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1. ABSTRACT

Targeting GPR30 in Abiraterone- and MDV3100-Resistant Prostate Cancer 

Tseona O, Nguyen HM, Heide J, de Frates R, Morrissey C, Corey E, Vessella RL, Lam HM 

Department of Urology, University of Washington, 1959 Pacific Street, Seattle, WA 98195 

Period 9/30/16-9/29/17 

Little information is available on the novel treatment for abiraterone (Abi)- and MDV3100 (MDV)-resistant 

disease. G protein-coupled receptor 30 (GPR30) is a seven-transmembrane estrogen receptor and activation by 

its specific agonist G-1 inhibited growth in multiple castration-resistant prostate cancer (CRPC) xenograft 

models that were resistant to the first-generation androgen deprivation therapy. More importantly, GPR30 is an 

androgen-repressed target and its expression increased in clinical CRPC when compared to primary prostate 

cancer. Here, we showed that G-1 significantly inhibited the growth and extended the progression-free survival 

of patient-derived xenograft models that are sensitive (LuCaP 136CR, P=0.046) or minimally responsive to Abi 

and MDV (LuCaP 35CR, P=0.005). Interesting, no survival benefit was observed with G-1 when these mice 

had been pre-treated with Abi or MDV. However, G-1 delayed the development of Abi resistance in the Abi-

sensitive LuCaP 136CR, suggesting a defined window for the G-1 therapy. Together with our previous findings, 

G-1 invariably inhibited 5 models of CRPC, independent of their sensitivity to Abi or MDV. No adverse side

effect of G-1 was detected in these preclinical studies. Clinically, GPR30 expression was detected in >90% of

CRPC metastases, whereas 80% showed a moderate to high expression level. In rapid autopsy patients who

were treated with Abi- and/or MDV, GPR30 was highly expressed in both lung and bone metastases. The high

level of GPR30 in CRPC patients receiving Abi and MDV highlights the potential in effective G-1 therapy on

CRPC either in combination with Abi, or on CRPC that is minimally responsive to Abi and MDV.
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2. INTRODUCTION

Castration-resistant prostate cancer (CRPC) is evolving fast and developing resistance to the most recent 

treatments including abiraterone (Abi) and MDV3100 (MDV). Treatments to these newly resistant tumors have 

not been explored. While research efforts continue to abolish the residue androgen signaling in these resistant 

cells, we propose to focus on androgen-repressed therapeutic targets whose expression is now high under the 

ultra-low androgen milieu in Abi- and MDV-resistant cancer. G protein-coupled receptor 30 (GPR30) is a 

seven-transmembrane estrogen receptor and it elicits cell growth or death depending on the cellular context. We 

showed GPR30 activation by its specific agonist G-1 inhibited prostate cancer growth through G2 arrest and 

apoptosis. We further showed that GPR30 expression was suppressed by androgen and importantly its 

expression was increased in castration-resistant prostate cancer (CRPC) in both preclinical setting and clinical 

specimens. G-1 inhibited the growth of multiple CRPC xenografts that were resistant to the first-generation 

ADT (i.e. castration).  We hypothesize that for CRPC resistant to the second-generation ADT including Abi and 

MDV, the expression of the androgen-suppressed target GPR30 is high, and hence the anti-tumor effect of G-1 

will be maximized.  

In this proposal, we will perform preclinical testing on the efficacy and the safety of the GPR30-targeted 

therapy in our newly developed Abi- and MDV-resistant patient-derived xenografts, and investigate the 

frequency of GPR30 expression in patient specimens. This study will also provide information on the 

mechanism underlying GPR30 responsiveness and resistance. 

3. KEYWORDS

Prostate Cancer, Abiraterone, MDV3100, GPR30, Estrogen receptor, G-1, Patient derived xenografts,

Treatment resistance
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A B

Figure 2. Tumor growth upon Abi and MDV resistance in A) LuCaP 35CR and B) LuCaP 86.2 patient-derived 

prostate cancer xenografts. Control, n=9; Abi, n=29-40 due to the rolling enrollment; MDV, n=21-37 due to the 

rolling enrollment. 

Abi-/MDV-minimally responsiveAbi-/MDV-sensitive

Figure 1. G-1 delayed progression in both Abi/MDV – sensitive and – minimally responsive CRPC. 

4. ACCOMPLISHMENTS

4.1. G-1 inhibited the growth of CRPC in the absence of prior Abi and MDV treatment

G-1 invariably inhibited growth of 5 CRPC models including LNCaP, C4-2, PC-3 (Lam et al, Endocrine-

related Cancer, 2014), LuCaP 136CR, and LuCaP 35CR (Figure 1). We completed the G-1 efficacy studies on

the growth inhibition in abiraterone (Abi)- and MDV3100 (MDV)-resistant LuCaP xenografts. In both LuCaP

35CR and LuCaP 86.2, tumors took more than expected (take rate 78% and 83%, respectively). The mice were

treated with Abi or MDV and resistance to drugs developed as anticipated (Figure 2). No toxicity or weight

loss due to treatment was detected (Figure 3).  Tumor growth was monitored twice weekly. Although G-1

consistently inhibited growth of CRPC, G-1 did not inhibit growth once tumors received prior treatment with

Abi (Figure 4) and MDV (Figure 5). It is likely attributed to the diverse survival mechanisms in Abi-resistant

tumors (Lam et al., Clin Can Res, 2017). The lack of G-1-induced growth inhibition post-Abi and MDV is not

dependent on whether the Abi resistance was acquired (LuCaP 136CR) or de novo (LuCaP 35CR, Figure 1),

Next, we evaluated the tumor characteristics associated with G-1 treatment in Abi- and MDV-resistant CRPC. 

G-1 did not generally alter proliferation except it induced a slight increase in proliferation in LuCaP 136CR

(P<0.01) upon Abi resistance, suggesting a tumor model specific induction of proliferation upon G-1 resistance

(Figure 6). G-1 inhibited apoptosis in LuCaP 136CR and LuCaP 35CR (P=0.02 and P=0.09, respectively), but not in

LuCaP 86.2 upon Abi resistance (Figure 7). In contrast, G-1 increased apoptosis in LuCaP 86.2 (P=0.01) upon MDV

resistance (Figure 7). Finally, G-1 treatment did not alter the number of CD34+ blood vessels in both Abi- and MDV-

resistant CRPCs, suggesting G-1 had no detectable effects on angiogenesis in these CRPC models (Figure 8).
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Figure 5. G-1 did not delay progression of MDV-resistant PDXs. 
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Figure 3. Body weight upon Abi and 

MDV resistance in A) LuCaP 35CR 

and B) LuCaP 86.2 patient-derived 

prostate cancer xenografts. Body 

weight at the end of study (tumor 

exceeded 1000mm3) in C) LuCaP 

35CR and D) LuCaP 86.2. Error bars 

represents mean±SEM. Treatment 

n=11-16/group; control n= 8/group.  

 

 
Figure 4. G-1 did not delay progression of PDXs that exhibited acquired (LuCaP 136CR) or de novo resistance 

(LuCaP 35CR and LuCaP 86.2) to Abi.  

Interestingly, we noticed for the first time that the antiandrogen MDV inhibited angiogenesis in both LuCaP 35CR and 

LuCaP 86.2 (Figure 8; P=0.08 and P=0.03, respectively), arguing that MDV-resistant tumor may develop mechanisms to 

survive under a nutrient-deprived environment. 
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LuCaP 86.2 LuCaP 35CR

LuCaP 136CRKi67

 Figure 6. G-1 did not alter proliferation upon Abi and MDV resistance, except a slight increase in proliferation was 

detected in LuCaP 136CR. 

LuCaP 86.2

LuCaP 136CRCD34

LuCaP 35CR

LuCaP 86.2

LuCaP 136CRCleaved caspase-3

LuCaP 35CR

 Figure 7. G-1 inhibited apoptosis in LuCaP 136CR and LuCaP 35CR upon Abi resistance. G-1 increased apoptosis 

in LuCaP 86.2 upon MDV resistance. 

Figure 8. MDV inhibited angiogenesis in LuCaP 35CR (p=0.08) and LuCaP 86.2 (p=0.03, blue box). G-1 did not 

alter angiogenesis upon Abi and MDV resistance. 
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C4-2

Figure 9. G-1 in combination with Abi delayed CRPC progression in LuCaP 136CR and C4-2. 

Table 1. De novo resistance rate is low in G-1 and Abi combination treatment 

*De novo resistance is defined by tumor progression >50% from baseline at 6 weeks of treatment

4.2. G-1 delayed Abi resistance and the rate of de novo resistance is low in G-1 and Abi combination 

treatment 

The above results showed that G-1 inhibited growth of CRPC but was not able to delay progression in CRPC 

that acquired resistance to Abi and MDV, therefore we attempted to introduce G-1 earlier in the treatment 

course by combining Abi and G-1 to investigate if G-1 can delay the development of Abi resistance. In Figure 

9, G-1 delayed Abi resistance in both LuCaP 136CR and C4-2 CRPC xenograft models. Most importantly, the 

de novo resistance rate to Abi+G-1 combination treatment is very low (8% compared to 43-50% for Abi or G-1 

single treatment; Table 1). Gene expression studies showed that Abi increased GPR30 expression level in these 

xenografts, suggesting the high level of GPR30 may enhance the cell growth inhibition by G-1 (Figure 10). 

Global gene expression analysis on how G-1 inhibited growth of CRPC showed genes that were differentially 

expressed in the responsive phase were abrogated upon G-1 resistance (Figure 11). 

* *

** **

Figure 10. Abi increase GPR30 expression in PCa xenografts. 
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Figure 11. RNA sequencing 

analysis showing genes 

differentially expressed in G-1-

responsive LuCaP35CR, which 

were abrogated upon resistance. G-

1. Left panel: upregulated by G-1in

the responsive phase; right panel:

downregulated by G-1 in the

responsive phase. Red: upregulated;

blue: downregulated.

4.3. GPR30 expression is high in clinical CRPC metastases 

treated with Abi and MDV 

Next, we sought to examine whether the GPR30 level is high post-

Abi/MDV treatment in clinical metastases. We performed 12 rapid 

autopsies as anticipated. From the rapid autopsy, 5/12 patients had 

been treated with Abi only, 2/12 with MDV only, and 5/12 with both 

Abi and MDV. We performed immunohistochemistry staining of 

GPR30 and found high levels of GPR30 in both bone and soft tissue 

metastases (including lymph node, lung, and liver) in the patients 

who received Abi and/or MDV treatment (Figures 12 and 13). 

Comparing between CRPC metastases from patients who had 

expired in the pre- and post-Abi/MDV era, we found that in the 

absence of Abi/MDV treatment, GPR30 expression was detected in 

>90% of CRPC metastases, whereas 80% showed a moderate to high

expression level (Figure 12, upper panel). In the recent patients

who had received Abi and/or MDV, GPR30 expression remained

high in both bone and soft tissue metastases in 92% of these patients

(Figure 12, lower panel). Collectively, the consistent high level of

GPR30 expression in CRPC metastasis upon treatment with Abi

and/or MDV, and the effective growth inhibition of G-1 in

combination with Abi highlighted the potential for an effective

combination therapy of Abi+G-1 in >90% of patients.  Since GPR30

is an androgen-repressed target, we attempted to correlate the

intratumoral androgen levels with the GPR30 level in both pre- and

post-Abi/Enz patients. Intratumoral androgens were evaluated using

mass spectrometry in collaboration with Dr. Elahe Mostaghel. Ten

patients in both pre- and post-Abi/Enz settings had evaluable tumor

androgens including testosterone (T) and dihydrotestosterone (DHT).

In the pre-Abi/Enz patients, GPR30 protein level (detected by IHC)

did not achieve a significant inverse correlation with the intratumoral

T (Pearson r=-0.43, p=0.25) and DHT level (Pearson r = -0.32,

p=0.40). In the post-Abi/Enz patients, GPR30 level was not

correlated with the intratumoral T (Pearson r=0.43, p=0.23) and DHT

level (Pearson r=0.52, p=0.12). In fact, while GPR30 level is fairly

consistent across metastatic sites (Figure 12), the intratumoral

androgen levels are not universal within a patient. As shown in

Figure 14, a subset of patients showed variable intratumoral T

(patients 1-4, 18-20) whereas others showed a very consistent level

of intratumoral T across metastatic sites (patients 7-10, 11-15).  The

variation in the intratumoral T within patients did not appear to be

associated with Abi/Enz treatment (Figure 14A). In contrast,

intratumoral DHT levels were more heterogeneous across metastatic

sites, and appeared to be more heterogeneous within Abi/Enz-

resistant patients (Figure 14B).
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Figure 14. Intratumoral androgen 

measurement in multiple metastatic 

sites of Abi/Enz-naïve and Abi/Enz-

resistant patients from rapid autopsy. 

(A) Intratumoral T level is variable in a

subset of patients whereas consistent in

others across metastatic sites. (B)

Intratumoral DHT displayed a greater

heterogeneity within patients. Patients

with two or more evaluable metastatic

sites were included.

Figure 12. GPR30 expression is high in CRPC metastases from patients in the pre- and post-Abi/MDV era. 

Figure 13. Representative pictures showing high 

expression of GPR30 in both bone and lung 

metastases in prostate cancer rapid autopsy 

patients who had received Abi and MDV 

treatment. 
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Opportunities for training and professional development 

I participated in preclinical study meetings to gain knowledge on the different responses to Abi and MDV, and 

studied the molecular mechanisms underlying the response and resistance to Abi and MDV in various in-house 

patient-derived xenograft models, resulting in a publication in the journal Clinical Cancer Research (Lam et al., 

2017). The information has provided a basis for examining intratumoral androgens and drug resistance outlined 

in this project. This project has attracted interests in the prostate cancer community and was selected to be 

presented in the plenary session of the Prostate Cancer Foundation Scientific Retreat in 2015. In 2016, I 

attended and presented in the PCRP IMPaCT meeting to advance the knowledge on the most recent prostate 

cancer work, and grant applications and reviews. This project also provided on-hand training for Olena Tseona, 

a research scientist, on specimen identification and sectioning, immunohistochemistry staining and 

quantification, and tumor characterization. Ms. Tseona was then successfully applied to medical school in 2017.  

Results disseminated to community of interest 

1. Presented advances in exploring estrogen receptors as a therapeutic target in CRPC in a Prostate Cancer

Foundation teleconference in November 2014.

2. Presented signaling mechanisms involved in prostate cancer cell escape from dormancy in a Prostate

Cancer Foundation international webinar in August 2015.

3. Presented part of the proposal in the plenary lecture in the Prostate Cancer Foundation Annual Retreat in

October 2015.

4. Presented the molecular characterization of abiraterone ultra-responders in CRPC patient-derived xenograft

models in Pacific Northwest Prostate Cancer SPORE meeting in March 2016.

5. Presented interim results in the PCRP IMPaCT meeting in August 2016.

6. Prepared a brief description of the project to 2016 PCRP program materials.

Plan to do during the next reporting period to accomplish the goals 

The experiments were on track and we are preparing the final manuscript for submission. 

5. IMPACT

Impact on the development of the principal discipline of the project

Nothing to report

Impact on other disciplines 

Nothing to report 

Impact on technology transfer 

Nothing to report 

Impact on society beyond science and technology 

Nothing to report 

6. CHANGES/PROBLEMS

Nothing to report

7. PRODUCTS

Publications, conference papers, and presentations

A) Publications:

1. Lam H.M., Ouyang B., Chen J., Ying J., Wang J., Wu C.L., Li J., Medvedovic M., Vessella, R.L., Ho S.M. (2014)

Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer. Endocr Relat

Cancer. 21(6):903-914.
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2. Ruppender N., Larson S., Lakely B., Kollath L., Brown L., Coleman I., Coleman R., Nguyen H.M., Nelson P.S., 

Corey E., Snyder L.A., Vessella R.L., Morrissey C., Lam H.M. (2015) Cellular adhesion promotes prostate cancer 

cells escape from dormancy. PLoS One. 10(6):e0130565. 

3. Lam H.M., McMullin R., Nguyen H.M., Coleman I., Gormley M., Gulati R., Brown L., Holt S.K., Li W., Ricci D., 

Verstraeten K., Thomas S., Mostaghel E.A., Nelson P.S., Vessella R.L., Corey E. (2017) Characterization of an 

abiraterone ultraresponsive phenotype in castration-resistant prostate cancer patient-derived xenografts. Clin Can 

Res. 23(9):2301-2312. 

► Highlighted in Nature Reviews Urology 

B) Conferences abstracts: 

1. Lam H.M., Zhang X., Nguyen H., Olson J., Corey E., Ho S.M., Vessella R.L., “Targeting GPR30 delayed 

Abiraterone resistance in castration-resistant prostate cancer”, 21st Annual Prostate Cancer Foundation Scientific 

Retreat, San Diego, CA. October 2014. 

2. Ruppender N., Larson S., Lakely B., Kollath L., Brown L., Coleman I., Coleman R., Nguyen H.M., Nelson P.S., 
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escape from dormancy”, Society for Basic Biological Research, Dallas, TX. November 2014. 

3. Lam H.M., McMullin R., Nguyen H.M., Gormley M., Gulati R., Li W., Ricci D., Verstraeten K., Thomas S., 

Mostaghel E.A., Nelson P.S., Vessella R.L., Corey E. “Abiraterone acetate (AA) treatment of prostate cancer 

patient-derived xenografts (PDXs) demonstrates heterogeneity of responses and identifies potential biomarkers of 

adaptive resistance”, AACR Annual Meeting, Philadelphia, PA . April 2015. 

4. Tseona O., Nguyen H.M., Heide J., de Frates R., Morrissey C., Corey E., Lam H.M., ‘’Targeting estrogen 

receptors in castration-resistant prostate cancer’’, 22nd Annual Prostate Cancer Foundation Scientific Retreat, 

Washington D.C., October 2015 

5. Tseona O., Nguyen H.M., Heide J., de Frates R., Morrissey C., Corey E., Lam H.M., “Targeting GPR30 in 

Abiraterone- and MDV3100-resistant Prostate Cancer”, DoD PCRP IMPaCT Meeting, Towson, MD. August 2016.  

6. Tseona O., Nguyen H.M., Heide J., de Frates R., Morrissey C., Corey E., Lam H.M., “GPR30 as a Therapeutic 

Target in Abiraterone- and MDV3100-resistant Prostate Cancer”, SBUR Fall Meeting, Scottsdale, AZ. November 

2016.  

C) Presentations:  

1. The biological implication of single disseminated prostate cancer cells from patients, Prostate Cancer Foundation 

Tumor Microenvironment Working Group, International Webinar, November 2014.  

2. The challenges and value of interrogating the transcriptome of a single disseminated prostate cancer cell from a 

patient, SBUR Fall Symposium, Dallas, TX. November 2014. 

3. Activation of GPR30 by G-1 provides a novel strategy in targeting CRPC, Prostate Cancer Foundation. 

Teleconference, November 2014. 
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Abstract
Castration-resistant prostate cancer (CRPC) is an advanced-stage prostate cancer (PC)

associated with high mortality. We reported that G-1, a selective agonist of G protein-

coupled receptor 30 (GPR30), inhibited PC cell growth by inducing G2 cell cycle arrest and

arrested PC-3 xenograft growth. However, the therapeutic actions of G-1 and their

relationships with androgen in vivo are unclear. Using the LNCaP xenograft to model PC

growth during the androgen-sensitive (AS) versus the castration-resistant (CR) phase,

we found that G-1 inhibited growth of CR but not AS tumors with no observable toxicity to

the host. Substantial necrosis (approximately 65%) accompanied by marked intratumoral

infiltration of neutrophils was observed only in CR tumors. Global transcriptome profiling of

human genes identified 99 differentially expressed genes with ‘interplay between innate

and adaptive immune responses’ as the top pathway. Quantitative PCR confirmed

upregulation of neutrophil-related chemokines and inflammation-mediated cytokines only

in the G-1-treated CR tumors. Expression of murine neutrophil-related cytokines also was

elevated in these tumors. GPR30 (GPER1) expression was significantly higher in CR tumors

than in AS tumors. In cell-based experiments, androgen repressed GPR30 expression,

a response reversible by anti-androgen or siRNA-induced androgen receptor silencing.

Finally, in clinical specimens, 80% of CRPC metastases (nZ123) expressed a high level of

GPR30, whereas only 54% of the primary PCs (nZ232) showed high GPR30 expression.

Together, these results provide the first evidence, to our knowledge, that GPR30

is an androgen-repressed target and G-1 mediates the anti-tumor effect via
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neutrophil-infiltration-associated necrosis in CRPC. Additional studies are warranted to

firmly establish GPR30 as a therapeutic target in CRPC.
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Introduction
Androgen ablation therapies are mainstay treatments for

advanced prostate cancer (PC; Tannock et al. 2004, Higano

et al. 2009, de Bono et al. 2011). Unfortunately, almost all

patients ultimately fail to respond to these therapies and

develop castration-resistant PC (CRPC) that grows in the

presence of castration levels of circulating testosterone

(de Bono et al. 2011). Although chemotherapy (docetaxel

or cabazitaxel; Tannock et al. 2004, de Bono et al. 2010),

immunotherapy (e.g. sipuleucel-T; Higano et al. 2009,

Kantoff et al. 2010), or complete androgen blockade

(e.g. abiraterone; de Bono et al. 2011) may extend the

lives of some patients, these treatments all have documen-

ted side effects and a relatively short duration of response.

Hence, the development of new CRPC therapies with

durable efficacy and low toxicity is warranted.

Estrogens have a long history of efficacy for advanced

PC (Oh 2002). Huggins & Hodges (2002) first reported the

use of diethylstilbestrol for advanced PC in 1941.

However, severe cardiovascular toxicity of oral estrogens

limited their use in PC (Norman et al. 2008). The early

efficacy of parenteral estrogen in recent studies

(Schellhammer 2012, Langley et al. 2013) and especially

the better toxicity profiles owing to hepatic bypass

(Norman et al. 2008) reinvigorated interest in the use

of estrogens as a therapy for PC. In addition to the

suppression of testosterone effects by estrogens, estrogens

are also directly cytotoxic to PC cells (Ho et al. 2011).

The actions of parenteral estrogens are believed to be

mediated by the classical estrogen receptors (ERs),

ESR1 and ESR2. However, the exact effects of the two ERs

and their isoforms on PC growth and metastases may vary

according to cellular contexts (Claessens & Tilley 2014,

Nelson et al. 2014). We have recently reported that

G-1 (1(1-(4-(6-bromobenzo(1,3)dioxol-5-yl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta(c)quinolin-8-yl)-ethanone)),

which selectively activates the third ER, G protein-coupled

receptor 30 (GPR30 or GPER) (Bologa et al. 2006), inhibited

the growth of multiple PC cell lines and PC-3 xenografts,

and exerted few or no adverse effects on the animals (Chan

et al. 2010). These results indicate that G-1, by targeting

GPR30, might offer a new treatment option for PC.
GPR30 is structurally unrelated to the classical ERs

(ESR1 and ESR1). It is a seven-transmembrane-domain

receptor localized at the cell surface (Bologa et al. 2006,

Funakoshi et al. 2006), endoplasmic reticulum (Thomas

et al. 2005, Prossnitz et al. 2007, Otto et al. 2008),

perinuclear compartment (Cheng et al. 2011), and nucleus

(Madeo & Maggiolini 2010). The successful development

of a highly selective non-steroidal agonist, G-1, for GPR30,

provides a tool for studying the action of GPR30

independent of the actions mediated by ESR1 and ESR2

(Bologa et al. 2006, Blasko et al. 2009). Activation of GPR30

was found to play opposite roles in the regulation of the

growth of various normal and neoplastic tissues, promot-

ing growth of breast, endometrium, and ovarian tissues

(Filardo et al. 2000, Vivacqua et al. 2006, Albanito et al.

2007, Pandey et al. 2009), but inhibiting growth of

thymocytes, urothelial cells, vascular smooth muscle

cells, and ER-positive breast cancer cells (Albanito et al.

2007). The dual action of GPR30 could be related in part to

its differential activation of downstream mediators,

including EGFR, PI3K, Erk1/2, cAMP, and intracellular

Ca2C (reviewed in Maggiolini & Picard (2010) and

Prossnitz & Barton (2011)). We demonstrated that in PC

cells, the activation of GPR30 by G-1 leads to growth

inhibition via an ERK/p21-mediated cell cycle arrest at the

G2 phase (Chan et al. 2010). In addition, we found that

G-1 inhibited the growth of PC-3 xenografts that lack the

androgen receptor (AR). Still unknown are the mode of

action of G-1 in vivo and the potential link between its

efficacy and androgen status in PC.

This study evaluated the efficacy of G-1 in inhibiting

the growth of LNCaP xenografts during the androgen-

sensitive (AS) or the castration-resistant (CR) phase. In this

study, we report that G-1 inhibited the growth of the

xenograft in castrated (low testosterone) animals but not

in intact, androgen-supported animals (high testoster-

one). The G-1-induced growth inhibition in the CR

xenograft was associated with massive necrosis, neutro-

phil infiltration, upregulation of a set of cell-mediated

immune response genes, and enhanced expression of

GPR30 (GPER1). Results obtained from cell-based experi-

ments revealed that GPR30 is repressed by androgen,
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whereas immunohistochemical results indicated a larger

proportion of human CRPC metastases than primary PC

express high GPR30 level. Collectively, these results

provide support for targeting GPR30 with G-1 as a possible

new approach for the treatment of CRPC.
Materials and methods

Human specimens

Human tissue microarrays were obtained from

Massachusetts General Hospital (primary PC) and the

University of Washington (metastatic CRPC). Samples

were de-identified; only those with complete clinical

information, follow-up data, and good tissue quality

were included. The primary PC cohort comprised one

specimen each from 232 patients with PC (i.e. 232

specimens) taken at prostatectomy (Leung et al. 2010).

The metastatic CRPC cohort comprised patients who

participated in the Rapid Autopsy Program during the

period 1999–2006; it consisted of 123 CRPC specimens,

including 75 bone (spine, ribs, pelvis, sternum, ischium,

iliac, and sacrum), 29 lymph node, 14 liver, and five lung

metastasis tissues from 24 patients. The use of the

specimens was reviewed and approved by the Institutional

Review Board committees of the respective universities.
Cell culture and siRNA experiments

Human PC cell lines LNCaP and PC-3 were obtained from

the American Type Culture Collection (ATCC, Manassas,

VA, USA) and passaged for less than 3 months after

resuscitation. Both LNCaP and PC-3 were retro-authenti-

cated by ATCC with short tandem repeat profiling (March

13, 2013) and confirmed to be the original cell line. LNCaP

cells were maintained in RPMI-1640 medium (Invitrogen)

supplemented with 10% FBS; sodium pyruvate, 1 mmol/l;

L-glutamine, 2 mmol/l; and D-glucose, 1.25 g/l. PC-3 cells

were maintained in F-12K medium (ATCC) supplemented

with 10% FBS. Cells were cultured at 37 8C in an atmosphere

of 5% CO2. For androgen treatment (R1881 and dihydro-

testosterone (DHT)), LNCaP (2.5!105) and PC-3 (2!105)

cells were seeded in phenol-red-free RPMI-1640 (with

supplements) and F-12K media, respectively, supplemented

with 10% charcoal-stripped FBS. For drug treatment, drugs

were added daily for 4 days, and the medium was changed

every 2 days. For siRNA-AR (siAR) transfection, cells were

replenished with 1.6 ml of fresh medium and 400 ml of

siAR-DharmaFECT mixture (50 nM Stealth RNAi siAR,

Invitrogen; DharmaFECT3 for LNCaP and DharmaFECT2
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
DOI: 10.1530/ERC-14-0402 Printed in Great Britain
for PC-3 cells, Dharmacon, Lafayette, CO, USA) the

following day. At day 3, cells were recovered with the

respective medium containing 10% charcoal-stripped FBS,

and drugs were added daily for 4 days. Transfection was

repeated on day 2 of drug treatment. At the end of the

experiments, cells were collected for RNA extraction. For the

transfection-negative control, cells were treated with

DharmaFECT and siRNA-non-targeting (siNT, Dharmacon).
Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP)-sequencing and

ChIP were carried out as described previously using an

antibody to AR (ab74272, Abcam, Cambridge, MA, USA;

Decker et al. 2012). The site-specific qPCR primers for

the AR-binding site at the GPER1 (GPR30) locus were as

follows: forward, 5 0-CTGGGACAACGTGAGCAGTAAG-3 0

and, reverse, 5 0-CCAACTACTTTACCAGCCAGCA-3 0. The

primers for prostate-specific antigen (PSA (KLK3)) enhan-

cer and control regions have been described previously

(Zheng et al. 2013).
Microarray experiment and analysis

RNA was extracted from LNCaP xenografts with TRIzol

Reagent (Invitrogen); RNA extracts with integrity numbers

of less than 8 (four animals in each group), as measured by

Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA),

were used for microarray analysis. The detailed microarray

study is available in the Supplementary Methods, see

section on supplementary data given at the end of this

article. The data are accessible through the NCBI Gene

Expression Omnibus Series accession number: GSE54974.
Xenograft study

In the first set of experiments, GPR30 mRNA expression

was compared in tumors grown before and after the

castration of mice. Male athymic nude mice (4–6 weeks

old, 20–25 g, Taconic, Hudson, NY, USA) each received a

subcutaneous implant of a 2 cm-long silastic capsule

containing w15 mg testosterone (Sigma), while the

animals were under general anesthesia using isoflurane.

After 2 days, LNCaP cells (5!106 cells) in 150 ml of

Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) were

injected subcutaneously into the flanks of mice, and the

tumors that developed were measured twice weekly (Chan

et al. 2010). When the tumors reached 150–300 mm3, mice

were divided into two groups: intact and castrated

animals. Tumors growing in the intact mice are referred
Published by Bioscientifica Ltd.

http://erc.endocrinology-journals.org/cgi/content/full/ERC-14-0402/DC1
http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-14-0402


E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Research H-M Lam et al. GPR30-targeted therapy
with G-1 in CRPC

21 :6 906
as AS tumors. For the castrated group, the silastic capsules

were removed and mice were surgically castrated under

general anesthesia using isoflurane. Tumors regressed and

then regrew after castration (approximately 3 weeks post-

castration); these tumors are referred as CR. AS or CR

tumors at approximately 1000 mm3 were collected to

determine the expression of GPR30 mRNA.

In the second set of experiments, the therapeutic

efficacy of G-1 on AS and CR tumors was evaluated and

compared. LNCaP xenografts were developed as described

in the first set of experiments. Both AS and CR tumors were

enrolled when tumors reach approximately 300–400 mm3

in size. Mice received subcutaneous injections of a vehicle

(95% PBS, 2.5% DMSO, and 2.5% ethanol; v/v) or G-1

(4 mg/kg) daily for 16 days. Tumors and body weight were

measured twice weekly. Mice were killed and weighed after

removal of the xenografts. The protocol for animal use was

approved by the Institutional Animal Care Committee at

the University of Cincinnati.
Serum enzyme assays

Serum obtained from mice was assayed for creatine kinase

(CK), lactate dehydrogenase (LDH), alanine transaminase

(ALT), and aspartate transaminase (AST) using IDTox

enzyme assay kits (ID Labs, London, ON, Canada)

following the manufacturer’s protocols.

Quantitative real-time PCR

Total RNA was treated with RNase-free DNase (Qiagen)

and reverse-transcribed (Chan et al. 2010). Real-time PCR

was carried out as described previously (Chan et al. 2010).

Species-specific primer sequences are presented in Supple-

mentary Table S1, see section on supplementary data

given at the end of this article. PCRs with SYBR GreenER

PCR Master-Mix (Invitrogen) were monitored using the

7900HT Fast Real-time PCR System (Applied Biosystems).

Individual mRNA levels were normalized to glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH).
Histopathology and immunohistochemistry analyses

Formalin-fixed xenograft samples were processed for

hematoxylin and eosin (H&E) staining and subjected to

histological examination for necrosis and inflammation;

the thickness of the tumor capsule was determined by the

surgical pathologist (J W). Analysis of paraffin-embedded

human PC and LNCaP xenograft sections by immunohis-

tochemistry (IHC) was performed as described previously
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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(Leav et al. 2001). Antibodies and quantification of

necrosis and markers are described in the Supplementary

Methods and Table S2, see section on supplementary data

given at the end of this article.

For clinical specimens, GPR30 expression was graded

independently by two investigators (H-M L and J W) in a

blinded manner. Signal intensity (0–3) and percentage of

signal coverage (0–100) of each section were scored, and the

product of the intensity and coverage was represented as

an H-score (0–300) (Huang et al. 2005). For the metastatic

CRPC cohort, H-scores were an average of duplicated cores

in a specified metastatic site of each patient. In all cases

of bone metastases, two to three sites were acquired per

patient and an average H-score was calculated. The

distribution of the H-score showed bi-modal or multi-

modal properties in the clinical data: 45% of the specimens

showedH-scores of less than 100, approximately 32% of the

specimens showed H-scores of 100–199 and 23% of the

specimens amassed H-scores of 200–300. In this study,

we used a dichotomous variable of H-score group (i.e.

H-score of 100 or more versus less than 100) in the analysis

to reduce possible bias due to the distribution of the

original H-score and to improve the statistical power.

In order to assess the sensitivity of using different

definitions to the H-score variables, the same analysis was

repeated after replacing the dichotomous variable with

a three-level category variable (i.e. H-score 0–99 versus

100–199 versus 200–300) as well as the original H-score.

Those results were found to be consistent with the results

of the main analysis using the dichotomous variable

presented in this study.
Statistical analyses

Numerical dependent variables were analyzed by one-way

ANOVA and the post hoc Bonferroni tests to compare

means if more than two groups were involved. t-tests were

used if means of two groups were compared. Categorical

dependent variables were compared among groups

using c2 tests. All differences were considered significant

when P!0.05.
Results

G-1 inhibits growth and induces necrosis in CR tumors

with no apparent toxicity to the host

We compared the inhibitory effect of G-1 on AS or CR

tumors growing in intact or castrated (low testosterone)

mice respectively. Administration of G-1 significantly
Published by Bioscientifica Ltd.
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Figure 1

G-1 inhibited growth and induced necrosis in the castration-resistant

tumors. G-1 inhibited growth of the CR tumor (bottom panel) but not the

androgen-sensitive tumors (top panel). When LNCaP xenografts grew to

150 mm3, mice were divided into two groups: intact and castrated. Intact

animals received subcutaneous injections of a vehicle (2.5% DMSO and 5%

ethanol) or G-1 (4 mg/kg) daily for 16 days. For the castrated group, mice

were castrated and, when the tumor re-emerged, they were treated with a

vehicle or G-1 daily for 16 days. Error bars represent meanGS.E.M.,

nZ6–8/group, *P!0.05.
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inhibited the growth of CR tumors after 16 days of

treatment (P!0.05, Fig. 1). Similar results were obtained

in CR tumors including C4-2 and PC-3 (Supplementary

Figure S3, see section on supplementary data given at the

end of this article). Massive necrosis and inflammation

were observed only in the G-1-treated LNCaP CR tumors

(in seven out of eight mice). Inflammation was attended

by considerable neutrophil infiltration of the necrotic area

as well as of the healthy area of these tumors (Fig. 2A).

This intratumoral neutrophil infiltration was not observed

in either vehicle-treated CR tumors or vehicle/G-1-treated

AS tumors that displayed only ischemic necrotic foci with

no inflammation/neutrophils (Fig. 2A). We did not

examine T cells in this study because nude mice are

deficient in these cells (Pelleitier & Montplaisir 1975).
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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B cells and macrophages were found exclusively in the

intratumoral stroma and the tumor capsule, respectively,

in all treatment groups (Supplementary Figure S1).

Notably, G-1-induced necrosis occupied an average of

65% of the tumor volume (PZ0.0003, Fig. 2B).

Furthermore, G-1 significantly reduced the intratumoral

microvessel density in CR tumors but not in AS tumors

(Fig. 2C, left panel). No significant alteration in micro-

vessel density was observed in the tumor capsule with G-1

treatment (Fig. 2C, right panel). In the viable area of the

tumors, cell proliferation (Ki67 staining) remained rela-

tively constant in the four treatment groups except for an

increase of 10–20% when compared with vehicle-treated

counterparts in Ki67-staining cells in G-1-treated CR

tumors (Fig. 2D, left panel). G-1 induced a slight but

significant increase in apoptosis (cleaved caspase-3

staining) in the CR tumors (Fig. 2D, right panel).

Our previous work had demonstrated that G-1 did not

have general toxicity (on the basis of body weight and

tissue histology) in the animals (Chan et al. 2010). In this

study, we further report that G-1 did not induce any

changes in body weight or cause functional damage to the

heart or the liver in mice after 16 days of treatment with

G-1, as indicated by the levels of injury biomarkers in the

serum (CK and LDH for heart injuries; AST and ALT for

liver injuries, Fig. 2E).
G-1 induced specific changes in gene expression

exclusively in CR tumors

Global transcriptome profiling was performed on vehicle/

G-1-treated AS and CR tumors (four groups of tumors,nZ4).

Overall, the profiling results identified 2446

differentially expressed genes among the four treatment

groups (false discovery rate (FDR)!0.1, P!0.01, nZ4 per

group). Unbiased hierarchical clustering analysis showed no

significant differences in gene expression between the

vehicle-treated and the G-1-treated AS tumors (Fig. 3, left

side of heat map). However, this analysis identified two

clusters of genes (a total of 1082) that were altered by G-1

exclusively in the CR tumors (Fig. 3, right side of heat map).

Subsequent gene shaving using two additional criteria –

P!0.01 and a difference of at least 1.5-fold between G-1-

treated and vehicle-treated CR tumors – yielded a final set of

99 genes (Fig. 3A, gray panel). Ingenuity Pathway Analysis

(IPA) of the 99 genes showed enrichment of the top

biological pathway ‘antigen presentation, cell-to-cell signal-

ing and interaction, and inflammatory response’, followed

by ‘genetic disorder, neurological disease, and skeletal and

muscular disorders’. Furthermore, the top canonical
Published by Bioscientifica Ltd.
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G-1 induced massive necrosis and neutrophil infiltration in the CR tumors.

(A) G-1 triggered massive necrosis in CR tumors. Tumor sections were

stained with H&E, and the necrotic area was quantified as described in the

Supplementary Methods. (B) G-1 induced significant necrosis associated

with massive inflammation, which in turn was associated with neutrophil

infiltration, both surrounding the necrotic area and within the viable area,

in CR tumors only. The yellow arrow represents massive inflammation.

Magnification: 20! (H&E, upper panel), 200! (H&E, lower panel), 100!

(neutrophil IHC, upper panel), and 200! (neutrophil IHC, lower panel).

Scale bars represent 50 mm in all micrographs. (C) G-1 reduced the

microvessel area ratio in the intratumoral stromal region but not in the

tumor capsule. Microvessel area ratio is calculated as the ratio of the

microvessel area to the intratumoral stromal area or the capsule area.

(D) Ki67 and cleaved caspase-3 staining of tumor cells was used to

determine proliferation and apoptosis respectively. (E) G-1 did not induce

toxicity in castrated mice as determined by the absence of changes in body

weight (left panel) and in serum assays of organ damage marker enzymes

(right panel). Error bars represent meanGS.E.M., nZ6–8/group, *P!0.05;

NS, not significant; H&E, hematoxylin and eosin; IHC,

immunohistochemistry.
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pathway identified in this specific set of G-1-associated

genes is ‘communication between innate and adaptive

immune cells’ (Supplementary Table S3, see section on

supplementary data given at the end of this article).

To focus on identifying molecular mediators of G-1-

induced inflammation/neutrophil infiltration, we selected

a set of genes from the 99-gene panel for confirmation

based on a literature search showing their relatedness to

cell-mediated immune responses. Quantitative real-time

PCR analyses (nZ6 per group) validated the upregulation

of the expression of these genes in G-1-treated CR tumors

but not in G-1-treated AS tumors when compared with

their respective vehicle-treated controls. These include
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
DOI: 10.1530/ERC-14-0402 Printed in Great Britain
four chemokine genes CP, IL8 (CXCL8), CCL2, and

CXCL12; three interferon-induced antiviral genes IFIT2,

IFIT3, IFIT4; and SOD2, an important oxidative stress

response gene (Fig. 3B). As human interleukin 8 (IL8) is a

strong chemo-attractant for both human and mouse

neutrophils (Geiser et al. 1993, Schaider et al. 2003), we

analyzed murine neutrophil-related cytokine genes using

quantitative real-time PCR. Expression of murine genes

involved in neutrophil movement, accumulation,

adhesion, activation, and phagocytic respiratory burst,

including Il1b, Il6, Il18, Tnfa (Tnf), Cxcl12, Cxcl1, Cxcl3,

S100a8, S100a9, and Cd14 (Cacalano et al. 1994, Leung

et al. 2001, Ryckman et al. 2003, Harokopakis &
Published by Bioscientifica Ltd.
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G-1 induced unique changes in gene expression in castrated animals.

(A) Heat map of hierarchically clustered differential gene expression in

intact or castrated animals treated with a vehicle or G-1 blue, down-

regulated; yellow, upregulated; nZ4 per group. A scheme for gene

selection for Ingenuity Pathway Analysis is shown. (B) Quantitative

real-time PCR analyses of the G-1-induced human and mouse genes in

intact and castrated animals. Data were normalized to the levels of

housekeeping genes: human-specific GAPDH (for human genes) or ActB

(for mouse genes). Error bars represent meanGS.E.M., nZ6. #P!0.05

compared with intact-vehicle treatment and *P!0.05 compared with

castrated-vehicle treatment. NS, not significant.
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Hajishengallis 2005, Eash et al. 2010), was elevated by 1.8-

to 50.9-fold in G-1-treated vs vehicle-treated CR tumors

(Fig. 3B). Interestingly, the expression of human IL1B was

not altered in CR tumors with G-1 treatment.
Androgen represses GPR30 expression via AR,

and castration increases GPR30 expression

In an attempt to explain why G-1 inhibited growth only

in an androgen-deprived environment, we determined the

effect of androgen on GPR30 expression. Androgen is the

principal hormone regulating prostate function. Treat-

ment of LNCaP cell cultures with R1881 (a synthetic

androgen) or DHT (the physiologically active androgen)

reduced the expression of GPR30 mRNA; the effects of

these androgens were abolished by cotreatment with

bicalutamide, an AR antagonist, or by transduction of a

siRNA against AR (Fig. 4A and B, upper panels). These

responses were not observed in the AR-negative PC-3 cells

(Fig. 4A and B, bottom panels). These results indicate that

androgen represses GPR30 expression via mechanisms

involving the AR. Furthermore, ChIP-sequencing analyses

of LNCaP cells revealed a strong AR-binding site approxi-

mately 3.5 kb downstream of the 3 0 end of the GPR30

(GPER1) gene after androgen stimulation (Supplementary

Figure S2, see section on supplementary data given at the
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
DOI: 10.1530/ERC-14-0402 Printed in Great Britain
end of this article, upper panel). This AR-binding site on

GPR30 was further validated by an independent site-

specific ChIP–qPCR analysis (Supplementary Figure S2,

lower panel).

In the LNCaP xenograft model, expression of GPR30

mRNA was significantly higher (approximately eightfold)

in CR tumors grown in castrated mice than in AS tumors

grown in intact mice (Fig. 4C). Expression of AR mRNA

in CR tumors was increased by 1.8- to 4.6-fold when

compared with that in AS tumors (data not shown). These

results are in concordance with those from cell-based

studies, indicating that GPR30 expression is repressed

by androgen via AR-mediated signaling.
GPR30 expression is higher in metastatic CRPC

than in primary PC

We reasoned that GPR30 in CRPC metastases needs to be

expressed at significant levels before we can consider it

as a new therapeutic target for CRPC. Hence, we used IHC

to assess the level of GPR30 expression in specimens

obtained from two cohorts of patients. The first cohort

included only primary cancers from specimens obtained at

prostatectomy (nZ232) and the second comprised CRPC

metastases (nZ123). We found that 80% of the metastatic

CRPC specimens expressed high levels of GPR30, with an
Published by Bioscientifica Ltd.
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Androgen suppressed GPR30 expression via AR. (A) Androgen (white bars,

0.1 and 1 nM) suppressed GPR30 expression, and suppression was reversed

by bicalutamide (black bars) in AR-positive LNCaP cells but not in

AR-negative PC-3 cells. Cells were treated with androgen in the presence or

absence of bicalutamide for 4 days. Prostate-specific antigen (PSA) was a

positive control for the androgen-stimulated AR response gene. (B) siAR

abolished the androgen-suppressed GPR30 expression in LNCaP cells.

Error bars represent meanGS.D. of three independent experiments,

**P!0.01. (C) Castration upregulated GPR30 expression in vivo. RNA was

extracted, and GPR30 expression of the LNCaP xenograft in intact mice (AS

tumor, nZ9) was compared with that after castration of mice (CR tumor,

nZ9). Relative mRNA expression was compared with that of intact mouse
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H-score of 100 or more when compared with 54% of

primary PC specimens with an H-score of 100 or more

(PZ0.001) (Fig. 5).

GPR30 staining in PC was not correlated with age, the

Gleason score of primary cancer, final PSA level, type of

androgen deprivation therapy (ADT), or duration of ADT

(Supplementary Table S4, see section on supplementary

data given at the end of this article). Interestingly, no

difference in the H-scores of GPR30 was observed among

the 75 bone metastases obtained from different locations

(H-score approximately 162–165; pelvis/sternum/ischiu-

m/iliac/sacrum versus rib/limb versus spine; Supple-

mentary Table S5).
Discussion

In this study, we determined that G-1, a GPR30 agonist,

inhibited the growth of CR tumors but not during their
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
DOI: 10.1530/ERC-14-0402 Printed in Great Britain
preceding AS growth phase, with no detectable toxicity

to the host. The G-1-induced growth inhibitory response

was manifested as massive necrosis attended by marked

neutrophil infiltration in the affected tumors, associated

with the activation of gene pathways involved in innate

antitumor immunity. We also demonstrated that andro-

gen suppressed GPR30 expression in an AR-dependent

manner and that castration markedly upregulated its

expression. Clinically, we observed an elevated prevalence

of high levels of GPR30 in CRPC metastases when

compared with that in primary PC. Taken together, these

findings provide evidence for the effective preclinical

targeting of GPR30 with G-1 for CRPC.

In this study, we aimed to examine the activation of

GPR30 by G-1 in both an androgen-supported (intact) and

an androgen-deprived (castrated) environment in vivo. We

had previously demonstrated that G-1 inhibited growth in

cell culture experiments and a hormone-independent PC-3
Published by Bioscientifica Ltd.
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Figure 5

GPR30 staining in primary PC and CRPC metastases. A high level of GPR30

was detected in a larger proportion of metastatic CRPC specimens when

compared with primary PC specimens.
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xenograft in castrated hosts (Chan et al. 2010). This study

further demonstrated the efficacy of G-1 in the LNCaP

xenograft model, which recapitulates the natural history of

PC progression from AS to CR. We found that, in the LNCaP
Vehicle

Necrosis

G-1

Figure 6

A schematic diagram showing G-1-induced innate antitumor response in

castration-resistant LNCaP prostate cancer in vivo. For LNCaP xenografts in

vehicle- or G-1-treated intact animals or vehicle-treated castrated animals,

focal ischemic necrosis was detected in the tumor. However, in G-1-treated

castrated animals, massive necrosis and neutrophil infiltration were

detected in the necrotic area as well as within the viable area of the tumor.

http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
DOI: 10.1530/ERC-14-0402 Printed in Great Britain
xenograft model, G-1 inhibited the growth of CR tumors

but not AS tumors, indicating that the androgen depri-

vation may favor the anti-tumor action of G-1.

Histological examinations have indicated that G-1

induced massive tumor necrosis in the castrated mice and

invasion of the viable region of G1-treated tumors by

numerous tumor-infiltrating neutrophils (TINs). At the

molecular level, upregulation of chemokine and inflam-

matory response genes, including CP, IL8, CCL2, CXCL12,

and IFITs, were uncovered by transcriptome profiling and

confirmed by qPCR. Thus, one hypothesis is that chemo-

kines secreted by viable CRPC cells and/or additional tumor

tissue remodeling factors stimulated by G-1 may direct the

migration of neutrophils (illustrated in Fig. 6). Neutrophils

have been implicated in tumor progression and antitumor

response. Mild infiltration of neutrophils stimulates

proliferation and metastasis in cancer (Gregory &

Houghton 2011). However, high levels of TINs induce

a destructive oncolytic response (Fu et al. 2011) and are

associated with cytotoxicity and tumor regression (Di

Carlo et al. 2001). Neutrophils produce cytotoxic

mediators, including reactive oxygen species, proteases,

membrane-perforating agents, and soluble cell-kill

mediators (Di Carlo et al. 2001). Moderate or extensive
Necrosis
Tumor capsule

IFIT2,
IFIT3,
IFI44,
CP,
and

SOD2

II1b, II6, II18,
CxcI12, Tnfα,
CxcI1, CxcI3
S100a8, S100a9, and Cd14

IL8, CCL2, CXCL12, and CP

LNCaP cell
Neutrophil
B-cell
Macrophage

(Box) In human xenografts, the levels of expression of human-specific

chemokine and inflammatory response genes were increased; in the mouse

stroma, the levels of expression of a panel of murine-specific neutrophil-

related cytokine genes were elevated. In both intact and castrated animals,

macrophages resided in the tumor capsule and B cells localized to the

intratumoral stroma of the LNCaP xenograft.
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levels of TINs are associated with reduced mortality in

gastric cancer (Caruso et al. 2002), indicating that

neutrophils are active in immunosurveillance against

cancer. Key TIN-associated cell-kill mediators, including

IL1b and tumour necrosis factor alpha (TNFa) (Di Carlo

et al. 2001), were detected in the G-1-induced tumor

necrosis. Previous results have indicated that transgenic

expression of IL8 and TNFa in tumor cells elicited

prominent neutrophil-mediated antitumor activity

(Hirose et al. 1995, Musiani et al. 1996). In addition,

ceruloplasmin (CP) produced by the CR tumor cells attracts

neutrophils and enhances phagocytosis of neutrophils

(Saenko et al. 1994). In contrast to the systemic upregula-

tion of cytokines, which may pose a health hazard to

immunocompromised patients with cancer, local and

specific recruitment of neutrophils may provide a new

approach to the targeted treatment of cancer (Hirose et al.

1995, Fu et al. 2011).

GPR30 expression has been reported to be upregu-

lated by various growth factors, HIF1a, and progestin

(Ahola et al. 2002, Albanito et al. 2008, Recchia et al. 2011,

De Marco et al. 2013). However, only one report described

a decrease in GPR30 expression after estrogen treatment

in the human internal mammary artery (Haas et al. 2007).

This estrogen-induced suppression of GPR30 was not

detected in neurons (Jacobi et al. 2007), indicating that

the regulation of GPR30 expression is cell-context-

specific. In this study, we demonstrated for the first time

that androgen, the principal hormone in the prostate,

inhibited GPR30 expression that was dependent on AR.

Interest has started to focus on the crosstalk between AR

and ER signaling in PC (Yang et al. 2012, Claessens &

Tilley 2014, Nelson et al. 2014). The goal of current

treatments of CRPC is to maximally suppress androgen

signaling, which may in turn remove the androgen

suppression of GPR30 expression, resulting in a high

level of GPR30 in late-stage CRPC. In this study, we

provided convincing evidence that, in both a preclinical

model and in human specimens, reduced androgen levels

in CRPC enhanced GPR30 expression when compared

with hormone-naı̈ve PC. The wide expression and high

levels of GPR30 may highlight an unprecedented oppor-

tunity to target this protein in clinical metastases of

CRPC.

Existing therapies for CRPC offer limited gains in

survival and trigger adverse effects; thus, attention has

begun to focus on the sequence of application of these

treatments (Higano & Crawford 2011). The current LNCaP

model represents a subtype of CRPC in which G-1 induced

intra-tumoral neutrophil infiltration associated with
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
DOI: 10.1530/ERC-14-0402 Printed in Great Britain
tumor necrosis. Similarly, we reasoned that a subset of

patients harboring CRPC may benefit from G-1 therapy if it

is delivered before the patients receive chemotherapy,

which can compromise neutrophil production. In light of

the most recent CRPC that failed second-generation ADT

(i.e. abiraterone acetate and MDV3100), whether or not the

expression of GPR30 or the population of patients

expressing high levels of GPR30 is increased upon

resistance is a clinically interesting question with respect

to the further exploration of GPR30 as a novel targeted

therapy for late-stage CRPC. Importantly, in all the

animal studies reported to date, G-1 did not induce

adverse effects (Blasko et al. 2009, Dennis et al. 2009,

Chan et al. 2010, Gao et al. 2011). G-1 toxicity to the

functions of vital organs including heart and liver has been

further proven to be undetectable in this study. One major

concern regarding estrogen-related treatment in PC is the

increase in the risk of venous thromboembolism (reviewed

in Cox & Crawford (1995)). Although G-1 is a specific

GPR30 agonist that has been shown not to bind ERa at a

concentration up to 10 mM (Bologa et al. 2006), definitive

evidence for the absence of estrogen-mediated coagulo-

pathy in vivo is required.

Our findings, taken together, indicated that G-1

effectively inhibited preclinical CRPC growth with a low

risk of toxicity; underscoring that G-1 or other GPR30-

specific agonists might serve as novel anticancer agents for

CRPC that expresses GPR30. The upregulation of

GPR30 expression after androgen ablation and the

recruitment of neutrophils to the CR tumors are both

indicative of a potentially important therapeutic window

for G-1/GPR30-targeted therapy preferably under the

conditions of a low or ultra-low androgen levels in CRPC

before chemotherapy.
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Abstract
Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the dis-

ease process. In some patients, disseminated tumor cells (DTC) proliferate to form active

metastases after a prolonged period of undetectable disease known as tumor dormancy.

Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to

the lack of in vitromodels. Here, we characterized in vitro PCa dormancy-reactivation by

inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor

cell contact with each other and with bone marrow stroma. Proliferating PCa cells demon-

strated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene

expression analyses on proliferating cells cultured on bone marrow stroma revealed a

downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to

their non-proliferating counterparts. Furthermore, constitutive activation of myosin light

chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-prolif-

erating cells promoted cell proliferation. This cell proliferation was associated with an upre-

gulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first

clinically relevant in vitromodel to support cellular adhesion and downregulation of TGFB2

as a potential mechanism by which PCa cells may escape from dormancy. Targeting the

TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa

metastasis.

Introduction
The dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the
PCa disease process [1, 2]. In many cases, these disseminated tumor cells (DTC) proliferate to
form active metastases after a prolonged period of undetectable disease following prostatec-
tomy. This latency period is often referred to as tumor dormancy. To date, dormancy remains
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a significant clinical challenge, as PCa patients presented with bone metastases ultimately stop
responding to second line therapies and eventually succumb to the disease. Thus, it has become
paramount to identify mechanisms of tumor dormancy in an effort to prevent PCa recurrence.

A dormant tumor cell does not actively proliferate, yet has the potential to multiply given
the right external cues. By this definition, multiple scenarios could potentially induce dor-
mancy, including unfavorable tumor microenvironment, nutrient starvation, the inherent
nature of the DTC, or epigenetic changes caused by the microenvironment [2, 3]. However,
not all instances of indolent PCa necessarily constitute dormancy. A patient may simply have
slow-growing tumor cells residing at the metastatic site at the time of initial treatment and
experience recurrence shortly thereafter. Others may never experience recurrence, while a sub-
set of patients experience recurrence only after extended periods. To date, the mechanisms of
dormancy remain largely unknown. However, the urokinase-like plasminogen activator (uPA)
and its associated receptor (uPAR) have been implicated in the regulation of dormancy in vari-
ous cancers. Specifically, high levels of uPA and uPAR induce dormancy escape by upregulat-
ing ERK/p38 ratio within cancer cells [4, 5]. This high uPAR expression was associated with
the activation of αvβ1 integrin, resulting in tumor growth [4–7]. In a separate study, uPA-regu-
lated migration of tumor cells was activated by the myosin light chain kinase (MLCK) [8]
which phosphorylation was induced by ERK [9]. MLCK is a known regulator of contractility,
motility, and adhesion [10, 11], however the role of MLCK in PCa dormancy escape remains
unknown.

Matrix and intercellular adhesions has been implicated in tumor dormancy regulation.
Studies showed that integrin-mediated cellular adhesion to the extracellular matrix activates
MAPKs [12–14] which regulates tumor growth [15–19]. In PCa, upregulation of β1 integrin
promotes the growth and invasion of cells [3, 20], and interactions between tumor and stroma
may be attributable to the escape of dormant cells from radiotherapy [21]. Recent studies
examining human PCa cell lines on mouse bone marrow stroma have identified important fac-
tors in the mouse hematopoietic niche that regulate dormancy [22, 23].

We here characterized the dormancy and growth of three PCa patient-derived xenografts
(PDXs) established from metastases obtained at rapid autopsy or surgery on human bone mar-
row microenvironment in vitro. These PDXs (LuCaP 86.2, 92, and 93) displayed in vitro quies-
cence in typical cell culture conditions which may represent dormancy and we aimed to
identify the role of cell-cell adhesion in the release of PCa from dormancy in a human bone
marrow context. We determined that tumor cell-cell contact on bone marrow stroma is neces-
sary for LuCaP PDX cells to proliferate in vitro and was associated with a universal downregu-
lation of TGFB2. Furthermore, LuCaP PDXs dormancy reactivation could be recapitulated by
constitutively activating MLCK and cyclin-dependent kinase 6 (CDK6).

Materials and Methods

Dissociation, isolation, and culture of LuCaP PDX in vitro
Bone marrow stromal cells (BMSC) that were isolated from a patient with PCa bone metastases
(BM2508) were seeded at 50,000 cells/cm2 overnight. The following day, BM2508 cells were
treated with 10 μg/mL mitomycin C (Sigma, St Louis, MO) for 1 hour. LuCaP PDXs that were
routinely passaged in vivo as described previously [21] were excised and dissociated using the
Miltenyi human tumor dissociation kit (Miltenyi Biotec Inc., San Diego, CA; #130-95-929) and
enriched by positive selection using magnetic microbeads against human epithelial antigen
EpCAM/CD326 (Miltenyi Biotec Inc.; #130-061-101) according to the manufacturer’s instruc-
tions. LuCaP PDX cells were then seeded on top of the BM2508 cells at either 50,000 cells/cm2

(G; growing/proliferating) or 50 cells/cm2 (NG; not growing/dormant). At day 8, the LuCaP

Dormancy Escape in Prostate Cancer
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PDX cells were differentially trypsinized and enriched by positive and negative selection with
magnetic beads, fluorescently labeled for EpCAM/CD326 and individually plucked with a
micromanipulator as described previously [24]. Furthermore, to ensure that NG cells were dor-
mant instead of senescent, a β-galactosidase assay (Pierce Biotechnology, Inc., Waltham, MA;
#75707) was performed on all NG LuCaP PDX cells according to manufacturer’s instructions.
All procedures involving human subjects were approved by the Institutional Review Board of
the University of Washington Medical Center and all subjects signed informed consent. The
animal study was specifically approved by the University of Washington Institutional Animal
Care and Use Committee and all animal procedures were performed in compliance with the
NIH guidelines.

Immunofluorescent staining
The LuCaP PDX cells were dissociated, selected and plated as described above on glass cover-
slips conjugated with lysine. At day 8, cells were fixed with ice-cold methanol, blocked with 5%
horse-goat-chicken serum and stained for EpCAM and Ki67 or 1 integrin using a FITC-conju-
gated mouse monoclonal anti-human Ber-EP4 antibody (DAKO, Carpinteria, CA; F086001),
and a rabbit polyclonal anti-human Ki-67 antibody (Santa Cruz Biotechnology, Dallas, TX;
SC-15402) or a rabbit polyclonal anti-human ITGB1 antibody (Santa Cruz Biotechnology; SC-
9970) in conjunction with a goat anti-rabbit Alexa-Fluor 546 conjugated secondary antibody
(Life Technologies, Carlsbad, CA; A-11035). Coverslips were then mounted with ProLong
Gold antifade reagent containing DAPI (Life Technologies; P-36931).

Cell count andWST-1 assays
C4-2B (a gift from Dr. Leland Chung; [25]) and dissociated LuCaP PDX cells (LuCaP 86.2, 92,
93, 96, 141; [26–28]) were plated in RPMI-1640 or MEM (Life Technologies) respectively sup-
plemented with 10% fetal bovine serum (FBS). Cells were seeded either sparsely (50 cells/cm2)
or densely (50,000 cells/cm2) on a confluent monolayer of BMSC (50,000 cells/cm2) that was
pretreated with 10 μg/ml mitomycin C. For C4-2B cells seeded sparsely on BMSC, after 1 and 8
days, cells were stained for EpCAM, Ki67, and DAPI as described above. Only EpCAM+-
epithelial cells (representing C4-2B cells because BMSC are EpCAM-) were counted in the
whole chamber under a fluorescent microscope using 200× magnification. For C4-2B cells
seeding without BMSC, WST-1 assay (Roche Diagnostics Corporation, Indianapolis, IN) was
carried out according to the manufacturer’s instructions. Absorbance was read on a microplate
reader at 450 nm, and the background absorbance (media only) was subtracted from all read-
ings. For LuCaP PDX cells, after 3, 7, and 14 days on BMSC, cells were trypsinized, stained for
EpCAM and Ki67 as described above, and resuspended in 50 μl of ProLong Gold antifade
reagent containing DAPI. Two-aliquots of 10 μl of stained cells were counted and EpCAM
+ epithelial cells (i.e. LuCaP PDX cells) were recorded.

Flow cytometric analysis
C4-2B cells were cultured overnight in RPMI-1640 medium supplemented with 10% FBS and
then treated with DMSO or ML-7 (10μM) for 24h and 48h. The treated cells were trypsinized,
fixed, stained with 10 μg/μL DAPI (4',6-diamidino-2-phenylindole, Life Technologies)/1% NP-
40 /10% DMSO, and lysed using 25G syringe. At least 10,000 stained cells were analyzed using
BD LSR II Flow Cytometer System (BD Biosciences, San Jose, CA) and cell cycle was analyzed
by MultiCycle (De Novo Software, Glendale, CA)
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Viral transduction and drug treatments of LuCaP PDX cells in vitro
LuCaP PDXs were dissociated and selected as described above and plated at 50,000 cells/cm2

without stromal cells. The following day, cells were transduced at an MOI (multiplicity of
infection) of 10 with one of the following: an adenoviral vector that either contained an acti-
vated form of myosin light chain kinase (A-tMK, a gift from Drs. Zuzana Strakova, Jody Mar-
tin, and Primal de Lanerolle, [29]), an empty vector, or a lentiviral vector that contained either
cDNA for CDK6 or GFP (Applied Biological Materials, pLentiIII-EF1α). Cells were transduced
in MEM supplemented with 10% FBS and 8 μg/mL polybrene (Santa Cruz Biotechnology).
Cells were either immunofluorescently stained as described above or trypsinized for RNA
extraction. To determine whether MLCK activity is necessary for PCa proliferation, C4-2B
cells, which readily proliferate in vitro, were plated at 50,000 cells/cm2 in RPMI medium (Life
Technologies) supplemented with 10% FBS. The cells were then either treated with 10 μMML-
7 (Sigma; I2764) or DMSO control for 24 hours.

RNA extraction and amplification
For 10-cell transcriptomic study, 10 individually isolated cells per xenograft line were lysed and
amplified cDNA was generated from the total RNA using the NuGEN Ovation RNA Amplifi-
cation System as described previously [24, 30]. The cDNA was arrayed on Agilent 44K whole
human genome expression oligonucleotide microarrays (Agilent Technologies, Inc.). For other
in vitro experiments, RNA was isolated using the RNEasy mini kit (Qiagen Inc., Valencia, CA).
One microgram of RNA was reverse transcribed using the Qiagen RT2 first strand kit, followed
by PCR array or RT-qPCR analysis.

Labeling and hybridization of amplified material to whole human genome
expression oligonucleotide microarrays
Amplified cDNA from each sample was labeled using the BioPrime Total Genomic Labeling
System (Life Technologies, Grand Island, NY) and microarray was performed according to
previous procedures [24, 30] with slight modifications. Briefly, hybridization probes were pre-
pared by combining 4 μg of Alexa Fluor 3-labeled sample with 400 ng Alexa Fluor 5-labeled
reference. The probes were denatured at 95°C and hybridized at 63°C on Agilent Human
4x44K microarrays (Agilent Technologies, Inc., Santa Clara, CA), washed, and fluorescent
array images were collected using the Agilent DNAmicroarray scanner. The data were loess
normalized within arrays and quantile normalized between arrays in R using the Limma Bio-
conductor package. Data were filtered to remove probes with mean signal intensities below
300. The Statistical Analysis of Microarray (SAM) program (http://www-stat.stanford.edu/~
tibs/SAM/) [31] was used to analyze expression differences between groups using unpaired,
two-sample t-tests and controlled for multiple testing by estimating q-values using the false dis-
covery rate (FDR) method. Microarray data are deposited in the Gene Expression Omnibus
database under the accession number GSE64262.

Gene expression analyses
To determine whether differential transcription observed in NG (not growing/dormant) versus
G (growing/proliferating) groups were enriched for genes within canonical pathways and Gene
Ontology gene sets, the t-test results were subjected to Gene Set Enrichment Analysis (GSEA)
using preranked mode with permutation testing of the gene sets to adjust for multiple hypothe-
sis testing, generating an FDR. Unsupervised, hierarchical clustering of the most differentially
expressed was performed between NG and G groups based on SAM score (SAM score>2 and
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p�0.05, a total of 238 genes) using Cluster 3.0 (bonsai.hgc.jp/~mdehoon/software/cluster/soft-
ware.htm) and Java TreeView (http://jtreeview.sourceforge.net/).

Ingenuity Pathway Analysis
The 238 differentially expressed genes between NG and G groups were imported into Ingenuity
Pathway Analysis (IPA, Ingenuity Systems; https://www.ingenuity.com) to identify molecular
and cellular functions and upstream regulators involved in cell proliferation or dormancy as
previously described [30].

Quantitative real-time PCR
For PCR array, 25ng of cDNA was used for human cell-cycle PCR array (Qiagen Inc., PAHS-
020Z) according to manufacturer’s instructions. For qPCR analysis, 2ng (G and NG 10-cell
study) or 10ng (lentiviral transduction studies) of cDNA was used for the Platinum SYBR
Green qPCR SuperMix-UDG system (Life Technologies, 11733–038) in conjunction with the
following primers: CDK6: (F) 5’AGGCTGCTGTTTTCTCTCCA3’, (R) 5’CCACACTGCTTCT
TGGGTCT3’; E2F4: (F) 5’TGATGTGCCTGTTCTCAACC3’, (R) 5’GAGTCCTGTTCC
CCTGCTCT3’.; RPS15: (F) 5’TCCGGCAAGATGGCAGAAGTAG3’, (R) 5’CCACGCCGCGG
TAGGT3’; CDC42: (F) 5’GTCACAGTTATGATTGGTGGAGA3’, (R) 5’ TCAGCGGTCGTA
ATCTGTCA3’; FN1: (F) 5’AAGAGGCAGGCTCAGCAAAT3’, (R) 5’ GTCATAACAACCG
GGCTTGC3’; TGFB2: (F) 5’TCTTCCCCTCCGAAAATGCC3’, (R) 5’ TCTCCATTGCT
GAGACGTCAA3’.

Results

PDX cells require cell-cell contact to proliferate in vitro
The PCa xenografts we have established from metastases obtained at rapid autopsy or surgery
do not proliferate in vitro after dissociation under standard monoculture conditions [32]. Of
the five LuCaP PCa PDX lines we studied, none of them displayed measurable β-galactosidase
activity (data not shown), suggesting these cells are dormant rather than senescent. As dormant
cells by definition retain the potential to proliferate, we sought to determine whether these
xenografts could be “activated” in vitro. We developed an in vitromodel recapitulating the PCa
cells in contact with BMSC and allowed the LuCaP PDX cells seeded either sparsely without
tumor-tumor cell contact (NG, not growing, 50 cells/cm2) or densely where cells were in direct
contact with each other (G, growing, 50,000 cells/cm2; Fig 1A). We here reported that when
LuCaP 86.2, 96, and 141 were seeded densely on a monolayer of BMSC, they showed an
increase in cell number after 14 days, whereas the cells that were seeded sparsely failed to pro-
liferate (Fig 1B and data not shown). In contrast, C4-2B cells seeded sparsely on BMSC showed
an increase in cell number after 7 days (S1 Fig). To visually detect the association between
tumor cell-cell contact and proliferation, we expanded the study to five LuCaP lines for immu-
nofluorescent detection. After 14 days in culture, no positive Ki67 staining was detected in NG
cells that were sparsely seeded without tumor cell-cell contact (Fig 1C, upper panel). Consistent
with the trypan blue exclusion assay, positive Ki67 staining was observed in G cells that were
densely seeded and displayed cell-cell contact, suggesting that tumor cell-cell contact was asso-
ciated with cell proliferation (Fig 1C, lower panel).

β1 Integrin activity associates with LuCaP PDX cell proliferation in vitro
When direct cell-cell contact occurs, integrins were reported to be activated resulting in cell
cycle progression and cell proliferation [33]. We therefore examined in LuCaP PDX cells
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whether β1 integrin clustering was activated in response to cell-cell contact. In LuCaP 86.2, 92,
and 93, when seeded densely on a monolayer of BMSC, the proliferating G cells showed clus-
tering of β1 integrin, whereas the non-proliferating NG cells seeded sparsely did not display
clustering of β1 integrin (Fig 2).

Gene expression analysis revealed downregulation of TGFB2 in
proliferating cells
Next, we conducted microarray gene expression analysis to delineate the mechanisms underly-
ing the activation of β1 integrin and cell proliferation. A total of 238 genes (SAM score�2 or
�-2, p<0.05) were differentially expressed between dormant/not growing (NG) and proliferat-
ing/growing (G) cells in LuCaP 86.2, 92, and 93 (Fig 3A). We observed that cellular movement
was the top molecular and cellular function altered (Fig 3B, p<0.05) and a decreased activation
was predicted (Fig 3C, z-score -2.4) in G when compared to NG cells. Interestingly, Ingenuity
Pathway Analysis identified a top regulator effector network for those genes involved in the
decreased activation on cellular movement and demonstrated that endothelin 1 (EDN1) was
the common upstream regulator for the downregulation of CDC42, FN1, and FOSL1, which

Fig 1. LuCaP PCa PDX cells grow on a monolayer of bonemarrow stromal cells (BMSC) when seeded densely. A) A scheme showing the in vitro
culture condition for not growing (NG) and growing (G) LuCaP PDX cells on BMSC. LuCaP cells were seeded sparsely at 50 cells/cm2 or densely at 50,000
cells/cm2 on a confluent layer of BMSC (50,000 cells/cm2) pretreated with 10 μg/mL mitomycin C to inhibit BMSC cell division. B) LuCaP cells seeded
densely on BMSC were quantified by positive EpCAM staining on day 3, 7, and 14 post-seeding. C) LuCaP cells (86.2, 92, 93, 96, and 141) were seeded
sparsely (upper panel; NG) or densely (lower panel; G) on BMSC. After 14 days, cells were fixed with ice-cold methanol and fluorescently stained with Ki67 to
assess proliferation. Green, EpCAM; Red, Ki67; Blue, DAPI. White arrow: sparsely seeded cells showing negative Ki67 staining after 14 days. Magnification:
200x. Scale bar: 50 μm. Experiments were repeated 2–3 times and graphs showing mean ± SEM or representative pictures were shown.

doi:10.1371/journal.pone.0130565.g001
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Fig 2. β1 integrin clusters were observed in LuCaP PDX cells proliferating in vitro. LuCaP 86.2, 92, and 93 were dissociated and cultured on a confluent
monolayer of BMSC. β1 integrin immunofluorescent staining revealed integrin clustering (red clusters and highlighted by the white arrow) in densely seeded
cells that were growing (G). This clustering was not detected in sparsely seeded, nonproliferative cells (not growing, NG). Green, EpCAM; Red, β1 integrin;
Blue, DAPI. Magnification: 200x. Scale bar: 20 μm.

doi:10.1371/journal.pone.0130565.g002
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resulted in decreased cell movement (Fig 3C and 3D). Despite EDN1 being identified as the
top common upstream regulator for decreased cellular movement in G when compared to NG
cells, microarray expression analysis showed that it was not significantly altered in G when
compared to NG cells (1.2 fold upregulation in G cells with a SAM score 0.2, data not shown).
Since FOSL1 has a very low endogenous level, therefore we focused on validating CDC42 and
FN1 using real-time qPCR and found that both genes were downregulated in G cells in two of
the three LuCaP PDX lines tested (Fig 3E). Furthermore, TGFβ2 is a known downstream effec-
tor of β1 integrin and upregulation of TGFB2 expression has been reported to be associated
with migration and cancer dormancy [34, 35], we examined and found that TGFB2 expression
was consistently downregulated in G when compared to NG cells in all three LuCaP PDX lines
by real-time qPCR (Fig 3E). In clinically derived DTC isolated from the bone marrow, we vali-
dated that FN1 (p<0.01, from gene expression dataset GSE48995, [26]) and TGFB2 [35] were
upregulated in patients with no evidence of disease when compared to patients with active PCa
metastasis, whereas no significant gene expression change for CDC42 (p = 0.67) was detected
between the two groups of DTC (data not shown).

Fig 3. Genes associated with cellular movement were downregulated in proliferating LuCaP cells. A)
Heat map of hierarchically clustered differential gene expression in NG and G LuCaP PDX cells. Green,
downregulated; red, upregulated. B) Ingenuity pathway analysis showing cellular movement was the top
molecular and cellular function altered between NG and G cells. C) List of eight genes that were involved in
the decreased activation of cellular movement in G when compared to NG cells. D) EDN1 was predicted to be
the top regulator that affected the cell movement via downregulation of FN1, CDC42, and FOSL1. E)
Quantitative real-time PCR showed a downregulation of FN1, CDC42 and TGFb2 in growing LuCaP lines.
Data were normalized to the levels of housekeeping gene RPS15. NG: not growing; G: growing.

doi:10.1371/journal.pone.0130565.g003
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Activation of MLCK promoted PCa PDX cells proliferation via CDK6 in
the absence of BMSC
Myosin light chain kinase (MLCK) is a common effector for β1 integrin, CDC42 and TGFβ2
and its activation has been implicated in cell proliferation [36–38]. To determine if activation
of MLCK is involved in LuCaP PDX cell proliferation, we virally transduced a constitutively
active form of MLCK (A-tMK) in LuCaP PDX cells. A-tMK transduction in LuCaP 86.2, 92,
and 93 cells that normally do not proliferate resulted in cell clustering and positive Ki-67
expression, whereas cells transduced with an empty vector did not show cell clustering or
positive Ki67 staining (Fig 4A). Gene expression analysis focusing on cell cycle regulators dem-
onstrated that A-tMK-transduced LuCaP cells expressed an upregulated level of cyclin-depen-
dent kinase 6 (CDK6, 3 to 22 fold) and a concurrent downregulated level of E2F transcription
factor 4 (E2F4, 4 to 6 fold; Fig 4B).

To validate the involvement of MLCK activation in cell proliferation, we inhibited MLCK in
C4-2B cells that readily proliferate in vitro in an attempt to inhibit cell proliferation. Upon
MLCK inhibition by the MLCK inhibitor ML-7, C4-2B cell proliferation was reduced as evi-
denced by the loss of Ki67 staining (Fig 4C), the decrease in WST-1 absorbance (Fig 4D), and
the arrest of cells in the G1 phase (S2 Fig). In addition, the decrease in cell proliferation was
accompanied by a 4.9-fold downregulation in CDK6 mRNA expression in C4-2B cells treated
with ML-7 (p = 0.007). The expression of E2F4, however, did not show a significant upregula-
tion in C4-2B cells (Fig 4E). Collectively, the data suggested that activation of MLCK played a
role in stimulating cell proliferation which is associated with an upregulation of CDK6.

Overexpression of CDK6 facilitates the proliferation of LuCaP xenografts
in vitro
To validate upregulation of CDK6 promoted LuCaP PDX cell proliferation, we infected LuCaP
86.2, 92, and 93 cells with lentivirus containing constitutively active CDK6 vector and exam-
ined the proliferation. LuCaP 86.2, 92, and 93 cells normally did not proliferate in the absence
of BMSC, however ectopic expression of CDK6 promoted cell proliferation as evidenced by the
positive Ki67 staining (Fig 5).

Discussion
PCa cells may remain quiescent/dormant for years and proliferate to form active metastases at
distant sites. Little is known to date about the mechanisms underlying the induction and
release from dormancy in PCa cells that reside in the bone marrow. Major reasons include the
lack of patient specimens and relevant human in vitro and in vivomodels. We previously
reported a potential dormancy signature associated with DTC isolated from PCa patients with
no evidence of disease [30]. Here, instead of using immortalized PCa cell lines that readily pro-
liferate in vitro, we used clinically relevant PDX cells to examine the mechanism underlying
direct cell-cell interaction to restore cell proliferation. We characterized three LuCaP PCa
PDXs residing on the human bone marrow stroma, which displayed quiescent/dormant and
proliferating phenotypes depending on the cell seeding density. Our results showed that tumor
cell-cell contact induced cell proliferation which may represent dormancy escape via activation
of β1 integrin associated with universal downregulation of TGFB2 signaling and upregulation
of MLCK activation/CDK6 in PCa PDXs.

Recent studies in other solid tumors, such as in the head, neck, and breast, have implicated
elements of the cytoskeletal migration and adhesion machinery in the activation of indolent
tumor cells [4–7, 38–41]. β1 Integrin is critical for the initiation of tumorigenesis and the
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maintenance of the proliferative capacity of tumors [33, 41]. In PCa, we found that cell-cell
contact, both between tumor cells and with an underlying stroma, was associated with the acti-
vation of β1 integrin and was essential to facilitate the growth of quiescent PCa xenograft cells
in vitro. While cell-cell contact has to our knowledge not been directly reported as a require-
ment for dormancy release, several mechanisms associated with the migration and adhesion of

Fig 4. Constitutive activation of MLCK promotes proliferation of LuCaP PDX cells via upregulation of CDK6. A) LuCaP cells were infected with
lentivirus containing A-tMK (constitutively activate MLCK) showed positive Ki67 staining, whereas cells transduced with an empty vector did not. B) In LuCaP
86.2, 92, and 93, ectopic expression of A-tMK induced an upregulation of CDK6 and a concurrent downregulation of E2F4 when compared to that of the
empty vector-transduced cells. Inhibition of MLCK with the MLCK inhibitor ML-7 suppressed proliferation by C) abolishing Ki67 expression, D) decreasing
cell viability assessed byWST-1 assay and E) downregulating CDK6 expression. E2F4 expression was not altered by the ML-7. Green, EpCAM; Red, Ki67;
Blue, DAPI. Magnification: 200x. Scale bar: 20 μm. **p< 0.01 as compared to the DMSO control. CDK6: cyclin-dependent kinase 6; E2F4: E2F transcription
factor 4.

doi:10.1371/journal.pone.0130565.g004
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Fig 5. CDK6 overexpression induced proliferation of LuCaP PDX cells in vitro. LuCaP 86.2, 92 and 93 cells were lentivirally transduced to overexpress
CDK6 and cultured in vitro to assess proliferation. Positive Ki67 indicated that CDK6 overexpression facilitated proliferation in these cells. Green, EpCAM;
Red, Ki67; Blue, DAPI. Magnification: 200x. Scale bar: 20 μm.

doi:10.1371/journal.pone.0130565.g005
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tumor cells have been implicated in this process. Specifically, activation of α5β1 integrin has
been shown to release human squamous carcinoma and breast cancer cells from dormancy [6,
7, 39, 41], and activation of α5 β1 integrin induce cell adhesion and migration [42, 43] as well as
proliferation on extracellular matrix [44]. Thus, it is not surprising that given an opportunity
to come into contact within the bone marrow microenvironment, these normally quiescent
LuCaP PDX cells begin to proliferate in vitro.

Activation of β1 integrin has been shown to induce the downregulation of TGF β2 and
Cdc42 [45, 46]. Global gene expression analysis on the reactivated cells versus dormant cells
highlighted a decrease in TGF β2 signaling in proliferating PCa PDX cells which was consistent
with the observation that TGF β2 induced dormancy of malignant DTC in head and neck squa-
mous cell carcinoma [47]. This is in concordance with the data from clinically derived DTC
that TGFB2 expression is higher in PCa patients with no evidence of disease when compared to
patients with advanced disease [35]. Furthermore, Cdc42 was implicated in activation of p38
and growth arrest in cancers [7] and was downregulated in proliferating PCa PDX cells in the
current study. Of note, MLCK is a well-known downstream effector of adhesion- and motility-
mediated mechanisms including β1 integrin [9, 10, 38, 40], and its activation has been linked to
cell survival [40]. In our study, the downregulation of CDC42 and TGFB2 pointed to a possible
activation of MLCK leading to cell proliferation. Indeed, introduction of constitutively active
MLCK alone was adequate to induce proliferation in LuCaP PDX cells that normally retain
dormant in vitro. Conversely, C4-2B cells, which readily proliferate in vitro, were growth sup-
pressed upon treatment with the MLCK inhibition ML-7. These data correlated well with a pre-
vious study by Barkan and colleagues that demonstrated quiescence in vitro and inhibition of
metastatic outgrowth of various breast cancer cell lines upon inhibition of MLCK [38].

In the current study, activation of MLCK resulted in an upregulation of CDK6 in all three
LuCaP PDX lines. CDK 6 associates with cyclin D1 to transition cells through the G1 phase of
the cell cycle [48] and is regulated by the androgen receptor (AR) [49]. Instead of acting as a
primary regulator, AR may act as an enhancer for CDK6 expression because CDK6 upregula-
tion upon MLCK activation was 5–7 fold higher in the AR-positive LuCaP 92 and LuCaP 86.2
cells compared to the upregulation in AR-negative neuroendocrine LuCaP 93 cells [26, 27]. On
the other hand, E2F4 is known to act in conjunction with Smad3 as a cofactor for TGF tran-
scription [50], which has been shown to induce apoptosis in PCa [51, 52]. Furthermore, E2F4
has been demonstrated to enforce G2 arrest in C4-2B cells in response to genotoxic stress [53].
We observed a downregulation of the E2F4 in proliferating LuCaP PDXs expressing activated
MLCK, suggesting that the downregulation in E2F4 may be allowing LuCaP PDX cells to prog-
ress through the cell cycle and escape quiescence/dormancy (Fig 6).

Collectively, we presented the first in vitromodel demonstrating non-proliferating PCa
PDX cells resumed proliferation on human bone marrow stromal microenvironment. These
models provide evidence to support that direct cell-cell interaction promotes cell proliferation
partly via β1 integrin activation. A clinically interesting but not yet addressed question is
whether or not a patient showing an increased number of DTC (i.e. increased chance of DTC
contact with each other) will result in an increased rate of tumor cell proliferation and hence
metastatic outgrowth. Maintaining disseminated PCa cells in a dormant, indolent state is an
attractive clinical prospect as is inducing active PCa cells to become dormant. However, such
treatments require an intimate understanding of PCa dormancy mechanisms. While confirma-
tory in vivo studies are required to conclusively determine a dormancy release mechanism in
PCa, these findings represent an important and encouraging first step in the identification of
such a mechanism for this heterogeneous disease.
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Supporting Information
S1 Fig. C4-2B cells grow on a monolayer of bone marrow stromal cells (BMSC) when
seeded sparsely. A) C4-2B cells were seeded sparsely (50 cells/cm2) on BMSC, cells were fixed
with ice-cold methanol and fluorescently stained for Ki67 to assess proliferation. Green,
EpCAM; Red, Ki67, Blue, DAPI. Magnification: 200x. Scale bar: 50 μm. B) EpCAM-positive
cells were counted on day 1 and day 7. Data are presented as mean±S.D of two independent
experiments. ��p<0.01 when compared to day 1.
(PDF)

S2 Fig. Cell cycle analysis of ML-7 treatment on C4-2B cells. A) A representative histogram
of DAPI-stained C4-2B cells treated with either DMSO or ML-7 (10μM) for 24h or 48h. Cell
cycle was analyzed by flow cytometry. B) Percentage of cells in G1, S, and G2/M phase of C4-
2B cells treated with DMSO or ML-7. Data are presented as mean±S.D of two independent
experiments. �p<0.05 when compared to the DMSO control.
(PDF)

Fig 6. Potential mechanism for PCa release from quiescence/dormancy. Decreased fibronectin
activation on β1 integrin downregulates TGF β2 and Cdc42 resulting in activation of MLCK. This activity leads
to the deactivation of growth suppressor like E2F4 and activation of cell cycle regulator CDK6, promoting cell
proliferation.

doi:10.1371/journal.pone.0130565.g006
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Characterization of an Abiraterone
Ultraresponsive Phenotype in Castration-
Resistant Prostate Cancer Patient-Derived
Xenografts
Hung-Ming Lam1,2, Ryan McMullin3, Holly M. Nguyen1, Ilsa Coleman4, Michael Gormley5,
Roman Gulati4, Lisha G. Brown1, Sarah K. Holt1, Weimin Li5, Deborah S. Ricci6,
Karin Verstraeten7, Shibu Thomas5, Elahe A. Mostaghel4,8, Peter S. Nelson4,8,
Robert L. Vessella1,9, and Eva Corey1

Abstract

Purpose: To identify the molecular signature associated with
abiraterone acetate (AA) response and mechanisms underlying
AA resistance in castration-resistant prostate cancer patient-
derived xenografts (PDXs).

Experimental Design: SCID mice bearing LuCaP 136CR,
77CR, 96CR, and 35CR PDXs were treated with AA. Tumor
volume and prostate-specific antigen were monitored, and
tumors were harvested 7 days after treatment or at end of study
for gene expression and immunohistochemical studies.

Results: Three phenotypic groups were observed based on AA
response. An ultraresponsive phenotype was identified in LuCaP
136CR with significant inhibition of tumor progression and
increased survival, intermediate responders LuCaP 77CR and
LuCaP 96CRwith amodest tumor inhibition and survival benefit,
and LuCaP 35CR with minimal tumor inhibition and no survival
benefit uponAA treatment.We identified amolecular signature of
secreted proteins associated with the AA ultraresponsive pheno-

type. Upon resistance, AAultraresponder LuCaP 136CRdisplayed
reduced androgen receptor (AR) signaling and sustainably low
nuclear glucocorticoid receptor (nGR) localization, accompanied
by steroid metabolism alteration and epithelial–mesenchymal
transition phenotype enrichment with increased expression of
NF-kB–regulated genes; intermediate and minimal responders
maintained sustained AR signaling and increased tumoral nGR
localization.

Conclusions: We identified a molecular signature of secreted
proteins associated with AA ultraresponsiveness and sustained
AR/GR signaling upon AA resistance in intermediate or minimal
responders. These data will inform development of noninvasive
biomarkers predicting AA response and suggest that further inhi-
bition along the AR/GR signaling axismay be effective only in AA-
resistant patients who are intermediate or minimal responders.
These findings require verification in prospective clinical trials.
Clin Cancer Res; 23(9); 2301–12. �2016 AACR.

Introduction
Androgen-deprivation therapy (ADT) has been the mainstay

therapy for patients with advanced prostate cancer (1). Abirater-
one acetate (AA), the prodrug of abiraterone, is a specific
CYP17A1 inhibitor that blocks androgen biosynthesis, resulting
in effective reductionof serumand intratumoral androgens (2–4).
AA was the first second-generation ADT shown to improve
survival in patients with metastatic castration-resistant prostate
cancer (mCRPC) (5–9). Although dramatic decline in prostate-
specific antigen (PSA) was achieved in some patients, others
exhibited a subtle PSA response or de novo resistance, and disease
progression is universal (1, 5, 9).

Predictive biomarkers that distinguish ultraresponders from
intermediate or minimal responders to AA are critically needed.
Early attempts using circulating tumor cells (CTCs) showed that
TMPRSS2-ERG fusion did not predict the response to AA in
patients with CRPC (10). However, Antonarakis and colleagues
recently showed that patients with CRPC with positive androgen
receptor transcript variant (ARv7) in their pretreatment CTC did
not demonstrate PSA decline, and 68% of a small cohort of
patients with negative ARv7 demonstrated >50% PSA decline
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after receiving AA (11), suggesting that the detection of positive
ARv7 in CTCs may predict AA sensitivity.

De novo and acquired resistance to AA is emerging clinically,
and there are preclinical and clinical efforts to investigate the
mechanisms of resistance. In preclinical studies, resistance to
AA was associated with an induction of full-length AR, ARv7,
and CYP17A1 (12). In clinical studies, the presence of ARv7 in
CTCs was associated with resistance to AA and shorter overall
survival (11). In addition, acquired resistance to AA has been
associated with the emergence of AR mutations that have been
reported in up to 20% of patients who progressed (13–15).
Recently, upregulation of glucocorticoid receptor (GR) has
been shown to be a possible bypass mechanism to ADT, and
patients with CRPC with positive GR in their bone marrow
biopsies were less likely to have a durable response to enzalu-
tamide, another second-generation ADT (16).

Currently, there is little information about biomarkers to
identify patients who will durably respond to AA, and the
mechanisms of resistance are diverse. In the present study, we
evaluated the AA response in a panel of LuCaP CRPC patient-
derived xenografts (PDX) that displayed differential responsive-
ness toAAand identified amolecular signature associatedwithAA
ultraresponsiveness. We also provided evidence to support
diverse resistance mechanisms upon AA treatment. This study
highlights potential noninvasive biomarkers that may be used to
select patients for durable AA therapy, and potential targeting of
the epithelial–mesenchymal transition (EMT)/nuclear factor kB
(NF-kB) pathway in AA ultraresponsive or AR/GR pathways in AA
intermediate- or minimally responsive CRPC.

Materials and Methods
Prostate cancer PDX models

Animal procedures were carried out in accordance with NIH
guidelines and upon University of Washington Institutional
Animal Care and Use Committee approval. Four different LuCaP

human CRPC PDXs (LuCaP 136CR, LuCaP 77CR, LuCaP 96CR,
and LuCaP 35CR) were used. All four PDXs express wild-type
AR but exhibit differential expression of PSA, PTEN, and ERG
(corresponding patient information is summarized in Supple-
mentary Table S1). Two additional PDX models (LuCaP 70CR
and LuCaP 86.2CR) were used for survival analysis upon AA
treatment and assessment of gene signature.

Intact male CB-17 SCID mice (aged �6 weeks; Charles River
Laboratories) were implanted subcutaneously with tumor bits of
LuCaP 136 or LuCaP 77.Mice were castrated when tumor volume
was �100 mm3. When tumor regrew to 1.5-fold the original
volume, tumors were referred to as LuCaP 136CR or LuCaP 77CR
(Fig. 1). LuCaP 96CR and LuCaP 35CR are castration-resistant
PDXs that are propagated in castrated male mice. Castrated male
CB-17 SCID mice were implanted subcutaneously with LuCaP
96CR or LuCaP 35CR tumor bits and enrolled when tumor
volume reached �100 mm3 (Fig. 1). Upon enrollment, mice
were randomized to vehicle (20% HPbCD/0.37N HCl/PBS) or
AA treatment groups (0.5 mmol/kg; Janssen Pharmaceutical
Companies). Animals were treated by oral gavage on a weekly
schedule of 5 days on, 2 days off. Tumor volume and bodyweight
were measured twice weekly, and blood samples were drawn
weekly for PSA measurements using AxSym Total PSA Assay
(Abbott Laboratories). Five animals in each group were sacrificed
7 days after the initiation of treatment (D7), and the remaining
animals were followed and sacrificed when tumors exceeded
1,000 mm3 (end of study, EOS) or sacrificed if animals became
compromised. At sacrifice (D7 or EOS), half of the tumor was
harvested for paraffin embedding and half was frozen for subse-
quent analyses. Treatment schemes for LuCaP 70CR and LuCaP
86.2CR are illustrated in Supplementary Fig. S1.

Intratumoral androgen measurement
Intratumoral androgen levels were measured using mass spec-

trometry as described previously (17, 18). Vehicle-treated tumors
and AA-resistant tumors harvested at EOS were used for these
analyses.

Immunohistochemistry
Hematoxylin and eosin staining of paraffin-embedded tissues

was used to identify viable tumor cells in the tissues. Two cores
(five to eight tumors per group) were punched and placed in
tissue microarrays. The tissue microarray slides were stained for
AR (F39.4.1, 1:100; BioGenex), GR (D6H2L, 1:100; Cell Signaling
Technology), chromogranin A (DAK-A3, 1:100; DAKO), and
synaptophysin (D-4, 1:200; Santa Cruz Biotechnology) using
standard procedures as described previously (19–21). All
evaluations were performed in a blinded fashion, and a quasi-
continuous immunohistochemical (IHC) score was calculated by
multiplying each intensity level (0 for no stain, 1 for faint stain,
and 2 for intense stain) by the corresponding percentage of cells
(0–100%) at the corresponding intensity and totaling the results.
IHC scores ranged from 0 (no staining in any cell) to 200 (intense
staining in 100% of the cells).

RNA extraction
Frozen pieces of tumor were embedded in Optimal Cutting

Temperature Compound, and 5-mm sections were stained with
hematoxylin and eosin. Areas of viable tumor cells were identified
and macro-dissected for RNA extraction using a standard proce-
durewithRNASTAT60 (Tel-Test). RNAwas thenpurifiedusing an

Translational Relevance

Abiraterone acetate (AA) improves survival in patients with
metastatic castration-resistant prostate cancer (mCRPC); how-
ever, not all tumors respond, and responding tumors eventu-
ally develop resistance. Currently, there is no information
available regarding how to stratify patients for durable AA
therapy, and the mechanisms underlying AA resistance are
diverse. We used patient-derived xenograft models that reca-
pitulated the diverse clinical response of CRPC to AA and
identified amolecular signature of secreted proteins associated
with the AA ultraresponsive phenotype. The signature will
provide the much-needed information on noninvasive bio-
marker development to select AA-responsive patients. Upon
resistance, our results suggested reduced androgen receptor
(AR) signaling and sustainably low nuclear glucocorticoid
receptor (nGR) localization in the AA ultraresponders. In
contrast, sustained AR signaling and increased nGR localiza-
tion were observed in the intermediate and minimal respon-
ders. Further inhibition along the AR/GR signaling axismay be
effective in AA-resistant patients who are intermediate or
minimal responders.
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RNeasy Mini kit utilizing the optional DNase digestion in solu-
tionprior to purification (Qiagen) for subsequent gene expression
analyses. RNA integrity number was determined using the Agilent
Bioanalyzer system (Agilent).

Gene expression analyses
For Affymetrix microarray analyses, biotin-labeled amplified

RNA (aRNA) was synthesized from 200 ng total RNA using the
30 IVT Express Kit (Affymetrix). The aRNA was purified using
Agencourt RNAClean XP beads (Beckman Coulter Inc.) on the
BioMek FX Workstation (Beckman Coulter Inc.). Biotin-labeled
aRNAwas fragmented using the 30 IVT Express Kit. A total of 4.5 mg
fragmented biotin-labeled aRNAwas hybridized on anHTHuman
Genome (HG)-U21996-array plate. Theplatewaswashed, stained,
and scannedwith theGeneTitan Instrument. All reagentswere from
Affymetrix. Gene expression microarray data were normalized to
minimize systematic technical variation using robust multichip
average (22) and represented in the log2 scale. Data were filtered to
remove probes with mean signal intensities below the 25th per-
centile of signal intensities for all probes. The Significance Analysis
of Microarrays (SAM) program (http://www-stat.stanford.edu/
�tibs/SAM/; ref. 23) was used to analyze expression differences
between groups using unpaired, two-sample t tests, and controlled
for multiple testing by estimating q values using the false discovery
ratemethod. Gene family wasmanually curated fromGeneOntol-
ogy and Uniprot databases. The AR score was determined by the
expression of a 21-gene signature and calculated as described
previously (24). Microarray data are deposited in the Gene Expres-
sion Omnibus database under the accession number GSE85672.

Ingenuity pathway analysis
The differentially expressed genes between vehicle-treated and

AA-resistant tumors at the EOS from each of the four LuCaP
models were imported into Ingenuity Pathway Analysis (Ingenu-
ity Systems; https://www.ingenuity.com) to identify molecular
and cellular functions and regulator effect network involved in AA
resistance as previously described (25, 26).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA; ref. 27) was conducted to

evaluate enrichment of differential expression patterns in canon-
ical signaling pathways (Reactome; ref. 28) or predefined gene

signatures of prostate cancer core gene expression modules repre-
senting distinct biological programs (Compendia Bioscience) and
annotated signatures associated with EMT, AR activity, GR activ-
ity, and AA response.

Quantitative real-time PCR
Total RNA was reverse-transcribed to cDNA, and real-time PCR

was carried out as described previously (29). Species-specific
primer sequences are presented in Supplementary Table S2. PCR
reactions with SYBR GreenER PCR Master-Mix (Invitrogen) were
monitored with the 7900HT Fast Real-time PCR System (Applied
Biosystems). Individual mRNA levels were normalized to human
RPL13a.

AR sequencing
Genomic DNAwas extracted using the DNeasy Blood and Tissue

Kit (Qiagen) and PCR amplified using primer AR_exon8_c1-589_F:
ATTGCGAGAGAGCTGCATCA and AR_exon8_c1-589_R: TGCTT-
GTTTTTGTTTTGATTTCC. Sanger sequencing was performed using
the BigDye Terminator v3.1 Cycle Sequencing Kit (# 4337454, Life
Technologies) according to the manufacturer's recommendations.
Sequences were aligned to human AR genomic sequence
NC_000023.11 and mRNA RefSeq NM_0044 using Sequencher
Software (version 5.1, Gene Codes). Mutations were verified
using The Androgen Receptor Gene Mutations Database
(McGill University).

Statistical analyses
Survival was determined using Kaplan–Meier estimation of

time from start of treatment (vehicle or AA) to sacrifice and
compared by log-rank (Mantel–Cox) test. Statistical analyses of
tumor volume and PSA responses were performed as described
previously (19). Briefly, longitudinal tumor measurements and
PSA serum levels were log-transformed andmodeled using linear
mixed models conditional on the treatment group with random
effects for each animal. Following standard diagnostic assessment
of model fit, we simulated 1,000 datasets from each fitted model,
calculated the empirical mean and 95% confidence limits at each
time point, and refitted the models to these datasets. The final
results represented means and 95% confidence limits of 1,000
bootstrap replicates. In addition, the rate of change in serum PSA
and tumor volume upon AA treatment was tested using estimated
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Figure 1.

Treatment scheme for AA on CRPC
PDXs. Castration-resistant tumors
were developed, and mice were
treated orally with either vehicle or AA
(0.5 mmol/kg/day). Mice were
sacrificed and tumors were harvested
on D7 or when tumors reached
1,000 mm3 (EOS).
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fixed effects for each LuCaP line. Student t test and Pearson
correlation coefficients were used for statistical comparisons
between the groups in the intratumoral androgenmeasurements,
gene expression analysis, and IHC analyses. For GSEA, a gene set
that displayed FDR <25% is considered significantly enriched.

Results
Heterogeneous AA responses and identification of an AA
ultraresponder in LuCaP PDX models

CRPC was developed using four different models of LuCaP
PDXs (Fig. 1). AA treatment improved survival and inhibited

tumor progression in three of the four models. In mice bearing
LuCaP 136CR tumors, survival was substantially improved in
AA-treated compared with vehicle-treated mice (P < 0.001), and
the median survival improved from 6.8 weeks (vehicle) to 21.8
weeks (AA; denoted as AA ultraresponder; 220% gain in
survival; Fig. 2A). AA treatment resulted in statistically signif-
icant but modest improvement in survival in mice bearing
LuCaP 77CR (P ¼ 0.05) and LuCaP 96CR (P ¼ 0.02)—both
denoted as intermediate responders (36%–74% gain in
survival; Fig. 2A). AA did not significantly extend survival in
mice bearing LuCaP 35CR (12% gain in survival; P ¼ 0.52;
denoted as minimal responder; Fig. 2A).
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Ultraresponsiveness to AA in LuCaP 136CR PDXmodels.A, Kaplan–Meier curves showing survival benefits of AA treatment in different LuCaP PDXmodels.B, Linear
model analyses of tumor volume. C, Serum PSA upon AA treatment. n ¼ 9–14 per group.
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Gene expression associated with LuCaP 136CR ultraresponsiveness. A, Supervised clustering analyses showing 531 differentially expressed genes between
LuCaP 136CR and LuCaP 35CR and LuCaP 96CR on D7. Yellow: high gene expression; blue: low gene expression. B, Schematic diagram showing gene shaving to
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LuCaP 136CR AA ultraresponsive phenotype (D7 and EOS). D, Heat map showing the microarray gene expression of the eight-gene signature in multiple LuCaP
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upon AA treatment. Percentage survival gained was calculated based on median survival in AA-treated versus vehicle-treated mice in each xenograft model.
Each data point or column represented an individual animal. P < 0.05 was considered statistically significant.
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Both the AA ultraresponder LuCaP 136CR and intermediate
responders LuCaP 77CR and LuCaP 96CR, but not the minimal
responder LuCaP 35CR, demonstrated significantly delayed
tumor and PSA progression (except for LuCaP 136CR, which
has undetectable levels of serum PSA; Fig. 2B and C), followed
by both tumor and PSA recurrence. These results suggested the
PDX models recapitulated clinical AA response phenotypes
comprising ultraresponders with inhibition of tumor progres-
sion and a significant extension of survival followed by tumor
recurrence, and intermediate and minimal responders with
brief or limited AA effect on tumor growth inhibition followed
by disease progression.

Gene expression associated with LuCaP 136CR
ultraresponsiveness to AA

To identify the gene expression profiles associated with AA
ultraresponsiveness, we conducted global transcriptome anal-
yses of the PDX lines. We identified 531 differentially expressed
genes between the AA ultraresponder LuCaP 136CR versus the
intermediate responder LuCaP 96CR and minimal responder
LuCaP 35CR at D7 (P < 0.0001, fold change�3; Fig. 3A). LuCaP
77CR D7 tumors were not included in the global analysis
because the specimens were not available, but their EOS tumors
were included in the gene expression validation. Of the 156
genes that were successfully mapped into known gene families,
68 (44%) were secreted proteins (Supplementary Fig. S2A). We
observed that the differential expression of these 68 secretory
proteins in LuCaP 136CR were consistent between early time
point (D7; Supplementary Fig. S2B) and EOS (Supplementary
Fig. S2C), suggesting the expression of these markers was not
dependent on age of mice or tumor size. We then selected the
top 10 upregulated and downregulated genes of secreted pro-
teins (total 20 genes) in the AA ultraresponder LuCaP 136CR
compared with the intermediate and minimal responders for
qPCR validation (Fig. 3B and Supplementary Fig. S3). Primers
for 18 genes were available, and qPCR confirmed all of the eight
upregulated genes (CEL, ARMCX1, TNC, BMP7, IER3, FSTL5,
SNTB1, and FBN2; Fig. 3C) and 10 downregulated genes
(IL17RB, GDF15, ST6GAL1, SPOCK1, MSMB, INHBB, MINPP1,
GALS3BP, C15orf48, and PLA2G2A; Supplementary Fig. S4).
However, the downregulated genes showed more variable
expression in the intermediate (LuCaP 77CR, LuCaP 96CR)
and minimal (LuCaP 35CR) responders and therefore were not
included in the development of a stringent gene signature for
AA ultraresponsiveness.

We next validated the highly consistent eight-gene signature
thatwas upregulated in the AAultraresponder LuCaP 136CR in an
independent cohort of six LuCaP models that displayed different
responses to AA. As expected, the signature positively correlated
with the percentage gained survival on AA (R ¼ 0.95, P ¼
0.0002; Fig. 3D and E), supporting the potential of this eight-
gene signature in predicting AA ultraresponsiveness.

Mechanisms associated with the acquired resistance of
individual AA-responsive phenotypes

To identify response and resistance mechanisms specific to
different AA response phenotypes, we conducted global transcrip-
tome analyses on the AA-treated (D7) and AA-resistant (EOS)
tumors. Interestingly, upon AA resistance, a distinct set of genes
was differentially expressed in each of the fourmodels (vehicle vs.
AA, P < 0.01, fold change �2), and there was virtually no overlap

of genes between ultraresponders and intermediate/minimal
responders or within the intermediate and minimal responders
(Fig. 4A and Supplementary Table S5), suggesting that the AA-
induced resistance mechanisms are largely diverse. Next, we
conducted Ingenuity Pathway Analysis to identify molecular and
cellular function involved in the AA resistance in individual
models. For both ultraresponder LuCaP 136CR and the interme-
diate responder LuCaP 77CR, cell growth and proliferation repre-
sented 40% to 45% of genes that were associated with AA
resistance. In LuCaP 96CR, a majority of AA differentially
expressed genes were related to cell morphology (30%), whereas
in the minimal responder, AA differentially expressed genes were
principally mapped to cell-to-cell signaling (20%) or cellular
death and survival (20%; Fig. 4B).

GSEA analysis showed that AA treatment of LuCaP 77CR was
negatively associatedwith signatures of cell growth and androgen-
regulated genes upon resistance at EOS (Supplementary Fig. S5).
Similarly, AA treatment of LuCaP 96CR was negatively associated
with a cell cycle–associated signature that was previously reported
to be decreased in a cell line–derived xenograft model of AA
resistance (Supplementary Fig. S4; ref. 30). Interestingly, in the AA
ultraresponder LuCaP 136CR, we identified steroid metabolism
as the top altered regulator effect network uponAA resistance (Fig.
4C), which, together with the high basal expression of the cho-
lesterol esterase CEL, implies that alterations in the steroid avail-
ability and usage may contribute to the development of AA
resistance in this model. Importantly, GSEA analysis showed that
AA treatment of LuCaP 136CR was initially negatively associated
with signatures of proliferation, cell growth, and a selected AR
transcriptional program at D7, and this negative proliferation
signature persisted butwith fewer genes represented at the leading
edge at EOS (Supplementary Fig. S5). Despite the negative asso-
ciation with the specific proliferation markers, LuCaP 136CR
acquired AA resistance that was enriched with genes associated
withNF-kB transcriptional activity, EMT, extracellularmatrix, and
prostate basal cells (Supplementary Fig. S5). These results suggest
the diversity of resistance mechanisms to AA and specifically
indicate potential mechanisms that drive AR-independent resis-
tance in the AA ultraresponsive phenotype.

Low basal AR signaling and a further reduction of androgen
signaling upon resistance in the AA ultraresponder LuCaP
136CR

Weexamined theAR signaling axis to gain insight into its role in
AA resistance and tumor progression. Previous reports showed
that AA treatment elevated serum levels of progesterone and other
upstream steroids that activated mutant AR (e.g., L701H and
T878A) leading to AA resistance (14, 31–33). To elucidate wheth-
er ARmutationwas involved in the differential AA responsiveness
observed in our models, we sequenced the ligand-binding
domain of AR and detected no mutation in the AA-treated LuCaP
PDXs (data not shown), suggesting that the differential AA
responsiveness was not due to AR mutation.

We next conducted targeted analysis on intratumoral andro-
gens and androgen signaling pathways in AA-resistant tumors.
We used a sensitive liquid chromatography–mass spectrometry
method to detect intratumoral androgens that are sensitive
to AA inhibition. In the ultraresponder LuCaP 136CR, AA treat-
ment significantly reduced intratumoral levels of testosterone
(P ¼ 0.009), dihydrotestosterone (P ¼ 0.04), androstenedione
(P ¼ 0.03; Fig. 5A), and androsterone (P ¼ 0.04; Supplementary
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Fig. S6). Interestingly, LuCaP 136CR demonstrated the lowest
basal AR signaling among the LuCaP lines tested, depicted by a
low AR activity score (Fig. 5B) and a low AR signature score (Fig.
5C). Upon AA resistance, the decrease in intratumoral androgens
was accompanied by a general downregulation of steroidogenic
enzymes, including LDLR (P¼ 0.004), STARD4 (P¼ 0.005), and
DUSP1 (P ¼ 0.01; Supplementary Table S3; ref. 12), a further
downregulation of AR activity (Fig. 5B), and a reduced AR sig-

nature score (Fig. 5C). These results suggested reduced AR signal-
ing in the AA ultraresponder LuCaP 136CR upon resistance.

In contrast, despite decreasing testosterone in the intermediate
responders LuCaP 77CR (P ¼ 0.03) and LuCaP 96CR (P ¼ 0.02)
upon AA treatment, high variability in dihydrotestosterone levels
was observed in LuCaP 77CR and a statistically insignificant
reduction was observed in LuCaP 96CR (P ¼ 0.11; Fig. 5A).
Upstream steroids, including pregnenolone (P ¼ 0.02) and
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dehydroepiandrosterone (DHEA; P ¼ 0.056), were increased in
the intermediate responder LuCaP 77CR upon AA resistance
(Supplementary Fig. S5), whereas progesterone was decreased in
the intermediate responder LuCaP 96CR (P ¼ 0.02; Supplemen-
tary Fig. S6). Consistent with the sustained level of intratumoral
androgens, no reduction in the enrichment in AR-responsive
genes (Fig. 5B) and AR signature (Fig. 5C) was detected upon
AA resistance in the intermediate responders LuCaP 77CR and
LuCaP 96CR. Similarly, in the AA minimal responder LuCaP
35CR, AA treatment showed an initial negative association with
GSEA signatures of AR- and GR-regulated genes at D7 (Supple-
mentary Fig. S5) and a reduction in our selected AR signature (Fig.
5C).However, the negative associationwasnot observed uponAA
resistance at EOS (Supplementary Fig. S5), and the AA-resistant
tumor demonstrated a persistent expression of steroidogenic
enzymes (Supplementary Table S3), AR-responsive genes (Fig.
5B), and AR signature (Fig. 5C). Due to the limited number of
LuCaP35CRAA-resistant tumors available, statistically significant
change in the intratumoral androgens was not observed in these
tumors upon AA resistance (Fig. 5A). Collectively, these results
pointed to sustained AR signaling in the AA intermediate and
minimal responders upon resistance. In all models, we also tested
whether the AA-resistant tumors acquired a neuroendocrine phe-
notype. Our results showed that both neuroendocrine markers
(chromogranin A and synaptophysin) were absent or minimally
expressed (<0.1% in LuCaP 77CR) in the vehicle-treated tumors,
and the expression did not change upon AA resistance (data
not shown).

Finally, we questioned whether AR and GR levels in the tumor
may contribute to the downregulation of AR signaling in the AA-
resistant tumors in the ultraresponder LuCaP 136CR and the
sustained AR signaling in the intermediate or minimal respon-
ders. In the ultraresponder LuCaP 136CR, the gene expression of
AR and ARv7 was increased upon castration (Supplementary
Table S4) but remained unchanged upon further androgen
ablation by AA (Fig. 5D), and the nuclear AR and GR localiza-
tion was not altered upon AA resistance (Fig. 5E and F). The
nuclear GR level remained low even upon AA resistance in the
ultraresponder LuCaP 136CR (Fig. 5F). In the intermediate and
minimal responders, increased expression of AR and its variants
was observed upon castration in LuCaP 77CR (Supplementary
Table S4), but the expression of AR and ARv7 generally
remained unchanged upon AA resistance except for LuCaP
96CR (Fig. 5D). Nuclear localization of AR remained high
(i.e., H-score > 100) in the intermediate and minimal respon-
ders, although a slight decrease in nuclear AR localization for
LuCaP 77CR was observed upon AA resistance (Fig. 5D and F).
Collectively, these findings suggested active AR signaling in
these AA-resistant tumors. Importantly, we observed a high
basal level of nuclear GR in the AA minimal responder LuCaP
35CR (Fig. 5F) and a consistent upregulation of both GR gene
expression (NR3C1, except for LuCaP 35CR) and nuclear local-
ization for all intermediate and minimal responders (Fig. 5D
and F). These GR results may suggest that high basal nuclear GR
localization is associated with AA minimal responsiveness, and
that an increase in nuclear GR upon AA treatment is associated
with rapid, acquired resistance. In summary, upon AA resis-
tance, the ultraresponder LuCaP 136CR displayed lower intra-
tumoral androgens and AR signaling accompanied by sustain-
ably low nuclear GR localization. In contrast, the intermediate
and minimal responders demonstrated a slight decrease in

intratumoral androgens and sustained AR signaling associated
with an increase in nuclear GR localization.

Discussion
AA is effective in a subset of patients, but responding tumors

eventually develop resistance. We used PDX models that reca-
pitulated the diverse clinical responses of CRPC to AA and
identified heterogeneous response phenotypes, including ultra-
responsive, intermediate, and minimal. The ultraresponsive
phenotype represents not only AA sensitivity but also durabil-
ity. We report for the first time that the AA ultraresponsive
phenotype is represented by a molecular signature of secreted
proteins and biochemical features, including low basal AR
signaling and a low basal nuclear GR level, which is insensitive
to AA-induced upregulation.

Mechanisms underlying acquired resistance to AA are diverse
and have not yet been fully identified. GR was shown to
compensate for reduced AR activity through activation of over-
lapping target genes (34). High GR expression was associated
with enzalutamide insensitivity (16), and preliminary results of
the COU-AA-203 study demonstrated that high GR may predict
low AA sensitivity (35). Our results provided novel information
to highlight the role of GR in response to AA: (a) a low level of
nuclear GR, and sustainably low GR on AA therapy, was
predictive of durable AA inhibition; (b) low to intermediate
levels of GR, despite initial response, and increase in nuclear GR
were associated with rapid, acquired resistance to AA; and (c) a
high basal level of GR was associated with de novo resistance/
minimal responsiveness. Notably, although we observed a
concordant increase in both GR transcript and protein expres-
sion levels in some models, discordance was present in others.
This result indicates that GR transcripts may not ideally reflect
the protein level, especially the nuclear protein level indicative
of active GR signaling. Retrospective clinical studies investigat-
ing response and resistance patterns have suggested cross-
response/resistance between enzalutamide and AA (36–43).
However, whether a sustainably low level of GR will lead to
a durable response to either AA or enzalutamide in patients,
and whether an increase in GR is attributable to rapid AA
resistance, requires clinical confirmation.

Copy-number gain of AR and CYP17A1 has been shown to
predict shorter progression-free survival with AA treatment (44).
Our results supported, at a gene expression level, that the inter-
mediate responders LuCaP 77CR/LuCaP 96CR and the minimal
responder LuCaP 35CR demonstrated a higher AR level and
enhanced androgen signaling when compared with the ultrare-
sponder LuCaP 136CR. On the other hand, other preliminary
studies on gene expression using pretreatment primary prostate
cancer samples reported a significant association between prolif-
eration-associated genes, androgen-regulated genes, and CYP17
cofactors with longer radiographic progression-free survival of
patients receiving AA (45).

In our studies, the ultraresponsive phenotype demonstrated
reducedAR signalinguponAA resistance, indicating an emergence
of an AR-independent pathway to sustain survival. Upon AA
resistance, the ultraresponders presented an enrichment of genes
associated with EMT, prostate basal-type cells, andNF-kB activity.
This is consistent with a previous report showing an association
between EMT induction and the emergence of prostate cancer
stem-like cells (CSC)–like phenotype following androgen
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Figure 5.

Reduction of androgen signaling upon treatment resistance in the AA ultraresponsive phenotype. A, Levels of intratumoral androgens in control and AA-resistant
CRPC PDXs measured by mass spectrometry. n ¼ 2–6 per group. B, Heat map showing the low AR activity (top row, pink squares) and low expression of
genes involved in androgen signaling in LuCaP 136CR (n ¼ 4–6 per group), and (C) their respective AR signature score in LuCaP PDXs (n ¼ 4–6 per group).
D, qPCR analysis in vehicle versus AA-resistant tumors at EOS (n¼ 4–6 per group). E, Representative IHC pictures of AR and GR, and (F) their respective H-score in
control and AA-resistant PDXs (n ¼ 6–12 per group). Scale bar, 50 mm. Magnification, �200. Each data point or column (heat map) represented an individual
animal. P < 0.05 was considered statistically significant.
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deprivation (46). In addition, activation of the NF-kB pathway is
involved in the induction and maintenance of EMT (47, 48) and
CSC-like characteristics in prostate cancer (49–51). These char-
acteristics are concordant with the results of a preclinical study
identifying a progenitor-like cell population with increased NF-
kB activity upon resistance to androgen depletion (52) and
reduced AR signaling upon increased NF-kB activity in prostate
cancer (53). A recent report on NF-kB as a potential resistance
mechanism for enzalutamide independent of ARv7 may provide
another cross-resistance mechanism for AA (54).

In view of the heterogeneity of patients' responses to AA
therapy, identification of biomarkers of responses has important
implications for treatment selection in the context of precision
oncology. The preclinical eight-genemolecular signature of secret-
edproteins associatedwithAAdurable response thatwe identified
can potentially be developed into a fast, noninvasive test to
predict AA response. However, our results at this point are limited
to the preclinical setting and by the number of PDX models
representing each response phenotype. Validation in prospective
clinical studies is needed to support translational value of this
signature.

Collectively, the diverse resistant phenotypes associated with
differential AA responses highlighted the need for a tailored
next line of therapy. The resistance in the AA ultraresponsive
phenotype was represented by low intratumoral androgens and
AR signaling accompanied by a sustainably low nuclear GR
localization, and alteration in gene expression associated with
NF-kB activity and a EMT/basal cell phenotype. In contrast,
resistance in the intermediate and minimally responding phe-
notypes demonstrated sustained AR signaling and increased
nuclear GR localization. Novel treatments may be explored to
target NF-kB activity with a rationale to prevent or revert an
EMT basal cell phenotype in the ultraresponders and to target
sustained AR/GR signaling in the intermediate or minimal
responders upon AA resistance.
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