
CLOUD BENCHMARK TESTING OF
CASSANDRA ON RASPBERRY PI FOR
INTERNET OF THINGS CAPABILITY

THESIS

Daniel P. Richardson, Capt, USAF

AFIT-ENG-MS-17-M-065

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-17-M-065

CLOUD BENCHMARK TESTING OF CASSANDRA ON RASPBERRY PI FOR

INTERNET OF THINGS CAPABILITY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Daniel P. Richardson, B.S.E.E.

Capt, USAF

March 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-17-M-065

CLOUD BENCHMARK TESTING OF CASSANDRA ON RASPBERRY PI FOR

INTERNET OF THINGS CAPABILITY

THESIS

Daniel P. Richardson, B.S.E.E.
Capt, USAF

Committee Membership:

Lt Col John Pecarina, PhD
Chair

Maj Alan Lin, PhD
Member

Dr. Kenneth Hopkinson
Member

AFIT-ENG-MS-17-M-065

Abstract

This paper explores the distributed NoSQL database Cassandra’s performance

limitations in an Internet of Things (IoT) using limited hardware, namely the Rasp-

berry Pi 2. Our aim is to use Cassandra’s reliable and efficient data distribution to

enable distributed exploits on real-time streaming data. At the time of this writing,

the proposition of Cassandra on IoT-like hardware carries some development risk for

a would-be application developer. This work not only demonstrates that actual op-

eration of Cassandra is possible on Raspberry Pi, but also varies the conditions of

operation to serve the expectation management of the variations inherent in new,

creative, and cutting-edge applications. This work uses the Yahoo Cloud Services

Benchmark (YCSB) not only for its popularity but to catalyze infusion of this re-

search with existing and future research that will fully characterize IoT in the realm

of controlled, flexible and resilient data storage. To represent IoT, we vary the mem-

ory on a virtual machine among 1GB, 2GB, and 4GB as well as implement Cassandra

on the Raspberry Pi platform. This work demonstrates the feasibility and expected

performance drops when porting a distributed database like Cassandra from powerful,

stationary nodes to less powerful, but more flexible nodes.

iv

Table of Contents

Page

List of Figures . vii

List of Tables . xi

Abstract . iv

I. Introduction . 1

1.1 Background and Motivation . 1
1.1.1 Potential Challenges . 1
1.1.2 Potential Benefits . 2

1.2 Problem Statement . 3
1.3 Research Goals and Hypothesis . 4

1.3.1 Characterization of Internet of Things (IoT) and
the IoT device . 4

1.3.2 Feasibility of Distributed Database on Limited
Hardware . 5

1.4 General Approach and Research Activity Overview 6
1.5 Expected Contributions . 7
1.6 Organization . 7

II. Background and Related Works . 9

2.1 Characterization of IoT and IoT devices . 9
2.1.1 IoT Model . 9
2.1.2 Application Space . 10
2.1.3 WiFi Collection, Mapping and Analysis . 11
2.1.4 CBIR and others and summary statement on

application space . 14
2.1.5 IoT Devices and Raspberry Pi . 14

2.2 Benchmarking Distributed Databases for IoT . 15
2.2.1 Small Cluster Computing on Raspberry Pi 15
2.2.2 Cassandra . 15
2.2.3 Benchmarking Distributed Databases . 18

2.3 Networking Considerations . 19

III. Methodology . 22

3.1 Cassandra Pilot Tests . 22
3.1.1 Experimental Setup . 22
3.1.2 Variance in Nature of the Links with

Compression Algorithms. 22
3.2 Overview of Similar Experiment . 24

v

Page

3.3 Objective of This Set of Experiments . 26
3.4 Testbed Environment . 30

3.4.1 System Boundaries . 30
3.4.2 Experimental Limitations, Nuisance Factors,

Known/Suspected Interactions . 30
3.4.3 Coordination and Networking . 30
3.4.4 Treatments, Independent Variables . 32
3.4.5 Configuration of Cassandra . 33

3.5 Experimental Setup . 34
3.5.1 Virtual Node Setup . 35
3.5.2 Other Factors . 35
3.5.3 Number of Operations Per Trial . 36
3.5.4 Workloads . 38
3.5.5 Threads in the Yahoo Cloud Services Benchmark

(YCSB) . 39
3.5.6 Assumptions . 39

3.6 Execution and Analysis . 41

IV. Results and Evaluation . 43

4.1 Variation in RAM . 43
4.2 Wired v. Wireless . 48
4.3 Hardware v. Virtual . 51

V. Conclusion and Future Work . 57

5.1 Conclusion . 57
5.1.1 Finding 1. 57
5.1.2 Finding 2. 58
5.1.3 Finding 3. 58
5.1.4 Finding 4. 58

5.2 Future Work . 59
5.2.1 Generalized Model . 59
5.2.2 Wifi Collection, Mapping and Crowd Detection 60

Bibliography . 61

vi

List of Figures

Figure Page

1 IoT This represents what for some might be a nominal
”IoT” application. Some measurement of interest, such
as temperature is sensed, that raw data is stored and
sent afar, and if desired, the user may also query for
some kind of feedback or indication. 9

2 Venn Diagram of Application Space. The application
space of interest takes advantage of some combination
of lightness in weight, mobility, availability, partition
tolerance, and variable consistency. 10

3 IoT Application with Thicker Clients...Depending on
the application, using a distributed database on thicker
clients in-situ may suitably replace a remote database
operating in a remote location. From an operational
standpoint, the pipeline may be unreliable, resulting in
a loss of data. From a security standpoint, this pipeline
may be subject to undesired third-party monitoring. 11

4 Experimental Setup for cassandra-stress Tests . 23

5 Varying Compression Methods: Writes ... Results are
grouped by wired and wireless Local Area Network
(LAN) configurations. 24

6 Varying Compression Methods: Reads ... Results are
grouped by wired and wireless LAN configurations. 25

7 Cross Section of Results Imported from [1]. This figure
shows the execution time reported for 10,000 operations
of Workload A over three given configurations: a
network with only one (1) node, a network with 3
nodes, and a network with 6 nodes. 27

8 Cross Section of Results Imported from [1]. This figure
shows the execution time reported for 10,000 operations
of Workload C over three given configurations: a
network with only one (1) node, a network with 3
nodes, and a network with 6 nodes. 28

vii

Figure Page

9 Cross Section of Results Imported from [1]. This figure
shows the execution time reported for 10,000 operations
of Workload E over three given configurations: a
network with only one (1) node, a network with 3
nodes, and a network with 6 nodes. 29

10 Topology and Wiring for Ethernet Setup . 33

11 Two sample runs (1GB and 4GB), adjusting the
original trial makeup such that only 1000 operations of
Workload A constitute a given trial (t). Once the cache
is warmed up after a few trials, it can be seen that for
both series, there appears a periodicity present with
respect to the progress of trials (t). 37

12 A series of trials (t) for 1GB, 2GB, and 4GB Random
Access Memory (RAM) virtual machines. This zoomed
in view illustrates the lack of periodicity in contrast to
Figure 11, as the relative position of the trial does not
predict the relative outcome. 38

13 Variation in RAM over Workload A for the virtual
machine clusters. 43

14 Variation in RAM over Workload C for the virtual
machine clusters. 44

15 Variation in RAM over Workload E for the virtual
machine clusters. 45

16 Variation in RAM over Workload E for the virtual
machine clusters, zoomed in, cropping out the 1-node
cluster with 1 GB of RAM. 46

17 Variation in RAM over Workload E for the virtual
machine 1-node cluster. Note there appears to be a
linear pattern from 1024 MB to 1408 MB, and then the
curve flattens between 1532 MB onward. 47

18 Variation in RAM over Workload I for the virtual
machine clusters, zoomed in, cropping out the 1-node
cluster with 1 GB of RAM. 48

viii

Figure Page

19 For 21 trials of 10,000 operations each of Workload A,
this graph represents the execution time of a wired
Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan). 49

20 For 21 trials of 10,000 operations each of Workload C,
this graph represents the execution time of a wired
Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan). 50

21 For 21 trials of 10,000 operations each of Workload E,
this graph represents the execution time of a wired
Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan) with one exception. For
Workload E on cluster size 6 on wireless local area
network, erroneous results have been screened out,
leaving 5 fully successful trials to be graphed, not 21. 51

22 For 21 trials of 10,000 operations each of Workload I,
this graph represents the execution time of a wired
Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan). 52

23 With trials of 10,000 operations each of Workload A,
this graph represents the median execution time of the
Raspberry Pi cluster (rp-1GB) for 21 trials, the median
execution time for the virtual machine cluster set to
1GB of RAM (vm-1GB) for 21 trials, and, the imported
value from past work (ref-2GB) in [1]. 53

24 With trials of 10,000 operations each of Workload C,
this graph represents the median execution time of the
Raspberry Pi cluster (rp-1GB) for 21 trials, the median
execution time for the virtual machine cluster set to
1GB of RAM (vm-1GB) for 21 trials, and, the imported
value from past work (ref-2GB) in [1]. 54

25 With trials of 10,000 operations each of Workload E,
this graph represents the median execution time of the
Raspberry Pi cluster (rp-1GB) for 21 trials, the median
execution time for the virtual machine cluster set to
1GB of RAM (vm-1GB) for 21 trials, and, the imported
value from past work (ref-2GB) in [1]. 55

 ix

Figure Page

26 With trials of 10,000 operations each of Workload I, this
graph represents the median execution time of the
Raspberry Pi cluster (rp-1GB) for 21 trials, the median
execution time for the virtual machine cluster set to
1GB of RAM (vm-1GB) for 21 trials, and, the imported
value from past work (ref-2GB) in [1]. 56

x

List of Tables

Table Page

1 Raspberry Pi Alternatives, Depending on Application 16

2 This table describes the predefined workloads available
from the YCSB . 19

3 Results from [1] for 1 million record size database 26

4 This table describes the Internet Protocol (IP) addresses
in order to paint a further detailed understanding of
network set up. The netmask is 255.255.255.0 . 31

5 This table describes the IP addresses in order to paint a
further detailed understanding of network set up. The
netmask is 255.255.255.0 . 32

6 This table describes the IP addresses in order to paint a
further detailed understanding of network set up. The
netmask is 255.255.255.0 . 32

7 This table summarizes each network topology that was
explored in each research question. The RAM was
varied on the Virtual Machines. 34

8 Specifications for SD Cards . 36

9 Standard YCSB workloads used in this methodology.
Workload A consists of 50 percent reads and 50 percent
updates. Workload C consists of 100 percent reads.
Workload E consists of 95 percent scans and 5 percent
inserts. 39

10 Standard YCSB workloads used in this methodology.
Workload A consists of 50 percent reads and 50 percent
updates. Workload C consists of 100 percent reads.
Workload E consists of 95 percent scans and 5 percent
inserts. In addition, a custom workload I is
summarized, which consists of 99 percent writes and 1
percent reads to represent IoT. 40

xi

CLOUD BENCHMARK TESTING OF CASSANDRA ON RASPBERRY PI FOR

INTERNET OF THINGS CAPABILITY

I. Introduction

1.1 Background and Motivation

Moore’s Law implies a trend that information technology and electronics generally

become cheaper, powerful, and physically smaller as time progresses, which has led

to the ensuing ubiquity of the Internet of Things (IoT). Open source software and

limited hardware like the Raspberry Pi embody this trend, both in terms of of lowering

requisite eclectic expertise as well as price. Databases, key to IoT, are no exception,

and it is of interest to explore the trade space involved in porting distributed database

technology among such limited hardware. At the time of this writing, distributed

databases like Cassandra are normally associated with large capacity nodes.

1.1.1 Potential Challenges.

Using Cassandra on nodes like the Raspberry Pi series in IoT is not without its

challenges. First, while software developers may have the luxury of assuming increas-

ingly powerful processing units and limitless memory, an IoT application cannot take

such resources for granted. The Raspberry Pi 2 Model B, which will be used in this

thesis, has 1GB of Random Access Memory (RAM) available [2]. Storage for a single

node depends on the SanDisk (SD) card, whose disk storage can vary from 8 GB

to 256 GB and whose Input/Output (I/O) data rates can from 2 MB/s to 30 MB/s

at the time of this writing. These amounts pale to the 768GB memory and 74.4

1

TB storage for, say, the Lenovo Thinkserver RD650 [3] or some other server on the

market. Prior to making a server purchase, it may of interest to predict the effect of

varying the computing power of underlying hardware for some software of interest.

Second, using a node like the Raspberry Pi in IoT can imply a requirement for a

finite (primary cell) or periodic (secondary cell) power source. Larger nodes, of course,

consume their fair share of power, which comes with its own set of constraints. The

prospect of deploying a node in new and unusual places is part of the motivation of

porting software to low-power nodes like the Raspberry Pi series.

The prospect of nodes implying less power consumption, less weight, smaller di-

mensions, and/or maybe even a better price compared to an alternative all do their

part to chip away barriers that creative minds would otherwise face in deploying

applications for the betterment of mankind.

1.1.2 Potential Benefits.

Giving up computing power for less in power consumption, weight, dimensions,

and price also has potential positive implication for innovation management.

1.1.2.1 Potential Benefits Particular to Supply Chain Management.

In supply chain management, especially in government, there is perpetual interest

in items that qualify as Commercial-Off-The-Shelf (COTS). This interest, naturally,

ties directly to cost and economies of scale. The more purposes something can serve,

the greater demand is likely to be in the free market. This not only save on the

actual unit price, but also engineering and administrative costs that may be incurred

by triggering the full acquisition process of an application specific integrated circuit.

The defense acquisition process is notorious for being overly burdensome, and lim-

ited hardware like the Raspberry Pi can represent the potential for rapid or general

2

schedule acquisition.

There is another supply chain benefit as well. Despite security measures, it can

be difficult to completely conceal a supply chain from an interested and skilled third

party. The more application-specific a device is, the more insight it may give an un-

savory adversary knowledge of mission parameters, whether it is physically captured,

or if technical requirements leave a leaky paper trail. Purchasing limited hardware

rather than application specific hardware has the potential to effect diffusion of such

insight.

1.1.2.2 Potential Benefits Particular to Wireless.

There is no shortage of options for networking different hosts together, but the

ability to exchange a wired networking medium for a wireless networking medium

enables increased mobility and flexibility in placement. Wired networking options

require cables that may incur installation costs and risk damage when exposed to

many environments of interest. Allowing for wireless technology may be a critical

enabler for some applications that have yet to be seen. However, along with these

potential benefits comes with the risk of decreased or degraded performance. It is

helpful to know in advance how similar endeavors have fared.

1.2 Problem Statement

This paper seeks to gain insight into how modern distributed databases oper-

ate in an IoT environment and what actions or configurations may be required or

recommended to be in place to ensure feasible operation.

3

1.3 Research Goals and Hypothesis

1.3.1 Characterization of IoT and the IoT device.

Echoing [4], there is no ”standard identification” of IoT or an IoT device, although

invoking the phrase can identify some archetypes, such as home automation systems

or facilities management systems. All of these incorporate transducing some process

over time, such as water pressure, steam pressure, temperature, etc, and may provide

indication, such as a thermometer or dashboard, and/or actuation, such as actuation

of a furnace or pump. This concept and its relationship to limited hardware is further

addressed in the Chapter II.

The Raspberry Pi is able to receive digital data, audio signals, and video signals,

and thus represents some of the computation and storage that could be attached or

otherwise networked to one of these transducers. This question of how the Raspberry

Pi fits into the IoT will be addressed in Chapter II through examination of current

published work as well as commercial specifications.

The Raspberry Pi has no shortage of competitors. These will be briefly examined

in Chapter II. In addition to the Raspberry Pi, Chapter III will evaluate a virtual

machine set up to emulate limited hardware. Thus, both the Raspberry Pi and a

virtual machine simulator will serve as representatives of IoT devices in this thesis.

Databases are key, and distributed databases offer flexibility and robustness that

an alternative may not imply. Section 2.1.2 explains the current use of Cassandra

and the benefits of porting distributed databases from a thinner client to a thicker

client.

While IoT may imply the internet protocol (IP) at the network layer, there is

no shortage of options at the data link and physical layers. Chapter II will discuss

some networking considerations and explain some of the background behind varying

between data link layers.

4

1.3.2 Feasibility of Distributed Database on Limited Hardware.

There is the question of whether a given distributed database will work on a given

hardware platform or not. Any one-off results at a nonzero measure of performance

indicate feasibility, but replicating operation and slightly varying the conditions grad-

ually increases the confidence that such feasibility can be extended to yet untested

environments. With the distributed database being represented by Cassandra, and

limited hardware being represented by virtual machines as well as the Raspberry Pi,

the experiments in this work aim toward refining the answer to this question.

Section 2.2.2 explains the reasoning behind selecting Cassandra as the represen-

tative of a distributed database. Section 2.2.3 addresses the reasoning behind the

selection of Yahoo Cloud Services Benchmark (YCSB).

Finally, this thesis aims to answer the following questions:

• Does the amount of RAM affect Cassandra’s performance?

Chapter III describes the empirical method used to determine an effect with

respect to varying memory.

• Platform Testing, Scalability Testing - What are the implications of using limited

hardware?

Varying hardare platforms implies varying a variety of factors closely related

to performance: Central Processing Unit (CPU), RAM, networking interfaces,

and hard disk interfaces. Chapter III describes the empirical method used to

measure the effect of porting Cassandra between a virtual machine the Rasp-

berry Pi, as well as measuring the effect of cluster size. A common selling point

for distributed databases is an ability to accept additional nodes for storage, as

opposed to say, more storage in-situ.

5

• Link Layer Testing - What effects on performance result from varying network-

ing schemes?

Chapter III describes the empirical method used to measure the effect of switch-

ing between Ethernet links and 802.11a/b/g/n wireless links, as well as the

scalability implied given 802.11a/b/g/n links.

• Sensitivity Testing - How does variation in the configuration of a distributed

database affect performance?

Different applications may imply different configurations associated with dis-

tributed databases, including compression strategies and replication factors.

Chapter 3.1 does some investigating into how these can affect performance.

1.4 General Approach and Research Activity Overview

The general approach to this will be to implement a scientific methodology for

understanding the effect of inherent aspects of IoT networks on factors that limit

performance of distributed databases. Of particular interest are the effects of low

memory and processor speed, limited bandwidth and scalability on IoT networked

devices. In general, this study follows a template that includes varying configuration

and environment settings, performing stress testing, measuring results, and interpret-

ing the results to form a conclusion.

This paper will apply the YCSB benchmarking tool to gauge performance changes

over variation in the following: keyspace configuration, network configuration, plat-

form choice, and node scaleup.

6

1.5 Expected Contributions

Aggregating lower-cost, lightweight hardware spawns a lingering question of pos-

sibilities and performance due to lower barriers to proliferation. With distributed

database Cassandra representative of application, and the Raspberry Pi a represen-

tative of low-cost hardware, we explore the performance of a distributed database

over Raspberry Pi networked clusters. This paper asserts the following contributions:

• Methodology

First, this paper develops a methodology to leverage existing tools [5] to evaluate

a NoSQL distributed database in IoT. This will expand on such work as [1] and

[5] developing a test methodology to explore the limits of Cassandra, and how

its performance is affected by the number of nodes, nature of hardware, and

links.

• Performance Implications of Limited Hardware

Second, this paper reports results that suggest and characterize a differential

between a simulated environment for IoT using virtual machines and an internal

network and a physical one using Raspberry Pi’s and an Ethernet network.

• Performance Implications of Link Layer Variance

Third, this paper reports results that suggest a predictable performance cost

associated with exchanging an 802.11a/b/g/n wireless links with those of a

wired Ethernet network.

1.6 Organization

Chapter II paints the relevant parts of the landscape that have emerged as a re-

sult of much interest in distributed databases, limited hardware, and IoT. We also

7

present the gaps of the current literature to describe the technical goals for the cur-

rent work. Chapter 3.1 demonstrates some sensitivity testing. Chapter III presents a

methodology to examine and evaluate the performance implications of varying hard-

ware, network, and cluster size. Chapter IV describes the results and evaluation of

the methodology presented in Chapter III. In Chapter V, this study is brought to a

conclusion and future work is discussed.

8

II. Background and Related Works

2.1 Characterization of IoT and IoT devices

This section will seek to define where in IoT distributed databases such as that

which is tested here, can augment or enable applications.

2.1.1 IoT Model.

See Figure 1 for where Cassandra is often used at present in IoT, as a back-end

database for time-series sensor data. Figure 1 depicts a token sensor that sends data

to a router, which in turn sends the data over a connection to a back-end database.

It is here, at the back-end database, where Cassandra is put to use. The data is split

and replicated over several servers with plentiful memory and storage where it can

be queried from afar.

Figure 1. IoT This represents what for some might be a nominal ”IoT” application.
Some measurement of interest, such as temperature is sensed, that raw data is stored
and sent afar, and if desired, the user may also query for some kind of feedback or
indication.

9

2.1.2 Application Space.

APPLICATION SPACE

Raspberry Pi-like
hardware

Distributed Database
● Light
● Mobile
● Available
● Partition Tolerance
● Variable Consistency

Figure 2. Venn Diagram of Application Space. The application space of interest takes
advantage of some combination of lightness in weight, mobility, availability, partition
tolerance, and variable consistency.

At the time of this writing, back-end database operating on powerful, but station-

ary nodes dominate documented use cases of Cassandra, as well as other distributed

databases. This paper explores the idea of moving toward a more in-situ database,

where the sensing nodes may also contain serve as mechanisms for storage and do

not require a pipeline to another datacenter, a pipeline that from an operational per-

spective, represents a single point of failure, or from a security perspective, a threat

to privacy. These ideas are depicted in Figures 2 and 3. Figure 2 paints in words

what applications might seek to benefit the most from this research. Figure 3 is a

modified version of Figure 1, where the connection to the back-end servers is either

degraded or non-existent, and some version of in-situ storage must take its place to

the best extent possible. There are obvious trade space among hardware capabilities

and cluster size, but what is not obvious is how the database will actually perform.

The next few sections map this general concept to some existing applications and

10

Internet of Things - Thicker Clients

Internet Connection

https://www.cnet.com/news/appliance-science-alexa-how-does-alexa-work-the-science-of-amazons-echo/

Dist. DB

Sensor

Controller

Indicator

WRITE

READ

Dist. DB
READ

W
R

ITE

Figure 3. IoT Application with Thicker Clients...Depending on the application, using a
distributed database on thicker clients in-situ may suitably replace a remote database
operating in a remote location. From an operational standpoint, the pipeline may be
unreliable, resulting in a loss of data. From a security standpoint, this pipeline may be
subject to undesired third-party monitoring.

research that may benefit from such distributed database research.

2.1.3 WiFi Collection, Mapping and Analysis.

2.1.3.1 WiFi Sniffing, Collection.

WiFi (802.11) sniffing, or war-driving, has been explored by a number of enthu-

siasts, both in and out of the academic realm. These techniques for WiFi sniffing, at

least on the front-end, are well-documented and thus represents a low barrier to entry

for initial operations, often just requiring a specific WiFi chipset, such as the ALFA

card, and open-source software. One example that has been well-documented goes by

”Snoopy” [6]. Snoopy provides a framework for collecting WiFi data and observing

with another handy piece of software, Maltego. Of course, a multitude of other soft-

ware exists. For example, one can sniff wireless traffic by using software Aircrack-ng

[7] or Airsnort [8]. However, although sensing the data is easy, the subject of stor-

11

age has not been fully explored with respect to the selling points mentioned above.

Investigating the limits of storage operations is key to unlocking realistic aspirations

and application development.

2.1.3.2 WiFi Mapping.

It may worth noting one off-shoot of the WiFi sniffing mentioned above: WiFi

mapping. There is much interest in WiFi mapping: it implies extra assurance to

existing technologies that may be overly taken for granted. There has been much

work done with respect to WiFi mapping. Argos [9] describes a similar system of a

distributed system, but there is no mention of Cassandra or any distributed database,

which may serve as an improvement on such a sensor network. Wigle.net [10] is an

aggregate map that distributes a smart-phone application to collect GPS coordinate-

Access Point pairs, but relies on a central database, and has an unreliable user base

and irregular sampling and update frequencies (Relying on the public will often do

that, unfortunately.). Heat Mapper [11] is partially free and commercial software that

can generate a heat map for a small room or office. Wi2Me [12] performs this mapping

as well, with an emphasis on performance and data throughput. It uses an instance of

SQLite to store the traces on the individual’s smart-phone, but again, none of these

make use of a distributed database like Cassandra as part of the sensor network.

Once again, this is a realm that may benefit integration with distributed databases,

expanding the range possible node types, or both. However, there are limits that have

to be anticipated. This paper aims to add a piece to that expectation management.

2.1.3.3 WiFi/Wireless Crowd Detection.

There is also considerable interest in crowd detection and related data gathering.

Privacy implications notwithstanding, this kind of data can give a marketing-type a

12

sense if certain areas are popular or versus other areas, or if certain paths are well-

traveled or not. The way WiFi broadcasts Service Set Identifier (SSID)s in plain

text, crowds can even be characterized as to whether individuals connect to similar

access points or not. The data can indicate whether you have a crowd of people

from a certain country, a crowd of people who know each other or maybe just a

crowd of strangers. It can add assurance to more primitive forms of tracking, such

as person-by-person registration. Informally, some have even reported to make art

exploiting this mechanism [13], and not surprisingly, there are numerous claims that

members of the public are routinely tracked via commercial entities via WiFi [14].

There have been more academic efforts to track crowds as well, notably a university

campus and a music festival in [15] and an airport in [16]. In [15], data travels

through Global System for Mobile Communications / Groupe SpecialMobile (GSM)

to a central node, but does not use any kind of distributed database, like Cassandra.

There are commercial entities that claim to track crowds and report data, namely

”Bluemark” [17]. Here as well, a central server is utilized to collect the data. Users

then reportedly log into the web to view the metrics. According to their marketing

literature, they do use Raspberry Pi, but not for data storage. Paper [18] used this

product line for their tests. Although WiFi utilizes Media Access Control (MAC)

addresses supposedly unique to each device, research has found that this leaves more

to be desired for many applications, namely crowd-tracking. For instance, some

devices have been reported to change their MAC addresses [18]. There exist a number

of papers that explore characterizing mobile devices and their users at the individual

level [19, 20, 21, 22, 23, 24, 25] and propose techniques to better prepare data for

analysis [18]. What is clear in the subtext of all these papers, is that these types of

application research can only benefit from a wider choice in nodes, and a wider choice

storage options as well as a reasonable amount of foresight into their performance.

13

In all of these, however, distributing the stored data among the nodes, like with

Cassandra is either not used or not mentioned. Many utilize a central server that

represents a single point of vulnerability.

2.1.4 CBIR and others and summary statement on application space.

The motivation for WiFi mapping can also be extended to other types of mapping,

such as Content-based image retrieval (CBIR). Paving the way for feasible, desirable

in-situ data storage increases the portability and development of these and many

more applications.

The experiments that follow read and write random data in the context of a

generic schema, but the experiments were done with the following in mind: A schema

supporting any of these applications could be substituted in instead, and ideally with

predictable results.

2.1.5 IoT Devices and Raspberry Pi.

The Raspberry Pi 2 (Model B) [2] is a low-cost computer designed sold from the

United Kingdom. It can be described as a motherboard about the size of a 3x5 index

card and has been available since February 2015. This experiment is interested in the

Raspberry Pi 2 as a representative of the low-cost hardware domain, which implies

low cost, low power consumption, and low in terms of size and weight.

This author’s interest in the Raspberry Pi 2 is that its ARM Cortex-A7 processor

and 1GB RAM [2] makes it a key representative of the low-cost hardware domain

and IoT. The Raspberry Pi 2 has cost as low as 35 USD [26]. It is lightweight and

has limited power consumption [2]. Constraints on size, weight, power, and cost can

all be barriers to entry for applications seeking computing nodes.

Expanding this experiment, to say the BeagleBone black [27], is in touch with the

14

spirit of this experiment but outside the scope of this paper and is reserved for future

work. Various analogues and/or competitors to the Raspberry Pi are enumerated in

Table 1.

Restricting the database schema to time series data, [31] claims to have achieved

about 4 million inserts on a relational database on a Raspberry Pi 2 B+, one of the

same models used in this work. However, the database in [31] lacked the capability

and flexibility as Cassandra, and due to its custom nature could not be tested by the

YCSB to be as robustly studied against other databases.

2.2 Benchmarking Distributed Databases for IoT

2.2.1 Small Cluster Computing on Raspberry Pi.

Considering the educational purpose of Raspberry Pis, it is no surprise to find

academic interest in Raspberry Pi clusters. For instance, [32] evaluates a cluster of 8

Raspberry Pi nodes using SysBench.

Existing Raspberry Pi clusters, built to serve as a ”practical balance” [33], such as

in [34] and [33], suggest the value of Raspberry Pi nodes compared to large, traditional

servers both in terms of power construction and actual purchasing price. In [35],

Cassandra is used to store videos for a video streaming application on after a ”a

lot of configuration”, albeit the configuration parameters were unspecified. However,

[35] shows a high index of suspicion that Cassandra can be used in a small cluster

environment.

2.2.2 Cassandra.

A distributed database offers a trade space among consistency, availability, and

partition tolerance. Mostly this means that a system of nodes can still operate as

expected even if there is a loss of one or two nodes. There is no shortage of distributed

15

Table 1. Raspberry Pi Alternatives, Depending on Application

Name CPU RAM DISK Price

Banana Pi
M3 [28]

Octa-core 1.8GHz
CPU

2 GB RAM 8 GB eMMC
flash storage

73.00

CHIP [29] R8 1GHz 512 MB 4 GB 9.00
VoCore 360 MHz MIPS CPU 32 MB 8 MB Flash 20.00
Arduino
INDUS-
TRIAL
101 []

Atheros AR9331 Pro-
cessor

64 MB 16 MB Flash 40.00

NanoPi 2
Fire []

Samsung S5P4418
quad-core ARM
Cortex-A9, 1.4 GHz

unk 1 GB MicroSD
card

22.99

NanoPC-
T3 []

Samsung S5P6818
octa-core ARM
Cortex-A53 up to 1.4
GHz

1-2GB of
RAM

8GB of flash
storage

60.00

Intel Edi-
son with
Kit for
Arduino

Dual-core, dual-
threaded Intel Atom
CPU with a 32-bit
Intel Quark microcon-
troller

1GB of
RAM

4GB of flash
storage

92.00

cloudBit [] Freescale i.MX23
ARM926EJ-S proces-
sor

64MB of
RAM

4GB SD Card 59.95

Parallella
[30]

16-core Epiphany
RISC SOC

unk unk unk

Zynq SOC (FPGA + ARM A9) 1GB
SDRAM

Micro-SD stor-
age

99

PixiePro Freescale i.MX6Q
Soc Quad Core ARM
Cortex-A9 up to
1GHz

2GB of
RAM

SD Card 129.95

Raspberry
Pi

900 MHz quad-core
ARM Cortex-A7 CPU

1GB RAM MicroSD Card 35.90

16

databases to choose from, but Cassandra is widely used and is known to have a high

write throughput [36]. Cassandra specifies the latest versions of both Java 8 and

Python 2.7. In turn, Java can run on Windows, Mac OS X, Linux, and Solaris [37].

Cassandra is a widely used distributed Not Only Structured Query Language

(NoSQL) database with many use cases [38] and boasts a high write throughput. Not

only has Cassandra been reportedly been used in practice [39], but has been, using

the Yahoo Cloud Services Benchmark [5], formally evaluated in scholarly literature

against other databases such as MongoDB and proposed as the NoSQL database of

choice in the Internet of Things and distributed sensor networks [40].

If possible, it is important to get realistic expectation from available specifications

whether or not the database of interest, Cassandra, would be supported by the node of

interest, in this case Raspberry Pi. At the time of this writing, Cassandra specifies it is

supported by the latest versions of both Java 8 and Python 2.7 [37]. In turn, Java can

run on Windows, Mac OS X, Linux, and Solaris. Raspbian, a Linux-based operating

system, can be run on Raspberry Pi. In addition, there have been credible claims of

Cassandra being used on Raspberry Pi [41, 42], but to the author’s knowledge, no

white paper with the details exists.

This author’s interest in Cassandra lies in the fact that Cassandra is a distributed

database used in practice for cloud computing. Although it describes itself as a

NoSQL database, the interface allows for Structured Query Language (SQL) com-

mands and has a Python Application Program Interface (API). Cassandra allows

for configuration of distributed systems parameters, such as replication factor, but

detailed knowledge of distributed systems protocols is not critical for operation.

The aim of this paper is to examine Cassandra’s performance coupled with a

simplified Wi-Fi collection and analysis application, where the nature of link nodes

may be less reliable than wired Ethernet.

17

From an experimental standpoint, the distributed nature of a Cassandra ”keyspace”

lies in four parameters [43]: cluster size (the number of nodes), replication factor (con-

figured in software), write level (configured in software), and read level (configured

in software). As alluded to in the Methodology section, these factors will be held

constant for this experiment.

2.2.3 Benchmarking Distributed Databases.

Benchmarks are the common parlance for a way to test a computing system’s ca-

pabilities. There has been a lot of interest in testing distributed databases, databases

that cover multiple nodes.

The ”cassandra-stress” [44] tool is used to initially probe for sensitivity to config-

uration changes. Documented use includes [42], which, could be used as an anchor

for methodology if desired. This tool is developed along with, and is optimized for

Cassandra. However, it falls short if one desires to compare two different databases

for the same task.

Instead, we explore a benchmark in this thesis that has been used to character-

ize scaling of Cassandra in other computing environments. Paper [36] presents the

YCSB, highlighting ”scaleup” and ”elastic speedup” as parameters for benchmark-

ing. It provides a survey of five databases: PNUTS, BigTable, HBase, Cassandra,

and Sharded MySQL. As might be expected, Cassandra has the ability to be tuned

based on the application, data distribution, and workload type. In [36], they claimed

to ”[tune] each system as best [they] know how.” In contrast to boasting optimized

performance, this paper, in the interest in repeatability and expectation management,

will rely on default parameters and makes it a point to identify any tuning parameters

that have been modified from the default. It is also worth noting that the version of

Cassandra has evolved from year 2010, the time [36] was published.

18

Table 2. This table describes the predefined workloads available from the YCSB

Workload Description Breakdown

A Update heavy workload 50/50 reads and writes
B Read mostly workload 95/5 reads/write
C Read only 100% read
D Read latest workload 95/5 reads/writes
E Short ranges 95 scans / 5 inserts
F Read-modify-write 50 read / 50 read-modify-write

The YCSB provides six pre-defined workloads and also allows one to determine a

custom workload. These workloads are summarized in Table 2.

Cassandra was shown in [40] to be favorable to write-heavy workloads compared

to another database in the domain. Notable about this paper is that the paper scales

the node’s RAM down to 2GB, compared to higher powered machines in other papers

such as the Cooper paper [36] or as specified on the website [37]. Although it is not

explicitly mentioned as an interest in the paper, this shows a transition of using

Cassandra for lower powered machines. One thing that is not clear in [1] is how cache

effects are accounted for. If unaccounted for, a cache effect may result in the initial

run resulting in longer execution times than subsequent runs, all other factors being

constant. The key cache is set at 100 MB and the row cache at 0. In contrast, this

paper clears the data from (or truncates) the table of interest. [1] mention that each

7200 rpm with no stated limits on hard drive space. Moving into the realm of in-situ

storage, this paper takes a significant deviation in limiting the hard disk space to 8

or 16 GB.

2.3 Networking Considerations

Although this paper takes an empirical, top-down approach to evaluation, some

networking concepts may be useful to parse out, and predict what they mean to this

19

work. This work only varies parameters at the link level. All terminology follows

from [45].

This section will address delay in a local area network implied by the physical

layer. Explanations are paraphrased from [45]. Variation in the physical layer may

imply variation in end-to-end delay of a message composed of the following: Queuing

Delay, Propagation Delay, Transmission Delay, and Processing Delay. Propagation

delay is the most predictable, and reflects on the physical properties of the trans-

mission medium. Transmission delay is dependent upon the message length and the

transmission rate. In these experiments, the Maximum Transmission Unit (MTU) is

set to 1500 on the router, so the message length would not change between Ether-

net and 802.11a/b/g/n. However, the transmission rates do differ between Ethernet

and 802.11a/b/g/n. Queuing delay, the outgoing delay, and processing delay, the

incoming delay are not as predictable.

Ethernet is the dominant technology in modern wired Local Area Network (LAN)s.

Ethernet uses carrer sense multiple access with collision detection (CSMA/CD) and

often uses switches.

The 802.11 protocol avoids collisions one of two ways. For shorter data frames,

after sensing a channel idle for a specified interval called the Distributed Inter-frame

Space (DIFS), the source sends the data frame. Then, it waits for an Acknowledge

(ACK). For longer data frames, instead of sending the data frame right away, the

source might send an Request-To-Send (RTS). This threshold can be set on the router,

and in the case of these experiments it is set high, such that the RTS is never employed.

A key difference between the 802.11 protocol, or really any wireless protocol, is

can be referred to as the ’hidden terminal problem’ [45]. If nodes are spread out, it

is possible for one node to miss interference caused by another node. A transmission

source waits for an acknowledgement or retransmits. Contrasted with CSMA/CD,

20

which does not require an acknowledgement from the receiver, this has the potential

to cause greater latency.

21

III. Methodology

3.1 Cassandra Pilot Tests

This section will demonstrate some of the variance that is possible by varying

configuration of a cassandra keyspace itself. These configurations may differ from

application to application.

Cassandra comes with its own stress-testing tool, denoted ’cassandra-stress’ [44] in

the tarball installation. By all appearances, it is designed to give an operator an idea

of how Cassandra performs over time on a given hardware setup. But, it also allows

an operator to vary a limited set of configuration parameters with each command line

execution. Naturally, this stress testing tool does not allow one to compare Cassandra

to a competitor, hence the YCSB in the main section of this paper, but in theory

Cassandra-stress may also serve as a check on the YCSB.

3.1.1 Experimental Setup.

The set-up follows the guidelines established in the main methodology. The set

of experiments described in this section explored how Cassandra performs. Here, as

depicted in Figure 4, a cluster of 3 Raspberry Pi 2 nodes was used. The tarball version

of Cassandra version 3.9 was downloaded and installed. The stressor application

cassandra-stress was executed from a laptop also connected to the LAN.

3.1.2 Variance in Nature of the Links with Compression Algorithms.

The plot in Figure 5 shows the effect of varying compression strategies for a

given configuration on a pure write load as load-tested through the cassandra-stress

module. From top to bottom, the solid horizontal lines of each box represent the

maximum, 75 percentile, median, 25 percentile, and minimum. The dashed horizontal

22

Node
2

ROUTER Laptop Executing
cassandra-stressLOCAL AREA NETWORK

- ETHERNET LINKS

Node
3

Node
1

Figure 4. Experimental Setup for cassandra-stress Tests

line represents the mean. The oblique dashed lines represent the standard deviation.

The plotted points to the left of each box represent the actual data points. In the

right group, wireless 802.11 links were used. On the left, wired Ethernet links were

used. A one-way analysis-of-variance (ANOVA) may be able to test whether there is a

significant differential between either of these two means, but from visual inspection,

one could say that for a given configuration and a write-heavy load, varying the

compression strategy does not have a large effect on performance as far as writes per

second.

Similarly, the plot in Figure 6 shows the effect of varying compression strategies

for a given configuration on a pure read load as load-tested through the cassandra-

stress module. From top to bottom, the solid horizontal lines of each box represent the

maximum, 75 percentile, median, 25 percentile, and minimum. The dashed horizontal

line represents the mean. The oblique dashed lines represent the standard deviation.

The plotted points to the left of each box represent the actual data points. These

results seem to suggest a similar hypothesis, that given the variation observed, a

23

wired wireless
0

500

1000

1500

2000

2500

3000

3500

Operations Per Second - Writes Only

network_type

o
p
/
s

DeflateCompressor

LZ4Compressor

SnappyCompressor

Figure 5. Varying Compression Methods: Writes ... Results are grouped by wired and
wireless Local Area Network (LAN) configurations.

choice of compression strategy may have minimal impact on performance. However,

additional parameter variation may or may not reveal exaggerated effects.

3.2 Overview of Similar Experiment

Although this work has a slightly different aim than [1]’s stated purpose, this

paper aims to follow [1]’s methodology closely enough as to anchor its results to a

cross-section of similar work that has been done. This work assumes that an in-situ

storage application in the realm of Internet of Things (IoT) implies a small database,

in this case represented by 1 million records, as opposed to 10 million or 100 million or

more. Although [1] seems to imply there is feasibility for large database with many,

many nodes given the right balance, this work focuses more on the initial impact

24

wired wireless

0

1000

2000

3000

4000

Operations Per Second - Reads Only

network_type

o
p
/
s

DeflateCompressor

LZ4Compressor

SnappyCompressor

Figure 6. Varying Compression Methods: Reads ... Results are grouped by wired and
wireless LAN configurations.

to performance of introducing limited hardware in order to lighten costs or actual

physical weight for an application that would see this as a benefit.

Using standard workloads A, C, and E from the popular Yahoo Cloud Services

Benchmark (YCSB), the authors of [1] examined and evaluated Cassandra’s scala-

bility over database [sizes] and cluster sizes [1]. The authors found that this trend,

depicted in Figures 7, 8, and 9 did not necessarily hold true across database sizes,

that in fact for larger database sizes of 10 million and 100 million records, 3 node

clusters performed better than both a single node cluster and a 6-node cluster. The

authors concluded that for sufficiently small databases, which is the likely case for

IoT, more nodes imply more time to execute, which overwhelms any advantageous

parallelism that may ensue with increasing nodes.

Because there are so many variables that can be at work, this work aims to anchor

25

its results by replicating part of Abramova’s study. The extent of the details of the

network in [1] is detailed below:

”The characteristics of nodes used are, as follows: Node 1 Dual Core (3.4 GHz),

2GB RAM and disk with 7200 rpm; Node 2 Dual Core (3.4 GHz), 2GB RAM and

disk with 7200 rpm; Node 3 Dual Core (3.4 GHz), 2GB RAM and disk with 7200

rpm; Node 4 Dual Core (3.0 GHz), 2GB RAM and disk with 7200 rpm; Node 5 Dual

Core (3.0 GHz), 2GB RAM and disk with 7200 rpm; Node 6 Virtual Machine with

one Core (3.4 GHz), 2GB RAM and disk with 7200 rpm.” [1]

The results of Workloads A, C, and E in [1] are depicted in Figures 7, 8, and

9 respectively, all depicting a positive correlation between execution time and the

number of nodes. The actual values are depicted in Table 3.

3.3 Objective of This Set of Experiments

The objective of this experiment is to characterize varying configurations for Cas-

sandra. This characterization will be in service of assessing the utility of Cassandra

on the Raspberry Pi 2, which will in turn be an indicator toward the greater popula-

tion of both distributed databases, archetype Cassandra, and hardware of archetype

Table 3. Results from [1] for 1 million record size database

Nodes Workload [OVERALL] RunTime(ms)

1 A 58430
3 A 65650
6 A 87310
1 C 88000
3 C 90210
6 C 118090
1 E 223180
3 E 330820
6 E 404660

26

0 1 2 3 4 5 6 7
0

10k

20k

30k

40k

50k

60k

70k

80k

90k

Execution Time, Workload A

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

Figure 7. Cross Section of Results Imported from [1]. This figure shows the execution
time reported for 10,000 operations of Workload A over three given configurations: a
network with only one (1) node, a network with 3 nodes, and a network with 6 nodes.

Raspberry Pi.

We aim to recreate results in [1] and then extend these experiments for a better

characterization for IoT. In doing so, we answer the following research questions:

• Research Question 1: How much is the execution time for a given number of op-

erations extended in the system under test using workload A (reads/updates)?

• Research Question 2: How much is the execution time for a given number of

operations extended in the system under test using workload C (reads)?

• Research Question 3: How much is the execution time for a given number of

operations extended in the system under test using workload E (insert/scans)?

• Research Question 4: And finally, how much is the execution time for a given

27

0 1 2 3 4 5 6 7
0

20k

40k

60k

80k

100k

120k

Execution Time, Workload C

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

Figure 8. Cross Section of Results Imported from [1]. This figure shows the execution
time reported for 10,000 operations of Workload C over three given configurations: a
network with only one (1) node, a network with 3 nodes, and a network with 6 nodes.

number of operations extended in the system under test using custom workload

I, the anticipated representative of in-situ distributed database IoT application?

To answer each of these questions, we pose the following questions:

• How do the results from virtual machine compare to the corresponding values

from [1]?

• How do the results compare among the various Random Access Memory (RAM)

levels assigned to virtual machines?

• How do the results from the limited hardware on an Ethernet LAN scale as the

cluster size increases?

28

0 1 2 3 4 5 6 7
0

50k

100k

150k

200k

250k

300k

350k

400k

Execution Time, Workload E

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

Figure 9. Cross Section of Results Imported from [1]. This figure shows the execution
time reported for 10,000 operations of Workload E over three given configurations: a
network with only one (1) node, a network with 3 nodes, and a network with 6 nodes.

• How do the results from the limited hardware on an Ethernet LAN compare to

the corresponding values from [1]?

• How do the results from the limited hardware on an Ethernet LAN compare to

the corresponding virtual machine results?

• How do the results from the limited hardware on a wireless LAN scale as the

cluster size increases?

• How do the results from the limited hardware on an Ethernet LAN compare to

that of the limited hardware on a wireless LAN?

The results of these experiments are anticipated to be within reasonable bounds

of previous work [1]. Increasing the cluster size will result in an increase in execution

29

time. Wireless links will cost significantly in performance compared to their wired

counterparts.

3.4 Testbed Environment

3.4.1 System Boundaries.

Virtual machine nodes were contained in a single laptop. The wired LAN experi-

ments were performed with all nodes and the associated router within about 3 meters

of one another on a dedicated LAN. Likewise, the wireless LAN experiments were

performed with all nodes and the router within a radius of 3 meters on a dedicated

and secured LAN. The experiments were done in a residential, suburban area. The

network was periodically monitored for unexpected hosts.

3.4.2 Experimental Limitations, Nuisance Factors, Known/Suspected

Interactions.

The amount of interference on the industrial, scientific, and medical (ISM) band

could not be controlled. It is left to the assumptions that any variation in interference

was negligible between any two trials.

The laptop running the YCSB may have been running other minor programs or

other processes to a limited extent. No experiments were done to determine if this

would have a significant effect, and this was not strictly controlled.

3.4.3 Coordination and Networking.

On an Ethernet LAN, no coordination was needed. This network was physically

isolated and no additional traffic was expected to interfere with it. On a wireless

LAN, because the scale and timing of this experiment was limited, there was no

formal coordination needed. However, because a larger experiment could possibly fill

30

up one (or more) frequency channels, one must be courteous of the environment. An

extended test would not be appropriate in an uncontrolled environment.

3.4.3.1 Virtual Machine Networking.

The VirtualBox software allows the setup of a simple, host-only adapter with

DHCP. The addresses for each virtual machine were selected as illustrated in Table

4.

3.4.3.2 Ethernet LAN Setup.

The wiring of the Ethernet LAN is depicted in Figure 10. Note that for the

Ethernet set up, the wireless capability for the home router was switched OFF.

All nodes, including the laptop used to execute the YCSB, were on the same

network. Their IP addresses are listed in Table 5.

3.4.3.3 802.11 LAN Setup.

Table 6 describes the local area network as the wireless the. Note that for this

setup, the Ethernet cables were physically unplugged.

Table 4. This table describes the Internet Protocol (IP) addresses in order to paint a
further detailed understanding of network set up. The netmask is 255.255.255.0

Node Host Name IP Address

Node 1 c0 192.168.56.100
Node 2 c1 192.168.56.101
Node 3 c2 192.168.56.102
Node 4 c3 192.168.56.103
Node 5 c4 192.168.56.104
Node 6 c5 192.168.56.105
Laptop daniel-ThinkPad-W541 192.168.56.200

31

Table 5. This table describes the IP addresses in order to paint a further detailed
understanding of network set up. The netmask is 255.255.255.0

Node Host Name IP Address Model

Node 1 raspberrypi0 192.168.1.100 2B
Node 2 raspberrypi1 192.168.1.101 2B
Node 3 raspberrypi2 192.168.1.102 2B
Node 4 raspberrypi3 192.168.1.103 2B
Node 5 raspberrypi4 192.168.1.104 2B
Node 6 raspberrypi9 192.168.1.109 3
Laptop daniel-ThinkPad-W541 192.168.1.200 -

To enable wireless links on the Raspberry Pi 2’s, the Wi-Pi Universal Serial

Bus (USB) module was utilized, with transmission speed capabilities listed at ”11b

1/2/5.5/11Mbps, 11g 6/9/12/18/24/36/48/54Mbps, 11n up to 150Mbps”. The

Raspberry Pi 3 model comes with its own built-in WiFi capabilities.

3.4.4 Treatments, Independent Variables.

The independent variables of interest are the node type and link type. Node type

is characterized by memory, or RAM, processor speed, and Input/Output (I/O) rates,

and are represented by virtual nodes and the Raspberry Pi.

Table 6. This table describes the IP addresses in order to paint a further detailed
understanding of network set up. The netmask is 255.255.255.0

Node Host Name IP Address

Node 1 raspberrypi0 192.168.1.130
Node 2 raspberrypi1 192.168.1.131
Node 3 raspberrypi2 192.168.1.132
Node 4 raspberrypi3 192.168.1.133
Node 5 raspberrypi4 192.168.1.134
Node 6 raspberrypi9 192.168.1.139
Laptop daniel-ThinkPad-W541 192.168.1.200

32

Node
6

Node
5

Node
2

ROUTER Laptop Executing
YCSBLOCAL AREA NETWORK

- ETHERNET LINKS

Node
4

Node
3

Node
1

SWITCH

Figure 10. Topology and Wiring for Ethernet Setup

The link types are the internal nodes on the virtual machine network, Ethernet

links, and wireless 802.11 links.

There are many other factors at work, but other factors, like workload, are only

varied to give appropriate context to the variance in node type and link type.

3.4.5 Configuration of Cassandra.

Unless otherwise specified, the configuration of Cassandra, the keyspace, and the

table within the keyspace are all held constant to their default values. All three of

these things can be configured hierarchically, and their configuration can affect the

performance of Cassandra on a given load. A skillful adjustment of these parameters

can result in an optimized performance of Cassandra.

This paper aims to highlight the differences in varying hardware, and thus the

exact configuration, despite that it might raise the absolute level of performance,

is not expected to elevate the relative level of performance one would see shifting

between, say a virtual node on a laptop and a Raspberry Pi module.

33

There are a few settings that had to be taken into account. Denoted commitlog total space in mb,

this will accumulate to an undesired level. This was set to 512 MB in the Cassandra

configuration file, cassandra.yaml. (Changing this to 256 MB for the 512 RAM case

did not correct the error mentioned above.) Also, to prevent the accumulation of

space, the setting auto snapshot to false in configuration file cassandra.yaml. Having

auto snapshot set to true automatically backs up, or saves a snapshot of, the data

on Cassandra. For a limited-capacity node, this would quickly lead to a crash.

The configuration files can be found among the appendices.

3.5 Experimental Setup

In this experiment, we measure the total run time of a fixed number of operations

of Workload A for various memory sizes. The choice of memory size is due to the

expectations of IoT devices. The Raspberry Pi 2 and 3 have 1GB of memory and

is our representative technology for IoT. The 4GB configuration can be considered

be more representative of a low-end desktop, laptops, or virtual machine. The 2GB

configuration is an intermediate stage that show an intermediate performance level

and naturally, may represent the aim of future of IoT nodes. In addition, [1] used

2GB machines, which may help this work to be compared against existing work.

The experiments performed can be summarized in Table 7.

Table 7. This table summarizes each network topology that was explored in each
research question. The RAM was varied on the Virtual Machines.

Communication (nm) Platform (nt) Assigned RAM

Nodal Virtual Machine 1 GB
Nodal Virtual Machine 2 GB
Nodal Virtual Machine 4 GB

Ethernet LAN Raspberry Pi 1 GB
802.11 LAN Raspberry Pi 1 GB

34

3.5.1 Virtual Node Setup.

For this work, virtual nodes were created to match these characteristics to a

reasonable extent. Facing minimal propagation delay due to being connected on a

nodal network, experiments with the virtual machines seek to place an upper limit

on potential IoT performance expectations. Replicating the exact network in [1] is

not absolutely necessarily, notwithstanding the details and materials available to do

so are unavailable.

On a 64-bit 31.1GiB RAM laptop with Intel Core i7-4910MQ 2.90GHz 8-core

central processing unit, six (6) identical virtual machines were created in software

VirtualBox. Each machine consisted of Ubuntu 64 bit machine and was allocated 8

GB of hard drive disk space. The full details for these machines, reported by means of

the lshw Linux command, are located among the appendices. Also in VirtualBox, a

host-only network entitled vboxnet0 was instantiated, to which all six machines were

connected.

The YCSB was installed and run on the host laptop. PyCharm drove a terminal

process, which in turn drove the YCSB software.

To further paint the picture of the network setup, the IP addresses are included

in Table 4.

3.5.2 Other Factors.

The manufacturer and model for each SanDisk (SD) card was kept constant for

each node. The details can be found in Table 8.

This work assumes that an in-situ storage application in the realm of IoT implies

a small database, in this case represented by 1 million records, as opposed to 10

million or 100 million or more. Although Abramova’s paper seems to imply there

is feasibility for large database with many, many nodes given the right balance, this

35

Table 8. Specifications for SD Cards

Specification Value

Capacity 16 GB
Read Speed up to 90 MB/s
Write Speed up to 40 MB/s
Video Speed C10 U3

work focuses more on the initial impact to performance of introducing less-capable

hardware in order to lighten costs or actual physical weight for an application that

would see this as a benefit.

3.5.3 Number of Operations Per Trial.

The results in [1] report an execution time after 10,000 operations, and the deci-

sion was made to keep this constant rather than vary the representative number of

operations. No explicit justification is given in [1] for the number 10,000, but it can

be inferred that is a compromise between under-sampling and an undue burden in

time spent sampling.

As a brief exploration into the possibility of under-sampling, one can take a look at

what it might look like to vary the sample size in a given trial, and how the execution

time would vary over the sequence of trials. The graph above shows this for two

different configurations: 1GB and 4GB RAM on a virtual machine. As expected,

the execution time does reflect initial cache warm-up time, but then, more or less,

reflects some sort of steady state, albeit oscillating performance. It was also not made

explicit whether or not the 10,000 operations represented one of many trials of 10,000

or represented a single and only trial. For the purposes of exploring the data, this

author chose to run 30 trials of 10,000 operations each.

The oscillating behavior seen in trials 5 through 120 of Figure 11 is unduly distract-

36

20 40 60 80 100 120
3k

4k

5k

6k

7k

8k

9k

10k

Execution Time

t

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

1GB

4GB

Figure 11. Two sample runs (1GB and 4GB), adjusting the original trial makeup such
that only 1000 operations of Workload A constitute a given trial (t). Once the cache
is warmed up after a few trials, it can be seen that for both series, there appears a
periodicity present with respect to the progress of trials (t).

ing and risks inaccurate comparisons among configurations. Although it is beyond

the scope of this paper to determine the exact cause of this oscillation, one might con-

sider that activities required for the operation of the database, such as compaction,

the gossip protocol, and other operations compete with the reads and will contribute

to continuous variation over time, and may affect performance measurements. The

reason for choosing 10,000 operations is not explicitly reported in [1], but one may

infer the reason is to integrate this variation to make better comparisons among

configurations.

Contrast the 1k operation trials with the 10k operation trials depicted in Figure

12. Here, at least with the naked eye, there is no oscillation, and most certainly not

to the extent seen in the 1k trial case. Whatever effected the oscillating behavior in

37

10 15 20 25 30

6000

6200

6400

6600

6800

Execution Time

t

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

1GB

2GB

4GB

Figure 12. A series of trials (t) for 1GB, 2GB, and 4GB RAM virtual machines. This
zoomed in view illustrates the lack of periodicity in contrast to Figure 11, as the relative
position of the trial does not predict the relative outcome.

the previous graph is integrated into the 10k trial case and is no longer a distraction

to steady-state analysis, as each 10k operation trial soaks up, or rather integrates,

the performance of quantity 10 1k operation trials. Of course, more operations take

longer to run, and thus the cost in testing time starts to curtail the value of integrating

more trials.

3.5.4 Workloads.

Just as in [1], standard workloads A, C, and E were put to the test, while B,

D, and F are de-prioritized. In addition, this paper introduces a custom workload,

denoted I, to represent an IoT application, many inserts and few reads, a 99 percent

to 1 percent ratio.

38

Standard workloads A, C, and E, from the YCSB are summarized in Table 9.

3.5.5 Threads in the YCSB.

The number of threads was kept constant at 1, although by increasing the number

of threads one could achieve greater throughput. However, since it was desired to

compare different calculations, the default was retained for all configurations.

It may be worth noting that for loads, this number was increased for practical

reasons. However, these preparatory loads were not measured in these experiments,

only the defined workloads A, C, E, and custom workload I.

3.5.6 Assumptions.

Naturally, in order to perform the experiment and evaluate the results, some

assumptions had to be made. Investigation into any of these assumptions may be an

avenue for future work.

1. The benchmark represents the application, which assumes a simple schema.

In other words, Cassandra’s performance is not particularly sensitive to the

schema.

2. There is no active attacker or intrusion into the local area networks. Both the

local area networks are isolated.

Table 9. Standard YCSB workloads used in this methodology. Workload A consists of
50 percent reads and 50 percent updates. Workload C consists of 100 percent reads.
Workload E consists of 95 percent scans and 5 percent inserts.

Workload Read Update Scan

A 0.5 0.5 0.0
C 1.0 0.0 0.0
E 0.0 0.0 0.95

39

Table 10. Standard YCSB workloads used in this methodology. Workload A consists
of 50 percent reads and 50 percent updates. Workload C consists of 100 percent reads.
Workload E consists of 95 percent scans and 5 percent inserts. In addition, a custom
workload I is summarized, which consists of 99 percent writes and 1 percent reads to
represent IoT.

Workload Read Update Scan Insert

A 0.50 0.50 0.00 0.00
C 1.00 0.00 0.00 0.00
E 0.00 0.00 0.95 0.05
I 0.01 0.00 0.00 0.99

3. There are no errors with the custom benchmark that would skew the results.

Any error is due to the fact that the system’s limits have been reached.

4. There are no bugs in the benchmark that would skew the results.

5. Effects on the network due to distance are negligible.

6. This experiment assumes that nodes are homogeneous. The basis for this as-

sumption is that all nodes have been specified to the same model of Raspberry

Pi 2. The same make and model for the SD Cards have been used. The image

upon the SD Cards has been copied and only adjusted to account for specific,

differentiated IP addresses.

7. This experiment assumes an uninterrupted power supply. Power is not measured

nor accounted for in the model. As long as the power has been turned on, it

stays on, and fluctuations in voltage or any kind of imperfections in the power

supply are negligible with respect to Cassandra’s performance.

8. Although the ISM band is unregulated, this experiment assumes invariant in-

terference from other emitters. The experiment assumes an urban to suburban

environment. In other words, congestion that overwhelms Cassandra’s perfor-

40

mance can be assumed to be rare with respect to the population, and is ignored

for the purposes of the experiment.

3.6 Execution and Analysis

The YCSB, installed on the host laptop, is also run from the host laptop. The

YCSB can be run from the terminal, but for convenience, a Python script was devel-

oped to drive a series terminal processes.

For each experiment, the trials for each configuration will be reported as a sum-

mary of execution times for 10,000 operations. All execution times will be reported

in milliseconds.

The YCSB reports a number of measured values, including operations per second

and latency distribution (minimum, mean, 50 percentile or median, 75 percentile, 99

percentile, maximum). The total execution time in milliseconds was chosen in order

to keep the measured values true to the limits of the experiment. Although this

paper aims to analyze results to reflect the steady state, this paper does not deny the

possibility that variance in operations per second or variance in latency may result

from variance in the number of operations per trial.

Also, one can note in both Figure 11 and Figure 12, that in the first five trials

or so, one can observe the cache warm-up period. This steep decline is expected due

to the effect of the key cache, which is at its default setting: Cassandra sets the key

cache to the either 5% of the heap, or 100 MB, whichever is less. In [1], the key cache

is reported to be at 100 MB. The steady state operation is dependent on the keys

requested, so for a workload like the YCSB, one would not expect a lot of variation.

Truncating the head of the trials, trials 1 though 9, the cache effect is no longer

depicted, rendering an expectation of steady-state performance after cache warm-up.

This is necessary to meet the assumptions of any ANOVA test.

41

Taking the issues of oscillating behavior and cache warm-up period into account,

we can remove them to find a stable viewing window into the behavior of the Cas-

sandra database, as depicted in Figure 12. Figure 12 shows the desired observation

of the behavior in question for 1GB, 2GB and 4GB memory sizes. We use this data

to recreate Abramova’s work and extend it for other memory sizes.

This is also the logic behind using the median to summarize the execution times,

which should not differ significantly whether the cache warm-up trials are included

or not.

Another important observation here, is that once the cache effect is cropped out,

there is no obvious correlation between trials and the performance measurement. This

further supports that 10,000 operations, minus cache effect, does represent a steady

state that is likely to extend beyond 10,000 operations.

42

IV. Results and Evaluation

This section discusses the empirical results of the experiments performed. First,

the effect of RAM is examined, which was conducted using only the virtual machine

configurations. Then, we observed the differences in scalability for a given Ethernet

and a given wireless LAN setup. Third, we observed the differences between the

Raspberry Pi, its virtual machine analogy, and any previous work.

4.1 Variation in RAM

1 Nodes 3 Nodes 6 Nodes

6k

8k

10k

12k

14k

Execution Time, Workload A

NumberOfNodes

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

1GB

2GB

4GB

Figure 13. Variation in RAM over Workload A for the virtual machine clusters.

The results for RAM variation testing are illustrated in the following figures: Fig-

ure 13 for Workload A, Figure 14 for Workload C, Figures 15, 16, and 17 for Workload

E, and Figure 18 for Workload I. The vertical axis shows the overall execution time in

43

1 Nodes 3 Nodes 6 Nodes

6k

8k

10k

12k

14k

Execution Time, Workload C

NumberOfNodes

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

1GB

2GB

4GB

Figure 14. Variation in RAM over Workload C for the virtual machine clusters.

milliseconds. Each group along the x-axis runs the number of nodes in each cluster of

interest. In each set, in order from left to right, the 1GB RAM is represented by blue,

2GB RAM by orange, and 4GB by green. Note that only trials 10 through 30 are

represented in these figures in order to eliminate the skew of the cache effect present

in the first few trials. Each solid horizontal line depicts the maximum, 75 percent

quartile, 50 percent quartile, 25 percent quartile, and minimum for the specified data

set. Any dots present represent outliers, which for this graphing method, are any

values exceeding three standard deviations from the mean. A dotted horizontal line

represents the mean.

In Figure 13 is a boxplot that represents the results of executing Workload A while

varying the RAM, grouped by cluster size. We can accept that cluster size is expected

to have sizeable results. What isn’t clear is if RAM makes a predictable difference

44

1 Nodes 3 Nodes 6 Nodes
0

50k

100k

150k

200k

250k

300k

350k

Execution Time, Workload E

NumberOfNodes

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

1GB

2GB

4GB

Figure 15. Variation in RAM over Workload E for the virtual machine clusters.

when it is varied. Taking a look, it would be hard to deny with full confidence that

there is no pattern at all, even a complex pattern. While a complex pattern or formula

is not undeniable, a linear model does not seem to be suggested by these results.

Also, it is important to note that the first 9 trials have been cropped out to

represent the steady state represented by trials 10 through 30. If the cache effect

were included, these points would skew the distribution higher. The maximum would

be the most affected, while the median and lower ordinal measurements would be

expected to be minimally affected.

The results from Workload C in Figure 14 echo the pattern painted by Workload

A. This would seem to indicate the the read operation dominates the scalability of

the workload.

In Figure 15, it is clear that the 1GB RAM, 1 node case stands out from the rest

45

Figure 16. Variation in RAM over Workload E for the virtual machine clusters, zoomed
in, cropping out the 1-node cluster with 1 GB of RAM.

of the results. From Figure 16, where the zoomed in view crops out the 1GB RAM,

1 node case, it appears that the results from Workload E seem to follow the same

pattern as Workloads A and C.

Based on what is seen here, further investigation may add insight into what is

going on here. In order to rule out interference on the CPU, another experiment was

run, but this time with an increase in granularity. Naturally, one does not purchase

RAM in such incremental amounts, but this gives insight into what it could be. The

results are in Figure 17. This is a more granular approach to understand the transition

between 1GB (1024MB) and 2GB (2048MB). Note there appears to be a linear pattern

from 1024 MB to 1408 MB, and then the curve flattens between 1532 MB onward.

This suggests a critical point that bounds the domain for which the virtual machine

linearly models its hardware analogy, and in possible future work, would assist in a

root cause analysis or may also be a basis to compare future iterations of Cassandra.

For the purposes of simulation, and in the absence of probable cause, the only

conclusion that can be reached is that these results indicate a limit to which the

simulated environment can serve as an apt analogous system.

46

1024MB 1152MB 1280MB 1408MB 1532MB 1664MB 1872MB 1920MB
0

50k

100k

150k

200k

250k

300k

350k

400k

Execution Time, Workload E

ram

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

Figure 17. Variation in RAM over Workload E for the virtual machine 1-node cluster.
Note there appears to be a linear pattern from 1024 MB to 1408 MB, and then the
curve flattens between 1532 MB onward.

In Figure 18, Workload I shows distinction from the other workloads but still lacks

a satisfactory linear pattern. These results do seem to suggest that the transition from

2GB of RAM to 4GB of RAM implies a reliable benefit to performance. In contrast,

though, the results seem to fail to suggest a reliable benefit increasing RAM from

1GB to 2GB for the conditions in these tests.

Determining the exact cause for the differentials between 2GB and 4GB is beyond

the scope of this paper. However, if future work is merited, the next step would be to

test compaction. If compaction is indeed a dominant factor, one could increase the

operation count from 10,000 to a much higher amount, and expect the execution times

for the 4GB cases for 2 node clusters up through 6 node clusters to increase in vari-

ation. Another way to test for compaction would be to keep compaction parameters

47

1 Nodes 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes
5k

10k

15k

20k

25k

30k

35k

40k

Execution Time, Workload I

NumberOfNodes

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

1GB

2GB

4GB

Figure 18. Variation in RAM over Workload I for the virtual machine clusters, zoomed
in, cropping out the 1-node cluster with 1 GB of RAM.

absolutely constant in the Cassandra configuration file.

4.2 Wired v. Wireless

In all four workloads: A in Figure 19, C in Figure 20, E in Figure 21 and I in

Figure 22, the results seem to suggest that the scalability suffers upon the wireless

802.11 protocol as opposed to the wired Ethernet protocol.

For each figure, execution times for each trial is plotted over the corresponding

number of nodes (nn) in the cluster under test on the horizontal axis. The wireless

LAN, depicted in orange, ends up being the upper box for each cluster size. Each

solid horizontal line depicts the maximum, 75 percent quartile, 50 percent quartile, 25

percent quartile, and minimum for the specified data set. Any dots present represent

48

1 2 3 4 5 6
0

50k

100k

150k

200k

250k

300k

350k

400k

450k

Execution Time, Workload A

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

eth

wlan

Figure 19. For 21 trials of 10,000 operations each of Workload A, this graph represents
the execution time of a wired Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan).

outliers, which for this graphing method, are any values exceeding three standard

deviations from the mean. The mean is not depicted in any of these graphs.

For workloads A, C, and E, an oscillation seems to appear on the wireless pro-

tocol, where 1, 3, and 5 node clusters seem to outperform 2, 4, and 6 node clusters.

However, an underlying factor is not clear here. This oscillation is neither advertised

in documentation nor known to be by design. Given that this oscillation does not

extend to the results in the Ethernet analogy, this seems to suggest that this oscil-

lation is characteristic of the wireless 802.11 protocol somehow. In turn, this brings

attention to the inherent difference in handling collisions, as wireless uses collision

avoidance while Ethernet uses collision detection.

Furthermore, as this oscillating pattern does not seem to present itself in Workload

49

1 2 3 4 5 6
0

50k

100k

150k

200k

250k

300k

350k

400k

Execution Time, Workload C

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

eth

wlan

Figure 20. For 21 trials of 10,000 operations each of Workload C, this graph represents
the execution time of a wired Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan).

I, it further seems to suggest that three factors: workload, cluster size, and the

802.11 networking, interact to render the oscillating effect. If merited, future work

could include varying the read proportion of the workload to a more granular extent.

However, it may be worth noting at this point that an interested application developer

may also want to consider the value in trying another database other than Cassandra

for a sufficiently read-heavy workload.

For workload E, some outliers, reporting extremely short execution times and/or a

nonzero quantity of key errors in the report, have been eliminated from the displayed

results. These are probably errors due to timeout in the six-node case. These errors

may suggest that conditions are reaching a limit in feasibility, and if Workload E is

desired to this extent, then additional measures may have to be taken in order to

50

1 2 3 4 5 6
0

0.5M

1M

1.5M

2M

Execution Time, Workload E

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

eth

wlan

Figure 21. For 21 trials of 10,000 operations each of Workload E, this graph represents
the execution time of a wired Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan) with one exception. For Workload E on cluster size 6 on
wireless local area network, erroneous results have been screened out, leaving 5 fully
successful trials to be graphed, not 21.

render a proper characterization.

4.3 Hardware v. Virtual

The median results from the Raspberry Pi Ethernet cluster, the 1GB virtual

machine, and the results from [1] can be observed in the following figures: Workload

A in Figure 23, Workload C in Figure 24, Workload E in Figure 25, and Workload I

in Figure 26. On the vertical axis is execution time plotted over the number of nodes

(nn) in the cluster under test on the horizontal axis. The connecting lines are merely

to assist in readability of the plotted points; only the dots represent values.

Since parallel experiments were done on a realistic system in [1], it was of inter-

51

1 2 3 4 5 6
0

50k

100k

150k

200k

250k

300k

Execution Time, Workload I

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

eth

wlan

Figure 22. For 21 trials of 10,000 operations each of Workload I, this graph represents
the execution time of a wired Ethernet cluster (eth) alongside the execution time of a
wireless 802.11 cluster (wlan).

est as to whether the differential between the performance of [1]’s system and the

Raspberry Pi cluster remained similar across workloads. By visually examining the

graphs, one might surmise that it might be the case that different configurations may

have different advantages over each other based on workload makeup.

There are a few observations here that do not map to a clear explanation. It is

not clear why, in the 1-node case, the Raspberry Pi cluster seems to outperform the

reference in [1], while in the 3-node cluster case, the Raspberry Pi cluster seems to

underperform the reference in [1]. It would be expected that whatever configurations

are there, one should outperform the other in all cases. Of course, [1] only reports one

value, so it is difficult to do any formal analysis of the distributions with a sample size

of one. Although, a difference in a one-node cluster versus multiple nodes does imply

52

1 2 3 4 5 6
0

20k

40k

60k

80k

100k

120k

Execution Time, Workload A

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

ref-2GB

rp-1GB

vm-1GB

Figure 23. With trials of 10,000 operations each of Workload A, this graph represents
the median execution time of the Raspberry Pi cluster (rp-1GB) for 21 trials, the
median execution time for the virtual machine cluster set to 1GB of RAM (vm-1GB)
for 21 trials, and, the imported value from past work (ref-2GB) in [1].

a transition to replication, and this may be a factor that may make the transition from

one-node operation to multiple-node operation more difficult to predict. The second

crossover for Workload C, over the 3-node cluster and the 6-node cluster, depicted in

Figure 24, may represent an artifact of the limited sample size. Thus, the crossover

seen in Figures 23 and 24 do not represent any significant finding.

These graphs, with the exception of the anomaly in Workload E discussed earlier,

seem to suggest that that there may indeed be a predictable relationship, some linear

factor that could be applied to the virtual machine cluster to predict the Raspberry

Pi. Workload A, C, and E give the strongest suggestion, while Workload I has a

slightly divergent pattern and may have to tolerate more error.

53

1 2 3 4 5 6

0

50k

100k

150k

Execution Time, Workload C

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

ref-2GB

rp-1GB

vm-1GB

Figure 24. With trials of 10,000 operations each of Workload C, this graph represents
the median execution time of the Raspberry Pi cluster (rp-1GB) for 21 trials, the
median execution time for the virtual machine cluster set to 1GB of RAM (vm-1GB)
for 21 trials, and, the imported value from past work (ref-2GB) in [1].

54

1 2 3 4 5 6

0

100k

200k

300k

400k

500k

600k

Execution Time, Workload E

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

ref-2GB

rp-1GB

vm-1GB

Figure 25. With trials of 10,000 operations each of Workload E, this graph represents
the median execution time of the Raspberry Pi cluster (rp-1GB) for 21 trials, the
median execution time for the virtual machine cluster set to 1GB of RAM (vm-1GB)
for 21 trials, and, the imported value from past work (ref-2GB) in [1].

55

1 2 3 4 5 6
0

20k

40k

60k

80k

100k

120k

140k

Execution Time, Workload I

nn

[
O
V
E
R
A
L
L
]

R
u
n
T
i
m
e
(
m
s
)

rp-1GB

vm-1GB

Figure 26. With trials of 10,000 operations each of Workload I, this graph represents
the median execution time of the Raspberry Pi cluster (rp-1GB) for 21 trials, the
median execution time for the virtual machine cluster set to 1GB of RAM (vm-1GB)
for 21 trials, and, the imported value from past work (ref-2GB) in [1].

56

V. Conclusion and Future Work

5.1 Conclusion

The light weight of the Raspberry Pi and like devices represents a mobility and

flexibility that, in certain contexts, gives these nodes potential competitive advantage

over a heavy server-type node. An open question for an application considering the

variance in potential nodes is how the less capable CPU may affect performance.

This work imported some results from [1] to form a set of reference points, reference

points that for all practical purposes represent a likely candidate platform and network

upon which one would nominally use Cassandra. The fact that the machines in [1]

were restricted to 2GB was a bonus for this work, as these nodes hinted at getting

slightly closer to the lucrative domain of interest: in-situ IoT storage. Using these

references and some controlled variation within this work, the tests done here can

start to paint a picture of what one can expect porting a distributed database like

Cassandra to a platform like the Raspberry Pi 2 or 3. To summarize some of the

data collected, this work was able to make the following determinations with respect

to the research questions 1 through 4 posed earlier.

5.1.1 Finding 1.

For 21 trials, each consisting of 10,000 operations of workload A (50 percent reads

and 50 percent updates) and performed over 1, 3, and 6-node configurations, the

greatest absolute deviation from the reference to the Raspberry Pi configuration was

found to be 34851.0 milliseconds, or about 35 seconds. Second, for 10,000 operations

of this workload and over 1, 2, 3, 4, 5, and 6-node configurations, the greatest absolute

deviation from any given trial in the wired configuration to an analogous trial using

wireless configuration was found to be 367262.0 milliseconds, or about 6.1 minutes.

57

5.1.2 Finding 2.

For 21 trials, each consisting of 10,000 operations of workload C (100 percent

reads) and performed over 1, 3, and 6-node configurations, the greatest absolute de-

viation from the reference to the Raspberry Pi configuration was found to be 43025.0

milliseconds, or about 43 seconds. Second, for 10,000 operations of this workload and

over 1, 2, 3, 4, 5, and 6-node configurations, the greatest absolute deviation from any

given trial in the wired configuration to an analogous trial using wireless configuration

was found to be 211759.0 milliseconds, or about 3.5 minutes.

5.1.3 Finding 3.

For 21 trials, each consisting of 10,000 operations of workload E (close to 100

percent scans) and performed over 1, 3, and 6-node configurations, the greatest ab-

solute deviation from the reference to the Raspberry Pi configuration was found to

be 301019.0 milliseconds, or about 5 minutes. Second, for 10,000 operations of this

workload and over 1, 2, 3, 4, 5, and 6-node configurations, the greatest absolute de-

viation from any given trial in the wired configuration to an analogous trial using

wireless configuration was found to be 1463335.0 milliseconds, or about 24 minutes.

5.1.4 Finding 4.

For 21 trials, each consisting of 10,000 operations of workload I (99 percent inserts,

1 percent reads) no analogous reference was extracted from literature. However, for

10,000 operations of this workload and over 1, 2, 3, 4, 5, and 6-node configurations,

the greatest absolute deviation from any given trial in the wired configuration to an

analogous trial using wireless configuration was found to be 227459.0 milliseconds, or

about 3.8 minutes.

One of the selling points of a distributed system, and thus a distributed database,

58

is the option to increase the likelihood of survival of data by spreading nodes geo-

graphically. While servers can and are distributed geographically as well.

5.2 Future Work

As was alluded to in the introduction, this research seeks to support a number of

possible future endeavors.

5.2.1 Generalized Model.

5.2.1.1 Overview.

Despite the complexities of hardware, a generalized model may assert that a node

can be abstracted to RAM, rated I/O speeds, and the processor speed. The experi-

ments done in this report do not vary these parameters sufficiently to characterize an

empirical model, but they provide a data point as well as a framework for develop-

ing other experiments to further refine this model. This work has already suggested

that the amount of memory may not be critical or useful in predicting hardware per-

formance, leaving I/O speeds and processor speed. This work grouped them all as

one.

5.2.1.2 Experiments that would Refine This Model.

Naturally, trying other databases, like MongoDB, in Cassandra’s place is one way

to achieve further confidence. In part, the motivation behind using the YCSB was

its portability for testing a multitude of distributed database applications. Although

the workloads for Cassandra were varied, and different databases are typically opti-

mized and designed for particular workloads, a different database or databases would

increase qualitative confidence that the model can be extended to a database not

explicitly tested.

59

In addition, the absolute values in the results of this work do not necessarily

represent Cassandra at its best. In the interest of replication, default values were

used much more often than not. Cassandra boasts a multitude of parameters with

which one can vary in attempt to optimize performance, almost to the point where you

are almost guaranteed to be running it sub-optimally without employing a Cassandra

expert.

5.2.2 Wifi Collection, Mapping and Crowd Detection.

Naturally, another step forward is developing or adapting an application that puts

the system to the test. The application could be compared to the various workloads

that were executed to verify if one of the workloads accurately represents an IoT

application.

60

Bibliography

1. V. Abramova, J. Bernardino, and P. Furtado, “Testing Cloud Benchmark

Scalability with Cassandra,” 2014 IEEE World Congress on Services, pp.

434–441, 2014. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6903301

2. “Raspberry Pi 2 Model B.” [Online]. Available: https://www.raspberrypi.org/

products/raspberry-pi-2-model-b/

3. “LENOVO THINKSERVER RD650.” [Online]. Available: http://cc.cnetcontent.

com/inlinecontent/production/13/13e03a308886/cnet{ }4d4c{ }doc.pdf

4. Lu Tan and Neng Wang, “Future internet: The Internet of Things,”

2010 3rd International Conference on Advanced Computer Theory and

Engineering(ICACTE), pp. 5–376, 2010. [Online]. Available: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5579543

5. “Yahoo Cloud Serving Benchmark.” [Online]. Available: https://research.yahoo.

com/news/yahoo-cloud-serving-benchmark

6. “SensePost — Snoopy: a distributed tracking and profiling

framework.” [Online]. Available: https://www.sensepost.com/blog/2012/

snoopy-a-distributed-tracking-and-profiling-framework/

7. “Aircrack-ng.” [Online]. Available: https://www.aircrack-ng.org/

8. “AirSnort Homepage.” [Online]. Available: http://faculty.ccri.edu/jbernardini/

JB-Website/ETEK1500/LinuxTools/AirSnort{%}20Homepage.htm

9. I. Rose and M. Welsh, “Mapping the urban wireless landscape with Argos,” in

Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems

61

- SenSys ’10. New York, New York, USA: ACM Press, 11 2010, p. 323. [Online].

Available: http://dl.acm.org/citation.cfm?id=1869983.1870015

10. “WiGLE: Wireless Network Mapping.” [Online]. Available: https://wigle.net/

11. “HeatMapper — Free Wi-Fi coverage mapping software for homes

and small offices.” [Online]. Available: http://www.ekahau.com/wifidesign/

ekahau-heatmapper

12. G. Castignani, A. Lampropulos, A. Blanc, and N. Montavont, “Wi2Me: A mo-

bile sensing platform for wireless heterogeneous networks,” Proceedings - 32nd

IEEE International Conference on Distributed Computing Systems Workshops,

ICDCSW 2012, pp. 108–113, 2012.

13. E. Keeble, “Casual Encounters (2013).” [Online]. Available: http://edwardkeeble.

com/portfolio/casual-encounters/

14. S. Haigh, “Tracking people via Wifi (even when not connected).” [Online]. Avail-

able: https://www.crc.id.au/tracking-people-via-wifi-even-when-not-connected/

15. B. Bonne, A. Barzan, P. Quax, and W. Lamotte, “WiFiPi: Involuntary tracking

of visitors at mass events,” 2013 IEEE 14th International Symposium on a World

of Wireless, Mobile and Multimedia Networks, WoWMoM 2013, 2013.

16. L. Schauer, M. Werner, and P. Marcus, “Estimating Crowd Densities and Pedes-

trian Flows Using Wi-Fi and Bluetooth,” Proceedings of the 11th International

Conference on Mobile and Ubiquitous Systems: Computing, Networking and Ser-

vices, pp. 171–177, 2014.

17. R. Schiphorst, “Blue Mark Innovations.” [Online]. Available: https://bluemark.

io/aboutus/

62

18. C. Chilipirea, A.-c. Petre, and C. Dobre, “Presumably simple : monitoring crowds

using WiFi,” no. 1.

19. J. Pang, B. Greenstein, R. Gummadi, S. Srinivasan, and D. Wetherall, “802. 11

User Fingerprinting,” Proceedings of the 13th Annual ACM International Con-

ference on Mobile Computing and Networking, vol. 9, pp. 99–110, 2007.

20. M. Chernyshev, C. Valli, and P. Hannay, “Service Set Identifier Geolocation for

Forensic Purposes: Opportunities and Challenges,” International Conference on

System Sciences, 2016.

21. M. Cunche, M. A. Kaafar, and R. Boreli, “Linking wireless devices

using information contained in Wi-Fi probe requests,” Pervasive and

Mobile Computing, vol. 11, pp. 56–69, 2014. [Online]. Available: http:

//dx.doi.org/10.1016/j.pmcj.2013.04.001

22. S. Du, J. Hua, Y. Gao, and S. Zhong, “EV-Linker: Mapping eavesdropped

Wi-Fi packets to individuals via electronic and visual signal matching,”

Journal of Computer and System Sciences, vol. 82, no. 1, pp. 156–172,

2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0022000015000677

23. M. Cunche and R. Boreli, “I know who you will meet this evening!

Linking wireless devices using Wi-Fi probe requests,” in 2012 IEEE

International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM). IEEE, 6 2012, pp. 1–9. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6263700

63

24. A. D. Luzio, A. Mei, and J. Stefa, “Mind Your Probes : De-Anonymization of

Large Crowds Through Smartphone WiFi Probe Requests,” in IEEE INFOCOM

2016, 2016.

25. A. B. M. Musa and J. Eriksson, “Tracking Unmodified Smartphones Using Wi-Fi

Monitors,” in SynSys, 2012.

26. “Raspberry Pi 2 on sale now at $35 - Raspberry Pi.” [Online]. Available:

https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/

27. “BeagleBoard.org - black.” [Online]. Available: https://beagleboard.org/black

28. “Banana Pi M3.” [Online]. Available: http://www.banana-pi.org/m3.html

29. “CHIP.” [Online]. Available: https://nextthing.co/pages/chip

30. “Parallella.” [Online]. Available: https://www.parallella.org/

31. D. G. Waddington and C. Lin, “A Fast Lightweight Time-Series Store for IoT

Data,” 2016.

32. C. Baun, “Mobile clusters of single board computers: an option for providing

resources to student projects and researchers.” SpringerPlus, vol. 5, no. 1, p.

360, 2016. [Online]. Available: http://www.scopus.com/inward/record.url?eid=

2-s2.0-84961794768{&}partnerID=tZOtx3y1

33. F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The Glasgow

raspberry Pi cloud: A scale model for cloud computing infrastructures,” Proceed-

ings - International Conference on Distributed Computing Systems, pp. 108–112,

2013.

34. J. Kiepert, “Creating a Raspberry Pi-Based Beowulf Cluster,” p. 16, 2013.

64

35. P. J. E. Velthuis, “Small Data Center using Raspberry Pi 2 for Video Streaming,”

23th Twente Student Conference on IT, 2015.

36. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking cloud serving systems with YCSB,” Proceedings of the 1st ACM sympo-

sium on Cloud computing - SoCC ’10, p. 143154, 2010.

37. “CassandraHardware - Cassandra Wiki.” [Online]. Available: https://wiki.

apache.org/cassandra/CassandraHardware

38. A. Lakshman and P. Malik, “Cassandra - A Decentralized Structured Storage

System,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, p. 35, 2010.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1773912.1773922

39. “Apache Cassandra Use Cases.” [Online]. Available: http://www.

planetcassandra.org/apache-cassandra-use-cases/

40. V. Abramova and J. Bernardino, “NoSQL databases: MongoDB vs cassandra,”

Proceedings of the International C* Conference on Computer Science and Soft-

ware Engineering, ACM 2013, pp. 14–22, 2013.

41. B. Van Ryswyk, “Multi-Datacenter Cassandra on 32 Rasp-

berry Pi’s.” [Online]. Available: http://www.datastax.com/dev/blog/

32-node-raspberry-pi-cassandra-cluster

42. J. Sercel, “Cassandra on RaspberryPi 2 Medium.” [Online]. Available: https:

//medium.com/@johnsercel/cassandra-on-raspberrypi-2-a84602953b23{#}

.2mywozbod

43. “Cassandra Parameters for Dummies.” [Online]. Available: http://www.ecyrd.

com/cassandracalculator/

65

44. Datastax, “The cassandra-stress tool.” [Online]. Available: https://docs.

datastax.com/en/cassandra/2.1/cassandra/tools/toolsCStress{ }t.html

45. J. F. Kurose and K. W. Ross, COMPUTER NETWORKING A Top-Down Ap-

proach.

66

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2017

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From - To)
October 2015 – March 2017

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

 Cloud Benchmark Testing of Cassandra on Raspberry Pi for Internet of
Things Capability

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER
16G130

Richardson, Daniel, P., Captain, USAF 5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Air Force Institute of Technology
Graduate School of Engineering and
2950 Hobson Way
WPAFB OH, 45433-8865

Management (AFIT/EN)
AFIT-ENG-MS-17-M-065

10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL/RIGD

11. SPONSOR/MONITOR’S REPORT

9 . SPONSORING / MONITORING AGENCY NAME (S) AND ADDRESS(ES)
Air Force Research Laboratory, Information Directorate
ATTN: Maj Hiren Patel
AFRL/RIGD, Rome, NY 13441
315-330-4315 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
This paper explores the distributed NoSQL database Cassandra's performance limitations in an Internet of Things (IoT)
using limited hardware. Our aim is to use Cassandra's reliable and ecient data distribution to enable distributed exploits on
real-time streaming data. This work not only demonstrates that actual operation of Cassandra is possible on Raspberry Pi,
but also varies the conditions of operation to serve the expectation management of the variations inherent in new, creative,
and cutting-edge applications. This work uses the Yahoo Cloud Services Benchmark (YCSB) within Cassandra on virtual
machines and the Raspberry Pi platform. This work demonstrates the feasibility and expected performance drops when
porting a distributed database like Cassandra from powerful, stationary nodes to less powerful, but more flexible nodes.

15. SUBJECT TERMS

Internet of Things, Distributed Databases, Microcomputers
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Lt Col John Pecarina, AFIT/ENG

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

UU 79 19b. TELEPHONE NUMBER (include area code)
(937) 255-3636, ext 3368

john.pecarina@afit.edu
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Richardson_Thesis
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background and Motivation
	Potential Challenges
	Potential Benefits

	Problem Statement
	Research Goals and Hypothesis
	Characterization of iot and the iot device
	Feasibility of Distributed Database on Limited Hardware

	General Approach and Research Activity Overview
	Expected Contributions
	Organization

	Background and Related Works
	Characterization of iot and iot devices
	iot Model
	Application Space
	WiFi Collection, Mapping and Analysis
	CBIR and others and summary statement on application space
	iot Devices and Raspberry Pi

	Benchmarking Distributed Databases for iot
	Small Cluster Computing on Raspberry Pi
	Cassandra
	Benchmarking Distributed Databases

	Networking Considerations

	Methodology
	Cassandra Pilot Tests
	Experimental Setup
	Variance in Nature of the Links with Compression Algorithms

	Overview of Similar Experiment
	Objective of This Set of Experiments
	Testbed Environment
	System Boundaries
	Experimental Limitations, Nuisance Factors, Known/Suspected Interactions
	Coordination and Networking
	Treatments, Independent Variables
	Configuration of Cassandra

	Experimental Setup
	Virtual Node Setup
	Other Factors
	Number of Operations Per Trial
	Workloads
	Threads in the ycsb
	Assumptions

	Execution and Analysis

	Results and Evaluation
	Variation in RAM
	Wired v. Wireless
	Hardware v. Virtual

	Conclusion and Future Work
	Conclusion
	Finding 1
	Finding 2
	Finding 3
	Finding 4

	Future Work
	Generalized Model
	Wifi Collection, Mapping and Crowd Detection

	Bibliography

	Richardson_SF-298

