
Fiscal Year 2017 Annual Report

Titled:

Mobility Research for Future Vehicles

A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

Submitted to the National Institute of Aerospace (NIA) on January 31, 2018

Period of Performance: October 1, 2014 – September 30, 2017

NIA Point of Contact (PoC): Carole E. McPhillips

Deputy Contracts Manager

National Institute of Aerospace

100 Exploration Way

Hampton, VA 23666-6186

(757) 325-6762 (office)

(757) 325-6701 (fax)

carole.mcphillips@nianet.org

ASDL Technical PoC: Dimitri Mavris

Boeing Prof. Advanced Systems Design

dimitri.mavris@aserospace.gatech.edu

Kyle Collins

Research Faculty

kyle.collins@asdl.gatech.edu

Aerospace Systems Design Laboratory

Guggenheim School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0150

www.asdl.gatech.edu

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

31-01-2018 Annual Research Report 20161001 - 20170930

Mobility Research for Future Vehicles
A Methodology to Create a Unified Trade-Off Environment for Advanced
Aerospace Vehicle

W911NF-16-2-0229

8502Kyle Collins, Bruce Ahn, Etienne Demers Bouchard, Daniel Bavaro, Ryan
Armstrong, Joshua Price, Sylvester Ashok, Matthew Schmit, Dimitri Mavris

Aerospace Systems Design Laboratory, Guggenheim School of Aerospace
Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

US Army Research Laboratory
RDRL-VTV
6340 Rodman Rd
Aberdeen Proving Ground, MD 21005

Approved for public release; distribution is unlimited.

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number
W911NF-16-2-0229. The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.
The development and implementation of advanced aerospace vehicles is an endeavor that can potentially affect long-term aviation
operations and future system capabilities for several decades. Selecting the best vehicle configuration(s) requires a thorough
understanding of the capabilities and life-cycle considerations required by the end user, the vehicle’s full spectrum operations, as
well as technologies impacting both operational needs and system performance. The fundamental goal of the proposed effort
involves using the Aerospace Systems Design Laboratory (ASDL) established expertise in the fields of decision support and
advanced vehicle Modeling and Simulation (M&S) to develop an innovative trade-off environment for advanced vehicle concepts
exploration.

Rotorcraft, tradespace, conceptual design, technology assessment, forecasting, decision making, surrogate model, interactive
trade-off, discrete event, use case, maintenance free operating period, rotor optimization, set-based design

Unclassified Unclassified Unclassified UU 171

Eric Spero

 (410) 278-8743

Reset

2

Contents

1. Introduction ... 13

2. Framework for characterizing and visualizing the interaction between vehicle performance

and effectiveness, and subsystem design parameters ... 15

2.1 Introduction ... 15

2.2 Motivation ... 15

2.3 SeBBAS Approach ... 17

2.3.1 Random Forest Algorithm .. 17

2.3.2 Incorporation of Random Forest Algorithms into SeBBAS ... 18

2.4 SeBBAS Implementation .. 19

2.4.1 SeBBAS Files & Folder Structure .. 19

2.4.2 Setup of R Programming Language for SeBBAS ... 23

2.4.3 Running SeBBAS Algorithm in MATLAB .. 25

2.5 Test Cases for SeBBAS .. 29

2.5.1 Parabolic Constraint Test .. 29

2.5.2 Sharp Corner Constraint Test .. 31

2.5.3 Significance of Test Results .. 32

2.6 NDARC Test with SeBBAS ... 32

2.6.1 MATLAB Function for NDARC .. 33

2.6.2 NDARC Case Study.. 38

2.7 Suggested Use of SeBBAS Approach .. 41

2.8 Future Work .. 43

3. Create a method for selecting and applying multiple quantitative technology forecasting

techniques to a specific rotorcraft configuration .. 45

3.1 Introduction ... 45

3.2 Motivation ... 45

3.3 Background and Literature Search .. 45

3

3.3.1 Families of Forecasting Techniques.. 46

3.3.2 Forecasting Techniques Related to Complex Systems ... 49

3.3.3 Current State of Technology Forecasting Technique Selection .. 50

3.4 Methodology and Implementation .. 50

3.4.1 Methodology Development ... 51

3.5 Conclusion .. 63

4. RCAS-CATE Optimization of RCAS Representation in NDARC Using Optimization

Schemes .. 65

4.1 Introduction ... 65

4.2 Motivation ... 65

4.3 Problem Formulation .. 66

4.3.1 Calibration Process ... 66

4.3.2 Selection of Optimization Algorithm .. 70

4.3.3 Selection of Programming Language .. 73

4.4 Implementation of NDARC – OC Tool .. 73

4.4.1 NDARC Calibration Input File ... 74

4.4.2 Input File Error Checking ... 76

4.4.3 Running Optimization Algorithm ... 78

4.4.4 NDARC Calibration Output Files ... 80

4.4.5 Limitations of NDARC – OC Tool ... 81

4.5 Implementation of NDARC – OPS Tool .. 82

4.5.1 Setting Calibration Data .. 83

4.5.2 Setting Design Variables ... 83

4.5.3 NDARC – OPS Displays and Results ... 86

4.6 NDARC – OPS Efficiency Case Study ... 87

4.7 Conclusion .. 89

4

5. Framework for linking system capability uncertainty to individual technologies and groups of

technologies in a portfolio: uncertainty ovals –or- uncertainty around tech factors 91

5.1 Introduction ... 91

5.2 Sources of Uncertainty .. 91

5.3 Uncertainty in numerical simulations ... 92

5.4 Uncertainty in CATE .. 93

5.5 PCC Methodology .. 93

5.6 Uncertainty in NDARC ... 94

5.6.1 Bayesian approach to the rotor spreadsheet calibration .. 95

5.6.2 Uncertainty propagation methods ... 96

5.7 Conclusion .. 98

6. UH-60 Upgrade Study ... 99

6.1 Introduction ... 99

6.2 5-Blade Rotor System Investigation ... 99

6.3 UH-60 with the ITEP Engine .. 107

6.3.1 Trade Study Environment ... 107

6.3.2 Analysis Methodology .. 108

6.3.3 Comparison Results .. 109

6.3.4 Robustness .. 111

6.4 Future Trade Studies ... 111

6.5 Technology Evaluation ... 112

6.6 Configuration Comparison .. 113

7. A Numerical Method to Calibrate and Forecast Technology Improvements for the UH-60

Helicopter Using NDARC .. 115

7.1 Introduction ... 115

7.2 Calibration ... 115

7.2.1 Geometry ... 116

5

7.2.2 Power Required ... 116

7.2.3 Engine ... 118

7.2.4 Engine Power Available .. 119

7.2.5 Engine Fuel Flow .. 119

7.2.6 Weight and Sizing ... 119

7.3 Calibration Results .. 120

7.3.1 Engine Calibration .. 120

7.3.2 Power Required Calibration .. 120

7.4 Technology Infusion ... 122

7.5 Conclusions ... 126

8. Development of a Framework for Mission and Operational Modeling 127

8.1 Introduction ... 127

8.2 Simulation Environment Development Methodology .. 128

8.2.1 Conceptual Approach .. 128

8.2.2 Metrics of Interest ... 129

8.2.3 Modeling Approach .. 130

8.2.4 Phased-Mission Modeling ... 130

8.2.5 Modeling the Vehicle Systems ... 131

8.2.6 Maintenance Manager ... 133

8.2.7 Modeling Technology Impacts ... 135

8.2.8 Modeling Architectural Tradeoffs... 136

8.3 Model Implementation .. 136

8.3.1 Model Implementation .. 136

8.3.2 Mission Modeling ... 140

8.3.3 Approximating Failure Densities .. 140

8.4 Results ... 141

8.5 Key Questions and Implications of Model Assumptions in FY17 Scope of Work 147

6

8.6 Opportunities for Future Work ... 150

8.7 Available Applications for the Developed Model .. 152

8.8 Considerations Regarding Reliability and Maintainability Data Needs 152

8.9 Concluding Remarks ... 154

9. References ... 155

10. Appendix ... 159

10.1 Appendix A: Test Objective Function for SeBBAS ... 159

10.1.1 Script to Call SeBBAS .. 159

10.1.2 Test Objective Function .. 160

10.2 Appendix B: Current NDARC Design Variables Available ... 162

10.3 Appendix C: Sample “NDARC Calibration Settings.inp” File&RUN_SETTINGS 164

10.4 Appendix D: NDARC Model.out File Format .. 165

10.5 Appendix E: Residuals.out File Format .. 166

10.6 Appendix F: Input File with Formatting Errors .. 166

10.7 Appendix G: Case Study Calibration Data Set and Design Space .. 167

10.7.1 Appendix G.1: Case Study Calibration Data Set .. 167

10.7.2 Appendix G.2: Case Study Design Space ... 171

7

List of Figures

Figure 2-1. Example Test Function that Creates a Non-Hypercubic Design Space Through the Application

of a Constraint ... 16

Figure 2-2: SeBBAS approach used to generate a Random Forest model capable of classifying design points

as feasible or infeasible based solely on the design variable values ... 19

Figure 2-3: SeBBAS file locations relative to one another on local computer ... 20

Figure 2-4: Folder structures that contain inputs, outputs, and results from SeBBAS algorithm 20

Figure 2-5: Example of a "Classified DOE" on a system with two design variables 22

Figure 2-6: Example .csv file for setting design variable ranges .. 22

Figure 2-7: Example of the DOE format required to suggest new design points to sample 22

Figure 2-8: Error exception thrown in MATLAB if Rscript windows environment variable has not been

created for R .. 23

Figure 2-9: One example for the likely location of Rscript.exe file on local computer 23

Figure 2-10: System Properties window used to edit environment variables ... 24

Figure 2-11: Adding Rscript file location as a windows environment variable .. 24

Figure 2-12: Error exception thrown in MATLAB if randomForest package is not properly installed in R

 .. 25

Figure 2-13: Example of how to properly set the parentDirectory variable in the SeBBAS.R script 25

Figure 2-14: Error thrown in MATLAB when the parentDirectory variable in the SeBBAS.R file is not set

properly ... 25

Figure 2-15: Structure of objective function in MATLAB ... 27

Figure 2-16: Example showing one possible way to package additional inputs into a single variable 28

Figure 2-17: Progression of RF algorithm sampling points to learn the location of a parabolic constraint

boundary ... 30

Figure 2-18: Results of RF classification model for parabolic constraint... 31

Figure 2-19: Progression of RF algorithm sampling points to learn the location of a sharp corner constraint

boundary ... 31

Figure 2-20: Resolution of RF algorithm on corner constraint boundary ... 32

Figure 2-21: Inputs required to run the NDARC.m MATLAB function .. 33

Figure 2-22: File and folder locations required to properly run NDARC ... 34

Figure 2-23: Required contents of NDARC Files folder .. 34

Figure 2-24: Example of how NDARC function uses variable names to write design variable values to

correct locations .. 35

Figure 2-25: Summary of process used to classify a NDARC design point ... 37

8

Figure 2-26: Approach used to test the proposed hypothesis and determine if SeBBAS approach yields

significant results .. 38

Figure 2-27: Suggested use of SeBBAS approach to determine whether or not surrogate model or

engineering model will be analyzed based on the confidence of the RF classification 42

Figure 3-1: Time Lag from Development to Application of Advanced Composites in Aircraft 47

Figure 3-2. Outlined Approach ... 51

Figure 3-3. A Closer Look at Step 1 ... 51

Figure 3-4. Tool Data Flow .. 55

Figure 3-5. Technology Questionnaire ... 55

Figure 3-6. Technology Characteristic Scores .. 56

Figure 3-7. Filtered List of Acceptable Forecasting Techniques .. 57

Figure 3-8. Technique Commonality Score Distribution .. 60

Figure 3-9. Turboshaft Engine Power-to-Weight Ratio Progression Utilizing the Technology-Only Causal

Model .. 61

Figure 3-10. Turboshaft Engine Power-to-Weight Ratio Progression Utilizing the Trend Extrapolation

Method .. 63

Figure 4-1: Composition of an individual of the genetic algorithm .. 70

Figure 4-2: Single iteration of genetic algorithm for NDARC calibration process 71

Figure 4-3: Scaling the number of individuals and generations of the genetic algorithm based on the size of

the design space .. 72

Figure 4-4: Automation of calibration process using optimization technique .. 74

Figure 4-5: Example showing format of &CALIBRATION_DATA_SET NAMELIST 76

Figure 4-6: NDARC - OC tool automatically checking variable names from the input file to make sure that

they match a known variable exactly .. 77

Figure 4-7: Example of error report from input file with multiple input formatting issues (input file in

Appendix F) .. 78

Figure 4-8: Required contents of the “NDARC Optimized Calibration” folder ... 79

Figure 4-9: Initial display to user when optimization executable is launched .. 79

Figure 4-10: User display during the execution of the optimization algorithm .. 80

Figure 4-11: User display upon aborting the current run .. 80

Figure 4-12: Sample output file name formats ... 81

Figure 4-13: NDARC - OPS optimization process ... 82

Figure 4-14: Proper location of "NDARC Optimization" folder relative to NDARC – OPS 82

Figure 4-15: Calibration data set table used to structure the information for the NDARC – OC tool 83

9

Figure 4-16: "Optimization Set Up" sheet of NDARC – OPS used to set up optimization problem 84

Figure 4-17: Demonstrating how to change variable type between design variable and constant parameter

 .. 85

Figure 4-18: Possible error messages that occur when NDARC variables are not set correctly 86

Figure 4-19: NDARC - OPS user display for results .. 86

Figure 4-20: Example of results for a good fit (Kappa values) and poor fit (Cd values) on the actual by

predicted and residual by predicted plots .. 87

Figure 5-1. Uncertainty Sources Throughout the Vehicle Lifecycle .. 91

Figure 5-2. Uncertainty in Numerical Simulations [22] ... 92

Figure 5-3. Current CATE Uncertainty Dashboard .. 93

Figure 5-4. PCC Methodology .. 94

Figure 5-5. Cd Mean Data and the Exponential Curve Model ... 96

Figure 5-6. Bayesian Approx. of the 3 Parameters Describing Second Order Cd Mean Model 96

Figure 5-7. Maximum Speed vs. Center of Gravity Location ... 97

Figure 5-8. Maximum Speed Distribution, Standard Deviation of 2.4 kts ... 98

Figure 6-1. 4-Blade/5-Blade Hover Power Comparison at SLS Condition .. 100

Figure 6-2. 4-Blade/5-Blade Hover Power Comparison at 4K/95F Condition ... 101

Figure 6-3. 4-Blade/5-Blade Forward Flight Power Comparison (CT = 0.0074) 102

Figure 6-4. 4-Blade/5-Blade Forward Flight Power Comparison (CT=0.0091) .. 102

Figure 6-5. 4-Blade/5-Blade Forward Flight Power Comparison (RPM=258) .. 103

Figure 6-6. 4-Blade/5-Blade Forward Flight Power Comparison (CT=0.0083) .. 103

Figure 6-7. Integration Flow between the RCAS and the CATE ... 104

Figure 6-8. Hover Induced/Profile Parameters Comparison ... 104

Figure 6-9. Trade Study Environment Built in ModelCenter ... 108

Figure 6-10. Power Required and Available Comparison with/without ITEP Engine 110

Figure 6-11. UH60 performance sensitivities to changes in drag, air density, and gross weight 111

Figure 6-12: Operational ranges for traditional vehicle concepts .. 114

Figure 7-1 Calibration Process .. 115

Figure 7-2 Optimization results: Profile drag coefficient in hover and the verification data from [37] ... 121

Figure 7-3 Optimization results: Induced power coefficient in hover and the verification data from [37]

 .. 121

Figure 7-4 Profile power coefficient comparison between the Operator’s Manual Power Required Motor

Model and the Energy Performance Method Model ... 122

Figure 8-1. Conceptual Model Description ... 128

https://gtvault-my.sharepoint.com/personal/kc157_gatech_edu/Documents/CATE/2017%20FY%20Report/CATE%20FY17%20Report%20Final%2020180131%20rev2.docx#_Toc505092628

10

Figure 8-2. Simulation Layout .. 130

Figure 8-3. Notional Event Tree ... 133

Figure 8-4. Structure of the Maintenance Manager .. 134

Figure 8-5. Process Used to Define Event Trees .. 137

Figure 8-6. Notional Single Main Rotor Helicopter Functional Architecture for Cruise Segment 138

Figure 8-7. Notional Single Main Rotor Helicopter Physical Architecture Applicable to Cruise Segment

 .. 138

Figure 8-8. Mission Abort and Safety Critical Fault Trees for Cruise Segment 139

Figure 8-9. Operational Availability Histogram ... 142

Figure 8-10. Operational Availability Inverse CDF ... 142

Figure 8-11. Mean Time Between Failures Histogram ... 143

Figure 8-12. Aircraft MTBF Inverse Cumulative ... 143

Figure 8-13. Component Failures per Cycle ... 144

Figure 8-14. Condition-Based Actions per Cycle ... 144

Figure 8-15. Inverse Cumulative for MFOP Cycle Success ... 145

Figure 8-16. Improved Operational Avail. Inverse CDF .. 145

Figure 8-17. Improved Aircraft MTBF Inverse CDF ... 146

Figure 8-18. Improved Inverse CDF for MFOP Success .. 146

11

List of Tables

Table 2-1: Required inputs of the SeBBAS_Input_File.csv file ... 20

Table 2-2: Input parameters required for the SeBBAS algorithm .. 26

Table 2-3: Description of all input parameters required for the Objective Function 27

Table 2-4: Description of all output parameters required for the Objective Function 28

Table 2-5: Input files required to run NDARC ... 35

Table 2-6: Design variables and ranges used during the NDARC case study .. 39

Table 2-7: Results of UH-60 case study ... 40

Table 2-8: Results from the constrained design space analysis .. 40

Table 2-9: Study conducted to attempt to identify incorrect classifications from RF model using ε = 0.80

 .. 42

Table 2-10: Study conducted to attempt to identify incorrect classifications from RF model using ε = 0.90

 .. 43

Table 3-1. Technology Forecasting Technique Characteristics .. 49

Table 3-2. Matching Technology Characteristics to Technique Characteristics .. 50

Table 3-3. Technique Characteristics Weighting .. 54

Table 3-4. ITEP Engine Demonstration Technology Questionnaire Answers ... 58

Table 3-5. ITEP Engine Demonstration Filtered Forecasting Techniques ... 59

Table 3-6. Turboshaft Engine Power-to-Weight vs. Development Year Data Points 62

Table 3-7. Turboshaft Engine Forecast with Technology-Only Causal Model Results 62

Table 4-1: Rotor induced power design variables... 67

Table 4-2: Rotor profile power design variables... 68

Table 4-3: Information required to calibrate NDARC models ... 69

Table 4-4: Available NAMELISTs in NDARC Calibration Settings input file ... 74

Table 4-5: Input variables available in the &RUN_SETTINGS NAMELIST ... 75

Table 4-6: Formatting design variable versus constant parameters in the induced/profile NAMELISTS . 76

Table 4-7: Error messages in Error Report that occur when reading input file .. 78

Table 4-8: Induced power design space used in NDARC - OPS for case study ... 88

Table 4-9: Settings for NDARC - OPS calibration run... 88

Table 4-10: Results of NDARC calibration case study .. 88

Table 5-1. Inputs to the Monte Carlo Simulation ... 98

Table 6-1. New Calibration Results .. 99

Table 6-2. Rotor Induced Power NDARC Variables .. 105

12

Table 6-3. Rotor Profile Power NDARC Variables .. 105

Table 6-4. Sizing Comparisons of 4-blade and 5-blade rotor system ... 106

Table 6-5. Performance Comparisons of 4-blade and 5-blade rotor system ... 107

Table 6-6. Metrics evaluated for upgrade sensitivity and robustness ... 108

Table 6-7. ITEP vs. non-ITEP Sized Vehicle Comparison ... 109

Table 6-8. ITEP vs. non-ITEP Sized Vehicle Comparison ... 110

Table 6-9. CATE Evaluated Technologies ... 112

Table 6-10. Extended List of Evaluated Technologies ... 113

Table 7-1 UH-60A/L/M Technologies Modeled .. 115

Table 7-2 Information Required to Calibrate Rotor Model .. 117

Table 7-3 UH-60A/L/M Technology Impact Factors ... 123

Table 7-4 NDARC Weight Predictions Error for the UH-60L ... 124

Table 7-5 NDARC Performance Analysis of UH-60A, UH-60L, and UH-60M vehicles 125

Table 8-1. Metrics Tracked in the Simulation .. 129

Table 8-2. System Definition Inputs ... 132

Table 8-3. Maintenance Manager Inputs. ... 134

Table 8-4. Failure Modes by Component Type. ... 139

Table 8-5. Model Implementation Phased-Mission. ... 140

Table 8-6. Model Limitations and Questions Presented at the AHS 73rd Forum 149

Table 10-1: NDARC variables available in the Aircraft Configuration template file 162

Table 10-2: NDARC variables in the engine template file ... 163

Table 10-3: NDARC variables for the sizing conditions input file... 163

Table 10-4: NDARC variables for the mission input file ... 163

13

1. Introduction

The development and implementation of advanced aerospace vehicles is an endeavor that can potentially

affect long-term aviation operations and future system capabilities for several decades. Selecting the best

vehicle configuration(s) requires a thorough understanding of the capabilities and life-cycle considerations

required by the end user, the vehicle’s full spectrum operations, as well as technologies impacting both

operational needs and system performance. The fundamental goal of the proposed effort involves using the

Aerospace Systems Design Laboratory (ASDL) established expertise in the fields of decision support and

advanced vehicle Modeling and Simulation (M&S) to develop an innovative trade-off environment for

advanced vehicle concepts exploration.

Over the span from October 2010 to September of 2017, a Capability Assessment and Trade-off

Environment (CATE) with an accompanying Excel user interface was developed. The environment is

powered by surrogate models created from the NASA Design and Analysis of Rotorcraft (NDARC) code.

The surrogate models were created from data obtained through experiments performed in NDARC using

candidate Joint Multi-Role Rotorcraft configurations (Single Main Rotor, Compound, and Tilt-rotor). The

use of surrogates for distinct concept families provides a novel way of doing rapid trades to investigate how

performance and vehicle unit cost vary across the different designs. To assess technology impacts on

vehicle capabilities, CATE includes an Interactive Reconfigurable Matrix of Alternatives (IRMA) that

allows for input and management of technologies. CATE uses Quality Function Deployment (QFD) style

qualitative analysis for technologies that do not necessarily affect mission performance but do affect

mission effectiveness. Users can assess technologies by manually selecting options using the IRMA or by

using a genetic algorithm to perform a selection based on the user’s objectives. [1]

This fiscal year work aimed to extend the capabilities that currently exist in CATE. To increase the fidelity

of the results in CATE, a comprehensive rotor performance analysis using RCAS (Rotor Comprehensive

Analysis System) has been used to calibrate a new NDARC model that is then integrated directly into CATE.

To increase the accuracy of the calibration, an optimization algorithm has been wrapped around Wayne

Johnson’s Rotor Performance Spreadsheet, varying the available NDARC variables to best match the

calibration data. This process provides a quick and efficient way to calibrate CATE to new models,

increasing the tools flexibility and accuracy.

To improve the capabilities of the IRMA in CATE, an extensive rotorcraft technology literature research

was performed in order to capture new rotorcraft technologies. During the literature research, different

technologies such as ITEM Engine, Continuous Trailing Edge Flap (CTEF) etc., were identified along with

their impacts on the various components of the rotorcraft (i.e. physical/functional). These impacts were

14

then modeled in the CATE environment through the use of tech factors on NDARC parameters. This work

ultimately allows for new technologies to be rapidly assessed on a baseline architecture.

In order to extend the actual modeling capabilities, investigation on how OpenMDAO can be used to solve

Multidisciplinary Design Analysis and Optimization (MDAO) problems was performed. The open source

software was evaluated as a mean to interface with NDARC and perform calculations on the results.

The capabilities of CATE were demonstrated for an existing vehicle, the UH-60 Black Hawk. First, a new

procedure to calibrate NDARC files was illustrated for the UH-60A and UH-60L. The power required,

power available and component weights were calibrated with published data. Technologies were

implemented on the vehicle model and the performance and sizing impacts were derived. Among them, the

technologies used to perform the UH-60L to UH-60M upgraded were implemented and the characteristics

of the derived UH-60M were analyzed.

A Discrete-Event Simulation (DES) tool was built to model Reliability, Availability, and Maintainability

(RAM) of a helicopter performing a mission. This tool can be used to perform system level trade-offs to

obtain a desired Operational Availability (Ao), Maintenance Free Operating Period (MFOP), as well as

affordability.

15

2. Framework for characterizing and visualizing the interaction between vehicle

performance and effectiveness, and subsystem design parameters

2.1 Introduction

The following sections present the work done in Design Space Exploration and Technology Impact

forecasting. The design space exploration works studies the effect of constraints that create a non-

hypercubic design space. This work is particularly relevant to rotorcraft because multiple constraints exist

in the design space that are either mathematical singularities, incompatible physical variables, incompatible

variables that cannot be modeled by software, etc. The technology impact forecasting work presents

methods to identify appropriate forecasting methods to use based on the technology under study. This

mapping methodology is presented along with a relevant example to the UH-60 helicopter.

This report outlines the steps required to implement the Set-Based Bounded Adaptive Sampling (SeBBAS)

approach. The theory of the SeBBAS approach is discussed by Kizer in his PhD Dissertation [2], and is

only briefly discussed here to provide sufficient background information to understand the process. The

focus of this report is to describe the steps that are required to run the SeBBAS algorithm, which requires

both MATLAB and the R programming language. Suggestions are also provided on the most effective way

to use this approach.

2.2 Motivation

Common to practically all engineering design problems is the implementation of constraints. Constraints

may include some form of design requirement (i.e. wingspan can be no greater than the runway width),

performance requirement (i.e. aircraft must have a range exceeding 1000 km), or a physical limitation (i.e.

a design that is not physically possible but the mathematical models representing the system still converge).

In many of these scenarios, the effects that the constraints have on the design space are not known a-priori,

and they often results in a non-hypercubic (NHC) design space.

In addition to constrained design spaces, the engineering models (here an engineering model is taken to be

a simplified representation of the true physics of a system) are often complex, non-linear, and expensive to

evaluate. In some instances, engineering models are represented as “black-box” functions, in which the user

only knows the inputs over some domain, 𝐷 = {𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖]}, and outputs of the model, with no knowledge

of what calculations are actually performed within the code. In such instances, it is often advantageous to

fit surrogate models to the engineering models, which provide estimates of the engineering models that are

inexpensive to evaluate.

16

Caution must be used when taking a surrogate model approach, as surrogate models generally take the form

of continuous functions that are prone to large errors if extrapolation occurs. Extrapolation can normally be

avoided by requiring that all design points fall within the domain that was used to create the surrogate

models themselves (𝑥𝑖 ∈ 𝐷). However, general implementations of surrogate models have no direct way of

determining if a design point will be feasible or infeasible. That is, a design point 𝑥𝑖 ∈ 𝐷 may actually be

classified as an infeasible design point by the engineering model, despite being within the domain used to

create the surrogate models. Thus, the surrogate model will extrapolate and predict a response for a design

point that is actually infeasible due to some constraint or physical limitation within the engineering model.

To eliminate this form of extrapolation, an approach capable of classifying a design point as feasible or

infeasible (a classification model) must be implemented in conjunction with a surrogate model.

To demonstrate this, consider a 2-Dimensional space defined on the domain 𝐷1 = {𝑥1 ∈ [0,5], 𝑥2 ∈

[−5,5]}, which is to be evaluated using a black box function that applies some unknown constraint to the

design space. The goal is to fit a surrogate model to this constrained black box function. The general

procedure for doing so is outlined in Figure 2-1, which requires generating a Design of Experiments (DOE)

based on the function domain, and evaluating the black box function at each of these design points to

classify them as feasible or infeasible designs. The surrogate model would then be fit to only the feasible

design points of the DOE.

Figure 2-1. Example Test Function that Creates a Non-Hypercubic Design Space Through the

Application of a Constraint

Clearly, the constrained design space is NHC (a hypercubic design space would produce feasible designs

for all design points within the domain 𝐷1), with a large infeasible design region present within the design

space. Also, notice that feasible design points exist for all 𝑥1 ∈ [0,5] at some constrained subset of 𝑥2

values (i.e. the point (𝑥1, 𝑥2) = (2.5, −2.5) is feasible, while the point (2.5, 2.5) is infeasible), and

likewise feasible points exist for all 𝑥2 ∈ [−5,5] at some constrained subset of 𝑥1 values. Because of this,

a surrogate model fit to the feasible design points will have x values ranging from 𝑥1 ∈ [0,5] 𝑎𝑛𝑑 𝑥2 ∈

[−5,5], while only a subset of the domain 𝐷1 is feasible. If the surrogate model is used outside the feasible

region of 𝐷1, then the results of the surrogate model are not only complete garbage due to extrapolation,

17

but are potentially dangerous. That is, it is possible for the surrogate model to extrapolate and predict that

a design point has an extremely favorable response, when in reality the design is infeasible. Though this

may seem trivial to identify in the simple example provided in Figure 2-1, it becomes exceedingly difficult

as the dimensionality of the problem increases beyond three dimensions.

If gone unchecked, the infeasible design point could be carried through parts of the design process, which

could potentially cause a lot of costly re-work to be performed at a later stage in the design process. This

error can easily be removed by checking the selected design point against the original engineering model,

presenting only a minor headache to the designer. A greater challenge is presented if the surrogate model

is used in an optimization code to find the optimal design point. If the optimization code has no way of

knowing whether a design point is feasible or infeasible, it could potentially always be driven to an

infeasible solution, which due to extrapolation, has a favorable response value over other feasible designs.

This drives the need for an approach that can identify, with sufficient accuracy, the feasibility of a design

point based solely on the values of the design points themselves. This is one of the major objectives of the

SeBBAS approach, the implementation of which is described in the following section.

2.3 SeBBAS Approach

2.3.1 Random Forest Algorithm

The SeBBAS approach utilizes an open-source Random Forest (RF) machine learning algorithm (available

in the R programming language) to learn and classify any N dimensional design space. The RF algorithm

is a type of reinforcement learning algorithm, which uses the provided training data set to construct a set of

decision trees. For the SeBBAS algorithm, the decision trees are constructed with the purpose of classifying

a given design point as either feasible (given a classification value of 1) or infeasible (given a classification

value of -1). In this way, the machine learning algorithm is essentially learning where the boundaries

between the feasible and infeasible regions of the design space lie. Once constructed, the RF model has the

ability to provide a classification for any design point based on the values of the design variables

themselves, as well as predict the probability that any given design point is either feasible or infeasible.

The Random Forest implementation in the SeBBAS algorithm follows the tutorial of Reference [3]. The

tutorial provides information on the proper syntax required, as well as details on the available settings of

the Random Forest algorithm (such as the number of decision trees used in the model), and how to set the

training data for the model. As this part of the SeBBAS algorithm is fully automated and requires no user

modifications, no further details are provided in this report. The reader should refer to Brieman provides a

more in depth discussion on how to use the Random Forest algorithm in the R programming language. [4]

18

2.3.2 Incorporation of Random Forest Algorithms into SeBBAS

The Random Forest algorithm is incorporated into SeBBAS as shown in Figure 2-2. First, a lower (𝛼) and

upper (𝛽) bound must be established for each of the N design variables being considered. These ranges are

then used to construct a DOE to sample the hypercubic design space domain, defined by 𝐷𝑁 =

{𝑥𝑖 ∈ [𝛼𝑖, 𝛽𝑖]}, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁. The choice of DOE is up to the user’s preference, and will most likely

problem dependent. This initial DOE is used as the training data for the Random Forest model, and thus

all design points in the training DOE must be classified as either a feasible design (1) or infeasible design

(-1). This classification incorporates any of the constraints discussed in Section 2.1, and at this point the

classification value represents the global classification of each design point (i.e. any design classified as

feasible meets ALL of the constraints that were applied to the system. If ANY constraint is violated, then

the design point is to be classified as infeasible). It is possible to increase the complexity of the SeBBAS

algorithm by considering each constraint separately, but this capability must be implemented in future

versions of the code.

Once classified, a RF model is fit to the training data, and the iterative process of learning the constraint

boundaries and refining the RF model begins. This process is carried out in the following steps:

1) Fit a Random Forest model to the classified training data set

2) Validate the RF model against a validation data set

3) Based on the RF model and validation data set, suggest new refinement data points by selecting

randomly sampled points that have the highest probability of being incorrectly classified (these are

the blue points in Figure 2-2)

4) Classify the refinement data points, and add them to the training data set

5) Repeat steps 1-4 until max number of iterations reached, error tolerance has been met, or all

resources have been used

Once the RF model has been fit and refined, it serves two purposes. First, it can be used to suggest new

design points to sample that fall within the feasible region of the design space. This is beneficial when a

large portion of the design space is infeasible due to constraints, as it will allow you to densely sample the

feasible design region of the design space to create a DOE for fitting surrogate models. Once the surrogate

models have been created, the RF model can be used to check that any design point run through the

surrogate models are actually feasible designs. As discussed in Section 2.2, this is a necessary feature as it

prevents the surrogate models from extrapolating when a design point is actually infeasible.

19

Figure 2-2: SeBBAS approach used to generate a Random Forest model capable of classifying

design points as feasible or infeasible based solely on the design variable values

2.4 SeBBAS Implementation

Currently, the SeBBAS algorithm is implemented using a combination of MATLAB and the R statistical

programming language. The user interacts only with MATLAB, which requires a single script file to set up

the proper inputs and call the SeBBAS algorithm. The remainder of the algorithm is entirely automated,

although the interfacing between MATLAB and R does require that a number of folders and files are located

in the proper directory on the local computer. All actions required by the user to properly set up and run the

SeBBAS algorithm with an arbitrary objective function are discussed in the remainder of this section.

2.4.1 SeBBAS Files & Folder Structure

There are two main files that are required in order to run SeBBAS: a MATLAB function called SeBBAS.m,

and a R script called SeBBAS.R. These two files must be located in the same directory location on the local

computer. In addition, a folder called R Files must be located in the same directory location as the two

SeBBAS scripts. This folder contains the files required for MATLAB and R to interact with one another.

An example of this file structure is shown below in Figure 2-3. In Figure 2-3, the additional MATLAB files

run_Test_SeBBAS.m and SeBBAS_Tests.m are simply additional MATLAB scripts and functions used to

test the SeBBAS algorithm. For convenience, they are placed in the same directory location as the SeBBAS

algorithm.

The R Files folder contains a series of additional folders that are used to organize the various input and

output files required in the SeBBAS algorithm with its current setup. These folders are shown in Figure

2-4, and the important folders are described in the proceeding subsections. In addition to these folders, the

SeBBAS_Input_Files.csv file must be located in the R Files folder. This .csv file contains the inputs required

20

to properly run the SeBBAS.R script, and is automatically written by the MATLAB SeBBAS.m function. It

should be noted that the spelling of these folders MUST be matched exactly, as both the SeBBAS.R and

SeBBAS.m functions look for files in these specific folders, which is what allows the process to be

automated.

Figure 2-3: SeBBAS file locations relative to one another on local computer

Figure 2-4: Folder structures that contain inputs, outputs, and results from SeBBAS algorithm

SeBBAS Input File

The SeBBAS_Input_File.csv is read directly by the SeBBAS.R script. Currently, there are 10 inputs that

are required in the input file, which are described in Table 2-1. The input file should contain 10 columns,

one for each of the ten input variables, and two rows. The first row contains the variable name, which must

be spelled exactly as shown in Table 2-1, and the second contains the value assigned to each variable. Again

this process is completely automated in MATLAB, and is just listed here for reference.

Table 2-1: Required inputs of the SeBBAS_Input_File.csv file

Input Parameter Name
Data

Type
Description

num_DV Integer The number of design variables used in the current DOE

AS_budget Integer

The adaptive sampling budget (i.e. the number of new

design points that can be run through the objective

function) available for the current run.

AS_DS_factor Integer

The adaptive sampling – dense sampling factor. This

determines how many new design points will be randomly

sampled and classified using the RF model.

21

AS_option String

 Refine: the SeBBAS.R algorithm will refine the RF

models fit of the constraint boundary by suggesting new

points to sample along the boundary.

 Sample: the SeBBAS.R algorithm will suggest new

points to include in a DOE that will have a high

probability of being feasible designs

Classified_DOE_Filename String
The .csv filename for the classified DOE, located in the

Classified DOEs folder.

RF_Fit_SaveAs String

The name that the current RF model is saved as. The

variable should have a .rda file extension, and is saved in

the RF Fits folder

DV_Range_Filename String

The name of the .csv file that contains the name of each

design variable and corresponding min and max allowable

value. Located in the Design Variable Range folder.

Validation_DOE_Filename String

The name of the .csv file that contains the validation

classified DOE. This file is also located in the Classified

DOEs folder.

Output_DOE_Filename String

Contains the file name used to output either a DOE of

design points used to refine the RF model, or a DOE to

suggest feasible design points to sample. If “AS_option” is

set to “refine”, then the file will be saved in the Refinement

DOEs folder. If it is set to “sample”, it will be saved in the

Suggested Sample DOEs folder

Variable_Importance_SaveAs String

Filename used to save the information on the importance

of each variable in the RF model. This .csv file is saved in

the Variable Importance folder.

Classified DOE’s

The term “Classified DOE” will appear repeatedly in the remainder of this report. A classified DOE simply

refers to a .csv file that consist of a set of design points that have been run through the objective function

and classified as either feasible (value of 1), or infeasible (value of -1) based on the constraints provided

within the objective function. The Classified DOE.csv file will have N+1 rows and M+1 columns, where

N is the number of design points or cases, and M is the number of design variables. The extra row and

column account for the following:

 Column 1: The classification of each design point as either feasible or infeasible

 Columns 2 – (M+1): The values of the design variables for the current design point

 Row 1: The header row that contains “Classification” (or some other term that you wish) in column

1, and the names of the design variables in the remaining columns

 Rows 2 – (N+1): The classification and design variable values for each design point

22

To make things clearer, an example is provided in Figure 2-5 for a system with two design variables. In

row one, the column headers are provided, where “Global Feasible” is used as the header to the

classification column, and the two design variables are labeled “x1” and “x2”. Starting in row 2, the

classification of each design point is listed, as well as the corresponding values for each design variable.

This is repeated for each design point in the DOE. This example can easily be extrapolated for systems with

any number of design variables by just adding the classification value in column one, followed by the values

of each design variable in the proceeding columns.

Figure 2-5: Example of a "Classified DOE" on a system with two design variables

The Design Variable Range folder contains .csv files with information on each design variables name, along

with their min and max allowable values. An example of this is shown below in Figure 2-6. This example

has four different design variables, which are labeled in row 1. The minimum and maximum value that each

design variable can have are listed in rows 2 and 3, respectively.

Figure 2-6: Example .csv file for setting design variable ranges

These two folders contain a DOE or rather a list of new design points that should be sampled and classified

using the objective function. The SeBBAS.R script writes .csv files to these folders to pass information back

to MATLAB. The format of the DOE files are almost identical to the classified DOE shown in Figure 4-3,

with the exception that the classification column is no longer present. An example of this is shown in Figure

4-5, where the design variable names are listed in row 1, with the new design points in the remaining rows.

Figure 2-7: Example of the DOE format required to suggest new design points to sample

23

2.4.2 Setup of R Programming Language for SeBBAS

Software Installations Required

Two separate software packages associated with R must be installed to run SeBBAS. First, R must be

installed, which contains the base binary files required for R along with the randomForest Software

package. This program can be downloaded from https://www.r-project.org/. Secondly, RStudio software

must be downloaded through ANACONDA, which is an IDE for Python v3.6 and R. ANACONDA v4.3.1

or later must be downloaded from https://www.continuum.io/downloads. Once ANACONDA is installed,

open the ANACONDA navigator and install RStudio through ANACONDA (this may require admin

access). The ANACONDA RStudio package contains the Rscript executable file which allows R to be

called through the command prompt, which is key to automating the SeBBAS process. Once both R and

RStudio are installed there are two remaining steps before R has been setup properly to run for SeBBAS.

Setting Windows Path Environment Variable for Rscript

MATLAB calls the SeBBAS.R script by using the command system(‘Rscript SeBBAS.R’). This command

requires that a windows PATH environment variable exists for Rscript. Generally this is done at the

installation of ANACONDA. However, if the error message shown in Figure 2-8 occurs in MATLAB when

SeBBAS is run, then the PATH environment variable was not correctly set and must be done manually.

Figure 2-8: Error exception thrown in MATLAB if Rscript windows environment variable has not

been created for R

To set the windows PATH environment variable (obviously this only works for Windows machines), first

locate the Rscript.exe file by searching for it on your computer through the start menu. It should be installed

as a script file of ANACONDA, and thus located in a subfolder of the ANACONDA program. An example

of how this might look is shown in Figure 2-9.

Figure 2-9: One example for the likely location of Rscript.exe file on local computer

24

 Once the location of the Rscript.exe file has been located, navigate to “Control Panel -> System ->

Advanced System Settings” on the local computer (or type “System Environment Variables” into the start

menu). This will bring up the window shown in Figure 2-10. If not already selected, navigate to the

“Advanced” tab, and select the Environment Variables…” button in the bottom right. In the Environment

Variables window, go to the System Variables scroll box, select the Path (or PATH) system variable and

click “Edit…”. In this new window (shown in Figure 2-11) append the location of the Rscipt.exe file from

Figure 2-10 to the variable value and hit enter. Not only the folder location is required (i.e. end at “Scripts”

as shown in Figure 2-11), as windows will automatically search for any .exe file located in this path to find

the Rscript.exe file. This will successfully add the Rscript.exe file to the windows Path environment

variable.

Figure 2-10: System Properties window used to edit environment variables

Figure 2-11: Adding Rscript file location as a windows environment variable

Installing randomForest package in R

An additional requirement of SeBBAS is that the randomForest package be installed in R. In Windows, this

can be done by opening the R program and using the toolbar to navigate to “Packages -> Install

Package(s)…”. When the “HTHTPS CRAN mirror” window pops up, select “0-Cloud [https]” and click

OK. In the Packages window, select randomForest and click okay again to load it. It should be noted that

if R was installed as an administrator, then R must be launched as an administrator before attempting to

25

load the randomForest package. If it has not been installed, then the error message shown in Figure 2-12

will be shown in MATLAB when SeBBAS is run. If these instructions do not work, then please consult the

internet for help.

Figure 2-12: Error exception thrown in MATLAB if randomForest package is not properly

installed in R

Modification Required to SeBBAS.R Script

One modification must be made by the user to the SeBBAS.R script before the process can be automated.

Because the R programming language does not have the ability to determine the local directory or path of

the script itself, the user must manually set this. To do this, open the SeBBAS.R script, and on (or around)

line 111 of the code, the “parentDirectory” variable must be set to the path of the SeBBAS.R script. For

example, if the SeBBAS.R script is located in the folder “SeBBAS Code”, which is located on the Desktop

of the local computer, then the parentDirectory variable must be set as shown in Figure 2-13. If the user

fails to set the parentDirectory variable correctly, then MATLAB will throw an exception shown in Figure

2-14 when run.

Figure 2-13: Example of how to properly set the parentDirectory variable in the SeBBAS.R script

Figure 2-14: Error thrown in MATLAB when the parentDirectory variable in the SeBBAS.R file is

not set properly

2.4.3 Running SeBBAS Algorithm in MATLAB

The user runs the SeBBAS algorithm in MATLAB by creating two additional files. First, a script file must

be created to set the necessary input variables, and call the SeBBAS.m function. The second file is a function

used to evaluate the objective function of the current study. The format of both of these files are discussed

in the following subsections.

26

MATLAB Input File for SeBBAS

The SeBBAS.m function in MATLAB requires eight inputs to run properly, all of which are described in

Table 2-2. All of these input parameters are straight forward with the exception of the Obj_function

variable. In MATLAB, an objective function must be created that takes the design variable as inputs, and

returns a classification of either feasible or infeasible (this will be discussed in more detail in Section

2593088.0.-946779886), which is simply a function in MATLAB. This function can be passed to the

SeBBAS algorithm as a function handle by placing the @ symbol in front of the Obj_function name. For

example, if the objective function created in MATLAB is called “Constraint_Test1”, then this would be

passed to the SeBBAS function as a function handle by entering SeBBAS(@Constraint_Test1) when calling

the SeBBAS.m function. 4

Table 2-2: Input parameters required for the SeBBAS algorithm

Input Parameter

Name
Data Type Description

run_Case String

String used to identify the current run in SeBBAS. All .csv

files will be saved as an extension on this name. For

example, the .csv file for refinement will be saved as

“run_Case_Refinement.csv”.

total_Budget

3x1 int Cell Array

Or

3x1 {String, int,

int} Cell Array

Three values are expected in this input:

[1] Initial Sample Budget:

a. Int: the number of design points that will be

used to create the initial DOE to sample the

design space

b. String: the name of the .csv file that contains a

pre-classified initial sample DOE

[2] Refinement Budget: the max number of function

calls that can be made to the objective function

when refining the RF model to identify the

constraint boundary

[3] Suggested Sample Budget: the minimum number

of design points that will be sampled to suggest

feasible design points to fit a surrogate model to

DV_Range_Filename String
The name of the .csv file that contains the variable

names and the min and max value of each variable

validation_Case String or Integer

 String: If a string data type is provided, it must

contain the name of the .csv file that contains the

classified validation DOE. This option should be used

if the objective function is expensive to evaluate,

enabling the validation DOE to be pre-calculated to

reduce run time.

 Integer: If int data type, the SeBBAS algorithm will

classify an additional DOE with the number of design

points equal to the value provided by this variable.

This option should be used if the objective function is

27

not expensive to evaluate, as it reduces the work that

the user must do.

max_refinement_Iter Integer
The max number of iterations that the SeBBAS

algorithm will perform to refine the RF model.

Tolerance Double

Stopping criteria that will stop the refinement of the RF

model if the percentage of incorrectly classified

validation data points falls below this tolerance.

Obj_function Function Handle

A function handle that is passed to the SeBBAS

algorithm that has the structure as described in Section

2593088.0.-946779886.

Add. Inputs Structure

If the objective function requires any other inputs to run

properly, then all of those additional inputs must be

packaged in this single parameter. If multiple additional

input parameters are required, they can be packaged into

a single structure variable in MATLAB, then

unpackaged in the Objective Function code for use. If no

additional inputs are required, then omit this parameter

from the function declaration.

Objective Function Structure

The objective function of the design problem must be written as a MATLAB function, with the inputs and

outputs as shown in Figure 2-15. It is passed to the SeBBAS algorithm as a function handle, as described

in Section 2593088.0.-946779886. The objective function takes a set of design points (called a DOE in this

case), and classifies each design point as either feasible or infeasible. If the objective function created in

MATLAB requires additional inputs beyond the design variable values, then they must all be passed to the

objective function in a single variable. Each of the input and output parameters of the objective function

are described in detail in Table 4-3 and Table 4-4, respectively.

Figure 2-15: Structure of objective function in MATLAB

Table 2-3: Description of all input parameters required for the Objective Function

Input

Parameter

Name

Data Type Description

Design Points

NxM

Double

Array

A DOE or set of design points to run through the objective function.

The columns of the array correspond to the M design variables,

28

while the rows of the array correspond to different design points

being evaluated.

Add. Inputs ---

If the objective function requires any other inputs to run properly,

then all of those additional inputs must be packaged in this single

parameter. If multiple additional input parameters are required,

they can be packaged into a single structure variable in MATLAB,

then unpackaged in the Objective Function code for use. If no

additional inputs are required, then omit this parameter from the

function declaration.

Table 2-4: Description of all output parameters required for the Objective Function

Output Parameter

Name
Data Type Description

Classification
Nx1 Integer

Array

Returns an array of 1’s and -1’s, where values of 1 correspond

to a feasible design, and values of -1 correspond to an infeasible

design.

If an objective function only requires the values of the design variables as inputs, then the “Add. Inputs”

variable should be omitted from the function itself. If additional inputs are required (i.e. the constraints are

inputs to the function) then include this variable. If multiple additional inputs are required, these can be

packaged as a MATLAB structure or array, and unpackaged in the objective function. An example of this

is shown in Figure 2-16, where constraints on the values of x1 and x2 are packaged into a single structure

variable in MATLAB, and then unpackaged inside the objective function. Regardless of what approach is

taken, the user must write the objective function, and will thus know how to package and unpack these

additional inputs, which will likely vary on a case by case basis.

Figure 2-16: Example showing one possible way to package additional inputs into a single variable

29

2.5 Test Cases for SeBBAS

A series of 2D and 3D test functions were created in MATLAB to test the SeBBAS algorithm. The test

objective function and the script set up to run SeBBAS with the objective function are listed in Appendix

A. Ten different constraints are available in this test objective function, listed below. A few of them are

tested and discussed here. For the purposes of this report, the SeBBAS algorithm was slightly modified so

that the points suggested to refine the RF model will appear as blue squares at each iteration.

1) Infeasible cross in middle, creating 4 squares in each corner

2) Upper triangle of hypercube is infeasible

3) Parabolic constraint

4) Points that fall within circle centered at (2.5, 2.5) are infeasible

5) Hyperbolic constraint

6) Triangular constraint in the middle of the hypercubic design space

7) Linear band with slope 1 across hypercubic design space is infeasible

8) Cubic constraint on x1 variable

9) Sharp corner constraint boundary

10) 3D sphere of feasible design points

2.5.1 Parabolic Constraint Test

The parabolic constraint (constraint 3) was tested on the domain 𝐷 = {𝑥1, 𝑥2 ∈ [0,5]}, using the following

sampling budget:

 Initial DOE Sample: 50 design points

 Refinement Budget: 2500 design points

The progression of the refinement points being sampled to learn the constraint boundary is shown in Figure

2-17. The RF model is initially fit to the Initial DOE Classification data (top left figure), which is a fairly

sparse sample of the design space. The RF model then starts to sample design points that it believes to lie

near the boundary. At iteration 1, the suggested refinement points resemble a box. SeBBAS then classifies

these refinement points as either feasible or infeasible designs, which can easily be seen if Iteration 2 is

observed (points that were blue in Iteration 1 have now been classified as feasible or infeasible and plotted

again). As the RF model learns more about the design space, the suggested refinement points begin to

closely resemble the parabolic constraint put into place. As expected, the training data has a dense sample

of points near the constraint boundary, which helps the RF model refine this boundary as accurately as

possible.

30

Figure 2-17: Progression of RF algorithm sampling points to learn the location of a parabolic

constraint boundary

After Iteration 5, the RF model was used to suggest approximately 12,500 design points that it classified as

feasible. Of these 12,500 design points, only 0.72% of them were classified as false positives (a false

positive is a design point that the RF model classified as feasible, when in reality it was infeasible). These

results, shown in Figure 2-18, indicate that the RF model is now an extremely accurate classification tool.

31

Figure 2-18: Results of RF classification model for parabolic constraint

2.5.2 Sharp Corner Constraint Test

A second example was performed using the sharp corner constraint (Constraint 9). The initial DOE and

refinement sample budgets remained the same, but this time a domain of 𝐷 = {𝑥1 ∈ [0,5], 𝑥2 ∈ [−5,5]}.

This test was used to determine if SeBBAS and the RF model could resolve a boundary with a sharp corner.

The results, shown in Figure 2-19 and Figure 2-20, indicate that the test was successful.

Figure 2-19: Progression of RF algorithm sampling points to learn the location of a sharp corner

constraint boundary

32

Figure 2-20: Resolution of RF algorithm on corner constraint boundary

2.5.3 Significance of Test Results

The process of training a Random Forest model to learn an arbitrary constraint boundary can be a rather

expensive process. In addition to running the training data set through the objective function, the SeBBAS

approach also requires that a validation data set be classified so that the accuracy of the RF model can be

tested. Depending on the number of dimensions and complexity of the design space, it could potentially

take thousands of refinement data points to refine the RF model to a sufficient accuracy. Almost certainly

this process will be far more computationally expensive than simply running a structured, hypercubic based

DOE and fitting a surrogate model to the feasible design points.

However, as discussed earlier a huge disadvantage of this traditional surrogate model approach is that it has

no way of identifying infeasible versus feasible design points. If a point was sampled in the infeasible region

of the design spaces from Figure 2-18 or Figure 2-20, the surrogate model will extrapolate (this is an

extrapolation because no information from these portions of the design space were used to construct the

surrogate model). In this extrapolation zone, the results of the surrogate model become completely

unreliable. In the academic examples presented in this section, it would be easy for the user to anticipate

these infeasible zones in the design space, but in more complex problems this is not a viable option. In

addition, in more complicated functions the infeasible zones will likely be due to a code failing or not

converging due to some underlying physical constraint, rather than artificial constraints applied after the

fact. Because of this, the ability to create a classification model of the design space becomes a huge

advantage as the complexity of the problem increases.

2.6 NDARC Test with SeBBAS

The objective of this study was to implement the SeBBAS algorithm using NDARC as the objective

function. To accomplish this, a MATLAB function was created following the requirements outlined in

33

Section 2593088.0.-946779886. This function fully automates the process of writing the input files, running

NDARC and parsing the NDARC output to extract the desired performance metrics. A brief overview of

how this was accomplished is presented in Section 2.6.1. The results of the NDARC study with SeBBAS

are presented in Section 2.6.2.

2.6.1 MATLAB Function for NDARC

A MATLAB function called NDARC.m was created to allow SeBBAS to be used with NDARC. In addition

to the design variable values from the DOE, this function also requires the NDARC variable names

corresponding to each design variable. This is because the NDARC variable names are used to write the

design variable values to the correct location in the NDARC input files, as will be discussed in Section

2593088.0.-946779886. Thus, as outlined in Table 2-2, the Add. Inputs input variable to the SeBBAS

algorithm should include the NDARC variable names corresponding to each of the design variables.

Figure 2-21: Inputs required to run the NDARC.m MATLAB function

There are three main steps required to run NDARC from MATLAB. First, the NDARC input files must be

written, while taking into account changes to any design variables from the current DOE being run. To

accomplish this, template NDARC input files are stored as MATLAB cell arrays that can be modified

before rewriting the NDARC input files in the proper format for NDARC. This process is discussed in

Section 2593088.0.-946779886. Next, the NDARC itself must be run, which is outlined in Section

2593088.0.-946779886. Finally, performance metrics must be extracted from the NDARC output file,

which is discussed in Section 2593088.0.-946779886.

NDARC File Structure

The NDARC.m function must be located in the same folder as the SeBBAS.m function to run properly. In

addition, a folder was created to store all NDARC related files, called NDARC Files. This folder must be

located in the same folder as the SeBBAS code, and the MATLAB function used to call NDARC. The

locations of the NDARC.m MATLAB function and the NDARC Files folder relative to the SeBBAS.m

function are shown in Figure 2-22.

34

Figure 2-22: File and folder locations required to properly run NDARC

The required contents of the NDARC Files folder are shown in Figure 2-23. First, the NDARC executable

must be located in this folder. The current NDARC.m function is hard coded to call the ndarc_1_9_x64.exe

version of the code, so if a different version of NDARC is used then the MATLAB function must be

changed, as outlined in Section 2593088.0.-946779886. The Size.njob file is the main input file for

NDARC, which tells NDARC where all of the other input files are located on the local machine. These

“other” input files (which will be discussed in Section 2593088.0.-946779886) are all located in the NDARC

Inputs Files folder. The SizeOutput folder contains all of the output files written by NDARC. Finally, the

NDARC Template Files folder contains the MATLAB versions of the NDARC input files, which allow the

design variables to be changed before running NDARC.

Figure 2-23: Required contents of NDARC Files folder

Writing NDARC Input Files

In general NDARC requires six input files to run, which are described in Table 2-5 below. The Size.njob

file tells NDARC the location of these six input files, which for SeBBAS is the NDARC Input Files folder

as shown in Figure 2-23. For this study, it was assumed that the sizing and solution settings would remained

fixed for each design point. The other four input files all contain NDARC parameters that could potentially

be treated as design variables. Thus, an approach was developed that would allow each of these inputs to

be varied to account for changes in the desired design variables from some baseline helicopter model.

35

Table 2-5: Input files required to run NDARC

Input File File

Extension

Description

Engine Model .list
Contains inputs for the performance and specifications of

the engine.

Flight Conditions .cond Inputs for the flight conditions (i.e. altitude, velocity, etc.)

Mission Statement .miss
Inputs that specify the mission(s) that the helicopter will be

sized to.

Aircraft Configuration .airc Inputs that define the configuration of the helicopter.

Sizing Settings .size
Specifies the reference points that will be used to size the

helicopter

Solution Settings .sol

Sets the parameters used for the internal solvers in

NDARC, such as max number of iterations and relaxation

parameters.

Constructing Template Input Files

The approach taken was to save a baseline input file for the engine model, flight conditions, mission, and

aircraft configuration as a template file. To do this, the baseline input files were imported to MATLAB and

saved as cell arrays. The cell arrays re saved as .mat files in the NDARC Template Files folder shown in

Figure 2-23. Within each cell array, the location of the desired NDARC variables were identified (the

location that they had within the cell array is given as some combination of a row and column number), and

hardcoded into the writeNDARC_InputFiles subfunction of the NDARC.m function. This subfunction in

turn matches the provided NDARC variable name to the correct template file, writing each design variable

to the correct location. This is why the design variable names are required ad an additional input to the

NDARC.m function. An example of how this works is shown in Figure 2-24, where the list of variable

names is compared to an available list of NDARC variables. If a match is found, the corresponding design

variable will be written to the correct location in the correct template file. If no match is found, then an

error will be thrown, halting the execution of SeBBAS and indicating to the user that this variable must be

added.

Figure 2-24: Example of how NDARC function uses variable names to write design variable values

to correct locations

To maintain consistency in variable names, the list of NDARC variable available in the NDARC.m

MATLAB function are identical to the names that are provided in NDARC’s Input Manual, with one

36

exception. In some instances (mainly with the drag coefficient parameters), a NDARC variable has the

same name across different structures. For example, the variable name for zero lift drag coefficient, CD, is

the same for the fuselage as it is for the wing or tail. In this case, the variable is given an extension to specify

where to write it in the input template files. For the fuselage, CD would be given the extension “_fus”,

making it CD_fus. The NDARC variable that are currently available in the NDARC.m for function are listed

in Appendix B, with descriptions provided to increase their clarity.

It should be noted that the input template files must be altered every time a new study is performed using a

different baseline helicopter as the starting point. It is possible to directly edit the .mat template files to

enter the new values for the baseline helicopter, in which case the NDARC variable locations will remain

the same. The other option is to import the baseline helicopters input files and create new templates directly

from them. In this case, the user would have to rewrite the writeNDARC_InputFiles in the NDARC.m

MATLAB function to specify the new location of each NDARC variable. Unfortunately, to the best of this

author’s knowledge there is no easy way to get around this. However, once the template files have been

created and the writeNDARC_InputFiles files adjusted, they will be ready for use with SeBBAS.

Running NDARC

Because the NDARC executable is run through the command prompt, it must be called using the system

command in MATLAB. This is performed in the runNDARC function embedded within the NDARC.m

function. The NDARC executable requires two inputs at the command line, the filename that contains

information on where all other NDARC input files are located (this is the Size.njob file), and the filename

to write the general results to (called UH60.out for this study). The command to call NDARC itself relies

on knowing the exact name of the NDARC executable itself. For this study, the NDARC executable used

is called ndarc_1_9_x64.exe. The command to call NDARC is:

'ndarc_1_9_x64.exe <Size.njob> .\SizeOutput\UH60.out'

The first entry after the NDARC executable is the input file name located within <> symbols. The next

entry is the desired path location and filename of the output file. For the example shown above, NDARC

will read the Size.njob file (which must be located in the same folder as the NDARC executable) to

determine the location of all of the other input files, and it will write the UH60.out output file to the

SizeOutput folder.

Extracting NDARC Performance Metrics

Currently, the NDARC output file is read using MATLABs textscan function, which reads the output file

information into a cell array. The values of the desired performance metrics are then extracted from this

37

cell array from their known locations within the cell array. To determine the locations of a given

performance metric, the MATLAB cell array was searched once to find the location of each performance

metric, and their locations were hard coded into the MATLAB function. Several tests were run, and it was

found that the location of each performance metric remained the same as the design variables were changed.

Admittedly, this is not a very robust approach, as it is not known if the location of the performance metrics

within the cell array will vary on rare (or possibly even more common) occasions that were not tested for.

However, the current study did not rely on extracting the correct values for certain performance metrics,

but rather if NDARC converged or not. If NDARC failed to converge, then NAN would be returned in

place of the first performance metric value.

In future studies, the performance metrics from NDARC will likely be used as constraints. Because of this,

a more robust approach to parsing the NDARC output file should be implemented in place of the current

readNDARC_Output function. The constraints must then be written into the NDARC.m function that will

classify design points as either feasible or infeasible based on the current designs performance. Current

classification is based solely on whether NDARC was able to converge to a solution for a given design

point, taking no other constraints into consideration.

Summary of Running NDARC

The general process discussed above is outlined in Figure 2-25. Any time a new design point needs to be

tested, the NDARC design variables will be written to the correct location within the input files. NDARC

will then be run using the MATLAB system command. If NDARC is successfully executed, then the current

design point will be classified as either feasible or infeasible.

Figure 2-25: Summary of process used to classify a NDARC design point

38

2.6.2 NDARC Case Study

In the test cases studied in Section 2.4 the SeBBAS approach provided incredibly accurate classification

models, with results showing an accuracy rating of over 99% for the 2D test cases. Based on these initial

results, the following hypothesis was proposed:

If the RF classification model offers a significant improvement over the current surrogate model

approach, a significantly higher percentage of feasible points would be sampled through the use

of this RF classification model than would be sampled using randomly design points across the

entire design space.

To test this hypothesis on an engineering design problem, a case study was carried out using a UH-60

helicopter as the baseline model. First, a RF model was fit to NDARC using the process outlined in Figure

2-2. Two separate tests were then carried out, as described by Figure 6-6. First, a set of 1000 design points

were randomly selected and classified across the entire hypercubic design space. This serves as a baseline

value to approximate the percentage of the design space that is infeasible. Next, the RF classification model

was use to suggest 1000 design points that it had already classified as feasible. The percentage of infeasible

design points sampled between these two tests are then compared. If the hypothesis is correct, then the RF

classification model offers a significant improvement to the current method, as it would be capable of

accurately classifying design points that are tested through surrogate models without requiring the user to

run each design point through an expensive engineering model.

Figure 2-26: Approach used to test the proposed hypothesis and determine if SeBBAS approach

yields significant results

39

Setup of UH-60 Case Study

Design Space

Five NDARC variables were varied from the baseline values during this case study. These five variable,

along with their ranges are provided in Table 2-6. These five variables were randomly selected from the list

of available NDARC variable in Appendix B. The study was limited to five design variables based solely

on time constraints, and can be extended to any number of NDARC variables in the future.

Table 2-6: Design variables and ranges used during the NDARC case study

NDARC Design Variable Lower Limit Upper Limit

Diskload 5 10

CWs 0.04 0.15

TECH_blade 0.75 1.25

TECH_eng 0.75 1.25

Peng 1000 1800

Design Point Classification

No constraints were applied to the UH-60 performance results. Classification was made solely based on

whether NDARC successfully converged (feasible) or failed to converge (infeasible) at a given design

point. This was intentionally done to test the ability of the SeBBAS approach to handle “black-box”

engineering functions that have zones of non-convergence.

Fitting Random Forest Model

For this case study, the Random Forest model was fit using 5000 training data points, with 5000 design

points allotted for refinement.

Results of UH-60 Case Study

The UH-60 case study was repeated three times using the design variables outlined in Table 2-6, with the

results shown below in Table 2-7. Though the Random Forest classification model did show an

improvement in sampling feasible design points over a purely random sampling method, the results were

by no means impressive. However, based on the validation data set the RF classification model was accurate

97.35% of the time. This would strongly indicate that the SeBBAS approach could produce significant

results under the right circumstances. That is, one would expect the benefits gained from the SeBBAS

approach to increase as the extent of the infeasible region of the design space increases.

40

Table 2-7: Results of UH-60 case study

Run
Design

Points

RF Model Random Sampling

Infeasible DP % Infeasible # Infeasible DP
%

Infeasible

1 1000 22 2.20% 43 4.30%

2 1000 26 2.60% 61 6.10%

3 1000 30 3.00% 55 5.50%

Examining Table 2-7, the random sampling performed in this case study only found approximately 5% of

the randomly selected sample space to be infeasible. To test the theory stated above, the same study was

run again, with additional constraints placed on performance metrics of the helicopter in an attempt to create

larger infeasible regions within the design space. Two arbitrary constraints were applied purely to restrict

the feasible region of the design space:

1) Empty Weight < 11,000 lbs.

2) Total Helicopter Cost < $13 million

With these new constraints applied, approximately 46% of the design space was found to be infeasible

based on the random sampling results. From the validation data set, the accuracy of RF classification model

was about 97.56%, which was practically identical to the unconstrained case study. With this newly

constrained design space, there is clearly an advantage gained from using a RF classification model to test

design points for feasibility.

Table 2-8: Results from the constrained design space analysis

Run
Design

Points

RF Model Random Sampling

Infeasible DP
%

Infeasible
Infeasible DP

%

Infeasible

1 1000 31 3.10% 445 44.50%

2 1000 37 3.70% 451 45.10%

3 1000 27 2.70% 484 48.40%

Two initial conclusions were drawn from this case study. First, as one might expect the RF classification

model is more beneficial for problems that have large infeasible regions within the design space. This is

simply because as the infeasible regions grow in size, a random sampling or structured DOE approach has

a greater probability of sampling a design point from the infeasible region, whereas the RF classification

model has at least some knowledge of the design space, allowing it to classify design points with relatively

high accuracies. Secondly, even for design problems that aren’t highly constrained, the RF classification

41

model still offers an improvement, though the computational effort required to fit the RF model may not

be worth it in these cases.

2.7 Suggested Use of SeBBAS Approach

Once the SeBBAS approach has been used to fit a Random Forest classification model to the design space,

it is up the user on how to use it. The approach suggested by this author is outlined in Figure 2-27. This

approach takes advantage of the fact that a RF model fit in R provides not only a classification, but also the

probability that the classification is correct. In actuality, for a given design point the RF model will calculate

the probability that it should be classified as feasible (value of 1) or infeasible (value of -1), and it will

return the classification that had the highest probability of being correct. For example, for a design point �̅�

the RF model might return 𝑃(1) = 0.95 and 𝑃(−1) = 0.05, the RF classification model would classify �̅�

as feasible. In this case there is a strong confidence that the design point is feasible, and thus the surrogate

model would be used to evaluate the design point. On the other hand, if 𝑃(1) = 0.51 and 𝑃(−1) = 0.49,

the RF model would still classify the design point as feasible. However, there is clearly little confidence in

this classification being correct, and thus it would be prudent to evaluate this design point using the actual

engineering model.

To perform this refinement, a threshold confidence limit, 𝜀, must be selected. The threshold limit is simply

the probability that the RF model classification is correct. Any design point for which the confidence level

is above the threshold limit would be evaluated using the surrogate model, while those design points that

have a high probability of being classified incorrectly according to the RF classification model are evaluated

using the actual engineering model. This process attempts to correct for false classifications provided by

the RF model, while minimizing the number of design points that have to be evaluated using the (potentially

expensive) engineering model(s).

42

Figure 2-27: Suggested use of SeBBAS approach to determine whether or not surrogate model or

engineering model will be analyzed based on the confidence of the RF classification

The process outlined in Figure 2-27 was performed using the case study presented in Table 2-8. A threshold

confidence level of 80% was used in this study. The results, shown in Table 2-9, indicated that this method

shows promise in identifying and correcting for false classifications provided by the RF classification

model. In addition, depending on the availability of computational resources and time, the accuracy of this

method can be improved by setting a higher threshold confidence limit requirement, at the cost of more

calls to the engineering model. An example of this is shown by the results presented in Table 2-10, which

used a threshold confidence limit of 90%. Here, slightly better accuracy was gained at the cost of

approximately three times the computational expense, indicating diminishing returns on the accuracy

gained as the threshold confidence limit approaches 100%.

Table 2-9: Study conducted to attempt to identify incorrect classifications from RF model using ε =

0.80

Run
Design

Points

Original %

Correct

Classifications

Refined %

Correct

Classifications

Number of Engineering

Model Runs Required

1 1000 96.90% 98.00% 77

2 1000 96.30% 97.60% 107

3 1000 97.30% 98.30% 78

43

Table 2-10: Study conducted to attempt to identify incorrect classifications from RF model using ε

= 0.90

Run
Design

Points

Original %

Correct

Classifications

Refined %

Correct

Classifications

Number of Engineering

Model Runs Required

1 1000 96.90% 98.70% 251

2 1000 96.30% 97.90% 260

3 1000 97.30% 99.00% 243

2.8 Future Work

Based on work done by Justin Kizer in his PhD dissertation [2], the SeBBAS algorithm has been

implemented using a combination of MATLAB and the R statistical programming language. This

combination is required as the desired Random Forest machine learning algorithm is not available directly

in MATLAB. However, the same Random Forest algorithm available in R is also available in Python. Thus,

Python would provide a single, open source platform to implement the SeBBAS algorithm, which would

streamline the process immensely. For example, as disused in Section 2.4 MATLAB and R communicate

through .csv files that must be written and read during each iteration. Though this process is not

prohibitively expensive, it does provide the opportunity for user errors if the .csv files are not located in the

proper location. Because of this, it is highly suggested that the SeBBAS algorithm be transitioned from

MATLAB/R implementation to a single Python based code.

Work must also continue on testing the SeBBAS algorithm using NDARC. As outlined in Section 2.6, a

MATLAB function has been created to run NDARC and classify a design point as either feasible or

infeasible. This function provides some flexibility on the selection of design variables, though more can be

added if needed. To date, SeBBAS tests on NDARC have been successfully run with up to five design

variables, resulting in a classification accuracy of approximately 97% when checked against validation data

sets. Future work should focus on expanding the number of design variables from five to a sample size

representative of CATEs modeling capabilities. The only limitation to selecting a larger subset of design

variables is the computational expense associated with exploring a larger design space.

Caution should be used when setting the ranges for the design variables though. If the range of a design

variable is too large (thus the design variable takes on infeasible values), it may cause NDARC to enter an

infinite loop and never converge. If the design variable ranges are found to be reasonable and the code still

enters an infinite loop (i.e. NDARC never completes its run and return command to SeBBAS), then it is

likely that NDARC is having issues with the solvers used within the code. If this is the case, further

44

investigation is required to identify the underlying cause of the issue before the SeBBAS algorithm can

successfully be run. [2]

45

3. Create a method for selecting and applying multiple quantitative technology forecasting

techniques to a specific rotorcraft configuration

3.1 Introduction

Within the engineering community as a whole, technology forecasting involves assessing the impact of

emerging technologies on future system design and performance. [5] Complex system design relies heavily

on accurate forecasting as decision makers utilize these forecasts to better understand the problem at hand.

Technology forecasting can be a difficult endeavor as there are many uncertainties associated with the

process. As such, properly selecting and implementing a technique, or set of techniques, is vital to future

system design. This study seeks to develop a methodology to select the proper technology forecasting

technique, or set of techniques. First the motivation of such effort is discussed, followed by an extensive

literature search that must be performed in order to understand existing technology forecasting techniques.

Next, a methodology is developed to aid selecting the appropriate technique for the given study. Finally,

the methodology implemented in the form of a Microsoft Excel-based decision support tool and

demonstrated with a technology applicable to complex systems of interest, particularly to Rotorcraft.

3.2 Motivation

Previous research with the Capability Assessment and Tradeoff Environment (CATE) has identified the

need for an improved technology forecasting approach. [6] CATE currently utilizes a “k-factor” approach

to estimate performance impacts. This approach utilizes quantitative representations of technologies by

estimating their impacts as changes to baseline metrics. In order to develop these estimated impacts in the

past, the Del-phi method was used. The Del-phi method is essentially obtaining expected technology

impacts from expert elicitation. There are several draw backs to this type of approach. First, the process of

locating and contacting Subject Matter Experts (SMEs) can be difficult and time consuming. Second,

educating the SMEs on the method itself can also be strenuous task. Finally, the results of iterating with the

SMEs can be prone to bias as they want to “sell” their technology. This can lead to poor technology

forecasts. Understanding these difficulties has led to the need for a better way to forecast a given

technology. There is a need to implement new technology forecasting techniques to better represent

technologies within the CATE environment.

3.3 Background and Literature Search

There are two main ways to characterize a given technology forecasting technique: (1) normative and (2)

exploratory. Normative technology forecasting involves determining a course of action to help reach a

future goal. On the other hand, exploratory technology forecasting is used when a decision maker desires

to predict the future state of a given technology area. [7] There are many different types of forecasting

46

techniques, but it is important to note that they can be fit into 9 basic families of techniques: Expert Opinion,

Trend Analysis, Monitoring and Intelligence methods, Statistical Methods, Modeling and Simulation,

Scenarios, Valuing/Decision/Economics Methods, Descriptive and Matrices Methods, and Creativity. [8]

Upon understanding the motivation and background for the task, it is important to perform an extensive

literature search in order to better understand the task at hand. This literature search consists of three main

components: (1) understanding the families of forecasting techniques in some detail, (2) understanding

what forecasting techniques are related to the complex systems of interest, and (3) understanding the current

state of technology forecasting technique selection.

3.3.1 Families of Forecasting Techniques

Each of the families of forecasting techniques utilizes a different approach to forecast a given technology

based on the characteristics of the technology itself as well as the desired outcome of the forecast. The

following descriptions are based on the work of Firat, unless otherwise noted. [9]

Expert Opinion

Methods in the Expert Opinion family understand or forecast technological development utilizing intensive

discussions with subject matter experts. The most common method in this family is the Del-phi Method,

which is discussed in the previous section. Firat states that this method “combines expert opinions

concerning the likelihood of realizing the proposed technology as well as expert opinions concerning the

expected development time into a single position.” Essentially, iterating with the SMEs will lead to an

expected system-level impact of a given technology while maintaining an understanding of the time it will

take to realize that technology.

Trend Analysis

Trend Analysis methods involve prediction of a technology’s impact utilizing quantitative historical

information and continuing it into the future. Such methods include economic forecasting models and

techniques such as regression, exponential smoothing and Box-Jenkins’ ARINA model and growth curve

fitting. [10] These methods utilize the fact that a technology usually has a life cycle of development that

follows some kind of trend. For example, growth curve fitting utilizes an estimation of a technology’s life

cycle development curve. This curve is then used to forecast the technology’s impact into the future based

on its development up to its current state

47

Monitoring and Intelligence Methods

Monitoring and Intelligence methods are suitable for making one aware of changes on the horizon that

could impact the penetration or acceptance of the technologies in the marketplace. [11] Resource

availability is an issue for these methods given the fact that many of these methods require “scanning a

technology’s environment” in order to understand the impact of adoption. This means that experts must be

identified and “tracked” by maintaining contact with them.

Statistical Methods

Two of the most popular methods in the Statistical Methods family are Correlation Analysis and

Bibliometric Analysis. Correlation Analysis forecasts the development of a new technology when the

development patterns of an existing, related technology are known. Martino describes one such method,

i.e. Lead Lag Correlation, by comparing the time lag between the development of composite components

in aircraft and the application of such components into actual aircraft as shown in Figure 3-1 Bibliometric

Analysis involves a text mining approach to search existing publications as well as existing and up-and-

coming patents. [12] An important aspect of bibliometric analysis is that it goes beyond expert biases by

using sound data from published results.

Figure 3-1: Time Lag from Development to Application of Advanced Composites in Aircraft

Modeling and Simulation (M&S)

Modeling and Simulation methods utilize the development of a “model” of the “real world” where a

technology of interest can be infused in order to understand its impacts at a system level. One such method

is a Causal Model. The development of causal models requires the understanding of what causes

technological change. Martino introduces what’s called Technology-Only causal models that assume

“technological change can be fully explained by factors internal to the technology-producing system.” [12]

48

In his discussion of this type of causal model, Martino discusses the universal growth curve developed by

Floyd (1968) which attempts to explain growth toward an upper limit based on the effort extended by active

researchers. [13]

Scenarios

The Scenarios family of methods seeks propose different concepts of future technology based on a well-

defined set of assumptions. [9] Each different concept, or alternative, represents different characteristics of

a future technology. Each concept is then evaluated against the assumptions and results in being able to

determine the scenario most likely to occur. [10]

Valuing/Decision/Economics Methods

According to Levary and Han, the most popular method in this category is the “relevance tree approach”.

This normative approach to technology forecasting involves breaking down the goals and objectives of the

technology of interest into lower level goals and objectives in a hierarchical format. The probabilities of

achieving each goal and objective in the various levels of the “tree” must be estimated, allowing the decision

maker to forecast the likelihood of achieving the stated goals and objectives of the technology of interest.

[10]

Descriptive and Matrices Methods

There are two main methods in this family of techniques: technology road-mapping and analogies.

Technology road-mapping consists of projecting major technological elements of product design and

manufacturing together with strategies for reaching desirable milestones efficiently. One such forecast

related to the complex systems of interest to CATE are the goals set forth in the Aviation Science &

Technology Strategic Plan (ASSP). [14] Such roadmaps aid decision makers by providing a vision for

where a given technology area may be going in the future. Analogies involve a systematic comparison of

an up-and-coming technology with an existing technology that is believed to have been similar in some

respects. [9] The down side of analogies is that there is no guarantee that technologies being developed

today and in the future will in fact follow the same development process as past technologies. As such,

these forecasts are probable at best, but never certain. [12]

Creativity

The creativity family of methods is the most interesting. It includes methods such as brainstorming and

science fiction analysis. Brainstorming involves simply thinking about where a technology may go using

sound engineering judgement, while science fiction analysis involves looking at technologies used in

science fiction novels and movies and trying to understand the author’s or writer’s basis for conjuring up

49

such technology. Due to the creative nature of such methods, techniques in this category can only give a

decision maker a direction that a technology may go and not any concrete results.

3.3.2 Forecasting Techniques Related to Complex Systems

Given the wealth of information on forecasting techniques, it is important to understand the techniques that

are related to the complex system design of interest. Previous research as part of the CATE development

effort, involved developing a taxonomy of forecasting techniques for complex systems. [15] In his paper,

Smith compiled a taxonomy of forecasting techniques related to complex system design utilizing a text

mining approach. The development of the taxonomy involved 3 steps: (1) techniques were compiled based

on results of existing literature surveys, (2) the techniques were screened utilizing the text mining approach,

and (3) the techniques were characterized based on criteria relevant to complex systems. As a result of this

effort, a taxonomy of 60 techniques was compiled, utilizing techniques across all 9 families of techniques.

After performing an extensive literature search, Smith developed a way to describe techniques which

resulted in 12 characteristics found in Table 3-1 below. [16] [17] [18]

Table 3-1. Technology Forecasting Technique Characteristics

Technique Characteristics

1. Capability to forecast incremental change

2. Capability to forecast radical innovations

3. Capability to forecast modular

technologies

4. Life cycle prediction capability

5. Capability to forecast for stipulated time

horizon

6. Data availability

7. Data validity

8. Technology development predictability

9. Technology similarity

10. Method of adaptability

11. Ease of technique implementation

12. Cost of technique implementation

More details about the approach used to compile this list of characteristics, as well as a description of each

technique characteristic from Table 3-1, can be found in Intepe’s work. [16]

50

3.3.3 Current State of Technology Forecasting Technique Selection

Given the number of forecasting techniques that exist, there is a need to aid decision makers in selecting

the appropriate technique to use for their analysis. One such approach is described by Mishra and Deshmukh

and is outlined herein. [18] Mishra discusses the steps for selecting an individual forecasting technique. It

begins with rating the technology of interest based on characteristics that are related to the characteristics

of the techniques. One such mapping is shown in Table 3-2 below. Next a multi-criteria decision making

technique is used to evaluate the techniques and select the technique that is closest to the ideal technique.

One such MCDM technique that could be used is Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS).

Table 3-2. Matching Technology Characteristics to Technique Characteristics

Technology Characteristic Technique Characteristic

Evolutionary change Capability to forecast incremental change

Revolutionary change Capability to forecast radical innovations

Modularity of technology Capability to forecast modular technologies

Life cycle Life cycle prediction capability

Time frame of interest Capability to forecast for stipulated time horizon

Existing data availability Data availability

Exiting data validity Data validity

Technology readiness level Technology development predictability

Existing similar technologies Technology similarity

Amount of existing information Method of adaptability

Time available for study Ease of technique implementation

Resources available for study Cost of technique implementation

The method described above can be utilized to select a single forecasting technique that can be applied to

the desired technology to be forecasted. Given the complexity of the systems to which technologies can be

infused, accurate forecasts are vital. As such, developing a way to select multiple techniques can provide a

more accurate forecast.

3.4 Methodology and Implementation

The overall approach used for this effort is outlined in Figure 3-2. The first step involves developing and

refining a methodology, applicable to CATE, to select technology forecasting techniques. This involves

leveraging the taxonomy of forecasting techniques developed by Smith. [15] Doing so would limit the

scope of the problem, with the focus now being on developing a selection methodology rather than further

51

exploring the forecasting techniques themselves. The next step is to demonstrate the developed

methodology on a technology related to the UH-60 Blackhawk. This is desired as the UH-60 is used as a

case study under the CATE research efforts. The UH-60 is a relevant system that is still being used today

as well as looking to be upgraded for future endeavors. Finally, integrating this methodology into the CATE

environment would allow decision makers to get more accurate forecasts of technologies they desire to

infuse onto the complex system of interest

Figure 3-2. Outlined Approach

3.4.1 Methodology Development

Most of the effort for this research effort is concentrated on the first step of the overall process in Figure 2

due to time constraints. Figure 3 illustrates a closer look at this first step.

Figure 3-3. A Closer Look at Step 1

As shown in Figure 3-3, this step begins by examining the technology and technique characteristics set

forth by Smith and Mishra what are contained in Table 3-2. [15] [18] This examination involves

52

determining if this list is not only comprehensive but also if there are any redundancies as well. Next, the

mapping from technology characteristics to forecasting technique characteristics is explored. There needs

to be a way to select a technique based on the technology’s characteristics. After investigating the mapping,

a Microsoft Excel-based decision support tool is developed in order to implement the methodology in a

usable fashion. Finally, this process is demonstrated utilizing a relevant technology. Given most rotorcraft

are powered by turboshaft engines and upgrades are always being performed to improve engine

performance, a turboshaft engine upgrade is take through this process, namely the 3,000 shaft horsepower

Improved Turbine Engine Program (ITEP) engine. Each sub-step in Figure 3-3 is explained in detail below.

Examine Technology and Forecasting Technique Characteristics

For the purpose of this research, the list of technology and technique characteristics is inclusive enough as

well as without any redundancies. This list is compiled utilizing the works of Mishra, Cheng, and Intepe.

Mishra validated the first 5 characteristics in Table 3-2 through a questionnaire given to 45 random

technology forecasting experts and he selected characteristics encompass many aspects of a given technique

[18]. Characteristics 6-12 are used by both Cheng and Intepe in separate efforts. [17] [16]

Investigate Technology to Forecasting Technique Mapping for Selection

With the characteristics of both the technology and techniques now established, the next step is to begin

developing a way to select a technique, or subset of techniques, to be used for forecasting. Initial thoughts

were to just utilize the TOPSIS method described by Mishra. [18] The TOPSIS process is done with the

technology’s characteristics being scored and used as the ideal solution. Then the characteristics of each

technique are evaluated and the techniques are ranked based on their relative distance to the ideal technique

(i.e. how close they are to the technology characteristics).

During the implementation of this method, it was discovered that this is not very effective given the

taxonomy developed by Smith that is being used. In order to use Mishra’s method, each technique’s

characteristic needs to be scored on a scale of 1-10, with 1 meaning that the technique does a poor job with

the characteristic and 10 meaning that the technique performs the characteristic exceptionally. The

taxonomy developed by Smith scores each characteristic with either a 0 or a 1, with 0 meaning it does not

have this characteristic and 1 meaning it does. Utilizing this method resulted in the technique with the most

1’s for its characteristics being selected as the best technique. This makes sense because if a technique has

every characteristic, it can perform a forecast for almost any technology. This is undesirable as a technique

can be over performing beyond what is necessary. More potential mappings needed to be explored.

Intepe and Cheng utilized similar approaches but using fuzzy logic. [16] [17] After exploring their results,

the same conclusions can be made. Given the fact that the taxonomy only scores each characteristic with a

53

0 or a 1 rather than on a scale, it is ineffective to use any of the multiplicative approaches. There is a need

for a new approach in order to utilize the taxonomy developed by Smith. It is important to note that the

scores for each characteristic in Smith’s taxonomy could be reevaluated in order to score them on a scale

of 1-10. However, given the scope and timeframe of this research, developing the questionnaires and

requesting experts to rate each technique characteristic was not possible. Future work in this area should

consider surveying experts. For this period of work, a method was developed to filter the technology

forecasting methods that could be utilized that have a total commonality score above a given threshold

when compared to the technology characteristic scores. This method does not allow a decision maker to

select a technique, but it reduces the number of techniques that need to be explored in greater detail, saving

time and resources. Essentially, each characteristic of the technology of interest is evaluated with whether

or not each technique can perform an analysis based on that characteristic. For example, if a technology is

an evolutionary technology, such as an engine upgrade, the technique to be used will need to be able to

forecast an evolutionary technology. If it can, it is given a score of 1; if it cannot, it is given a score of 0;

and this is applied to all characteristics. Some of the technique characteristics are given a score of 0.5. This

indicates that the technique can “somewhat” handle that type of characteristics. Although this method is

not an exact science, it does provide a qualitative way to handle such characteristics.

Each technique characteristic is weighted in order to determine the relative importance of each

characteristic. This is important as it means that the more important characteristics achieve a higher score

based on their higher importance to the forecast, while characteristics of lower importance receive a lower

score. The weightings of each characteristic are taken from Mishra. Mishra developed a questionnaire that

was then given to technology experts. The experts came to a consensus on what Mishra calls the “inter

characteristic weightage” (i.e. the weightings of each technology forecasting technique characteristic). [18]

The technique ratings from Mishra are shown in Table 3-3.

54

Table 3-3. Technique Characteristics Weighting

Technique Characteristic Weighting

Capability to forecast incremental change 10

Capability to forecast radical innovations 10

Capability to forecast modular technologies 5

Life cycle prediction capability 8

Capability to forecast for stipulated time horizon 5

Data availability 10

Data validity 8

Technology development predictability 10

Technology similarity 8

Method of adaptability 8

Ease of technique implementation 10

Cost of technique implementation 10

Quantitative or Qualitative 10

Exploratory or Normative 10

Next, the characteristics of the technology and the characteristics of each technique are compared for

commonality. This is done in a logical progression of four steps.

If the technology characteristic score is the same as the technique score, this is considered highly favorable

and given a comparison score of 1.

1. If the technique characteristic score is greater than the technology characteristic score, this is also

considered highly favorable and given a comparison score of 1.

2. If the technique characteristic score is 0.5 and the technology characteristic score is 1, this is

considered favorable and given a comparison score of 0.5.

3. If the technology characteristic score is a 1 and the technique characteristic score is a 0, this is

considered unfavorable and given a comparison score of 0.

Finally, each of the commonality scores for each technique are summed to obtain a final total technique

commonality score. This technique commonality score is a measure of how common a technique’s

characteristic scores are to the technology’s characteristic scores. The techniques with comparison scores

that are above a user-defined threshold are selected to be filtered for further exploration in greater detail.

Develop Decision Support Tool Utilizing Established Methodology

The final step is to implement this methodology into a Microsoft Excel-based decision support tool that

allows the user to answer questions about the technology he or she would like to forecast. This results in a

list of techniques that can be further explored in more detail, with the end result being the ability to select

a forecasting technique. Figure 3-4 below outlines the data flow of the tool. The images in this sub-step are

snapshots of the tool itself.

55

The first step in tool’s data flow (outlined in Figure 3-4) is a technology questionnaire. The user is asked 14

questions about the technology as shown in Figure 3-5. 11 of the questions are related to the 12

characteristics of the technology from Table 3-1. One question asks whether a quantitative or qualitative

approach is desired and one question asks whether a normative or exploratory approach is desired. These

questions are used in conjunction with the classifications of each technique as either quantitative or

qualitative and exploratory or normative and help select the most desirable techniques. The final question

is about an acceptable score threshold to filter out a technique for further exploration. This question is

answered with a slider bar. For questions 2-8, an error message is displayed if both or neither check boxes

are selected as only one can be utilized for a successful filtering effort. Once scored, the user will click the

“Filter Techniques” button which resides below the Technology Questionnaire in order to obtain a filtered

list of acceptable techniques to be further explored in greater detail.

Figure 3-4. Tool Data Flow

Figure 3-5. Technology Questionnaire

Once the “Filter Techniques” button is clicked, each technology characteristic is scored based on the

answers to the Technology Questionnaire. The characteristic can either be give a score of 0 or 1 for each of

56

the first 11 questions, while certain text is used for the answers to questions 12 and 13 (depending on the

answer) as shown in blue column in Figure 3-6. These are based on how the techniques are categorized in

the taxonomy. [15] The answer to question 14 is used to filter the forecasting techniques later in the process.

Figure 3-6. Technology Characteristic Scores

Next, and most importantly, the technology characteristic scores are compared to the technique

characteristic scores using the logic described in sub-step 2 of this process. Each characteristic score is

multiplied by a weighting factor based on how important that characteristic is to the technology forecasting

technique selection process as also described earlier. This results in a “vector” of commonality scores for

each technique in the taxonomy comparing its characteristics to the technology desired to be forecasted.

Next each “vector” of commonality scores is summed to obtain a total commonality score for each

technique.

Finally, a list of acceptable forecasting techniques is displayed to the user. The acceptable techniques are

determined based on the threshold score from question 14 of the technology questionnaire. The techniques

with a total commonality score greater than this threshold are displayed in an alphabetical list, as shown in

Figure 3-7, to the right of the technology questionnaire. As can be seen in Figure 3-7, there is also a bar chart

that illustrates the distribution of the total commonality scores for all of the techniques. This will allow the

user to alter the acceptable score threshold (question 14 of the technology questionnaire) in order to better

filter the techniques based on the user’s purpose. Once this list is obtained, the user can now explore a sub-

set of the technique taxonomy that contains techniques that are more applicable to the technology of interest

as well as the user’s own forecasting preferences.

57

Figure 3-7. Filtered List of Acceptable Forecasting Techniques

Take Relevant Technology through the Methodology

The final step is to demonstrate this process with a relevant technology. For this demonstration, the 3,000

shp Improved Turbine Engine Program (ITEP) engine was selected as it is in development by General

Electric (GE), now designated as the GE T901, as it is very relevant to the UH-60 Blackhawk upgrades.

GE is expected to begin production of the engine in 2025. It is designed to produce 50% more power at

SL/ISA, reduce fuel consumption by 25%, and have 20% longer life than compared to the GE T700 family

of engines currently being used on the UH-60. [19] For this demonstration, it is important to note that the

purpose of such forecast is to understand how the power-to-weight ratio (shp/lb) of the engine will be

improved at the time of the engine’s production, as this influences the vehicles vertical rate of climb

(VROC) and maximum forward speed, both of which are of interest to UH-60 operators today. There are

many other performance parameters that could be explored, such as specific fuel consumption and

efficiency, but the power-to-weight ratio is the most applicable at this time.

To begin the process, information is needed about the prospects of the engine and the desired forecast in

order to complete the Technology Questionnaire. As most engines, the ITEP engine is an evolutionary

technology as it is based on previous engines built by GE. The engine is expected to operate with current

UH-60 aircraft without a redesign, indicating that it is modular in nature (i.e. can be swapped with current

engines). For the purposes of simply determining power-to-weight ratio, the ability to forecast the lifecycle

of the engine is not necessary. Given the engine is expected to begin production is 2025 (less than 10 years),

the timeframe for the engine’s adoptions is assumed to be “short-term” as it is already in development,

though in its early stages. Given that many turboshaft engines are already in use and the turboshaft engine

58

development began over 60 years ago, it is assumed that there is a lot of data that can be obtained and that

this data is considered reliable. This fact also means that there are many similar technologies. For this

forecast, it is desired that expert opinion is not utilized, as this is the goal of this task for the CATE research

team. Given that the outcome of the forecast will be used in a Modeling and Simulation environment, such

as the CATE environment, a quantitative and exploratory approach needs to be used. A total commonality

score of 100 will be used as an acceptable score to keep a technique for further exploration. Utilizing this

information, the Technology Questionnaire is answered as shown in Table 3-4 below.

 Table 3-4. ITEP Engine Demonstration Technology Questionnaire Answers

With these answers to the Technology Questionnaire, the “Filter Techniques” button is clicked and 15

forecasting techniques are filtered for further exploration, shown in Table 3-5, all with a total commonality

score greater than the indicated 100 threshold. The forecasting technique family is also recovered from the

taxonomy and displayed.

1. Is this technology evolutionary or revolutionary? x Evolutionary Revolutionary

2. Is the technology modular in nature (or having modular

components)?

 No x Yes

3. Would you like to forecast the life cycle of the technology? x No Yes

4. What is the timeframe for the technology’s adoption? x Short-term Long-Term

5. How much data do you have access to? A little x A lot

6. How reliable is this data? Not Reliable x Reliable

7. Where is the technology in its development? x Early Stages Late Stages

8. How many similar technologies exist? A little x A lot

9. Will you need to rely on expert opinion? x No Yes

10. How much time do you have to spend on forecasting? A little x A lot

11. What are your resources like? x Minimal Many

12. Would you like a quantitative or qualitative approach?* x Quantitative Qualitative

13. Would you like a normative or exploratory approach?* Normative x Exploratory

14. What is an acceptable score to keep a technique? 100

59

 Table 3-5. ITEP Engine Demonstration Filtered Forecasting Techniques

In order to examine if the selected threshold score of 100 is acceptable, it is important to look at the

distribution of commonality scores. This distribution is shown in Figure 3-8. Examining Figure 3-8, it is

clear that a total commonality score of 100 is a good lower bound to filter out the acceptable techniques as

all of the techniques have a total commonality score less than 120, and 15 techniques is a reasonable number

of techniques to further explore without too much effort.

Filtered Techniques Family

Agent modeling [Brownian agents] M&S

Analogies Descriptive and matrices

Artificial Intelligence [Machine Learning] Statistical

Artificial Neural Network [Adaptive neuro-fuzzy inference] M&S

Bibliometrics [research profiling, patent analysis, text mining,

citation network analysis]

Monitoring &

Intelligence/Statistical

Causal Models M&S

Complex Adaptive System modeling (CAS) [Chaos] M&S

Correlation Analysis Statistical

Precursor analysis Trend

Sustainability analysis [life cycle analysis] Descriptive and matrices/M&S

Systems simulation [system dynamics, KSIM] M&S

Technological substitution M&S

Technology assessment Descriptive and matrices/ M&S

Trend extrapolation [growth curve fitting and projection] Trend

Trend impact analysis Trend/Statistical

60

Figure 3-8. Technique Commonality Score Distribution

The next step is to explore the filtered techniques. Due to time constraints of this research effort, the two

highest-scoring techniques were selected for further exploration: Causal Models and Trend Extrapolation.

Causal models are in the Modeling and Simulation technique family and are exploratory in nature. There

are two categories of causal models. The first are closed-form, analytical models (equation or set of

equations) and the second are simulation models (set of differential equations). In addition to these two

categories, there are three types of causal models: technology-only models, techno-economic models, and

economic and social models. [12] For the purpose of this exercise, the technology-only model is used as it

is the most applicable.

The Universal Growth Curve, as discussed by Martino, is a regression equation used to model the

progression of a functional capability (f) of a technology that approaches an upper limit (F). [12] It also

utilizes the functional capability of a competitive technology (fc). [12] The regression equation is as follows:

It is important to note that Ct is not the coefficient of thrust; it is simply a constant parameter determined

from the data points. It is assumed that the power-to-weight upper limit for turboshaft engines is 10, while

the reciprocating engine is used as the competitive technology (as it was common when turboshaft engines

were first being developed), with a power-to-weight ratio of 0.6 at the time. More details about this method

can be found in Martino’s paper.

tCYY)1ln(

where
fF

fF
Y c

(1)

61

Using the regression equation above, it is possible to construct an “s-curve” to model the progression of

turboshaft engine power-to-weight ratio over time. This is done utilizing turboshaft engine power-to-weight

ratios vs development year data points from Leishman’s “Principles of Helicopter Aerodynamics” and are

shown in Table 3-6 below. [20]

Using these data points, with each approximate power-to-weight ratio as a different f value, a Ct value can

be calculated for each power-to-weight ratio in Table 3-6. Then, each Ct value is plotted against its

corresponding year of development, with a linear regression equation is fit to these points. This regression

is then used to find Ct values for various years from a time before the first data point in Table 3-6 to, and

beyond, the year that the forecast is desired for. Then, using these Ct values corresponding Y values must

be iteratively determined (based on the relationship between Ct and Y from Equation 1) and finally power-

to-weight values can be determined for each Y value. Figure 3-9 illustrates the progression of turboshaft

engine power to weight ratio over time from 1945 to 2050 with the regression equation also displayed. In

order to utilize this forecast, one simply enters the year of a future turboshaft engine’s development into the

regression equation (i.e. x) and the result (i.e. y) is the power-to-weight ratio of that turboshaft engine.

Figure 3-9. Turboshaft Engine Power-to-Weight Ratio Progression Utilizing the Technology-Only

Causal Model

y = 2E-07x4 - 0.0018x3 + 5.4119x2 - 7230.2x + 4E+06

R² = 0.9993

0

1

2

3

4

5

6

7

8

9

10

1920 1940 1960 1980 2000 2020 2040 2060 2080

P
o

w
er

-t
o

-W
ei

g
h

t
R

a
ti

o
 (

sh
p

/l
b

)

Year

62

Table 3-6. Turboshaft Engine Power-to-Weight vs. Development Year Data Points

Table 3-7 illustrates using this method for two different turboshaft engines: the GE T700, the first

generation of the current UH-60 Blackhawk engine as well as the future ITEP engine. It is assumed that the

ITEP engine has a development start year of 2016 as this is when GE was officially awarded the contract

to begin developing the engine by the US Department of Defense (DoD). [21]

Table 3-7. Turboshaft Engine Forecast with Technology-Only Causal Model Results

From Table 3-7, it can be concluded that the Causal Model can predict a future turboshaft engine’s power-

to-weight ratio rather accurately but with some uncertainty. This uncertainty is mostly attributed to the

sensitivity of the regression curve in Figure 3-9 to the upper limit (F) as well as the competitive technology

value (fc) used in the beginning of the model’s development. There is also a level of uncertainty in the data

points obtained from Leishman as they are taken from a graph of power-to-weight ratio vs year of

development.

Next the Trend Exploration technique is considered. Trend Extrapolation is in the Trend technique family

and is also Exploratory in nature. The Trend Extrapolation method utilized for this demonstration is the

Exponential Trends method. There is also a Qualitative Trend method that is also part of this family, but in

order to be applicable to the CATE research effort, Quantitative methods are desired. Overall, Trend

Extrapolation methods are simpler to implement when compared to the Causal Model. Using the same data

points from Table 3-6, a curve fit is constructed by regressing the natural logarithm of the data points versus

time utilizing the following regression equation: [12]

Using the data points in Table 3-6 as y values and Equation 2, it is possible to construct a graph of the

engine power-to-weight ratio versus time as shown in Figure 3-10.

Year of Engine Development Power-to-Weight Ratio (shp/lb)

1958 1.959

1979 4.149

1984 4.686

1987 6.302

Engine

Name

Year of

Development

Forecasted P/W

(shp/lb)

Actual (Expected*) P/W

(shp/lb)

Pct. Error (%)

GE T700 1976 4.129 4.15 0.50%

ITEP 2016 7.784 7.24 7.46%

ktyYy)ln()ln(0 (2)

63

Figure 3-10. Turboshaft Engine Power-to-Weight Ratio Progression Utilizing the Trend

Extrapolation Method

As can be seen from Figure 3-10, the trend, as the forecasting technique’s name implies, follows an

exponential trend. Upon further inspection of Figure 3-10, it is possible to see that by the year 2025, the

expected year of production of the ITEP engine, turboshaft engines will have a power-to-weight ratio of

about 20 with it exponentially increasing to over 30 almost ten years later. This is not an acceptable forecast

for the power-to-weight ratio of turboshaft engines. These extremely large results are most likely due to the

fact that the trend extrapolation method does not take into consideration the fact that fundamental limits

need to be considered as a turboshaft engine power to weight ratio of about 65 is expected by the year 2055.

This does not make sense as by then other technologies will be in play such as hybrid electric technologies

and possibly even fuel cells as battery technology evolves.

This demonstration shows that the developed tool can successfully aid decision makers in selecting a sub-

set of the technique taxonomy for further exploration. It can filter techniques that can be used effectively,

such as the Causal Model. In potential use of this method, other high-scoring techniques should also be

considered while evaluating the technology.

3.5 Conclusion

This study utilized an existing taxonomy of technology forecasting techniques and developed a

methodology to select a sub-set of techniques from this taxonomy for further exploration. This methodology

was implemented into a Microsoft-Excel based decision support tool that can help decision makers reduce

the number of technology forecasting techniques to explore based on the forecasting task at hand. A

demonstration was done using the turboshaft engine in the Improved Turbine Engine Program (ITEP) in

0

10

20

30

40

50

60

70

1920 1940 1960 1980 2000 2020 2040 2060 2080

E
n

g
in

e
P

o
w

er
-t

o
-W

ei
g
h

t
R

a
ti

o

(s
h

p
/l

b
)

Year of Development

64

order to show the capability of the tool. This demonstration resulted in list of 15 techniques. Two of which

were explored in more detail. The Causal Model was deemed applicable to the turboshaft engine upgrade

forecast, while the Trend Extrapolation was not. This implies the methodology as well as the tool both need

improvements to be more effective to the decision maker. These improvements can become future research

tasks for the CATE research team. First and foremost, research is necessary to change the ratings of each

technique’s characteristics from discrete 1’s and 0’s to a scale of how well a technique handles that

characteristic (rather than whether it can or not). This will allow the implementation of a decision-making

technique to select the best forecasting technique (closest to the ideal technique) utilizing a method like

TOPSIS. Another area of improvement is the link between the Technology Questionnaire in the tool and

the technology score. Some of the questions in the questionnaire should be able to be answered with a slider

bar rather than check boxes. For example, the question related to how much data is available can be

answered with either “a little” or “a lot” when the amount of data available can vary between no data at all

and plentiful data, not just the two end points. Adding some kind of scale will remove any ambiguity in the

questionnaire. Another potential area of improvement is the commonality aspect of the tool. Currently there

is a simple method to determine if a technique characteristic is common to the technology’s characteristic,

but it appears there need to be a more systematic way of determining this.

Though there are many improvements necessary to make the methodology and the tool more effective, this

research results in a framework to build upon, and with a little more research can be used to quickly and

efficiently select the appropriate forecasting technique to use in any research effort.

65

4. RCAS-CATE Optimization of RCAS Representation in NDARC Using Optimization

Schemes

4.1 Introduction

The following section documents the work done in improving vehicle performance analysis methods

including quantification of uncertainty. The impact of technologies as well as the impact of variance are

studied and presented. To quantify uncertainty, first, the sources of uncertainty in performance analysis

must be established. Once these sources are identified, their effects are quantified by using the Probabilistic

Certificate of Correctness (PCC) methodology; in which simulations are performed to establish confidence

in predicted performance.

This report outlines the logic and assumptions made by the author to arrive at the current implementation

of the NDARC Optimized Calibration (NDARC – OC) and NDARC Optimized Performance Spreadsheet

(NDARC – OPS) tools. The objective of this work is to reduce the effort required by the user to calibrate a

NDARC model against data from a comprehensive analysis tool, and not to remove subject matter experts

from the process. Any feedback NDARC users is highly encouraged, and will be incorporated into future

revisions of the tool.

4.2 Motivation

The NDARC Performance Spreadsheet was developed by Wayne Johnson to facilitate the process of

calibrating NDARC’s rotor power models against experimental or hider fidelity comprehensive analysis

data. The spreadsheet consists of a set of NDARC coefficients and exponential factors that control the shape

of NDARC’s built-in polynomials, which estimate the induced power coefficient and profile drag

coefficient of the rotor under the specified flight conditions. The calibration process aims to minimize the

overall error between the NDARC models and higher fidelity comprehensive data for both of these

coefficients, and is an essential task of using NDARC for rotorcraft design and performance analyses.

The rotor spreadsheet as distributed with NDARC requires the user to manually perform iterations by

changing the NDARC variables, one at a time, until they are satisfied that the NDARC power models

approximate the higher fidelity comprehensive data accurately enough. This leads to ambiguity in the

results, as there is currently no direct way to quantify the accuracy of the results. Additionally, this process

relies heavily on the user having an intimate knowledge of the behavior of the power model variables, and

severely restricts exploration of the design space (made up of the different combinations of NDARC

variables) as the manual iteration will almost certainly hone in on a single local minimum rather than finding

the best global solution to minimizing the error. Finally, the use of manual iteration to perform this task is

66

incredibly inefficient, especially if the task is to be repeated many times for different sets of calibration

data, requiring a lot of user effort and time.

To address these issues, the calibration of the NDARC variables can be formulated as an optimization

problem. In doing so, the calibration process can be fully automated, requiring minimal user set up through

a single input file. This optimization approach is described in the remainder of this report.

4.3 Problem Formulation

This section outlines the steps and assumptions that went into formulating the NDARC model calibration

process into an optimization problem. First the calibration process is reviewed, identifying the NDARC

variables that make up the design space and the approach used to quantify the error between the

comprehensive calibration data and NDARC model. Justification is then provided for the selection of a

genetic algorithm as the optimization algorithm, as well as a brief explanation for how the algorithm itself

is implemented.

4.3.1 Calibration Process

Design Space

Within NDARC, the rotor power model is broken down into two independent design spaces: induced power

and profile power. The induced power NDARC variables determine the calculation of the induced power

coefficient (𝜅), while the profile power NDARC variables determine the calculation of the profile drag

coefficient (𝐶𝐷). The NDARC variables associated with the induced and profile power design spaces are

provided in Table 4-1 and Table 4-2, respectively. Default values are also listed for each of the design

variables, which will be addressed in Section 0.

The user should be aware that some of the NDARC variables listed in the two tables below represent

physical values. The physical variables are the induced velocity factors (Ki_hover, Ki_climb, etc.), the

variables with a CTs_ prefix, and the advance ratio variables (mu_ prefix). It is up to the user to set

physically feasible values for these design variables. All other variables represent a coefficient or exponent

of a polynomial curve fit and have no physical meaning.

As can be seen from these two tables, the design space of this problem has the potential to become quite

large, encompassing over 30 design variables in each separate design space. In addition, almost all of the

NDARC variables must be treated as continuous variables over some practical range of values, further

increasing the complexity of the problem. To reduce the dimensionality, it is desired that the user have the

ability to select which of the NDARC variables will be varied during the optimization process (henceforth

referred to as “design variables”), and which NDARC variables will be held fixed during the optimization

67

algorithm (henceforth referred to as “constant parameters”). This drives the need for a flexible, scalable

optimization algorithm. The selection of the optimization algorithm is discussed in detail in Section 4.3.2.

Table 4-1: Rotor induced power design variables

Description Variable Default Value

model (1 constant, 2 standard) MODEL_ind 2

Induced velocity factors (ratio to momentum theory induced velocity)

Hover Ki_hover 1.12

Axial climb Ki_climb 1.08

Axial cruise (propeller) Ki_prop 2

Edgewise flight (helicopter) Ki_edge 2

Variation with Thrust

CT/s for Ki_h variation CTs_Hind 0.08

Coefficient for Ki_h kh1 0

Coefficient for Ki_h kh2 0

Exponent for Ki_h Xh2 2

CT/s for Ki_p variation CTs_Pind 0.08

Coefficient for Ki_p kp1 0

Coefficient for Ki_p kp2 0

Exponent for Ki_p Xp2 2

Variation with Shaft Angle

Coefficient for Ki_p kpa 0

Exponent for Ki_p Xpa 2

Variation with Lift Offset

Coefficient for f(offset) ko1 0

Factor for f(offset) ko2 8

Constant in Ki transition from hover to axial cruise Maxial 1.176

Exponent in Ki transition from hover to axial cruise, Xaxial 0.65

Variation with Axial Velocity

Advance ratio for Ki_prop mu_prop 1

Coefficient for Ki(muz) (linear) ka1 0

Coefficient for Ki(muz) (quadratic) ka2 0

Coefficient for Ki(muz) ka3 0

Exponent for Ki(muz) Xa 4.5

Variation with Edgewise Velocity

Advance ratio for Ki_edge mu_edge 0.35

Coefficient for Ki(mu) (linear) ke1 0.8

Coefficient for Ki(mu) (quadratic) ke2 0

Coefficient for Ki(mu) ke3 1

Exponent for Ki(mu) Xe 4.5

Variation with rotor drag kea 0

Minimum Ki Ki_min 1

Maximum Ki Ki_max 10

68

Table 4-2: Rotor profile power design variables

Description Variable
Default

Value

Technology Factor

Profile power TECH_drag 1

Reference Reynolds number (0. for no correction) Re_ref 0

Basic model (1 array, 2 equation) MODEL_basic 2

Array (cd vs thrust-weighted blade loading)

Number of points (maximum 25) ncd 24

Equation

CT/s for minimum profile drag CTs_Dmin 0.07

Coefficient in drag vs CT/s function (constant for

hover/edgewise) d0_hel
0.009

Coefficient in drag vs CT/s function (constant for axial) d0_prop 0.009

Coefficient in drag vs CT/s function (linear hover/edgewise) d1_hel 0

Coefficient in drag vs CT/s function (linear for axial) d1_prop 0

Coefficient in drag vs CT/s function (quadratic for

hover/edgewise)
d2_hel 0.5

Coefficient in drag vs CT/s function (quadratic for axial) d2_prop 0.5

Variation with shaft angle, coefficient for cdp dprop 0

Variation with shaft angle, exponent for cdp Xprop 2

CT/s for separation (Dcd = d(CT/s-CT/s_sep)^X) CTs_sep 0.07

Factor in drag increment dsep 4

Exponent in drag increment Xsep 3

Variation with edgewise velocity, coefficient df1 0

Variation with edgewise velocity, coefficient df2 0

Variation with edgewise velocity, exponent Xf 2

Stall model (0 none) MODEL_stall 1

CT/s at stall (D=|CT/s|-f*CT/s_stall, Dcd=d1*D^X1+d2*D^X2)

Number of points (maximum 20) nstall 10

Constant in stall drag increment fstall 1

Factor in stall drag increment dstall1 2

Factor in stall drag increment dstall2 40

Exponent in stall drag increment Xstall1 2

Exponent in stall drag increment Xstall2 3

Variation with Lift Offset

Coefficient for f(offset) do1 0

Factor for f(offset) do2 8

Variation with rotor drag dsa 0

Compressibility model (0 none, 1 drag divergence, 2 similarity) MODEL_comp 1

Similarity Model

Factor fSim 1

Blade tip thickness-to-chord ratio thick_tip 0.08

Drag Divergence Model (D=(Mat-Mdd), Dcd=d1*D+d2*D^X)

Coefficient in drag increment dm1 0.056

Coefficient in drag increment dm2 0.416

Exponent in drag increment Xm 2

Drag Divergence Mach Number (Mdd = Mdd0 - Mddcl*cl)

69

Mdd at zero lift Mdd0 0.88

Derivative with lift Mddcl 0.16

Required Calibration Data

The information required from a comprehensive analysis tool to calibrate a NDARC model is provided in

Table 4-3. The information includes four independent variables (mux, muz, CT/, offset, and MAT), and

two dependent variables (values for profile drag and induced power coefficients from the comprehensive

analysis tool). A “calibration data point” refers to a single, unique set of the independent variables and

associated dependent variable values, while the “calibration data set” refers to the collection of all

calibration data points. A single NDARC model is calibrated against the entire calibration data set, which

may consist of any number of calibration data points.

Table 4-3: Information required to calibrate NDARC models

Variable Description

mux Advance ratio along the x-axis

muz Advance ratio along the z-axis

CT/s Blade Loading (thrust coefficient / solidity)

MAT Maximum Mach number at the advancing tip

Offset Design lift offset value

Cd Profile drag coefficient

Kappa Induced power coefficient

Calculation of Calibration Error

Error calculations for both the induced power coefficient and profile drag coefficient serve as the objective

functions to be minimized during the optimization. For both coefficients, the total error is calculated as the

sum of the absolute relative error (summed over N calibration data points), where the value estimated from

the NDARC curve fits is measured relative to the true value provided by either a comprehensive analysis

tool (such as RCAS or CAMRAD) or some other form of higher fidelity data. As the number of calibration

data points, N, may vary from case to case, the objective functions in the optimization problem are

represented as the average of this total error calculation, as shown in the equation below. This approach

provides a metric to measure the calibration accuracy that is independent of the number of calibration data

points used (i.e. the magnitude of the error does not scale directly with the number of calibration data

points).

𝐶𝐷𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (
 1

N
) ∑ |

𝐶Dest
−𝐶𝐷true

𝐶𝐷𝑡𝑟𝑢𝑒

|𝑁
𝑖=1 𝜅 𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (

1

N
) ∑ |

𝜅𝑒𝑠𝑡−𝜅𝑡𝑟𝑢𝑒

𝜅𝑡𝑟𝑢𝑒
|𝑁

𝑖=1

70

4.3.2 Selection of Optimization Algorithm

The nature of the design space drove several requirements for the selection of the optimization algorithm:

 Algorithm must maintain efficiency when scaling to handle large design space

 Potentially handle both discrete and continuous design variables

 Must be capable of efficiently exploring a multi-modal design space

Gradient based optimization algorithms were ruled out due to their inability to efficiently explore design

spaces that are highly multi-modal. This led to the investigation of metaheuristic algorithms, which tend to

exhibit better global optimization properties for multi-modal design spaces. The need for the optimization

algorithm to efficiently scale to large design spaces while potentially handling both continuous and discrete

variables led the selection of a genetic algorithm. The genetic algorithm implemented for the NDARC

calibration process is described in the following subsection.

Genetic Algorithm for NDARC Calibration

A semi-elitist genetic algorithm was implemented for the NDARC calibration process. The genetic

algorithm first requires that all design variables be discretized into a base-2 binary number. The number of

bits required to represent a given design variable can be calculated using Equation 1, which is dependent

on both the desired range and resolution of a given design variable. An “individual” in the genetic algorithm

describes a unique design (i.e. combination of design variables within the feasible design space). Each

individual is represented in the base-2 system by a single “chromosome”, which is simply the concatenation

of the binary strings of all design variables. A notional example of an individual’s chromosome is illustrated

in Figure 4-1 for a system with three design variables.

𝑁𝑏𝑖𝑡𝑠 =
ln((𝑅𝑎𝑛𝑔𝑒 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛⁄)+1)

ln(2)

Equation 1

Figure 4-1: Composition of an individual of the genetic algorithm

The implementation of the genetic algorithm is outlined in Figure 4-2. It begins with the generation of an

initial “parent population”, which is a collection of N individuals within the feasible design space. The next

71

step requires that individuals from the parent population be selected for reproduction. Selection is carried

out through a deterministic tournament, where two individuals are randomly sampled with replacement

from the parent population. As the aim of the NDARC calibration is to minimize the error between the

NDARC model and calibration data, the parent with the lower calibration error has the higher rank, and is

thus selected as the preferred parent for reproduction. The tournament selection is performed N times, such

that N/2 pairs of parents have been selected. Next, reproduction occurs in which each pair of parents

generates two new individuals, or “children”, which occurs through a combination of crossover and

mutation of the parent chromosomes. The result of the reproduction step is a child population of N

individuals. The next generation begins by establishing the new parent population, which consists of the

top 10% of the parent individuals (to enforce elitism) and top 90% of the child individuals (to encourage

exploration).

Figure 4-2: Single iteration of genetic algorithm for NDARC calibration process

Handling Discrete Variables

As genetic algorithms necessitate that all continuous design variables be discretized, the algorithm can

easily handle both the discrete variables (such as “MODEL_ind” from Table 4-1) and continuous design

variables, while also allowing the user to easily set bounds on the allowable range for each variable. The

latter characteristic requires the user to have some knowledge of the NDARC design space, such that

realistic ranges are set for each variable, a requirement that simply cannot be avoided.

72

Scaling the Genetic Algorithm

The calibration of a NDARC model suffers from the “curse of dimensionality”, in that the size of the design

space grows exponentially as the number of, and allowable range of the design variables increases. Because

of this, there is not one global setting for the genetic algorithm (in terms of number of individuals in a

population and number of generations to iterate through) that allows for an efficient and effective

exploration of all possible design spaces. To address this issue, the NDARC genetic algorithm is scaled on

a case by case basis by using linear scaling factors to vary the number of individuals (𝑁𝑖𝑛𝑑) in each

population and the number of generations (𝑁𝑔𝑒𝑛) that the genetic algorithm is run to based on the estimated

size of the design space. The number of bits in an individual’s chromosome (𝑁𝑏𝑖𝑡𝑠) serves as representation

for the size of the design space. The number of individuals that make up a population is then calculated as

the product of 𝑁𝑏𝑖𝑡𝑠 and the population scaling factor (popFactor). The number of generations that the

algorithm is run to is determined as the product of 𝑁𝑖𝑛𝑑 and the generation scaling factor (genFactor). This

process is demonstrated in Figure 4-3.

Figure 4-3: Scaling the number of individuals and generations of the genetic algorithm based on the

size of the design space

Despite the effectiveness of this approach, the “curse of dimensionality” begins to dominate the

optimization problem as the design space grows in size. That is, as the number of design variables increases,

the size of the design space grows exponentially while the explorative parameters of the genetic algorithm

(𝑁𝑖𝑛𝑑 and 𝑁𝑔𝑒𝑛) only scale linearly. At first thought, one might suggest scaling the exploration parameters

exponentially as well. However, doing so makes the run times prohibitively expensive, and is thus not a

viable solution. As an alternative to this approach, the optimization algorithm has been written such that

the linear scaling factors are inputs to the genetic algorithm (as discussed in Section 2593088.0.-

946779886). Thus, for larger design spaces the magnitude of the scaling factors can be increased to account

for the increased dimensionality of the problem, at the cost of computational expense. At this point the

calibration of the NDARC models becomes a tradeoff that the user must make between design space

exploration and execution time. Despite this drawback, the case study discussed in Section 4.6 demonstrated

that the NDARC – OC tool is capable of arriving at a better solution in a more efficient manner then could

be obtained through manual iterations.

73

4.3.3 Selection of Programming Language

Two key criteria went into the selection of the programming language for this process: 1) the code must be

open source, and 2) it must be capable of being compiled into an executable file that can be run on any

machine without the need for an interpreter. The requirement that the code be open source ruled out the use

of common engineering tools with optimization capabilities such as Model Center and MATLAB. Because

of this, consideration was given to developing the optimization process in both Python v3.4 and Fortran 95.

Python was ultimately selected due to its ease of integration with the NDARC – OPS and its ability to meet

the two criteria stated above. However, the design space of this problem has the potential to grow to the

point that it is computationally prohibitive to run a full analysis in Python. If this becomes a major roadblock

in the use of the NDARC calibration tools, the optimization code can be transitioned to Fortran for

computational efficiency, requiring minimal restructuring of the optimization process.

4.4 Implementation of NDARC – OC Tool

The use of optimization techniques to automate the calibration of NDARC models relies on two things: the

set of available NDARC design variables is fixed, and the calibration data set is known and can be provided

in some structured format. With this information, enough structure is provided to allow the entire process

to be automated, requiring minimal user set up while providing fast, accurate results given that the

information provided is appropriate. An overview of the new calibration process is provided in Figure 4-4,

which requires the three general steps described below.

1. In the input files, set: which NDARC variables are design variables for the optimization process

versus constant parameters, the calibration data, and the run settings

2. Run the optimization algorithm

3. Analyze results, and if necessary make adjustments to design space and re-run the optimization

74

Figure 4-4: Automation of calibration process using optimization technique

4.4.1 NDARC Calibration Input File

A single input file is required to run the NDARC – OC tool. This input file MUST be called “NDARC

Calibration Settings.inp”, and it must be located in the “Input Files” folder shown in Figure 4-8 in order for

the NDARC optimization code to find and access the file. The calibration input file is organized similarly

to a Fortran style NAMELISTs input file (but it is not a true NAMELIST input file). All NAMELIST group

names must be preceded by an ampersand (“&”), and must be in all caps. The NAMELISTs may occur in

any order. The available NAMELISTs are described in Table 4-4, and the inputs available to each

NAMELIST are described in the following sections. For an example input file, please refer to Appendix C.

Table 4-4: Available NAMELISTs in NDARC Calibration Settings input file

NAMELIST Description

&RUN_SETTINGS Specify desired run settings

&INDUCED_NDARC_VARIABLES Set default values for constant parameters, or range/resolution

for design variables &PROFILE_NDARC_VARIABLES

&CALIBRATION_DATA_SET
Set data from comprehensive analysis tool to calibrate NDARC

model against

Several requirements must also be followed when setting input variables in the input file.

 All input variable names are case sensitive and must be spelled correctly

 Variable names should be separated from the input data by an equals sign (e.g. Ki_hover = 1)

 Any input variable that contains more than one value should separate these values using a comma

(e.g. Ki_hover = 1, 3, .1)

RUN_SETTINGS NAMELIST

75

Currently, six settings are available in the &RUN_SETTINGS NAMELIST as described in Table 4-5, along

with default values if no input is provided. If NumRuns is set to a value greater than 1, then the optimization

algorithm will optimize an NDARC model using the current settings NumRuns times, and will record the

NDARC model with the lowest error for both the induced and profile power design spaces. The intent of

this setting is to allow the user to run the optimization several times to reduce the chance that the genetic

algorithm gets stuck in a local minima, without requiring the user to be present to manually re-run the

optimization code themselves.

Table 4-5: Input variables available in the &RUN_SETTINGS NAMELIST

Variable Name Description Default Value

saveAsFilename Specify filename to save output files to
NDARC Optimized

Model

numRuns
Set the number of runs performed during the

optimization (should be integer value)
1

inducedPopulationFactor

Factor that scales the size of the population in

the genetic algorithm uses to optimize the

induced power design space

4

inducedGenerationFactor

Factor that scales the number of generations

the genetic algorithm uses to optimize the

induced power design space

5

profilePopulationFactor

Factor that scales the size of the population in

the genetic algorithm uses to optimize the

profile power design space

4

profileGenerationFactor

Factor that scales the number of generations

the genetic algorithm uses to optimize the

profile power design space

5

INDUCED/PROFILE_NDARC_VARIABLES NAMELISTs

The variables available for the induced power and profile power design spaces are the same as those listed

in Table 4-1 and Table 4-2, respectively. The input variables can be listed in any order. However, all

variables must be spelled correctly with the correct capitalization. Table 4-6 shows the proper format for

setting a constant parameter, design variable, and a match variable. Again, the variable name should be

separated from the input values by an equals sign, and for design variables the input values should all be

separated by a comma. The match variable type requires that the current variable always have the same

value as another variable during the optimization. The example listed in Table 4-6 requires that “Ki_hover”

always have the same value as “Ki_edge”, even if “Ki_edge” is varied during the optimization runs. In

addition, if a variable is not found in the proper NAMELIST (or is simply omitted from the input file), then

it will be set to the default values listed in Table 4-1 or Table 4-2.

76

Table 4-6: Formatting design variable versus constant parameters in the induced/profile

NAMELISTS

Variable Type Expected Input Order Example

Constant Parameter Constant Value Ki_hover = 1.1

Design Variable Lower Bound, Upper Bound, Resolution Ki_hover = 1, 3, .1

Match Variable
String containing variable name that

current variable must have same value as
Ki_hover = Ki_edge

CALIBRATION_DATA_SET NAMELIST

The $CALIBRATION_DATA_SET NAMELIST has no variable declarations, but instead expects a list of

information. The list should be in table format, with columns corresponding to the independent/dependent

variables listed in Table 4-3, and the rows corresponding to individual calibration data points. In each row,

data must be entered in the following order: mux, muz, CT/s, MAT, 𝜅, and 𝐶𝐷, and all data entries must be

separated by a comma. If the user does not wish to calibrate against one of the dependent variables under

certain conditions, then a value of “0” should be entered for that dependent variable. An example of this is

shown in Figure 4-5, where the last three calibration data points are only being used to calibrate the induced

power coefficient, kappa.

Figure 4-5: Example showing format of &CALIBRATION_DATA_SET NAMELIST

The implementation of the calibration data in this manner adds flexibility to the spreadsheet, as the user can

now quickly change the calibration data and run the optimization with very little effort. However, the code

is limited to calibration data in this specific format. If for any reason the type of calibration data must be

changed (i.e. no longer calculating values for drag, but some other parameter), the NDARC – OC will have

to be altered to reflect this.

4.4.2 Input File Error Checking

Error checks have been built into the optimization code to ensure that the input file has been formatted

properly before running the optimization. Two main checks are performed: 1) The variable names are

checked against a list of possible input file variables to prevent spelling or capitalization errors, and 2)

The values associated with each variable are checked to make sure that no logical rules are broken and that

the correct number of input values is provided. Checking the variable name spelling is important because

the optimization code heavily utilizes the Python dictionary variable type, which accesses fields within the

77

dictionary using the NDARC variable name strings. The input value checking ensures that the correct

information has been provided and in the proper format to properly set up the optimization problem. Both

error checks are elaborated on in the following sections.

Checking Variable Names

Every variable name read from the input file is automatically checked against the list of available input

variables. If the variable name does not match a known variable of the current NAMELIST exactly (spelling

and capitalization), then the NDARC – OC tool will automatically alert the user and suggest the closest

found matches within the current NAMELIST as alternatives. The user then has the ability to re-type the

intended variable into the command prompt or select the closest suggested match, without having to end

the optimization run and fix the input file directly. For this to work, the intended input variable MUST be

in the proper NAMELIST, as other NAMELISTs are not checked if the variable was not found. Once all

variable name errors are corrected, the code will indicate that the NDARC input file was successfully

loaded, and the optimization will begin. A demonstration of this is shown in Figure 4-6.

Figure 4-6: NDARC - OC tool automatically checking variable names from the input file to make

sure that they match a known variable exactly

Error Report

In addition to the two output files listed Section 4.4.4, a file called “ERROR REPORT.out” is written to the

“Output Files” folder after each run. This file contains information regarding the incorrect formatting of the

input data for all NAMELISTs. Unlike with the variable names, no “best guess” can be made for the

intended value for each input variable. Thus, if an error for the NDARC variable values is found (i.e.

incorrect number of inputs listed for a given variable), then the code is aborted before the optimization

begins and an error message is written to the output file. There are three input file format errors that have

been accounted for; these three errors are described in Table 4-7. In addition to the error message, the error

78

report will contain information regarding what NDARC variable caused this error (this does not apply for

errors in the calibration data set table), as well as the line of the input file where the specified error occurred.

If a known error occurs, the code will finish reading the input file to determine all formatting errors before

printing the final “ERROR REPORT.out” file and aborting. An example of this error report is shown in

Figure 4-7. The input file associated with this error report is provided in Appendix F with the input errors

highlighted in yellow.

If the NDARC – OC code crashes unexpectedly, the file will return “NDARC-OC crashed unexpectedly”,

and the code will abort immediately. If this occurs, please save the input file and contact Eric Spero so that

the issue can be addressed. If the run is completed successfully, the “ERROR REPORT.out” file will simply

print “RUN COMPLETED SUCCESSFULLY”.

Table 4-7: Error messages in Error Report that occur when reading input file

Error Message Description

DESIGN VARIABLE BOUND

ERROR

The lower bound entered for a design variable is greater than or

equal to the upper bound.

NDARC VARIABLE INPUT

ERROR

The user has listed the incorrect number of inputs for an NDARC

variable. One input should be listed for a constant parameter, and

three should be listed for a design variable.

CALIBRATION DATA INPUT

ERROR

The user has listed an incorrect number of inputs for the calibration

data set table. Six values should be entered in each row, as

addressed in Figure 4-5.

Figure 4-7: Example of error report from input file with multiple input formatting issues (input file

in Appendix F)

4.4.3 Running Optimization Algorithm

The optimization code is written in a single Python file called “NDARC_Optimized_Calibration.py”, which

contains all the functions required to run the optimization process. This python file, along with the “Input

Files” folder, and the “Output Files” folder must all be located in the same folder or directory location, as

shown in Figure 4-8. To run the python file directly, the following command should be entered into the

command prompt after navigating to the directory that contains the “NDARC_Optimized_Calibration.py”

79

file (assuming that “python” is a windows environment variable that refers to the python interpreter): python

NDARC_Optimized_Calibration

Figure 4-8: Required contents of the “NDARC Optimized Calibration” folder

Runtime User Displays

Once the NDARC – OC code is run, a command window will appear providing the user with information

regarding the progress of the optimization algorithm. The initial display indicates to the user: the design

space that is currently being optimized (induced or profile power design space), the run number that is

currently being executed, the number of generations that the genetic algorithm will be run to, and the

number of individuals in each population. An example of this is shown below in Figure 4-9. This display

occurs every time that a new run has been started.

2

Figure 4-9: Initial display to user when optimization executable is launched

During execution of the optimization algorithm, the display will indicate the current generation, the relative

percent error of the current best configuration, and the estimated time remaining. It should be noted that

this estimated time remaining is ONLY in reference to the current run.

80

Figure 4-10: User display during the execution of the optimization algorithm

The user also has the option to abort a run early by typing “Ctrl+C” into the command prompt once. This

will abort the current run, but will still save the top ranked configuration from this run. For instance, if the

optimization algorithm is currently on Run 1 of 2 in the profile drag coefficient design space, then typing

“CTRL+C” will end Run 1, and Run 2 of the profile drag coefficient design space will begin immediately

after. To abort the entire optimization algorithm, type “Ctrl+C” twice within a three second span, or simply

close out of the window directly. This will prevent any results from being written to the “Output Files”

folder.

Figure 4-11: User display upon aborting the current run

4.4.4 NDARC Calibration Output Files

Two separate output files are written by the optimization code; one contains the NDARC model with all

NDARC variables and associated values, and the other contains a table with the calibration data, calculated

values for the induced power and profile drag coefficients, and the errors associated with each calibration

data point. Both files are written to the “Output Files” folder in the location as shown in Figure 4-8. The

“SaveAsFilename” variable from the &RUN_SETTINGS NAMELIST is used as the base name for each

81

file, with an additional string attached to differentiate between the residuals file (“Residuals.out”) and the

NDARC model file (“NDARC Model.out”). Sample file names are provided in Figure 4-12, while sample

output files can be found in Appendix D & E

Figure 4-12: Sample output file name formats

4.4.5 Limitations of NDARC – OC Tool

As discussed in Section 2593088.0.-946779886 the calibration of NDARC models using this approach

suffers from the “curse of dimensionality”. This issue is encountered whether the calibration is done through

the NDARC – OC tool, or by manual iterations. Though the genetic algorithm used within the NDARC –

OC is scaled in an attempt to account for the increase in dimensionality that occurs as the number of

NDARC variables considered increases, due to computational limitations, it is not possible to scale the

algorithm exponentially with the design space. Thus, if the size of the design space is extremely large

(considering over ≈15-20 design variable simultaneously) the performance of the NDARC – OC tool will

likely be degraded. It has been found that this is especially true for the profile drag coefficient design space.

Because of this it is highly suggested that users does not to attempt to optimize the entire design space (for

both induced and profile power) in a single optimization run. Rather, judgement should be made in selecting

a representative set of NDARC variables as design variables. An alternative solution is to perform the

optimization in multiple steps, optimizing a subset of the design space during each optimization run.

Though this is not ideal, this approach can produce acceptable results in a reasonable amount of runtime.

An alternative to the approach stated above is to set up the NDARC – OC code to run overnight, while

using large values for the population factors to account for extremely large design spaces. Successful

calibrations have been performed using all NDARC variables as design variables, while using population

factors on the order of 40~50 with a generation factor of 1. These runs are obviously extremely expensive

to perform, often taking over 6 hours for a single run, but they have been found to provide good results.

After completing such a run, the calibration can be fine-tuned by using the NDARC variable values found

from the long run as the constant parameter values, and then performing smaller optimization runs on a

subset of the original NDARC design variables.

82

4.5 Implementation of NDARC – OPS Tool

The NDARC – Optimized Performance Spreadsheet tool is an extension of the NDARC – Optimized

Calibration (NDARC – OC) tool for Windows OS users. The NDARC – OPS took makes use of Microsoft

Excel as a GUI for running the NDARC – OC tool. The NDARC – OPS process (shown in Figure 4-13) is

nearly identical to the process described in Figure 4-4 for the NDARC-OC tool. The only difference is that

the design variables and calibration data is now set in the Excel sheet, and the process of writing the

NDARC – OC input files is automated using VBA. This, in general, should make it easier to run the

calibration process for Windows users, and reduce user errors in formatting the NDARC – OC input file.

In addition to automatically writing the input files, the NDARC – OPS also provides several plots to help

visualize the accuracy of the current model, as will be discussed in Section 4.5.3.

Figure 4-13: NDARC - OPS optimization process

To allow for the process described above to be automated, the NDARC – OPS must be located in a folder

with the “NDARC Optimized Calibration” folder. The “NDARC Optimized Calibration” folder must have

the same contents as described in Figure 4-8. This allows the NDARC – OPS to write the input files to the

correct location, as well as extract the output files after the calibration process has finished. The remainder

of this section described the proper use of the NDARC – OPS user interface.

Figure 4-14: Proper location of "NDARC Optimization" folder relative to NDARC – OPS

83

4.5.1 Setting Calibration Data

The calibration data (from comprehensive analysis tools such as CAMRAD or RCAS) is set on the

"Calibration Data Sets" sheet of the NDARC – OPS. The information required in this table is the same that

was outlined in Table 4-3 and Figure 4-5. The only difference between the table shown in Figure 4-15 and

the previous examples is the first column labeled “Case”. This column is purely for the user to be able to

group sets of calibration data points by different case numbers for post-processing of results within the

NDARC - OPS, and will have no effect on the optimization itself (this column is not written to the NDARC

– OC input file). The VBA code within the NDARC – OPS will pull the data out of this specific table. The

table can be of arbitrary length (the code will read the calibration tables until it has found a blank row with

no data in it), but the column order MUST be followed exactly.

Figure 4-15: Calibration data set table used to structure the information for the NDARC – OC tool

4.5.2 Setting Design Variables

The user interaction required to set up and run the optimization is contained within the “Optimization Set

Up” sheet of the NDARC – OPS, which is labeled below in Figure 4-16. This interface provides the user

with the following capabilities:

 Set the value of all $RUN_SETTINGS NAMELIST variables

 Set the values of each NDARC variable

 Ability to change which NDARC variables will be design variables (to be varied during the

optimization) versus constant parameters

84

 A “Run Optimization” button that calls the NDARC – OC tool to run the entire optimization process

based on the information in the current spreadsheet.

Figure 4-16: "Optimization Set Up" sheet of NDARC – OPS used to set up optimization problem

As noted in Figure 4-16, the current design variables of the optimization problem have a green shaded

background in the spreadsheet, while all constant parameters have white backgrounds. To change a variable

between a design variable and a constant parameter, the user simply has to double click on the variable

name itself, as clearly specified in Figure 4-17.

In addition, the values that the user must set for each variable are dependent on the type of variable. Constant

parameters require only a fixed value to be set, which is simply the constant value they will be held at

during the optimization process. For design variables, the genetic algorithm requires that three values be

provided: a lower bound, upper bound, and a resolution. To make it clear to the user what values should be

provided, only the necessary inputs for each variable are visible. This is clearly shown in Figure 4-16, where

the design variables have values visible in the “Lower Bound”, “Upper Bound”, and “Resolution” columns,

while the constant parameters only have values visible in the “Fixed Value” column.

85

Figure 4-17: Demonstrating how to change variable type between design variable and constant

parameter

A limitation of this process is that a value must be provided for every column of a design variable, as the

VBA code is reading these values and has no logic embedded within it to assign values to variables if they

are missing from the spreadsheet table. That is, if a variable is a design variable, then the user must input a

value for the “Lower Bound”, “Upper Bound”, and “Resolution”. The “Fixed Value” is hidden from the

user for the design variables, as it is not required for the optimization algorithm, but the current “Fixed

Value” does not need to be deleted; it can be left as is and its value will just be hidden from view. Because

of this, checks have been built into the VBA script to ensure that the proper values have been assigned.

Upon clicking the "Run Optimization" button, the VBA code will check all of the inputs, and provide alert

messages if any input values are missing. A few examples of this are shown below in Figure 4-18. The

alerts will tell the user what variable to look at, what table the variable is in (either induced or profile

power), and it will select the cell that needs to be changed.

Likewise, for a constant parameter the values for the “Lower Bound”, “Upper Bound”, and “Resolution”

will be hidden from the user (but their values will not be deleted). However, a constant parameter does not

require a value to be set. If the “Fixed Value” column is left blank for a constant parameter, then the default

value for that NDARC variable (based on values from Table 4-1 and Table 4-2) will be assigned to it for

the entire optimization run. Additionally, if a string representing a different variable is input in the “Fixed

Value” column, then that NDARC variable will be treated as a match variable during the optimization run.

For example, in Figure 4-17 shown above, the value for “kp1” will always be the same as the value assigned

for “kh1” during the optimization runs.

86

Figure 4-18: Possible error messages that occur when NDARC variables are not set correctly

4.5.3 NDARC – OPS Displays and Results

At the completion of the optimization run, a new sheet is generated in the NDARC – OPS under the

“SaveAsFilename” name. An example of this sheet is shown in Figure 4-19. This sheet contains the

NDARC variable values of the newly calibrated NDARC model, along with the complete calibration data

set table with corresponding NDARC estimated values and relative residual errors for each calibration data

point.

Figure 4-19: NDARC - OPS user display for results

87

To help visualize the accuracy of the results, an actual by predicted and residual by predicted plot are

automatically generated for both the induced power coefficient and profile drag coefficient, shown in the

bottom left of Figure 4-19. In the actual by predicted plot, a perfect fit is represented by the solid black line,

which would indicate that for each calibration data point the estimated value from the NDARC curve fits

perfectly matched the actual value from the comprehensive analysis data. The residual by predicted plot

helps to visualize how large the residual is for each data point, where the residual for each data point is

calculated as the relative percent error from the actual value. An example of a good fit (shown by the Kappa

values) and a poor fit (shown by the Cd values) is provided in Figure 4-20. Though this example is

exaggerated by stopping the profile drag coefficient optimization early, it still represents the trends in

accuracy that should be looked for. That is, the closer the data points are to the “perfect fit” line and the

smaller the residual errors, the more accurate the NDARC model fit.

Figure 4-20: Example of results for a good fit (Kappa values) and poor fit (Cd values) on the actual

by predicted and residual by predicted plots

4.6 NDARC – OPS Efficiency Case Study

A case study was performed to compare the required user effort and the accuracy of calibrating a NDARC

model for rotor induced power using a manual calibration process versus the NDARC – OPS tool. To

maintain consistency, the same NDARC variables used by the experienced user performing the manual

calibration were used in the NDARC – OPS tool. The NDARC variables that were used as design variables

88

in this process are listed in Table 4-8, along with the lower and upper bound used in the NDARC – OPS

tool. All other NDARC variables were set to default values (See Appendix G.2 for complete design space

used). The run settings used for the NDARC – OPS calibration are shown in Table 4-9.

Table 4-8: Induced power design space used in NDARC - OPS for case study

Description Variable
Lower

Bound

Upper

Bound
Resolution

Induced velocity factors (ratio to momentum theory induced velocity)

hover Ki_hover 1 1.3 0.001

Variation with Thrust
CT/s for Ki_h variation CTs_Hind 0 0.1 0.001

coefficient for Ki_h kh1 -8 8 0.001

coefficient for Ki_h kh2 -25 25 0.001

exponent for Ki_h Xh2 0 4 0.001

CT/s for Ki_p variation CTs_Pind 0 0.1 0.001

Variation with Edgewise

Velocity
advance ratio for Ki_edge mu_edge 0 0.45 0.001

coefficient for Ki(mu) (linear) ke1 -5 5 0.001

coefficient for Ki(mu) (quadratic) ke2 -5 5 0.001

coefficient for Ki(mu) ke3 -25 25 0.001

exponent for Ki(mu) Xe 4 12 0.001

Table 4-9: Settings for NDARC - OPS calibration run

The case study used a calibration data set provided by Wayne Johnson for an unknown edgewise flight

helicopter. This data set is provided in Appendix G.1. A summary of the results are listed in Table 4-10.

The “user effort” time quoted in this table is the time required by the user to set up the calibration data set

into a useable form, and then perform the calibration itself. For the NDARC – OPS tool, the run time of the

optimization code (which was approximately 15 minutes on an i7 processor with 12 GB ram) is not included

in the user effort, as the optimization code requires no user interaction or input at all, whereas the manual

calibration requires the users input at all times.

Table 4-10: Results of NDARC calibration case study

89

Calibration Method User Effort (min.) Calibration Error

Manual Calibration 37 min. 3.98%

NDARC – OPS 6 min. 2.97%

The results overwhelming show that the NDARC – OPS tool is capable of obtaining more accurate results

while requiring a fraction of the user effort. In addition, of the 6 minutes of user effort required for this case

study, approximately five of those minutes were spent reformatting the calibration data provided into the

table format required by the NDARC – OPS tool. Thus, if the calibration data is already provided in this

table format, the user effort can be reduced to merely the time required to select the design variables and

set the design variable ranges. Another comment that should be mentioned here is that the calibration error

of the NDARC – OPS fell below that of the manual calibration error in less than ten seconds, but the code

was allowed to run for the remainder of the 15 minutes to continue to explore the design space.

At this time, it is again stressed that the NDARC – OPS tool does not remove the need for SMEs input.

Given the type of helicopter being modeled (i.e. edgewise flight versus axial flight), the SME must select

the correct NDARC variables to optimize, while setting other NDARC variables to proper default values

based on the current helicopter configuration. The NDARC variables that represent physical quantities (as

discussed in Section 2593088.0.-946779886) must also be constrained to physically allowable values, or

the models will have no physical significance. Given that a SME can properly set the design space for a

given helicopter configuration, the NDARC – OPS becomes a valuable tool capable of rapidly calibrating

NDARC models while requiring minimal user effort.

4.7 Conclusion

This report outlined the process used to develop the NDARC – Optimized Calibration (NDARC – OC) tool.

The objective of the NDARC – OC tool is to automate the calibration of NDARC models against

comprehensive analysis data. The optimization process is implemented in Python v3.4, using a genetic

algorithm to perform the optimization. The optimization problem is set up through a distinct I/O file system,

which allows the user to change run settings of the genetic algorithm, as well as change the design space

with regards to what NDARC variables are design variables versus constant parameters.

For Windows OS users, an Excel GUI has been wrapped around the NDARC – OC tool to create the

NDARC – Optimized Performance Spreadsheet (NDARC – OPS). The NDARC – OPS simply provides a

GUI to allow users to set calibration data, as well as to define the design space and run settings for the

optimization problem. A VBA script within the NDARC – OPS automates the process of writing the

required input file for the NDARC – OC, reducing user error and effort required.

90

In Section 4.6 of this report, a case study is performed to compare the efficiency and performance of the

NDARC – OPS against a previous method where the calibration is performed through manual iteration.

The case study uses a set of calibration data provided by Wayne Johnson for an unknown edgewise flight

helicopter (this data is provided in Appendix G). The manual calibration effort was performed by an

experienced NDARC user, while a second model was calibrated with the NDARC-OPS tool using the same

NDARC variables as the expert used. The results showed that the NDARC – OPS tool was capable of

getting more accurate results than the manual calibration at a greatly reduced effort to the user.

There are several areas that could be investigated to improve the performance of the NDARC – OC tool.

Alternative optimization algorithms could be implemented if it is believed that they will outperform the

genetic algorithm implemented in efficiency and/or consistency of results. If a new optimization algorithm

is being investigated, the concerns noted in Section 4.3.2 should be taken into consideration. Additionally,

many of the limitations of the NDARC – OC code revolve around computational limitations that arise when

the design space grows exponentially. To partially address this issue, the code could be converted to a faster

programming language such as Fortran or C/C++. However, the Python version of the code uses the

numerical python (NumPy) library whenever possible, which is a pre-compiled C code for efficiency. Thus,

the speed-up obtained by switching to Fortran or C/C++ may not be as large as one might expect.

91

5. Framework for linking system capability uncertainty to individual technologies and

groups of technologies in a portfolio: uncertainty ovals –or- uncertainty around tech

factors

5.1 Introduction

The following section documents the work done in improving vehicle performance analysis methods

including quantification of uncertainty. The impact of technologies as well as the impact of variance are

studied and presented. To quantify uncertainty, first, the sources of uncertainty in performance analysis

must be established. Once these sources are identified, their effects are quantified by using the Probabilistic

Certificate of Correctness (PCC) methodology; in which simulations are performed to establish confidence

in predicted performance.

Uncertainty assessment of complex systems has been studied for many projects, and an important body of

literature is available in the subject. First, a literature review of the uncertainty sources throughout the

vehicle lifecycle is shown in Figure 5-1. [22]

Figure 5-1. Uncertainty Sources Throughout the Vehicle Lifecycle

5.2 Sources of Uncertainty

Previous literature [22] also outlined the sources of uncertainty.

 Physical and mathematical modeling

o Ignorance

92

o Lack of understanding

o Incomplete knowledge

 Model uncertainty

o Inherent system variations

o Model structure uncertainty

o Model Parameter uncertainty

 Model error

o Computational implementation and numerical programming

o Discretization, round off, programming error

 Computational simulation model

o Model uncertainty

o Model error

 Model input uncertainty

o Design variable uncertainty

5.3 Uncertainty in numerical simulations

Figure 5-2. Uncertainty in Numerical Simulations [22]

93

5.4 Uncertainty in CATE

The current Uncertainty module in CATE shown in Figure 5-3 allows for a Monte Carlo simulation of the

sizing output subjected to user defined uncertainty on the sizing parameters. The uncertainty on the input

can be a uniform distribution or a normal distribution. This process is done on the sizing of the aircraft.

Consequently, the input are related to the mission parameters, the sizing condition and technology factors.

The output is expressed graphically and is related to vehicle weights, size (geometrically and power), and

weights.

Figure 5-3. Current CATE Uncertainty Dashboard

5.5 PCC Methodology

The Probability Certificate of Correctness (PCC) methodology has been studied for rotorcraft. The

process is outlined below and shown pictorially in Figure 5-4. It allows to perform a probabilistic

assessment of the performance goals based on a numerical process.

• 1- Procedure:

o Error distribution estimation

o Assign distribution to appropriate variables

o Run Monte Carlo Simulation (MCS)

94

o Derive performance metric probability density function

• 2- Technology impact (UH-60M)

o Distribution on technology impact factors

 Rotor aerodynamics, engine performance, and tail drag

o Probabilistic assessment of performance goals

Figure 5-4. PCC Methodology

5.6 Uncertainty in NDARC

The vehicle design and analysis in CATE has been performed through NDARC. This software has its own

sources of uncertainty. Because NDARC is component based, the breakdown of the sources of uncertainty

was performed accordingly.

• Rotor performance:

The rotor model, as suggested by Johnson, is based on a decomposition of the profile power and induced

power. The process is to take flight test data, perform a higher fidelity rotor analysis of the data using

RCAS or CAMRAD and extract a set of parameters describing the profile and induced power coefficient

as a function of various parameters. This last step is done using the rotor spreadsheet, a spreadsheet that

helps the tuning of those parameters. Consequently, the sources of error can come from:

• Flight test : Test conditions (ex: trim)

• High fidelity rotor analysis: error associated with the numerical representation in the analysis

tool

• Rotor spreadsheet: error on the calibration of the parameters

95

• Engine performance

Unfortunately, there is no knowledge on engine performance error modeling from NDARC

documentation as engine decks often contain proprietary data. In the past, the CATE team calibrated the

power available and fuel flow with user manual available data. In this case, error can come from

o Error on available data (form the user manual itself)

o Error on the calibration method

• Weights

The weight models in NDARC have published error models associated with each one of them.

5.6.1 Bayesian approach to the rotor spreadsheet calibration

As mentioned previously, part of the rotor calibration is to find the parameters that represent the coefficient

of induced and profile power as a function of the operating condition. Given the models and available

performance data, Bayesian statistics can be used to find calibration related uncertainty.

In a test case, the 3 variables representing the Cd Mean as a function of CT/sigma in the rotor spreadsheet

were calibrated using Bayesian statistics. Note that only data at low CT/sigma was used (before any stall

on the rotor). For low Ct/sigma, the model is a quadratic. The equation is:

𝐶𝑑𝑚𝑒𝑎𝑛 = 𝑎1 + 𝑎2

𝐶𝑇

𝑠
 + 𝑎3 (

𝐶𝑇

𝑠
)

2

Figure 5-5 illustrates data coming from higher fidelity tool for 2 altitude conditions. The blue dots are data,

and the orange line is the least-square fit of the parameters a1 a2 and a3. It can be seen that a least-square

cannot be fit perfectly with the second order model. Consequently, there is uncertainty in the representation

of the model through this model.

96

Figure 5-5. Cd Mean Data and the Exponential Curve Model

A Bayesian approximation of the 3 parameters describing the second order Cd_mean model was performed

and is shown in Figure 5-6. A prior distribution (blue curves) was associated with each parameter, based

on the least-square regression performed before and engineering judgment. The data was used to update the

Bayesian model and the posterior distribution of each parameter is an output expressed by the orange

curves. This representation allows to associate a distribution to each coefficient used in the numerical

model. This can be used to performed uncertainty analysis.

Figure 5-6. Bayesian Approx. of the 3 Parameters Describing Second Order Cd Mean Model

5.6.2 Uncertainty propagation methods

This section evaluates how to propagate the uncertainty of the max speed of a helicopter based on

uncertainty on the operating condition, using either Taylor series approximation or Monte Carlo simulation.

97

The performance characteristic studied was the max speed of a UH60-L evaluated in through a performance

calculation in NDARC. The input that were assumed as uncertain were the CG location, the operating

temperature and the altitude conditions.

In order to propagate uncertainty, two methods were evaluated: 1) The Monte Carlo Simulation and the 2)

Taylor Series Approximation.

The Taylor series approximation assumes a linear variation of each output/input pairing. The variance and

average of the input are propagate to the output by the equation below. [22]

μ =E(x), 𝜎 = √(∑
𝜕𝑓

𝜕𝑥𝑖
)

2
𝜎𝑥𝑖

2

A more involved formulation allows one to take into account input coupling and co variance. The only

modeling required is the local derivative (1 variable) or the local derivatives of each output to each

(Jacobian).

A sweep of CG location was performed, as is shown in Figure 5-7. This results shows that the speed as a

function of the Cg Location cannot be treated linearly. Consequently the Taylor Series approximation

cannot be used, and a Monte Carlo Simulation was performed. The Monte Carlo simulation is more

computationally expansive, as the input distribution are approximated and ran multiple times and the output

distribution can be assessed.

The inputs are shown in Table 5-1 and results are shown in Figure 5-8. The distribution on the CG location

was based on the uncertainty of the CG location of a CH47 [23]

Figure 5-7. Maximum Speed vs. Center of Gravity Location

98

Table 5-1. Inputs to the Monte Carlo Simulation

Variable Mean Sigma

CG 0.07 0.05

Temp 95F 5F

Alt 4000’ 300’

Figure 5-8. Maximum Speed Distribution, Standard Deviation of 2.4 kts

The standard distribution of the maximum velocity is 2.4knots. This can be used as a first approximation

of the uncertainty during the flight test for example, and can be used to inform the uncertainty about the

calibration. Due to lack of interest in the uncertainty in the calibration of the model, the task was

discontinued.

5.7 Conclusion

Uncertainty on the design and performance of rotorcraft can come from various sources. Some aspects of

the CATE process were studied, and specific examples were used as test cases to demonstrate possible

notional process of uncertainty assessment and propagation, specifically in the calibration process.

99

6. UH-60 Upgrade Study

6.1 Introduction

Using the CATE integration environment, two possible UH-60 upgrade studies (5-blade rotor system, ITEP

engine) have been performed. The detailed descriptions of the investigation methodologies and the results

are summarized in the following chapters.

6.2 5-Blade Rotor System Investigation

To demonstrate the procedure from a high fidelity analysis tool (RCAS) to the CATE (NDARC)

environment through the calibration step, a 5-blade rotor system has been investigated. As the first step in

the investigation, the UH-60A NDARC model has been updated to match with the published data better.

The new UH-60A model results have been obtained by modifying the engine parameters and weight factors

and compared with the published data and the previous results in the Table 6-1. As shown in the table, new

calibration results show more close to the published data.

Table 6-1. New Calibration Results

Sizing Results Published
Previous

Calibration

New

Calibration
Diff (%)

Design Gross Weight (lbs) 16,500 17,088.8 16,493.5 0.04

Drive System Limit (HP) 2,828 2,805.1 2,828.2 0.007

IRP Power SLS (HP) 1,560 1,762.9 1,560.7 0.04

MCP Power SLS (HP) 1,313 1,487.6 1,317.0 0.3

For the 5-blade rotor system analysis, either fixing the solidity by the reduced blade dimensions or

increasing the solidity by adding a same blade can be possible. In case of the same solidity analysis, there

is no difference in the performance results by the RCAS analysis, so the case with the increased solidity

analysis with the additional same blade has been chosen and performed. If this investigation is aimed at an

optimized design analysis, then an intensive parametric investigation and optimization among the solidity,

the rotor speed, and the blade configuration parameters need to be performed, along with structural and

dynamic analyses. However, the current investigation is focused on linking the RCAS and the CATE

(NDARC) environment and detailed parametric optimization is beyond the work scope, only the parametric

investigation has been performed and the analysis results below should not be considered as the optimum

design results for the 5-blade rotor system.

100

Figure 6-1 and Figure 6-2 show the hover rotor power comparison at the sea level standard condition and

the 4,000ft, 95F condition. As shown in these figures, the power required for the 5-blade rotor system is a

little higher in the UH-60 CT range (~0.007) because the current 4-blade rotor system is optimized for the

UH-60 weight range. However, as the CT values increase, the 5-blade rotor system becomes more efficient

and results in lower power required due to the induced power reduction.

Figure 6-1. 4-Blade/5-Blade Hover Power Comparison at SLS Condition

101

Figure 6-2. 4-Blade/5-Blade Hover Power Comparison at 4K/95F Condition

Figure 6-3 and Figure 6-4 show the forward flight power required at two different CT conditions. The CT

values are close to the UH-60 value for both cases, so there show higher power required for the 5-blade

rotor system. But the difference becomes smaller at the higher CT case (Figure 6-4), which is the same trend

with the hover results. This trend shows more clear in the Figure 6-5 which includes three different CT

conditions. It is obvious that the 5-blade rotor system without reducing the rotor speed should be less

efficient in the UH-60 CT range.

Thus, more analyses with the different RPM values have been conducted with the CT value fixed as 0.0083

and the results are shown in the Figure 6-6. With the RPM reduced, the rotor system is operated within the

more efficient rotor pitch angle ranges, so the power required gets reduced. However, this rotor speed

investigation should be conducted with the dynamic stability analysis and the optimum RPM can be found

with a more comprehensive analysis.

102

Figure 6-3. 4-Blade/5-Blade Forward Flight Power Comparison (CT = 0.0074)

Figure 6-4. 4-Blade/5-Blade Forward Flight Power Comparison (CT=0.0091)

103

Figure 6-5. 4-Blade/5-Blade Forward Flight Power Comparison (RPM=258)

Figure 6-6. 4-Blade/5-Blade Forward Flight Power Comparison (CT=0.0083)

104

To connect the RCAS results into the CATE (NDARC) environment, the Optimized Performance

Spreadsheet (OPS) analysis has been performed as shown in the Figure 6-7.

Figure 6-7. Integration Flow between the RCAS and the CATE

The hover induced power related NDARC variables and the profile power related variables have been

obtained using the spreadsheet and the resulting hover induced power factor and the mean drag coefficient

are plotted in comparison with the optimized spreadsheet results in the Figure 6-8, which show good

correlation.

Figure 6-8. Hover Induced/Profile Parameters Comparison

105

RCAS forward flight induced power trend is different from the optimized spreadsheet trend in the high

speed region, so the forward flight rotor power factors are manually tuned to match with the total power

required.

Table 6-2 and Table 6-3 include the list of the NDARC variables identified through this procedure.

Table 6-2. Rotor Induced Power NDARC Variables

Description Variable Value

model (1 constant, 2 standard) MODEL_ind 2

Induced velocity factors (ratio to momentum theory induced velocity)

Hover Ki_hover 1.086

Axial climb Ki_climb 1.11

Axial cruise (propeller) Ki_prop 2

Edgewise flight (helicopter) Ki_edge 2

Variation with Thrust

CT/s for Ki_h variation CTs_Hind 0.09

Coefficient for Ki_h kh1 0

Coefficient for Ki_h kh2 0

Exponent for Ki_h Xh2 2

CT/s for Ki_p variation CTs_Pind 0.1

Coefficient for Ki_p kp1 1.25

Coefficient for Ki_p kp2 0

Exponent for Ki_p Xp2 2

Variation with Edgewise Velocity

Advance ratio for Ki_edge mu_edge 0.28

Coefficient for Ki(mu) (linear) ke1 0.51

Coefficient for Ki(mu) (quadratic) ke2 0.03

Coefficient for Ki(mu) ke3 1

Exponent for Ki(mu) Xe 4.56

Variation with rotor drag kea 0

Minimum Ki Ki_min 1.06

Maximum Ki Ki_max 10

Table 6-3. Rotor Profile Power NDARC Variables

Description Variable Value

106

Technology Factor

Profile power TECH_drag 1

Reference Reynolds number (0. for no correction) Re_ref 0

Basic model (1 array, 2 equation) MODEL_basic 2

Array (cd vs thrust-weighted blade loading)

Number of points (maximum 25) ncd 24

Equation

CT/s for minimum profile drag CTs_Dmin 0.05

Coefficient in drag vs CT/s function (constant for hover/edgewise) d0_hel 0.0075

Coefficient in drag vs CT/s function (constant for axial) d0_prop 0.0083

Coefficient in drag vs CT/s function (linear hover/edgewise) d1_hel 0

Coefficient in drag vs CT/s function (linear for axial) d1_prop 0

Coefficient in drag vs CT/s function (quadratic for hover/edgewise) d2_hel 0.7

Coefficient in drag vs CT/s function (quadratic for axial) d2_prop 0.5

CT/s for separation (Dcd = d(CT/s-CT/s_sep)^X) CTs_sep 0.07

Factor in drag increment dsep 4

Exponent in drag increment Xsep 3

Variation with edgewise velocity, coefficient df1 0

Variation with edgewise velocity, coefficient df2 0

Variation with edgewise velocity, exponent Xf 2

Stall model (0 none) MODEL_stall 1

The Sizing results comparison between the UH-60A and the 5-blade rotor configuration with the reduced

RPM of 238 has been performed and the results are shown in the Table 6-4. When being sized based on the

same design mission, the 5-blade rotor configuration shows slightly higher design gross weight because the

CT value is low around in a 0.006 range and the empty weight increases due to the additional blade.

Table 6-4. Sizing Comparisons of 4-blade and 5-blade rotor system

Sizing Results 4-Blade UH-60A 5-Blade UH-60A

Design Gross Weight (lbs) 16,493.5 16,565.4

Empty Weight (lbs) 11,026.6 11,131.0

Table 6-5 shows the performance run results without the sizing run at the 22,000 lbs MTOW condition.

The vertical rate of climb doesn’t change because the rotor power required at the 22,000 lbs (CT = 0.0078)

is almost same for the 4-blade system and the 5-blade rotor system as shown in the Figure 6-1 and the

107

maximum speed improves slightly. Thus, as shown in these results, the 5-blade rotor system investigation

doesn’t show significant performance improvements. This conclusion is possibly due to the lack of the

comprehensive optimization analyses, and the better design results can be obtained if additional higher

fidelity analyses tools are connected to the CATE environment and the integrated procedures and analyses

are performed.

Table 6-5. Performance Comparisons of 4-blade and 5-blade rotor system

Performance Results 4-Blade UH-60L 5-Blade UH-60L

MTOW (lbs) 22,000 22,000

VROC (ft/min) 726 726

Max Speed (kts) 147 150

6.3 UH-60 with the ITEP Engine

An upgrade of the UH-60 from the baseline engine to General Electric’s ITEP (T901 Turboshaft) engine

has been investigated. The ITEP engine represents a new technology that, when combined to the existing

UH60 airframe, is cited by GE to yield the following performance improvements:

 50% more power at SL/ISA

 40% more power at 4k/95

 25% reduced fuel consumption

 Lower maintenance costs

Evaluation of this upgrade has been conducted through trade studies outlined in the environment below and

compared to the existing UH60 performance outlined in NASA’s NDARC analysis tool.

6.3.1 Trade Study Environment

The current trade study involves collecting a series of results from NDARC for comparison. To accelerate

the process, an environment was prepared in ModelCenter which can be seen in Figure 6-9. A QuickWrap

model parses information from the NDARC inputs, runs NDARC, and reads the output files. That

information is shared between Excel and Matlab. Excel stores the values for record while Matlab does the

calculations and produces graphs of the power sweeps for sea level standard and high, hot day.

108

Figure 6-9. Trade Study Environment Built in ModelCenter

6.3.2 Analysis Methodology

The capability of the UH60 with ITEP upgrades was assessed by comparing the power sweep curves of the

rotorcraft in forward flight using each engine to obtain crucial changes in performance such as hover rate

of climb margin, maximum forward flight speed, and the maximum power consumed. This was

accomplished using NASA’s NDARC integrated into the trade study environment described above.

Another critical aspect to consider in evaluating the upgrade to ITEP is the increased robustness offered by

a more powerful engine against performance losses or compromises on other systems of the rotorcraft. For

example, a more powerful engine may offer equivalent top speeds to the baseline except at higher parasitic

drag coefficients, allowing for more external storage for the same performance as the baseline. Evaluations

of these sensitivities/robustness were conducted for the following cases using the integrated trade study

environment with NDARC.

Table 6-6. Metrics evaluated for upgrade sensitivity and robustness

Hover Rate of Climb Margin

Parasitic Drag Coefficient

Fuel Weight Consumed

Range

Endurance

Maximum Speed

Endurance at Hover Ceiling

109

6.3.3 Comparison Results

Using NASA’s NDARC, the following results were generated for a forward flight power sweep using the

UH60’s baseline engine and the higher performance ITEP engine under consideration for FVL. Initially,

the UH60L was sized with and without the ITEP engine to determine the predicted effects of the ITEP

engine. As seen in Table 6-7. , the empty weight does increase from the size of the ITEP engine as compared

to the sized rubber engine. Table 6-7 also shows that the fuel required decreases although. This is because

of the increased efficiency of the engine. Overall, the increase in design gross weight is negligible and it

can be claimed that the sizing process for the specific missions in consideration produces the same design

gross weight. Thus, the performance analysis has been be done with each vehicle at max takeoff weight

(MTOW) for the UH60L, which is 22,000 lb.

Table 6-7. ITEP vs. non-ITEP Sized Vehicle Comparison

Variable Units ITEP % Change

Weight Empty lb 3.42%

Fuel Weight lb -9.03%

DESIGN GROSS WEIGHT lb 1.34%

110

Figure 6-10. Power Required and Available Comparison with/without ITEP Engine

The comparison of the forward flight power required and power available at SLS condition is shown in the

Figure 6-10. From the chart, the vertical rate of climb and the maximum speed are obtained and summarized

in the Table 6-8.

Table 6-8. ITEP vs. non-ITEP Sized Vehicle Comparison

Performance Results
UH-60L

Without ITEP

UH-60L

With ITEP
% Change

VROC (ft/min) 726 1450 100%

Max Speed (kts) 147 157 7%

111

6.3.4 Robustness

For the above cases, the nominal values for the UH60 were altered by a percent change with the impact to

forward flight speed and vertical rate of climb evaluated. By upgrading to an ITEP engine, the UH60 can

sustain performance equivalent to the baseline configuration under harsher conditions. In the case of

increased flat plate drag, for example, the forward flight speed of the UH60 with ITEP remains unchanged

for less clean configurations (due to stall/compression dominating over parasitic drag) compared to the

baseline, indicating that the UH60 with ITEP can endure aerodynamic deficiency in the way of externally

mounted equipment, for example. Similarly, variation of air density and gross weight revealed significant

performance for hover for the ITEP configuration, indicating robustness to atmospheric conditions and

eight loading that cannot be accomplished by the baseline.

Figure 6-11. UH60 performance sensitivities to changes in drag, air density, and gross weight

6.4 Future Trade Studies

To further evaluate the engine upgrades, mission analyses will be conducted on top of individual sensitivity

studies and power sweep curves. Given that operational range is a large factor of concern to the

stakeholders, two missions will be analyzed for comparing baseline range: one in which both aircraft are

loaded to MTOW (each carries as much fuel as possible), and one in which both aircraft carry the same

fuel. This will allow for a comparison of operational performance and pure performance. Additionally,

further studies into the impact of the higher power ITEP engine on the maneuverability and longevity of

the UH60 will be analyzed using NDARC for cases of quick climb, dash, and turns.

112

6.5 Technology Evaluation

A suite of technologies has been researched for CATE. Table 6-9. includes the previous technologies of

interest. These technologies and a growing list of developing technologies in Table 6-10 will be detailed

and implemented into NDARC to examine the potential of applying it to the UH60. In addition, the

technologies and new UH60 models can be implemented into an updated version of CATE.

Table 6-9. CATE Evaluated Technologies

Technology Impact

CTEF (Continuous Trailing Edge Flap) Reduce vibration, maintenance, and noise [24]

Plasma Flow Control Increased payload capacity, higher speeds, and

increased range [25]

Wide Chord Blades Increased lift [26]

Leading Edge Slot Delay retreating blade stall [27]

Individual Blade Control (IBC)

i.e. RADICL
Suppress noise and vibration [27]

Swashplateless Rotor Reduce complexity and improve reliability [27]

Advanced Actuator Technology

i.e. Actuation Material in Airfoil Structure
SEE MORPHING BLADES

Hybrid Gears 20% reduction in gear weight [27]

Hover Infrared Suppression System (HIRSS) Reduce IR signature [26]

Ceramic Matrix Composites (CMC) Reduce fuel burn, emissions, and weight [28]

Helicopter Active Control Technology

(HACT)

i.e. Fly-by-Light/Wire Control System

Control system to improve all-weather/night mission

performance [27]

Health and Usage Management Systems

(HUMS)

Maintenance Reductions

Unscheduled MMH/FH: -52%*

Mission Aborts MMH/FH: -48%*

Total MMH/FH: -17%*

*Actual data from U.S. Army Deployed UH-60 Black Hawk helicopters with UTC

Aerospace Systems HUMS [29]

113

Table 6-10. Extended List of Evaluated Technologies

Technology Impact

Rotor chord extension Tests with UH60A (Max benefits of 14% power

reduction, or increase of 1300 lbs gross weight [30]

Rotor twist / camber morphing Hover performance gains of 4 – 15% [30]

Variable span rotor Tests with UH60A showed power reduction in

certain conditions [30]

Reversible airfoils for stopped rotor Used on NASA X-Wing [30]

Wing folding for compound helicopter Early prototypes show reduction in downwash

during takeoff [30]

Control reconfiguration Reconfigure controls for situations of minimum

power, minimum noise, or sudden failure. Tested

with UH60. [30]

Advanced anti-torque Noise reduction, safety, thrust vectoring for control.

Seen on the Bell FCX-001. [31]

Composites Weight reduction

Shrouded tail rotor Increased anti-torque efficiency

Biplane stabilizers Reduces aerodynamic penalties in low-speed flight

and hover. Seen on Airbus H160 [32]

Information on morphing or reconfigurable rotorcraft was presented by Dr. Farhan Gandhi at a presentation

at Georgia Tech title “Reconfigurable Vertical Lift”. [30]

The technologies in question involve some with direct application to the UH60 upgrade and others with

more potential for the FVL concepts. In either case, the research allows a more holistic comparison to be

made inside NDARC by involving updated technology factors.

6.6 Configuration Comparison

Another significant concept is that the choice of the V/STOL configuration largely depends on the hover

time required for the mission as seen in Figure 6-12. Design cruising speed can be related to the hovering

time for each concept as seen in Figure 6-12. The shorter hover time configurations have lower cruise

speeds, which is understandable as the requirement to hover usually requires more fuel, often leading to a

larger engine selection to carry the weight, and then creating a geometry with a higher flat plate drag [33].

From the previous statements, it is understood that, just as the AHS competition is looking for, to design a

system that is truly robust in a range of mission scenarios a reconfigurable system is required. The level of

reconfiguration is of course at the hands of the designer and decision maker. Examples of reconfigurable

rotorcraft using stowed-rotors include the Sikorsky stowed-rotor or the Lockheed folding blade concept

[34]

114

While

investigating technologies and configurations three factors are key to finding a design which can meet hover

and speed requirements of the future. The rotor tip speed must be reduced, the CT/σ must be unloaded to

some alternative form of lift, and the angle of attack of the rotor disc to the flight path must approach zero.

[35]

In conclusion, the future of V/STOL aircraft requires advancements in five areas to reach proposed levels

of operation. The difference in thrust required from vertical flight and cruise must be handled. During

hover, a proper distribution of thrust must be situated for low-speed maneuverability. Internal complexity

must be reduced as to lower empty weight. The addition of propulsors or more stringent operational areas

must be met with higher fuel efficiency. Controls must be aimed at all regimes of flight for the safety of

operating around urban areas and at lower altitude [33]. Future trade studies will look to take technology

and configuration factors into account to compare the UH60 to FVL concepts. The goal will be to determine

the areas in which an upgraded UH60 can achieve success with a lower cost and faster introduction timeline

then FVL designs.

Figure 6-12: Operational ranges for traditional vehicle concepts

115

7. A Numerical Method to Calibrate and Forecast Technology Improvements for the UH-

60 Helicopter Using NDARC

This work was presented at the 73rd American Helicopter Society forum in Fort Worth, TX. [36]

7.1 Introduction

A concept level tradeoff environment for future helicopters has been proposed in a previous paper. [1] The

present document aims at performing the verification and demonstration of the environment by generating

a use case for an existing aircraft: the UH-60. This paper proposes an alternative calibration process that

aims at including data from additional sources, such as using optimization routines to minimize error

between NDARC predictions and published data.

7.2 Calibration

Extensive details on NDARC calibration process and theory are found in NDARC theory and validation

references [37] [38]. The present section will discuss a new way to construct the NDARC files to expand

on what was proposed in a previous paper [39] by including new set of data.

Table 7-1 UH-60A/L/M Technologies Modeled

Aircraft UH-60A UH-60L UH-60M

Engine T700-GE-

700

T700-GE-

701C

T700-GE-

701D

Improved Durability

Gearbox

 Installed Installed

Wide Chord Blade system Installed

Figure 7-1 Calibration Process

Three calibration loops are performed consecutively as illustrated in Figure 7-1: the geometry is calibrated,

then the power available and specific fuel flow are calibrated, and finally the vehicle weight and size are

calibrated.

NDARC Execution

Geometry

Operating
conditions and
Calibrated Data

Power required
Power Available and

Specific Fuel Flow

Vehicle weights and size
Loop 3

Loop 2

Loop 1

116

7.2.1 Geometry

Geometry for the UH-60A was derived using dimensions from the UH-60A mathematical model [40] and

the UH-60A/L operator’s manual [41]. This includes the aerodynamic coefficient and size of the fuselage

and the tail, as well as the location of the main components.

7.2.2 Power Required

The calibration of power required involves many parameters. A typical model for power requirement

decomposition in NDARC is detailed in NDARC’s theory manual [38] and requires an adequate

bookkeeping of power losses. The power required is a sum of installation losses, transmission losses, the

accessory power and the power required by each rotor. In the case of a single main rotor configuration, two

rotors are used: the main rotor and the tail rotor. The power required 𝑃𝑟𝑒𝑞 by each rotor is a sum of induced

power 𝑃𝑖 , profile power 𝑃0, interference power 𝑃𝑡 and the parasitic power 𝑃𝑃 which is the thrust multiplied

by velocity, which includes the power to climb. The rotor can be modeled in NDARC by using a Table

Performance Method or by using an Energy Performance Method. The Table Performance generates a

linear interpolation for the induced power coefficient and the average drag coefficient of the rotor from a

table. Both the induced power coefficient and the profile drag coefficient have to be generated from a higher

fidelity aerodynamic code, such as CAMRAD or RCAS. The energy performance method generates the

induced power coefficient and profile drag coefficient from a series of parameters. The energy performance

method was chosen for this project due to the flexibility of the performance parameters that the method

allows.

Two methods were selected to generate the rotor performance parameters: an automated calibration based

on higher-fidelity aerodynamics results and a calibration of power required compared to the operator’s

manual operating points.

Energy Performance Method

The energy performance method is the process used in NDARC to evaluate the rotor power required. Within

NDARC, the rotor power model is broken down into two independent design spaces: induced power and

profile power. The induced power NDARC variables determine the calculation of the induced power

coefficient (κ), while the profile power NDARC variables determine the calculation of the profile drag

coefficient (𝑐𝑑 𝑚𝑒𝑎𝑛).

NDARC generates the coefficients based on a series of equations which can be found in the theory manual

[38]. Among the factors of influence, there is variation with thrust coefficient, shaft angle, axial and

117

edgewise velocity and Mach number at the tip. Typically, users match NDARC predictions of the induced

power coefficient and profile drag coefficients to the ones given by higher fidelity aerodynamic codes. The

data required at various operating conditions is provided in Table 7-2. The information includes four

independent variables (𝜇𝑥, 𝜇𝑧, CT/σ, and MAT), and two dependent variables (values for profile drag and

induced power coefficients from the comprehensive analysis tool).

Table 7-2 Information Required to Calibrate Rotor Model

Variable Description

𝜇𝑥 Advance ratio along the x-axis

𝜇𝑧 Advance ratio along the z-axis

CT/ σ Blade Loading (thrust coefficient /

solidity)

MAT Maximum Mach number at the

advancing tip

Cd Profile drag coefficient

𝜅 Induced power coefficient

The design space of this problem has the potential to become quite large, encompassing over 30 design

variables for both induced and profile power. In addition, almost all of the NDARC variables must be

treated as continuous variables over some practical range of values, further increasing the complexity of

the problem. Consequently, the calibration of the parameters associated with the rotor energy performance

method was posed as an optimization problem, with a genetic algorithm chosen to handle the various design

variables.

Error calculations for both the induced power coefficient and profile drag coefficient serve as the objective

functions to be minimized during the optimization. For both coefficients, the total error is calculated as the

sum of the absolute relative error (summed over N calibration data points), where the value estimated from

the NDARC curve fits is measured relative to the true value provided by either a comprehensive analysis

tool or some other form of higher fidelity data. As the number of calibration data points, N, may vary from

case to case, the objective functions in the optimization problem are represented as the average of this total

error calculation, as shown below. This approach provides a metric to measure the calibration accuracy that

is independent of the number of calibration data points used (i.e. the magnitude of the error does not scale

directly with the number of calibration data points).

𝐶𝐷𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (
 1

N
) ∑ |

𝐶Dest
−𝐶𝐷true

𝐶𝐷𝑡𝑟𝑢𝑒

|𝑁
𝑖=1

 𝜅 𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (
1

N
) ∑ |

𝜅𝑒𝑠𝑡−𝜅𝑡𝑟𝑢𝑒

𝜅𝑡𝑟𝑢𝑒
|𝑁

𝑖=1

118

Operators Manual Power Required

A second technique to calibrate the rotor required power uses the operator’s manual published data [41].

The proposed process is based on the work already published [39]. For the UH-60A, the data are in the

form of engine torque as a function speed, aircraft weight, altitude and temperature.

The UH-60A operator’s manual includes the torque per engine for vehicle gross weight from 13,000-

22,500lbs, for various advance ratio including hover, from sea level to 20,000ft, at temperatures ranging

from -50C to 60C. Calibration points were gathered by digitizing performance charts from the Operator’s

Manual for operations at Sea Level Static (SLS) and at 4,000ft, 95F condition.

A NDARC performance runs wrapper was created and the power required at each of the conditions was

evaluated. The wrapper includes the generation of NDARC files from templates, the parsing of the output

and the automatic execution of NDARC. A multi-objective genetic algorithm was used to minimize the two

objectives given below by varying the parameters related to required power. A Non-Sorting Genetic

Algorithm (NSGA) was chosen because it handles non-linear, discontinuous computation models and

performs multi-objective optimization. For simplicity, the following two objectives are used:

1. Minimization of Root Mean Squared Error (RMSE) of power required to hover for gross weights

between 12,000 lbs and 21,000 lbs, and at sea level standard (SLS) and 4,000 ft, 95F

2. Minimization of RMSE of power required in forward flight for set of forward speeds ranging from

0 to 155 kts at gross weights of 16,000 lbs and 18,000 lbs, and at SLS and 4,000 ft, 95F

The optimizer generates a Pareto frontier of possible combination of parameters that represent tradeoff

between modeling error in hover and in forward flight. One cannot choose to reduce the modeling error in

hover without worsening the modeling error in forward flight. A multi-objective decision-making

technique, TOPSIS, was used to select the combination of parameters that represent a good tradeoff between

both cases.

7.2.3 Engine

NDARC allows for two types of engine models suitable for the UH60 model: the turboshaft engine tabular

model and the Referred Parameter Turboshaft Engine Model (RPTEM).

The turboshaft engine tabular model is comprised of tables of Power available and fuel flow, as a function

of altitude, flight speed and rating. In the case of this research, the required data could have been extracted

from the operator manual, for example.

119

The RPTEM consists of a set of physics-based equations that provide the power available and the

performance at power required based on calibration factors. The RPTEM was selected for this research as

it provides a flexible way to represent the engine and apply some technologies, which can be scaled and

modified throughout the process. Around 20 variables can be modified to calibrate the engine models. The

calibration was made in two steps: first, the power available is calibrated, and second, the fuel flow is

calibrated.

7.2.4 Engine Power Available

In a first step, the power available parameters were calibrated for various flight conditions documented in

the operator’s manual, including the vehicle weight. The process is based on published work [39]. Power

required points were digitized from the operator’s manual, and a NDARC performance evaluation was

performed at each point. A genetic algorithm was used to minimize the error function in power available,

by changing the various parameters affecting power available of the main rotor. At this point, efforts to

adequately bookkeep between of the power available and the power losses is important.

7.2.5 Engine Fuel Flow

In a second step, the engine fuel flow was calibrated against the same documented flight conditions.

Because the fuel flow is dependent on the required power at that flight condition, the error on power

required predictions would affect the fuel flow, which would additionally affect the fuel flow calibration.

Consequently, a true function of the fuel flow against power required was created. Once again, a genetic

algorithm as was used to minimize the error between the true function and the generated function by

NDARC.

7.2.6 Weight and Sizing

Once the Engine and rotor performance models are calibrated, the helicopter is sized to perform the

expected mission. The sizing task in NDARC internally converges on the vehicle size and weight in order

to successfully perform the mission. In order to obtain the correct vehicle size, weight factors are modified.

To complement the actual calibration process illustrated in the NDARC theory [38], an optimizer is used

to minimize the discrepancy between the vehicle weight and the NDARC predictions. The aircraft weights

were based on published UH-60A weight breakdowns of an actual production helicopter.

120

7.3 Calibration Results

7.3.1 Engine Calibration

This section details the results of the T700-GE-700 engine calibration from the method discussed in the

previous section. The calibration of the T700-GE-701C is also performed independently and as a derived

configuration from the T700-GE-700 in the next section Technology Infusion.

First, the T700-GE-700 engine was calibrated as per described in the previous section. The results of the

power available as a function of various altitudes, temperature and airspeed match well with the published

data. The fit is characterized namely by a RMSE of 35 hp (total) for the power available for the various

operating conditions, and a RMSE of 0.048 lb/(hr hp) for the specific fuel flow.

Similarly, the GE T700-GE-701C was calibrated using the operator’s manual published data. Similar to the

previous engine model, an RMSE of 37hp (total) was found between the NDARC optimized calibrated

model and the operator’s manual data, and 0.083 lb/(hr hp) for the specific fuel flow.

7.3.2 Power Required Calibration

The two power required calibration methods proposed in the previous sections are conceptually very

different from one another. In the “Energy Performance Calibration Process”, the data comes from higher

fidelity aerodynamic codes which separated the induced and profile power of the rotor. In the “Operator’s

Manual Power Required” calibration process, the data comes from the overall torque required as a function

of the flight condition, which includes all sources of power required for the main and tail rotor.

In order to compare the models, a vehicle performance evaluation was performed with aircraft models

generated by the two methods. The “Operator’s Manual Power Required” calibration method led to good

agreement between the NDARC results and the operator’s manual. The RMSE of the power in hover is

6.3hp and 41.5hp in forward flight.

Due to limited access of high fidelity data, the aerodynamic data of a UH-60 in hover was extracted from a

published paper [37] [42]. The Energy Performance Method model calibration result is shown in Figure

7-2 and in Figure 7-3. The root mean squared error (RMSE) of the induced power coefficient is 0.004 and

0.02 for the profile drag. The results show that the optimizer is successful at matching the provided data

set.

121

Figure 7-2 Optimization results: Profile drag coefficient in hover and the verification data from

[37]

Figure 7-3 Optimization results: Induced power coefficient in hover and the verification data from

[37]

The aircraft description file was modified to include the parameters found with this technique. This method

leads to an under prediction of the power to hover at SLS and 4,000ft, 95F, with a RMSE of 32hp (total)

for the various GW expressed in the operator’s handbook. The NDARC performance runs at various CT/σ,

in SLS conditions show that the induced power coefficients are identical between the two techniques.

However, Figure 7-4 shows the discrepancy between the profile power coefficient. The discrepancy is

relatively small, and is constant for the three cases illustrated in the figure. This difference could possibly

be a result of how the power was bookkept in the Operator’s Manual calibration technique, and could be

reduced if more information was available on the other loss mechanisms, such as transmission losses, etc.

122

Figure 7-4 Profile power coefficient comparison between the Operator’s Manual Power Required

Motor Model and the Energy Performance Method Model

The results show a relatively interesting potential for this technique and relatively good agreement between

the two calibration techniques. It also opens to more test cases, including some operation in climb and in

forward flight.

Due to the lack of available data for advancing flight, the results from the “Operator’s Manual Power

Required” calibration process will be used as the principal helicopter model for the following sections of

this paper.

7.4 Technology Infusion

The technologies implemented on the UH-60 variants are illustrated in Table 7-1. In an attempt to mimic

the prediction of the UH-60L and UH-60M performance and sizing, the model of the UH-60A is modified

with the technology impact factors to represent the respective technologies. The following section details

how the technology impact factors were calculated and how their impacts are propagated in a sizing and

performance evaluation environment.

For the engines, documents [43] gave values for the weight, engine ratings and fuel consumption. NDARC

was coupled with an optimization routine that acted as a numerical solver to calculate the values for the

technology impact factors. It was assumed that each engine had some level of technology that impacted

engine weight. After inputting the intermediate rating power (IRP) for the engines into NDARC, an

optimization routine was used in which the engine weight technology factor was varied until the output

engine weight matched the data. For the T700-GE-701C, the calibration factor used for estimating the

original T700-GE-700 engine weight resulted in an output engine weight of 457.4 lb, which is close to the

458 lb value given by the technical specifications. For the T700-701D, the optimization routine indicated

that the technology of the T700-701D engine resulted in a 3.6% weight decrease. Neither reference

123

indicated changes to the entire propulsion group (changes in nacelle and structural weight), so NDARC

parameters relating to these groups were left unchanged.

The information found regarding the improved durability gearbox (IDGB) indicated the increased power

rating, but no information about efficiency or weight was found. For performance analysis in NDARC, the

IDGB is simply represented by increasing the transmission ratings. For sizing analysis, performance

requirements such as MTOW or VROC are used to calculate the drive system rating, so there are no

technology impacts to evaluate for sizing purposes.

A different approach was taken for evaluating the wide chord blade (WCB) system to demonstrate how to

make predictions when technology is still being developed. The WCB is a new rotor blade, with new

planform, a wider chord and different airfoils. Yeo et al. modeled the WCB system in a high-fidelity code

and found that the increase in solidity was a main performance driver as a result of the de-loading the blades.

[42] Due to the absence of the results of high fidelity aerodynamic simulation, only the change of solidity

is implemented. The 10% increase in solidity reported for the WCB by Yeo et al. results in a 9.1% decrease

in blade loading.

Blade weight changes were based on results from a NASA project, which focused on modeling the structure

of a composite rotor blade and using optimization to find minimum weight designs. [44] This research used

the UH60A as a validation case. Nixon’s results for estimating blade weight changes due to composite

designs were based on the aerodynamics of the UH-60A. Nixon’s paper concluded that a single-spar

composite design would result in a 21.3% weight reduction and a multi-spar composite design would result

in a 12.1% weight reduction relative to the metallic design used for the UH-60A. There was no specific

information found on how the control weight would change, so no assumptions were made as to potential

technology impacts for these. The technology impact factors are summarized in Table 7-3, and includes the

more conservative blade weight impact factor.

Table 7-3 UH-60A/L/M Technology Impact Factors

Technology Blade Loading Engine Weight Factor Blade Weight Factor

T700-GE-701C 0% 0% 0%

T700-GE-701D 0% -3.6% 0%

Improved Durability Gearbox N/A N/A N/a

Wide Chord Blade System -9.1% 0% 12.1%

The operator’s manual gives information regarding UH-60L fuel flow, allowing to verify the engine fuel

consumptions made earlier. The operator manual’s data on power required was used to compare the

124

NDARC model predictions. Finally, high-level mission performance characteristics of the UH-60A, UH-

60L, and UH-60M models were used to verify the models. This data was used to indicate how close the

NDARC performance models represented the various Black Hawk models.

Though there are no technology factors to attribute to the UH-60L model, it is still modeled in NDARC by

increasing the engine power available. Doing so also increases the engine weight and represents the T700-

GE-701C, and increasing the drive system limit represents the IDGB. The power required output was

compared with data from the operator’s manual.

In general, power required was overestimated, which will underestimate the performance calculations for

maximum speed, ceilings, hover VROC, or maximum gross weight. NDARC estimates component

reference surface area based on weight, so the heavier engine results in more drag, which will cause

increased power required. Nothing was known about the change of drag coefficient of the UH-60L, so no

change was made on this aspect. Fuel flow was underestimated, which will cause mission range or

endurance to be potentially overestimated. No assumptions were made about fuel flow of the new engine,

so the consistent underestimation indicates that the new engine burns more fuel. It is expected that the

RSME will increase as other vehicles are modeled.

Table 7-4 NDARC Weight Predictions Error for the UH-60L

Component Error between NDARC and

production UH-60L

Rotor Group 3%

Empennage Group 3%

Fuselage Group 25%

Structure Total 14%

Engine System 11%

Propulsion Total 3%

Empty Weight 9%

Modeled weight predictions for selected groups were compared with reported weight values for the UH-

60L and the error are illustrated in Table 7-4. Note that no tech factors were changed between the UH-60L

and the UH-60A NDARC representation models, and that only two technologies were implemented on the

UH-60A to represent the UH-60L. Upgrades to avionics, crashworthiness, hover infrared suppression

systems, and any other modifications in the block upgrade were not included. The technologies were not

included to reduce the scope of the problem to only performance related technology. Thus, it is expected

that there will be error in the weight estimates.

A large source of error in the fuselage weight drove the high error in structure group weight. Similarly, the

engine system weight error drove the propulsion system error. The UH-60L incorporated many things from

125

the variants developed from UH-60A (the Navy and Air Force utility helicopters) in addition to general

weight creep, so it is possible that investigating what these changes were and how they affect fuselage

weight would allow for better predictions. The error of the engine weight was negligible (less than 1%).

The error of the engine system group weight is largely due to underestimating the exhaust system weight

by 66.7%. It is likely that an updated hover infrared signature suppressor (IRS) increased the weight of the

exhaust system. Information relating to hover IRS is generally restricted so it was not selected as a

technology to investigate. More information about technology upgrades will result in better predictions, but

the results show that the system sizing can still be represented with a limited information. The error in the

results above stems from a partial representation of the block upgrade. However, the model still allows for

inferences about the two upgrades that were applied. This model can be used to answer questions about

how a new transmission and engine will affect the useful load of the black hawk helicopter.

To represent the UH-60M, the UH-60L file was modified. Similarly for the UH-60L, the engine available

power was increased and the -3.6% technology factor was applied to the engine technology factor to

represent the T700-701C. Additionally, the rotor blade loading was decreased by 9.1% and the main rotor

weight technology factor was decreased by 12.1%. No other changes were made to represent the UH-60M.

Table 7-5 NDARC Performance Analysis of UH-60A, UH-60L, and UH-60M vehicles

Model VROC (ft/min) Vcr (kts) MTOW (lbs)

Data NDARC Data NDARC Data NDARC

UH-60A 377 0 140 142.5 20,250 20,620

UH-60L 1315 412 155 151 22,000 23,505

UH-60M 1646 862 151 153 22,00 23,406

Table 7-5 gives the results of the NDARC performance prediction of the UH-60A, UH-60L, and UH-60M

along with the published results. [45] This reference was used because data on the UH-60M similar to the

data used for the UH-60L and UH-60A is not available to use for comparisons. The vertical rate of climb

(VROC) and maximum speed performance estimates are for a gross weight of 16,800 lbs at 4000 ft, 95F.

For VROC, maximum available power is 95% IRP and for maximum speed, maximum available power is

100% MCP. The reference lacks the important operating condition information about the conditions of the

performance points. However, it was used across all vehicles so that similar assumptions were used.

There were significant errors in estimating the VROC. In the UH-60A case, there was not enough power

available to hover at 4,000 ft, 95F, returning 0 for VROC and indicated that power available was exceeded.

Further investigation of this operating condition results needs to be performed. NDARC has acceptable

estimate of maximum speed and overestimates the MTOW for all cases. For the maximum speed, NDARC

126

is correctly giving power available due to ram effects increasing power. For the overestimates of MTOW,

there was a lack of information relating to the environmental condition in the documentation. In the

operator’s manual, the closest condition for reaching the UH-60A max weight was SLS and at 100% IRP

or the drive limit. Without knowing the MTOW conditions for the reference data point, it is difficult to

make conclusions regarding the accuracy of NDARC’s predictions. [45] Additionally, it is unknown if

MTOW is limited by structural safety margins. However, the NDARC predictions do agree with the trends

between the models. The VROC increases for each new model while the maximum speed and MTOW only

see real increases between the UH-60A and the UH-60L models. Technology prediction focuses on the

changes between models since models are inherently wrong. The previous table indicates that the

technology analysis and modeling environment are capturing these changes, meaning that this NDARC

method is acceptable to use in a vehicle development scenario.

7.5 Conclusions

This paper presented new approaches to calibrate rotorcraft performance models in NDARC. In most

techniques, an optimizer was used to obtain the model parameters. The use of the optimizer reduced the

input of the user during the process. However, it was noted that setting up the optimization problem requires

experience from the user to choose the model types, which variables to change and to bound the problem

by providing adequate limit and initial guesses on variables.

The engine deck was built by reducing the discrepancy between operator’s manual power available and

fuel flow and the NDARC model, using an optimizer that varied the RPTEM parameters. Good fit was

obtained for power available and fuel flow for the T700-GE-700 and the T700-GE-701C.

The power required calibration was made by two methods. First, the rotor parameters were modified to

minimize the error between published power required from the operator’s manual. Then, minimization of

the error between modeled and published profile drag coefficient and induced power coefficient was

performed in hover. Both methods led to similar results for hover, which opens to more verification cases.

127

8. Development of a Framework for Mission and Operational Modeling

This work was presented at the 73rd American Helicopter Society forum in Fort Worth, TX. [46]

8.1 Introduction

The loss of hundreds of rotorcraft aircrews during the conflicts in Afghanistan and Iraq has motivated the

Future Vertical Lift (FVL) initiative, a plan to develop the next generation of military rotorcraft. Key goals

of the initiative include developing “the most capable aircraft at the best value by minimizing development,

acquisition, and life cycle costs through Joint solutions of common core technologies, architectures, and

training, emphasizing the ability to conduct safe, reliable and continuous operations”. [47] The goals of the

FVL initiative highlight both tradeoffs and opportunities for technology infusion, at both the component

and system architecture level that have a strong impact on system capability, reliability, and life cycle cost.

Estimates of traditional rotorcraft performance metrics are often available during the conceptual design

phase and are obtained using rotorcraft performance analysis and sizing tools like the NASA Design and

Analysis of Rotorcraft (NDARC) environment. [38] The NDARC environment was built with the intent to

perform trades for technology infusion with respect to vehicle performance metrics including weight, size,

range, and endurance. However, NDARC is unable to assess the impact of technologies on key system

sustainment metrics including reliability, availability, maintainability, and affordability, which are key to

FVL initiative goals. Reliability is the probability that the aircraft system will operate without failure during

a given time period at specified conditions while Operational Availability represents the percentage of time

that the aircraft system is operationally capable of performing a mission assigned to it. [48] Armstrong et.al.

note that maintainability is a measure of the cost, time, and effort required to maintain the desired level of

system reliability and availability. [49]

System reliability, availability, and maintainability are related to the Operations and Support (O&S) cost,

which contributes to approximately 70% of the system lifecycle cost. [50] The DoD Reliability,

Availability, Maintainability (RAM), and Cost Rationale Report Manual highlights the importance of

incorporating sustainment metrics early in system design because it “enables the acquisition and

requirements communities to provide a weapon system with optimal availability and reliability to the

warfighter at value.” [48]

This work is a continuation of the work of Velden et al., presented previously at the Rotorcraft Virtual

Engineering Conference. [51] The work of Velden et al. described an overall integrated simulation

environment that encapsulated system capability, availability, and affordability, and presented results for

availability and Mean Time Between Mission Affecting Failures (MTBMAF) for the UH-60M when

performing a standard utility mission. However, this simulation effort did not include the effect of

128

maintenance actions or downtime on the rotorcraft availability. Previous work by Armstrong et al.,

presented at the AHS 72nd annual forum included a maintenance manager to study the downtime incurred

due to part failure and replacement. [49] The work of Armstrong et al. modeled vehicles as a container of

parts that accrued damage during normal operations. The method implemented also allowed for the

incorporation of technology factors to explore the effects of technology infusion on operational availability,

vehicle loss rate, and the operations and support costs. Results representing the availability and O&S costs

for the UH-60M were presented.

This paper describes the development of an integrated simulation environment in the form of a discrete

event simulation that tracks the long-term, steady-state Operational Availability and Maintenance Free

Operating Period (MFOP) of a rotorcraft system. A maintenance manager is included to aid in the study of

system downtime due to part failure and replacement while the rotorcraft system architecture is represented

by a series of event trees unique to each portion of a phased-mission profile. Developing a modular

simulation framework for investigating the Operational Availability and MFOP of a new rotorcraft system

acts as an enabler for component technology and system architecture trade studies; this can be expected to

be beneficial to achieving the goals of the FVL initiative.

8.2 Simulation Environment Development Methodology

8.2.1 Conceptual Approach

The model is intended for use in simulating the usage of a single aircraft. In this model, the vehicle performs

a mission, is evaluated in a post-flight inspection, and either goes to maintenance or begins the next mission

based upon the presence or absence of failed systems as shown in Figure 8-1.

Figure 8-1. Conceptual Model Description

Both mission phases and maintenance actions occur at discrete time intervals throughout the simulation.

The vehicle may be sent to maintenance for two reasons, a condition-based repair or replace action noticed

during routine inspection or an in-flight failure identified during post-flight inspection or during flight that

resulted in a mission abort. [52] In both cases, maintenance is a result of a trigger that occurs at a discrete

time during a phased-mission. Because part hours are tracked at discrete time steps, constructing an

129

integrated discrete-event simulation is appropriate. Further, uncertainty in both individual part life and the

time required to repair or replace components results in the need to introduce part life and repair time

distributions rather than setting deterministic values for individual components. To capture the effect of the

distributions on key parameters used in the models, Monte Carlo studies are performed to capture the

variability of the key metrics tracked in the simulation environment.

8.2.2 Metrics of Interest

The key metrics tracked in the discrete-event simulation are related to reliability, availability, and

maintainability of the system. These metrics are selected because they are directly related to the operations

and support costs for an aircraft. The key metrics tracked are shown in Table 1.

Top-down assessment of reliability, availability, and maintainability metrics relies on subject-matter

experts and is qualitative in nature, a process that requires significant documentation to remain transparent.

Further, performing tradeoffs from a top-down perspective with expert-in-the-loop evaluation methods is

not practical. Evaluating reliability, availability, and maintainability metrics from the component level, a

bottom-up approach, based on data obtained for individual components allows for an easily documented

process that can be performed numerous times by an analyst, and results in a preliminary quantitative

prediction as opposed to a qualitative comparison between architectures.

Table 8-1. Metrics Tracked in the Simulation

Parameter Units Description

Operational Availability (A0) % The percentage of time that the vehicle is operational

– capable of flying missions

Maintenance Free Operating Period

(MFOP)

hr The number of hours a system can complete its

assigned missions without required maintenance or

restrictions due to system faults or limitations [53]

Cost to Replace Failed Parts $ The total cost of replacing failed components

Cost to Replace Parts on Condition $ The total cost of replacing parts due to deterioration

of the part

Maintenance Man Hours to Replace

Failed Parts

hr The maintenance man hours required to replace failed

components

Maintenance Man Hours to Replace

Parts on Condition

hr The maintenance man hours required to replace parts

due to deterioration of the part

Number of Failed Parts Parts The number of failed components of each type

replaced during a simulation

Number of Condition-Based

Replacements

Parts The number of parts replaced due to part condition

130

8.2.3 Modeling Approach

The discrete-event simulation is developed for a single aircraft. A phased-mission with phase-dependent

event trees for mission-critical and safety-critical failures is defined using an interface and loaded into the

model. Component MTBF values with associated distributions are also loaded into the model. The single

vehicle flies missions according to Figure 8-1 and interfaces with the maintenance manager that determines

the amount of downtime incurred due to maintenance requirements. Each of these components ultimately

feed into the evaluation portion of the simulation that determines the MFOP, mean time between system

failures (MTBF), and the operational availability (Ao). The framework of the simulation is illustrated in

Figure 8-2.

The key simulation parameters are the number of hours for which the simulation will be run, or alternatively

the number of MFOP cycles that will be simulated. Additionally, to account for the distributions included

for component MTBF and MTTR values, the number of Monte Carlo cycles performed is also specified.

Figure 8-2. Simulation Layout

8.2.4 Phased-Mission Modeling

The mission used for evaluation of the system consists of a single phased-mission. The phased-mission can

be adjusted to model civilian transport missions or military missions including scout, attack, and transport

or medevac, allowing for significant modeling flexibility. The key parameter defining a mission phase is

its elapsed time. Additional parameters regarding component age and failure propagation are also required

for each mission phase which are discussed in detail in the subsystem modeling approach section.

131

Implementing a phased-mission has several advantages. One of these advantage is related to the individual

aging of the constituent aircraft systems. Using a phased-mission, active components are aged during a

given mission segment while inactive components do not receive hours, the metric used to track component

age. This allows for a more-accurate model of the effect of mission-specific component use than simply

tracking cumulative age. Further, implementing a phased-mission allows for the definition of how

component failures propagate during each mission phase due to the criticality of that component to safety

or mission success. [53] During the mission, the consequence of a component failure on mission success

and vehicle survivability depends on the mission phase.

Although there are other advantages, using a phased-mission is required for proper evaluation of the MFOP

for a particular aircraft system. The concept of MFOP is defined by Mitchell as a period of operation where

a system must be able to complete all of its assigned missions without required maintenance action or

restrictions on the operator due to system faults or limitations. [54] Here a phased-mission is critical because

the MFOP concept is dependent upon the completion of a specific mission profile. The criticality of a failure

with regard to the mission or vehicle safety is dependent upon the defined mission.

8.2.5 Modeling the Vehicle Systems

Modeling the vehicle accurately, and with a variable level of fidelity, is critical for the design trade studies

envisioned at the subcomponent and architectural level. For the subsystem trades, it is important to capture

information regarding each of the components in the subsystem as well as the interconnections between

those parts. Capturing the component interaction at this level is required to allow for component trades or

technology infusion at the subsystem level. At the architecture level, the interconnections between relevant

subsystems drive the trades.

The work of Armstrong models the vehicle as a set of parts, each with individual properties that specify

how the part fails, when it will fail, and the cost and time required for repair or replace actions. [49] Here,

a similar approach is taken in decomposing the system into constituent components with specific properties.

The parameters required to define each component are shown in Table 8-2. Unlike the approach of

Armstrong, each of the parts belong to event trees that describe the effect of failure on the system,

specifically whether it is a safety-critical failure, a mission-critical failure, or does not affect the mission

but must be repaired after returning from the mission.

132

Table 8-2. System Definition Inputs

Parameter Units Description

MTBF hr The mean time between failures for a repairable component,

alternatively MTTF for a non-repairable component

MTTR hr The mean time to repair a component, including removal, repair or

replacement, and installation to the vehicle

Start Age hr Starting age for a component that is installed on the vehicle

Time to Repair

Model

N/A Model (Gaussian, Weibull, Exponential, or Lognormal) and necessary

parameters to assign repair times for components

Component Failure

Model

N/A Model (Gaussian, Weibull, Exponential, or Lognormal) and necessary

parameters to assign failure times for components

System Cost $ The cost to repair a system

Component Life hr The manufacturer-determined life where a component will deteriorate

such that an inspection of it will require repair or replacement

Inspection Time

Windows

hr The window used in the field or shop to determine whether an

inspection should be undertaken to evaluate part condition

A notional example of an event tree for a mission phase is shown in Figure 8-3. This example shows only

a few components, but is intended to highlight the key features of the modeling approach. ‘And’ gates are

implemented to require the failure of two or more items concurrently for the failure to propagate to the top

level and signal a mission failure in a specific mission phase. ‘Or’ gates allow for the propagation of a

single failure upward in the event tree.

The organization of components using event trees to capture failures during a given mission phase allows

for the capture of failures that may not be mission or safety critical when considered in isolation, but

contribute to the workload experienced by maintenance personnel.

133

Figure 8-3. Notional Event Tree

8.2.6 Maintenance Manager

A maintenance manager is implemented to determine when the helicopter requires maintenance as well as

how that maintenance is performed. Service may be required in two distinct cases. The first case is when a

part deteriorates and must be replaced when found during a routine inspection. In this instance, no failure

is experienced by the aircrew during a mission. The second case occurs as a result of an in-flight failure

triggered by a component exceeding its operable life assigned based upon the MTBF distribution specified

for the part in the simulation inputs.

If the maintenance manager determines that the helicopter requires maintenance after a mission, the first

action is to determine if the helicopter needs to undergo additional preventive maintenance. By checking to

determine if parts with specified inspection windows must be replaced soon, the amount of time that the

helicopter must be removed from service can potentially be reduced.

After determining the key components that must be maintained or replaced, the maintenance tasks are

assigned to available maintenance personnel on a longest-first basis. Using this approach, the total

downtime is minimized as the amount of work performed concurrently by the mechanics is maximized.

Ultimately, the maintenance manager is key to determining the downtime, maintenance man hours, and

cost incurred due to necessary maintenance actions. The downtime calculated by the maintenance manager

is based on delay time to acquire the part and necessary tools, the component MTTR, personnel availability,

shop availability, and the number of maintenance personnel in the shop. A flowchart describing the inputs

and outputs of the maintenance manager is shown in Figure 8-4.

134

Figure 8-4. Structure of the Maintenance Manager

The key inputs to the maintenance manager are briefly discussed in Table 8-3.

Table 8-3. Maintenance Manager Inputs.

Parameter Description

Shop Availability Distribution Defines parameters for a distribution that describe whether the

shop is available

Personnel Availability Distribution Define parameters for a distribution that describe whether a

maintenance person is available

Number of Maintenance Personnel Total number of maintenance personnel assigned to the vehicle

LDT Factor Multiplicative factor on downtime used to model LDT

Required Maintenance Actions Maintenance actions that are required when the vehicle enters

the shop

Preventive Maintenance Parameters The time when the part will be revealed to need repair or

replacement during specified part inspection intervals

Preventive Maintenance Switch Switch that may be toggled to turn off all forms of preventive

maintenance

The maintenance delay time incurred due to the acquisition of a part or specialized tools as well as the setup

time required to perform a specific maintenance action is known as the Logistics Delay Time (LDT) and is

largely based upon the logistical support network and environment of operations. [55] Estimating the LDT

is beyond the scope of this model as an accurate estimation of this value would require in-depth modeling

of the logistical pathways used for part transfer as well as the initial distribution of parts across multiple

maintenance facilities or warehouses. LDT is exceptionally difficult to estimate and will change

significantly over the lifetime of a vehicle. [56] For example, during introduction, the supply system will

not be fully-stocked with spare parts for a given aircraft. Further, under combat conditions, estimating the

LDT is not feasible in most cases. For a well-stocked maintenance facility, away from combat operations

or in a civilian context, the LDT will be small. For this model, it is assumed that this is the case. LDT is

assumed to increase the total downtime by 10%. However, it is acknowledged, that in cases where a

maintenance facility is not well-stocked, LDT can quickly balloon to become the largest component of

downtime. [56] For the discrete event simulation constructed, LDT is included in the model by including a

135

multiplicative factor on the downtime reported by the maintenance manager, in this case the factor is 1.1,

representing a 10% increase in downtime due to LDT for a well-stocked maintenance facility.

Another form of delay incurred is known as the Administrative Delay Time (ADT). ADT is a component

of downtime not spent waiting on spare parts, instead the delay is due to a lack of maintenance personnel

or other non-part-related resources. [57] Because the maintenance manager considers shop availability and

the availability of maintenance personnel, ADT is modeled directly through consideration of shop personnel

and availability rather than a correction factor.

During calculation of the downtime incurred due to maintenance actions, two metrics that are key drivers

for the maintenance cost are tracked: total part cost, and the maintenance man hours. Because preventive

maintenance is considered in this simulation, the cumulative part cost and maintenance man hours are

tracked for both preventive maintenance actions and maintenance due to during-mission failures. Tracking

cost and maintenance man hours for preventive and failure-based maintenance separately allows for trades

to be performed on the parameters that govern preventive maintenance where otherwise the necessary data

would be inseparable from a single cost metric.

8.2.7 Modeling Technology Impacts

Using the developed discrete-event simulation to evaluate a given system architecture with a known set of

subsystems is valuable and does provide insight into a system. However, the discrete-event simulation is

also valuable in quantitatively modeling the effects of technology infusion on an in-service vehicle system.

For technology infusion at the component level, a model may be built for the baseline aircraft and

modifications made to the system of interest to include the effects of technology infusion on that system.

These modifications may come in the form of adjusting the distributions for the MTBF, the MTTR, or both,

in addition to the cost of the system. This allows for a one-to-one comparison on the effect of technology

infusion at the component level on vehicle operational and supportability metrics. It is difficult to accurately

identify the MTBF, MTTR, and cost values for a given set of subsystems if data is unavailable. [56]

However, by constructing a baseline and a technology infused variant using the best available

approximations, the effect of the subsystem data takes a secondary role to the technology impact. This

occurs because the subsystem data is consistent between the models and key differences will arise due to

the infusion of a component-level technology.

Evaluating the effect of technology infusion at the component level on operations and supportability metrics

for in-service vehicles is critical because it allows decision makers to see the true impact of upgrades.

Although upgrades may provide performance benefits like reduced fuel burn, considering how these

136

systems affect supportability metrics must also be considered to determine how the upgrade impacts the

vehicle system.

8.2.8 Modeling Architectural Tradeoffs

The developed discrete-event simulation is also useful in performing architectural tradeoffs during system

design. Early in the system design process, tradeoffs of system architecture with regard to reliability,

availability, and maintainability are critical to selecting both components and the architecture that meet

performance and sustainability metrics.

Utilizing the discrete-event simulation to evaluate candidate architectures at the conceptual design level

allows for consideration of novel concepts as well as more specific architectural decisions that may include

component redundancy for example. The key to utilizing the discrete-event simulation to evaluate candidate

architectures with regard to operations and supportability metrics early in design is the flexibility to define

systems and architectures that are representative of many points throughout the design space.

8.3 Model Implementation

The discrete-event simulation is applied to a Bell 206 civilian helicopter. Dougherty notes that the Bell 206

is one of the most commonly used aircraft by flight hours. [58] In addition to being pervasive in the civilian

market, the Bell 206 is closely related to the OH-58, a military rotorcraft typically used for scout missions.

Due to the limited availability of specific data for the Bell 206, the implementation documented in this

publication may be best thought of as modeling a notional generic helicopter similar in features to a Bell

206.

Implementing the developed model for the notional aircraft is a multistep process which requires definition

of the system architecture, the mission, and component attributes including failure densities, repair times,

and cost data.

8.3.1 Model Implementation

The purpose of developing an architecture for the aircraft of interest is to understand, at an appropriate

level, the systems that are present in the aircraft as well as the linkages between the different components

so that the event trees similar to those shown in Fig. 3 may be defined.

The methodology used to develop the event trees is based on the process used to complete a functional

hazard assessment, “a systematic, comprehensive, examination of functions to identify and classify failure

conditions to those functions according to their severity.” [59] The process of completing the functional

hazard assessment is as follows:

137

1. Identify all functions associated with the system under consideration

2. Identify and describe the failure conditions associated with each function

3. Determine the effect of the failure conditions

4. Classify the failure condition by its effect on the aircraft

Based on the process outlined to perform a functional hazard assessment, the process to define event trees

starts with performing a functional decomposition of the notional rotorcraft. Using the developed functional

architecture, individual components are enumerated and assigned to specific functions. Using

interconnections between components defined in the functional and physical architectures, subsystem or

component failures are defined to be safety or mission critical. The process is illustrated in Figure 8-5.

Figure 8-5. Process Used to Define Event Trees

A functional architecture for a notional single main rotor helicopter in the cruise mission segment is

developed and is shown in Figure 8-6. [60] [61] Figure 8-6 is not meant to be exhaustive, rather it is intended

to capture the most critical functions. In some cases, multiple functions map to a single component and in

other cases, a single function maps to multiple components. The key components during the cruise mission

phase are included in a notional physical architecture provided in Figure 8-7. [60] [61] [31] Although not

shown in this paper, functional and physical architectures for the notional helicopter are also developed for

additional mission phases including startup, takeoff, setdown, and shutdown.

The physical architecture of components required during the cruise mission phase can be broken down into

two distinct event trees, also commonly called fault trees. The mission abort event tree defines the failures

required to trigger a mission abort, while the safety critical event tree defines the failures that result in a

vehicle crash. An example of a mission abort tree and a safety critical event tree for the cruise segment is

shown in Figure 8-8. These event trees are also developed for the other mission phases including startup,

takeoff, setdown, and shutdown.

It is worth noting that based on component type, specific failure modes will exist. The failure modes of a

single component may be very different in nature as shown in Table 8-4. Table 8-4 is not exhaustive but is

intended to highlight the diversity of failure modes experienced by several different classes of components.

138

Figure 8-6. Notional Single Main Rotor Helicopter Functional Architecture for Cruise Segment

Figure 8-7. Notional Single Main Rotor Helicopter Physical Architecture Applicable to Cruise

Segment

139

Figure 8-8. Mission Abort and Safety Critical Fault Trees for Cruise Segment

Table 8-4. Failure Modes by Component Type.

Component Class Failure Modes

Structural [58] [62] Buckling, Corrosion, Delamination, Disbond, Cracking, Bolt

Loosening, Hole Elongation, Foreign Object Damage

Electrical [63] Loss of Power, Loss of Backup Power, Loss of Input Signal,

Unable to Process/Accept Input Signal, Unable to Output

Command Signal, Sensor Failure

Dynamic Component [58] [64] [65] Bearing Failure, Damper Failure, Foreign Object Damage,

Unbalanced Component, Misaligned Component, Component

Structural Failure, Oil Leakage or Sludge Accretion

Actuation Component [58] Loss of Power, Loss of Input Signal, Loss of Sensor for Control

Feedback, Foreign Object Damage, Component Structural

Failure, Leak or Broken Connection

For the failure modes experienced by each class of component, the repair time, cost, and severity may vary

substantially. For example, loss of a blade erosion strip, is technically a failure within the main rotor system,

but will not constitute a safety critical failure. For the representative data used for the notional helicopter

example, it is assumed that the failures encountered allow the component to continue performing its

function well enough to return to the point of origin, constituting a mission abort rather than the loss of the

vehicle.

140

When component failure modes are diverse, it may be useful to model failure modes of individual

components rather than the component as a whole. Because the current model is based on the definition of

subsystems and components, which can easily be abstracted to a set of failure modes, it is possible for the

model in its present state to handle the modeling of specific failure modes. However, for the notional

helicopter modeled in this example for illustrative purposes, the decomposition to component failure modes

is not performed.

8.3.2 Mission Modeling

The mission used for modeling this notional single main rotor helicopter is 110-minutes in duration and is

intended to be representative of a common transport mission for a civil helicopter. The duration of each

mission phase is based on a mission in an Army Tactical Environment and the details of the phased-mission

are shown in Table 8-5. [66]

Table 8-5. Model Implementation Phased-Mission.

Phase Duration (min)

Start-Up 5

Takeoff 2

Cruise-Out 45

Setdown 6

Cruise-Back 45

Setdown 2

Shutdown 5

8.3.3 Approximating Failure Densities

Without data from a regulatory agency, manufacturer or large operator of a given aircraft system, it is

impossible to construct accurate distributions for the failure density and mean time to repair. However,

because the discrete-event simulation is meant for use at the conceptual design level, and is intended to

incorporate uncertainty through probabilistic inputs, accurate failure distributions are not required as long

as the user accepts that the outputs of the simulation will only be representative.

The process of using data for a similar system is undertaken in this study for a generic helicopter. Given

that this is a generic helicopter, no inference should be made regarding the reliability, availability, or

maintainability to any current system. Because the data used to model the systems is notional, the data used

is not presented in detail here. The failure densities are assumed to be Gaussian with a standard deviation

equivalent to 10 percent of the mean value obtained for similar parts. Component cost to repair or replace

data is difficult to estimate without a reliable source. Therefore, repair cost will not be discussed in the

141

implementation due to significant limitations regarding data availability. However, the simulation retains

the capability to track the part cost for both failure-based and preventive maintenance.

In this implementation, replacement/repair windows for parts with specified service intervals (multiples of

a required 25-hour inspection) are assumed to be 0 percent of the service interval in the field and 5 percent

of the service interval if the aircraft is already in the shop. [67] The service intervals are unknown and must

be approximated. The approach is to set the value at 10 percent less than the mean of the specified failure

density for a component while rounding to the nearest 25-hour inspection interval. Mechanical subsystems

are assumed to have field inspection and maintenance windows while monolithic components and electrical

subsystems are not assumed to have these specified field inspection and maintenance windows.

8.4 Results

The vehicle architecture discussed above is modeled using the integrated discrete-event simulation

environment with the input process streamlined using an Excel interface. Because the MTBF and MTTR

values are distributions rather than deterministic values it is appropriate to run several Monte Carlo cycles

to appropriately capture the operations and support characteristics for the system.

For this implementation, meant to show the capability of the developed discrete-event simulation, the data

used is notional. This includes the models used to determine the component life, time to repair, shop

availability, and logistical delay time. System cost is not modeled in this example. The key metrics tracked

in this example include the operational availability, maintenance free operating period, the total number of

failures of each component, the total number of preventive maintenance actions required for each

component, and the maintenance man hours required for failure-based and preventive maintenance during

the simulation.

The simulation used to evaluate the operational availability and mean time between failures is run for 5,000

hours and 200 Monte Carlo cycles. For the simulation used to evaluate the MFOP, 200 missions are

attempted in each of the 200 Monte Carlo runs. During the evaluation of the maintenance free operation

period, it is assumed that the vehicle has completed a maintenance recovery period prior to starting a

maintenance free operation period, which means that all necessary inspections have been performed.

Performing Monte Carlo cycles allows for quantification of the variability of the key metrics evaluated.

This means that for a given reported value, there is also a confidence level associated with that value.

A histogram showing the distribution of the operational availability for each of the 200 Monte Carlo cycles

is shown in Figure 8-9. This data can also be used to construct an inverse cumulative distribution that is

142

useful in visualizing the probability that the operational availability was above a given value in the

simulations that were performed. For reference, lines are added on the inverse cumulative distribution that

correspond to 75% and 95% confidence levels. The inverse cumulative distribution plot is shown in Figure

8-10.

Figure 8-9. Operational Availability Histogram

Figure 8-10. Operational Availability Inverse CDF

The Mean Time Between Failures (MTBF) is also determined during each Monte Carlo cycle. In the same

way as the operational availability, the MTBF may be shown on a histogram, Figure 8-11, or used to

construct an inverse cumulative distribution, Figure 8-12.

143

Figure 8-11. Mean Time Between Failures Histogram

Figure 8-12. Aircraft MTBF Inverse Cumulative

During the 5,000-hour simulation, 291 hours were required to repair failed parts while 560 hours were

required to repair parts that met condition-based failure criteria.

The results presented above show vehicle level metrics in detail but provide no insight into how much an

individual subsystem or component is being serviced. By tracking the preventive maintenance performed

on each component as well as failures experienced, it becomes possible to track components that fail most

often, a valuable insight at the conceptual design level. Early in the design process this shows engineers

where reliability improvements are the most needed. The average number of component failures during the

5,000-hour Monte Carlo cycles are shown in Figure 8-13 for the notional helicopter performing the

transport mission shown in Table 8-5. During the same simulation, the number of repair actions performed

on each component as a result of the component condition is shown in Figure 8-14.

144

Figure 8-13. Component Failures per Cycle

Figure 8-14. Condition-Based Actions per Cycle

The MFOP of the helicopter is evaluated next using a different mode of the integrated discrete-event

simulation environment. Similar to the other vehicle-level metrics, performing Monte Carlo cycles allows

for estimation of the probability that a vehicle will be able to complete a number of flight cycles without

required maintenance. The inverse cumulative distribution for the number of maintenance free flight cycles

performed is shown in Figure 8-15.

145

Figure 8-15. Inverse Cumulative for MFOP Cycle Success

From Figure 8-13 and Figure 8-14, it is evident that, for this notional helicopter, the hydraulic pump, tail

rotor pitch links, tail rotor assembly, and the main rotor would benefit greatly from reliability

improvements. To simulate such an improvement, the mean of the mean time between failures is increased

by 10 percent to simulate the effect of reliability improvements at the component and subsystem level.

Using this approach, the model may be used to quantify the impact of investments in component reliability,

an RDT&E cost, on vehicle level O&S metrics. This is a similar approach to that used by Bhattacharya

when modeling the relationship between investment in reliability and cost. [68] The realized improvement

to the operational availability is shown in the operational availability inverse cumulative distribution in

Figure 8-16 and the improvement to mean time between failures for the aircraft is shown in Figure 8-17.

Both metrics show improvement compared to the baseline values reported previously.

Figure 8-16. Improved Operational Avail. Inverse CDF

146

Figure 8-17. Improved Aircraft MTBF Inverse CDF

 The effect of reliability improvements on the maintenance free operation period is shown in Figure 8-18.

This shows that the maintenance free operation period is lengthened slightly due to reliability

improvements.

Figure 8-18. Improved Inverse CDF for MFOP Success

During the 5,000-hour simulation, 283 hours were required to repair failed parts while 563 hours were

required to repair parts that met condition-based failure criteria.

The notional results shown above for a notional single main rotor helicopter seek to show the value of the

integrated discrete-event simulation environment. At the conceptual design level, improvements to

component reliability and maintainability are traditionally evaluated by subject matter experts in a

qualitative manner. When the effect of multiple reliability improvement programs are compounded, with

the possible side effect of longer repair times, it becomes difficult to accurately predict the effect on the

vehicle level metrics. This implementation shows the ability to perform trades at the component level

147

against key operations and support metrics for the vehicle that are quickly evaluated quantitatively.

Although not demonstrated here, it is possible to perform additional trades at the system architecture level

by including component redundancy or the use of advanced concepts. Performing architectural trades

results in modification of Figure 8-7 and Figure 8-8 to account for changes in the physical architecture and

fault trees. The ability to rapidly evaluate the effect of adjusted architectures or changes in component

reliability and maintainability are critical to assessing the impact of new technologies on a vehicle system.

8.5 Key Questions and Implications of Model Assumptions in FY17 Scope of Work

Understanding the limitations of a model is as important as understanding its realm of predictive

capabilities. Many limitations and assumptions used in generating the model have been discussed in the

preceding sections in great detail. Several questions asked by peers and attendees at the 73rd AHS forum

are presented in Table 8-6 to highlight how specific limitations have been addressed in FY17 or are not

currently planned to be addressed at present.

The first question regarding mission critical and non-mission critical event trees has been addressed by

performing a functional and physical decomposition of the air vehicle of interest during FY17. In this case,

the vehicle of interest is a single main rotor helicopter. Critical functions that are required during each

individual mission phase are grouped and the components that contribute to this functionality are included

in the event tree for that individual mission phase. In this way, a methodology is developed that is useful in

performing similar studies for different classes of air vehicles.

Another common question is whether maintenance actions for individual components are scheduled or

whether maintenance actions only occur when a failure occurs. On air vehicles, many components require

periodic maintenance even in the absence of failures. This required effort, discussed here as preventive

maintenance was added to the model in FY17. This is captured in the model by setting the scheduled

maintenance interval for a part, which triggers required maintenance actions (but not a part failure) when

the part life is with a user-defined range of that maintenance interval. This leads to the question of whether

unscheduled and scheduled maintenance are tracked separately or whether the results are aggregated. In the

FY17 work, the unscheduled and scheduled maintenance man hours and part repair cost are tracked

separately.

Another relevant question is related to system redundancy. It is worth noting that there are ‘hot’ redundant

systems that operate at a fully-operational state continuously, ‘warm’ redundant systems that operate

continuously but at a reduced workload compared to the primary system, and ‘cold’ redundant systems that

do not operate while the primary system is fully operational. Modeling ‘hot’ redundant systems is

accomplished by adding the appropriate logic in the fault trees and including another identical system to

148

the simulation manually in the Excel interface. ‘Warm’ and ‘cold’ redundant systems cannot be modeled

accurately at present because the parts will inherently age differently than the primary system because they

operate at a lower workload than a ‘hot’ redundant system. Such non-uniform aging is not provided for in

the current model.

The process used for part replacement and repair is another important topic. In the FY17 work, it is assumed

that part repair and replacement fully reset the part age. However, this may not be the case for some

components. As an example, a repaired or refurbished component may have a significantly shorter time

between failures than a new part used to replace the failed component. Additional insight into each

component would be required to effectively address this concern and modifications to the simulation would

be required to incorporate this consideration.

Only a single level of maintenance is considered in the FY17 work. One significant expansion of this work

would be to both include additional maintenance levels while also considering more than a single vehicle,

thus allowing for fleet-wide considerations rather than concerns only at the vehicle level.

The final limitation discussed is related to vehicle safety. Addressing safety concerns requires significant

analysis at the tails of the distributions because safety critical failures are rare. In the context of a single

vehicle, the likelihood of a safety-critical failure on mission is small and does little to improve the prediction

of the expected maintenance workload for a single vehicle. This is the case because the non-safety-critical

failures occurring at a much higher frequency than safety critical failures constitute a large majority of the

maintenance actions while typical safety-critical failures often lead to significant vehicle damage. Such

damage cannot be accurately predicted at a high level due to the many factors that contribute to the level of

damage sustained during a safety-critical event including but not limited to terrain, weather, load-out, fuel

state, and the flight conditions when the failure occurred.

The purpose of this discussion is to identify key implications of assumptions in the current model and

modeling efforts undertaken in FY17 to reduce these limitations and improve the predictive capability of

the model. The discussion above is summarized in Table 8-6.

149

Table 8-6. Model Limitations and Questions Presented at the AHS 73rd Forum

Question/Limitation Addressed in FY17 Not Addressed

1. How are the mission-

critical and non-mission

critical event trees

populated?

A functional and physical

decomposition of a notional

Bell 206 helicopter is

performed, grouping

essential functions (and the

related components) for

each mission phase

2. No maintenance actions

are scheduled at regular

intervals to maintain parts

prior to the occurrence of a

failure

Scheduled maintenance

intervals are included that

trigger maintenance actions

when a part is within a

given percentage of the

service interval

3. The maintenance man

hours and component cost

for unscheduled and

preventive maintenance are

not tracked separately

The model has been

updated to track

unscheduled and preventive

maintenance metrics

separately

4. Are redundant systems

considered?

Adding 'hot' redundant

components can be

completed manually simply

by the addition of another

identical system in the

simulation

Including 'cold' and 'warm' component

redundancy requires modification to the

simulation approach as well as additional

simulation inputs to age the parts

differently than a 1-to-1 mapping with

flight hours

5. Parts may be repaired

rather than replaced during

maintenance, how is the

component life reset in this

case?

 It is assumed that both part repair and

replacement fully reset part age, additional

data and modeling are required to

accurately capture this effect

6. Are only single level

maintenance paradigms

considered?

 No multi-level maintenance paradigms are

implemented in the FY 17 work

7. Safety critical failures,

though rare, do occur. Are

these types of failures

considered in the

simulation?

 Looking at system safety requires

examination of the extreme tails of

complete failure distributions. Considering

the non-safety critical failures where the

vehicle can return to base for maintenance

captures an overwhelming portion of the

maintenance and operational activity of the

vehicle

150

8.6 Opportunities for Future Work

The development and implementation of the integrated discrete-event simulation discussed in this paper

provides many opportunities to improve the model in several key areas: component, mission, and

maintenance modeling.

At present, components are tracked using the number of accrued flight hours. For some components, like

landing gear or even some turbine engine components, tracking hours alone may not be sufficient to fully

capture life limits and failure phenomenon. [69] Tracking the number of flight cycles in addition to flight

hours would represent an improvement in the component modeling approach.

Part failure is modeled as a binary phenomenon though limits are set to trigger replacement at regular

inspection intervals. This means that individual components show no signs of failure in the immediate time

preceding failure. Given that component degradation prior to failure is often a gradual process, components

do show signs of degradation prior to failure. This slow degradation was referenced in interviews conducted

with pilots and operators who indicated that they inspect for fluid leakage or grease accumulation during

pre-flight checks as a method to ensure mechanical systems are functioning properly. Appropriately

modeling mechanical components, considering that part failure is not a binary phenomenon, requires

additional data. Specifically, this data includes the length of time before failure when degradation becomes

noticeable by a pilot or mechanic. Including this effect essentially involves adding condition-based

maintenance in addition to the currently implemented time-based and failure-based maintenance. [70]

Another modeling consideration is how the age of a repaired part is reset. When a part is replaced, it is

natural to reset the component age to zero. However, when a part is repaired in the field, it is likely that the

part will not be restored to a like-new condition. This is based on the notion that a refurbished part likely

has a reduced mean time between failures as compared to a brand new component. Capturing the effect of

repair actions using empirically derived values would represent an improvement of the model and would

decrease the optimism of the model in predicting component life after component repairs are complete.

A common technology implemented in an effort to improve the operational availability is Health and Usage

Monitoring Systems (HUMS). HUMS monitors a large number of key parameters throughout the air vehicle

to predict failures before they happen and alert maintenance personnel to act. The current approach uses a

discrete event simulation and therefore abstracts away many of the details that would be required to fully

model HUMS. However, the purpose of implementing a HUMS system is to predict impending failures so

that they can be fixed or mitigated to reduce downtime. In this simulation, the part failure times are assigned

a priori using a user-provided random distribution, which may provide a means to approach the problem

successfully from a different perspective. By knowing the failure time, there may be a way to send the

151

vehicle to preventive maintenance before the failure occurs. However one must also model the fact that

HUMS may not always warn of an impending failure and may lead to the replacement of parts that are not

approaching a failure. The adaptation of the simulation to include HUMS should not be considered a trivial

modeling task. Modeling HUMS is not easily accomplished using simple technology k-factors because

HUMS fundamentally changes the approach used to perform maintenance rather than simply adjusting a

maintenance parameter. Although implementing HUMS may seems like an obvious and purely beneficial

approach to increase operational availability, there is definitely a tradeoff due to the increased number of

analysts required to support HUMS on the air vehicle and more frequent part replacement as mentioned

previously. Therefore, HUMS should not be arbitrarily included in vehicle systems without a full

consideration of the associated costs and benefits. Including the analysis of HUMS in a modeling

framework such as this may be one part of the effort required to determine the efficacy of including HUMS

in future air vehicles.

Phased-mission modeling is another aspect of the present model. However, in the presence of a mission

abort, it is assumed that the helicopter is nursed back to the point of origin for maintenance without

additional age being accrued by the parts on the vehicle. In reality, parts are aged while returning to the

point of origin. Beyond simply accruing flight hours, the functional components may accrue additional

wear during the flight due to increased vibratory loads or increased strain on one system due to the failure

of another. Modeling the increase in wear on one system due to the failure from another would require

significant understanding of the physical system architecture and layout. This consideration, though

relevant in the physical scenario, is likely beyond the scope of this high-level model intended to predict

vehicle-level operations and support costs, operational availability, and MFOP.

Maintenance actions performed in the current model are assumed to occur at a single-level, one maintenance

facility. Part availability is included using a user-specified scaling factor that multiplies the aircraft

downtime. Improving the modeling approach to include multi-level maintenance paradigms as well as the

delay (in hours) due to difficulty in acquiring certain parts would make the model significantly more

realistic. However, this represents a significant increase in model complexity as modeling multiple

maintenance facilities and the logistics network required to supply spare parts and tools requires significant

knowledge about the maintenance program for a particular aircraft system and may not be the same between

different aircraft of interest.

The shortcomings in the present model provide room for improvement in the component, mission, and

maintenance modeling approach. However, even with these assumptions in the current model, it is possible

to perform tradeoffs at the component and system architecture level to determine the effect of improved

152

component reliability or a different architecture on the reliability, availability, and maintainability of the

system.

8.7 Available Applications for the Developed Model

Much effort is expended in documenting the limitations of the discrete-event simulation in its current state.

Even with these limitations, it is possible to apply this simulation tool to evaluate different architectures

with varied component reliabilities at the single vehicle level. There are three distinct approaches that are

envisioned as opportunities to apply this simulation framework. The first is comparing the MFOP and

operational availability for a variety of vehicle concepts and architectures using a standardized library of

components. This relies on the individual architecture of the vehicles and the ‘hot’ redundancy within each

as well as the criticality of different failures. The second approach would be to look at a single vehicle to

determine how improvement or degradation to the reliability (MTBF) and/or maintainability (MTTR) of

vehicle components affect the operational availability and MFOP for that single vehicle. The third option

is to consider the first and second options together as a way to determine which vehicle architecture is the

most robust to changes in the maintainability and reliability of individual components.

These three approaches provide a means to evaluate various concepts as part of an analysis of alternatives

for example at the vehicle level. Although no provision is currently made for fleet-level modeling,

improving the operational availability and MFOP of individual assets leads to improvements in fleet

performance. As such, the same fleet-level performance may maintained with a reduced number of assets.

8.8 Considerations Regarding Reliability and Maintainability Data Needs

There are three significant limitations to applying this model to a current vehicle system. The first is more

accurately understanding how maintenance is currently performed. The second is better understanding how

component age resetting should be completed and the third is the raw maintenance data required to

accurately populate failure distributions for each component.

Knowledge about how maintenance is currently performed on a particular aircraft is critical to accurately

modeling the system. This knowledge includes not only the different levels of maintenance that are

performed but also the type of maintenance actions that are performed at each level. These actions may

include inspections, replacement of expendable items such as filters and seals, or the replacement of entire

assemblies. Obtaining such knowledge requires a close relationship with operators and access to current

maintenance documentation and practices.

Additional data needs are related to eliminating the assumption that refurbished components are ‘as good

as new.’ This also requires a close relationship with the OEM to obtain reliability data for both new and

153

reconditioned parts needed for an accurate comparison. In addition to proprietary information protection

another reason that this information may be difficult to obtain is because when used together could be used

to conclude that refurbished parts may not be nearly as reliable as new components. Such a conclusion

could be detrimental to various business interests. Although raw data may be difficult to obtain, there may

be a consensus or rule of thumb within the industry that would allow for a reasonable approximation that

could be used in the model that has yet to be documented.

Additional data required is used to populate the part reliability and maintainability distributions. This data

includes raw part life, failure mode, failure impact on the mission, maintenance action (repair or replace),

required repair/replace time, and repair/replace cost data for each tracked component on the helicopter.

Several open source documents provide the mean time between failures or the mean repair time for a

component. However, such knowledge about the mean of the distribution provides only limited insight into

component reliability and maintainability because the distribution is abstracted to a single number that

provides no insight on the actual distribution shape or width. Collecting such data again requires a close

partnership with an OEM or operator and proprietary information agreements.

In the event that an operator or OEM makes the data available, condensing and operating on such data is a

non-trivial task. Collecting the data outlined above will likely result in in many gigabytes/terabytes of non-

uniform text documents that must be interrogated rapidly and efficiently to distill the metrics of interest

that are required for this model, a task that can be classified as a ‘big data’ problem. Alone, the data

reduction is a task within itself that is often undervalued because the work products of such a task provide

only an intermediate result that must be further applied within other simulations. Considering this, only

collecting the data from an OEM or operator is not enough, steps must be taken to reduce the data to a

usable form.

Given that there are significant challenges to both obtaining access and reducing the necessary component

and system architecture data, it is worth searching for alternatives to this approach. Such alternatives may

provide a more direct modeling approach that is not based on the component reliability data. However, such

approaches must pass through verification and validation activities to ensure that the model is internally

correct and represents the reality that we wish to capture.

The challenges of acquiring data to use in the developed discrete-event simulation are certainly formidable.

Considering the full depth of the challenge of acquiring component reliability and maintainability data is

necessary to provide a true appreciation for the work that remains to make a model such as this one useful

in accurately predicting operational availability and MFOP for current air assets. Predicting operational

154

availability and MFOP for future assets must rely on data for components of current assets with adjustments

made for increases or decreases in the reliability or maintainability a result of technology infusion or

improved manufacturing processes. The data required is neither simple to acquire or reduce and motivates

further exploration into alternative approaches not based upon component reliability and maintainability

data.

8.9 Concluding Remarks

The methodology used to construct an integrated discrete-event simulation for evaluation of rotorcraft

operations and support metrics has been presented. Specifically, this model may be used to estimate the

Operational Availability, MFOP, mean time between mission affecting failures, part failure rates, and

maintenance man hours required for both conventional and novel rotorcraft architectures. Using an

integrated discrete-event simulation environment allows for quantitative trade studies at the subsystem or

component level and the system architecture level against key operations and supportability metrics. The

need for such an environment is highlighted in the implementation provided. Significantly improving

components with the greatest number of maintenance actions required only slightly improved the operations

and supportability metrics for the single vehicle considered.

One key limitation of the model is that the data requirements to accurately model a proposed system are

immense. Because this environment is meant for use at the conceptual design level, part failure and repair

time data are rarely available for the specific components of interest. Using data for similar systems

provides a rough estimate of component and subsystem failure data, which may be used to calculate the

operations and supportability metrics. Although this approach will not yield a value for any one of the

metrics that is a true prediction for the realized system, it enables a quantitative evaluation of the system

early in the design process among other vehicles modeled using this approach. Under this standardized

approach each component must have representative failure and repair data that can be perturbed according

to anticipated improvement or degradation.

Improvements in the current model are most beneficial in several key areas including component definition,

mission representation, and maintenance modeling. Nonetheless, the model in its current state provides a

framework to quantitatively evaluate operations and support metrics in the context of rotorcraft conceptual

design activities.

155

9. References

[1] J. Arruda, A. Gavrilovski, H. Chae, E. Spero and D. Mavris, "The Capability Assessment and

Tradeoff Environment (CATE) for Advanced Aerospace Vehicles and Technology Assessment.,"

Proceida Computer Science, 2014.

[2] J. R. Kizer, "Aircraft Conceptual Design Enabled by a Set-Based Approach for the Exploration and

Bounding of Non-Hypercubic Design Spaces," Georgia Tech, Atlanta, 2016.

[3] T. Stephens, "Titanic: Getting Started with R - Part 5: Random Forests," 18 Jan 2014. [Online].

[4] L. Brieman, A. Cutler, A. Liaw and M. Wiener, "Brieman and Cutler's Random Forests for

Classification and Regression," Oct 2015. [Online]. Available: https://cran.r-

project.org/web/packages/randomForest/randomForest.pdf.

[5] M. R. Kirby, D. N. Mavris and M. A. Largent, "A Process for Tracking and Assessing Emerging

Technology Development Programs for Resource Allocation," in 1st AIAA Aircraft Technology,

Integration, and Operations Forum, Los Angeles, CA, 2001.

[6] K. Collins and D. N. Mavris, "Mobility Research for Future Vehicles: A Methodology to Create a

Unified Trade-Off Environment for Advanced Aerospace Vehicles Fiscal Year 2015 Annual Report,"

Georgia Tech Aerospace Systems Design Lab, 2015.

[7] M. Kirby and D. Mavris, "An Approach for the Intelligent Assessment of Future Technology

Portfolios," 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001.

[8] T. J. Gordon and Glenn, J. C., "Futures Research Methodology, Version 2.0Millennium Project of

the," American Council for the United Nations University, 2003.

[9] Firat, A., W. Woon and S. Madnick, "Technology Forecasting - A Review," MIT Composite

Information Systems Laboratory, Cambridge, 2008.

[10] R. Levary and D. Han, "Choosing a Technological Forecasting Method," Industrial Management, p.

14, 1995.

[11] J. Phillips, T. Heidrick and I. Potter, "Technology Futures Analysis Methodologies for Sustainable

Energy Technologies," IEEE, 2005.

[12] J. P. Martino, Technological Forecasting for Decision Making, Amsterdam: North-Holland

Publishing, 1993.

[13] A. Floyd, A Methodology for Trend Forecasting of Figures of Merit, Englewood Cliffs: Prentice-

Hall, 1968.

[14] G. Birrocco, "ASSP TDA Status Brief for Future Vertical Lift S&T Team," 2009.

[15] A. Smith, K. Collins and D. Mavris, "Survey of Tecnology Forecasting Techniques for Complex

Systems," in AIAA SciTech Forum, Grapevine, TX, 2017.

[16] G. Intepe, E. Bozdag and T. Koc, "The Selection of Technology Forecasting Methods Using a Multi-

Criters Interval-Valued Intuitionistic Fuzzy Group Decision Making Approach," Computers &

Industrial Engineering, pp. Vol 65 177-285, 2013.

[17] A. Cheng, C. J. Chen and C. Y. Chen, "A Fuzzy Multiple Criteria Comparison of Technology

Forecasting Methods for Predicting the New Materials Development," Technological Forecasting &

Social Change, pp. Vol 75 131-141, 2008.

[18] S. Mishra, S. G. Deshmukh and P. Vrat, "Matching Technological Forecasting Technique to a

Technology," Technological Forecasting & Social Change, p. Vol 69, 2002.

156

[19] General Electrc, "The T901 Turboshaft Engine | GE Aviation," 2016. [Online]. Available:

Geaviation.com.

[20] J. Leishman, Prinicples of Helicopter Aerodynamics, New York: Cambridge University Press, 2006.

[21] "DoD Award ITEP Advanced Helicopter Engine Contracts," 2017. [Online]. Available:

http://www.janes.com/article/63148/dod-awards-itep-advanced-helicopter-engine-contracts.

[22] W. Yao, X. Chen, W. Luo, M. Van Tooren and J. Guo, "Review of Uncertainty-Based

Multidisciplinary Design Optimization Methods for Aerospace Vehicles," Progress in Aerospace

Studies, pp. Vol 47 Issue 6 450-479, 2011.

[23] R. Dybyad, "Helicopter Gross Weight and Center of Gravity Measurement System," AD-771 955,

1973.

[24] R. Thornburgh, "Continuous Trailing-Edge Flap for Helicopter Rotor Blades," 2012.

[25] B. Glaz, "Modeling of Nanosecond Pulsed Plasma Based Separated Flow Control," 2012.

[26] M. E. E. L. M. Barnett, "UH-60M Technology Readiness Level Assessment," 2001.

[27] Ames, "Future Directions in Rotorcraft Technology at Ames Research Center," American Helocopter

Society, 2000.

[28] R. Halbig, "Ceramic Matrix Composites for Rotorcraft Engine," 2011.

[29] U. Aerospace, "Health and Usage Management Systems (HUMS)," 2017. [Online]. Available:

http://utcaerospacesystems.com/cap/products/pages/health-usage-management-systems.aspx.

[Accessed 2017].

[30] F. Gandhi, "“Reconfigurable Vertical Lift”, AE Presents Lectures Series at Georgia Institute of

Technology, November 2017".

[31] Bell Helicopter Textron, "Bell 206L4 Product Specifications," 2016.

[32] T. S. a. B. Maundrill, "Heli-Expo 2015: Introducing the H160," Shephard Media, 3 March 2015.

[Online]. Available: https://www.shephardmedia.com/news/rotorhub/heli-expo-2015-introducing-

h160/. [Accessed 1 November 2017].

[33] R. Kuhn, "Review of Basic V/STOL Aerodynamics, NASA TN D-733, March 1961".

[34] W. a. T. T. Stepniewski, "Open Airscrew VTOL Concepts, NASA Contractor Report 177603,

September 1992".

[35] W. a. T. T. Stepniewsky, "Open Airscrew VTOL Concepts," NASA, 1992.

[36] E. D. Bouchard, M. Schmit, K. Collins and D. Mavris, "A Numerical Method to Calibrate and

Forecast Technology Improvements for the UH-60 Helicopter Using NDARC," in American

Helicopter Society, Fort Worth, TX, 2017.

[37] W. Johnson, "NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration,"

in merican Helicopter Society Aeromechanics Specialists’ Conference, San Francisco, 2010.

[38] W. Johnson, "NDARC NASA Design and Analysis of Rotorcraft Theory, Release 1.9," NASA Ames

Research Center, Moffett Field, 2015.

[39] S. Ashok, A. Sirirojvisuth and A. Smith, "Closing the Gap between Capability and Affordability for

System Upgrades," in AHS 72nd Annual Forum, West Palm Beach, 2016.

[40] K. B. Hilbert, "A Mathematical Model of the UH-60 Helicopter," National Aeronautics and Space

Administration, Moffet Field, 1984.

[41] "Operator's Manual for UH-60A Helicopter, UH-60L Helicopter, EH-50A Helicopter," Washington,

2009.

[42] W. G. B. W. J. Hyeonsoo Yeo, "Performance Analysis of a Utility Helicopter with Standard and

Advanced Rotors," in American Helicopter Society Aerodynamics, Acoustics, and Test and

Evaluation Technical Specialist Meeting, San Frnacisco, 2002.

157

[43] GE Aviation, "T700-401C/-701C," Cincinnati.

[44] Mark W. Nixon, "Preliminary Structural Design of Composite Main Rotor Blades for Minimum,"

NASA, 1987.

[45] R. D. Leoni, Black Hawk The history of a World Class Helicopter, Reston: American Institute of

Aeronautics and Astronautics, Inc., 2007.

[46] J. Price, S. Ashok, R. Armstrong, K. Collins, D. Mavris and D. Schrage, "Integrated Discrete Event

Simulation Environemnt for Analysis of Rotorcraft Reliability, Availability, and Maintainability," in

American Helicopter Society, Fort Woth, TX, 2017.

[47] American Helicopter Society, "Future Vertical Lift," 2016. [Online]. Available: https://vtol.org/what-

we-do/advocacy/future-vertical-lift.

[48] Office of the Secretary of Defense, "Department of Defense Reliability, Availability, Maintainability,

and Cost Rationale Report Manual," 2009.

[49] R. Armstrong, Z. Ernst, K. Collins and D. Mavris, "Reconfigurable Discrete Event Simulation of

Rotorcraft Maintenance and Operations for Technology Assessment and Tradeoff," in American

Helicopter Society 72nd Annual Forum, West Palm Beach, FL, 2016.

[50] Office of the Secretary of Defense, "Cost Assessment and Program Evaluation, Operating and

Support Cost-Estimating Guide," 2014.

[51] A. Velden, D. Schrage, D. Arterburn, A. Smith, A. Sirirojvisuth and S. Ashok, "Probabilistic

Certificate of Correctness for Helicopter Variants," in Rotorcraft Virtual Engineering Conference

Proceedings, Liverpool, England, 2016.

[52] M. Gorac and M. J. Kwinn, "Lead the Fleet: Transitioning Army Aviation Maintenance From a Time

Based System to a Usage Based System," Operations Research Center of Excellence, United States

Military Academy West Point, 2004.

[53] S. P. Chew, S. J. Dunnett and J. D. Andrews, "Phased-Mission Modeling of Systems with

Maintenancce-Free Operating Periods Using Simulated Petri Nets," Reliability Engineering and

System Safety, pp. 980-994, 2008.

[54] P. Mitchell, "Maintenance-Free and Failure-Free Operating Periods to Improve Overall System

Availability and Reliability," in Design for Low Cost Operation and Support Proceedings, Ottowa,

1999.

[55] Defense Acquisition University, "Mean Logistics Delay Time," 2016. [Online].

[56] G. Pryor, "Methodology for Estimation of Operational Availability as Applied to Military Systems,"

ITEA Journal, pp. Vol. 29 420-428, 2008.

[57] Chief of Naval Operations, "Operational Availability of Equipment and Weapons Systems -- OpNAV

Instruction 3000.12A," 2003.

[58] J. J. Dougherty and L. D. Barrett, "Research Requirements to Improve Reliability of Civil

Helicopters," NASA CR-145335.

[59] SAE International, "Aerospace Recommended Practice 4761," 1996.

[60] Bell Helicopter, "Operators Manual Army Model OH-58A/C," TM 55-1520-228-10, 1989.

[61] United States Department of Transportation, "Helicopter Flying Handbook," Federal Highway

Administration -- Flight Standards Service, 2012.

[62] J. Sen and R. Everett, "Structural Integrity and Aging-Related Issues for Helicopters," ADP 010436,

2000.

[63] D. Galler and G. Slenski, Causes of Aircraft Electrical Failures, IEEE AES Systems Magazine, 1991.

[64] C. Bowen, L. Dyson and R. Walker, "Mode of Failure Investigations of Helicopter Transmissions,"

AD 881610, 1971.

158

[65] R. Vaughn, "U.S. Army Aviation Helicopter Dynamic Components," in Understanding and

Combating Aging, Phoenix, AZ, 2009.

[66] COBRO Corporation, "Input Data, ARMS Model Simulation of the OH-58A in an Army Tactical

Environment," ADA 041631, 1977.

[67] Civil Aviation Authority of New Zealand, "Airworthiness Directive Schedule -- Helicopters -- Bell

206B and 206L Series, and Augusta AB206 Series," 2016.

[68] S. Bhattacharya, V. Nagaraju and L. Fiondella, "Rotorcraft Tradespace Exploration Incorporating

Reliability Engineering," in American Helicopter Society 71st Annual Forum Proceedings, Virginia

Beach, VA, 2015.

[69] R. Weiser and M. J. Kwinn, "Managing Helicopter Maintenance Risk," Jet Support Services, Inc.,

2015.

[70] U. D. Kumar, J. Crocker, J. Knezevic and M. El-Haram, Reliability, Maintenance and Logistic

Support -- A Lifecycle Approach, Boston: Kluwer Academic, 2000.

[71] A. G. B. A. H.-G. C. E. S. D. M. James Arruda, "The Capability Assessment and Tradeoff

Environment (CATE) for Advanced Aerospace Vehicle and Technology Assessment," in Conference

on Systems Engineering Research (CSER) 2014, Redondo Beach, 2014.

[72] GE Aviation, "T700-701D turboshaft engines," Cincinnati.

[73] Department of the Army, "Operators Manual for UH-60A Helicopter, UH-60L Helicopter, EH-60A

Helicopter," Washington, 1996.

[74] J. Mullins and S. Mahadevan, "Bayesian Uncertainty Integration for Model Calibration, Validation,

and Prediction".

[75] M. Hirschberg, "Electric VTOL Wheel of Fortune, Vertiflite Magazine, March/April 2017, Also,

www.vtol.org; eVTOL News".

159

10. Appendix

10.1 Appendix A: Test Objective Function for SeBBAS

10.1.1 Script to Call SeBBAS

%% Script to call and test SeBBAS code

clc; clear; close all;

% Constraint: A number corresponding to the constraint on the design space that will be applied.

% The constraints are numbered as follows. If a constraint is a negative number, than the inverse

% of the constraint will be applied

% 1) Infeasible cross in middle, creating 4 squares in each corner

% 2) Upper triangle of hypercube is infeasible

% 3) Parabolic constraint

% 4) Points that fall within circle centered at (2.5, 2.5) are infeasible

% 5) Hyperbolic constraint

% 6) Triangular constraint in the middle of the hypercubic design space

% 7) linear band with slope 1 across hypercubic design space is infeasible

% 8) Cubic constraint on x1 variable

% 9) Slightly different cubic constraint

% 10) 3D sphere

% Setting constraint number

Constraint = 1;

% Setting the run_Case name and the total budget available for this study

run_Case = ['Test_C', num2str(Constraint)];

total_Budget = [1000, 3000, 10000];

% Writing the DV_Range_Filename file

DV_Range_Filename = 'Test_DOE_DV_Range.csv';

DV_Range_path = [pwd, '/R Files/Design Variable Range/', DV_Range_Filename];

% Setting up lower and upper bounds for the design variables and writing the table to the proper

% file location which was shown above

x1 = [0; 5];

x2 = [-5; 5];

DV_Range = table(x1, x2);

% x3 = [-5; 5];

% DV_Range = table(x1, x2, x3);

writetable(DV_Range, DV_Range_path)

% Defining the other parameters required

validation_Case = 50000;

max_Iter = 8;

tolerance = 0.01;

% Running SeBBAS

[suggested_DOE] = SeBBAS(run_Case, total_Budget, DV_Range_Filename, validation_Case, max_Iter, tolerance,

@run_Test_SeBBAS, Constraint);

% Plotting the results of the classification of SeBBAS

ind_s = find(suggested_DOE.Classification == 1);

ind_f = find(suggested_DOE.Classification == -1);

% Plotting for either 2D or 3D cases the number of correct classifications and incorrect

% classifications

if abs(Constraint) == 10

 x1 = suggested_DOE.x1;

160

 x2 = suggested_DOE.x2;

 x3 = suggested_DOE.x3;

 figure(1)

 plot3(x1(ind_s), x2(ind_s), x3(ind_s),'go')

 xlabel('x1')

 ylabel('x2')

 zlabel('x3')

 axis([-5, 5, -5, 5, -5, 5])

else

 x1_Final = suggested_DOE.x1;

 x2_Final = suggested_DOE.x2;

 figure(1)

 plot(x1_Final(ind_s), x2_Final(ind_s),'go', x1_Final(ind_f), x2_Final(ind_f), 'ro')

 xlabel('x1')

 ylabel('x2')

 axis([x1(1), x1(2), x2(1), x2(2)])

 legend('Correct Classifications', 'False Positive Classifications')

end

10.1.2 Test Objective Function

function [Classification] = run_Test_SeBBAS(DOE, Constraint)

% This function runs a series applies various constraints to create a non-hypercubic design space to

% test the accuracy of the SeBBAS.m function. Most of the functions are 2D, but can be expanded to

% any dimensions

%

% Inputs:

% DOE: NxM array containing a DOE or set of design points to run through the constraint. The columns

% of the array correspond to the M design variables, and the columns must be in the same order

% as the variables listed in the VariableNames cell array. Rows of the array correspond to

% differentn design points

% VariableNames: Mx1 cell array containing strings pertaining to each design variable.

% Constraint: A number corresponding to the constraint on the design space that will be applied.

% The constraints are numbered as follows. If a constraint is a negative number, than the inverse

% of the constraint will be applied

% 1) Infeasible cross in middle, creating 4 squares in each corner

% 2) Upper triangle of hypercube is infeasible

% 3) Parabolic constraint

% 4) Points that fall within circle centered at (2.5, 2.5) are infeasible

% 5) Hyperbolic constraint

% 6) Triangular constraint in the middle of the hypercubic design space

% 7) linear band with slope 1 across hypercubic design space is infeasible

% 8) Cubic constraint on x1 variable

% 9) Slightly different cubic constraint

% 10) 3D sphere

%

% Outputs:

% Classification: A Nx1 array that contains either a (1) or (-1) for each design point, with a

% value of 1 corresponding to a feasible design point, and value of -1 meaning infeasible

% Initializing run settings

failedCaseTotal = 0;

% Calculating the number of cases in the array

numCases = length(DOE(:,1));

% Initializing feasibleCase array

Classification = zeros(numCases, 1);

161

% Calling constraint function to classify DOE

for k = 1:numCases

 % Running NDARC and processing results

 [Classification(k)] = applyConstraint(DOE(k,:), Constraint);

end

%==

===============================

function [Classification] = applyConstraint(DesignVariables, Constraint)

% This function applies the desired constraint to the current design point

%

% Inputs:

% DesignVariables: MxN array containing the DOE for N design variables, where M = numLHcases + numRandomCases

% Constraint: A number corresponding to the constraint on the design space that will be applied.

% The constraints are numbered as follows. If a constraint is a negative number, than the inverse

% of the constraint will be applied

% 1) Infeasible cross in middle, creating 4 squares in each corner

% 2) Upper triangle of hypercube is infeasible

% 3) Parabolic constraint

% 4) Points that fall within circle centered at (2.5, 2.5) are infeasible

% 5) Hyperbolic constraint

% 6) Triangular constraint in the middle of the hypercubic design space

% 7) linear band with slope 1 across hypercubic design space is infeasible

% 8) Cubic constraint on x1 variable

% 9) SLightly different cubic constraint

% 10) 3D sphere

%

% Outputs:

% Classification: -1 for infeasible design, 1 for feasible design

x1 = DesignVariables(1);

x2 = DesignVariables(2);

sign_Constraint = sign(Constraint);

Constraint = abs(Constraint);

if Constraint == 1

 if (x1>2 && x1 <3) || (x2>2 && x2<3)

 Classification = -1;

 else

 Classification = 1;

 end

elseif Constraint == 2

 if x1+x2>5

 Classification = -1;

 else

 Classification = 1;

 end

elseif Constraint == 3

 if x2 > (x1-2.5)^2 + 0.5

 Classification = -1;

 else

 Classification = 1;

 end

elseif Constraint == 4

 if (x2-2.5)^2 + (x1-2.5)^2 < 0.5

 Classification = -1;

 else

 Classification = 1;

 end

162

elseif Constraint == 5

 if (x2-2.5)^2 -(x1-2.5)^2 < 1

 Classification = 1;

 else

 Classification = -1;

 end

elseif Constraint == 6

 if x2 > 1 && x2 < 1 + x1 && x2 < 6-x1

 Classification = -1;

 else

 Classification = 1;

 end

elseif Constraint == 7

 if x2 > x1 - 1 && x2 < x1 + 1

 Classification = -1;

 else

 Classification = 1;

 end

elseif Constraint == 8

 if x2 > (x1-2.5)^3/3.125

 Classification = -1;

 else

 Classification = 1;

 end

elseif Constraint == 9

 if x2 > (x1-2.5)^3/3.125 && x2 < -(x1-4)^3/3.125

 Classification = -1;

 else

 Classification = 1;

 end

else

 x3 = DesignVariables(3);

 if 4 < x1^2 + x2^2 + x3^2

 Classification = -1;

 else

 Classification = 1;

 end

end

% Taking inverse of classification if the constraint value is negative

Classification = Classification * sign_Constraint;

10.2 Appendix B: Current NDARC Design Variables Available

Table 10-1: NDARC variables available in the Aircraft Configuration template file

NDARC Variable Description

diskload Disk loading

CWs Blade Loading (𝐶𝑊 𝜎⁄)

CD_fus Zero lift drag coefficient of fuselage

CD_fit Drag coefficient for fixtures and fittings

CDV_fus Vertical drag coefficient of fuselage

CD_MR_hub Drag coefficient of the main rotor hub

CD_MR_pylon Drag coefficient of the main rotor pylon

CD_TR_hub Drag coefficient to the tail rotor hub

log_cg_XoL Location of the cg in non-dimensional x-coordinate

163

Vtip_ref Reference tip speed

TECH_body Technology factor for basic body

TECH_blade Technology factor for blade weight

TECH_gb Technology factor for gear box weight

TECH_rs Technology factor for rotor shaft weight

TECH_ds Technology factor for drive shaft weight

TECH_eng Technology factor for engine weight

TECH_drag_MR Technology factor for drag of main rotor

TECH_drag_TR Technology factor for drag of tail rotor

TECH_RWfc_b Technology factor of boosted rotary wing flight control weight

TECH_RWfc_mb
Technology factor of control boost mechanism of rotary wing flight

control weight

TECH_RWfc_nb Technology factor of non-boosted rotary wing flight control weight

TECH_RWhyd Technology factor for weight of rotary wing flight control hydraulics

TECH_cost_maint Technology factor for maintenance cost

Wcrew Weight of the crew

Wpay Payload weight

Peng Engine power (SLS static takeoff rating)

Pacc_0 Accessory power loss constant

Ki_prop Axial cruise propeller induced velocity factor

Table 10-2: NDARC variables in the engine template file

NDARC Variable Description

SP0C_tech Technology factor for specific power at MCP

sfc0C_tech Technology factor for specific fuel consumption at MCP

Table 10-3: NDARC variables for the sizing conditions input file

NDARC Variable Description

VROC Vertical rate of climb flight speed

VROC_alt Reference altitude for rate of climb sizing condition

VROC_temp Reference temperature for rate of climb sizing condition

Vkts Horizontal flight speed velocity

VFWD_alt Reference altitude for horizontal flight sizing condition

VFWD_temp Reference temperature for horizontal flight sizing condition

Table 10-4: NDARC variables for the mission input file

NDARC Variable Description

FT_hov_time Time spent in hover for fuel tank sizing

MIS_hov_time Time spent in hover mission segment

MIS_hov_alt Reference altitude for hover mission segment

MIS_hov_temp Reference temperature for hover mission segment

FT_cr_time Time spent in cruise for fuel tank sizing

MIS_cr_Vkts Forward flight velocity in cruise mission segment

MIS_cr_time Time spent in cruise mission segment

164

MIS_cr_alt Reference altitude for cruise mission segment

MIS_cr_temp Reference temperature for cruise mission segment

MIS_res_alt Reference altitude for reserve mission segment

MIS_res_temp Reference temperature for reserve mission segment

MIS_res_Vkts Forward flight velocity in reserve mission segment

MIS_idle_alt Reference altitude for idle mission segment

MIS_idle_temp Reference temperature for idle mission segment

10.3 Appendix C: Sample “NDARC Calibration Settings.inp” File&RUN_SETTINGS

SaveAsFilename = Single Input File 2

 NumRuns = 1
 inducedPopulationFactor = 3

 inducedGenerationFactor = 6

 profilePopulationFactor = 10

 profileGenerationFactor = 6

&END

&INDUCED_NDARC_VARIABLES

 MODEL_ind = 2

 Ki_hover = 1, 3, .1
 Ki_climb = 1.125

 Ki_prop = 2

 Ki_edge = 1, 2, .1
 CTs_Hind = .05, .15, .01

 kh1 = 0, 2, .1

 kh2 = 0, 1, .1
 Xh2 = 2

 CTs_Pind = .05, .15, .001
 kp1 = 1.25

 kp2 = 0

 Xp2 = 2
 kpa = 0

 Xpa = 2

 ko1 = 0
 ko2 = 8

 Maxial = 1.176

 Xaxial = .65
 mu_prop = 1.59

 ka1 = 0

 ka2 = 0
 ka3 = .92

 Xa = 5

 mu_edge = .25, .4, .01
 ke1 = .5, 1.5, .01

 ke2 = 0, 2, .1

 ke3 = 1.4
 Xe = 2, 6, .1

 kea = 0

 Ki_min = 1.085
 Ki_max = 10

&END

&PROFILE_NDARC_VARIABLES

 TECH_drag = 1

 Re_ref = 0
 MODEL_basic = 2

 ncd = 24

 CTs_Dmin = .025, .1, .001
 d0_hel = .001, .1, .001

 d0_prop = 0, .01, .001

 d1_hel = 0
 d1_prop = .1

 d2_hel = .25, .75, .01

 d2_prop = .25, .75, .01
 dprop = 2

 Xprop = 4

 CTs_sep = .04, .1, .01
 dsep = 1.6

 Xsep = 2.9

 df1 = 0

 df2 = 0

 Xf = 1.3

 MODEL_stall = 1
 nstall = 10

 fstall = 1

 dstall1 = 2.6
 dstall2 = 60

 Xstall1 = 2.2

 Xstall2 = 2.7
 do1 = .2

 do2 = 4.7

 dsa = 0
 MODEL_comp = 1

 fSim = 1
 thick_tip = .08

 dm1 = .01

 dm2 = .79
 Xm = 3.1

 Mdd0 = 0, 2, .01

 Mddcl = 0, 2, .01
&END

&CALIBRATION_DATA_SET
 # mu muz CT/s MAT Offset Actual_Kappa Actual_Cd

 0, 0, .05997, .6163, 0, 1.0158, .00837

 0, 0, .06894, .6163, 0, 1.0549, .00842
 0, 0, .07814, .6163, 0, 1.0887, .0085

 0, 0, .08744, .6163, 0, 1.1206, .00867

 0, 0, .0969, .6163, 0, 1.1486, .00888
 0, 0, .10656, .6163, 0, 1.1724, .00916

 0, 0, .11641, .6163, 0, 1.1922, .00963

 0, 0, .12644, .6163, 0, 1.2064, .01075
 0, 0, .13666, .6163, 0, 1.2172, .01196

 0, 0, .14685, .6163, 0, 1.228, .0134

 0, 0, .15688, .6163, 0, 1.2364, .0152
 0, 0, .16665, .6163, 0, 1.2408, .01786

 0, 0, .1761, .6163, 0, 1.2431, .02135

 0, 0, .1761, .6163, 0, 1.2431, .02135

 0, 0, .19258, .6163, 0, 1.2353, .035

 0, 0, .1992, .6163, 0, 1.2323, .04284

 0, 0, .20479, .6163, 0, 1.2289, .05138
 0, 0, .20981, .6163, 0, 1.2225, .06283

 0, 0, .21415, .6163, 0, 1.2181, .07734

 .1687, 0, .06998, .7203, 0, 1.0706, .00857
 .1927, 0, .06997, .7351, 0, 1.1432, .00859

 .2167, 0, .07002, .7499, 0, 1.1412, .00859

 .2407, 0, .06994, .7647, 0, 1.3486, .00865
 .2645, 0, .07, .7794, 0, 1.4106, .00869

 .2883, 0, .0699, .7941, 0, 1.6112, .00869

 .312, 0, .06997, .8088, 0, 1.8293, .00884
 .3354, 0, .07008, .8233, 0, 2.0511, .0091

165

 .3587, 0, .06997, .8378, 0, 2.3868, .00936

 .3816, 0, .07, .8522, 0, 2.7063, .00977

 .4041, 0, .07009, .8664, 0, 3.2166, .0104

 .4262, 0, .07003, .8804, 0, 3.8686, .01126
 .4474, 0, .06998, .8941, 0, 4.8397, .01262

 .4675, 0, .06994, .9074, 0, 6.0793, .01449

 .1687, 0, .08005, .7203, 0, 1.0635, .00863

 .1928, 0, .08007, .7351, 0, 1.1503, .00866

 .2168, 0, .07994, .7499, 0, 1.2454, .00867

 .2408, 0, .07997, .7647, 0, 1.2312, .00874

 .2647, 0, .07997, .7795, 0, 1.3395, .00873
&END

10.4 Appendix D: NDARC Model.out File Format

Induced Power Design Variables

 MODEL_ind = 2.0

 Ki_hover = 1.0

 Ki_climb = 1.125
 Ki_prop = 2.0

 Ki_edge = 1.8

 CTs_Hind = 0.05

 kh1 = 1.7

 kh2 = 0.1

 Xh2 = 2.0
 CTs_Pind = 0.149

 kp1 = 1.25

 kp2 = 0.0
 Xp2 = 2.0

 kpa = 0.0

 Xpa = 2.0
 ko1 = 0.0

 ko2 = 8.0

 Maxial = 1.176
 Xaxial = 0.65

 mu_prop = 1.59

 ka1 = 0.0
 ka2 = 0.0

 ka3 = 0.92

 Xa = 5.0
 mu_edge = 0.32

 ke1 = 0.83

 ke2 = 0.0
 ke3 = 1.4

 Xe = 4.8

 kea = 0.0
 Ki_min = 1.085

 Ki_max = 10.0

Profile Power Design Variables

 TECH_drag = 1.0

 Re_ref = 0.0
 MODEL_basic = 2.0

 ncd = 24.0

 CTs_Dmin = 0.026
 d0_hel = 0.008

 d0_prop = 0.003

 d1_hel = 0.0

 d1_prop = 0.1

 d2_hel = 0.31

 d2_prop = 0.25
 dprop = 2.0

 Xprop = 4.0

 CTs_sep = 0.08
 dsep = 1.6

 Xsep = 2.9

 df1 = 0.0
 df2 = 0.0

 Xf = 1.3

 MODEL_stall = 1.0
 nstall = 10.0

 fstall = 1.0

 dstall1 = 2.6
 dstall2 = 60.0

 Xstall1 = 2.2

 Xstall2 = 2.7
 do1 = 0.2

 do2 = 4.7

 dsa = 0.0
 MODEL_comp = 1.0

 fSim = 1.0

 thick_tip = 0.08
 dm1 = 0.01

 dm2 = 0.79

 Xm = 3.1
 Mdd0 = 0.74

 Mddcl = 0.14

166

10.5 Appendix E: Residuals.out File Format

10.6 Appendix F: Input File with Formatting Errors

&RUN_SETTINGS

saveAsFilename = Very Long Run 4 numRuns = 1

 inducedPopulationFactor = 3
 inducedGenerationFactor = 6

 profilePopulationFactor = 6

 profileGenerationFactor = 5
&END

&INDUCED_NDARC_VARIABLES
 MODEL_ind = 2

 Ki_hover = 1.1, 0

 Ki_climb = 1
 Ki_prop = 1

 Ki_edge = 1.6

 CTs_Hind = .12
 kh1 = 0

 kh2 = 1

 Xh2 = 1
 CTs_Pind = .1

 kp1 = 3

 kp2 = 0
 Xp2 = 3.8

 kpa = .62

 Xpa = 1.5
 ko1 = .69

 ko2 = 8.9

 Maxial = 2

 Xaxial = .05

 mu_prop = .1
 ka1 = .42

 ka2 = .76

 ka3 = 0
 Xa = 5.8

 mu_edge = .28

 ke1 = .83
 ke2 = 0

 ke3 = 1.2

 Xe = 3.7
 kea = 0

 Ki_min = .5

 Ki_max = 10
&END

&PROFILE_NDARC_VARIABLES
 TECH_drag = 1

 Re_ref = 0

 MODEL_basic = 2
 ncd = 24

 CTs_Dmin = 0, .1, .01, 5

 d0_hel = 0, .05, .001
 d0_prop = 0, .05, .001

 d1_hel = 3, 2, .01

167

 d1_prop = 0, 2, .01

 d2_hel = .25, .75, .01

 d2_prop = .25, .75, .01

 dprop = 0, 2, .1
 Xprop = 4, 6, .1

 CTs_sep = 0, .1, .01

 dsep = 1, 4, .1
 Xsep = 2, 5, .1

 df1 = 0

 df2 = 0
 Xf = 1.3

 MODEL_stall = 1

 nstall = 10
 fstall = 1

 dstall1 = 2.6

 dstall2 = 60
 Xstall1 = 2.2

 Xstall2 = 2.7

 do1 = .2
 do2 = 4.7

 dsa = 0

 MODEL_comp = 1
 fSim = 1

 thick_tip = .08

 dm1 = 0, .25, .01
 dm2 = 0, 1, .01

 Xm = 2, 4, .1
 Mdd0 = 0, 2, .01

 Mddcl = 0, 2, .01

&END

&CALIBRATION_DATA_SET

 # mu muz CT/s MAT Offset Actual_Kappa Actual_Cd
 0, 0, .05997, .6163, 0, 1.0158,

 0, 0, .06894, .6163, 0, 1.0549, .00842

 0, 0, .07814, .6163, 0, 1.0887, .0085

 0, 0, .08744, .6163, 0, 1.1206, .00867

 0, 0, .0969, .6163, 0, 1.1486, .00888

 0, 0, .10656, .6163, 0, 1.1724, .00916
 0, 0, .11641, .6163, 0, 1.1922, .00963

 0, 0, .12644, .6163, 0, 1.2064, .01075

 0, 0, .13666, .6163, 0, 1.2172, .01196
 0, 0, .14685, .6163, 0, 1.228, .0134

 0, 0, .15688, .6163, 0, 1.2364, .0152

 0, 0, .16665, .6163, 0, 1.2408, .01786
 0, 0, .1761, .6163, 0, 1.2431, .02135

 0, 0, .1761, .6163, 0, 1.2431, .02135

 0, 0, .19258, .6163, 0, 1.2353, .035
 0, 0, .1992, .6163, 0, 1.2323, .04284

 0, 0, .20479, .6163, 0, 1.2289, .05138

 0, 0, .20981, .6163, 0, 1.2225, .06283
 0, 0, .21415, .6163, 0, 1.2181, .07734

 .1687, 0, .06998, .7203, 0, 1.0706, .00857

 .1927, 0, .06997, .7351, 0, 1.1432, .00859
 .2167, 0, .07002, .7499, 0, 1.1412, .00859

 .2407, 0, .06994, .7647, 0, 1.3486, .00865

 .2645, 0, .07, .7794, 0, 1.4106, .00869
 .2883, 0, .0699, .7941, 0, 1.6112, .00869

 .312, 0, .06997, .8088, 0, 1.8293, .00884

 .3354, 0, .07008, .8233, 0, 2.0511, .0091
 .3587, 0, .06997, .8378, 0, 2.3868, .00936

 .3816, 0, .07, .8522, 0, 2.7063, .00977
 .4041, 0, .07009, .8664, 0, 3.2166, .0104

 .4262, 0, .07003, .8804, 0, 3.8686, .01126

 .4474, 0, .06998, .8941, 0, 4.8397, .01262
 .4675, 0, .06994, .9074, 0, 6.0793, .01449

 .1687, 0, .08005, .7203, 0, 1.0635, .00863

 .1928, 0, .08007, .7351, 0, 1.1503, .00866
&END

10.7 Appendix G: Case Study Calibration Data Set and Design Space

10.7.1 Appendix G.1: Case Study Calibration Data Set

Case mu muz CT/s MAT Offset Actual_Kappa Actual_Cd

1 0 0 0.05997 0.6163 0 1.0158 0.00837

1 0 0 0.06894 0.6163 0 1.0549 0.00842

1 0 0 0.07814 0.6163 0 1.0887 0.0085

1 0 0 0.08744 0.6163 0 1.1206 0.00867

1 0 0 0.0969 0.6163 0 1.1486 0.00888

1 0 0 0.10656 0.6163 0 1.1724 0.00916

1 0 0 0.11641 0.6163 0 1.1922 0.00963

1 0 0 0.12644 0.6163 0 1.2064 0.01075

1 0 0 0.13666 0.6163 0 1.2172 0.01196

1 0 0 0.14685 0.6163 0 1.228 0.0134

1 0 0 0.15688 0.6163 0 1.2364 0.0152

1 0 0 0.16665 0.6163 0 1.2408 0.01786

1 0 0 0.1761 0.6163 0 1.2431 0.02135

1 0 0 0.1761 0.6163 0 1.2431 0.02135

1 0 0 0.19258 0.6163 0 1.2353 0.035

1 0 0 0.1992 0.6163 0 1.2323 0.04284

1 0 0 0.20479 0.6163 0 1.2289 0.05138

1 0 0 0.20981 0.6163 0 1.2225 0.06283

168

1 0 0 0.21415 0.6163 0 1.2181 0.07734

2 0.1687 0 0.06998 0.7203 0 1.0706 0.00857

2 0.1927 0 0.06997 0.7351 0 1.1432 0.00859

2 0.2167 0 0.07002 0.7499 0 1.1412 0.00859

2 0.2407 0 0.06994 0.7647 0 1.3486 0.00865

2 0.2645 0 0.07 0.7794 0 1.4106 0.00869

2 0.2883 0 0.0699 0.7941 0 1.6112 0.00869

2 0.312 0 0.06997 0.8088 0 1.8293 0.00884

2 0.3354 0 0.07008 0.8233 0 2.0511 0.0091

2 0.3587 0 0.06997 0.8378 0 2.3868 0.00936

2 0.3816 0 0.07 0.8522 0 2.7063 0.00977

2 0.4041 0 0.07009 0.8664 0 3.2166 0.0104

2 0.4262 0 0.07003 0.8804 0 3.8686 0.01126

2 0.4474 0 0.06998 0.8941 0 4.8397 0.01262

2 0.4675 0 0.06994 0.9074 0 6.0793 0.01449

3 0.1687 0 0.08005 0.7203 0 1.0635 0.00863

3 0.1928 0 0.08007 0.7351 0 1.1503 0.00866

3 0.2168 0 0.07994 0.7499 0 1.2454 0.00867

3 0.2408 0 0.07997 0.7647 0 1.2312 0.00874

3 0.2647 0 0.07997 0.7795 0 1.3395 0.00873

3 0.2886 0 0.08002 0.7942 0 1.4785 0.0088

3 0.3123 0 0.07991 0.8089 0 1.8123 0.00894

3 0.3359 0 0.07997 0.8236 0 2.0282 0.00936

3 0.3594 0 0.08001 0.8382 0 2.2177 0.00948

3 0.3826 0 0.07999 0.8526 0 2.5439 0.00992

3 0.4055 0 0.07985 0.867 0 2.9751 0.01054

3 0.428 0 0.07994 0.8812 0 3.5804 0.01141

3 0.4501 0 0.07989 0.8952 0 4.3215 0.0127

3 0.4713 0 0.07988 0.9089 0 5.3301 0.01456

4 0.1687 0 0.09014 0.7203 0 1.0673 0.00874

4 0.1928 0 0.09 0.7351 0 1.1725 0.00876

4 0.2169 0 0.08999 0.7499 0 1.2369 0.00877

4 0.2409 0 0.08997 0.7648 0 1.3527 0.00886

4 0.2648 0 0.08997 0.7795 0 1.3985 0.0089

4 0.2887 0 0.09003 0.7943 0 1.4718 0.00896

4 0.3126 0 0.08996 0.809 0 1.6821 0.0091

4 0.3363 0 0.08995 0.8237 0 1.9353 0.00952

4 0.3598 0 0.08996 0.8384 0 2.1439 0.00988

4 0.3833 0 0.08997 0.8529 0 2.4108 0.01014

4 0.4065 0 0.08988 0.8674 0 2.8108 0.0108

4 0.4294 0 0.08992 0.8818 0 3.358 0.01173

4 0.4518 0 0.08994 0.8959 0 4.0417 0.01299

4 0.4737 0 0.08992 0.9099 0 4.8654 0.01491

5 0.1687 0 0.1002 0.7203 0 1.0747 0.0089

5 0.1928 0 0.09999 0.7351 0 1.1757 0.00893

5 0.2169 0 0.09999 0.75 0 1.2303 0.00894

5 0.2409 0 0.09998 0.7648 0 1.3401 0.00905

5 0.2649 0 0.09997 0.7796 0 1.4199 0.00914

169

5 0.2889 0 0.10002 0.7944 0 1.4823 0.00927

5 0.3128 0 0.09996 0.8091 0 1.6677 0.0094

5 0.3365 0 0.09996 0.8239 0 1.9029 0.00969

5 0.3602 0 0.09999 0.8385 0 2.0964 0.01025

5 0.3837 0 0.09999 0.8531 0 2.349 0.01076

5 0.4072 0 0.09991 0.8677 0 2.7359 0.01123

5 0.4303 0 0.09995 0.8822 0 3.2475 0.01233

5 0.4531 0 0.09995 0.8965 0 3.8925 0.01397

5 0.4754 0 0.09992 0.9106 0 4.6806 0.01609

6 0.1688 0 0.1102 0.7203 0 1.0904 0.00917

6 0.1928 0 0.11 0.7351 0 1.1817 0.00918

6 0.2169 0 0.10998 0.75 0 1.2322 0.00921

6 0.241 0 0.11 0.7648 0 1.333 0.00934

6 0.265 0 0.10996 0.7796 0 1.4176 0.00947

6 0.289 0 0.11004 0.7944 0 1.5128 0.00978

6 0.3129 0 0.10999 0.8092 0 1.6806 0.00995

6 0.3367 0 0.10997 0.8239 0 1.8826 0.01031

6 0.3605 0 0.11002 0.8386 0 2.0932 0.01092

6 0.3842 0 0.10999 0.8533 0 2.3445 0.01156

6 0.4077 0 0.10996 0.868 0 2.7063 0.01244

6 0.4311 0 0.10994 0.8825 0 3.2389 0.01413

6 0.4541 0 0.10993 0.8969 0 3.8761 0.01603

6 0.4766 0 0.10996 0.9111 0 4.6874 0.0185

7 0.1688 0 0.12021 0.7203 0 1.1097 0.00962

7 0.1929 0 0.11999 0.7351 0 1.1929 0.00959

7 0.2169 0 0.11999 0.75 0 1.2367 0.00963

7 0.241 0 0.12 0.7648 0 1.3329 0.0098

7 0.265 0 0.11997 0.7796 0 1.4331 0.0103

7 0.289 0 0.11993 0.7945 0 1.6082 0.01071

7 0.313 0 0.11994 0.8093 0 1.7881 0.0112

7 0.3369 0 0.12002 0.824 0 1.8915 0.0122

7 0.3608 0 0.11998 0.8388 0 2.1439 0.01327

7 0.3845 0 0.11999 0.8535 0 2.3895 0.01416

7 0.4081 0 0.11993 0.8681 0 2.7545 0.01529

7 0.4317 0 0.11993 0.8828 0 3.2549 0.0171

7 0.4548 0 0.11993 0.8972 0 3.9212 0.01961

7 0.4776 0 0.11992 0.9115 0 4.6583 0.02248

8 0.1688 0 0.13017 0.7203 0 1.1145 0.01056

8 0.1929 0 0.13002 0.7351 0 1.2071 0.01029

8 0.2169 0 0.13002 0.75 0 1.2414 0.01033

8 0.241 0 0.12995 0.7648 0 1.3532 0.01099

8 0.2651 0 0.12998 0.7797 0 1.4598 0.01194

8 0.2891 0 0.1299 0.7945 0 1.6607 0.01331

8 0.3132 0 0.12999 0.8093 0 1.8249 0.01475

8 0.3371 0 0.12995 0.8241 0 1.9981 0.01617

8 0.3611 0 0.12998 0.8389 0 2.2222 0.01776

8 0.3849 0 0.13001 0.8536 0 2.4644 0.01967

8 0.4086 0 0.12988 0.8683 0 2.8501 0.02107

170

8 0.4321 0 0.12995 0.883 0 3.3635 0.02403

8 0.4554 0 0.12984 0.8975 0 4.0092 0.02653

8 0.4783 0 0.12987 0.9119 0 4.7688 0.03045

9 0.1688 0 0.14002 0.7203 0 1.173 0.01172

9 0.1929 0 0.14002 0.7352 0 1.2282 0.01176

9 0.217 0 0.14 0.75 0 1.2564 0.01192

9 0.2411 0 0.13995 0.7649 0 1.3917 0.01441

9 0.2651 0 0.13999 0.7797 0 1.5042 0.01635

9 0.2892 0 0.13995 0.7945 0 1.7245 0.01889

9 0.3133 0 0.14002 0.8094 0 1.9076 0.02141

9 0.3373 0 0.13993 0.8242 0 2.104 0.02503

9 0.3613 0 0.13999 0.839 0 2.3129 0.0264

9 0.3852 0 0.13996 0.8538 0 2.5466 0.02951

9 0.409 0 0.13997 0.8685 0 2.9524 0.03444

9 0.4326 0 0.13998 0.8832 0 3.5103 0.03782

9 0.4559 0 0.13994 0.8977 0 4.193 0.04363

9 0.4786 0 0.13999 0.912 0 5.1341 0.05247

10 0.1687 0 0.09012 0.7717 0 1.0729 0.00886

10 0.1928 0 0.08993 0.7876 0 1.1713 0.0089

10 0.2168 0 0.08997 0.8035 0 1.2388 0.00895

10 0.2409 0 0.09 0.8194 0 1.3594 0.00911

10 0.2648 0 0.08999 0.8352 0 1.3376 0.00921

10 0.2887 0 0.08991 0.851 0 1.5016 0.00941

10 0.3125 0 0.08995 0.8668 0 1.7036 0.00982

10 0.3362 0 0.08999 0.8825 0 1.9594 0.01065

10 0.3598 0 0.08997 0.8982 0 2.1831 0.0114

10 0.3831 0 0.08999 0.9137 0 2.4845 0.01266

10 0.4061 0 0.0899 0.9291 0 2.9295 0.01433

10 0.4287 0 0.08995 0.9444 0 3.4817 0.01644

10 0.4508 0 0.08989 0.9595 0 4.242 0.01887

10 0.4722 0 0.08989 0.9742 0 5.1027 0.02188

11 0.1687 0 0.09014 0.7203 0 1.0673 0.00874

11 0.1928 0 0.09 0.7351 0 1.1725 0.00876

11 0.2169 0 0.08999 0.7499 0 1.2369 0.00877

11 0.2409 0 0.08997 0.7648 0 1.3527 0.00886

11 0.2648 0 0.08997 0.7795 0 1.3985 0.0089

11 0.2887 0 0.09003 0.7943 0 1.4718 0.00896

11 0.3126 0 0.08996 0.809 0 1.6821 0.0091

11 0.3363 0 0.08995 0.8237 0 1.9353 0.00952

11 0.3598 0 0.08996 0.8384 0 2.1439 0.00988

11 0.3833 0 0.08997 0.8529 0 2.4108 0.01014

11 0.4065 0 0.08988 0.8674 0 2.8108 0.0108

11 0.4294 0 0.08992 0.8818 0 3.358 0.01173

11 0.4518 0 0.08994 0.8959 0 4.0417 0.01299

11 0.4737 0 0.08992 0.9099 0 4.8654 0.01491

12 0.1687 0 0.08998 0.6661 0 1.093 0.00871

12 0.1687 0 0.09017 0.6661 0 1.061 0.00871

12 0.1928 0 0.08998 0.6799 0 1.1678 0.00873

171

12 0.2169 0 0.08999 0.6936 0 1.2312 0.00873

12 0.2409 0 0.09 0.7073 0 1.3415 0.00881

12 0.2648 0 0.09 0.7209 0 1.4193 0.00879

12 0.2887 0 0.08997 0.7346 0 1.4713 0.00885

12 0.3126 0 0.08999 0.7482 0 1.6625 0.00893

12 0.3363 0 0.08995 0.7618 0 1.9823 0.00929

12 0.3599 0 0.08998 0.7753 0 2.1418 0.00957

12 0.3834 0 0.08995 0.7888 0 2.3892 0.00963

12 0.4066 0 0.08989 0.8022 0 2.7747 0.00999

12 0.4296 0 0.08991 0.8155 0 3.2782 0.01048

12 0.4522 0 0.08995 0.8287 0 3.9301 0.01106

12 0.4743 0 0.08991 0.8418 0 4.7144 0.01215

10.7.2 Appendix G.2: Case Study Design Space

Description Variable Lower Bound Upper Bound Resolution Fixed Value

model (1 constant, 2 standard) MODEL_ind 2

Induced velocity factors (ratio to momentum theory induced velocity)

hover Ki_hover 1 1.3 0.001

axial climb Ki_climb 1.08

axial cruise (propeller) Ki_prop 2

edgewise flight (helicopter) Ki_edge 2

Variation with Thrust

CT/s for Ki_h variation CTs_Hind 0 0.1 0.001

coefficient for Ki_h kh1 -8 8 0.001

coefficient for Ki_h kh2 -25 25 0.001

exponent for Ki_h Xh2 0 4 0.001

CT/s for Ki_p variation CTs_Pind 0 0.1 0.001

coefficient for Ki_p kp1 0

coefficient for Ki_p kp2 0

exponent for Ki_p Xp2 2

Variation with Shaft Angle

coefficient for Ki_p kpa 0

exponent for Ki_p Xpa 2

Variation with Lift Offset

coefficient for f(offset) ko1 0

factor for f(offset) ko2 8

constant in Ki transition from hover to axial cruise Maxial 1.176

exponent in Ki transition from hover to axial cruise Xaxial 0.65

Variation with Axial Velocity

advance ratio for Ki_prop mu_prop 1

coefficient for Ki(muz) (linear) ka1 0

coefficient for Ki(muz) (quadratic) ka2 0

coefficient for Ki(muz) ka3 0

exponent for Ki(muz) Xa 4.5

Variation with Edgewise Velocity

advance ratio for Ki_edge mu_edge 0 0.45 0.001

coefficient for Ki(mu) (linear) ke1 -5 5 0.001

coefficient for Ki(mu) (quadratic) ke2 -5 5 0.001

coefficient for Ki(mu) ke3 -25 25 0.001

exponent for Ki(mu) Xe 4 12 0.001

variation with rotor drag kea 0

minimum Ki Ki_min 1

maximum Ki Ki_max 10

 Rotor Induced Power Variables

