of how the spacecraft is 

interacting with its environment on-orbit. This also applies to simulations including 

spacecraft actions that may alter their spacecraft’s interactions with the environmental 
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model data, such as the thruster burn in UC6. The DyLoMMT offers an improved 

CONOPS evaluation capability as compared to the static LMMT, as changes in mode 

hierarchy and triggers for modes are now reflected in updates to the environmental 

model.  

With this new software, the model is capably of autonomously triggering 

repropagations of the environmental model using new mode conditions (as necessary) 

throughout the simulation. This in turn provides a closer match of spacecraft behavior to 

on-orbit conditions. In essence, the DyLoMMT adds the ability to model any 

environmental model consequences of actions taken by the spacecraft during the 

simulation. This research shows that mode-based CONOPS logic can drive 

repropagations in the DyLoMMT without limiting the decision-making autonomy of the 

state machine. The model (once constructed) can autonomously decide which mode it 

should exist in as well as decide if/when to repropagate if something has changed that 

makes the spacecraft’s current perception of the environmental model data no longer 

current/relevant to the simulation. This capability should give modelers more confidence 

in the predictions of the spacecraft’s behavior produced, particularly when simulating a 

model of a system which will trigger repropagations. If not intending to leverage 

repropagations, the generally quicker-running static model should be used. 

4.9 Summary 

This chapter provided the DyLoMMT-generated predictions of spacecraft 

performance and behaviors over the course of a 10-day mission-representative 

simulation. Full telemetry and figures were generated for each use-case, but only the 
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relevant were presented in this thesis, and changes to the state machine logic were 

discussed for each relevant use-case. A presentation of both static and dynamic variants 

of each use-case informed the chapter’s conclusions. 
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V Conclusions and Recommendations 

5.1 Chapter Overview 

This final chapter speaks briefly to the significance of the research presented in 

this thesis and continues on to describe recommendations for future action to improve the 

software as well as future areas of research related to the DyLoMMT. The 

Recommendations for Action section covers ideas that are more concrete and not 

considered to be research opportunities in of themselves, whereas the Recommendations 

for Future Research section covers ideas which are more abstract and could serve to be 

their own research opportunities.  

5.2 Conclusion and Significance of Research 

The products of this research, the figures and data presented, are the result of an 

iterative effort (described in Chapter 3) which partially explains the lack of “failed” use-

cases. With this research, either the concept was going to be feasible, in which case it 

would be implemented and produce results, or it was not. Once a general use-case could 

be simulated, it was only a matter of tuning the physical parameters of the model or the 

state machine logic to simulate other use-cases. The results presented in this thesis show 

that this research’s objective was achieved, and the six use-cases serve to illustrate 

different behaviors that can be simulated with the finished modifications. As discussed in 

Section 4.8, the creation of the DyLoMMT allows dynamic spacecraft modeling which 

considers the consequences of the spacecraft’s actions within the context of the 

environment it is operating in. This concept adds fidelity to and confidence in the 

predictions produced by the simulation. “All models are wrong, some are useful” is an 
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aphorism generally attributed to the statistician George E.P. Box [40] and gives some 

context to the significance of this research. The DyLoMMT does not a perfectly model a 

spacecraft’s on-orbit behavior. No model will. So, in place of trying to convince the 

reader of that which is not, this research illustrates a feasible modeling tool which aims to 

be more useful by modeling the action-consequence pairing discussed above and 

discusses when this tool should be leveraged for higher-fidelity results. Moreover, this 

research shows that even with single-agent software such as the DyLoMMT, there is a 

wealth of information that can be ascertained from a dynamic modeling approach. This 

result should generalize to more complete dynamic modeling approaches such as AGI’s 

AMOEBA plug-in. This is significant to any modeler wishing to model a mission whose 

spacecraft has modes which change how the spacecraft interacts with its environment or 

whose spacecraft regularly alters its perception of the environmental data. 

5.3 Recommendations for Action 

In Section 1.5.2 the scope and limitations of this research effort were set out, and 

a few provide good starting points for future action in the vein of this research that may 

not quite make future research foci in of themselves.  

The calculations performed inside the DyLoMMT to produce the higher-level 

values which the state machine uses to operate have now undergone two iterations of 

students modifying and integrating them with other code. It may be prudent to audit the 

equations/blocks used and update them as necessary to ensure they accurately perform 

their functions. In particular, the several algebraic loops found in the ADACS subsystem 

should be given a closer look. These Simulink loops caused errors until augmented with a 
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unit step delay block, which circumvented Simulink throwing an error and quitting the 

simulation. Unfortunately, this also leaves a zero for the initial value, which is logged in 

their respective column in the telemetry file. This may or may not also delay each value 

one time step, which might concern some modelers. Finally, the cyclic nature of the 

power generated by the solar arrays suggests something in either the spacecraft’s 

designed orbit in the environmental model or the method by which the attitude and sun 

vector are combined to produce a measure of the power generated have some bug that 

may be worth investigating. It may be that this is a seasonal or physically-valid effect, 

and the operation of the interaction between the environmental model and the state 

machine has been checked out and shown to be functioning as designed. This sort of 

software verification and validation is not research in of itself, but may be worth further 

action. 

Further action also may be warranted to convert the DyLoMMT from what was 

designed and built as predominately research code into a more user-friendly tool. 

Although an effort has been made to responsibly document the scripting and coding done, 

there is much work that can be done to streamline the modeler’s experience. The STK 

generation scripts are well-documented in terms of the purpose of each segment of code, 

but AGI’s Connect has a syntax that is not intuitive nor exhaustively well-documented, 

which means there would be a learning curve should a modeler wish to alter the 

parameters of the scenarios in substantial ways (e.g. changing pointing vectors or adding 

components to the scenario that aren’t currently modeled). The MATLAB code, in 

contrast, was directly modified from Loudermilk [6], and the documentation and modeler 

guidelines provided no longer always apply. Furthermore, given the nature of the glue-
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coding techniques applied, not all code is efficiently written. A modeler who is more 

fluent in good coding practice may find themselves wondering why certain areas are 

coded as they are, and generally the reason is because it required the least amount of 

rewriting of previous, fully-functional code while still accomplishing the new purpose. 

The attempt was made to change only the pieces it was necessary to, and this no doubt 

has introduced inefficiencies in the software.  

Another good example of work needed is how, in the DyLoMMT, STK opens and 

closes during each propagation run (initial or otherwise), presumably due to the 

interaction of the COM port connecting to STK and the function calls inside MATLAB. 

While each start-and-stop cycle costs mere seconds in terms of CPU time, this could 

become costly if long-duration simulations or those with significant amounts of 

repropagation runs are desired. It is possible that this delay is unavoidable, but this 

research has not collected enough information to make such a judgment. Another good 

example of cleaner coding is that (by virtue of converting the STK generation scripts into 

functions which receive a structure) the opportunity arises to convert much of what is 

currently hard-coded into each script into a structure which could be passed through from 

the Master.m file (such as the scenario’s end time). This would allow the modeler the 

option to set these variables once, removing the need to carefully construct each 

repropagation script to ensure accuracy. Finally, adjusting the repropagation scripts to 

avoid the current time step slip in orbital data would give further clarity to an issue which 

will only get worse as more repropagations are added into the simulation. 
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5.4 Recommendations for Future Research 

This research opens several opportunities for future research into the area of 

spacecraft modeling and simulation. The suggestions that follow are not an exhaustive 

list but should serve to give the reader some indication of ways to move forward from 

where this research left off. 

One of the first and most directly-applicable efforts is to design more use-cases to 

simulate to test spacecraft designs and/or logic. This could relate to changing CONOPS 

to evaluate how a physical design reacts when different logic is presented to it, or it could 

relate to running the same CONOPS with differing physical designs against a common 

mission scenario to determine the ideal hardware parameters for the mission. One use-

case in particular that should bear relevance to most spacecraft missions is a loss-of-

comms event, and how the spacecraft would react to this. This use-case could be 

developed by altering the environmental model to reflect a temporary loss of ground 

station or by an inject into the state machine removing power to the subsystem in 

question. Either of these techniques (altering the environmental model and/or injects into 

the state machine) should prove useful to expanding the range of use-cases available to 

test. Manual injects into the software may be accomplished by introducing a series of 

breaks triggered at certain time or activity points in the state machine which call for 

operator input. The operator could then specify some sort of flag that would alter the 

model in some manner (as with the example of the loss-of-comms event) and then the 

simulation would proceed with the new configuration, reacting accordingly.  

Another good area of research would be a sensitivity analysis of how much of a 

difference in predictions is made between the LMMT and the DyLoMMT. Are certain 
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styles/durations/complexities of missions more easily and as-accurately modeled using 

the less-complicated LMMT? How close is close enough for various metrics? Along with 

this line of reasoning comes the question: how much more fidelity should be added to the 

STK scenarios for optimal return on investment? Currently, there are slew-limiting 

factors built into the STK scenarios; are things of this nature worth the extra effort 

needed by the modeler to interpret and use correctly? What if the spacecraft has a 

directional antenna, how much of an effect does adding its slewing maneuvers into STK 

have on the reaction wheel assembly?   

This development of this software provides many different avenues to approach, 

and research of this nature will continue to be of interest and value to the space 

community.  
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Appendix 

A1. Scenario_Creation.m STK Generation Connect/MATLAB Code 

function [outputSTK] = Scenario_Creation(inputSTK) 
dbstop if error 

Script for Creating and Populating New STK Scenario 
app = actxserver('STK11.application'); 
root = app.Personality2; 
%Create new scenario, second string part is scenario name 
scenario = root.Children.New('eScenario','STKScenario'); 
% Maximize the window STK opens in and set Step Size for all scenario 
reports and animations 
root.ExecuteCommand('Application / Maximize'); 
step = inputSTK.step; 
%Set the time period desired for the scenario, and reset graphics 
scenario.SetTimePeriod(inputSTK.InitializeDT,'3 Oct 2016 
12:00:00.000') 
root.ExecuteCommand(sprintf('SetAnimation * TimeStep %d',step)); 
root.ExecuteCommand('Animate * Reset'); 
% Set correct units for ConnectReports 
root.ExecuteCommand('Units_set * ConnectReportUnitsFlag on'); 
root.ExecuteCommand('Units_Set * ConnectReport Date "EpochSeconds"') 
Not enough input arguments. 
Error in Scenario_Creation (line 15) 
step = inputSTK.step; 

Create new facilities for GS contact 
AFIT = scenario.Children.New('eFacility','AFIT'); 
SDL = scenario.Children.New('eFacility', 'SDL'); 
NPS = scenario.Children.New('eFacility', 'NPS'); 
UHi = scenario.Children.New('eFacility', 'UHawaii'); 
% Update the geodetic location so all facilities aren't at AGI HQ 
%AFIT IAgFacility facility: Facility Object 
AFIT.Position.AssignGeodetic(39.7819,-84.0822,0) % Latitude, 
Longitude, Altitude 
% Set altitude to height of terrain 
AFIT.UseTerrain = true; 
% Add sensor for coverage 
AFIT_S = AFIT.Children.New('eSensor', 'Sensor1'); 
root.ExecuteCommand('Define */Facility/AFIT/Sensor/Sensor1 SimpleCone 
80'); 
%SDL IAgFacility facility: Facility Object 
SDL.Position.AssignGeodetic(41.7607,-111.819,0) % Latitude, Longitude, 
Altitude 
% Set altitude to height of terrain 
SDL.UseTerrain = true; 
% Add sensor for coverage 
SDL_S = SDL.Children.New('eSensor', 'Sensor2'); 
root.ExecuteCommand('Define */Facility/SDL/Sensor/Sensor2 SimpleCone 
80'); 
%NPS IAgFacility facility: Facility Object 
NPS.Position.AssignGeodetic(36.5944,-121.875,0) % Latitude, Longitude, 
Altitude 
% Set altitude to height of terrain 
NPS.UseTerrain = true; 
% Add sensor for coverage 
NPS_S = NPS.Children.New('eSensor', 'Sensor3'); 
root.ExecuteCommand('Define */Facility/NPS/Sensor/Sensor3 SimpleCone 
80'); 
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%UoHawaii IAgFacility facility: Facility Object 
UHi.Position.AssignGeodetic(21.3161,-157.886,0) % Latitude, Longitude, 
Altitude 
% Set altitude to height of terrain 
UHi.UseTerrain = true; 
% Add sensor for coverage 
UHi_S = UHi.Children.New('eSensor', 'Sensor4'); 
root.ExecuteCommand('Define */Facility/UHawaii/Sensor/Sensor4 
SimpleCone 80'); 

Create a new satellite 
LEOsat = scenario.Children.New('eSatellite', 'LEOsat'); 
%Generate command to set up orbital elements for satellite 
%Following sat name: Coord_Type Propogator Start_time Stop_time 
Step_Size(s) Coord_Sys Orbital_epoch Semi-major_axis(m) eccentricity 
inclination arg_perigee RAAN true_anomaly' 
%cmd = ['SetState */Satellite/LEOsat Classical J4Perturbation 
"',scenario.StartTime,'" "',scenario.StopTime,'" 60 ICRF 
"',scenario.StartTime,'" 6828140 0 45 0 0 0']; 
% Better plan: Use the ephem data type to intialize the state vector. 
% Following sat name: Coord_Type Propogator Start_time Stop_time 
Step_Size(s) Coord_Sys Orbital_epoch X Y Z Xdot Ydot Zdot [all in m 
or m/s] 
cmd = ['SetState */Satellite/LEOsat Cartesian J4Perturbation 
"',scenario.StartTime,'" "',scenario.StopTime,'" %d J2000 
"',scenario.StartTime,'" 6828139.99999986 0.000488948476255031 
-1.40040938458241 0.00110765265001805 5402.59868433944 
5402.59801312843']; 
cmdstr=sprintf(cmd,step); 
%Run that command 
root.ExecuteCommand(cmdstr); 
%Propogate said satellite 
LEOsat.Propagator.Propagate; 
% Set the attitude of said satellite 
root.ExecuteCommand('SetAttitude */Satellite/LEOsat Profile 
XPOPInertial 0'); 
root.ExecuteCommand('AddAttitude */Satellite/LEOsat Quat "26 Sep 2016 
12:00:00.00" 0.0 0.0 0.0 1.0'); 
% Add a sensor for payload and the TT&C 
LEOsat_Pay = LEOsat.Children.New('eSensor', 'Payload'); 
root.ExecuteCommand('Define */Satellite/LEOsat/Sensor/Payload 
SimpleCone 22.5'); 
LEOsat_TTC = LEOsat.Children.New('eSensor', 'TTC'); 
root.ExecuteCommand('Define */Satellite/LEOsat/Sensor/TTC SimpleCone 
22.5'); 
root.ExecuteCommand('Point */Satellite/LEOSat/Sensor/TTC Fixed 
Quaternion 0.0 0.7071 0.0 0.7071') 
% Use a model to make it look pretty 
root.ExecuteCommand('VO */Satellite/LEOsat Model File "C:\Users 
\GhostStalker\Documents\MATLAB\DyLoMMot\12U AFIT Bus.dae"'); 
root.ExecuteCommand('VO */Satellite/LEOsat ScaleLog 3.7'); 

Calculate Access to MC3 Network and Export 
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/ 
AFIT/Sensor/Sensor1 TimePeriod UseScenarioInterval') 
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/ 
SDL/Sensor/Sensor2 TimePeriod UseScenarioInterval') 
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/ 
NPS/Sensor/Sensor3 TimePeriod UseScenarioInterval') 
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/ 
UHawaii/Sensor/Sensor4 TimePeriod UseScenarioInterval') 

Generate target list 
for i = 1:13 
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T{i} = scenario.Children.New('eTarget',['T' num2str(i)]); 
end 
%Spread the targets out (for a real mission, you'd want to put them in 
real places) 
setpos1 = ['SetPosition */Target/T1 Geodetic 20 -10 Terrain']; 
setpos2 = ['SetPosition */Target/T2 Geodetic 11 0 Terrain']; 
setpos3 = ['SetPosition */Target/T3 Geodetic 13 17 Terrain']; 
setpos4 = ['SetPosition */Target/T4 Geodetic 25 15 Terrain']; 
setpos5 = ['SetPosition */Target/T5 Geodetic 30 35 Terrain']; 
setpos6 = ['SetPosition */Target/T6 Geodetic 33 40 Terrain']; 
setpos7 = ['SetPosition */Target/T7 Geodetic 31 42 Terrain']; 
setpos8 = ['SetPosition */Target/T8 Geodetic 33 44 Terrain']; 
setpos9 = ['SetPosition */Target/T9 Geodetic 32 49 Terrain']; 
setpos10 = ['SetPosition */Target/T10 Geodetic 35 53 Terrain']; 
setpos11 = ['SetPosition */Target/T11 Geodetic 38 57 Terrain']; 
setpos12 = ['SetPosition */Target/T12 Geodetic 40 59 Terrain']; 
setpos13 = ['SetPosition */Target/T13 Geodetic 45 75 Terrain']; 
%Run those set pos commands 
root.ExecuteCommand(setpos1); 
root.ExecuteCommand(setpos2); 
root.ExecuteCommand(setpos3); 
root.ExecuteCommand(setpos4); 
root.ExecuteCommand(setpos5); 
root.ExecuteCommand(setpos6); 
root.ExecuteCommand(setpos7); 
root.ExecuteCommand(setpos8); 
root.ExecuteCommand(setpos9); 
root.ExecuteCommand(setpos10); 
root.ExecuteCommand(setpos11); 
root.ExecuteCommand(setpos12); 
root.ExecuteCommand(setpos13); 
toc 

Create and run command to generate LMMTfriendly .csv file of 
ground station access 
rep_access = sprintf('ReportCreate */Satellite/LEOsat Type Export 
Style "Access" File "C:\\Users\\GhostStalker\\Documents\\MATLAB 
\\DyLoMMot\\AccessReportGS.csv" AccessObject */Facility/AFIT 
AccessObject */Facility/NPS AccessObject */Facility/SDL AccessObject 
*/Facility/UHawaii TimeStep %d', step); 
root.ExecuteCommand(rep_access); 

Set satellite payload to track targets when in view, then create 
target access report 
point_targets = ['Point */Satellite/LEOsat/Sensor/Payload 
Targeted File "C:\Users\GhostStalker\Documents\MATLAB\DyLoMMot 
\Targetlist.txt"']; 
root.ExecuteCommand(point_targets); 
% Set the attitude to slew to targets (sensor will move independently 
of body of spacecraft unless this is specified) 
root.ExecuteCommand('SetAttitude */Satellite/LEOsat Target On'); 
for i = 1:13 
root.ExecuteCommand(strcat('SetAttitude */Satellite/LEOsat Target ADD 
Target/T',num2str(i))); 
end 
root.ExecuteCommand('SetAttitude */Satellite/LEOsat Target Slew Mode 
FixedRate RateMagnitude 5 SlewTimingBetweenTgts Optimal'); 
tar_access = sprintf('ReportCreate */Satellite/LEOsat/Sensor/Payload 
Type Export Style "Access" File "C:\\Users\\GhostStalker\\Documents 
\\MATLAB\\DyLoMMot\\AccessReportTarget.csv" AccessObject */Target/ 
T1 AccessObject */Target/T2 AccessObject */Target/T3 AccessObject 
*/Target/T4 AccessObject */Target/T5 AccessObject */Target/T6 
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AccessObject */Target/T7 AccessObject */Target/T8 AccessObject 
*/Target/T9 AccessObject */Target/T10 AccessObject */Target/T11 
AccessObject */Target/T12 AccessObject */Target/T13 TimeStep %d', 
step); 
%Propogate said satellite 
LEOsat.Propagator.Propagate; 
root.ExecuteCommand(tar_access); 

Run the Moon and Sun reports LMMT requires 
root.ExecuteCommand(sprintf('ReportCreate */Satellite/LEOsat Type Save 
Style "Lunar Vector J2000" File "C:\\Users\\GhostStalker\\Documents\ 
\MATLAB\\DyLoMMot\\moon.txt" TimeStep %d', step)); 
root.ExecuteCommand(sprintf('ReportCreate */Satellite/LEOsat Type Save 
Style "Sun Vector J2000" File "C:\\Users\\GhostStalker\\Documents\ 
\MATLAB\\DyLoMMot\\sun.txt" TimeStep %d', step)); 

Run the attitude and ephemeris output bits that LMMT requires 
root.ExecuteCommand(sprintf('ExportDataFile */Satellite/LEOsat 
Ephemeris "C:\\Users\\GhostStalker\\Documents\\MATLAB\\DyLoMMot\ 
\Satellite1_Mission.e" Type STK CoordSys J2000 TimeSteps %d', step)); 
root.ExecuteCommand(sprintf('ExportDataFile */Satellite/LEOsat 
Attitude "C:\\Users\\GhostStalker\\Documents\\MATLAB\\DyLoMMot\ 
\Satellite1_Mission.a" Details Quaternions CoordAxes J2000 TimeSteps 
%d', step)); 
disp('Reports generated for Mission Scenario'); 
toc 
Published with MATLAB® R2016b 
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