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Abstract

This research introduces two novel oblique longwave infrared atmospheric compen-

sation techniques for hyperspectral imagery, Oblique In-Scene Atmospheric Compen-

sation (OISAC) and Radiance Detrending (RD). Current atmospheric compensation

algorithms have been developed for nadir-viewing geometries which assume that every

pixel in the scene is affected by the atmosphere in nearly the same manner. However,

this assumption is violated in oblique imaging conditions where the transmission and

path radiance vary continuously as a function of object-sensor range, negatively im-

pacting current algorithms in their ability to compensate for the atmosphere. The

techniques presented here leverage the changing viewing conditions to improve rather

than hinder atmospheric compensation performance. Initial analyses of both syn-

thetic and measured hyperspectral images suggest improved performance in oblique

viewing conditions compared to standard techniques.

OISAC is an extension of ISAC, a technique that has been used extensively for

LWIR AC applications for over 15 years, that has been developed to incorporate

the range-dependence of atmospheric transmission and path radiance in identifica-

tion of the atmospheric state. Similar to ISAC, OISAC requires the existence of

near blackbody-like materials over the 11.73 micrometer water band. RD is a newer

technique which features unsupervised classification of materials and identifies the

atmospheric state which best detrends the observed radiance across all classes of

materials, including those of low emissivity.

For an oblique synthetic scene with an atmosphere characterized by a MODTRAN

Model 6 atmosphere, OISAC had a mean RMS error in transmission of (0.003, 0.005,

0.006) for the closest, middle, and furthest rows respectively. RD had comparable

iv



RMS errors of (0.002, 0.003, 0.004), while FLAASH-IR, which had not been modified

to account for the oblique geometry, had RMS errors of (0.052, 0.020, 0.194). For

path radiance, OISAC, FLAASH-IR, and RD had mean RMS errors of (2.6, 4.1, 5.3),

(47, 11, 121), and (1.1, 1.5, 2.3) microflicks. We also compared retrieved and true

emissivities for a variety of materials using mean RMS and Pearson correlation. For

roof slate, OISAC had a mean RMS error of (0.002, 0.003, 0.003) for the closest,

middle, and furthest ranges and correlations of (1.000, 1.000, 0.999). FLAASH-IR

had an RMS of (0.010, 0.029, 0.085) and correlations of (0.995, 0.987, 0.886). Finally,

RD had an RMS of (0.002, 0.003, 0.005) and correlations of (1.000, 1.000, 0.999).

v



Acknowledgements

I would first and foremost like to acknowledge my Father in heaven, without which

physical laws and their beauty would not even exist to be discovered. He not only

blessed me with a passion for science and an opportunity to pursue the study of

it, but I have been blessed with a supportive wife, prayerful family and friends, an

incredibly sharp and encouraging advisor, and a vast suite of colleagues and professors

always eager and available to help. The struggle to find a means of contributing to

and advancing the scientific body of knowledge at all, let alone finishing within the

brief window of time available, was a significant one for me. I could not have done it

without every single individual’s help. Lastly, I would like to thank God for giving me

faith and hope for the future, however it unfolded. Thank you for adopting me as a

son and giving me an identity and self-worth that is independent of my performance,

of both my successes and failures. This work is for You.

Daniel S. O’Keefe

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

I. Introduction and Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Challenges of the Oblique Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges of Oblique Atmospheric Compensation . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Background and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 LWIR Model for Sensed Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Atmospheric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Radiative Transfer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Computational Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Atmospheric State Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ISAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Autonomous Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FLAASH-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Oblique Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Data-Driven Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Model-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Oblique SWIR AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Shortcomings of Current Oblique AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Challenges of Analyzing Whole Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Challenges of Analyzing Segmented Scenes . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Temperature-Emissivity Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Retrieved Emissivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III. Oblique In-Scene Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Background and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

LWIR Model for Sensed Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
LWIR Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Page

Current Research in Oblique AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Range Variation of Atmospheric Parameters . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Oblique ISAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Look-up Table Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Scene Estimation of τ̄` and L̄p,` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Model the Best Atmospheric Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Synthetic Scene Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Mako Scene Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

IV. Radiance Detrending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 RD Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Detrending Observed Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Slope as Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Slope Uncertainty as Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
K-means for Material Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Structured Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
RD Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 RD Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Minimize RD metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 RD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Original Model 2 and Model 6 Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Structured Model 2 and Model 6 Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Mako Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Reflective Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Variable Downwelling Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 RD Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Summary of Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Direct Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Indirect Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Discussion of Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Roadmap for Future Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Oblique Imagery Generation and Collection . . . . . . . . . . . . . . . . . . . . . . . 122
OISAC Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
RD Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Oblique Adaptation of Other AC Algorithms . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

viii



List of Figures

Figure Page

1. Comparison of nadir and oblique imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Pictorial representation of the sensed radiance model.
Total radiance at the sensor, L(λ), is a combination of
path radiance contributions, Lp(λ), emissions, and
reflections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Example of relative contributions to the total sensed
radiance for a ε = 0.5 graybody. The summation of the
surface emission (black), reflected downwelling (red),
and path radiance (green) terms yields the total
radiance (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Comparison of transmission, path radiance, and
downwelling radiances differences between Model 2 and
atmospheric states defined by (T0,C0). Radiances are in
microflicks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Comparison of transmission, path radiance, and
downwelling radiances differences between Model 6 and
atmospheric states defined by (T0,C0). Radiances are in
microflicks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6. Comparison of temperature and water concentration
lapse rates for Model 2, Model 6, and an atmospheric
state defined by (T0,C0). Solid black lines represent the
profiles from the standard MODTRAN models, while
the dashed lines represent the profiles generated via
Eq. 13 and Eq. 14 for the (T0,C0) atmosphere. . . . . . . . . . . . . . . . . . . . . . . 18

7. Spectral differences between transmission, path
radiance, and downwelling radiance and truth for the
Model 6 atmosphere and best (288 K, 7800 ppmv) pair. . . . . . . . . . . . . . . 18

8. Spectral differences between transmission, path
radiance, and downwelling radiance and truth for the
Model 6 atmosphere and best (295.25 K, 18300 ppmv)
pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



Figure Page

9. Scatterplot of observed radiance vs. blackbody radiance
for the 8.02 µm spectral channel used in the ISAC
procedure. Scene pixels are in black, and the best fit
line through the points is shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10. Histogram showing the wavelength channels where
pixels had their maximum temperatures. The max hits
channel, λm is shown in light blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11. Locations within the image for those pixels selected
(yellow) to be near the top of the ISAC scatterplot at 8
micrometers, for a noiseless scene of blackbodies at
300±5 K in a Model 6 atmosphere. Selected pixels
dominated the bottom of the image, at low row numbers. . . . . . . . . . . . . 28

12. Spectral brightness temperature comparison for two
blackbodies in a Model 2 atmosphere. Material
properties for both objects are identical (i.e. ε = 1,
T = 300 K); however, they are located at different
ranges from the sensor. The further blackbody at the
further range (blue) has a smaller spectral brightness
temperature than the blackbody at the closer range (red). . . . . . . . . . . . . 29

13. Atmospheric states (T0,C0) selected from the Segmented
ISAC approach on the Mako scene (described in 3.4) are
shown in blue. The corresponding segment numbers are
shown to the right of the selected states. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

14. Results of k-means clustering on the retrieved emissivity
after performing atmospheric compensation on the
Mako scene with the Segmented ISAC approach. The
full image is shown left, whereas the 14 different
material classes are identified in yellow to the right. . . . . . . . . . . . . . . . . . 32

15. Transmission and path radiance of the 10 µm band for
Model 2 and Model 6 MODTRAN atmospheres with
respect to pixel row number for an observation
geometry described in 3.4. Transmission and path
radiance variation for this observation geometry may be
modeled by low-order polynomials with respect to row
number; the more moist atmosphere (Model 2 in blue)
shows more curvature than the dryer atmosphere. . . . . . . . . . . . . . . . . . . . 44

x



Figure Page

16. Best fit line transmission (blue) and line path radiance
(red) for the Model 6 scene described in 3.4 are shown
as solid lines. Dashed lines represent propagated
uncertainty from analysis of the fit uncertainties,
showing larger uncertainty towards the closer and
further ranges of the scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

17. Transmission and path radiance of the first (solid) and
last row (dashed) of the synthetic scene for the two
MODTRAN model atmospheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

18. Transmission and path radiance for the three AC
techniques for the first and last rows the Model 6
synthetic scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

19. Plots of the RMS difference between truth and the
result from AC for the Model 6 synthetic scene,
averaged spectrally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

20. Comparison of retrieved emissivity vs. truth for roof
slate material in the Model 6 synthetic scene. Top:
average retrieved emissivity for Row 1 (left) and Row
500 (right). Bottom: average RMS difference (left) and
correlation (right) between retrieved and true emissivity
with respect to row number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

21. Colormaps of the squared correlation between retrieved
emissivities and the atmospheric transmission for the
Model 6 synthetic scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

22. Transmission and path radiance for the three AC
techniques for the first and last rows of the Mako scene.
Results from the numerical weather data are also shown. . . . . . . . . . . . . . 59

23. Plots of the spectrally averaged transmission (left) and
path radiance (right) with respect to range for the
different atmospheric estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

24. Observed radiance of road pixels at close and far ranges
(black) with forward-modeled radiances using
transmission, path radiance, and downwelling estimates
from OISAC (green) and numerical weather data (blue). . . . . . . . . . . . . . 62

xi



Figure Page

25. Colormaps for the Mako scene of the squared correlation
between atmospheric transmission and retrieved
emissivities from the different atmospheric estimates. . . . . . . . . . . . . . . . . 63

26. The leftmost subimage is the mean LWIR image of the
Mako scene. The other subimages show the results of
k-means clustering the retrieved emissivity from the
different atmospheric estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

27. Retrieved emissivities of objects (truth unknown) at
different ranges throughout the image. Dashed lines
refer to objects further from nadir. From top to bottom:
white cylinders, shiny cylinders, roads. Residual
atmospheric effects are present in the retrieved spectra. . . . . . . . . . . . . . . 65

28. Colormap of retrieved temperatures for the Mako scene
for the different atmospheric estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

29. Top: using the known emissivity of water, the spectral
temperature is shown for the two rivers. The cooler
river (row 800) is the solid line; the warmer river (row
1100) is the warmer river. Bottom: using the mean
spectral temperature for each river, the average
retrieved emissivity is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

30. Observed radiance at 11.73 µm as a function of row
number for three different MODTRAN model
atmospheres. All scenes contain blackbodies at 300±5
K with zero noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

31. Shown for a Model 6 atmosphere at 11.73 µm, when the
correct range-dependent transmission and path radiance
are used on the observed radiance (left), the data is
completely detrended (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

32. Radiance detrending results for Model 6 scene at 8.20
µm using various fit parameters. From top to bottom,
fit terms include slope from linear fit, linear term from
quadratic fit, quadratic term from quadratic fit. The
white square represents the true modeled atmosphere,
while the atmospheric state which minimized the given
fit term is identified by a red circle. Red squares
identify atmospheric states within the fit uncertainty of
the best matched atmosphere (i.e. the red circle). . . . . . . . . . . . . . . . . . . . 75

xii



Figure Page

33. Observed radiance at 11.73 µm as a function of row
number for three different MODTRAN model
atmospheres. All scenes contain a mixture of ε = 0.5
graybodies (light blue) and blackbodies (dark blue) at
300±5 K with zero noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

34. Uncertainty spread from the Planck blackbody term in
Eq. 33. We notice smaller uncertainties at longer
wavelengths (bottom) and cooler temperatures (left). . . . . . . . . . . . . . . . . 79

35. Transmission (dashed) and path radiance (solid) for a
Model 2 atmosphere at various ranges. A longer (red,
12.1 µm) and shorter (blue, 10.1 µm) wavelength
channel are considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

36. Left: Observed radiances with respect to range for 300
K blackbody (dark) and ε = 0.2 graybody at short
wavelength (blue) and long wavelength (red). Center:
From top to bottom, 300 K blackbody curve, blackbody
curves for path radiance brightness temperature at two
different wavelengths, downwelling radiance. Right:
Detrended radiances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

37. Left: Observed radiances with respect to range for 260
K blackbody (dark) and ε = 0.2 graybody at short
wavelength (blue) and long wavelength (red). Center:
From top to bottom, 260 K blackbody curve, blackbody
curves for path radiance brightness temperature at two
different wavelengths, downwelling radiance. Right:
Detrended radiances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

38. Example of k-means clustering on a synthetic scene of
five different materials that had an identical observation
geometry and atmospheric state as the Model 2 scene in
3.4. Truth is shown on the left (1), while the rest
demonstrate clustering using observed radiance (2),
using the most transmissive bands of observed radiance
(3), and using the most transmissive bands of ground
radiance using the atmospheric state determined by the
first iteration of RD on the Model 2 scene (introduced
later in Table 5). From these middle two subfigures, we
see that k-means may mistakenly classify pixels based
on range rather than material properties; we also see
that there are methods to reduce this classification error. . . . . . . . . . . . . . 88

xiii



Figure Page

39. Emissivities of the materials used in the non-uniform
synthetic scenes are shown above. Their locations
within the scenes and temperatures are shown below. . . . . . . . . . . . . . . . . 90

40. Example of the radiance detrending process on the
non-uniform scene. Top: left shows the observed
radiance at 11.73 micrometers, middle shows the
ground-leaving radiance when an improper atmosphere
is used to detrend, right shows the ground-leaving
radiance when the correct atmosphere is used. Bottom:
shows pixel locations for the current material class. . . . . . . . . . . . . . . . . . . 91

41. Contrast of the detrending process for low and high
transmissive bands of the Structured 2 scene. Radiance
images for the two spectral channels are shown on the
left and right. Top and bottom demonstrate the
resulting slope when detrending with an incorrect
atmosphere. This analysis demonstrates that the larger
atmospheric signal in lower transmission bands aid the
detrending process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

42. Flowchart showing the RD process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

43. Results from standard, unscaled ISAC on the Mako
scene, showing the most (red) and least (blue)
transmissive bands used for the clustering and
detrending steps, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

44. RD error surface for Model 2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

45. Emissivity retrieval results for aluminum and water for
the Structured 2 scene. Regions of larger error are due
to low transmission channels where noise played a
dominant factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

46. Emissivity retrieval results for aluminum and deciduous
for the Structured 6 scene. Regions of larger error are
due to low transmission channels where noise played a
dominant factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

47. Transmission and path radiance results for the first and
last rows of the Mako scene. Results from the numerical
weather data are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



Figure Page

48. Colormap of the squared correlation between retrieved
emissivities and the atmospheric transmission for the
Mako scene. RD does not exhibit range-dependent
correlation between retrieved emissivity and
transmission and shows least correlation overall. . . . . . . . . . . . . . . . . . . . 110

49. Plot of the squared correlation between retrieved
emissivities and the atmospheric transmission for the
Mako scene. RD does not exhibit range-dependent
correlation between retrieved emissivity and
transmission and shows least correlation overall. . . . . . . . . . . . . . . . . . . . 110

50. RD error surface for the Mako dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

51. Emissivities of reflective materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

52. Atmospheric compensation results for the reflective
scene. OISAC and ISAC, which rely on blackbody-like
pixels, had difficulty compensating this scene. RD
results closely matched truth spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

53. Variation of downwelling radiation. Zero degree
corresponds to directly overhead; 80 degrees is towards
the horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

54. Atmospheric compensation results for the reflective
scene that also had variable downwelling radiance
contributions. OISAC and ISAC, which rely on
blackbody-like pixels, had difficulty compensating this
scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xv



List of Tables

Table Page

1. Mean and maximum spectral differences for
atmospheric transmission, path radiance, and
downwelling radiance between MODTRAN standard
model atmospheres and nearly equivalent (T0,C0) pairs. . . . . . . . . . . . . . . 17

2. Correlation of off-nadir retrieved emissivity with both
near nadir retrieved emissivity and with atmospheric
transmission for white cylinders (a), shiny cylinders (b),
and roads (c). OISAC shows the highest spectral
correlation with similar targets at two different
locations (second column) and low correlation with the
atmospheric transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3. Assuming that both bodies of water had an emissivity
of water (from the ASTER database), a spectral
temperature was calculated for each method at each
wavelength. Shown are the mean spectral temperature
with one standard deviation. With the least
uncertainty, OISAC had the least variation in the
retrieved temperature for multiple spectral channels. . . . . . . . . . . . . . . . . 67

4. Using the mean spectral temperature for both rivers
(previously calculated assuming an emissivity of water),
the emissivity was computed for the rivers and
compared against the true emissivity of water. The
RMS difference between these two is shown above. . . . . . . . . . . . . . . . . . . 68

5. True atmospheric state along with those atmospheric
states identifed by RD (up to four iterations) and
OISAC for all scenes analyzed. Ground temperature, T0

(K), is in red, while ground water concentration, C0

(ppmv), is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. Emissivity results from the Structured 6 scene.
Correlation and mean RMS error were between the
mean retrieved emissivity and truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7. Emissivity results from the Structured 6 scene.
Correlation and mean RMS error were between the
mean retrieved emissivity and truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvi



OBLIQUE LONGWAVE INFRARED ATMOSPHERIC COMPENSATION

I. Introduction and Research Objectives

Remote sensing, which uses a sensor to measure radiation from a scene, has been

applied across a wide variety of fields and applications. Some of these include detec-

tion and analysis of chemical and biological agents or investigating liquid and powder

spills [11, 41], buried mines [18, 19] and disturbed earth in various soil types [15],

tripwires [12], clouds [29, 37], aircraft coating degradation [44], and targets obscured

by clutter [35] or vegetation [30]. Additionally, remote sensing is used in industrial

process control [13], computer vision [45], facial recognition [16], the modeling and 3D

surface reconstruction of transparent objects [26], highly reflective metallic objects

[27], and dielectrics [3], and the classification and mapping of natural and resource

objects, such as those related to vegetation, minerals, and atmosphere [8].

Passive remote sensing, in contrast to active remote sensing, is a subset of remote

sensing in which the observer does not have control over illumination sources. This is

a common technique for data collection, as it does not require active interrogation by

the observation platform. Traditionally, overhead aircraft and satellites image scenes

in nadir-viewing geometries; however, there has been a growing interest in capturing

and analyzing scenes in oblique viewing geometries. These non-nadir observations

not only allow for increased area coverage and reduced revisit times [2], but they also

allow one to image scenes that may be dangerous for sensing platforms (e.g. in the

monitoring of volcanic eruptions or forest fires) [38].

The focus of this research is to explore and tackle some of the unique complica-

tions associated with oblique viewing geometries, specifically, the impact from variable
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path lengths throughout the scene. This research develops two oblique atmospheric

compensation (AC) techniques which utilize the range-dependence of the measured

radiance in a scene to compensate longwave infrared (LWIR) hyperspectral imagery

in oblique scenarios: Oblique In-Scene Atmospheric Compensation (OISAC) and Ra-

diance Detrending (RD).

1.1 Challenges of the Oblique Scenario

When trying to recognize materials in a scene, scenarios involving oblique viewing

geometries face various challenges. First, difficulties arise from the fact that, since

the path length varies across an oblique image, ground sample distance, transmission,

and path radiance may all vary significantly. Standard atmospheric compensation

algorithms, which were developed for nadir-viewing configurations, assume that these

path lengths are nearly uniform across the scene. Thus, the more oblique the scene

geometry, the more these assumptions are violated; the impact of variable path lengths

will be explored in this research. Additionally, oblique viewing geometries tend to

have longer slant paths through the more dense and humid part of the atmosphere,

leading to more atmospheric absorption, larger atmospheric path radiances, weaker

signals, a smaller usable band, fewer pixels on target and/or larger pixel adjacency

effects, and jitter magnification leading to spectral mixing. When these smaller and

mixed signals are analyzed, retrievals are more unstable and less accurate.[2, 25, 36]

While the research here does not address this second set of challenges, they are factors

to be considered when analyzing oblique hyperspectral datasets. Fig. 1 highlights the

challenges identified in oblique imaging as compared to nadir imaging.
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Figure 1. Comparison of nadir and oblique imaging.

1.2 Challenges of Oblique Atmospheric Compensation

Amid all of these oblique imaging challenges, this research hones in on improving

oblique atmospheric compensation by distinctly accounting for transmission and path

radiance differences. Much of the research in AC has been done for nadir or nearly

nadir viewing geometries.[1, 14, 46] In these scenarios, an overhead sensor captures

radiance from a scene and sensor-scene distance for all pixels throughout the scene is

assumed to be nearly constant. However, there has been a growing need to detect tar-

gets in oblique-viewing geometries.[25] In oblique scenarios, the sensor-scene distance

for the pixels throughout the image can vary greatly, depending on the viewing angle

and altitudes involved. Since atmospheric path radiance and transmission depend

heavily on the path length between the sensor and scene as explored in 2.2, oblique

images may have considerable variation of these two atmospheric quantities. Apply-

ing nadir AC techniques to oblique images will lead to inaccurate, biased retrievals

by ignoring the variability of transmission and path radiance across the image, which

can significantly affect target detection, demonstrated later in Fig. 20.

Oblique AC is a relatively new area of study and limited work has been done to
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tailor AC algorithms to this new operating scenario. Previous research in oblique

AC has mainly been concerned with observing the impact of obliquely collected data

on nadir algorithms [Adler-Golden] or segmenting the image before applying nadir

techniques.[38] While direct or slightly modified applications of these nadir techniques

have shown favorable results for oblique scenarios [2, 38], only a limited number of

atmospheric conditions and ranges have been tested, and the nadir techniques do not

capitalize on the additional information present in an obliquely viewed scene.

1.3 Research Objectives

This research aims to improve oblique atmospheric compensation of LWIR hyper-

spectral imagery, where detailed and highly accurate a priori knowledge of material

characteristics and scene parameters, other than sensor altitude and view angle, are

unknown. This is done by leveraging the scene’s range dependence to aid in the AC

rather than being hindered by it. Instead of allowing the oblique geometry to corrupt

the algorithms such that changes in geometry is mistaken for changes in atmospheric

state, techniques developed in this paper incorporate the changing geometry to better

determine the atmospheric state. Rather than segmenting the image, as suggested

by [38], which ignores the physics tying together the different parts of the image and

reduces the data feeding each run of the nadir algorithms, the oblique algorithms

developed here utilize range-dependent transmission and path radiance into their

physics-based radiative models.

Here, two oblique atmospheric compensation algorithms are developed:

1. Oblique In-Scene Atmospheric Compensation (OISAC). OISAC is an

oblique adaptation of In-Scene Atmospheric Compensation (ISAC), a common

LWIR AC technique that had been previously used in a segmented approach

to tackle oblique scenes.[38] OISAC does not require image segmentation and
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instead utilizes information from the entire image as well as physics-based rela-

tions between different parts of the image to better compensation oblique im-

agery. Based on an adaptation of the scaling procedure of ISAC, OISAC fits a

polynomial-based surface to obtain more accurate estimates of the transmission

and path radiance line contributions. By incorporating the range dependence

of these atmospheric features, these parameters are more accurately estimated

for use in identification of the atmospheric state.

2. Radiance Detrending (RD). RD is a brand-new technique, based on finding

the atmospheric state which best eliminates range-dependence in the ground-

leaving radiance. While this technique assumes the range-dependence of ground-

leaving radiance is caused entirely by coupled atmospheric/path length effects

(e.g. rather than by range-dependent temperatures within a scene), this tech-

nique is able to compensate scenes that are challenging for OISAC (i.e. which

requires materials with blackbody-like features near 11.73 µm).

These AC techniques are tested on both synthetic data and hyperspectral im-

agery, described in Chapter III. Analysis of these datasets suggests that these two

novel techniques improve compensation for atmospheric effects, leading to improved

emissivity and temperature retrieval.

From this research, there are now two separate techniques for performing oblique

LWIR atmospheric compensation, a better understanding of the benefits and limi-

tations of these techniques, and an initial evaluation of atmospheric compensation’s

general capability for handling oblique imaging scenarios. Additionally, by exploring

the physics of this new and relevant viewing scenario and demonstrating techniques

for developing oblique AC algorithms, this research hints how additional techniques

may be adapted or developed.
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1.4 Document Outline

First, the theory, mathematical framework, and background literature will be pre-

sented to give a context for the oblique LWIR AC techniques developed in this present

work. This chapter covers the physics and phenomenology underlying measured ra-

diance in the LWIR along with techniques to compensate for atmospheric effects

and retrieve material emissivities from LWIR hyperspectral imagery. Additionally,

the scientific body of literature concerning oblique atmospheric compensation will be

reviewed, and the shortcomings in current approaches will be highlighted.

The third and fourth chapters detail the two techniques developed to overcome

these shortcomings and improve oblique LWIR atmospheric compensation. Specifi-

cally, the third chapter discusses OISAC, an oblique adaptation and improvement of

the standard ISAC technique. The fourth chapter summarizes the RD technique, a

brand-new algorithm which shows promise for compensating oblique scenarios, par-

ticularly for scenarios more challenging for ISAC-based approaches.

A brief summary of the work will be given in the final chapter.
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II. Background and Theory

Here the theoretical foundations and context of the oblique LWIR AC techniques

developed in this present work will be introduced. It begins with an explanation of

the LWIR model of sensed radiance model and atmospheric modeling. Next, various

LWIR AC techniques are described, highlighting those used in this research for a

baseline comparison. After a review of the current oblique AC literature and discus-

sion of shortcomings, the chapter ends with a brief description of emissivity retrieval

and additional performance metrics used in this study.

2.1 LWIR Model for Sensed Radiance

Techniques presented in this paper will focus on the LWIR region of the elec-

tromagnetic spectrum, an emission-dominated region extending from approximately

8-12 micrometers. The LWIR region contrasts with the shorter wavelength reflection-

dominated region, where signatures are dominated by the reflection and scattering of

radiation from objects considerably warmer than typical ground temperatures (e.g.

the Sun).[21] The ground-leaving radiance in the LWIR, assuming a flat solid facet,

is a summation of emitted radiance

Le(λ) = B(λ, T )

[
1−

∫ 2π

0

∫ π/2

0

ρBRDF (θr, φr, θ, φ, λ) cos θ sin θdθdφ

]
, (1)

and reflected radiance

Lr(λ) =

∫ 2π

0

∫ π/2

0

ρBRDF (θr, φr, θ, φ, λ)Ld(θ, φ, λ) cos θ sin θdθdφ, (2)

where ρBRDF refers to the bi-directional reflectance distribution function (BRDF),

(θr, φr) refers to the direction of the sensor and (θ, φ) refers to the facet coordinates.
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The downwelling radiance, Ld(λ), quantifies illumination that is incident on the facet,

often referred to as the optical background.[42] Potential sources for downwelling

radiation include the sky (water vapor, clouds), trees, vehicles, buildings, and other

nearby objects. In this research, it is assumed that the earth is locally flat and that

downwelling radiance is entirely due to skyshine, i.e. there are no adjacency effects

from nearby objects.[10] The quantities in Eqs. 1 and 2 and are spectral in nature

and have a wavelength dependence, λ, including the Planck radiation function

B(λ, T ) =
2hc2

λ5

[
exp

( hc
λkT

)
− 1
]−1

, (3)

which describes how all objects of non-zero temperature emit radiation.

Employing the Beard-Maxwell BRDF model, the BRDF may be split into

ρBRDF (θr, φr, θ, φ, λ) = ρs(θr, φr, θ, φ, λ) + ρd(λ) +
ρv(λ)

cos θ + cos θr
, (4)

with specular, diffuse, and volumetric scattering components respectively. Given

the complexity (in terms of amount of data and number of free variables) of the

BRDF and that the reflectance properties of relatively few materials have been fully

characterized, most BRDFs are semi-empirical, and parameters of a first-principles

model are fit to measured data.[12] For the purposes of this study, the facet was

approximated as a diffuse Lambertian reflector such that ρs = 0, ρv = 0, and ρd(λ) =

ρHDR(λ)
π

, where the hemispherical directional reflectance (HDR) describes the reflected

irradiance into the direction (θr, φr) from perfectly diffuse illumination and is related

to the BRDF via

ρHDR(θr, φr, λ) =

∫ 2π

0

∫ π/2

0

ρBRDF (θr, φr, θ, φ, λ) cos θ sin θdθdφ, (5)
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where this angular dependence in the HDR does not exist for the Lambertian surfaces

considered in this study.[39] The relative magnitude of the diffuse piece depends on

surface roughness or how light penetrates the surface-air interface and scatters inside

a object before re-emerging into the air.[47] The model used here will also ignore

polarization.

With these assumptions, emissions in Eq. 1 are simplified to

Le(λ) = [1− ρHDR]B(λ, T ). (6)

Furthermore, the simplifying assumption that the downwelling radiance has no an-

gular dependence is made, giving

∫ 2π

0

∫ π/2

0

Ld(θ, φ, λ) cos θ sin θdθdφ = πLd(λ), (7)

which results in

Lr(λ) = ρHDR(λ)Ld(λ). (8)

This downwelling radiance will represent the total integrated sky radiance, driven

by radiative transfer equations, and adjacency effects from nearby objects will be

ignored.[9] Later in 4.3, some features of non-uniform downwelling radiance will be

incorporated.

It will also be assumed that objects are opaque (i.e. zero transmission, τo(λ) = 0)

in the LWIR and at local thermodynamic equilibrium. While materials that are

transmissive in the LWIR exist, they are typically not of interest to remote sensing

applications.[23] Local thermodynamic equilibrium is required to equate absorption,

a(λ), and emission, ε(λ), from an object via Kirchoff’s law, a(λ) = ε(λ). Conservation

of energy allows us to relate energy that is transmitted, absorbed, or reflected with

the total energy incident on a target, i.e. τo(λ) + a(λ) + ρDHR(λ) = 1. Combining
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these expressions, the reflectance may be written in terms of emissivity, ρDHR(λ) =

1− ε(λ).[28] Like reflectance, emissivity is also a characteristic property of an object

and is useful for identification and classification of materials. From this development,

the ground-leaving radiance is finally expressed as

Lg(λ) = Le(λ) + Lr(λ)

= ε(λ)B(λ, T ) + [1− ε(λ)]Ld(λ). (9)

As this ground-leaving radiance travels through the atmosphere to the sensor plat-

form, the atmosphere absorbs a portion of this signal by an amount expressed in

terms of the transmission τ(λ). Additionally, the atmospheric path radiates thermal

energy, adding an amount Lp(λ) to the signal. Thus, the total sensed radiance from

a single ground pixel is modeled as

L(λ) = τ(λ)Lg(λ) + Lp(λ), (10)

where, like the downwelling radiance, these τ(λ) and Lp(λ) terms may also be ex-

pressed in terms of the radiative transfer equation.

LWIR AC aims to estimate the three atmospheric parameters: transmission τ(λ),

path radiance Lp(λ), and downwelling radiance Ld(λ). The ultimate aim of finding

these atmospheric parameters is typically to estimate the properties of the object on

the ground, characterized by an emissivity ε(λ) and temperature T . This research

uses hyperspectral imagery, and thus the spectral nature of all quantities in Eqs. 9

and 10 are considered. A picture of the various components in this sensed radiance

model are captured in Fig. 2.
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Figure 2. Pictorial representation of the sensed radiance model. Total radiance at
the sensor, L(λ), is a combination of path radiance contributions, Lp(λ), emissions, and
reflections.

2.2 Atmospheric Modeling

After introducing and discussing the model for sensed radiance, the three atmo-

spheric components in the sensed radiance model will be described: transmission τ(λ),

path radiance Lp(λ), and downwelling radiance Ld(λ). This begins by relating these

terms to the radiative transfer equation. Afterwards, the computational modeling of

these quantities will be discussed.

Radiative Transfer Theory.

Radiative transfer theory, as its name suggests, describes how electromagnetic

radiation is transported along a particular line-of-sight. For an incremental path

length ds, the radiative transfer equation under non-scattering, local thermodynamics
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equilibrium conditions is given by

dL

ds
= −k(s)

[
L−B

(
Ta(s)

)]
, (11)

where, as radiance L is transported through the atmospheric path, it is absorbed by

the path at a rate determined by the equilibrium absorption coefficient k(s). Mean-

while, blackbody radiance B
(
Ta(s)

)
is emitted by the atmospheric path itself, adding

to the total transported radiance. The absorption coefficient depends on the tem-

perature, pressure, and atmospheric composition of the atmospheric path; like the

radiance terms, it also contains a wavelength-dependence, λ. Temperature, pres-

sure, and atmospheric composition will vary from point-to-point; thus, both k(s) and

B
(
Ta(s)

)
are functions of the position along the path. Also, though not explicitly

expressed, all quantities are functions of wavelength, λ.[22]

With a boundary condition specification of initial radiance at position s = 0, this

differential equation may be solved to yield

L(s) = L(0) exp
(
−
∫ s

0

k(s′)ds′
)

+

∫ s

0

k(s′)B
(
Ta(s

′)
)

exp
(
−
∫ s

s′
k(s′′)ds′′

)
ds′, (12)

where the total line-of-sight transmission may readily be expressed as τ = exp
(
−∫ s

0
k(s′)ds′

)
.[22] When considering radiance leaving an object on the ground and ob-

served by a sensor located at position s, it may be observed that the initial ground-

leaving radiance is simply the ground-leaving radiance L(0) = Lg, and after properly

ascribing the radiance due to emission along the atmospheric path to the path ra-

diance, one may once again arrive at Eq. 10, L(λ) = τ(λ)Lg(λ) + Lp(λ). From this

development, it may be observed that a longer atmospheric path will have a smaller

transmission and larger path radiance, an observation used frequently throughout this

research. For the downwelling radiance incident upon a target from the top of the
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atmosphere, there is no initial radiance from space due to its cold background tem-

perature. This just leaves the atmospheric path emission term. Path lengths through

the atmosphere to the target from the horizon are longer than those originating from

directly overhead, leading to an angle-dependent downwelling radiance. From the

integral in Eq. 12, one may see that for this scenario, longer atmospheric paths will

lead to larger radiances. As mentioned previously with Eq. 7, it will be assumed this

range-dependence is negligible and will instead be using the total integrated sky ra-

diance. Further discussion of angle-dependent downwelling is reserved for discussion

in 4.3.

Computational Modeling.

Various atmospheric radiation transport models have been developed to predict

atmospheric transmission, path radiance, and downwelling for user-specified viewing

and meteorological conditions. One such model is the MODerate resolution atmo-

spheric TRANsmission (MODTRAN) computer code.[5] By designating the location

and viewing angle of the sensor along with the temperature, pressure, and humid-

ity profiles of the atmosphere, MODTRAN may calculate a realistic estimate of the

LWIR atmospheric contributions to the observed radiance. MODTRAN also has six

built-in atmospheric models which each have their own characteristic atmospheric

profiles. Model 2 (Mid-Latitude Summer) and Model 6 (U.S. Standard 1976) are

commonly used models, corresponding to more humid and more dry atmospheres re-

spectively. These two models will be used extensively for synthetic scene generation

in this research.

As an example using the Model 6 atmosphere, one may visualize the relative sizes

of the various contributions to the sensed radiance in Eqs. 9 and 10 for a 300 K, ε = 0.5

graybody, by observing Fig. 3. Radiance will be expressed in terms of microflicks,

13



where 1·10−6 W
cm2·sr·µm

= 1µ−flick. In this figure, one may see that the surface emission

makes up the largest contribution, whereas the reflected and downwelling components

are nearly equal. For many natural materials which tend to have larger emissivities,

this reflected term may even be smaller than the path radiance for sufficient sensor-

scene distances. The dominance of this surface emission term in the LWIR largely

arises because surface temperatures are often larger than the effective downwelling

temperature (which are inputs to the Planck radiation function).

Figure 3. Example of relative contributions to the total sensed radiance for a ε = 0.5
graybody. The summation of the surface emission (black), reflected downwelling (red),
and path radiance (green) terms yields the total radiance (blue).

Atmospheric State Approximation.

Rather than define altitude-based profiles for temperature, humidity, pressure and

various species concentration (e.g. ozone, carbon dioxide, etc.), one technique used

by [46] characterizes an atmospheric state by a single ground air temperature, T0,

and ground water concentration, C0. From these ground values, an entire temper-

ature/water column is established using a lapse rates similar to the U.S. Standard

1976 atmosphere. Specifically, temperature at a given height h (in km) is modeled as
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T (h) =


T0 − 6.49h h ≤ (T0 − 216.7)/6.49

216.7 h > (T0 − 216.7)/6.49

, (13)

while the water concentration is given by

C(h) =


Cstd(h)[1 + ( C0

Cstd(h=0)
)(1− exp[−0.8(16− h)])6] h ≤ 16

Cstd(h) h > 16

, (14)

where Cstd(h) is water profile for the U.S. Standard 1976 atmosphere. The pressure

profile utilized is the U.S. Standard 1976 pressure profile, and the species concen-

trations are also assumed to follow the standard model, an assumption which holds

reasonably well for low altitude observation (i.e. below 10 km) in high visibility

weather conditions.[14]

By analyzing transmission, path radiance, and downwelling radiances for the

Model 2 and Model 6 atmospheres, one is able to find their approximate (T0,C0)

pairs and better understand modeling limitations. Fig. 4 shows a comparison of these

three atmospheric quantities for the Model 2 atmosphere and various atmospheric

states for a nadir-viewing sensor at 1 km. The top row of the figure shows the mean

differences, while the bottom row highlights the maximum differences. The red dots

identify the atmospheric state with the best match for the given metric. As a (T0,C0)

pair is only an approximation for the true atmospheric state, there is no ideal can-

didate atmosphere that will optimize all six metrics. For this case, (295.25 K, 18300

ppmv) will be identified as the best match. Likewise, looking at Fig. 5 for Model 6,

the pair (288 K, 7800 ppmv) will be identified. Neither of these pairs are perfect,

particularly for the downwelling component; however, they are still close matches.

Additionally, when calculating the metrics in these figures, the spectral region from
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9.12-10.2 µm that is typically dominated by ozone was excluded, as the (T0,C0) pairs

do not include ozone as an input.

Figure 4. Comparison of transmission, path radiance, and downwelling radiances dif-
ferences between Model 2 and atmospheric states defined by (T0,C0). Radiances are in
microflicks.

In Fig. 6, one may see the temperature and water profiles for these four atmo-

spheric states. Since the profiles assumed are based off the Model 6 atmosphere

(though not directly matching it), it may be noted that the temperature and water

profiles between the Model 6 and (288 K, 7800 ppmv) closely match. The spectral

differences in transmission, path radiance, and downwelling radiance between these

two atmospheric models is shown in Fig. 7, where the relatively large errors in the

aforementioned ozone band may be highlighted. Likewise, results for the Model 2

atmosphere are shown in Fig. 8. Interesting to note is that the Model 2 atmosphere

has a noticeably distinct temperature and water profile than the (295.5 K, 18300

ppmv) state, yet its mean/maximum deviations in the atmospheric parameters are

comparable to the Model 6 atmosphere and its (T0,C0) pair. Mean and maximum

spectral errors are shown in Table 1, where one may notice that path radiance error
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Figure 5. Comparison of transmission, path radiance, and downwelling radiances dif-
ferences between Model 6 and atmospheric states defined by (T0,C0). Radiances are in
microflicks.

is on the same order as the 1 microflick of at-sensor noise that will be modeled in

3.4. One may also see that downwelling radiance has a sizable error to it; thus, when

retrieving emissivities for highly reflective materials (e.g. aluminum), more sizable

errors are expected.

Table 1. Mean and maximum spectral differences for atmospheric transmission, path
radiance, and downwelling radiance between MODTRAN standard model atmospheres
and nearly equivalent (T0,C0) pairs.
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Figure 6. Comparison of temperature and water concentration lapse rates for Model
2, Model 6, and an atmospheric state defined by (T0,C0). Solid black lines represent
the profiles from the standard MODTRAN models, while the dashed lines represent
the profiles generated via Eq. 13 and Eq. 14 for the (T0,C0) atmosphere.

Figure 7. Spectral differences between transmission, path radiance, and downwelling
radiance and truth for the Model 6 atmosphere and best (288 K, 7800 ppmv) pair.
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Figure 8. Spectral differences between transmission, path radiance, and downwelling
radiance and truth for the Model 6 atmosphere and best (295.25 K, 18300 ppmv) pair.

2.3 Atmospheric Compensation

Numerous atmospheric compensation (AC) techniques have been developed to

extract the spectral properties of objects within hyperspectral imagery. These algo-

rithms are roughly divided among model-based and data-only techniques. Model-

based techniques often use radiative transfer tools (e.g., MODTRAN, [5]) to estimate

atmospheric terms for correction of the data. These techniques require knowledge

of atmospheric properties, such as water content and temperature. Data-only tech-

niques estimate atmospheric properties based entirely on data from within the image,

often by assuming the scene contains materials with certain spectral characteristics

[9]. Many of the AC techniques discussed here are a blend of both model-based and

data-only techniques.

There are various AC techniques, all of which aim to estimate the atmospheric

contributions to the sensed radiance (i.e. τ(λ), Lp(λ), and Ld(λ) for the LWIR).

Since the sensed radiance model is different for the distinct wavelength regimes (e.g.

shortwave infrared vs. LWIR), these nature of these techniques are often unique to

their wavelength regime.
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In the shortwave infrared (SWIR), the empirical line method (ELM) is a common

technique which uses known reflectance spectra to determine atmospheric character-

istics. A second SWIR technique, vegetation normalization, is an extension of ELM

that instead uses vegetation in a scene to compensate for the atmosphere. Both of

these techniques require precise material identification in order to compensate for the

atmosphere. Quick Atmospheric Compensation (QUAC) is yet another SWIR tech-

nique; however, it does not have this requirement. Instead, QUAC uses the spectral

variation in the standard deviation of diverse material spectra throughout the scene

to characterize atmospheric illumination and transmission [9].

In the LWIR, two common AC techniques are In-Scene Atmospheric Compensa-

tion (ISAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes -

InfraRed (FLAASH-IR), both of which will be described more in-depth here. This

paper focuses on adapting ISAC for the oblique scenario; however, FLAASH-IR will

be used to compare results since it is a fairly robust technique that is also widely

used. Autonomous Atmospheric Compensation (AAC) will also be described since it

bears a strong resemblance to ISAC. Other techniques exist (e.g. QUAC-IR, TEAS,

OLSTER) but are not readily available for comparison.

ISAC.

ISAC, or blackbody normalization, is a data-driven technique which relies on the

existence of near blackbodies (i.e. ε ≈ 1) in a scene [46]. For blackbody pixels, the

LWIR model for sensed radiance from Eq. 10 is reduced to a linear equation

L(λ) = τ(λ)B(λ, T ) + Lp(λ). (15)

With an estimation of pixel temperatures, one may create a scatterplot of sensed

radiance against Planck blackbody radiance (see Fig. 9) for the blackbody candidate
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pixels. The more blackbody-like a pixel is, the more it will be towards the top edge

of the scatterplot, given the underlying assumption that the effective atmospheric

temperature is cooler than the scene temperature. A line is fit to the upper points

of the scatterplot (e.g. by iteratively fitting a line through the data and trimming

points below the fit), where the slope and intercept are related to transmission and

path radiance respectively by Eq. 15, assuming the fit points are ideal blackbodies.

This process is done spectrally.

Figure 9. Scatterplot of observed radiance vs. blackbody radiance for the 8.02 µm
spectral channel used in the ISAC procedure. Scene pixels are in black, and the best
fit line through the points is shown in red.

Before creating this scatterplot, pixel temperatures need to be estimated and

blackbody candidates needs to be identified. One common technique involves invert-

ing Eq. 3 to solve for the spectral brightness temperature

TB(L, λ) =
hc

kT ln [ 2hc2

λ5L(λ)
+ 1]

(16)

in the “most hits channel”, λ = λm. The most hits channel is found by first finding the

wavelength band corresponding to the max spectral brightness temperature for each

pixel in the scene, then by generating a histogram of these max temperature bands,
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and finally by identifying the wavelength band that occurs most often. An example

histogram is shown in Fig. 10. After λm is identified, the blackbody candidates are

identified as those pixels whose maximum temperature occurred in the most hits

channel. This somewhat heuristic method tends to select the most blackbody-like

pixels, assuming these materials make up a significant portion of the scene and exhibit

a nearly constant emissivity across the spectral range of the sensor. [9][46]

Figure 10. Histogram showing the wavelength channels where pixels had their maxi-
mum temperatures. The max hits channel, λm is shown in light blue.

Since temperatures for the pixels are unknown and can only be estimated, the re-

sulting transmission and path radiance need to be scaled by estimating atmospheric

conditions. One of the scaling techniques discussed in [46] uses the 11.73 micrometer

water band feature to estimate the atmospheric state (i.e. water concentration and

temperature on the ground, assuming a U.S. Standard 1976 lapse rate). This proce-

dure relies on separating slowly varying continuum effects from quickly varying line

effects. Scene estimations of the band’s average line contributions of the transmis-

sion and path radiance, τ̄` and L̄p,` respectively, are compared with a MODTRAN-

generated table of line contributions for various temperatures and water concentra-

tions; the atmosphere which matches these two quantities best is selected. With an

atmospheric state selected, the transmission and path radiance estimated earlier in
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ISAC are scaled using the transmission and path radiance of the selected atmosphere.

The authors refer to this full process with the scaling as the “Full ISAC.”

The scaling procedure of the “Full ISAC” was modified slightly to make the process

more straight-forward. Rather than use the net radiance depression as [46] had done,

their equation C3 was re-expressed using C2 and C6 to yield

L̄ = τ̄`L̄0 + L̄p,` (17)

where L̄ is the band’s average radiance and L̄0 is the band’s average continuum

contribution of the path radiance. Using this expression rather than equation C7 in

[46] is simpler, not requiring trapezoidal integration nor additional steps to solve for

the variables of interest. To estimate the line contributions to the transmission and

path radiance, a scatterplot is created of L̄ vs. L̄0 using the blackbody candidates

identified earlier. A line is fit to the bottom points, which correspond to the most

blackbody-like pixels, and the slope and intercept correspond τ̄` and L̄p,` from Eq. 17.

Autonomous Atmospheric Compensation.

AAC is very similar to the second half of ISAC (i.e. selecting the scaling atmo-

sphere). This technique also relies on use of the 11.73 micrometer water band, but

instead of using the selected atmospheric state to scale an original estimate, it simply

models the selected atmosphere in MODTRAN and uses MODTRAN’s estimates for

transmission, path radiance, and downwelling (a process, which may be seen later,

that OISAC also uses). Thus, this technique is more model-based as opposed the

data-driven nature of ISAC. Benefits and limitations of a model vs. data-driven

nature will be discussed in III.

From (7) in [14], AAC hinges on use of a linear regression model, Ls = Tr•LW+Pd.

Upon inspection, the form of Eq. 17 is nearly equivalent, where L̄ corresponds to the

23



radiance in the strong absorption channel, Ls, and L̄p,` to the radiance in the weak

absorption channel, LW . The main difference between this aspect of ISAC and AAC

is that ISAC uses band-averaged quantities rather than measurements at two distinct

channels and that ISAC screens out low-emissivity features. These ISAC features are

favorable and have led to greater accuracy and stability when testing on synthetic

scenes.

FLAASH-IR.

FLAASH-IR is based on the observation that atmospheric spectral features tend to

be sharper than material spectral features. These spectral differences between solids

and gases arise as a result from differences in lifetimes of excited states. Excited states

in solids tend to have shorter lifetimes because the energy can be quickly dissipated

to connected molecules, whereas the isolated nature of gases does not allow them to

de-excite as quickly [7].

Using this knowledge, FLAASH-IR attempts to minimize the amount of sharp,

atmospheric features in its retrieved emissivities and find the smoothest retrieved

emissivity. Emissivity is calculated by solving Eqs. 10 and 9 for a plethora of different

object temperatures and atmospheric states using a MODTRAN-generated look-up

table. Looking at diverse pixels throughout the scene, FLAASH-IR maximizes emis-

sivity spectral smoothness for all these diverse classes by picking the optimal set of

atmospheric state and pixel temperatures [1]. The metric used to quantify smoothness

will be described in 2.6.

2.4 Oblique Atmospheric Compensation

Oblique Atmospheric Compensation is a relatively new field of study, and as a

result, there are relatively few datasets available, a handful of journal articles written
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about it, and only minor adjustments to modify existing techniques. Presented here

will be a discussion of how techniques have been used in the literature to account for

oblique viewing geometries. While the research in this study is most related to the

first of the following three areas, these other areas of oblique AC research are included

for completeness.

Data-Driven Techniques.

The sole effort in data-only oblique LWIR AC known to the authors is [38]. Here,

an oblique Telops Hyper-Cam scene taken from Death Valley, CA was analyzed by

applying the partial (i.e. unscaled) ISAC to ten equally-sized horizontal strips. While

path range variation for the entire scene was between 20 m and 50 km, this process

of image segmentation drastically reduced the range variation within a single sub-

image. The authors needed to carefully consider the number of strips to segment the

scene into, balancing between having large enough strips with a sufficient number of

pixels for ISAC versus having small enough strips such that the atmosphere could

be assumed homogeneous within each strip. They noted that this assumption of

homogeneity within each strip might not hold well for conditions more humid than this

desert scene that they tested; however, even for their relatively dry conditions, they

believe the 50 km segment hinted at levels of atmospheric constituents significantly

different than at other ranges.

Altogether, their analysis showed success at retrieving quartz emissivity spectra

for dry conditions via image segmentation. For future work, they recommended in-

corporating downwelling radiance for scenes without adequate blackbody populations

as well as automating the segmentation approach. They had supervised the precise

number of segments to divide the scene into in order to balance the previous two

considerations; however, this optimal number of strips is expected to change based
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on viewing geometry parameters and atmospheric humidity.

Model-Based Techniques.

One model-based technique which has been adapted to account for multiple view-

ing geometries is the Airborne Atmospheric and Topographic Correction Model (AT-

COR). In order to perform LWIR AC, this technique relies heavily on co-registered

bands in the SWIR. ATCOR uses these bands to estimate the water vapor profile

and visibility, which are then be used by MODTRAN to model the LWIR. Next, it

uses the SWIR to separate ground pixels into one of three different emissivity classes

(either asphalt, vegetation, or water/miscellaneous), each of which are assigned a

single, non-spectral emissivity. Finally, this technique inverts the Planck blackbody

function to get pixel temperatures. The latest version of ATCOR has been updated

to take terrain shape from a digital elevation model into account, as well as multiple

viewing geometries for the different pixels throughout the scene [33]. While ATCOR

has been modified to account for oblique geometries, this technique is of a very dif-

ferent nature. It requires use of SWIR data, ignores the spectral nature of materials’

emissivity, and only classifies rather than retrieves these emissivities.

A second study using model-based AC studied the impact of not incorporating the

variable path lengths in an oblique scene. Reference [24] studied surface brightness

temperature retrieval from oblique, single-channel LWIR imagery in urban environ-

ments. Using atmospheric profile data from in-situ meteorological measurements,

they simulated atmospheric effects with MODTRAN, incorporating either a single,

median line-of-sight geometry or multiple lines-of-sight throughout the scene. They

determined that the atmospheric differences across an oblique scene were significant.

Not accounting for the path length variations led to errors of up to 3.7 K during

the day and 0.5 K during the night, sizable differences for the study of energy ex-
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change at the surface-atmosphere interface [40, 43] and temperature variability within

urban/natural habitats [20].

Oblique SWIR AC.

Other research has explored oblique AC from different perspectives. [2] studied

the impacts of using nadir techniques on oblique data. They employed SWIR AC

techniques to analyze EO-1 Hyperion data collected with an off-nadir angle of 63

degrees, showing that very long atmospheric paths would not preclude them from

obtaining reasonably accurate reflectance spectra given favorable weather conditions.

In a separate study, [6] made modifications to the ELM to compensate for oblique

SWIR synthetic imagery, requiring known reflectances in the scene. Since these two

studies focus entirely on the SWIR spectrum, neither are truly related to the present

work.

2.5 Shortcomings of Current Oblique AC

Current data-only AC techniques are hindered by scenes with oblique geometry,

having to balance between violating algorithm assumptions and reduction of usable

data. The application of these techniques on oblique scenes has typically involved

running standard nadir-derived AC techniques on the either the entire image [2] or

independently on segments of the image [38]. If one runs the technique on the entire

image, then the assumption that every pixel is experiencing the same atmospheric

effects is violated. Alternatively, while image segmentation results in sub-scenes with

the near uniform path range characteristic of nadir scenes, cutting the image into

parts reduces the usable data for each AC application. Below is a summary of some

of the challenges facing current oblique AC.
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Challenges of Analyzing Whole Scenes.

As mentioned, nadir-derived AC algorithms currently used to analyze entire oblique

scenes without segmentation face numerous challenges. The assumption that every

pixel experiences the same atmospheric effects no longer holds. Violation of this as-

sumption biases current techniques and degrades their performance. While one might

expect these nadir techniques to effectively compensate for the middle of the image,

from empirical observations of both ISAC and FLAASH-IR, these techniques seem

to be biased towards compensating for closer ranges. Exploring why this might be

the case for ISAC, a synthetic scene of mean temperature 300± 5 K blackbodies was

generated in a Model 6 atmosphere. While fitting to the top of the L vs. B curve

as in Fig. 9, it was noticed that pixels near the bottom of the scene were favored.

This is highlighted in Fig. 11. While fitting to the top of the scatterplot ordinarily

corresponds to fitting to the most blackbody-like pixels, since blackbodies at closer

ranges appear brighter, those pixels with less atmospheric attenuation are favored.

Thus, for even this scene made of entirely blackbody pixels, ISAC is biased when

analyzing scenes containing oblique geometry.

Figure 11. Locations within the image for those pixels selected (yellow) to be near the
top of the ISAC scatterplot at 8 micrometers, for a noiseless scene of blackbodies at
300±5 K in a Model 6 atmosphere. Selected pixels dominated the bottom of the image,
at low row numbers.
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Additionally, since these nadir-derived techniques lack the flexibility to permit

transmission and path radiance variation across the scene, these techniques may con-

fuse the variable atmospheric effects with variations in object temperature. Some

applications require realistic temperature estimates (e.g. when modeling and pre-

dicting climate change), so using temperature to pseudo-compensate for changing

atmospheric effects is not ideal [14]. To better understand this impact, two black-

body objects at 300 K were forward-modeled through the same Model 2 atmosphere

but at different ranges. Inverting measured radiance into a spectral brightness tem-

perature, one may see in Fig. 12 that the two objects have different apparent spectral

temperatures. While these targets are reflecting and emitting the exact same amount

of radiation, the closer target will appear hotter. This predicted artifact will be seen

later in Fig. 28.

Figure 12. Spectral brightness temperature comparison for two blackbodies in a Model
2 atmosphere. Material properties for both objects are identical (i.e. ε = 1, T = 300 K);
however, they are located at different ranges from the sensor. The further blackbody
at the further range (blue) has a smaller spectral brightness temperature than the
blackbody at the closer range (red).
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Challenges of Analyzing Segmented Scenes.

By segmenting the scene prior to analyzing, the biases and artifacts from inflexibil-

ity in varying the atmospheric state are reduced, but other problems are introduced.

First, this process is a more manual/supervised approach. One comment in [38] was

the suggestion that future work should aim to automate the segmentation process,

carefully selecting the number of segments to balance between having enough data

for successful AC but small enough so that there is little atmospheric variation within

each segment.

A second concern is that image segmentation introduces its own inconsistencies.

Applying the ISAC approach to ten different segments of both synthetic and hyper-

spectral imagery, it was found that this approach suggested different atmospheric

states for the different segments of the image. Characterizing atmospheric states by a

ground air temperature and water concentration, (T0,C0), Fig. 13 shows the results of

segmenting one such scene. One may observe a variation of more than a 10 percent in

temperature and 20 percent in water concentration for the different image segments.

Figure 13. Atmospheric states (T0,C0) selected from the Segmented ISAC approach
on the Mako scene (described in 3.4) are shown in blue. The corresponding segment
numbers are shown to the right of the selected states.
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While these ten atmospheric states are somewhat similar, effects of selecting even

slightly different atmospheric states may be seen. By performing k-means clustering

(described in 2.8) over the same scene used to generate Fig. 13, one may see evident

image segmentation artifacts, especially near image segmentation boundaries. This is

demonstrated in Fig. 14. The leftmost subimage is a picture of the entire scene, where

each color is a distinct pixel class; these 14 different material class are individually

identified in yellow to the right. In these individual classes, sharp horizontal lines as

well as parts material classes that only span 1/10th of the total number of rows may

be seen (the image was divided into ten parts prior to AC). The segment from from

about row 1100 to 1300 especially stands out, suggesting that this segment of the

total image might have had significantly different AC result. These artifacts are due

to image segmentation, demonstrating one of its limitations.

2.6 Temperature-Emissivity Separation

After AC in the LWIR, one may solve for the ground radiance in Eq. 10 to get

Lg(λ) =
L(λ)− Lp(λ)

τ(λ)
, (18)

and then solve Eq. 9 for emissivity to get

ε(λ, T ) =
Lg(λ)− Ld(λ)

B(λ, T )− Ld(λ)
. (19)

Even with perfect knowledge of the atmospheric state, the emissivity of an individual

pixel cannot be determined without knowing the temperature. With K spectral bands

there are K knowns and K + 1 unknowns, an underdetermined system that requires

a detangling of emissivity and temperature. Solving this system is referred to as

Temperature-Emissivity Separation (TES).
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Figure 14. Results of k-means clustering on the retrieved emissivity after performing
atmospheric compensation on the Mako scene with the Segmented ISAC approach.
The full image is shown left, whereas the 14 different material classes are identified in
yellow to the right.
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The primary means of performing TES is based on the observation that material

emissivities are smoother than atmospheric transmission features, discussed earlier

in 2.3. The research presented here incorporates the TES method of FLAASH-IR,

i.e. Automatic Retrieval of Temperature and Emissivity using Spectral Smoothness

(ARTEMISS) [31].

ARTEMISS performs TES by finding the temperature which minimizes a smooth-

ness metric. One means by which ARTEMISS measures smoothness is via the stan-

dard deviation of the difference between the retrieved emissivity from Eq. 19 and its

three-point boxcar-average. After calculating the emissivity smoothness for multiple

temperatures, the optimal temperature is the one with minimal smoothness [7].

2.7 Retrieved Emissivity

In order to find targets and identify materials, retrieving an emissivity for objects

in a scene is especially helpful. This is done by comparing the retrieved emissivity

from Eq. 19 with those from a database of different reference target signatures. The

nature of this comparison depends on the material of interest and the specific target

detection algorithm; however, two metrics form the basis of many signature matched

detection algorithms and will be used in this research to gauge performance: spectral

correlation and mean root-mean-square (RMS) difference.

The first, the Pearson correlation coefficient, is a metric to estimate how well

the spectral shape of the retrieved emissivity and reference emissivity match. The

Pearson correlation coefficient may be calculated via

rP =

∑K
i=1(xi − x̄)(yi − ȳ)

(K − 1)σxσy
, (20)

where x̄ and ȳ are the mean and σx and σy are the standard deviation of two K -
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dimensional vectors. The Pearson correlation coefficient takes on a value between -1

and 1, expressing correlation and anti-correlation respectively. A score of zero would

suggest that the retrieved and reference emissivity signatures bear no resemblance to

one another. Comparing this metric with a common target detection algorithm, one

version of the Spectral Matched Filter follows the form of rSMF = (x−µ̂)T Σ̂
−1

(y−µ̂),

where µ̂ is the background’s mean signal and Σ̂ is the background’s covariance ma-

trix. Similar to the Pearson correlation coefficient, this detection algorithm measures

similarity of spectral shape between two signals. [9]

Material emissivities without prominent spectral features need to be characterized

by a different metric, such as the RMS difference. As a simple example, the spectral

emissivity shapes of a blackbody and graybody are identical; however, the two emis-

sivities may have a large contrast in magnitude. This difference is not captured by

the Pearson correlation coefficient, and this first metric would identify the blackbody

and graybody as the same material. However, this difference in magnitude between

the two emissivities may be captured via the RMS difference

rR =

√√√√ 1

n

n∑
i=1

(xi − yi)2. (21)

The closer this RMS difference is to zero, the more similar the two signals are in

magnitude.

2.8 K-means Clustering

Another processing technique used extensively in this research is k-means clus-

tering, which separates signals into distinct classes. Class assignment is based on

minimizing a distance metric (typically a Euclidean or cosine distance) between the

signal and class mean vector, which is taken as the mean of all signals in a class.
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This process requires initial class vectors to be chosen (at random or based on a

priori knowledge) and that the user manually specifies the number of classes. Class

assignment is done iteratively until a stopping condition is met. For the purposes of

this study, the cosine distance metric was applied because the desire was to match

materials based on their spectral shape rather than their RMS difference.
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III. Oblique In-Scene Atmospheric Compensation

This chapter was prepared for submission to the journal, IEEE Transactions on

Geoscience and Remote Sensing. Daniel O’Keefe was the lead author, while Dr.

Nauyoks, Dr. Hawks, Dr. Meola, and Dr. Gross were co-authors and served as

reviewers of the article. The prepared article in its complete form is included here,

and as a result, minor amounts of repetition are present.

3.1 Introduction

Numerous atmospheric compensation (AC) techniques have been developed to

extract the spectral properties of objects within hyperspectral imagery. These algo-

rithms are roughly divided among model-based and data-only techniques. Model-

based techniques often use radiative transfer tools (e.g., MODTRAN, [5]) to estimate

atmospheric terms for correction of the data. These techniques require knowledge at-

mospheric properties, such as water content and temperature. Data-only techniques

estimate atmospheric properties based entirely on data from within the image, of-

ten by assuming the scene contains materials with certain spectral characteristics

[9]. Many of the AC techniques discussed here are a blend of both model-based and

data-only techniques.

Much of the research in AC has been done for nadir or nearly nadir-viewing ge-

ometries. In these scenarios, an overhead sensor captures radiance from a scene and

sensor-scene distance for all pixels throughout the scene is nearly the same, assuming

no tall structures exist in the imagery (e.g., mountains, skyscrapers, etc.). However,

for sensors operating in a whiskbroom configuration sweeping across large angles,

these assumptions are generally violated. In oblique scenarios, the sensor-scene dis-

tance for the pixels throughout the image can vary greatly, depending on the viewing
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angle and altitudes involved. Since atmospheric path radiance and transmission de-

pend heavily on the path length between the sensor and scene, oblique images may

have considerable variation of these two atmospheric quantities. Applying nadir AC

techniques to oblique images will lead to inaccurate, biased retrievals by ignoring the

variability of transmission and path radiance across the image, which can significantly

affect target detection.

Oblique AC is a relatively new area of study and limited work has been done to

tailor AC algorithms to this new operating scenario. Previous research in oblique

AC has mainly been concerned with observing the impact of obliquely collected data

on nadir algorithms [2] or segmenting the image before applying nadir techniques

[38]. While direct or slightly modified applications of these nadir techniques have

shown favorable results for oblique scenarios, only a limited number of atmospheric

conditions and ranges have been tested, and the nadir techniques do not capitalize

on the additional information present in an obliquely viewed scene.

The aim of this research is to adapt an existing longwave infrared (LWIR) AC

technique (i.e. the in-scene atmospheric correction (ISAC) algorithm) to an oblique

imaging scenario using a radiative model which accounts for the range dependence.

Rather than segmenting the image, which ignores the physics tying together the dif-

ferent parts of the image and reduces the data feeding each run of the nadir algorithm,

this oblique adaptation utilizes a range-dependent transmission and path radiance.

Directly accounting for the range dependence of these two atmospheric quantities has

shown considerable improvement in both atmospheric and emissivity retrieval.

3.2 Background and Theory

Here the theoretical foundations of the LWIR AC technique that is modified in

this present work will be introduced. First is an introduction of the model for sensed
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radiance in the LWIR. Next, a few LWIR AC techniques for baseline comparison will

be introduced, followed by a discussion of current oblique AC. This section concludes

with a discussion of the range variation of transmission and path radiance.

LWIR Model for Sensed Radiance.

Techniques presented in this paper will focus on the LWIR region, extending from

approximately 8-12 micrometers. Scattering effects are negligible in this region, as

contributions are emission-dominated. The sensed radiance from a single ground pixel

is modeled as

L(λ) = τ(λ)Lg(λ) + Lp(λ) (22)

where the ground-leaving radiance is given by

Lg(λ) = ε(λ)B(λ, T ) +
[
1− ε(λ)

]
Ld(λ) (23)

and the atmospheric quantities are transmission τ , path radiance Lp, and downwelling

radiance Ld. LWIR AC aims to estimate these three atmospheric parameters. Prop-

erties of the target are given by its emissivity ε and temperature T . All quantities in

(22) and (23) are spectral in nature and have a wavelength dependence, λ, including

the Planck radiation function

B(λ, T ) =
2hc2

λ5

[
exp

( hc

λkT

)
− 1

]−1

. (24)

This model assumes materials are ideal diffuse Lambertian reflectors (i.e. negligible

specular/volumetric scattering), opaque and at local thermodynamic equilibrium, so

that its reflectivity ρ is given by ρ(λ) = 1 − ε(λ). Additionally, it is assumed the

downwelling radiance represents the total integrated sky radiance and will ignore

adjacency effects from nearby objects.
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LWIR Atmospheric Compensation.

There are various AC techniques, all of which aim to estimate the atmospheric

contributions to the sensed radiance. Since the sensed radiance model is different for

different wavelength regimes (e.g. shortwave infrared vs. LWIR), these techniques

are different depending on the wavelength of interest. In the LWIR, two common

techniques are In-Scene Atmospheric Compensation (ISAC) and Fast Line-of-sight

Atmospheric Analysis of Spectral Hypercubes - InfraRed (FLAASH-IR). This paper

focuses on adapting ISAC for the oblique scenario; however, FLAASH-IR will be used

to compare results since it is another common technique. FLAASH-IR is based on the

observation that atmospheric spectral features tend to be sharper than material spec-

tral features [7]. FLAASH-IR identifies the best combination of object temperatures

and atmospheric state (from a MODTRAN-generated look-up table) that maximizes

emissivity spectral smoothness for diverse pixels in the scene [1].

ISAC, or blackbody normalization, is a technique which relies on the existence of

near blackbodies (i.e. ε ≈ 1) in a scene [46]. For blackbody pixels, the LWIR model

for sensed radiance from (22) is reduced to a linear equation

L(λ) = τ(λ)B(λ, T ) + Lp(λ). (25)

Thus, with an estimation of pixel temperatures (see section 3 in [46] for details), one

may create a scatterplot of sensed radiance against Planck blackbody radiance. The

more blackbody-like a pixel is, the more it will be towards the top edge of the scatter-

plot, given the underlying assumption that the effective atmospheric temperature is

cooler than the scene temperature. A line is fit to the upper points of the scatterplot

(via various techniques discussed in [46]), where the slope and intercept are related to

transmission and path radiance respectively by (25). This process is done spectrally.
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Since temperatures for the pixels are unknown and can only be estimated, the re-

sulting transmission and path radiance need to be scaled by estimating atmospheric

conditions. One of the scaling techniques discussed in [46] utilizes the 11.73 mi-

crometer water band feature to estimate the atmospheric state (i.e. water concen-

tration and temperature on the ground, assuming a U.S. Standard 1976 lapse rate).

This procedure relies on separating slowly varying continuum effects from quickly

varying line effects. Scene estimations of the band’s average line contributions of

the transmission and path radiance, τ̄` and L̄p,` respectively, are compared with a

MODTRAN-generated table of line contributions for various temperatures and water

concentrations; the atmosphere which matches these two quantities best is selected.

With an atmospheric state selected, the transmission and path radiance estimated

earlier in ISAC are scaled using the transmission and path radiance of the selected

atmosphere. The authors refer to this full process with the scaling as the “Full ISAC.”

Additional details may be found in [46].

The scaling procedure of the “Full ISAC” was slightly modified, to make the

process more straight-forward. Rather than utilize the net radiance depression as

[46] had done, their equation C3 was re-expressed using C2 and C6 to yield

L̄ = τ̄`L̄0 + L̄p,`, (26)

where L̄ is the band’s average radiance and L̄0 is the band’s average continuum

contribution of the path radiance. This formula may be alternatively derived by

considering that the radiance from the continuum, L̄0, is decreased by a factor of

τ̄` due to the water band; the water then also emits an amount L̄p,` back into the

path, which is then added to τ̄`L̄0 and immediately results in (26). As in the original

derivation, it is assumed that these functions vary slowly enough with λ so that the

mean values may be used. Using (26) rather than equation C7 in [46] is simpler,
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not requiring trapezoidal integration nor additional steps to solve for the variables of

interest. When using this alternate form, the most blackbody-like pixels will instead

be at the bottom of the scatterplot.

Upon inspection, the form of (26) is nearly equivalent to the one used in Au-

tonomous Atmospheric Compensation (AAC). Recognizing that L̄ corresponds to

the radiance in the strong absorption channel and L̄p,` to the radiance in the weak

absorption channel, one may see a striking similarity with (7) in [14]. The main

difference between this aspect of ISAC and AAC is that ISAC uses band-averaged

quantities rather than measurements at two distinct channels and that ISAC screens

out low-emissivity features. These ISAC features are favorable and have led to greater

accuracy and stability when testing on synthetic scenes.

Current Research in Oblique AC.

Current data-only AC techniques are hindered by scenes with oblique geometry,

having to balance between violating algorithm assumptions and reduction of usable

data. The application of these techniques on oblique scenes has typically involved

running standard nadir-derived AC techniques on the either the entire image [2] or

independently on segments of the image [38]. If one runs the technique on the entire

image, then the assumption that every pixel is experiencing the same atmospheric

effects is violated. Alternatively, while image segmentation results in sub-scenes with

the near uniform path range characteristic of nadir scenes, cutting the image into

parts reduces the usable data for each AC application. Both approaches ignore the

additional information given by relations between the different rows of the image.

The technique presented here is different, in that it leverages the scene’s range

dependence to aid in the AC rather than being hindered by it. Instead of allowing

the oblique geometry to corrupt the algorithms such that a change in geometry is
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mistaken for a change in atmospheric state, the technique developed here leverages

the changing geometry to better determine the atmospheric state.

The sole effort in data-only oblique LWIR AC known to the authors is [38]. In

[38] an oblique Telops Hyper-Cam scene taken from Death Valley, CA was analyzed

by applying the partial (i.e., unscaled) ISAC to ten equally-sized horizontal strips.

While path range variation for the entire scene was between 20 m and 50 km, this

process of image segmentation drastically reduced the range variation within a single

sub-image. The authors needed to carefully consider the number of strips to segment

the scene into, balancing between having large enough strips with a sufficient number

of pixels for ISAC versus having small enough strips such that the atmosphere could

be assumed homogeneous within each strip. They noted that this assumption of

homogeneity within each strip might not hold well for conditions more humid than this

desert scene that they tested; however, even for their relatively dry conditions, they

believe the 50 km segment hinted at levels of atmospheric constituents significantly

different than at other ranges. Altogether, their analysis showed success at retrieving

quartz emissivity spectra for dry conditions via image segmentation. For future work,

they recommended incorporating downwelling radiance for scenes without adequate

blackbody populations as well as automating the segmentation approach. They had

supervised the precise number of segments to divide the scene into in order to balance

the previous two considerations; however, this optimal number of strips is expected

to change based on viewing geometry parameters and atmospheric humidity.

Other research has explored oblique AC from different perspectives using short-

wave infrared (SWIR). Reference [2] employed nadir-derived SWIR AC techniques to

analyze EO-1 Hyperion data collected with an off-nadir angle of 63 degrees. Refer-

ence [6] made modifications to the empirical line method to compensate for SWIR

synthetic imagery, requiring known reflectances in the scene. Reference [33] focused

42



on model-based AC, estimating the state of the atmosphere using SWIR data and

then using this estimate together with MODTRAN to model the LWIR. They in-

corporated variable path lengths, arising from both multiple sensor look angles and

elevation changes. Finally, [24] studied surface brightness temperature retrieval from

oblique, single-channel LWIR imagery in urban environments. Using atmospheric

profile data from in-situ meteorological measurements, they simulated atmospheric

effects with MODTRAN, incorporating either a single, median line-of-sight geometry

or multiple lines-of-sight throughout the scene. They determined that the atmospheric

differences across an oblique scene were significant.

Range Variation of Atmospheric Parameters.

Two of the atmospheric quantities, transmission and path radiance, are dependent

upon both sensor-scene distance and atmospheric characteristics (e.g. water concen-

tration and temperature). While this distance is relatively fixed for nadir-viewing

geometries, this is not the case for oblique geometries. AC algorithms which ignore

the impact of range may confuse its influence with that of atmospheric characteris-

tics. Transmission and path radiance change with range in a monotonic fashion, i.e.

as range increases, transmission decreases and path radiance increases. If the rows

of the image corresponded to different distances for an oblique scene (a convention

used throughout this paper), where the bottom and top of the image represent the

closest and furthest distances respectively, then as one were to move up the image

(i.e. to a larger row number), a smaller transmission and greater path radiance would

be expected.

After exploring a variety of atmospheric states and imaging conditions, it was

found that the range dependence for the transmission and path radiance was suffi-

ciently captured using low-order polynomials with respect to row number. Observa-
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tion geometries with larger range variation and more humidity tended to have larger

deviations from a straight-line fit, and path radiance tended to show a larger non-

linearity than transmission. An example of this range-dependence is demonstrated

in Fig. 15 for two built-in standard MODTRAN atmospheres, specifically Model 2

(Mid-Latitude Summer) and Model 6 (U.S. Standard 1976). These atmospheres were

chosen because they correspond to higher and lower humidity atmospheres respec-

tively.

Figure 15. Transmission and path radiance of the 10 µm band for Model 2 and Model
6 MODTRAN atmospheres with respect to pixel row number for an observation ge-
ometry described in 3.4. Transmission and path radiance variation for this observation
geometry may be modeled by low-order polynomials with respect to row number; the
more moist atmosphere (Model 2 in blue) shows more curvature than the dryer atmo-
sphere.

For the scenarios in this study, a quadratic fit for transmission and a quartic fit

for path radiance were used. The precise order for the polynomials was determined

by ensuring fit residuals had no clear structure and were on the order of the noise

level, though the order may need to be increased for different viewing conditions than

those studied here. By incorporating this range dependence into the model, one can

ensure the AC algorithm does not suggest a change in atmospheric state across the

image when the true differences are caused by variable viewing geometry.
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3.3 Oblique ISAC

At its core, Oblique ISAC (OISAC) is an adaptation of the Full ISAC technique.

In the Full ISAC technique, an unscaled transmission and path radiance is first cal-

culated. Then, the 11.73 micrometer water band feature is analyzed to pick an

atmospheric state to properly scale the earlier calculations. However, through the

analysis of simulated data, performing this second step alone seemed to be sufficient

and led to more accurate retrievals than scaling the original estimates. Thus, the

OISAC technique described will only include an adaptation to the second half of the

Full ISAC technique. This has the added benefit that one only needs to assume near-

blackbody like pixels over the 11.73 µm feature rather than over the entire spectrum

of interest; it is also faster and simpler to implement. This approach assumes that

contributions from CO2, O3, and aerosols have low variability and may be modeled

with standard atmospheric profiles. This assumption holds reasonably well for low

altitude observations (i.e. below 10 km) in high visibility weather conditions [14].

In this alternate form which just uses the second half of the Full ISAC, OISAC

is similar to AAC in that it is more of a model-based technique, driven solely by

hyperspectral data around the 11.73 µm water band. As described in [14], these

model-based approaches have the downside in being susceptible to uncertainties in

radiative-transfer models (i.e. MODTRAN) and more vulnerable to spectral calibra-

tion errors, leading to less smooth emissivity and brightness temperature spectra as

compared with ISAC. However, OISAC and AAC are not vulnerable to errors caused

by spectral variability of assumed blackbody features, as they only require materials

of smooth and high emissivity near the 11.73 µm water band, a condition satisfied by

most natural land surfaces.[14] A thorough analysis detailing why it may be sufficient

to pick an atmospheric state using only this narrow atmospheric feature is presented

in [14].
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Other assumptions that go into OISAC include those common to ISAC, e.g. the

atmospheric state does not change over the scene, there are no significant changes

in elevation, ground surface temperatures are hotter than the atmosphere, etc. For

the synthetic scenes tested here, these first two assumptions will hold; however, in

realistic scenes, particularly for those spanning larger areas, this may not always

be the case. AC techniques would need further modification for scenes with a truly

varying atmospheric state or with variable elevations (e.g. utilizing a digital elevation

map).

In summary, OISAC simply estimates line contributions for the transmission and

path radiance, τ̄` and L̄p,`, from the scene and then matches it to an atmospheric state

using a pre-generated table. This match gives enough information to run MODTRAN

for the geometries of interest, resulting in an estimate for the downwelling radiation

as well as a row-dependent estimation of the transmission and path radiance.

The three basic steps of OISAC are as follows:

1. Generate look-up table of τ̄` and L̄p,` for various atmospheric states

2. Estimate τ̄` and L̄p,` from the scene

3. Find and model the best atmospheric match

Look-up Table Generation.

The goal of this first step is to generate a look-up table for the sensor and geometry

of interest. With an estimate of τ̄` and L̄p,` in the scene (Step 2), this table will be

used to identify a specific atmospheric state characterized by a ground temperature,

T0, and a ground water vapor concentration, C0.

To create the line contribution look-up table, a database of atmospheric states

needs to be generated. Similar to what had been done in Appendix C of [46], a
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variety of ground temperatures and ground water vapor concentrations were cho-

sen and used to characterize temperature/water altitude profiles that had continuous

parametric variability about the U.S. Standard 1976 atmosphere. These tempera-

ture/water profiles were fed into MODTRAN along with the U.S. Standard 1976

pressure profile to calculate a resulting transmission, path radiance, and downwelling

contribution. Ground temperatures were varied from 260-320 K in increments of 5

K, while ground water concentrations varied from about 200-40,000 ppmv in twenty

geometric steps (i.e. 200, 200 × 1.3, 200 × 1.32, ..., 200 × 1.320). Even though there

is sizable spacing between increments for both, this technique eventually interpolates

between increments. For the scene geometries explored here, the resolution was ad-

equate; differences between similar atmospheric states would be more apparent for

further observation distances and may require higher sampling rates. The lapse rate

for temperature and water concentration followed the form of C10 and C11 in [46],

resembling that of the U.S. Standard 1976 atmosphere.

Since the range and observation angle can change significantly throughout the im-

age, MODTRAN needs to be run for multiple geometries for each ground temperature

and water concentration. The scene was split into equally-sized strips, generating a

MODTRAN database for the center of all strips as well as for the first and last rows.

As alluded to before, the number of strips needed depends on atmospheric/geometri-

cal factors and should be tailored for different scenarios. The transmission and path

radiance from each of these runs were then interpolated to get their range-dependence

across the entire scene for a given (T0,C0).

Rather than run MODTRAN in both radiance mode and transmission mode as

in [46], an alternate method was developed to cut the use of MODTRAN in half

and reduce a potential systematic bias in the line contribution estimates. The line

contributions were found by first forward-modeling an oblique scene of blackbodies
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at various temperatures (300 ± 5 K) through a given atmospheric state via (22),

such that the blackbody scene matched the geometrical characteristics of the scene

to be analyzed. Next, this blackbody scene was analyzed in the same method as

the main scene (Step 2) with the exception that no points were eliminated in the

fitting procedure since all points were blackbodies. Note that unlike the table in [46],

since previous transmission and path radiance estimates are not scaled here, the total

transmission and path radiance at each table entry need not be recorded.

Both the atmospheric database and table described above may be pre-generated,

as they will not change for a given sensor and observation geometry.

Scene Estimation of τ̄` and L̄p,`.

The goal of this second step is to estimate the values of τ̄` and L̄p,` for the scene

of interest. In Step 3, these scene estimates will be compared with the table of values

from Step 1.

To get a valid estimate for the line contributions, one needs to fit the most

blackbody-like pixels in the scene. The first step in doing this is to create a list of

pixels which are blackbody candidates. Borrowing from ISAC, this is done by deter-

mining which pixels have the highest spectral temperature in the most hits band (see

[46] for details). It is necessary to use only these pixels in generating the scatterplot

or else the resulting fit will be distorted by the non-blackbody pixels.

Using only these blackbody candidate pixels, the scatterplot is created to which a

fit will then be generated. Since transmission and path radiance now vary as a function

of row number, r, to get a proper estimate of τ̄` and L̄p,`, one must include this range-

dependence in the fit. By observing the residuals between the 3-D scatterplot and

various surface fits, it was found that a quadratic range-dependence for τ̄` and quartic

range-dependence for L̄p,` sufficiently captured the range variation for the observation
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geometries considered. Thus, the surface given by

L̄(L̄0, r) = τ̄`(r)L̄0 + L̄p,`(r), (27)

was fit to the blackbody candidates where τ̄`(r) =
∑2

i=0 cτ,ir
i and L̄p,`(r) =

∑4
i=0 cL,ir

i.

Since blackbody pixels lie at the bottom of this surface, an iterative approach was

taken to eliminate the least blackbody-like pixels.

Unlike in ISAC where τ̄` and L̄p,` were captured by two numbers, range-dependent

functions for these quantities are now available. However, after propagating of un-

certainty error in the fit coefficients, it was found that the middle row tended to have

the smallest relative uncertainty. The larger uncertainties at the ends of the fit are

as expected for polynomial fitting of uniformly distributed data points with constant,

normally distributed data errors. The mathematical theory behind this non-intuitive

fitting characteristic is developed by [32], who explains “the error in the value of the

fitted function, however, always depends on x, even when the standard deviations of

the data errors, σi, are all the same, independent of x.” This difference in uncertainty

between the center and ends of the fit was verified using Monte Carlo analysis over

a variety of atmospheric conditions and noise levels. It was further confirmed after

propagating fit uncertainties for τ̄` and L̄p,`; an example fit with its corresponding

uncertainty for the Model 6 scene, described later in 3.4, is shown in Fig.16, where

one may observe larger uncertainties towards the closer and further ranges of the fits.

Since the center row often had the lowest uncertainty, estimates for τ̄` and L̄p,` were

evaluated for the center row of the image.

Additionally, using the uncertainties in the fit coefficients above, it was found

that the percent uncertainty in the path radiance was often 4-8 times larger than the

transmission for the scenarios considered. This relative uncertainty is expected, as

uncertainty analysis of (27) for even the noiseless (i.e. δL̄ = δL̄0 = 0) blackbody scene
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Figure 16. Best fit line transmission (blue) and line path radiance (red) for the Model
6 scene described in 3.4 are shown as solid lines. Dashed lines represent propagated
uncertainty from analysis of the fit uncertainties, showing larger uncertainty towards
the closer and further ranges of the scene.

used to calculate line contribution look-up table gives δL̄p,` ≈ L̄0δτ̄`. Multiplying and

dividing both sides by the line transmission and path radiance respectively gives

δL̄p,`/L̄p,`
δτ̄`/τ̄`

≈ τ̄`L̄0

L̄p,`
. (28)

Using typical values for the scenarios considered (i.e. τ̄` = 0.9, L̄0 = 600, L̄p,` = 150),

this expression yields
δL̄p,`/L̄p,`

δτ̄`/τ̄`
≈ 3.6. From this analysis, it was helpful to record the

relative uncertainty between τ̄` and L̄p,` at this step (calculated using the uncertainties

in the fit parameters), to serve as a relative weighting in Step 3 when finding the best

match.

Model the Best Atmospheric Match.

By comparing the scene estimate of τ̄` and L̄p,` from Step 2 with the table gen-

erated for various atmospheric states in Step 1, one can find the best atmospheric

match identified by (T0,C0). Since the relative uncertainty in L̄p,` will be larger than
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τ̄`, it was necessary to weight the terms differently when finding the best match in

the table. This weighting was calculated previously in Step 2.

Finally, with this estimate of (T0,C0), an atmospheric profile may be generated

and fed directly into MODTRAN. Coupling this atmospheric profile with a changing

geometry meant to span the observation characteristics of the original scene, one has

an estimation for the downwelling radiation as well as row-dependent transmission

and path radiance.

3.4 Results

Here there will be a detailed comparison between four different AC techniques,

specifically between Segmented ISAC, where ISAC has been applied independently

to ten horizontal segments of the scene (as had been done in [38], but scaling is done

here), OISAC applied to the image as a whole, and FLAASH-IR applied with and

without image segmentation. Segmentation for FLAASH-IR was done in the same

manner as for ISAC. One metric used to compare these AC algorithms is the Pearson

correlation coefficient given by

r =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)σxσy
, (29)

where x̄ and ȳ are the mean and σx and σy are the standard deviation of two n-

dimensional vectors. These techniques are compared using both synthetic and mea-

sured hyperspectral images.

Synthetic Scene Results.

Synthetic scenes were generated by forward modeling random materials at random

temperatures through standard MODTRAN atmospheres. Each pixel from a 500×128

scene was assigned a random temperature (300 ± 5 K) and material. Randomly
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assigned materials and corresponding emissivities came from a group of 23 different

materials selected from the ASTER spectral library [4], ranging from blackbody to

reflective. It is assumed that the sensor has enough spatial resolution such that each

pixel is of one material and is at a single temperature, and any temperature/emissivity

correlation will be ignored, assuming they are independent.

These pixels were forward-modeled via (22) where the atmospheric parameters

were calculated via MODTRAN for sensor geometries which depend on the row num-

ber of the pixel. The atmospheric states chosen were the MODTRAN Model 2 and

Model 6 standard atmospheres. Sensor and scene elevations were 1 km and 0 km

respectively, and the declination angle of the sensor was chosen based on the sensor-

scene range of the pixel row. Each row of 128 pixels was equidistant from the sensor.

The 250th row, at the middle of the scene, was chosen to have a declination angle of

15 degrees. The spectral resolution was selected to be 50 nm and iFOV was set to

550 µ-radians. From the number of pixels, declination angle, and iFOV, the range

of the atmospheric path varied from 2.6-8.1 km. After the at-sensor spectral radi-

ance was generated, Gaussian-distributed zero-mean noise was added with a standard

deviation of 1 · 10−6 W
cm2·sr·µm

, i.e. 1 µ-flick.

The variation in the transmission and path radiance for the two atmospheres in

shown in Fig. 17. The larger transmission and smaller path radiance corresponds

to the first row of the image (which is at the closest distance). Only the first and

final rows are shown, but there is a continuous variation in transmission and path

radiance throughout the scenes. These plots show that these atmospheric quantities

can sometimes vary by a factor of two for this geometry.

Upon application of the three atmospheric compensation algorithms on the scene

with the Model 6 atmosphere, the retrieved transmission and path radiance for the

first and last rows of the image are shown in Fig. 18. The performance in comparison
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Figure 17. Transmission and path radiance of the first (solid) and last row (dashed) of
the synthetic scene for the two MODTRAN model atmospheres.
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with truth is shown in Fig. 19. Here the spectral RMS difference with respect to truth

is plotted as a function of row number. One may see that the transmission and path

radiance estimated with OISAC had virtually no range-dependent RMS error and

that the path radiance error is on the order of the noise level; because the continuous

range variation is built into the model, the RMS error is nearly flat. Alternatively,

FLAASH-IR had the smallest error towards the middle of the image, and because it

had not been modified to account for variations in range, the error increased towards

the edges of the scene. Segmented FLAASH-IR had a mixed performance. For half

the rows in the scene, it had superior path radiance estimates than the standard

FLAASH-IR; however, three of the segments (rows 251-300, 301-350, 451-500) had

extremely poor estimates (e.g. unrealistic path radiances as high as 1031 microflicks).

This performance degradation is most likely due to the reduction in scene data from

segmentation. As adapting FLAASH-IR was not the focus of the study, the optimal

number of image segments was not explored, and because of the poor transmission

and path radiance estimates, Segmented FLAASH-IR results will not be shown. From

these figures, one may see the importance of adapting the application of AC techniques

to the varying scene geometries.

To get an estimate of how target detection would be impacted by the different

AC algorithms, retrieved and true emissivities were compared. Retrieved emissivities

were calculated by using the true temperature map and the atmospheric estimates.

A comparison of true and retrieved emissivity for one of the materials (roof slate) at

both the first and last rows of the image is shown at the top of Fig. 20. The bottom

left of the same figure shows the mean RMS difference between retrieved and true

emissivities as a function of row number. RMS difference, a metric used more for

comparing spectrally flat materials, was smallest for OISAC. On the bottom right of

Fig. 20, the mean correlation is shown as a function of row number. Results from
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Figure 18. Transmission and path radiance for the three AC techniques for the first
and last rows the Model 6 synthetic scene.

OISAC had the highest spectral correlation, suggesting that emissivity retrievals using

this technique will perform better in target detection algorithms. Plots for the other

22 materials show similar results. These results suggest that use of OISAC may lead

to more accurate emissivity retrieval, particularly for pixels at further ranges. For

both plots, FLAASH-IR shows degraded performance with respect to range because

it had not been adjusted to account for range variation.

As a final analysis of the AC results from the synthetic dataset, the correlation

between retrieved emissivities and the atmospheric transmission was explored. First,

a Temperature-Emissivity Separation algorithm from [7] was executed for each pixel

in the scene using each AC result. Then the correlation between the retrieved emis-

sivity and atmospheric transmission was calculated. The correlation maps for the

three AC techniques are shown in Fig. 21. One may see that the retrieved emissivi-

ties using OISAC have lower correlation with the atmospheric transmission than the

other techniques, suggesting fewer atmospheric residuals in the retrieved emissivities.

For FLAASH-IR, one may see that retrieved emissivities at further ranges are more

correlated with atmospheric transmission, suggesting that these retrieved emissivities
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Figure 19. Plots of the RMS difference between truth and the result from AC for the
Model 6 synthetic scene, averaged spectrally.
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Figure 20. Comparison of retrieved emissivity vs. truth for roof slate material in the
Model 6 synthetic scene. Top: average retrieved emissivity for Row 1 (left) and Row
500 (right). Bottom: average RMS difference (left) and correlation (right) between
retrieved and true emissivity with respect to row number.

have more residual atmospheric features.

Figure 21. Colormaps of the squared correlation between retrieved emissivities and the
atmospheric transmission for the Model 6 synthetic scene.

To summarize the results from the synthetic scene analysis, it may be seen that

attention to the range variation of atmospheric transmission and path radiance is

important for the observation geometry considered. Results were similar for the

other model atmosphere tested (Model 2) and for the other ASTER database ma-
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terials. Because image segmentation was not performed for FLAASH-IR, it had a

degraded performance. Additionally, as FLAASH-IR had been developed for more

realistic scenes, the lack of robustness in this simplistic synthetic dataset may degrade

FLAASH-IR (e.g. correlation between material and temperature were ignored and

treated them independently). Finally, when comparing the results of image segmen-

tation using the nadir-developed ISAC technique with the oblique-developed OISAC

technique, one may see that OISAC did better at retrieving the true atmospheric

state.

Mako Scene Results.

The Mako dataset that was analyzed was captured by the Aerospace Corporation’s

Mako airborne sensor, described in [17]. The camera has a spectral sampling of 44

nm and an iFOV of 547 microradians. As part of the New Dawn Collect, this scene

was taken on 15 August 2016 at 17:05 local time over Long Beach, CA from a Twin

Otter at 12,210 ft. The 1600 × 128 images extended from nadir (row 1) to about

50 degrees from nadir (row 1600). The scene-sensor range of the atmospheric path

extended from 3.7-5.8 km. Since four frames were co-added for the collect, the Noise

Equivalent Spectral Radiance is estimated to be less than 0.6 µF in each spectral

channel.

Upon application of OISAC, Segmented ISAC, and FLAASH-IR on the Mako

Scene, the retrieved transmission and path radiance for the first and last rows of the

image are shown in Fig. 22. Segmented FLAASH-IR results were similar to FLAASH-

IR; it was found that for these larger scene segments, Segmented FLAASH-IR did

not show the problems it had when analyzing the smaller synthetic scene segments.

The segmented version of FLAASH-IR had mean spectral differences of transmis-

sion and path radiance of 0.02 and 25 microflicks respectively when compared with
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the standard FLAASH-IR. Because of these small differences (e.g. OISAC had differ-

ences nearly 2-3 times larger), transmission and path radiance results from Segmented

FLAASH-IR are not shown.

Figure 22. Transmission and path radiance for the three AC techniques for the first
and last rows of the Mako scene. Results from the numerical weather data are also
shown.

Comparing the first and last row estimates in Fig. 22, OISAC and Segmented

ISAC show the expected range-dependent trends, with transmission decreasing and

path radiance increasing with range. Comparing this variation with the synthetic

scenes in Fig. 18, one may notice a smaller range variation in the atmospheric pa-

rameters. Because of this, one may expect the performance benefits of the nadir

techniques to be more comparable with the oblique algorithm. The entire range-

dependence is captured in Fig. 23, which shows spectrally averaged transmission and

path radiance with respect to range for the different AC algorithms. Here, we can

59



note the differences between nadir techniques, techniques employing segmentation

techniques, and oblique techniques. Of these, both the constant and stair-step pat-

tern of the former techniques are nonphysical, as opposed to the smoothly varying

oblique AC estimate. Additionally, one may observe that the range-dependent trends

between adjacent segments may sometimes be nonphysical, incorrectly suggesting

that transmission and path radiance temporarily trend opposite to the overall trend;

Segmented ISAC demonstrates this feature in segment covering rows 161-320 and

Segmented FLAASH-IR in rows 801-960.

Figure 23. Plots of the spectrally averaged transmission (left) and path radiance (right)
with respect to range for the different atmospheric estimates.

Results from MODTRAN simulations based on numerical weather data for the

date/location of the collect are also shown in Fig. 22. This numerical weather data

was obtained from the National Oceanic and Atmospheric Administration (NOAA)

National Operational Model Archive and Distribution System (NOMADS) [34]. At-

mospheric estimates from the numerical weather data differ significantly from the AC

results, suggesting a much higher water concentration. To understand the impact of

these different atmospheric estimates and in an effort to determine which estimates are

closer to physical truth, which is unknown for this hyperspectral dataset, observed
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spectra were compared with forward-modeled spectra using atmospheric estimates

from both the numerical weather data and OISAC. From the mean LWIR image of

the scene, road pixels were identified both at near and far ranges of the scene. The

observed spectra for these two roads are shown in Fig. 24, where each road spectra was

taken as an average over approximately 50 nearby pixels. Forward-modeled radiances

are also shown and were calculated using (22) and (23), where the emissivity estimate

for asphalt from the ASTER database was used and temperature was chosen to min-

imize the RMS difference between the observed and forward-modeled signals. The

weather data suggested a relatively large and likely unrealistic temperature difference

between the two roads; the far road had a temperature of 340.8 K and the close road

was given a temperature of 333.2 K. OISAC used 326.4 K and 324.9 K for the far

and close roads, respectively. Additionally, OISAC had relatively small RMS errors

between the observed and forward-modeled signal of 23.9 and 19.3 microflicks for the

far and close roads, while the numerical weather estimates had RMS differences of

72.0 and 61.7 microflicks. The spectral differences are particularly noticeable below

8 micrometers, where the numerical weather results significantly differed from the

observed radiance. This and subsequent analysis of the weather data suggests that it

is less accurate than AC results, both demonstrating the need for proper AC (i.e. as

opposed to relying entirely on weather data) as well as highlighting the difficulty of

obtaining an accurate estimation of truth for this real-world dataset.

As had been done with the synthetic scene, Temperature-Emissivity Separation

was applied across the entire image to see how correlated the retrieved emissivities

were with the transmission. The first dozen spectral channels, extending from 7.57-

8.11 µm, were excluded in the analysis; high transmissions losses in this spectral

region negatively impacted all retrieval algorithms. The correlation between retrieved

emissivity and transmission are shown in Fig. 25. Just as had been observed with the
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Figure 24. Observed radiance of road pixels at close and far ranges (black) with forward-
modeled radiances using transmission, path radiance, and downwelling estimates from
OISAC (green) and numerical weather data (blue).

synthetic scenes, retrieved emissivity spectra from FLAASH-IR tended to be more

correlated with atmospheric transmission with respect to row number, suggesting

that more atmospheric features were present at further ranges. Emissivities retrieved

via OISAC also show more correlation with the atmospheric transmission than in the

synthetic scenes; however, the correlation did not show range-dependence and was

the lowest among all methods. The segmented techniques tended to have stronger

correlations across the image.

Continuing the qualitative analysis, k-means clustering based on cosine distance

metric was performed on the retrieved emissivities. When dividing the scene into,

e.g. ten classes, OISAC showed far fewer artifacts in the clustering process. Both the

numerical weather data and FLAASH-IR showed range-dependent artifacts, evident

in Fig. 26. One may observe from the mean LWIR image (left-most subimage), that

while road-like materials are present throughout the scene, use of these two atmo-

spheric estimates leads to emissivities with spectral differences more dependent on

range rather than actual material differences. Unlike these two atmospheric estimates,

emissivities retrieved via OISAC may be more realistically clustered due to spectral
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Figure 25. Colormaps for the Mako scene of the squared correlation between atmo-
spheric transmission and retrieved emissivities from the different atmospheric esti-
mates.

shape; this is demonstrated in Fig. 26, as road pixels at very different ranges were

successfully assigned the same class. The final two techniques based on segmented

AC had their own inconsistencies. Artifacts from image segmentation were significant

as evident by the sharp, unnatural lines dividing portions of the image. Because each

segment was compensated independently, each segment of the image had the freedom

to retrieve a completely different atmospheric state that was inconsistent with the

rest of the scene.

Next, retrieved emissivities of objects both near nadir and off-nadir were com-

pared. Using context imagery, cylindrical objects and roads throughout the scene

were identified. In the visible, there were white cylinders (which appear gray in the

mean LWIR image shown at top in Fig. 26) and shiny/metallic-looking cylinders

(which appear black in the mean LWIR image). While truth data was not available,

it was possible to check for residual atmospheric features in retrieved emissivities and

to compare emissivities for similar-looking materials at different ranges throughout
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Figure 26. The leftmost subimage is the mean LWIR image of the Mako scene. The
other subimages show the results of k-means clustering the retrieved emissivity from
the different atmospheric estimates.

the scene. The retrieved emissivities are shown in Fig. 27, where the solid lines are

for the objects near nadir and the dashed lines were for the off-nadir objects. Each

emissivity was an average over 40-80 pixels. The white cylinders were taken from

approximately rows 590 and 980, shiny cylinders from rows 60 and 845, and the roads

from rows 50 and 1520. In general, while FLAASH-IR tended to have the smoothest

retrieved spectra, all of them had residual atmospheric structure. This is highlighted

in their non-zero correlation with atmospheric transmission, shown in the last column

of Table 2. While the OISAC-retrieved spectra have evident atmospheric features,

the correlation of these spectra with transmission were among the lowest for the three

techniques. OISAC also had the highest correlation between emissivities of the same

material at the two different ranges (second column of Table 2). FLAASH-IR per-

formed very well for the shiny cylinders (high correlation for near/far objects with

a low atmospheric correlation). FLAASH-IR is expected to have a better retrieved

downwelling radiance compared with ISAC-based techniques that do not directly esti-
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mate downwelling, and this downwelling contribution is more significant for reflective

materials. On the other hand, FLAASH-IR had the most difficulty with the roads,

as could have been predicted from the k-means analysis. This difficulty is especially

highlighted because the road pixels had the largest range variation, as spectra could

be compared between both extremes of the image.

Figure 27. Retrieved emissivities of objects (truth unknown) at different ranges
throughout the image. Dashed lines refer to objects further from nadir. From top
to bottom: white cylinders, shiny cylinders, roads. Residual atmospheric effects are
present in the retrieved spectra.

Since the ground surface temperatures were unknown for the scene, these were

retrieved as part of the Temperature-Emissivity Separation. These temperature es-

timates are shown in Fig. 28. Results suggest surface temperatures around 315-325

K (≈107-125◦F), reasonable temperatures for a summer afternoon in California. Of

interest in the FLAASH-IR results is the suggestion that ground surface tempera-

ture decreases with range. This is most likely an artifact of FLAASH-IR’s lack of

built-in atmospheric range-dependence and suggests that when FLAASH-IR is max-

imizing smoothness of further pixels, it is using temperature as its free parameter to
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Table 2. Correlation of off-nadir retrieved emissivity with both near nadir retrieved
emissivity and with atmospheric transmission for white cylinders (a), shiny cylinders
(b), and roads (c). OISAC shows the highest spectral correlation with similar targets
at two different locations (second column) and low correlation with the atmospheric
transmission.

pseudo-compensate for varying range. While this artifact resulting from FLAASH-

IR’s inflexibility is non-physical, it may still lead to adequate emissivity retrieval.

Figure 28. Colormap of retrieved temperatures for the Mako scene for the different
atmospheric estimates.

The emissivity spectra for the materials in the scene were unknown; however,

further analysis was done for the two large bodies of water (a channel in the Inner

Harbor of the Port of Long Beach located around row 800, and the Los Angeles River
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around row 1100). Using atmospheric estimates from the three AC techniques, the

observed radiance (averaged over 1500 water pixels for each body of water), and

the emissivity of water from the ASTER database, the spectral temperature was

calculated. The mean spectral temperature with one standard deviation for each of

the two rivers is captured in Table 3. One may see that the river closer to nadir

(i.e. near Row 800) is most likely at a cooler temperature with a smaller uncertainty.

Additionally, the mean spectral temperatures for all three techniques agree within

one standard deviation. Last, OISAC produced the most spectrally flat temperature

estimate, as it had the smallest spectral standard deviation.

Table 3. Assuming that both bodies of water had an emissivity of water (from the
ASTER database), a spectral temperature was calculated for each method at each
wavelength. Shown are the mean spectral temperature with one standard deviation.
With the least uncertainty, OISAC had the least variation in the retrieved temperature
for multiple spectral channels.

Using these mean spectral temperatures, the emissivity was then calculated for

each of the AC methods and compared it against the known emissivity of water.

Just as in the temperatures, these emissivities were an average of 1500 pixels per

river. From these results, the retrieved emissivity using OISAC had the lowest RMS

difference with the emissivity of water, shown in Table 4.

In Fig. 29, the spectral temperatures and emissivities for each of the methods

are shown. It is important to note that while the RMS difference is relatively low

(<1%), there are still many AC artifacts in the retrieved emissivity for all methods

(which was suggested earlier when the correlation across the scene between retrieved

emissivity and atmospheric transmission was explored).
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Table 4. Using the mean spectral temperature for both rivers (previously calculated
assuming an emissivity of water), the emissivity was computed for the rivers and com-
pared against the true emissivity of water. The RMS difference between these two is
shown above.

Figure 29. Top: using the known emissivity of water, the spectral temperature is shown
for the two rivers. The cooler river (row 800) is the solid line; the warmer river (row
1100) is the warmer river. Bottom: using the mean spectral temperature for each river,
the average retrieved emissivity is shown.
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3.5 Discussions and Conclusions

While not conclusive, early analysis has shown that the proposed OISAC tech-

nique, which hinges on incorporating range-dependence in atmospheric transmission

and path radiance, is comparable to other AC techniques. OISAC’s ultimate useful-

ness heavily depends on observation characteristics (particularly, total range variation

in the scene and/or ground sample distance). For more extreme slant paths that have

a larger range variation, OISAC would be more useful (as long as the atmospheric

state is still constant over the entire scene). However, it is expected to be compara-

ble to image segmentation techniques for scenes with small ground sample distances.

The advantage of OISAC comes from its ability to use more of the data in the scene,

but as sensors improve, segmented AC techniques may have enough data for decent

statistics. One additional benefit of OISAC is that it is able to process a scene faster

than segmented techniques, as it is able to analyze the entire scene at once.

Regarding future work, OISAC requires additional testing using real-world hyper-

spectral data, especially where ground truth is known. Oblique LWIR hyperspectral

datasets are not as ubiquitous as nadir datasets, particularly ones with large range-

variation between the first and last row. Increasingly robust synthetic scenes where

truth is known could also be beneficial. In particular, synthetic scenes generated using

more realistic atmospheric profiles. The standard atmospheric models in MODTRAN

have smooth and continuous temperature and water profiles, which is uncharacteristic

of real weather.

It would also be useful to explore limitations of OISAC. Specifically, OISAC had

assumed a near constant elevation as well as a uniform atmospheric state across the

scene. However, since oblique scenes typically span larger areas than nadir ones,

these assumptions will not always hold. Understanding the limits of these two as-

sumptions would inform the user of the scenarios when image segmentation would be
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more appropriate. Impact from BRDF (bidirectional reflectance distribution func-

tion) effects, which are more evident when targets are viewed at an angle, might also

need to be considered in these oblique viewing geometries. Additionally, since OISAC

bears a strong resemblance to AAC in that it uses only the 11.73 micrometer water

band to determine the entire spectral characteristics of the atmosphere, it has similar

limitations (in addition to the requirement of near blackbody-like materials over the

11.73 µm band). The assumption that aerosols and O3 can be modeled with standard

atmospheric profiles requires low altitude measurements (<10km) in high visibility

weather conditions.

Altogether, this research demonstrates how one might adapt a nadir-based AC

technique for oblique sensing environments. This technique uses a physics-based mod-

eling approach to tie together different parts of the image to improve the statistical

uncertainty and accuracy of atmospheric compensation. This research also highlights

the performance impacts of not adapting current AC algorithms for scenarios with

range variation.
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IV. Radiance Detrending

Here, the second novel oblique AC technique developed in this research, Radi-

ance Detrending, will be covered. This technique exploits the fact that the ground-

leaving radiance, which is not expected to have a range-dependence, is given a range-

dependent modification to it based on the atmospheric state. If the correct atmo-

spheric state is found, then this trend may be corrected.

An explanation of this technique begins with a discussion of the theory behind

the RD technique. First, a visualization of this range-dependent trend for a variety of

atmospheric states as well as the ground-leaving radiance after it has been detrended

will be shown. Next, an initial metric to quantify how well the radiance is detrended

and then explore factors which may cause difficulty in estimating this metric for a

simplified scene will be introduced. After illustrating this technique for a basic scene,

further complications into the synthetic model that are more representative of realistic

scenes will be added. The theory section will end with a robust metric for gauging

an atmospheric state’s ability to detrend the scene radiance.

After discussing the theory behind RD, details how it this technique was imple-

mented will be presented. Finally, the results of applying this technique to a variety

of synthetic and real datasets will be discussed. The end of the results section will

compare RD and OISAC for reflective scenes and variable downwelling contributions.

4.1 RD Theory

This section explains the theory behind RD. The discussion includes the motiva-

tion behind the technique, the metric used to identify the correct atmospheric state,

factors which lead to uncertainty in picking the correct atmospheric state, and ways

to minimize this uncertainty to improve compensation of the atmosphere.
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Detrending Observed Radiance.

Compared to nadir scenes, one key difference in oblique scenes is that the viewing

geometry gives a distinct range-dependence to the observed radiance. From radiative

transfer theory (2.2), it’s evident that this range dependence is based on viewing

geometry, atmospheric state, and object properties (i.e. temperature and emissiv-

ity). To understand how the observed radiance might change as a function of range,

T = 300±5 K blackbody scenes were forward-modeled for three different MODTRAN

standard atmospheres using the same geometry and viewing conditions described in

3.4. Fig. 30 shows the observed radiance for these scenes, where the only difference

is atmospheric state. One may note that the observed radiance has a different cur-

vature for the different atmospheric states. The RD technique is ultimately based

on finding the best atmosphere which detrends this observed radiance and is based

on the assumption that the range-dependence in the observed radiance is only due

to geometrical factors. That is, it is assumed that the atmospheric state is uniform

and material properties are nearly homogeneous, for at least a subset of pixels in the

scene.

Figure 30. Observed radiance at 11.73 µm as a function of row number for three
different MODTRAN model atmospheres. All scenes contain blackbodies at 300±5 K
with zero noise.
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For increasing path lengths and a fixed atmospheric state, transmission and path

radiance will monotonically decrease and increase, respectively. Incorporating this

explicit range-dependence into Eq. 10, results in

L(r, λ) = τ(r, λ)Lg(λ) + Lp(r, λ). (30)

Solving for the ground-leaving radiance by bringing all range-dependent quantities to

the same side of the equation, gives

Lg(λ) =
L(r, λ)− Lp(r, λ)

τ(r, λ)
. (31)

This procedure provides a way to detrend the observed radiance. Fig. 31 shows

one of the previous scenes both before and after detrending. One may see that the

range-dependence of the observed radiance is removed when it is detrended with the

correct atmospheric state; however, a means of quantifying an atmospheric state’s

ability to detrend the radiance is still needed. Without one, an identification of the

atmospheric state which detrends the radiance best cannot be distinguished.

Figure 31. Shown for a Model 6 atmosphere at 11.73 µm, when the correct range-
dependent transmission and path radiance are used on the observed radiance (left),
the data is completely detrended (right).
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Slope as Metric.

The observed radiance may have high order, non-linear curvature, depending on

geometrical, atmospheric, and material factors. Regardless of its precise form, if

this range-dependence only arises from changing geometrical factors and this geom-

etry is known, then when the correct atmospheric state is modeled and applied, the

detrended radiance will exhibit no slope or curvature; it will be completely removed.

The metric chosen to determine whether the atmosphere has been properly se-

lected was the absolute value of the slope of the detrended radiance; the atmosphere

which minimizes this quantity is best. The slope was chosen as the metric because

it is able to quantify range-dependence of the detrended radiance and, more impor-

tantly, because the uncertainty in calculating this term is small enough such that the

correct atmospheric state may be properly selected. To explore this choice further,

results from using a linear fit with a quadratic one are contrasted.

A scene is generated with an observation geometry matching synthetic scenes

described in 3.4, forward-modeling 500 rows and 200 columns of graybodies (ε = 0.5)

at 300 ± 5 K with an atmospheric state defined by a ground air temperature of 288

K and water concentration of 7800 ppmv and then adding one microflick of noise.

Focusing on the 8.20µm spectral channel and using a variety of atmospheric states,

the scene is detrended via Eq. 31 and then fit either a linear or quadratic polynomial.

The top of Fig. 32 shows values of the slope for the linear fit of the detrended scene,

while the bottom two subfigures show the values of the linear and quadratic terms for

the quadratic fit. The correct atmospheric state is identified by a white square, while

a red dot labels the atmospheric state which minimized the given fit term. For this

scenario, it may be seen that the minimization of the linear fit correctly identifies the

atmospheric state, while both quadratic terms suggest a different atmospheric state.
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Figure 32. Radiance detrending results for Model 6 scene at 8.20 µm using various fit
parameters. From top to bottom, fit terms include slope from linear fit, linear term
from quadratic fit, quadratic term from quadratic fit. The white square represents the
true modeled atmosphere, while the atmospheric state which minimized the given fit
term is identified by a red circle. Red squares identify atmospheric states within the
fit uncertainty of the best matched atmosphere (i.e. the red circle).
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To identify one cause for the failure of the quadratic fit, the uncertainty in the fit

terms with their values may be compared. The small red squares in Fig. 32 identify

atmospheric states within the fit uncertainty of the best matched atmosphere (i.e. the

red circle). One may see that the uncertainty in the linear fit, relative to the smallest

fit values, is small; there were four atmospheric states (i.e. red squares) that were

identified as having slopes smaller than the uncertainty in the slope. On the other

hand, both quadratic fit terms had a larger relative uncertainty, and many different

atmospheric states fell within the uncertainty.

This initial analysis suggest that adding subsequent fitting terms leads to higher

uncertainty in selection of atmospheric state and reduced performance. As higher

order terms are added, the fitting algorithm has more choices to consider when de-

termining which fit parameters best characterize the observed trend in the data,

leading to larger relative uncertainty for each term. Because of the factors explored

here, only the slope from a linear fit is utilized. This analysis also suggests that to

precisely identify the correct atmospheric state, this slope needs to be known with

sufficient certainty. Factors which influence this uncertainty are explored next.

Slope Uncertainty as Limitation.

Understanding and reducing the uncertainty in the slope, the metric used to iden-

tify the correct atmospheric state, is necessary for proper atmospheric compensation.

To understand the factors which drive uncertainty in the slope, the sources of variance

in the ground-leaving radiance after it has been propagated through the atmosphere

will be explored using the tools of uncertainty analysis. After doing so, methods of

reducing this variance may be devised in order that the correct atmospheric state

may be identified.

One motivation behind exploring factors influencing uncertainty in the slope was
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the analysis of scenes with multiple material types. The complexity of the previous

scenes from Fig. 30 was increased by adding a mixture of ε = 0.5 graybodies along

with the blackbodies. From Fig. 33 it may be seen that the slope is not only affected

by the known geometry and unknown atmosphere, but that scene composition also

affects the slope of the observed radiance. If the scene has a non-uniform distribution

of materials (i.e. any real-world scene), this impact is especially important and will be

discussed in 4.1. A second effect of variable scene composition is on the uncertainty

of the slope. For the center subfigure in Fig. 33, the fit of both the blackbodies and

graybodies (i.e. the red line) has a slope and uncertainty of -0.072±0.006, while the

blackbodies by themselves have a fit of -0.129±0.003 and the graybodies have a fit of

-0.019±0.001. One may observe that the uncertainty in the fit for a single material

class is smaller than for the combined group of materials. Variable materials are just

one factor influencing uncertainty in the slope; this factor and others were explored

by analyzing the model for ground-leaving radiance.

Figure 33. Observed radiance at 11.73 µm as a function of row number for three
different MODTRAN model atmospheres. All scenes contain a mixture of ε = 0.5
graybodies (light blue) and blackbodies (dark blue) at 300±5 K with zero noise.

Uncertainty propagation of the ground-leaving radiance from Eq. 9 provides the

clearest insight into factors leading to uncertainty in the slope fitting procedure. From
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standard uncertainty analysis, the variance in ground-leaving radiance follows

δLg(λ) =
√

[(B − Ld)δε]2 + [(1− ε)δLd]2 + [εδB]2, (32)

where

δB =

√[∂B
∂T

δT
]2

=
|2h2c3
λ6k

exp hc
λkT
|

[T (exp hc
λkT
− 1)]2

δT. (33)

The three components of Eq. 32 highlight the impact from variations in materials,

reflections, and emissions respectively. It is important to note that all terms have an

implicit wavelength dependence which should be considered.

The first component predicts that variance in ground-leaving radiance is partially

caused by variations in material emissivity. This observation inspired classification of

pixels into different material classes for analysis as discussed below in 4.1. One may see

that this first term is scaled by the difference between atmospheric downwelling and

blackbody radiation from the objects in the scene. Thus, the importance of dividing

a scene into different emissivity classes becomes more significant if the objects are

at significantly different temperatures than the atmosphere, highlighted especially at

shorter wavelengths.

The second component shows that variations in downwelling radiance need to

be small, especially for more reflective materials whose signals may be mostly due to

reflected downwelling. As an additional consideration, reflective materials tend to be-

have more specularly. This specular behavior violates the original model assumptions

of Lambertian targets and would tend to increase variation in downwelling radiation,

particularly if the reflective materials have surface normals oriented towards different

regions of the sky. The impact from reflective materials and variable downwelling will
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be a final consideration, explored further in 4.3 and 4.3.

This third component depends on blackbody emissions and is more significant for

more blackbody-like materials. This final term suggests difficulty in determining the

correct atmosphere even for a scene composed of a single material, as temperature

differences throughout even a single material class are expected to exist and may be

potentially large. As absorption and emission of radiation are correlated, if a high

emissivity material also has high emissivity in the visible and SWIR spectral regions,

the material could have both large solar loading and large temperature variability from

possible shadows and obstruction in the scene. The impacts of larger temperatures

are shown in Fig. 34 where the Planck term from Eq. 33 is explicitly shown for

various temperatures and wavelengths. The least variation occurs for the longest

wavelengths and coolest temperatures (bottom left corner of the figure). Although

the wavelength dependence appears sizable, the wavelength dependence of material

emissivities may offset this effect. Natural materials tend to have higher emissivities

at longer wavelengths [14], which may reduce this effect.

Figure 34. Uncertainty spread from the Planck blackbody term in Eq. 33. We notice
smaller uncertainties at longer wavelengths (bottom) and cooler temperatures (left).

The impact of all of these considerations will now be explored using a synthetic
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dataset similar to the ones in 3.4 except that the declination angle from the horizon

has been increased to 23 degrees, the observation altitude has been decreased to 0.25

km, the iFOV has been decreased to 390 microradians, and number of row pixels has

been increased to 2000. The total range coverage extends from about 0.3-175 km.

These specific viewing conditions were chosen to explore the full range variation of the

ground-leaving radiance, so that the entire signal from the ground would be absorbed

by the atmospheric path at the furthest range. The transmission and path radiance

for a Model 2 atmosphere with this viewing geometry for both a short wavelength

spectral channel at 10.1 µm (blue) and a long wavelength spectral channel at 12.1

µm (red) are shown in Fig. 35. One may see that for this geometry, the transmission

reaches zero and path radiance reaches a maximum at final row. The less transmissive

12.1 µm band also tends to have a larger path radiance, except for at the furthest

range. At this last row, the path radiance for the 10.1 µm spectral channel is larger.

Figure 35. Transmission (dashed) and path radiance (solid) for a Model 2 atmosphere
at various ranges. A longer (red, 12.1 µm) and shorter (blue, 10.1 µm) wavelength
channel are considered.

Using these transmissions and path radiances, the radiances of blackbody and

graybody (ε = 0.2) objects at 300±2 K were forward-modeled at the two wave-

lengths. The left side of Fig. 36 displays the expected trends and behavior, showing
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the observed radiance before correction. Looking at the overall trend of observed

radiance for the two materials, the radiance from the blackbody decreases down to-

wards path radiance since the blackbody radiance is larger than the path radiance.

The radiance from the graybody increases up towards the path radiance because the

downwelling radiance term is less than the path radiance. Referring back to the dis-

cussion in 2.2, the integrated downwelling radiance is a combination of atmospheric

contributions from short line-of-sight paths at nadir and long line-of-sight paths to-

wards the horizon. These longer atmospheric paths will have more sizable emissions.

Since the path radiance is due to emissions from this longer atmospheric path alone,

it will be larger than the downwelling radiance. At the further ranges, it is expected

that transmission will tend towards zero and that the only radiance observed for both

graybodies and blackbodies is that from the atmospheric path via Eq. 30. The path

radiances from the furthest distance were converted to brightness temperatures via

Eq. 16.

In the center of the Fig. 36, blackbody curves for these brightness temperatures

are shown, where the dots mark the spectral channels. The vertical separation of

these two dots is equal to the separation between the two path radiances on the left

plot. These two wavelengths were chosen to show that this separation is largely due

to spectral location on the blackbody curves, as the effective blackbody temperatures

are nearly the same. In this center plot, the downwelling radiation as well as radiance

from a 300 K blackbody are shown; the difference between these two in a given

spectral channel determines the variation in radiance between different materials in

the left figure (e.g. the blue points are more separated than the red ones because

there is a larger radiance difference between a 300 K blackbody and the downwelling

in that particular spectral channel). Using the correct atmospheric state, the observed

radiance from the left was detrended into the ground-leaving radiance shown right.
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Note that regardless of the material or wavelength band, all groups were successfully

detrended.

Figure 36. Left: Observed radiances with respect to range for 300 K blackbody (dark)
and ε = 0.2 graybody at short wavelength (blue) and long wavelength (red). Cen-
ter: From top to bottom, 300 K blackbody curve, blackbody curves for path radiance
brightness temperature at two different wavelengths, downwelling radiance. Right:
Detrended radiances.

These observations and others will now be related back to the mathematical the-

ory. Focusing on the two groups of red points, the two different materials are dis-

tinctly separated because of the very different emissivities; however, had (B−Ld) the

been reduced, e.g. by considering lower object temperatures, then this difference due

to emissivity variations would not be as evident, according to the first component of

Eq. 32. The ground-radiance for a lower temperature (260 K) case is shown in Fig. 37,

and it may be seen that the different materials are closer together when the blackbody
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and downwelling radiances are more similar. Comparing Fig. 36 and Fig. 37 with each

other, one can also see that lower temperatures have smaller variances within indi-

vidual groups. Additionally, longer wavelength bands (the red pixels) have smaller

variances than their blue counterparts. These were both predicted via Eq. 33 and the

corresponding Fig. 34. The temperature variance throughout the scene, δT , was not

explored as its impact is more intuitive (i.e. a larger variation of temperatures will

have a larger variance of radiances, particularly for blackbodies). From Eq. 32, the

third component also predicted that lower emissivity materials has smaller variances,

which is evident in Fig. 36. Though the second component of Eq. 32 has not been

considered here, as the starting assumption for both OISAC and RD had been for

cases where δLd = 0, impacts from variable downwelling will be explored at the end

in 4.3. Last, though the impact of Gaussian-distributed sensor noise has not been

included, one may observe in the preceding figures that 1 microflick of noise is rela-

tively small compared to variations from differing temperatures or materials, which

can impact the observed radiances by hundreds of microflicks.

The entire discussion here highlights sources of uncertainty in determining whether

one atmosphere or another better detrends the observed radiance. Significant varia-

tion in ground-leaving radiance has been observed, most notably from different emis-

sivities throughout a scene. Since scenes are not expected to have a uniform distri-

bution of materials, this presents a problem that needs to be addressed if one hopes

to perform atmospheric compensation with any degree of certainty. This observation

leads to separating a scene into various classes before detrending.

Additionally, it has been noticed that dissimilar material properties lead to larger

and smaller amounts of δLg. For this case where δLd = 0, highly reflective materials

have lower ε and may have smaller T and δT , all of which influence the third compo-

nent of Eq. 32 and result in smaller δLg. Thus, for these cases, it is actually preferable
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Figure 37. Left: Observed radiances with respect to range for 260 K blackbody (dark)
and ε = 0.2 graybody at short wavelength (blue) and long wavelength (red). Cen-
ter: From top to bottom, 260 K blackbody curve, blackbody curves for path radiance
brightness temperature at two different wavelengths, downwelling radiance. Right:
Detrended radiances.
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to use highly reflective materials for the compensation, all else being equal. However,

for more general cases, because different classes of materials perform differently, this

observation leads us to weighting results of the different material classes as discussed

in 4.1. Likewise, different wavelength bands have also demonstrated distinct variances

in Lg; because of this, the class weighting will be performed spectrally.

This first adjustment that will enable us to improve the radiance detrending pro-

cess, class separation, is be discussed next. Then, its application to a more complex

scene will be observed before finally introducing the RD error metric which will in-

corporate weighting of the different material classes and wavelengths.

K-means for Material Classification.

From the above discussion, the need to separate the scene into different classes to

improve the ability to determine whether the scene has been properly detrended is

apparent. K-means clustering is a common technique that provides a way to separate

a scene into different classes, where the radiance detrending process may be performed

for each class. Clustering reduces the variability in the emissivity signature. This

leads to a reduction in the variability of the scene radiance and, in turn, a smaller

uncertainty in the slope of the detrended radiance. This is a necessary first step of

the RD technique, and it will be seen that this will ultimately lead to an iterative

scheme for RD, whereby previous RD iterations will improve material classification,

leading to better atmospheric estimates.

There are difficulties which arise when using k-means to identify different material

classes in an oblique scene. Unfortunately, performing k-means clustering on an

oblique scene may not properly separate materials as effectively as in a nadir scene,

since transmission and path radiance differences throughout the scene distort ground-

leaving radiances by varying amounts. Without modification to the pixel signals fed
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into k-means, this clustering process will less effectively separate materials into their

true classes.

One modification that was explored to overcome this clustering challenge involved

an initial estimate of the scene’s transmission. This transmission could be approx-

imated using an unscaled ISAC approach or previous RD iteration. By performing

k-means of the observed radiance using only the most transmissive bands rather

than all wavelengths, more effective class separation can be achieved. Since low at-

mospheric transmission can conceal material properties, using only those spectral

channels which allowed for larger signals can lead to improved classification.

A second modification may be made if one has a reliable estimate of the range-

dependent atmospheric transmission and path radiance. For the RD technique, this

estimate came from the first RD iteration, though OISAC may also provide this

estimate. Using this estimated transmission and path radiance, the ground-leaving

radiance for each pixel may be approximated via Eq. 31. By using accurate estimates

of the ground-leaving radiance rather than observed radiance in the clustering process,

the spectral distortion from the variable atmospheric path may be reduced. Reducing

the impact due to varying geometry results in improved material classification for later

iterations of RD. The ability to reduce this impact depends on the atmospheric state

used to compensate and solve for this ground-leaving radiance, and if a poor choice

is made, extra range dependence could instead be imparted to the scene from over-

compensation. RD has shown its best performance when performed in an iterative

process, whereby earlier estimates of the atmosphere are used to improve material

classification, leading to better atmospheric estimates.

The application of k-means clustering to a synthetic scene of five materials (water,

brown loam, anhydrite, roof slate, and limestone) that had been segmented into five

500 pixel-long by 20 pixel-wide segments was performed. Materials in the scene
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had temperatures of 300± 5 K, and the scene geometry and atmospheric conditions

were identical to the Model 2 scene described in 3.4, including 1 microflick of at-

sensor noise. The results are shown in Fig. 38. The first subfigure shows the true

material classes throughout the image. The second subfigure shows results of k-means

application to the observed radiance; k-means was applied using the cosine distance

metric, five clusters, and 50 replicates to avoid local clustering minima. One may

see that the range variation throughout the scene has caused some material classes

to be grouped into segments based on range rather than material. This leads to two

problems. Not only does this separate pixels into classes of dissimilar emissivities,

but if one were to perform RD on an individual class, then the number of rows used

has been greatly reduced. Since the differences between rows ultimately contains

the geometrical variation used to identify the correct atmospheric state, if a material

class is not present throughout a significant number of rows in the scene, it would

have a larger uncertainty. The third subimage shows the impact of using only the

most transmissive bands of the observed radiance. While it still shows significant

segmentation based on range, it has improved performance in correctly separating

the different material classes. Since it has materials with good clustering throughout

most of the range of the scene, this will lead to an improved first iteration of RD.

The final subimage shows k-means application on the most transmissive bands of

the ground-leaving radiance, where the atmospheric state used to solve for Lg was

chosen as the atmosphere from the first iteration of RD for the Model 2 atmosphere

shown in Table 5). These results highlight that material classification is more difficult

for an oblique scene and that there are also methods to improve classification; these

techniques ultimately give RD the ability to properly compensate for the atmosphere.
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Figure 38. Example of k-means clustering on a synthetic scene of five different materials
that had an identical observation geometry and atmospheric state as the Model 2
scene in 3.4. Truth is shown on the left (1), while the rest demonstrate clustering
using observed radiance (2), using the most transmissive bands of observed radiance
(3), and using the most transmissive bands of ground radiance using the atmospheric
state determined by the first iteration of RD on the Model 2 scene (introduced later
in Table 5). From these middle two subfigures, we see that k-means may mistakenly
classify pixels based on range rather than material properties; we also see that there
are methods to reduce this classification error.
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Structured Scenes.

Up until now, the focus has been entirely on scenes composed of materials uni-

formly mixed throughout. Such scenes are unrealistic and also theoretically easier

for RD to handle, as they provide data for every row of the scene which decreases

uncertainty in the radiance’s trend. Realistic scenes on the other hand tend to have

a more structured distribution of materials. Like materials, temperatures also tend

to be distributed non-uniformly throughout a scene. Since a material’s ability to

absorb radiation depends on its emissivity, the temperature distribution throughout

a scene will most likely depend on the distribution of the scene’s materials. To more

thoroughly test the RD algorithm, two new synthetic scenes were generated which

more accurately represent real-world imagery. These synthetic scenes were based on

the Mako geometry and estimations of material and temperature distributions within

the Mako dataset.

Structured Scene Generation.

First, the Mako scene was broken into eight material classes by using k-means

clustering of the ground-radiance from Eq. 31 and OISAC’s transmission and path

radiance estimates. With the scene divided into classes, a unique emissivity is then

assigned to each class. The emissivities, materials, and pixel locations are shown in

Fig. 39. When assigning the emissivities, the materials were attempted to be realis-

tically matched, e.g. concrete and asphalt were assigned to more widely distributed

classes while aluminum was not. For the scene temperatures, the estimated pixel

temperatures from OISAC’s TES results were used to assign a mean temperature

and standard deviation for each material class and then normally distributed those

temperatures throughout each class individually. OISAC TES temperatures were

chosen because Segmented ISAC and FLAASH-IR had evident non-physical range
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variations of temperature. The mean temperature and standard deviation for each

material class are shown above the pixel locations in Fig. 39.

Figure 39. Emissivities of the materials used in the non-uniform synthetic scenes are
shown above. Their locations within the scenes and temperatures are shown below.

Finally, a ground air temperature and water concentration were used to charac-

terize the atmospheric state, just as had been used throughout this research. The

temperature was chosen to be 310 K, slightly cooler than the average temperature

of materials in the scene. Two different water concentrations were chosen, 7800

ppmv to represent an atmospheric state similar to the Model 6 atmosphere and

18300 ppmv to represent the Model 2 atmosphere. These atmospheric states were

propagated through the Mako observation geometry (see 3.4) using MODTRAN, and

after forward-modeling the observed radiance via Eq. 10, one microflick of Gaussian

distributed noise was added to the resulting radiance. These scenes will subsequently

be referred to as Structured 2 and Structured 6, since their atmospheric states are

based on a variation of the Model 2 and Model 6 atmospheric states.
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Detrending the Structured Scenes.

From the Structured 2 scene, an example of the detrending process on a material

with non-uniform distribution throughout the scene is captured in Fig. 40. The

bottom of the figure shows pixel locations for the material class of interest. The top

of the figure shows radiances across the scene using density-weighted scatter plots,

where the colors represents the number of points at a particular radiance and row

number. Because of the sheer number of pixels in the scene, this provides a means of

visualizing how the trend-line was fit to the data. On the top left, one may see that

the observed radiance has an apparent negative slope to it. The top middle shows

the ground-leaving radiance after an improper atmosphere has been used to detrend.

Finally, the top right image shows the result when the correct atmosphere has been

used.

Figure 40. Example of the radiance detrending process on the non-uniform scene.
Top: left shows the observed radiance at 11.73 micrometers, middle shows the ground-
leaving radiance when an improper atmosphere is used to detrend, right shows the
ground-leaving radiance when the correct atmosphere is used. Bottom: shows pixel
locations for the current material class.
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One may see that this process is almost identical to that for the randomly uni-

form distribution; the key is in proper classification of image pixels. The additional

challenge for these new scenes is that pixels will most likely no longer be present at

each row of the image. This is expected to increase the uncertainty in the slope of

the detrended scene radiance, thereby increasing the uncertainty in identifying the

correct atmosphere.

In an effort to demonstrate the difficulty in accurate atmospheric identification

for these realistically structured scenes, the detrending process was applied to the

Structured 6 scene solely using the 11.73 µm water band and without using k-means

clustering. The Structured 6 scene was generated using a ground air temperature

of 310 K and water concentration of 7800 ppmv; however, after detrending with a

numerous atmospheric states of varying temperatures and water concentrations, the

atmospheric state which best detrended the Structured 6 scene had a temperature

of 309.5 K and a water concentration of only 3600 ppmv, suggesting less than half

the actual water concentration. As demonstrated later in 4.3, this scene may be

accurately compensated if one incorporates data from additional spectral bands and

utilizes material clustering.

RD Metric.

With the scene now divided among distinct classes, the observed radiance for each

class and for each spectral band may be detrended. Due to the inherent uncertainty

in the detrending process, from sources such as sensor noise and large variances in

ground-leaving radiance, the atmospheric state which detrends the scene radiance best

will likely be different for the different wavelengths and materials. The performance

of any given atmospheric state (T0,C0) is characterized by its ability to detrend the

observed radiance for all material classes, k, and all wavelength bands, K, of interest.
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For any given material class and wavelength, the slope of the detrended radiance, m,

weighted by its uncertainty, δm, is summed together with the results from the other

material classes and wavelengths. Thus, a surface defined by

z(T0, C0) =
∑
k,K

|m(T0, C0)|
δm(T0, C0)

. (34)

By weighting the resulting slopes by their uncertainty, those combinations of spectral

bands and material classes with the lowest variance of ground-leaving radiances will

be weighted more significantly; those with greater uncertainty will not be weighted

as heavily. The |m|
δm

term could have been raised to higher order power, e.g. ( m
δm

)2;

however, the expression used is expected to be more robust and less sensitive to

outliers which may exist in the data. Initial testing has shown the first metric to be

slightly better but both have yielded similar results.

Application of this metric across all wavelength bands was sufficient for some

of the synthetic scenes used in this study; however, using all wavelength bands did

not always lead to correct atmospheric identification for all of the synthetic scenes

unless the precise material classes were also provided. If the materials had not been

clustered into their proper classes, an realistic expectation for most scenarios, then

the radiance detrending process was prone to difficulties, suggesting that the metric

needed to be revised.

It was found that one method of improving the metric’s robustness is to utilize

only the least transmissive spectral bands. Earlier during the k-means clustering, a

classification of materials was desired; the emissions and reflections from the materials

on the ground were the signals while the atmosphere interfered as noise. Classification

was improved by using the most transmissive bands of the ground-corrected radiance,

as both modifications reduced atmospheric impact. In the current situation where

the goal is now to determine which atmospheric state detrends the scene best, the
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atmosphere is the signal, and the variability in ground-leaving radiance described in

Eq. 32 represents the noise. Focusing on the least transmissive spectral bands sup-

presses noise from variability in ground-leaving radiance and boosts the atmospheric

signal. This modification not only improves algorithm performance but also greatly

reduces its computational cost.

Fig. 41 contrasts the detrending process for low and high transmissive bands of

the Structured 2 scene for the same material class shown in Fig. 40. The center of

Fig. 41 shows the two spectral bands used, 7.66 µm in blue and 10.06 µm in red.

Radiance images of the low transmissive and high transmissive bands are shown on

the left and right of the figure, respectively. For the low transmission band, there

is an evident radiance gradient across the image. This drop in radiance across the

scene is not due to vastly different temperatures or scene materials at the further

range but is entirely due to variable path lengths. Alternatively, the radiance image

for the high transmission band shows very little variation due to changing geometry.

Contrasting these two, the scene with larger variability has a stronger atmospheric

signal that can be used in the detrending process. In the top and bottom of the

same figure, an example of an incorrect atmosphere being used to detrend one of the

material classes is shown. Since the atmospheric state used did not have sufficient

humidity, the bottom plot shows that the radiance gradient is still evident for the

low transmission scene. For the higher transmission band at the top of the figure,

the radiance gradient is more difficult to discern. Graphically, this top case appears

worse than it truly is because the radiance takes on a larger range of values; however,

a numerical comparison of the resulting slopes confirms that the bottom case has more

than twice the slope of the top. For the reasons discussed here, the RD algorithm

will only utilize these less transmissive bands when detrending.
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Figure 41. Contrast of the detrending process for low and high transmissive bands of
the Structured 2 scene. Radiance images for the two spectral channels are shown on
the left and right. Top and bottom demonstrate the resulting slope when detrending
with an incorrect atmosphere. This analysis demonstrates that the larger atmospheric
signal in lower transmission bands aid the detrending process.
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4.2 RD Implementation

Implementation of the RD algorithm may be broken down into two main processes,

done iteratively.

1. Clustering Separate scene pixels into different groups using k-means clustering

of the most transmissive wavelength bands.

2. Detrending Determine which atmospheric state best minimizes the error met-

ric using different material classes and the least transmissive wavelength bands.

The flowchart for the RD algorithm is summarized in Fig. 42. Next, the two

processes are described, highlighting how they were performed and the inputs/outputs

for each one.

Figure 42. Flowchart showing the RD process.

Clustering.

The first process is clustering. Before the observed radiance can be detrended, the

scene needs to be clustered into different material classes. This involves performing
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k-means clustering on the most transmissive bands of the ground-leaving radiance.

For the first iteration of the algorithm, the transmission spectrum needs to be esti-

mated to determine the most and least transmissive spectral bands. Since only the

relations between the various spectral transmission values are important, the stan-

dard, unscaled ISAC algorithm was chosen to provide this estimate. Additionally,

without range-varying transmission and path radiance estimates for this first itera-

tion, k-means clustering is instead performed on the observed scene radiance rather

than the ground-leaving radiance. Subsequent iterations use RD’s best-detrending

atmosphere to estimate ground-leaving radiance for superior class separation.

Regarding the k-means application itself, the scene was divided into ten different

material classes. The k-means clustering process was applied using the cosine distance

metric and with 50 replicates. Ten classes were chosen as a balance between separating

the scene into enough classes to account for material variability while also having

large enough classes such that most of the scene’s range was spanned by the pixels in

the individual classes. If too many material classes are chosen, then it’s possible to

mistakenly subdivide a single-material class into various subclasses that are instead

based on range rather than composition.

The Structured 6 scene, which contained eight different material classes, was ana-

lyzed using varying numbers of k-means clusters. Analysis using anywhere from two to

20 k-means clusters showed no change in the identified atmospheric state at the final

RD iteration, suggesting some degree of tolerance in the number of specified clusters.

Clustering into any of these numbers of groups led to correct identification of the at-

mospheric state, though additional clusters led to increased processing time for both

clustering and detrending as well as slower convergence to a final atmospheric state,

requiring further iterations. The effectiveness of utilizing only two k-means clusters

was initially surprising;, however, upon exploring this case further, several reasons
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for its effectiveness were found. Clustering the scene into two materials effectively

separated roof slate (which made up 19% of the scene) from the other seven materials.

Of the seven materials, two of the most spectrally diverse materials (aluminum and

green paint) only made up 2% of the total scene, while four of the materials (water,

asphalt, deciduous, concrete) made up 67% of the scene and had very low spectral

diversity, with an average spectral standard deviation of 0.013±0.08 over the least

transmissive bands. Because both clusters had a low variation in emissivity and both

spanned much of the total range in the scene, the detrending process correctly iden-

tified (310 K, 7800 ppmv) as the atmospheric state. In the same study, application

of k-means clustering using a single material (i.e. turning off clustering) resulted in

identification of the (309.75 K, 6000 ppmv) state during the detrending process. This

incorrect identification demonstrates the need for clustering to improve accuracy, as

even two clusters were sufficient. Further testing and analysis is recommended to

explore the relation between scene composition and ideal number of k-means classes.

To improve the accuracy of material classification, the k-means clustering was

done using the most transmissive bands. From an unscaled ISAC estimation of the

atmospheric transmission, the top quarter most transmissive wavelength bands were

used, e.g. the 23 most transmissive out of the 94 wavelength bands for the synthetic

scene. When selecting the most transmissive bands, the least transmissive bands are

also selected for use in the detrending process. An example of the unscaled ISAC

transmission as well as selected bands for the Mako scene is shown in Fig. 43. The

most transmissive bands are marked in red, while least transmissive bands are marked

in blue.
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Figure 43. Results from standard, unscaled ISAC on the Mako scene, showing the most
(red) and least (blue) transmissive bands used for the clustering and detrending steps,
respectively.

Minimize RD metric.

Now that the scene has been broken down into different classes of materials, the

second step is to find the atmospheric state which detrends each material class best

using the least transmissive wavelengths. This corresponds to finding the minimum

of the error surface described by the metric in Eq. 34. Only the bottom quarter least

transmissive wavelength bands were used, e.g. the 23 least transmissive out of the 94

wavelength bands for the synthetic scene. The material classes used were also limited;

only those classes which had data in at least half of the rows of the scene were used,

e.g. material classes which were located in at least 250 different rows for the 500

row synthetic scene. Excluding material classes which had the least range-dependent

information improved both performance and processing time.

Finding this minimum was done in an exhaustive manner, applying the detrend-

ing process to atmospheric states ranging from 270-315 K and from 300 to 30000

ppmv, with step sizes of 0.25 K and 300 ppmv to achieve a similar resolution as

used in OISAC. This was done to explore both the behavior of the resulting sur-
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face and whether local minima tended to exist; however, this manner of finding the

minimum is not recommended for operational use as it is more time-consuming than

necessary. Future minimization efforts could possibly further limit wavelength bands,

atmospheric states, or materials to speed up the detrending process; however, the

impact of these modifications are not the focus of the present study.

After the optimal atmospheric state has been selected, the atmospheric transmis-

sion, path radiance, and downwelling are immediately known since this atmosphere

was already modeled in order to detrend the observed radiance in the first place.

With this estimate of the atmospheric state, a subsequent iteration of RD is per-

formed, beginning with a better estimate of the ground-leaving radiance to improve

clustering.

This process is iterated until the resulting atmosphere begins to repeat. For all

seven scenes analyzed in this study, the RD algorithm stabilized on an atmospheric

state within 1-3 iterations. Convergence properties of RD were not explored, but they

are recommended for future studies.

4.3 RD Results

Here the results of analyzing multiple scenes are explored and discussed. Not only

are there the synthetic and Mako datasets discussed in 3.4 and the non-uniform scenes

described in 4.1, but there are two new synthetic datasets meant to challenge OISAC

and RD. These new scenes both lack blackbody pixels and one of them incorporates

variable downwelling contributions. These new scenes will be discussed more in their

respective sections.

In lieu of presenting transmission and path radiances for the first and last row

for all seven scenes and material correlation and RMS results for dozens of materials

across each scene, the focus will be on a few illustrative cases. To further summarize
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the results and draw comparisons between RD and OISAC, Table 5 highlights the

atmospheric state picked by the two techniques. As discussed in both the development

of OISAC and now of RD, both techniques produce final transmission and path

radiance spectra directly from a MODTRAN simulation. The input for this simulation

is a temperature, water, and pressure profile, and following the lead of [46], the

entire atmospheric state has been characterized with a single ground air temperature

and water concentration, (T0,C0). Table 5 shows these two quantities as they were

determined by OISAC and RD. The ground air temperature is in red; the ground

water concentration is in blue. This details in this table will be discussed in the

following sections.

Table 5. True atmospheric state along with those atmospheric states identifed by RD
(up to four iterations) and OISAC for all scenes analyzed. Ground temperature, T0
(K), is in red, while ground water concentration, C0 (ppmv), is in blue.

Original Model 2 and Model 6 Scenes.

Like OISAC, RD sufficiently compensated the original MODTRAN Model 2 and

Model 6 synthetic scenes, showing superior performance to Segmented ISAC and

FLAASH-IR. From Table 5, it may be seen that very similar atmospheric states were

identified between OISAC and RD. The slight differences in temperature and water
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concentration are hardly noticeable when viewing the transmission and path radiance

plots.

In an effort to guide future RD global minimization searches, the error surface

defined by Eq. 34 was computed for a few of the scenes in this study. The surface for

the Model 2 synthetic scene is shown in Fig. 44. From both this surface and the one

from the Model 6 scene, the error surfaces appear to behave in a somewhat smooth

and continuous manner; both surface minima occurred within locally confined regions

of the surfaces. These surface characteristics are certainly favorable for minimization

techniques, and this knowledge could aid future algorithm optimization.

Figure 44. RD error surface for Model 2 dataset.

Structured Model 2 and Model 6 Scenes.

The next set of scenes, the ones given an emissivity and temperature structure

derived from the Mako scene, add an additional level of complexity. Since RD uses

range-dependent data from throughout the image to find the atmospheric state which

detrends best, the chief purpose for testing these scenes was to add more realistic scene

material and temperature distributions which would challenge RD. The atmospheric

state for these scenes are similar, but not identical to the Model 2 and Model 6
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atmospheres. They have ground water concentrations of 18300 ppmv and 7800 ppmv

and both have ground air temperatures of 310 K. Comparing rows of Model 2 and

6 with Structured 2 and 6 in Table 5, the water concentrations for these new scenes

resemble those used in the previous scenes.

Overall, only OISAC show slightly degraded performance for these new synthetic

scenes, identifying slightly cooler and drier atmospheres for each. RD perfectly identi-

fied both atmospheric states. Transmission and path radiance differences with respect

to truth for OISAC minimal. For the Structured 2 scene, OISAC had mean spectral

errors on the order of 0.0015%, and for the Structured 6 scene, OISAC had a mean

spectral error in transmission and path radiance on the order of 0.002%.

Despite the performance of both AC algorithms, the impact on the target detec-

tion statistics (i.e. correlation and mean spectral RMS, see 2.7) was more evident,

mostly due to the added sensor noise. Identical to the process outlined in 3.4, the

true temperature map was used to retrieve emissivities for every pixel in the scene

for given estimates of the atmospheric transmission, path radiance, and downwelling

radiance. An average emissivity for each class was then calculated using the known

material distribution. TES results from the first dozen spectral bands, corresponding

to 7.57− 8.11µm, were excluded; significant transmission losses in this region signifi-

cantly degraded performance for both scenes/algorithms. Target detection algorithms

would most likely exclude other low transmission spectral bands; however, the rest

of the bands will be included in the current analysis. Table 6 and Table 7 shows the

correlation and mean RMS error between the truth and average retrieved emissivity

for each class for the Structured 2 and Structured 6 scenes respectively. In these, one

may see that because RD perfectly identified the atmospheric state, it has a mean

correlation very close to one and a mean RMS error near zero for all of the materi-

als in the Structured 6 scene and for but aluminum and water in the Structured 2
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scene. Since the atmosphere was identified correctly and temperature emissivity was

performed perfectly (i.e. the true temperatures were used to solve for the emissivity),

the only impact which could have degraded performance was sensor noise. One would

expect that low transmission spectral channels would have the worse performance,

since the signal to noise ratios in these channels are worst; additionally, since the

Structured 2 scene has a larger water concentration, leading to lower atmospheric

transmission, Structured 2 is expected to have larger errors in retrieved emissivities.

Plotting the retrieved emissivities for aluminum and water for the Structured 2 scene

in Fig. 45, the maximum spectral errors in retrieved emissivity may be matched with

the minima in the transmission spectra (shown in the center of Fig. 41. The spec-

trally flat nature of aluminum and water magnified this impact from noise on the

spectral correlation. Finally, in Fig. 46 emissivity results for aluminum and decidu-

ous are shown for the Structured 6 scene. OISAC had the worse performance for these

materials. Aluminum had relatively high error due to its low emissivity; since the

strongest signal in the LWIR is typically from the emissive component, shown earlier

in Fig. 2, aluminum’s low emissivity would result in a smaller signal to noise ratio.

These results highlight that there will nearly always be performance degradation due

to noise, even for a perfectly compensated scene and temperature truth data.

When compared with the previous synthetic scenes, there are many differences

which may have impacted performance, particularly for OISAC. Much hotter mate-

rial temperatures (∼320 K) and larger temperature variances (∼7 K) were present

in these structured scenes. Additionally, the material composition of the scene was

very different. There were nearly half as many different scene materials, no true

blackbody materials, and a small amount of reflective pixels. The scene geometry

was also completely different, showing far less range variability than the previous

scenes. Since both OISAC and RD rely on the changing geometry to improve at-
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Table 6. Emissivity results from the Structured 6 scene. Correlation and mean RMS
error were between the mean retrieved emissivity and truth.

Table 7. Emissivity results from the Structured 6 scene. Correlation and mean RMS
error were between the mean retrieved emissivity and truth.
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Figure 45. Emissivity retrieval results for aluminum and water for the Structured 2
scene. Regions of larger error are due to low transmission channels where noise played
a dominant factor.

Figure 46. Emissivity retrieval results for aluminum and deciduous for the Structured 6
scene. Regions of larger error are due to low transmission channels where noise played
a dominant factor.
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mospheric estimates, this reduction in range-dependence information is expected to

degrade performance. The number of pixels in each row and the range variation be-

tween subsequent rows was also different between the two scenes, which could further

impact results. Additional analysis would be needed to identify the leading causes

for performance degradation.

Mako Scene.

The application of the RD technique to the Mako scene is an crucial one. Up

until now, RD had solely been applied to synthetic scenes. Unlike OISAC, which

has roots in a technique that has been used throughout the scientific community for

nearly two decades, RD had never been applied to real-world hyperspectral imagery.

From Table 5, one may see that RD and OISAC identify similar atmospheric states.

Transmission and path radiance results are shown in Fig. 47. Very little spectral dif-

ferences between spectra from OISAC and RD may be seen, with RD showing slightly

smaller transmission and greater path radiance due to its slightly higher estimate of

water concentration. It is interesting to note that these two completely different

techniques yielded nearly the same results. While both techniques chose to model

the atmosphere in a similar manner (i.e. ignoring effects of ozone and characteriz-

ing an atmospheric state with a ground air temperature and water concentration),

they approach atmospheric compensation from very different perspectives and yet are

seemingly consistent.

Since truth data is unknown for the Mako dataset, one is left with similar analysis

tools as employed in 3.4. First, the colormap of the squared correlation between re-

trieved emissivities and the atmospheric transmission for the Mako scene is shown (as

before, the first dozen spectral bands were excluded because of transmission losses).

This is shown in Fig. 48. Retrieved emissivities via RD show a reduced correlation
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Figure 47. Transmission and path radiance results for the first and last rows of the
Mako scene. Results from the numerical weather data are also shown.
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with atmospheric transmission, though they are close as detailed in Fig. 49. Next,

the same river emissivity analysis was performed as before, where the emissivity of

water was used to retrieve a spectral temperature and then used the mean spectral

temperature to compute an emissivity. The mean spectral temperature from RD

gave the close river a temperature of 295.9 ± 0.3 K and the far river a temperature

of 299.6 ± 0.4 K. Both of these are comparable to OISAC which, to significant fig-

ures, had the nearly the same predicted temperature and uncertainty; OISAC showed

slightly less temperature uncertainty. Comparing the mean spectral RMS difference

between the retrieved emissivity and known emissivity of water, OISAC had an mean

RMS of 0.0054 while RD had a mean RMS of 0.0065. OISAC still shows the lowest er-

ror, but RD has less than the next closest (FLAASH-IR at 0.0067). Altogether, these

results suggest that RD is able to perform AC on real-world hyperspectral imagery

comparable to the other techniques.

In Fig. 50 the RD error surface for the Mako scene is shown. Just as in Fig. 44,

the surface appears to have a smooth and continuous behavior with locally confined

minima. This suggests that determining the optimum atmospheric state for even

real-world hyperspectral imagery may be a well-conditioned problem.

Reflective Scene.

One advantage of RD over AC techniques similar to ISAC or OISAC is that it

does not require blackbody pixels. To test this assertion, a new synthetic scene was

generated using the exact same conditions for the Model 6 synthetic scene, except

that the materials were specifically chosen to have low emissivities in the 11.7 µm

water band. The highest material emissivity for that particular spectral region, which

OISAC relies on exclusively to compensate, was about 0.9. The new selection of

materials from the ASTER database and their emissivities are shown in Fig. 51.
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Figure 48. Colormap of the squared correlation between retrieved emissivities and the
atmospheric transmission for the Mako scene. RD does not exhibit range-dependent
correlation between retrieved emissivity and transmission and shows least correlation
overall.

Figure 49. Plot of the squared correlation between retrieved emissivities and the at-
mospheric transmission for the Mako scene. RD does not exhibit range-dependent
correlation between retrieved emissivity and transmission and shows least correlation
overall.

110



Figure 50. RD error surface for the Mako dataset.

Figure 51. Emissivities of reflective materials.
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Transmission and path radiance results for the first and last row using OISAC, RD,

Segmented ISAC, and FLAASH-IR are shown in Fig. 52. As expected, since OISAC

assumes the existence of at least some materials with an emissivity near unity in the

11.7 µm water band, the fact that they did not exist in the scene limited OISAC’s

ability to identify the correct atmosphere. ISAC does especially poorly, vastly under

and over estimating the transmission and path radiance respectively. FLAASH-IR,

which does not require true blackbody pixels, is relatively good at compensating for

the first row of the image, but because it does not incorporate range-dependence,

it incorrectly compensates for the last row of the scene. Unlike these other AC

techniques, RD is almost entirely unaffected and only required additional iterations.

Figure 52. Atmospheric compensation results for the reflective scene. OISAC and
ISAC, which rely on blackbody-like pixels, had difficulty compensating this scene. RD
results closely matched truth spectra.
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This case example highlighted a strength of the RD technique; however, there

may be additional complications with highly reflective scenes that have not been

considered. Real-world hyperspectral imagery under these conditions is necessary

before any firm conclusions can be made. This imagery would help provide additional

insight into the limitations of RD.

Variable Downwelling Scenes.

Here the impact of variable downwelling radiance, i.e. δLd 6= 0 in Eq. 32, is in-

vestigated. Variable downwelling radiance could occur if objects had surface normals

oriented in directions different than each other or if the material’s reflective properties

acted more specular than Lambertian. The first case is likely for any scene and is

even more pronounced if the second case is also true. Since reflective materials in

general tend to exhibit more specular features and since the second component of

the ground-radiance uncertainty in Eq. 32 is increased for reflective materials (since

emissive materials will have a small reflective component), the variable downwelling

was introduced to the reflective scene described in 4.3.

To begin the analysis, the variability of the downwelling radiance for five different

viewing angles was explored. This result is shown in Fig. 53. As expected from the

discussion in 2.2, downwelling radiance is a minimum when coming from directly over-

head (0 degrees) and a maximum towards the horizon (80 degrees). Downwelling from

the horizon is larger because the atmospheric path is longer, particularly through the

first couple kilometers of the atmosphere where the water concentration is greatest.

Next, every pixel in the reflective scene were assigned a random angle, correspond-

ing to its orientation and thus the downwelling contribution it would experience. After

generating the scene with the variable downwelling contributions, it was processed
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Figure 53. Variation of downwelling radiation. Zero degree corresponds to directly
overhead; 80 degrees is towards the horizon.
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with the full suite of AC algorithms used thus far. The transmission and path radi-

ance results are shown in Fig. 54. As expected, this scene is slightly more challenging

for RD; however, within three iterations RD still outperforms the other algorithms

and successfully settles on the best-match atmospheric state.

Figure 54. Atmospheric compensation results for the reflective scene that also had vari-
able downwelling radiance contributions. OISAC and ISAC, which rely on blackbody-
like pixels, had difficulty compensating this scene.

4.4 RD Conclusions

RD is a brand-new AC technique that uses the oblique geometry to identify the

atmospheric state. It has shown comparable performance to the OISAC technique for

the standard scenes tested and superior performance for scenes lacking the blackbody

materials OISAC critically relies upon.

Because it is a new technique, there are many areas in which RD needs to be
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refined and tested. Specifically, RD could possibly be improved with better separation

of scene pixels into their appropriate classes. Alternatively, it may be possible to

develop an entirely new method which still aims to detrend the observed radiance

but using different means/metrics. The underlying theory presented here would still

be valuable in developing this alternative method. Finally, testing RD with additional

synthetic and real-world oblique hyperspectral imagery where truth is known for a

variety of atmospheric conditions and scene materials would provide further insights

as to its limitations.
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V. Conclusions

This work presents novel contributions to the field of LWIR oblique atmospheric

compensation. Utilizing physics-based radiative transfer models, two new techniques

were developed to compensate oblique hyperspectral imagery and compared with

standard LWIR atmospheric compensation techniques. These advancements are ex-

pected to improve the capability of successfully interpreting LWIR hyperspectral

imagery in oblique environments, and the analysis and development of the oblique

physics-based models presented here may help guide future research in oblique atmo-

spheric compensation.

To conclude, a summary and discussion of the key contributions from this study

will be presented along with possible extensions of this research.

5.1 Summary of Key Contributions

Various contributions were made as a result of this research. Direct contributions

include the creation of two oblique AC algorithms. Indirect contributions include

impacts which may affect other AC algorithms; these contributions were by-products

of this research.

Direct Contributions.

Two distinct algorithms were developed to improve atmospheric compensation of

oblique hyperspectral imagery.

1. Oblique In-Scene Atmospheric Compensation (OISAC). OISAC, based

on an adaptation of the scaling procedure of ISAC, fits a polynomial-based

surface to obtain more accurate estimates of the transmission and path radiance

line contributions. By incorporating the range dependence of these atmospheric
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features, these parameters are more accurately estimated for use in identification

of the atmospheric state. Additionally, by weighting the relative uncertainty

in estimates of these two parameters, improvements were made in matching

these estimates to the correct atmospheric state, an improvement that could be

incorporated into the standard (i.e. non-oblique) ISAC technique.

2. Radiance Detrending (RD). RD is a novel technique, developed by analyzing

the geometrical impact on the observed radiance. The observed radiance has

a noticeable trend due to range-dependent transmission and path radiance,

and this technique identifies the correct atmospheric state by testing various

atmospheres and determining which one best detrends the observed radiance.

This technique was refined by separating the scene into distinct classes via k-

means clustering and shows promise in compensating hyperspectral imagery

without blackbodies, a key disadvantage of ISAC and OISAC.

Performance of both techniques were analyzed and compared with standard LWIR

atmospheric techniques using a combination of synthetic and measured hyperspectral

imagery. In simulated hyperspectral data where truth was known, both OISAC and

RD outperformed the standard toolbox of techniques. They compared similarly with

each other in the simple synthetic scenes, closely matching truth spectra; however,

for the scene without blackbody-like pixels, OISAC’s performance was significantly

degraded. RD had no difficulty handling this reflective scene, including the scene

where randomized downwelling contributions were added. For the real-world hyper-

spectral imagery, because truth data was unknown, conclusions were more elusive.

RD and OISAC identified similar atmospheric states for the measured imagery and

exhibited fewer range artifacts compared to the other techniques, but the accuracy

and limitations of all the techniques was difficult to ascertain.

118



Indirect Contributions.

During the development of the two oblique AC algorithms, several indirect con-

tributions were also made.

1. Analysis of range-dependent transmission and path radiance There is

no other study known by the authors which specifically explores and models the

range-dependence of transmission and path radiance across an oblique scene.

While modeling and analyzing this was straight-forward, finding multiple means

of incorporating these models into the AC algorithms was not. In this research,

techniques to use this information rather than be hindered by it were discovered.

2. ISAC improvements When building OISAC, several improvements were made

to the standard ISAC procedure, particularly for the “Full ISAC”. These in-

clude two new methods of estimating atmospheric line contributions other than

running MODTRAN separately in transmission mode. This cuts MODTRAN’s

use in half for the database generation. Additionally, the standard scaling equa-

tion used by ISAC was greatly simplified; it is now more intuitive and does not

require use of the net radiance depression nor trapezoidal integration. Finally,

use of the relative uncertainty of the line contributions due to transmission and

path radiance improves ISAC’s ability to select the proper atmospheric state.

3. AAC and ISAC comparison This research identified that the AAC tech-

nique is identical to the scaling technique in ISAC, with chief differences being

the derivation and nomenclature. With the more intuitive scaling equation de-

veloped here for ISAC (above), this was able to be more clearly identified. This

ties together two of the more popular LWIR AC techniques.

4. FLAASH-IR segmentation The use and performance of FLAASH-IR seg-

mentation in analyzing oblique scenes had not been previously reported in the
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literature. Initial results suggest that improved FLAASH-IR performance for

oblique scenes is possible via segmentation; however, further analysis is still

needed to better understand the sensitivity of this modified technique for dif-

ferent size subimages.

5.2 Discussion of Key Contributions

In this research, the first ever data-driven AC technique built specifically to in-

corporate path range changes within a scene was developed. The second was also

developed. These two techniques are the only ones of their kind, specifically designed

to utilize the range-dependence information within oblique scenes.

Standard data-driven techniques were not designed for scenes with variable path

length and have only been able to analyze oblique scenes by segmenting images into

parts and analyzing them separately. There are several problems with this type of

analysis. First, by analyzing smaller portions of the scene at a time, the algorithms

may have degraded performance in analyzing each individual scene since they have

less data for a given iteration. Additionally, even after segmentation, the subimage

will still have range-dependence within it; this is especially evident for highly oblique

scenes or larger subimages. Third, these algorithms currently require direct super-

vision to balance these previous two considerations; they cannot divide a scene too

finely without compromising algorithm statistics nor too loosely or else the range

dependence will still be dominant. Last, since segmented techniques analyze por-

tions of a scene independently, they lose the extra information inherent to an oblique

scene, specifically the information of how the atmosphere is changing with range. The

techniques developed here do not share these limitations.

When comparing OISAC and RD with standard AC techniques on the synthetic

scenes, the benefit of incorporating range-dependence is evident. Transmission and
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path radiance errors are orders of magnitude smaller than for the standard techniques.

Mean RMS error and correlation of the retrieved emissivities with truth data for

the nearly two dozen materials tested were nearly ideal for both humid and dry

atmospheric states. The largest discrepancy arose when OISAC, a technique that

requires materials with near blackbody-like features over the 11.73 µm water band,

attempted to compensate for a synthetic scene where the materials were specifically

chosen because of their low emissivities over the water band. OISAC and Segmented

ISAC showed the largest errors; however, such a scene may not be common and when

encountering such a scenario, OISAC should not be the first tool one picks to analyze

such a scene.

Regarding the real-world hyperspectral imagery, since truth data was unknown,

firm conclusions regarding performance are difficult to make. Numerical weather data

suggested an atmospheric state with twice the path radiance and half the transmis-

sion as every AC algorithm applied, further highlighting the difficulty in analyzing

the data. Despite these challenges, OISAC and RD, two techniques which operate

in completely different manners, suggested similar transmission and path radiance

estimates. Additionally, after applying TES techniques to the image, emissivities

retrieved by the two techniques were the least correlated with atmospheric trans-

mission. Alternatively, emissivities retrieved with FLAASH-IR and Segmented ISAC

were much more correlated with the atmospheric transmission and showed evident

range dependence, suggesting that parts of the image were better compensated than

others. Segmentation and range-dependent artifacts from improper compensation

were also evident in retrieved temperatures.
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5.3 Roadmap for Future Efforts

While the development and analysis presented here is promising, this work is

only an initial step in developing a suite of robust and accurate oblique atmospheric

compensation tools. The effectiveness of these techniques requires further testing,

and there are numerous aspects of the techniques which may be improved upon.

Oblique Imagery Generation and Collection.

The most direct means of advancing future oblique AC work involves testing these

algorithms against additional oblique datasets. This may include both more complex

and realistic synthetic scenes as well as real-world hyperspectral imagery, with a

variety of atmospheric conditions, viewing geometries, and scene compositions. The

advantage of working with synthetic scenes is the relative ease to set them up, the

ability to gradually introduce increasingly more challenging and realistic conditions,

and the fact that truth spectra are known. As RD is not based on a previous AC

algorithm such as ISAC, which has been applied to numerous synthetic and real-world

datasets the past 15 years, testing of this technique is more critical. RD compensated

all synthetic scenes used in this research with near perfection. While this is desirable,

it does not provide much insight into its limitations. Testing with additional real-

world datasets where truth is known would also be beneficial, as some sensor artifacts

are difficult to model; this series of testing would showcase algorithm limitations or

provide confidence in these new techniques.

Since oblique imagery typically spans larger swaths of area, it may have additional

complications not as common to nadir-collected imagery. In these more expansive

scenes, there may be significant changes in the water/temperature profiles or elevation

across a scene. Testing these oblique AC techniques and modifying them to account

for these effects is another possible area for further research.
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OISAC Improvements.

One means of potentially improving OISAC could be via modeling transmission

and path radiance with a non-polynomial function. This may improve the estimates

of the line contributions and lead to better identification of the atmospheric state.

Also, perhaps the atmospheric database could be improved to include atmospheric

states other than those defined by (T0,C0) pairs. This could include ozone, carbon

dioxide, or alternative lapse rates for the temperature and water concentration. How-

ever, it is not known whether inclusion of these additional parameters will actually

benefit the atmospheric compensation process for the low-altitude observation con-

ditions considered here (i.e. <10km), as limitations due to noise and non-blackbody

pixels may dominate. Lastly, modifications to improve OISAC’s ability to compen-

sate scenes without blackbody pixels may be made. There may be techniques to

estimate the highest emissivities in a scene, and then adjust line contribution esti-

mate to account for lower emissivities (via the forward-modeling process used here).

Improved techniques to identify blackbody-like materials within a scene would also

improve OISAC.

RD Improvements.

One means of advancing RD is to improve its ability to properly cluster materials.

As the purpose of this research was not aimed at optimizing the clustering process, but

rather in gauging the efficacy of an oblique atmospheric compensation technique based

on radiance detrending, the clustering process has not been optimized. Clustering

with k-means was applied to the top quarter most transmissive bands to divide data

into ten clusters (synthetic scenes used here were composed of eight or 23 different

materials). Perhaps using a smaller number of wavelength bands or larger number

of material classes are preferable, and maybe the best option depends on viewing
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conditions or scene composition. It may also be helpful to explore the impact of

selecting an incorrect atmosphere on clustering. This incorrect atmosphere might be

from a previous iteration of RD or one chooses to initially seed RD with a range-

dependent atmospheric state (e.g. from OISAC).

The detrending step could also be advanced. One practical limitation of RD is

its ability to quickly arrive at an optimal atmospheric state. While improvements to

the material clustering step could reduce the number of iterations needed to stabilize

on the optimal state, the speed of the iterations could also be improved. This could

be done by further limiting the number of spectral bands explored, skipping material

classes which meet certain criteria, or developing an algorithm to automatically and

intelligently search for the surface minimum. One could also use a finer temperature

and humidity grid spacing or even abandon use of an atmospheric database altogether

and instead compute MODTRAN atmospheres on the fly, though this may slow per-

formance. Also, similar to OISAC, it may be helpful to explore atmospheric states

other than those defined by a (T0,C0) pair. Future work should also include a stress-

test of RD’s ability to stabilize on a final atmospheric state; while RD converged to

a single atmospheric state for every scene tested, because it is by nature an iterative

algorithm, this may not always be the case. If studies demonstrate that it oscil-

lates between atmospheric states, a different stopping criteria will need to be chosen.

Finally, it may be possible to develop an entirely new method which still aims to de-

trend the observed radiance but using a different metric, possibly changing weighting

of the various material classes and wavelength bands or how the uncertainty term is

used. It may also be helpful to scale (e.g. dividing by the number of bands/material

classes) and possibly express the metric in terms of physical units (e.g. incorporating

microflicks) to aid analysis efforts; this may be helpful in comparing the detrending

process of two different iterations or scenes.
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Oblique Adaptation of Other AC Algorithms.

Since FLAASH-IR relies on maximizing smoothness for diverse pixels throughout

the scene using an atmospheric database, developing an oblique version of FLAASH-

IR may be fairly straight-forward. Possible modifications can include utilizing dif-

ferent atmospheric databases for the different rows of the image. Results from the

different rows may need to be weighted as there would be smaller material signals at

further ranges.

One simple means to adapt any generic atmospheric compensation technique

would involve compensating, matching, and then forward-modeling. First, atmo-

spheric compensation could be performed on the closest segment of the image. Then,

this atmosphere could be matched with a transmission and path radiance profile from

within an atmospheric database. Finally, this new state could be forward-modeled

to account for the entire range. Alternatively, a more complex version would per-

form atmospheric compensation for various segments of the image and then leverage

a metric which determines the best atmospheric match across all segmented images.

Benefits of either of these techniques are that they can quickly and easily add range-

variation to any standard algorithm while also avoiding segmentation artifacts which

had previously explored with Segmented ISAC. However, there are limitations, such

as the fact that potentially less atmospheric data is being leveraged for any individual

compensation and the ideal size of the segments would require manual supervision,

as it would most likely change with the scene geometry or atmospheric state.

5.4 Concluding Remarks

The field of oblique atmospheric compensation is a new one, and there is con-

siderable room for improvement. As the scientific community continues to collect

additional oblique hyperspectral datasets, so will its ability to develop, refine, and
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test methods of compensating them. With further research in this field, the challenges

of analyzing oblique hyperspectral imagery may turn into benefits, leveraging content

about the atmosphere contained in the range-dependence of the apparent radiance.
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