
Real-Time Heuristic Algorithms for the Static
Weapon-Target Assignment Problem

THESIS

Alexander G. Kline, CPT, USA

AFIT-ENS-MS-17-M-139

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-17-M-139

REAL-TIME HEURISTIC ALGORITHMS FOR THE STATIC

WEAPON-TARGET ASSIGNMENT PROBLEM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Alexander G. Kline, BS

CPT, USA

March 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-17-M-139

REAL-TIME HEURISTIC ALGORITHMS FOR THE STATIC

WEAPON-TARGET ASSIGNMENT PROBLEM

THESIS

Alexander G. Kline, BS
CPT, USA

Committee Membership:

Dr. Darryl K. Ahner, PE
Chair

Dr. Brian J. Lunday
Member

AFIT-ENS-MS-17-M-139

Abstract

The problem of targeting and engaging individual missiles (targets) with an arsenal

of interceptors (weapons) is known as the weapon target assignment problem. As

many solution techniques are based upon a transformation of the objective function,

their final solutions rarely produce optimal solutions. We propose a nonlinear branch

and bound algorithm to provide the first optimization approach to the untransformed

problem found in the literature. Further, we propose a new heuristic based upon the

branch and bound algorithm which dominates other heuristics explored in optimality

gap. We also propose a heuristic based upon the optimal solution to the quiz problem

which finds solutions within 6% of optimal for small problems and provides statis-

tically similar results as one of the best heuristics found in the literature for larger

problems while solving these problems in ten thousandths of the time.

iv

Acknowledgements

First I would like to thank my family for their love and support during this time.

You mean the world to me and I couldn’t have done this without you.

I would like to thank my advisor, Dr. Darryl Ahner, for his patient guidance over

the past 18 months. I was only able to achieve the success in this program because of

your dedication to education, research, and above all, professional excellence which I

hope to emulate in years to come.

I would also like to thank Dr. Brian Lunday for his constant support and profes-

sionalism in our time together. I would not be here nor would I have been awarded

the opportunities that have been bestowed upon me without you.

Thank you all.

Alexander G. Kline

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . vii

List of Tables . viii

I. Introduction . 1

II. Branch and Bound Algorithm . 9

III. Heuristics . 14

IV. Computational Results . 20

V. Conclusion and Future Research . 33

Appendix A. Story Board . 35

Bibliography . 36

vi

List of Figures

Figure Page

1 Branch and Bound Algorithm . 10

2 Minimum Cost Network Flow Lower Bounding Scheme 13

3 Greedy Branch and Bound Heuristic . 15

4 Modified Quiz Problem Search Heuristic . 19

5 Computational Time Requirements for Optimization
With 10 Weapons . 23

vii

List of Tables

Table Page

1 Projected Computational Time Using Full Enumeration. 21

2 Computational Time Requirements (sec) . 22

3 Branch and Bound Algorithm Performance . 24

4 Best Solution Comparison of Heuristics . 29

5 Percent Optimality Gaps of Heuristic Solutions to
Smaller Problems . 30

6 Heuristic Computational Time Comparisons (sec) 31

7 Modified Quiz Problem Search and Construction
Heuristics Relative Performance . 31

8 Statistically Significant Heuristic Dominance . 32

viii

REAL-TIME HEURISTIC ALGORITHMS FOR THE STATIC

WEAPON-TARGET ASSIGNMENT PROBLEM

I. Introduction

Since its introduction to the operations research community, the weapon target

assignment problem has been a complicated problem of constant relevance. Mid-

course interdiction of aerial threats was a subject of concern during the Cold War,

and perpetual advances in ballistic missile capabilities make it an area of continued

study. Despite numerous United Nations resolutions prohibiting the development

and testing of ballistic missile technology, many nations continue to take efforts at

improving these weapon systems. As the missile threat is growing, so too must our

capacity to defend our borders and areas of operation of deployed forces. The problem

of targeting and engaging individual missiles (targets) with an arsenal of interceptors

(weapons) is known as the weapon target assignment problem. The literature on this

problem provides many solution techniques which collectively provide efficient optimal

and near optimal solutions. The first line of the 2010 Ballistic Missile Defense Review

Report states

The protection of the United States from the threat of ballistic missile
attack is a critical national security priority (United States Department
of Defense, 2010).

In this report, the US Department of Defense outlines the threat of ballistic mis-

siles and the importance of our continuous efforts to improve the systems necessary

to provide adequate defenses against these threats. Among others, North Korea and

1

Iran have maintained ballistic missile programs seeking to develop improved capabil-

ities at aggressively targeting the US, its allies, and regions wherein deployed forces

operate. On 7 February 2016, North Korea launched a three-stage missile which has

the capacity to reach the US (MG Mahon, Francis (Ret.), 2016). This followed a

May 2015 submarine launched missile test (Evans, Stephen, 2015). Despite the re-

strictions outlined in existing nuclear agreements, Iran has also been continuing its

missile capabilities, with a ballistic missile test as recently as July 2016 (Tomlinson,

Lucas, 2016). Our defense systems must improve to combat these aggressive devel-

opments in “system improvements that complicate an adversaries’ situation through

technological overmatch” (MG Mahon, Francis (Ret.), 2016). While the deployment

and efficacy of air defense technology is of high importance in combating this threat,

so to is the decision regarding which system or systems should be used to target bal-

listic missiles. The optimization of the assignment of air defense weapons to interdict

ballistic missiles is the subject of this thesis.

The weapon target assignment (WTA) problem has been researched within the

operations research community for nearly 60 years, with initial published attention

from Manne (1958) based upon a talk given by Flood (1957). Given n incoming

targets, solving the problem results in the assignment of m weapons to the targets so

as to minimize the collective residual value of the targets. The value of the targets,

Vj, corresponds to their destructive capacity and each weapon wi has an associated

probability pij of destroying target tj. As the problem seeks to minimize the residual

value of each target, known in literature as target leakage, the probability of survival

is defined by qij = 1− pij. The WTA problem formulation is nonlinear and is defined

2

by

min
n∑

j=1

Vj

m∏
i=1

q
xij
ij (1)

st

m∑
j=1

xij≤wi for i = 1, ...,m,

xij∈Z+∪{0}, for i = {1, ...,m}, j = {1, ..., n}

The WTA problem is typically approached from two sets of conditions: the static

WTA (SWTA) problem, which has known quantities of weapons and targets, prob-

abilities of kill, and target values, and the dynamic WTA (DWTA) problem, which

may have multiple waves of targets, uncertain numbers of targets, or any proba-

bilistic variation of the aforementioned. This paper focuses on the formulation and

solutions surrounding the SWTA problem, specifically where there exists only one of

each weapon type wi = 1 ∀i = 1, . . .,m, and the number and properties of the targets

are known.

The SWTA problem was first proposed by Flood (1957) as a military optimiza-

tion problem with similar constraints to the personnel assignment problem but, due

to its nonlinear objective, was inaccessible with existing computational capabilities

(Manne, 1958). Manne defined the problem and demonstrated its likeness to the

transportation problem by introducing a variable −yj =
∑m

i=1 xijln(1 − pij), which

allows for the transformation of the objective to min
yj

∑n
j=1 Vje

−yj , a nonlinear pro-

gram whose solution can be approximated by a convex set of lower bounding linear

constraints. Both denBroeder et al. (1959) and Walkup & MacLaren (1964) propose

solution methods to Mannes formulation and transformations, with denBroeder us-

ing an iterative approach which is similar to a maximum marginal return algorithm

(denBroeder et al., 1959) whereas Walkup uses a network graph approach (Walkup

3

& MacLaren, 1964).

Matlin (1970) described the characterization of the WTA model using five sub-

models: the weapon system, the target complex, the engagement, the damage model,

and the algorithm. His submodels are used to develop complete models of the WTA

problem and he describes the complexities with which each submodel can be defined.

Day (1966) designed a three-stage optimization procedure in which the author

decomposed the problem into smaller problems to obtain an estimate for the number

of weapons to assign to each target, from which he solved the overarching nonlinear

problem. He used a nonlinear programming algorithm to solve for optimal assign-

ments of the weapons to the targets and rounded the optimal decision variable values

to integer values for his solution.

As interest in the WTA problem increased while computational resources were

still limited, more research was devoted to the heuristic and transformation-based so-

lutions to best approximate the optimal solutions. Castañon (1987) used a nonlinear

network flow algorithm to estimate a near optimal solution from a lower bound in a

manner similar to Day. Chang et al. (1987) developed an iterative linear network pro-

gramming algorithm using denBroeder’s maximum marginal return (MMR) approach

and Castañon’s nonlinear network flow methods to solve a linear transformation of

the nonlinear objective. Wacholder (1989) then used a neural network heuristic and

Lee et al. (2002) used immunity based ant colony optimization techniques to generate

near optimal solutions to the problem.

Amidst the rapid development of heuristics to efficiently find near optimal solu-

tions, exact algorithms continued to emerge. Johansson & Falkman (2009) developed

an exhaustive search algorithm which they used for comparison to a genetic algorithm

heuristic they developed. Rosenberger et al. (2005) developed a branch and bound

algorithm to consider multiple weapon assignments per target. These algorithms,

4

though exact, were only able to find solutions to small instances having 9 weapons

and 9 targets.

The lack of exact algorithms and heuristics capable of solving large problems was

addressed by Ahuja et al. (2007), who used the network flow concept as proposed

by Castañon to develop lower bounding techniques for use in a branch and bound

algorithm for a linear transformation to the problem. Though this generated ap-

proximated optimal solutions to the transformed problem, it was unable to run to

completion for larger problems, and so a construction heuristic and a very large scale

neighborhood search heuristic were developed using the network flow approach to ob-

tain near optimal solutions for large scale problems. Their efforts provided accurate

heuristics for some of the largest sized problems considered to date in the literature.

In this thesis, we propose the application of a branch and bound algorithm to

optimize the untransformed objective function, something we noted as having been

absent to date in the literature. We solve the SWTA problem via the optimization

of the nonlinear objective function yields solutions that are not dependent on the

quality of the approximation but instead exploits the special structure of the problem.

Further, we put forth two search heuristics which achieve near optimal solutions to

the problem. The first is based on our branch and bound algorithm and typically

finds the superior solution when compared to other heuristics. The second heuristic

is based upon the quiz problem solution and is able to achieve near optimal solutions

to large scale problems within a few hundredths of a second.

The contributions of this thesis address the following questions:

Are there algorithms capable of finding exact solutions to the WTA problem? We

implement a nonlinear branch and bound algorithm, not currently in the literature,

as an exact algorithm for the optimization of the WTA problem taking advantage of

improved contemporary computational power.

5

Are there faster approaches to finding near optimal solutions to large WTA prob-

lems than exist in the literature? We develop and present a Modified Quiz Problem

Search Heuristic capable of finding near optimal solutions of some to the largest

problem instances addressed in the literature within 0.03 seconds, real-time.

Are there methods of overcoming the shortcomings of greedy search techniques for

heuristic solution techniques? We identify scenarios wherein greedy search techniques

fail to make quality assignments. We use our knowledge of these scenarios to develop

techniques capable of identifying when greedy searches are inferior and develop a

Modified Quiz Problem Search Heuristic to address these shortfalls.

Are there unexplored heuristics which can find near optimal solutions for WTA

problems better than existing heuristics? We develop a Greedy Branch and Bound

Heuristic new to the literature. The solutions found using this heuristic typically

dominated the other heuristics considered in this paper for small to medium sized

instances of the SWTA problem. Solution time increased exponentially with respect

to the size of the problem, precluding the identification of solutions to large problem

instances.

Convexity of the WTA Problem.

As all efforts to the present have first performed a linear transformation of the

WTA objective function, we seek to optimize the untransformed nonlinear objective

function as solutions to the transformed problem only provide approximations of the

optimal solution.

Theorem 1 The objective function of the WTA problem is convex.

Proof: Because f(x) =
∑n

j=1Vj
∏m

i=1 q
xij
ij is the sum of positively weighted (i.e., Vj >

0, ∀j∈J) functions, it is sufficient to prove that
∏m

i q
xij
ij is convex for any j∈J . We

show that this function is (strictly) convex for |I| = 1. We prove convexity of higher

6

cardinality sets of I via the positive semidefinite property of the Hessian. By induc-

tion, we show that the determinant of the Hessian of
∏m

i q
xij
ij for any j∈J equals 0

for |I| = 2 and, if it equals 0 for |I| = n, then it also equals 0 for |I| = n+ 1.

When |I| = 1, the function is

f(x) = qx, for x≥0,

and the second derivative for this function is

d2f

dx2
= qxln(q)2.

We know that the resulting Hessian is positive definite because, for any value q∈(0, 1),

the expression is the product of two positive values, which is also positive. Because the

1×1 dimensional matrix containing the second derivative of this function is positive

definite, the (trivial) principal minors are positive definite, and the corresponding

function is (strictly) convex.

For |I| = 2, our function is

f(x) = qx1
1 q

x2
2 ,

and the Hessian for this function, letting a1 = ln(q1) and a2 = ln(q2), is

H (f(x)) = qx1
1 q

x2
2

 a21 a1a2

a1a2 a22

We know that (qx1

1 q
x2
2) is positive as the product of two positive numbers. Further,

we know that the diagonals of the Hessian matrix are positive because they are the

squares of a1 and a2, which are real numbers. We observe that for each increment

of |I|, the resulting Hessian has an additional row which is a scalar multiple of the

7

first row. Here the second row is the scalar multiple a2
a1

of the first row. We can

therefore define a matrix B2 which is the reduction of this Hessian by the addition of

the negative scalar multiple of the first row to the second row. As we have defined

B2, the determinant of B2 is equal to the determinant of the Hessian. Since B2 is

an upper triangular matrix, its determinant is the product of its diagonal elements,

one of which is 0. Therefore, its determinant is 0. Since the Hessian is positive

semidefinite and the principal minors are positive, the function is therefore convex.

Assuming that the function is convex for |I| = n, we can show that it is convex

for |I| = n+ 1 by observing that the Hessian matrix has a factorable scalar of
∏

i q
xi
i ,

which is the product of positive numbers. Further, the diagonal elements of the

factored Hessian are a2i , ∀i∈I, which are positive since ai are real numbers. Lastly,

since the (n + 1)st row of the Hessian is a scalar multiple an+1

a1
of the first row, we

can define a matrix Bn+1 which is the reduction of the Hessian in the same manner

as was demonstrated for |I| = 2. Here, Bn+1 has the same first row as the Hessian

and the following n rows are entirely zeros. The determinant of Bn+1 is equal to the

determinant of the Hessian. As Bn+1 is an upper triangular matrix, its determinant

is the product of its diagonal entries, only one of which is non-zero. Thus, the

determinants of both Bn+1 and the Hessian are 0, and the function is convex for

|I| = n+ 1. �

Computational Complexity.

The SWTA problem was known to be complex from its first considerations by

Manne. Lloyd & Witsenhausen (1986) proved that the problem is NP-Complete,

thus proving that obtaining optimal solutions are not possible in polynomial time

and that alternate approaches transformations, heuristics, etc. are required in order

to approximate the optimal solutions to larger sized problems.

8

II. Branch and Bound Algorithm

In this section, we propose a branch and bound algorithm capable of solving

the WTA problem. A branch and bound algorithm can be characterized by four

components: a bounding rule, a selection rule, a branching rule, and a method for

finding an initial feasible solution to increase the efficiency of the algorithm.

For our bounding function, we used MATLABs fmincon NLP solver to evaluate

an integral relaxation of our objective function using an interior point algorithm.

We use a depth first approach for our selection rule, selecting the node which

minimizes the objective function for further searching. While this is less efficient

for instances having smaller numbers of decision variables, our problem instances

examined are predominantly composed of larger numbers of decision variables, and

the breadth first or best first approach would require the storage of information of

many nodes compared to the depth first approach, for which the node count is at

most the number of decision variables.

For our branching rule, we use dichotomic branching, setting the selected decision

variable at each node to 0 or 1 for subsequent searching. We identify the decision

variable upon which to branch as the most uncertain decision variable in the relaxed

solution. That is, the decision variable whose value is closest to 0.5 is chosen for

branching at each node, or

(̂iĵ)∈ arg max
i=1,...,m,j=1,...,n

{
min{xij, (1− xij)}

}
.

Our branch and bound algorithm is depicted in Figure 1. The algorithm is initial-

ized by finding a feasible solution, described in detail later, and defining two variables

from this solution. We define a solution xbest as the current best feasible solution with

9

Figure 1. Branch and Bound Algorithm

objective value z̄ throughout the algorithm and we set the initial feasible solution to

xbest and its objective value to z̄. We then use MATLAB’s nonlinear solver fmincon

to find the integer relaxed lower bound to the problem, with current solution x and

current objective value z. If the solution is integer, we compare the objective value

of the lower bound to z̄. If z≤z̄, we set xbest = x and z̄ = z. Otherwise, we do not

update the initial feasible solution. We then set our optimal solution x∗ = xbest with

objective value z∗ = z̄ and terminate the algorithm.

If the solution we get from MATLAB’s fmincon is not integer, we compare the

objective value of the lower bound to the initial feasible solution. We know that

applying constraints to the problem will not decrease its objective function value,

10

so if z≥z̄, we set our optimal solution x∗ = xbest with objective value z∗ = z̄ and

terminate the algorithm. If z < z̄, we define a branching term as previously defined.

We use fmincon to solve two subproblems with the branching term constrained

to 1 and 0, and define solutions xup and xdown with values zup and zdown. If neither

solution is integer, we define z = min(zup, zdown) and x as the solution for z. We store

the other solution and its objective value to an active node. If either xup or xdown is

integer, we compare the objective value to z̄, and we store the non-integer solution

and its objective value to an active node. If z≤z̄, we respectively redefine our xbest

and z̄ terms with the integer solution and its objective value. We then compare the

objective value of any active nodes to z̄. If the objective value to any active node is

≥z̄, we set our optimal solution x∗ = xbest with objective value z∗ = z̄ and terminate

the algorithm. Otherwise, we use the solution of the active node to define

xUB(i, j) =

 1 max (x(i, ·)) ∀i = 1, . . .,m

0 otherwise

We set our upper bound objective value zUB to the solution of the objective function

using xUB. If the objective value of the upper bound is less than that of the current

best objective value, zUB < z̄, we update xbest = xUB and z̄ = zUB. Otherwise, we

do not update these terms. We then check to see if z < z̄. If not, we check to see

if the value of any active nodes is less than z̄ and follow as we described previously.

Otherwise, the algorithm continues as previously defined by setting the branching

term.

We set an iteration count termination criteria for the algorithm, as the number of

nodes the algorithm explores typically exceeds one million for the problem with 10

weapons and 20 targets, and the number of nodes increases exponentially with the

increase of the problem size.

11

Branch and bound algorithms benefit greatly from an initial feasible solution from

which an objective function value can be used to fathom nodes immediately. Without

this initial feasible solution, the algorithm is unable to fathom any nodes until a

feasible solution is reached. We obtained our initial feasible solution for block 1 in

Figure 1 by implementing a strategy first explored by Castañon (1987) and presented

by Ahuja et al. (2007) in modeling the problem as a minimum cost network flow

problem. We define a network G = (N,A) as depicted in Figure 2 by having nodes

that correspond to our weapons (Wi) and a node for each weapon-target pairing

(Tj) as well as a single terminus (t) which has demand equaling the total number of

weapons, or
∑n

i=1wi. As can be seen in Figure 2, we divide the set of all arcs into two

subsets: A1 is the set of all arcs from each weapon to each target and A2 is the set of all

arcs from each target to the terminus. Each target has n nodes, T 1
j , T

2
j , . . . , T

n
j , which

define the number of weapons assigned to it and the order in which each is assigned.

The arcs connecting each weapon to nodes T 1
j correspond to the first weapon assigned

to target j and have an associated cost Vjpij. The remaining arcs cannot be calculated

exactly as their cost is dependent on all preceding assignments. That is, the cost of

an arc connecting a weapon to node T 2
j is Vjpijqîĵ. Since this heuristic is used to

provide a feasible upper bound to the problem, we assume each previous assignment

was made with the weapon having the lowest pij value for target j. This means that

we estimate the cost of the arc connecting a weapon to node T 2
j to be Vjpijq

max
ij . In

defining the arcs connecting each weapon to node T 2
j in this way, we assure that the

true cost of this arc is no worse than our approximation. We can therefore define

each arc (i, j)∈A1 as having an associated cost cij = Vjpij
(
qmax
j

)k−1
, where k is

the index defining the order of each weapon to target assignment T k
m, k = 1, . . . , n.

Each arc (j, t)∈A2 has cost cjt = 0, ∀j∈J . Each arc in A has capacity 1, which is

important as it limits the number of weapons assigned to T 1
j to 1, preventing multiple

12

assignments along maximum valued arcs. Since no hard side-constraints exist, this

heuristic generates a feasible solution by using a greedy approach by maximizing the

expected value obtained by assigning a weapon to a target while penalizing multiple

assignments to the same target.

Figure 2. Minimum Cost Network Flow Lower Bounding Scheme

We were only able to run to completion the branch and bound algorithm for

smaller problem instances due to the large number of decision variables and corre-

spondingly large trees produced during the execution of the algorithm. The value of

the algorithms efficiency as compared to a brute force algorithm is shown in §4.

13

III. Heuristics

As mentioned in §1, the WTA problem is NP Complete and obtaining an optimal

solution to larger sized problems is not practical. We sought to develop and compare

heuristic search techniques to obtain near optimal solutions to larger sized instances

of the WTA problem in minimal computational time. We developed two heuristics, a

Greedy Branch and Bound Heuristic and a Modified Quiz Problem Search Heuristic,

to which we compare the effective Construction Heuristic as developed by Ahuja et al.

(2007).

Minimum Cost Flow Formulation Based Construction Heuristic.

We considered a heuristic developed by (Ahuja et al., 2007) which utilized the

minimum cost network flow method of determining an upper bound. This borrows

from the network programming heuristics proposed by Chang et al. (1987), who

developed an iterative linear network programming heuristic and Castañon (1987),

who developed a nonlinear network flow heuristic. The Construction Heuristic first

solves the WTA problem as described in §2, identifying the assignments which give

an upper bound to the solution. The arcs of this network fall into two categories:

exact-cost arcs, which are computed with known values, and approximate-cost arcs,

which are computed with the maximum survival assignment as upper bounds. The

heuristic affixes the assignments to define a positive flow on the exact-cost arcs and

redefines the network by removing the exact-cost arcs with positive flow and updates

the remaining arc costs by using the updated target values, V 1
j = Vjqîĵ. This is similar

to the maximum marginal return approach first proposed by denBroeder et al. (1959).

In redefining the network, some of the approximate-cost arcs become exact-cost arcs.

The process is repeated until all weapons have been assigned.

14

Greedy Branch and Bound Heuristic.

We develop a heuristic based upon our branch and bound algorithm which solves

the static WTA with small optimality gaps. We utilize the depth first approach to

our branch and bound algorithm, selecting the node with the lowest integral relaxed

solution as it has the lower bound. This heuristic is different from traditional branch

and bound algorithms in its termination criteria. We design the heuristic to terminate

at the arrival of the first feasible solution and do not consider any active nodes beyond

this point.

Figure 3. Greedy Branch and Bound Heuristic

While similar to the Branch and Bound Algorithm, the Greedy Branch and Bound

Heuristic, shown in Figure 3, differs in its termination criteria. The first criterion upon

which this heuristic will terminate is when an integer solution is found using the NLP

15

solver. If the value of the solution is greater than or equal to the current best value,

the heuristic is terminated, reporting the current best solution and value. Otherwise,

the current best solution and objective value are first set to the integer solution and

its objective value before the heuristic is terminated. The second criterion which will

terminate the heuristic is if the value of the lower bound(s) calculated by the NLP

solver is(are) greater than the current best objective value. In this case, the current

best solution and objective value are reported.

Modified Quiz Problem Search Heuristic.

We developed a heuristic based upon the application of the optimal quiz problem

solution as a heuristic which was first proposed by Ahner (2005). The quiz problem

states that an individual presented with a series of questions u = 1, . . . , n with value

vu has probability pu of correctly answering a question. Further, the individual will

be able to answer questions until he answers one incorrectly. The objective of the quiz

problem is to identify the order in which to select the questions in order to maximize

the value of those correctly answered. Bertsekas & Castañon (1999) showed that the

strategy for maximum return is to select the questions in descending values of yu,

where yu = vupu
1−pu = vupu

qu
.

We use Ahner’s strategy to define the value of each weapon-target assignment as

y0ij, which allows us to select the maximum return for a weapon-target assignment

xîĵ. We then redefine our target value Vĵ = Vĵqîĵ, which is the residual value of the

selected target given the weapon assigned. We also redefine our probabilities of kill

for the selected weapon wî to be pî· = 0, since we have only one weapon of each type.

Using these updated values, we update our value array as y1ij. We repeat this process

until each of the weapons is assigned to a target.

Figure 4 shows the Modified Quiz Problem Search Heuristic. The heuristic ini-

16

tializes by setting the assignment solution, x, to an n x m zeros matrix for a problem

instance having n weapons and m targets. As referenced above, we build a value

array y, which is defined by

y(i, j) =
Vjpij
qij

.

We then identify the two largest values in y, which we call y(i1, j1) and y(i2, j2),and

check if they are in the same row of y. If not, we check to see if the greedy assignment

is preferred according to a process defined in the next paragraph. If the largest values

are in the same row of y, we set x(i1, j1) = 1 and increment a counter k by 1. If

our counter is equal to the number of weapons after this increment, we terminate the

heuristic. Otherwise, we update our value array y by redefining Vj1 = Vj1qi1j1 and

setting the probabilities of weapon i1 to zero, or pi1j = 0 ∀j.

We note a shortcoming with the Construction Heuristic and other greedy selection

based heuristics that needs to be addressed. These heuristics seek to define pairings

based upon the greatest expected value of the weapon-target assignment, that is Vjpij,

which is in line with a greedy algorithm. The shortcoming in this approach can be

illustrated by taking a trivial case with two weapons and two targets, with target

values {V1, V2} and probabilities of kill {p11, p12, p21, p22}. If we define the greatest

expected value to be

max

V1p11 V2p12

V1p21 V2p22

 = V1p11

And we further assume that, for this case,

V1p11 − V2p12 < V1p21 − V2p22

17

We can see that, with a simple rearrangement of the above inequality

V1p11 + V2p22 < V1p21 + V2p12

This means that selecting the pairing with the greatest expected value will result in

a lower solution value than selecting the alternative. We incorporate into the Quiz

Problem Search Heuristic a step which checks whether

yab −max
j 6=b
{yaj} < ycd −max

j 6=d
{ycj}

where yab > ycd > . . . > min
i,j
{yij}. In the case where the above inequality holds true,

we chose ycd rather than yab as our assignment for that iteration.

We only incorporated this modification into the Quiz Problem Search Heuristic for

several reasons. The Greedy Branch and Bound Heuristic does not select assignments

based upon a defined value but rather solves the problem using a branch and bound

technique and terminates at the first feasible solution. This greedy shortcoming

modification cannot be implemented in such a heuristic. The Construction Heuristic,

which is the benchmark to which we compare our heuristics, should not be modified

since its performance as published by Ahuja et al. (2007) do not use this modification.

Therefore, only the Quiz Problem Search Heuristic can be modified by this method

to avoid the shortcoming of a greedy selection criterion.

18

Figure 4. Modified Quiz Problem Search Heuristic

19

IV. Computational Results

We test each algorithm and heuristic defined heretofore to solve a set of instances

by designing random parameters within various instance sizes ranging from 5 weapons

and 5 targets to 80 weapons and 160 targets, and by testing each heuristic and

algorithms on the same parameters. We consider 15 problem sizes, first defined

in Table 1, which set our number of weapons and targets. We assign a randomly

generated target value as a uniformly distributed continuous variable [25, 100], and

we also assigned randomly generated probabilities of kill as uniformly distributed

continuous variables [0.6, 0.9] so that each weapon has a different probability of kill

for each target. We generate 20 problem instances of random numbers for each of

our 15 problem sizes and performed all tests on an Intel Xeon E5-2650 v2 processor

computer with 128 GB RAM PC. Each solution method is applied to the same set

of 20 problems for the purpose of enabling direct comparisons of solution values and

computational times. Our results, insights, and analysis are presented in the following

sections.

Computational Complexity.

In this thesis, we consider problem instances of various sizes, as shown in Table 1

below. The first set of instances, each with five weapons and five targets, results in

55 = 7776 permutations from which one is the optimal solution. This is a relatively

simple problem to solve via full enumeration and each of the 20 randomly generated

instances took an average of approximately 0.6 seconds to solve. However, the next

problem considered has 610 = 60466176 permutations, which takes an average of

2,302 seconds (more than 38 minutes) to solve on an Intel Xeon E5-2650 v2 processor

computer with 128 GB RAM PC. Clearly, the number of permutations and subsequent

computational time to find a solution by fully enumerating the permutations quickly

20

becomes excessive and exceeds computational capacity. We ran all permutations of

the enumeration algorithm from 5 weapons and 5 targets to 9 weapons and 9 targets

and developed a model to project the computational time required to solve the larger

problem instances, as we could not run them to completion due to required time. Our

model has an adjusted R2 value of 0.99 and takes the form

f(w, t) = −1319.157 + 203.97w − 0.0000407tw + 0.0000792wtw

The computational times for the first two problems in Table 1 are the averages of

20 experiments and the remaining 13 computational times are projections from our

model to estimate time required for larger instances. For a 20 weapon, 20 target

instance, full enumeration is estimated to take 3.703×1015 years.

Table 1. Projected Computational Time Using Full Enumeration

Weapons Targets Time (sec)
5 5 0.605

10 5 2302.045
10 10 7.510E+06*
10 20 7.690E+09*
15 10 1.147E+12*
20 10 1.543E+17*
20 20 1.618E+23*
20 40 1.696E+29*
40 10 3.126E+37*
40 20 3.437E+49*
40 40 3.779E+61*
40 80 4.155E+73*
80 40 9.197E+125*
80 80 1.112E+150*
80 160 1.344E+174*

* Model projections

21

Branch and Bound results.

We present the results of our branch and bound algorithm in this section in two

metrics. The first is the computational time required for our branch and bound

algorithm as compared to the full enumeration, or brute force, algorithm. Due to

the large number of permutations that accompany even moderate sized problems, the

brute force algorithm is cannot solve even these moderate sized problems within a

practical amount of time (e.g., less than a week). We are unable to solve any problem

size greater than 10 weapons and 5 targets using the brute force algorithm; even the

problem of this small size took an average of more than 38 minutes to solve. We

therefore test the performance of the brute force algorithm for various sized problems

up to 9 weapons and 9 targets and generate a model to predict the time required to

solve via brute force algorithm.

Table 2. Computational Time Requirements (sec)

Branch & Bound Brute
Weapons Targets Average St Dev Average St Dev

5 5 1.739 1.738 0.605 0.0519
10 5 32.025 55.669 2302.045 44.460
10 10 507.942 831.781 7.510E+06 -
10 20 1429.216 137.236 7.690E+09 -
15 10 580.712 65.902 1.147E+12 -

We observe that the computational time required for the Branch and Bound al-

gorithm is an improvement on that of the brute force algorithm, which is computa-

tionally intractable when considering problems having more than 10 weapons and 10

targets. Table 2 shows the computational improvements of the branch and bound

algorithm as compared to the brute force algorithm. The first two problem instances

were run to completion with the brute force algorithm, and the solutions generated

match those of the branch and bound algorithm. The remaining times for the brute

force algorithm are projected from our brute force algorithm computational time

22

model and therefore have no standard deviation. With exception of the modeled pro-

jections, these figures were generated by averaging the computational requirements

of the same 20 randomly generated instances of each problem size. Figure 5 shows

the time required or estimated for the three problems with 10 weapons and varying

numbers of targets for the brute force algorithm as compared to the performance of

our Branch and Bound algorithm. While the Branch and Bound Algorithm grows

with problem size, it appears to grow at a much lesser rate than full enumeration.

Figure 5. Computational Time Requirements for Optimization With 10 Weapons

We were unable to run to completion the Branch and Bound Algorithm for larger

sized problems due to two prevailing factors. The first factor was the vast number

of nodes generated when running the algorithm. For the problem of 10 weapons and

20 targets, our algorithm was unable to find the optimal solution after considering

1,000,000 nodes, to include nodes which were fathomed without exploration. The

lag due to the large number of nodes was exacerbated for larger problems by the

computational time required for the NLP solver to find the integer relaxed solution

at each node. With smaller sized problems, an optimal solution could be found using

23

an interior point algorithm in less than a tenth of a second, but as the problem sizes

increased, the time required for each optimization increased. For the same problem

of 10 weapons and 20 targets, the time for each integer relaxed optimization took

several seconds, which therefore causes the algorithm to run for long durations when

considering all nodes. As such, we decided to run the larger sized problems with a

ceiling on the maximum number of nodes generated and to observe the gap between

the best feasible solution, or upper bound, with the lowest relaxed solution, or lower

bound, to an active node as depicted in the far right columns of Table 3. From this, we

were able to identify that our algorithm was, at worst, within a specific percentage of

the optimal solution, though the exact optimal solution is not known. Table 3 shows

the performance of the algorithm for the small and moderate sized problems with a

maximum number of nodes set to 1000.

Table 3. Branch and Bound Algorithm Performance

Branch & Bound
Weapons Targets Nodes Visited Time (sec) Within % optimality

Average St Dev Average St Dev Average St Dev
5 5 14.7 18.184 1.739 1.738 - -

10 5 129.4 232.118 32.025 55.669 - -
10 10 905.5 1466.203 507.942 831.781 - -
10 20 1000 0 1429.216 137.236 0.311 0.0476
15 10 1000 0 580.712 65.902 0.246 0.0536
20 10 923.3 229.487 787.678 438.806 0.0630 0.0448
20 20 1000 0 5079.692 586.856 0.0547 0.0188

We can extract several insights from Table 3. The first is that the computational

time increases quickly with regard to the problem size, both in numbers of weapons

and targets, although it increases faster relative to target number increase. However,

we observe that the average computational time for a problem with 10 weapons

and 20 targets is nearly double the average computational time with 20 weapons

and 10 targets. This occurs because the number of dimensions across which the

24

weapons are to be assigned is equal to the number of targets, and so each relaxed

problem takes longer to solve. Next, we see that the average maximum gap with

the optimal solution appears to vary greatly. This result occurs because an integer

feasible solution does not allow for a weapon to have partial allocation to multiple

targets as the lower bounding solution does. That is, the lower bounding solution

will likely assign fractions of each weapon to the targets, thus providing an optimal

coverage of all targets and minimizing leakage. In contrast, feasible solutions may

leave targets unassigned in general but will necessarily leave targets unassigned for

problems with more targets than weapons or those with a remainder after dividing the

number of weapons by the number of targets. As the objective function evaluates the

sum of residual expected target values, or expected leakage, the feasible solution to

these problems, which leaves targets unassigned, will have much larger values relative

to the lower relaxed solutions than the feasible solutions to problems wherein the

number of targets is greater than or equal to the number of weapons or there is no

remainder after dividing the number of weapons by the number of targets. Lastly, the

high standard deviations of solution time and node count where the algorithm ran to

completion illustrate that the performance of the Branch and Bound algorithm will

vary greatly due to the uncertain number of nodes required for the algorithm to find

the optimal solution.

Comparison of Heuristics.

Next, performance of the Construction Heuristic developed by Ahuja et al. (2007)

is compared to our Greedy Branch and Bound Heuristic and our Modified Quiz Prob-

lem Search Heuristic.

25

A note on Ahuja et al. (2007).

We note a statement by the authors regarding the performance of their branch

and bound algorithm (i.e., the Construction Heuristic):

For [problems with more than 80 weapons and 80 targets], the branch-
and-bound algorithm could not be executed until optimality. However,
observe that the minimum of the lower bounds of the active (node not
pruned yet) nodes gives an overall lower bound on the objective function.

In contrast to this statement, the authors present results in Table 3 of their work the

results of their testing, which include 0% relative optimality gaps attained for several

of the instances, including four of the eight largest instances tested. This result

contradicts the aforementioned statement; assuming the first statement to hold, we

conjecture that the authors employed an additional measure to identify the solution

found via their Construction Heuristic to be optimal for the larger instances.

Upon further investigation, the Ahuja et al. (2007) do additionally state

We also observed that when [the number of weapons] < [the number of
targets], then the number of weapons assigned to most targets is at most
one in the optimal solution.

Such a statement does not require, when W < n, that no target may have more than

one weapon assigned to it in an optimal solution. However, this is the only statement

the authors provide that intimates at method that could be employed to conclude that

a solution attained via the Construction Heuristic for a larger instance is optimal. We

suspect that such a solution characteristic was observed for smaller problem instances

and assumed to hold for larger problem instances. We have contacted the authors for

clarification and look forward to their reply.

The following example demonstrates that an optimal solution may have more than

one weapon assigned to a given target when W < n, setting aside the possibility of

26

using such a “typically observed” property to draw conclusions regarding the opti-

mality gap attained via the Construction Heuristic by examining the characteristics

of the solution. Take a scenario wherein there are three targets and two weapons.

Suppose that the values of these targets are

V1

V2

V3

 =

100

25

25

 ,

and the probability of kill for each weapon to each target is 0.6. With identi-

cal weapons, we can now follow the maximum marginal return approach, assigning

weapons one at a time. Since we are minimizing the residual target value, the best

assignment for weapon 1 is target 1, resulting in the target values

V 1
1

V2

V3

 =

40

25

25

Weapon 2 should also be assigned to target 1 since it results in a lesser cumulative

residual value than assigning either the first, second, or both weapons to the other

targets. For example, if we consider the objective solution in situations where both

weapons are assigned to target 1, one is assigned to target 1 and one to target 2, one

to target 1 and one to target 3, and one is assigned to target 2 and one to target 3, we

see that the best objective value occurs where both weapons are assigned to target 1.

100(0.6)1(0.6)1 + 25(0.6)0(0.6)0 + 25(0.6)0(0.6)0 = 66

100(0.6)1(0.6)0 + 25(0.6)0(0.6)1 + 25(0.6)0(0.6)0 = 75

27

100(0.6)0(0.6)1 + 25(0.6)1(0.6)0 + 25(0.6)0(0.6)0 = 75

100(0.6)0(0.6)0 + 25(0.6)1(0.6)0 + 25(0.6)0(0.6)1 = 120

This procedure seems to influence the perception of the construction heuristic’s

performance, which was noted by the authors as finding the optimal solution whenever

the number of weapons was less than the number of targets. In Table 4, we show that

both our Greedy Branch and Bound and Modified Quiz Problem Search heuristics

improve upon the construction heuristic in most instances wherein this condition

holds. We believe that the degradation of performance for the Construction Heuristic

can be attributed to either the omission of solutions having more than one weapon

assigned to a target or due to the error inherent to the piecewise approximation

which was necessary when applying the linear transformation to the objective. As our

solution was not based upon a tranformation, our optimality gap is exact, whereas the

optimality gap using the approximated optimal solution for the transformed problem

may inaccurately indicate an optimal solution.

We show in Table 4 the number of the 20 same randomly generated instances

for each problem size where each heuristic dominates in terms of objective function

value. In some cases, more than one heuristic dominates. We represent performance

in terms of relative response rather than optimality gap. Additionally, our most

accurate heuristic, the Greedy Branch and Bound Heuristic, is a slower heuristic

which is dependent upon the speed with which our nonlinear solver is able to solve

each node’s relaxed problem. As the problem size increases, both the number of nodes

and the size of the NLPs grow, increasing the computational time and preventing the

heuristic’s implementation for large problems (W > 40&T > 40). This is reflected in

Table 4 by the absence of Greedy Branch and Bound Heuristic performance results

for larger problem sizes.

28

Table 4. Best Solution Comparison of Heuristics

Weapons Targets Modified Quiz Construction Greedy Branch
Problem Search & Bound

5 5 8 16 20
10 5 5 14 18
10 10 6 9 17
10 20 5 5 20
15 10 5 8 12
20 10 1 10 14
20 20 0 5 18
20 40 11 3 20
40 10 0 8 14
40 20 1 2 18
40 40 1 19 -
40 80 16 4 -
80 40 1 19 -
80 80 2 18 -
80 160 20 0 -

Table 5 shows the percent optimality gap of the heuristics where we are able to

execute the branch and bound algorithm to completion, thereby obtaining valid lower

bounds and calculating optimality gaps. We observe that our Greedy Branch and

Bound Heuristic is the most accurate and reliable of the heuristics, with a maximum

average relative optimality gap of 0.53%. We further note that, if we examine Table

6, the computational time required for each heuristic to achieve the optimality gaps

shown in Table 5 are comparable. The Greedy Branch and Bound Heuristic takes

roughly seven seconds longer than the Construction Heuristic in the problem having

10 weapons and 10 targets but yields a superior optimality gap. Additionally, we

believe that the difference in the observed performance of the construction heuristic

compared to the results given by Ahuja et al. (2007) and those that we observed arise

from the comparison to an optimal solution that was incorrectly identified via the

approximation.

29

Table 5. Percent Optimality Gaps of Heuristic Solutions to Smaller Problems

MQP Search Construction Greedy B&B
Weapons Targets Average St Dev Average St Dev Average St Dev

5 5 4.789% 7.466% 0.460% 2.058% 0.000% 0.000%
10 5 5.244% 4.560% 1.808% 3.488% 0.531% 1.242%
10 10 5.266% 5.237% 3.138% 3.429% 0.383% 1.267%

While Table 5 shows a relatively poor performance of the Modified Quiz Problem

Search Heuristic for small problems, we point to its performance as being exception-

ally strong when considering the computational time required for even the largest

problems as shown in Table 6. Regardless of the size of the problem, the computa-

tion time of the Modified Quiz Problem Search Heuristic was dominant relative to the

Construction and Greedy Branch and Bound heuristics. We observed that, though it

was the accurate heuristic when optimality gap was considered, the Greedy Branch

and Bound heuristic was the most computationally demanding of the heuristics. We

were able to run to completion the Greedy Branch and Bound Heuristic for the 40

weapons and 20 targets problem, but for larger problems the heuristic took far too

long (i.e., over 24 hours) and wasn’t run to completion. This increase in computa-

tional time was the result of the time required to solve the integer relaxation for each

node of the Greedy Branch and Bound Heuristic. The Construction heuristic was an

efficient and reliable technique for certain problem sizes, but it was neither the most

accurate nor the most efficient when considering problems with more targets than

weapons, especially with larger problem instances.

For all sized problems, we consider the performance of the Modified Quiz Problem

Search and Construction heuristics by observing the relative performance of each

averaged over the 20 instances of each problem. Table 7 shows that, when the Modified

Quiz Problem Search Heuristic was inferior to the Construction Heuristic, its solution

was at most 7% greater than that of the Construction Heuristic.

30

Table 6. Heuristic Computational Time Comparisons (sec)

MQP Search Construction Greedy B&B
Weapons Targets Average St Dev Average St Dev Average St Dev

5 5 0.00333 0.01064 0.224 0.0976 0.568 0.257
10 5 0.00113 0.000176 0.445 0.0917 2.019 0.674
10 10 0.00111 0.000121 0.441 0.0975 7.657 2.726
10 20 0.00110 0.000105 0.487 0.107 242.267 55.907
15 10 0.00155 0.000104 0.767 0.0531 38.020 11.086
20 10 0.00202 0.000109 1.608 0.255 41.986 13.726
20 20 0.00215 0.000120 2.208 0.346 232.426 88.660
20 40 0.00280 0.000153 4.455 0.609 28443.757 6393.071
40 10 0.00407 0.000121 17.997 1.863 711.324 223.755
40 20 0.00536 0.000220 20.569 1.181 2691.799 632.036
40 40 0.00670 0.000171 14.311 0.432 - -
40 80 0.00912 0.000151 47.077 20.162 - -
80 40 0.0156 0.00121 309.641 10.313 - -
80 80 0.0194 0.000245 177.106 6.210 - -
80 160 0.0284 0.000274 1348.815 391.135 - -

Table 7. Modified Quiz Problem Search and Construction Heuristics Relative Perfor-
mance

Heuristic
Weapons Targets MQP Search Construction

5 5 0.0437 -
10 5 0.0342 -
10 10 0.0211 -
10 20 - 0.0119
15 10 0.0303 -
20 10 0.0689 -
20 20 0.0225 -
20 40 - 0.0195
40 10 0.0720 -
40 20 0.0364 -
40 40 0.0277 -
40 80 - 0.0143
80 40 0.0471 -
80 80 0.0188 -
80 160 - 0.0377

31

We consider the performance of the Modified Quiz Problem Search Heuristic and

the Construction Heuristic from the perspective of statistical significance. Table

8 shows whether the Modified Quiz Problem Search Heuristic or the Construction

Heuristic is statistically superior to the other, as computed using the two-tailed t

distribution based confidence interval method for the 20 randomly generated problem

instances. We built confidence intervals for each heuristic as ȳ±t(n−1)α
2

(
s√
n

)
to identify

whether the confidence interval of the dominant heuristic contained the mean value

of the other heuristic. We see that, with 100(1 − α)% certainty, neither heuristic

consistently dominates the other in performance.

Table 8. Statistically Significant Heuristic Dominance

Weapons Targets α = 0.1 α = 0.05 α = 0.01
5 5 - - -

10 5 - - -
10 10 - - -
10 20 - - -
15 10 - - -
20 10 Construction Construction Construction
20 20 - - -
20 40 - - -
40 10 - - -
40 20 Construction - -
40 40 Construction Construction -
40 80 MQP - -
80 40 Construction Construction Construction
80 80 Construction Construction -
80 160 MQP MQP MQP

32

V. Conclusion and Future Research

We propose a branch and bound algorithm which was able to find the optimal

solution of smaller sizes of the untransformed SWTA problem. We then use this

algorithm to generate a search heuristic, the Greedy Branch and Bound Heuristic,

which is able to find near optimal solutions that rival those found in the literature.

We also generate a Quiz Problem Search Heuristic, which is able to generate close to

optimal solutions of even the largest sized problems in less than a few hundredths of

a second. While the optimal solution to larger sizes of the SWTA problem remains

unsolved, these heuristics allow us to obtain solutions which improve on existing

solutions using contemporary methods found in the literature.

We observe that, when able to run to completion, the Greedy Branch and Bound

Heuristic usually finds superior solutions than the Construction and Quiz Problem

Search Heuristics, although at a much higher computational cost. The reported

objective function value of the Greedy Branch and Bound solution is typically but

not always superior, and the difference in computational time is at most less than

eight seconds for smaller problems (W≤10 & T≤10). Because the solutions to small

sized WTA problems are found relatively quickly when compared to the Brute Force

or full Branch and Bound Algorithms, we consider the solution values found as a

comparative metric. As the Greedy Branch and Bound Heuristic has the best average

solution value and performed the best for the majority of each of the 20 problem

instances for a given number of weapons and targets, we identify it as the superlative

heuristic among those examined for small WTA problems.

In considering the performance of the three heuristics examined in this thesis, we

observe that no heuristic always dominates in its reported solution. Often, the best

solution we are able to determine is shared amongst two of the heuristics. When

one heuristic is dominant, the other two are typically very close in value. We use

33

this fact to further compare the performance of the heuristics with regard to their

computational speed. Using this criteria, there is a very clear ranking in heuristic

performance. While all three found solutions in less than a second for the smallest

problem considered, and the Construction Heuristic continued to find solutions in

less than a second for problem sizes up to the problem having 15 weapons and 10

targets, both the Greedy Branch and Bound Heuristic and the Construction Heuristic

are far slower than the Quiz Problem Search Heuristic. The slowest average solution

time for the Quiz Problem Search Heuristic was nearly eight times faster than the

fastest average solution time from either of the other two heuristics. Therefore, we

assert that the Quiz Problem Search Heuristic is the dominant heuristic considered

in this paper when computational time is considered and, therefore, also dominant

for real-time allocation applications.

We intend on extending this research by applying time-bounded neighborhood

search heuristics to our Quiz Problem Search Heuristic to try to find real-time solu-

tions closer to optimality without significantly increasing the required computational

effort. We want to use the heuristics defined in this paper to address two-stage WTA

problems and other dynamic instances of the WTA problem, to include stochastic

instances. Additionally, we want to address the problem of limited sets, wherein

weapons are capable of shooting targets within a defined range, resulting in targets

which can only be shot by some of the weapons. Lastly, we want to bring together

these two problems and solve a two-stage limited set problem. This research provides

a foundation for this future research.

34

Appendix A. Story Board

35

Bibliography

Ahner, Darryl K. 2005. Planning and control of unmanned aerial vehicles in a stochas-
tic environment. Doctor of Philosophy dissertation, Boston University.

Ahuja, Ravindra K, Kumar, Arvind, Jha, Krishna C, & Orlin, James B. 2007. Exact
and heuristic algorithms for the weapon-target assignment problem. Operations
Research, 55(6), 1136–1146.

Bertsekas, Dimitri P, & Castañon, David A. 1999. Rollout algorithms for stochastic
scheduling problems. Journal of Heuristics, 5(1), 89–108.

Castañon, DA. 1987. Advanced weapon-target assignment algorithm quarterly report.
Tr-337, ALPHA TECH Inc., Burlington, Massachusetts.

Chang, Shi-chung, James, Ronald M, & Shaw, Jonh J. 1987. Assignment algorithm
for kinetic energy weapons in boost phase defence. Pages 1678–1683 of: Decision
and Control, 1987. 26th IEEE Conference on, vol. 26. IEEE.

Day, Richard H. 1966. Allocating weapons to target complexes by means of nonlinear
programming. Operations Research, 14(6), 992–1013.

denBroeder, GG, Ellison, RE, & Emerling, L. 1959. On optimum target assignments.
Operations Research, 7(3), 322–326.

Evans, Stephen. 2015 (May). North Korea ’test-fires submarine-launched missile’.
http://www.bbc.com/news/world-asia-32671101. Retrieved on 18 Jan 2017.

Flood, M. 1957. Target-assignment model. In: Proceedings of the Princeton Univer-
sity Conference on Linear Programming, Princeton (NJ).

Johansson, Fredrik, & Falkman, Göran. 2009. An empirical investigation of the static
weapon-target allocation problem. In: Proceedings of the 3rd Skövde Workshop on
Information Fusion Topics (SWIFT2009). Sweden.

Lee, Zne-Jung, Lee, Chou-Yuan, & Su, Shun-Feng. 2002. An immunity-based ant
colony optimization algorithm for solving weapon–target assignment problem. Ap-
plied Soft Computing, 2(1), 39–47.

Lloyd, Stuart P, & Witsenhausen, Hans S. 1986. Weapons allocation is NP-complete.
Pages 1054–1058 of: 1986 Summer Computer Simulation Conference.

Manne, Alan S. 1958. A target-assignment problem. Operations Research, 6(3),
346–351.

Matlin, Samuel. 1970. A review of the literature on the missile-allocation problem.
Operations Research, 18(2), 334–373.

36

http://www.bbc.com/news/world-asia-32671101

MG Mahon, Francis (Ret.). 2016 (February). US Air and Missile Defenses - A
Critical Gap. http://www.realcleardefense.com/articles/2016/02/11/us_

air_and_missile_defenses_-_a_critical_gap_109012.html. Retrieved on 10
March 2016.

Rosenberger, Jay M, Hwang, Hee S, Pallerla, Ratna P, Yucel, Adnan, Wilson, Ron L,
& Brungardt, Ed G. 2005. The generalized weapon target assignment problem. Tech.
rept. DTIC Document.

Tomlinson, Lucas. 2016 (July). Iran Conducts 4th missile test since
signing nuke deal. http://www.foxnews.com/world/2016/07/15/

exclusive-iran-conducts-4th-missile-test-since-signing-nuke-deal.

html. Retrieved on 18 Jan 2017.

United States Department of Defense. 2010 (January). Ballistic Missile
Defense Review Report . https://www.defense.gov/Portals/1/features/

defenseReviews/BMDR/BMDR_as_of_26JAN10_0630_for_web.pdf. Retrieved on
13 Jan 2017.

Wacholder, Eitan. 1989. A neural network-based optimization algorithm for the static
weapon-target assignment problem. ORSA Journal on computing, 1(4), 232–246.

Walkup, David W, & MacLaren, M Donald. 1964. A multiple-assignment problem.
Tech. rept. DTIC Document.

37

http://www.realcleardefense.com/articles/2016/02/11/us_air_and_missile_defenses_-_a_critical_gap_109012.html
http://www.realcleardefense.com/articles/2016/02/11/us_air_and_missile_defenses_-_a_critical_gap_109012.html
http://www.foxnews.com/world/2016/07/15/exclusive-iran-conducts-4th-missile-test-since-signing-nuke-deal.html
http://www.foxnews.com/world/2016/07/15/exclusive-iran-conducts-4th-missile-test-since-signing-nuke-deal.html
http://www.foxnews.com/world/2016/07/15/exclusive-iran-conducts-4th-missile-test-since-signing-nuke-deal.html
https://www.defense.gov/Portals/1/features/defenseReviews/BMDR/BMDR_as_of_26JAN10_0630_for_web.pdf
https://www.defense.gov/Portals/1/features/defenseReviews/BMDR/BMDR_as_of_26JAN10_0630_for_web.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2017 Master’s Thesis Sept 2015 — Mar 2017

REAL-TIME HEURISTIC ALGORITHMS FOR THE STATIC
WEAPON-TARGET ASSIGNMENT PROBLEM

Kline, Alexander G, CPT

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-17-M-139

STRATCOM/JWAC
Attn: Jill Morrissett, J902
4048 Higley Rd
Dahlgren, VA 22448

JWAC

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The problem of targeting and engaging individual missiles (targets) with an arsenal of interceptors (weapons) is known as
the weapon target assignment problem. As many solution techniques are based upon a transformation of the objective
function, their final solutions rarely produce optimal solutions. We propose a nonlinear branch and bound algorithm to
provide the first optimization approach to the untransformed problem found in the literature. Further, we propose a new
heuristic based upon the branch and bound algorithm which dominates other heuristics explored in optimality gap. We
also propose a heuristic based upon the optimal solution to the quiz problem which finds solutions within 6% of optimal
for small problems and provides statistically similar results as one of the best heuristics found in the literature for larger
problems while solving these problems in ten thousandths of the time.

Weapon-Target Assignment Problem,Branch and Bound Algorithm, Real-Time Heuristics

U U U UU 47

Dr. Darryl K. Ahner, AFIT/ENS

(937) 255-6565, x4708; darryl.ahner@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Branch and Bound Algorithm
	Heuristics
	Computational Results
	Conclusion and Future Research
	Story Board
	Bibliography

