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1. Introduction 

The development and implementation of advanced aerospace vehicles is an endeavor that can potentially 

affect long-term aviation operations and future system capabilities for several decades. Selecting the best 

vehicle configuration(s) requires a thorough understanding of the capabilities and life-cycle considerations 

required by the end user, the vehicle’s full spectrum operations, as well as technologies impacting both 

operational needs and system performance. The fundamental goal of the proposed effort involves using the 

Aerospace Systems Design Laboratory (ASDL) established expertise in the fields of decision support and 

advanced vehicle Modeling and Simulation (M&S) to develop an innovative trade-off environment for 

advanced vehicle concepts exploration. 

Over the span from October 2010 to September of 2017, a Capability Assessment and Trade-off 

Environment (CATE) with an accompanying Excel user interface was developed. The environment is 

powered by surrogate models created from the NASA Design and Analysis of Rotorcraft (NDARC) code. 

The surrogate models were created from data obtained through experiments performed in NDARC using 

candidate Joint Multi-Role Rotorcraft configurations (Single Main Rotor, Compound, and Tilt-rotor). The 

use of surrogates for distinct concept families provides a novel way of doing rapid trades to investigate how 

performance and vehicle unit cost vary across the different designs. To assess technology impacts on 

vehicle capabilities, CATE includes an Interactive Reconfigurable Matrix of Alternatives (IRMA) that 

allows for input and management of technologies. CATE uses Quality Function Deployment (QFD) style 

qualitative analysis for technologies that do not necessarily affect mission performance but do affect 

mission effectiveness. Users can assess technologies by manually selecting options using the IRMA or by 

using a genetic algorithm to perform a selection based on the user’s objectives. [1] 

This fiscal year work aimed to extend the capabilities that currently exist in CATE. To increase the fidelity 

of the results in CATE, a comprehensive rotor performance analysis using RCAS (Rotor Comprehensive 

Analysis System) has been used to calibrate a new NDARC model that is then integrated directly into CATE. 

To increase the accuracy of the calibration, an optimization algorithm has been wrapped around Wayne 

Johnson’s Rotor Performance Spreadsheet, varying the available NDARC variables to best match the 

calibration data. This process provides a quick and efficient way to calibrate CATE to new models, 

increasing the tools flexibility and accuracy.  

To improve the capabilities of the IRMA in CATE, an extensive rotorcraft technology literature research 

was performed in order to capture new rotorcraft technologies. During the literature research, different 

technologies such as ITEM Engine, Continuous Trailing Edge Flap (CTEF) etc., were identified along with 

their impacts on the various components of the rotorcraft (i.e. physical/functional). These impacts were 
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then modeled in the CATE environment through the use of tech factors on NDARC parameters. This work 

ultimately allows for new technologies to be rapidly assessed on a baseline architecture.  

In order to extend the actual modeling capabilities, investigation on how OpenMDAO can be used to solve 

Multidisciplinary Design Analysis and Optimization (MDAO) problems was performed.  The open source 

software was evaluated as a mean to interface with NDARC and perform calculations on the results.  

The capabilities of CATE were demonstrated for an existing vehicle, the UH-60 Black Hawk. First, a new 

procedure to calibrate NDARC files was illustrated for the UH-60A and UH-60L. The power required, 

power available and component weights were calibrated with published data. Technologies were 

implemented on the vehicle model and the performance and sizing impacts were derived. Among them, the 

technologies used to perform the UH-60L to UH-60M upgraded were implemented and the characteristics 

of the derived UH-60M were analyzed.  

A Discrete-Event Simulation (DES) tool was built to model Reliability, Availability, and Maintainability 

(RAM) of a helicopter performing a mission. This tool can be used to perform system level trade-offs to 

obtain a desired Operational Availability (Ao), Maintenance Free Operating Period (MFOP), as well as 

affordability.  
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2. Framework for characterizing and visualizing the interaction between vehicle 

performance and effectiveness, and subsystem design parameters 

2.1 Introduction 

The following sections present the work done in Design Space Exploration and Technology Impact 

forecasting. The design space exploration works studies the effect of constraints that create a non-

hypercubic design space. This work is particularly relevant to rotorcraft because multiple constraints exist 

in the design space that are either mathematical singularities, incompatible physical variables, incompatible 

variables that cannot be modeled by software, etc. The technology impact forecasting work presents 

methods to identify appropriate forecasting methods to use based on the technology under study. This 

mapping methodology is presented along with a relevant example to the UH-60 helicopter. 

This report outlines the steps required to implement the Set-Based Bounded Adaptive Sampling (SeBBAS) 

approach. The theory of the SeBBAS approach is discussed by Kizer in his PhD Dissertation [2], and is 

only briefly discussed here to provide sufficient background information to understand the process. The 

focus of this report is to describe the steps that are required to run the SeBBAS algorithm, which requires 

both MATLAB and the R programming language. Suggestions are also provided on the most effective way 

to use this approach.  

2.2 Motivation 

Common to practically all engineering design problems is the implementation of constraints. Constraints 

may include some form of design requirement (i.e. wingspan can be no greater than the runway width), 

performance requirement (i.e. aircraft must have a range exceeding 1000 km), or a physical limitation (i.e. 

a design that is not physically possible but the mathematical models representing the system still converge). 

In many of these scenarios, the effects that the constraints have on the design space are not known a-priori, 

and they often results in a non-hypercubic (NHC) design space. 

In addition to constrained design spaces, the engineering models (here an engineering model is taken to be 

a simplified representation of the true physics of a system) are often complex, non-linear, and expensive to 

evaluate. In some instances, engineering models are represented as “black-box” functions, in which the user 

only knows the inputs over some domain, 𝐷 = {𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖]}, and outputs of the model, with no knowledge 

of what calculations are actually performed within the code. In such instances, it is often advantageous to 

fit surrogate models to the engineering models, which provide estimates of the engineering models that are 

inexpensive to evaluate.  
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Caution must be used when taking a surrogate model approach, as surrogate models generally take the form 

of continuous functions that are prone to large errors if extrapolation occurs. Extrapolation can normally be 

avoided by requiring that all design points fall within the domain that was used to create the surrogate 

models themselves (𝑥𝑖 ∈ 𝐷). However, general implementations of surrogate models have no direct way of 

determining if a design point will be feasible or infeasible. That is, a design point 𝑥𝑖 ∈ 𝐷 may actually be 

classified as an infeasible design point by the engineering model, despite being within the domain used to 

create the surrogate models. Thus, the surrogate model will extrapolate and predict a response for a design 

point that is actually infeasible due to some constraint or physical limitation within the engineering model. 

To eliminate this form of extrapolation, an approach capable of classifying a design point as feasible or 

infeasible (a classification model) must be implemented in conjunction with a surrogate model.  

To demonstrate this, consider a 2-Dimensional space defined on the domain 𝐷1 = {𝑥1 ∈ [0,5], 𝑥2 ∈

[−5,5]}, which is to be evaluated using a black box function that applies some unknown constraint to the 

design space. The goal is to fit a surrogate model to this constrained black box function. The general 

procedure for doing so is outlined in Figure 2-1, which requires generating a Design of Experiments (DOE) 

based on the function domain, and evaluating the black box function at each of these design points to 

classify them as feasible or infeasible designs. The surrogate model would then be fit to only the feasible 

design points of the DOE.  

 

Figure 2-1. Example Test Function that Creates a Non-Hypercubic Design Space Through the 

Application of a Constraint 

Clearly, the constrained design space is NHC (a hypercubic design space would produce feasible designs 

for all design points within the domain 𝐷1), with a large infeasible design region present within the design 

space. Also, notice that feasible design points exist for all 𝑥1 ∈ [0,5] at some constrained subset of 𝑥2 

values (i.e. the point (𝑥1, 𝑥2) = (2.5, −2.5)  is feasible, while the point (2.5, 2.5)  is infeasible), and 

likewise feasible points exist for all 𝑥2 ∈ [−5,5] at some constrained subset of 𝑥1 values. Because of this, 

a surrogate model fit to the feasible design points will have x values ranging from 𝑥1 ∈ [0,5] 𝑎𝑛𝑑 𝑥2 ∈

[−5,5], while only a subset of the domain 𝐷1 is feasible. If the surrogate model is used outside the feasible 

region of 𝐷1, then the results of the surrogate model are not only complete garbage due to extrapolation, 
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but are potentially dangerous. That is, it is possible for the surrogate model to extrapolate and predict that 

a design point has an extremely favorable response, when in reality the design is infeasible. Though this 

may seem trivial to identify in the simple example provided in Figure 2-1, it becomes exceedingly difficult 

as the dimensionality of the problem increases beyond three dimensions.  

If gone unchecked, the infeasible design point could be carried through parts of the design process, which 

could potentially cause a lot of costly re-work to be performed at a later stage in the design process. This 

error can easily be removed by checking the selected design point against the original engineering model, 

presenting only a minor headache to the designer. A greater challenge is presented if the surrogate model 

is used in an optimization code to find the optimal design point. If the optimization code has no way of 

knowing whether a design point is feasible or infeasible, it could potentially always be driven to an 

infeasible solution, which due to extrapolation, has a favorable response value over other feasible designs. 

This drives the need for an approach that can identify, with sufficient accuracy, the feasibility of a design 

point based solely on the values of the design points themselves. This is one of the major objectives of the 

SeBBAS approach, the implementation of which is described in the following section. 

2.3 SeBBAS Approach 

2.3.1 Random Forest Algorithm 

The SeBBAS approach utilizes an open-source Random Forest (RF) machine learning algorithm (available 

in the R programming language) to learn and classify any N dimensional design space. The RF algorithm 

is a type of reinforcement learning algorithm, which uses the provided training data set to construct a set of 

decision trees. For the SeBBAS algorithm, the decision trees are constructed with the purpose of classifying 

a given design point as either feasible (given a classification value of 1) or infeasible (given a classification 

value of -1). In this way, the machine learning algorithm is essentially learning where the boundaries 

between the feasible and infeasible regions of the design space lie. Once constructed, the RF model has the 

ability to provide a classification for any design point based on the values of the design variables 

themselves, as well as predict the probability that any given design point is either feasible or infeasible.  

The Random Forest implementation in the SeBBAS algorithm follows the tutorial of Reference [3]. The 

tutorial provides information on the proper syntax required, as well as details on the available settings of 

the Random Forest algorithm (such as the number of decision trees used in the model), and how to set the 

training data for the model.  As this part of the SeBBAS algorithm is fully automated and requires no user 

modifications, no further details are provided in this report. The reader should refer to Brieman provides a 

more in depth discussion on how to use the Random Forest algorithm in the R programming language.  [4] 
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2.3.2 Incorporation of Random Forest Algorithms into SeBBAS 

The Random Forest algorithm is incorporated into SeBBAS as shown in Figure 2-2. First, a lower (𝛼) and 

upper (𝛽) bound must be established for each of the N design variables being considered. These ranges are 

then used to construct a DOE to sample the hypercubic design space domain, defined by 𝐷𝑁 =

{𝑥𝑖 ∈ [𝛼𝑖, 𝛽𝑖]}, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁. The choice of DOE is up to the user’s preference, and will most likely 

problem dependent.  This initial DOE is used as the training data for the Random Forest model, and thus 

all design points in the training DOE must be classified as either a feasible design (1) or infeasible design 

(-1). This classification incorporates any of the constraints discussed in Section 2.1, and at this point the 

classification value represents the global classification of each design point (i.e. any design classified as 

feasible meets ALL of the constraints that were applied to the system. If ANY constraint is violated, then 

the design point is to be classified as infeasible). It is possible to increase the complexity of the SeBBAS 

algorithm by considering each constraint separately, but this capability must be implemented in future 

versions of the code.  

Once classified, a RF model is fit to the training data, and the iterative process of learning the constraint 

boundaries and refining the RF model begins. This process is carried out in the following steps: 

1) Fit a Random Forest model to the classified training data set 

2) Validate the RF model against a validation data set 

3) Based on the RF model and validation data set, suggest new refinement data points by selecting 

randomly sampled points that have the highest probability of being incorrectly classified (these are 

the blue points in Figure 2-2) 

4) Classify the refinement data points, and add them to the training data set 

5) Repeat steps 1-4 until max number of iterations reached, error tolerance has been met, or all 

resources have been used 

 

Once the RF model has been fit and refined, it serves two purposes. First, it can be used to suggest new 

design points to sample that fall within the feasible region of the design space. This is beneficial when a 

large portion of the design space is infeasible due to constraints, as it will allow you to densely sample the 

feasible design region of the design space to create a DOE for fitting surrogate models. Once the surrogate 

models have been created, the RF model can be used to check that any design point run through the 

surrogate models are actually feasible designs.  As discussed in Section 2.2, this is a necessary feature as it 

prevents the surrogate models from extrapolating when a design point is actually infeasible. 
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Figure 2-2: SeBBAS approach used to generate a Random Forest model capable of classifying 

design points as feasible or infeasible based solely on the design variable values 

2.4 SeBBAS Implementation 

Currently, the SeBBAS algorithm is implemented using a combination of MATLAB and the R statistical 

programming language. The user interacts only with MATLAB, which requires a single script file to set up 

the proper inputs and call the SeBBAS algorithm. The remainder of the algorithm is entirely automated, 

although the interfacing between MATLAB and R does require that a number of folders and files are located 

in the proper directory on the local computer. All actions required by the user to properly set up and run the 

SeBBAS algorithm with an arbitrary objective function are discussed in the remainder of this section.  

2.4.1 SeBBAS Files & Folder Structure 

There are two main files that are required in order to run SeBBAS: a MATLAB function called SeBBAS.m, 

and a R script called SeBBAS.R. These two files must be located in the same directory location on the local 

computer. In addition, a folder called R Files must be located in the same directory location as the two 

SeBBAS scripts. This folder contains the files required for MATLAB and R to interact with one another. 

An example of this file structure is shown below in Figure 2-3. In Figure 2-3, the additional MATLAB files 

run_Test_SeBBAS.m and SeBBAS_Tests.m are simply additional MATLAB scripts and functions used to 

test the SeBBAS algorithm. For convenience, they are placed in the same directory location as the SeBBAS 

algorithm.  

The R Files folder contains a series of additional folders that are used to organize the various input and 

output files required in the SeBBAS algorithm with its current setup. These folders are shown in Figure 

2-4, and the important folders are described in the proceeding subsections. In addition to these folders, the 

SeBBAS_Input_Files.csv file must be located in the R Files folder. This .csv file contains the inputs required 



20 

 

to properly run the SeBBAS.R script, and is automatically written by the MATLAB SeBBAS.m function.  It 

should be noted that the spelling of these folders MUST be matched exactly, as both the SeBBAS.R and 

SeBBAS.m functions look for files in these specific folders, which is what allows the process to be 

automated. 

 

Figure 2-3: SeBBAS file locations relative to one another on local computer 

 

 

Figure 2-4: Folder structures that contain inputs, outputs, and results from SeBBAS algorithm 

SeBBAS Input File 

The SeBBAS_Input_File.csv is read directly by the SeBBAS.R script. Currently, there are 10 inputs that 

are required in the input file, which are described in Table 2-1. The input file should contain 10 columns, 

one for each of the ten input variables, and two rows. The first row contains the variable name, which must 

be spelled exactly as shown in Table 2-1, and the second contains the value assigned to each variable. Again 

this process is completely automated in MATLAB, and is just listed here for reference.  

Table 2-1: Required inputs of the SeBBAS_Input_File.csv file 

Input Parameter Name 
Data 

Type 
Description 

num_DV Integer The number of design variables used in the current DOE 

AS_budget Integer 

The adaptive sampling budget (i.e. the number of new 

design points that can be run through the objective 

function) available for the current run.  

AS_DS_factor Integer 

The adaptive sampling – dense sampling factor. This 

determines how many new design points will be randomly 

sampled and classified using the RF model. 
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AS_option String 

 Refine: the SeBBAS.R algorithm will refine the RF 

models fit of the constraint boundary by suggesting new 

points to sample along the boundary. 

 Sample: the SeBBAS.R algorithm will suggest new 

points to include in a DOE that will have a high 

probability of being feasible designs 

Classified_DOE_Filename String 
The .csv filename for the classified DOE, located in the 

Classified DOEs folder. 

RF_Fit_SaveAs String 

The name that the current RF model is saved as. The 

variable should have a .rda file extension, and is saved in 

the RF Fits folder 

DV_Range_Filename String 

The name of the .csv file that contains the name of each 

design variable and corresponding min and max allowable 

value.  Located in the Design Variable Range folder. 

Validation_DOE_Filename String 

The name of the .csv file that contains the validation 

classified DOE. This file is also located in the Classified 

DOEs folder. 

Output_DOE_Filename String 

Contains the file name used to output either a DOE of 

design points used to refine the RF model, or a DOE to 

suggest feasible design points to sample. If “AS_option” is 

set to “refine”, then the file will be saved in the Refinement 

DOEs folder. If it is set to “sample”, it will be saved in the 

Suggested Sample DOEs folder 

Variable_Importance_SaveAs String 

Filename used to save the information on the importance 

of each variable in the RF model. This .csv file is saved in 

the Variable Importance folder. 

 

Classified DOE’s 

The term “Classified DOE” will appear repeatedly in the remainder of this report. A classified DOE simply 

refers to a .csv file that consist of a set of design points that have been run through the objective function 

and classified as either feasible (value of 1), or infeasible (value of -1) based on the constraints provided 

within the objective function. The Classified DOE.csv file will have N+1 rows and M+1 columns, where 

N is the number of design points or cases, and M is the number of design variables. The extra row and 

column account for the following: 

 Column 1: The classification of each design point as either feasible or infeasible 

 Columns 2 – (M+1): The values of the design variables for the current design point 

 Row 1:  The header row that contains “Classification” (or some other term that you wish) in column 

1, and the names of the design variables in the remaining columns 

 Rows 2 – (N+1): The classification and design variable values for each design point 
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To make things clearer, an example is provided in Figure 2-5 for a system with two design variables. In 

row one, the column headers are provided, where “Global Feasible” is used as the header to the 

classification column, and the two design variables are labeled “x1” and “x2”. Starting in row 2, the 

classification of each design point is listed, as well as the corresponding values for each design variable. 

This is repeated for each design point in the DOE. This example can easily be extrapolated for systems with 

any number of design variables by just adding the classification value in column one, followed by the values 

of each design variable in the proceeding columns.  

 

Figure 2-5: Example of a "Classified DOE" on a system with two design variables 

The Design Variable Range folder contains .csv files with information on each design variables name, along 

with their min and max allowable values. An example of this is shown below in Figure 2-6. This example 

has four different design variables, which are labeled in row 1. The minimum and maximum value that each 

design variable can have are listed in rows 2 and 3, respectively. 

 

Figure 2-6: Example .csv file for setting design variable ranges 

These two folders contain a DOE or rather a list of new design points that should be sampled and classified 

using the objective function. The SeBBAS.R script writes .csv files to these folders to pass information back 

to MATLAB. The format of the DOE files are almost identical to the classified DOE shown in Figure 4-3, 

with the exception that the classification column is no longer present. An example of this is shown in Figure 

4-5, where the design variable names are listed in row 1, with the new design points in the remaining rows.  

 

Figure 2-7: Example of the DOE format required to suggest new design points to sample 
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2.4.2 Setup of R Programming Language for SeBBAS 

Software Installations Required 

Two separate software packages associated with R must be installed to run SeBBAS. First, R must be 

installed, which contains the base binary files required for R along with the randomForest Software 

package. This program can be downloaded from https://www.r-project.org/. Secondly, RStudio software 

must be downloaded through ANACONDA, which is an IDE for Python v3.6 and R. ANACONDA v4.3.1 

or later must be downloaded from https://www.continuum.io/downloads. Once ANACONDA is installed, 

open the ANACONDA navigator and install RStudio through ANACONDA (this may require admin 

access). The ANACONDA RStudio package contains the Rscript executable file which allows R to be 

called through the command prompt, which is key to automating the SeBBAS process. Once both R and 

RStudio are installed there are two remaining steps before R has been setup properly to run for SeBBAS. 

Setting Windows Path Environment Variable for Rscript 

MATLAB calls the SeBBAS.R script by using the command system(‘Rscript SeBBAS.R’). This command 

requires that a windows PATH environment variable exists for Rscript. Generally this is done at the 

installation of ANACONDA. However, if the error message shown in Figure 2-8 occurs in MATLAB when 

SeBBAS is run, then the PATH environment variable was not correctly set and must be done manually. 

 

Figure 2-8: Error exception thrown in MATLAB if Rscript windows environment variable has not 

been created for R 

To set the windows PATH environment variable (obviously this only works for Windows machines), first 

locate the Rscript.exe file by searching for it on your computer through the start menu. It should be installed 

as a script file of ANACONDA, and thus located in a subfolder of the ANACONDA program. An example 

of how this might look is shown in Figure 2-9. 

 

Figure 2-9: One example for the likely location of Rscript.exe file on local computer 
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 Once the location of the Rscript.exe file has been located, navigate to “Control Panel -> System -> 

Advanced System Settings” on the local computer (or type “System Environment Variables” into the start 

menu). This will bring up the window shown in Figure 2-10. If not already selected, navigate to the 

“Advanced” tab, and select the Environment Variables…” button in the bottom right. In the Environment 

Variables window, go to the System Variables scroll box, select the Path (or PATH) system variable and 

click “Edit…”. In this new window (shown in Figure 2-11) append the location of the Rscipt.exe file from 

Figure 2-10 to the variable value and hit enter. Not only the folder location is required (i.e. end at “Scripts” 

as shown in Figure 2-11), as windows will automatically search for any .exe file located in this path to find 

the Rscript.exe file. This will successfully add the Rscript.exe file to the windows Path environment 

variable. 

 

Figure 2-10: System Properties window used to edit environment variables 

 

Figure 2-11: Adding Rscript file location as a windows environment variable 

Installing randomForest package in R 

An additional requirement of SeBBAS is that the randomForest package be installed in R. In Windows, this 

can be done by opening the R program and using the toolbar to navigate to “Packages -> Install 

Package(s)…”. When the “HTHTPS CRAN mirror” window pops up, select “0-Cloud [https]” and click 

OK. In the Packages window, select randomForest and click okay again to load it. It should be noted that 

if R was installed as an administrator, then R must be launched as an administrator before attempting to 
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load the randomForest package. If it has not been installed, then the error message shown in Figure 2-12 

will be shown in MATLAB when SeBBAS is run. If these instructions do not work, then please consult the 

internet for help. 

 

Figure 2-12: Error exception thrown in MATLAB if randomForest package is not properly 

installed in R 

Modification Required to SeBBAS.R Script 

One modification must be made by the user to the SeBBAS.R script before the process can be automated. 

Because the R programming language does not have the ability to determine the local directory or path of 

the script itself, the user must manually set this. To do this, open the SeBBAS.R script, and on (or around) 

line 111 of the code, the “parentDirectory” variable must be set to the path of the SeBBAS.R script.  For 

example, if the SeBBAS.R script is located in the folder “SeBBAS Code”, which is located on the Desktop 

of the local computer, then the parentDirectory variable must be set as shown in Figure 2-13. If the user 

fails to set the parentDirectory variable correctly, then MATLAB will throw an exception shown in Figure 

2-14 when run.  

 

Figure 2-13: Example of how to properly set the parentDirectory variable in the SeBBAS.R script 

 

 

Figure 2-14: Error thrown in MATLAB when the parentDirectory variable in the SeBBAS.R file is 

not set properly 

2.4.3 Running SeBBAS Algorithm in MATLAB 

The user runs the SeBBAS algorithm in MATLAB by creating two additional files. First, a script file must 

be created to set the necessary input variables, and call the SeBBAS.m function. The second file is a function 

used to evaluate the objective function of the current study. The format of both of these files are discussed 

in the following subsections. 
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MATLAB Input File for SeBBAS 

The SeBBAS.m function in MATLAB requires eight inputs to run properly, all of which are described in 

Table 2-2. All of these input parameters are straight forward with the exception of the Obj_function 

variable. In MATLAB, an objective function must be created that takes the design variable as inputs, and 

returns a classification of either feasible or infeasible (this will be discussed in more detail in Section 

2593088.0.-946779886), which is simply a function in MATLAB. This function can be passed to the 

SeBBAS algorithm as a function handle by placing the @ symbol in front of the Obj_function name. For 

example, if the objective function created in MATLAB is called “Constraint_Test1”, then this would be 

passed to the SeBBAS function as a function handle by entering SeBBAS(@Constraint_Test1) when calling 

the SeBBAS.m function. 4 

Table 2-2: Input parameters required for the SeBBAS algorithm 

Input Parameter 

Name 
Data Type Description 

run_Case String 

String used to identify the current run in SeBBAS. All .csv 

files will be saved as an extension on this name. For 

example, the .csv file for refinement will be saved as 

“run_Case_Refinement.csv”.  

total_Budget 

3x1 int Cell Array 

Or  

3x1 {String, int, 

int} Cell Array 

Three values are expected in this input: 

[1] Initial Sample Budget:  

a. Int: the number of design points that will be 

used to create the initial DOE to sample the 

design space 

b. String: the name of the .csv file that contains a 

pre-classified initial sample DOE 

[2] Refinement Budget:  the max number of function 

calls that can be made to the objective function 

when refining the RF model to identify the 

constraint boundary 

[3] Suggested Sample Budget: the minimum number 

of design points that will be sampled to suggest 

feasible design points to fit a surrogate model to 

DV_Range_Filename String 
The name of the .csv file that contains the variable 

names and the min and max value of each variable 

validation_Case String or Integer 

 String: If a string data type is provided, it must 

contain the name of the .csv file that contains the 

classified validation DOE. This option should be used 

if the objective function is expensive to evaluate, 

enabling the validation DOE to be pre-calculated to 

reduce run time. 

 Integer: If int data type, the SeBBAS algorithm will 

classify an additional DOE with the number of design 

points equal to the value provided by this variable. 

This option should be used if the objective function is 
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not expensive to evaluate, as it reduces the work that 

the user must do. 

max_refinement_Iter Integer 
The max number of iterations that the SeBBAS 

algorithm will perform to refine the RF model. 

Tolerance Double 

Stopping criteria that will stop the refinement of the RF 

model if the percentage of incorrectly classified 

validation data points falls below this tolerance. 

Obj_function Function Handle 

A function handle that is passed to the SeBBAS 

algorithm that has the structure as described in Section 

2593088.0.-946779886.  

Add. Inputs Structure 

If the objective function requires any other inputs to run 

properly, then all of those additional inputs must be 

packaged in this single parameter. If multiple additional 

input parameters are required, they can be packaged into 

a single structure variable in MATLAB, then 

unpackaged in the Objective Function code for use. If no 

additional inputs are required, then omit this parameter 

from the function declaration. 

 

Objective Function Structure 

The objective function of the design problem must be written as a MATLAB function, with the inputs and 

outputs as shown in Figure 2-15. It is passed to the SeBBAS algorithm as a function handle, as described 

in Section 2593088.0.-946779886. The objective function takes a set of design points (called a DOE in this 

case), and classifies each design point as either feasible or infeasible. If the objective function created in 

MATLAB requires additional inputs beyond the design variable values, then they must all be passed to the 

objective function in a single variable. Each of the input and output parameters of the objective function 

are described in detail in Table 4-3 and Table 4-4, respectively.  

 

Figure 2-15: Structure of objective function in MATLAB 

 

Table 2-3: Description of all input parameters required for the Objective Function 

Input 

Parameter 

Name 

Data Type Description 

Design Points 

NxM 

Double 

Array 

A DOE or set of design points to run through the objective function. 

The columns of the array correspond to the M design variables, 
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while the rows of the array correspond to different design points 

being evaluated. 

Add. Inputs --- 

If the objective function requires any other inputs to run properly, 

then all of those additional inputs must be packaged in this single 

parameter. If multiple additional input parameters are required, 

they can be packaged into a single structure variable in MATLAB, 

then unpackaged in the Objective Function code for use. If no 

additional inputs are required, then omit this parameter from the 

function declaration. 

 

Table 2-4: Description of all output parameters required for the Objective Function 

Output Parameter 

Name 
Data Type Description 

Classification 
Nx1 Integer 

Array 

Returns an array of 1’s and -1’s, where values of 1 correspond 

to a feasible design, and values of -1 correspond to an infeasible 

design.  

If an objective function only requires the values of the design variables as inputs, then the “Add. Inputs” 

variable should be omitted from the function itself. If additional inputs are required (i.e. the constraints are 

inputs to the function) then include this variable. If multiple additional inputs are required, these can be 

packaged as a MATLAB structure or array, and unpackaged in the objective function. An example of this 

is shown in Figure 2-16, where constraints on the values of x1 and x2 are packaged into a single structure 

variable in MATLAB, and then unpackaged inside the objective function. Regardless of what approach is 

taken, the user must write the objective function, and will thus know how to package and unpack these 

additional inputs, which will likely vary on a case by case basis. 

 

Figure 2-16: Example showing one possible way to package additional inputs into a single variable 
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2.5 Test Cases for SeBBAS 

A series of 2D and 3D test functions were created in MATLAB to test the SeBBAS algorithm. The test 

objective function and the script set up to run SeBBAS with the objective function are listed in Appendix 

A. Ten different constraints are available in this test objective function, listed below. A few of them are 

tested and discussed here. For the purposes of this report, the SeBBAS algorithm was slightly modified so 

that the points suggested to refine the RF model will appear as blue squares at each iteration.  

1) Infeasible cross in middle, creating 4 squares in each corner 

2) Upper triangle of hypercube is infeasible 

3) Parabolic constraint 

4) Points that fall within circle centered at (2.5, 2.5) are infeasible 

5) Hyperbolic constraint 

6) Triangular constraint in the middle of the hypercubic design space 

7) Linear band with slope 1 across hypercubic design space is infeasible 

8) Cubic constraint on x1 variable 

9) Sharp corner constraint boundary 

10) 3D sphere of feasible design points 

2.5.1 Parabolic Constraint Test 

The parabolic constraint (constraint 3) was tested on the domain 𝐷 = {𝑥1, 𝑥2 ∈ [0,5]}, using the following 

sampling budget: 

 Initial DOE Sample: 50 design points  

 Refinement Budget: 2500 design points 

The progression of the refinement points being sampled to learn the constraint boundary is shown in Figure 

2-17. The RF model is initially fit to the Initial DOE Classification data (top left figure), which is a fairly 

sparse sample of the design space. The RF model then starts to sample design points that it believes to lie 

near the boundary. At iteration 1, the suggested refinement points resemble a box. SeBBAS then classifies 

these refinement points as either feasible or infeasible designs, which can easily be seen if Iteration 2 is 

observed (points that were blue in Iteration 1 have now been classified as feasible or infeasible and plotted 

again). As the RF model learns more about the design space, the suggested refinement points begin to 

closely resemble the parabolic constraint put into place. As expected, the training data has a dense sample 

of points near the constraint boundary, which helps the RF model refine this boundary as accurately as 

possible.  
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Figure 2-17: Progression of RF algorithm sampling points to learn the location of a parabolic 

constraint boundary 

After Iteration 5, the RF model was used to suggest approximately 12,500 design points that it classified as 

feasible. Of these 12,500 design points, only 0.72% of them were classified as false positives (a false 

positive is a design point that the RF model classified as feasible, when in reality it was infeasible). These 

results, shown in Figure 2-18, indicate that the RF model is now an extremely accurate classification tool.  
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Figure 2-18: Results of RF classification model for parabolic constraint 

2.5.2 Sharp Corner Constraint Test 

A second example was performed using the sharp corner constraint (Constraint 9). The initial DOE and 

refinement sample budgets remained the same, but this time a domain of 𝐷 = {𝑥1 ∈ [0,5], 𝑥2 ∈ [−5,5]}. 

This test was used to determine if SeBBAS and the RF model could resolve a boundary with a sharp corner. 

The results, shown in Figure 2-19 and Figure 2-20, indicate that the test was successful. 

   

    

Figure 2-19: Progression of RF algorithm sampling points to learn the location of a sharp corner 

constraint boundary  
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Figure 2-20: Resolution of RF algorithm on corner constraint boundary 

2.5.3 Significance of Test Results 

The process of training a Random Forest model to learn an arbitrary constraint boundary can be a rather 

expensive process. In addition to running the training data set through the objective function, the SeBBAS 

approach also requires that a validation data set be classified so that the accuracy of the RF model can be 

tested. Depending on the number of dimensions and complexity of the design space, it could potentially 

take thousands of refinement data points to refine the RF model to a sufficient accuracy. Almost certainly 

this process will be far more computationally expensive than simply running a structured, hypercubic based 

DOE and fitting a surrogate model to the feasible design points.  

However, as discussed earlier a huge disadvantage of this traditional surrogate model approach is that it has 

no way of identifying infeasible versus feasible design points. If a point was sampled in the infeasible region 

of the design spaces from Figure 2-18 or Figure 2-20, the surrogate model will extrapolate (this is an 

extrapolation because no information from these portions of the design space were used to construct the 

surrogate model). In this extrapolation zone, the results of the surrogate model become completely 

unreliable. In the academic examples presented in this section, it would be easy for the user to anticipate 

these infeasible zones in the design space, but in more complex problems this is not a viable option. In 

addition, in more complicated functions the infeasible zones will likely be due to a code failing or not 

converging due to some underlying physical constraint, rather than artificial constraints applied after the 

fact. Because of this, the ability to create a classification model of the design space becomes a huge 

advantage as the complexity of the problem increases. 

2.6 NDARC Test with SeBBAS 

The objective of this study was to implement the SeBBAS algorithm using NDARC as the objective 

function. To accomplish this, a MATLAB function was created following the requirements outlined in 
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Section 2593088.0.-946779886. This function fully automates the process of writing the input files, running 

NDARC and parsing the NDARC output to extract the desired performance metrics. A brief overview of 

how this was accomplished is presented in Section 2.6.1. The results of the NDARC study with SeBBAS 

are presented in Section 2.6.2. 

2.6.1 MATLAB Function for NDARC 

A MATLAB function called NDARC.m was created to allow SeBBAS to be used with NDARC. In addition 

to the design variable values from the DOE, this function also requires the NDARC variable names 

corresponding to each design variable. This is because the NDARC variable names are used to write the 

design variable values to the correct location in the NDARC input files, as will be discussed in Section 

2593088.0.-946779886. Thus, as outlined in Table 2-2, the Add. Inputs input variable to the SeBBAS 

algorithm should include the NDARC variable names corresponding to each of the design variables.  

 

Figure 2-21: Inputs required to run the NDARC.m MATLAB function 

There are three main steps required to run NDARC from MATLAB. First, the NDARC input files must be 

written, while taking into account changes to any design variables from the current DOE being run. To 

accomplish this, template NDARC input files are stored as MATLAB cell arrays that can be modified 

before rewriting the NDARC input files in the proper format for NDARC. This process is discussed in 

Section 2593088.0.-946779886. Next, the NDARC itself must be run, which is outlined in Section 

2593088.0.-946779886. Finally, performance metrics must be extracted from the NDARC output file, 

which is discussed in Section 2593088.0.-946779886. 

NDARC File Structure 

The NDARC.m function must be located in the same folder as the SeBBAS.m function to run properly. In 

addition, a folder was created to store all NDARC related files, called NDARC Files. This folder must be 

located in the same folder as the SeBBAS code, and the MATLAB function used to call NDARC. The 

locations of the NDARC.m MATLAB function and the NDARC Files folder relative to the SeBBAS.m 

function are shown in Figure 2-22.  
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Figure 2-22: File and folder locations required to properly run NDARC 

The required contents of the NDARC Files folder are shown in Figure 2-23. First, the NDARC executable 

must be located in this folder. The current NDARC.m function is hard coded to call the ndarc_1_9_x64.exe 

version of the code, so if a different version of NDARC is used then the MATLAB function must be 

changed, as outlined in Section 2593088.0.-946779886. The Size.njob file is the main input file for 

NDARC, which tells NDARC where all of the other input files are located on the local machine. These 

“other” input files (which will be discussed in Section 2593088.0.-946779886) are all located in the NDARC 

Inputs Files folder. The SizeOutput folder contains all of the output files written by NDARC. Finally, the 

NDARC Template Files folder contains the MATLAB versions of the NDARC input files, which allow the 

design variables to be changed before running NDARC.  

 

Figure 2-23: Required contents of NDARC Files folder 

Writing NDARC Input Files 

In general NDARC requires six input files to run, which are described in Table 2-5 below. The Size.njob 

file tells NDARC the location of these six input files, which for SeBBAS is the NDARC Input Files folder 

as shown in Figure 2-23. For this study, it was assumed that the sizing and solution settings would remained 

fixed for each design point. The other four input files all contain NDARC parameters that could potentially 

be treated as design variables. Thus, an approach was developed that would allow each of these inputs to 

be varied to account for changes in the desired design variables from some baseline helicopter model. 
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Table 2-5: Input files required to run NDARC 

Input File File 

Extension 

Description 

Engine Model .list 
Contains inputs for the performance and specifications of 

the engine. 

Flight Conditions .cond Inputs for the flight conditions (i.e. altitude, velocity, etc.) 

Mission Statement .miss 
Inputs that specify the mission(s) that the helicopter will be 

sized to. 

Aircraft Configuration .airc Inputs that define the configuration of the helicopter. 

Sizing Settings .size 
Specifies the reference points that will be used to size the 

helicopter 

Solution Settings .sol 

Sets the parameters used for the internal solvers in 

NDARC, such as max number of iterations and relaxation 

parameters. 

Constructing Template Input Files 

The approach taken was to save a baseline input file for the engine model, flight conditions, mission, and 

aircraft configuration as a template file. To do this, the baseline input files were imported to MATLAB and 

saved as cell arrays. The cell arrays re saved as .mat files in the NDARC Template Files folder shown in 

Figure 2-23. Within each cell array, the location of the desired NDARC variables were identified (the 

location that they had within the cell array is given as some combination of a row and column number), and 

hardcoded into the writeNDARC_InputFiles subfunction of the NDARC.m function. This subfunction in 

turn matches the provided NDARC variable name to the correct template file, writing each design variable 

to the correct location. This is why the design variable names are required ad an additional input to the 

NDARC.m function. An example of how this works is shown in Figure 2-24, where the list of variable 

names is compared to an available list of NDARC variables. If a match is found, the corresponding design 

variable will be written to the correct location in the correct template file. If no match is found, then an 

error will be thrown, halting the execution of SeBBAS and indicating to the user that this variable must be 

added.  

 

Figure 2-24: Example of how NDARC function uses variable names to write design variable values 

to correct locations 

To maintain consistency in variable names, the list of NDARC variable available in the NDARC.m 

MATLAB function are identical to the names that are provided in NDARC’s Input Manual, with one 
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exception. In some instances (mainly with the drag coefficient parameters), a NDARC variable has the 

same name across different structures. For example, the variable name for zero lift drag coefficient, CD, is 

the same for the fuselage as it is for the wing or tail. In this case, the variable is given an extension to specify 

where to write it in the input template files. For the fuselage, CD would be given the extension “_fus”, 

making it CD_fus. The NDARC variable that are currently available in the NDARC.m for function are listed 

in Appendix B, with descriptions provided to increase their clarity.  

It should be noted that the input template files must be altered every time a new study is performed using a 

different baseline helicopter as the starting point. It is possible to directly edit the .mat template files to 

enter the new values for the baseline helicopter, in which case the NDARC variable locations will remain 

the same. The other option is to import the baseline helicopters input files and create new templates directly 

from them. In this case, the user would have to rewrite the writeNDARC_InputFiles in the NDARC.m 

MATLAB function to specify the new location of each NDARC variable. Unfortunately, to the best of this 

author’s knowledge there is no easy way to get around this. However, once the template files have been 

created and the writeNDARC_InputFiles files adjusted, they will be ready for use with SeBBAS. 

Running NDARC 

Because the NDARC executable is run through the command prompt, it must be called using the system 

command in MATLAB. This is performed in the runNDARC function embedded within the NDARC.m 

function. The NDARC executable requires two inputs at the command line, the filename that contains 

information on where all other NDARC input files are located (this is the Size.njob file), and the filename 

to write the general results to (called UH60.out for this study). The command to call NDARC itself relies 

on knowing the exact name of the NDARC executable itself. For this study, the NDARC executable used 

is called ndarc_1_9_x64.exe. The command to call NDARC is:  

'ndarc_1_9_x64.exe <Size.njob>  .\SizeOutput\UH60.out' 

The first entry after the NDARC executable is the input file name located within <> symbols. The next 

entry is the desired path location and filename of the output file. For the example shown above, NDARC 

will read the Size.njob file (which must be located in the same folder as the NDARC executable) to 

determine the location of all of the other input files, and it will write the UH60.out output file to the 

SizeOutput folder.  

Extracting NDARC Performance Metrics 

Currently, the NDARC output file is read using MATLABs textscan function, which reads the output file 

information into a cell array. The values of the desired performance metrics are then extracted from this 
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cell array from their known locations within the cell array. To determine the locations of a given 

performance metric, the MATLAB cell array was searched once to find the location of each performance 

metric, and their locations were hard coded into the MATLAB function. Several tests were run, and it was 

found that the location of each performance metric remained the same as the design variables were changed. 

Admittedly, this is not a very robust approach, as it is not known if the location of the performance metrics 

within the cell array will vary on rare (or possibly even more common) occasions that were not tested for. 

However, the current study did not rely on extracting the correct values for certain performance metrics, 

but rather if NDARC converged or not. If NDARC failed to converge, then NAN would be returned in 

place of the first performance metric value. 

In future studies, the performance metrics from NDARC will likely be used as constraints. Because of this, 

a more robust approach to parsing the NDARC output file should be implemented in place of the current 

readNDARC_Output function. The constraints must then be written into the NDARC.m function that will 

classify design points as either feasible or infeasible based on the current designs performance. Current 

classification is based solely on whether NDARC was able to converge to a solution for a given design 

point, taking no other constraints into consideration.  

Summary of Running NDARC 

The general process discussed above is outlined in Figure 2-25. Any time a new design point needs to be 

tested, the NDARC design variables will be written to the correct location within the input files. NDARC 

will then be run using the MATLAB system command. If NDARC is successfully executed, then the current 

design point will be classified as either feasible or infeasible.  

 

Figure 2-25: Summary of process used to classify a NDARC design point 
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2.6.2 NDARC Case Study 

In the test cases studied in Section 2.4 the SeBBAS approach provided incredibly accurate classification 

models, with results showing an accuracy rating of over 99% for the 2D test cases. Based on these initial 

results, the following hypothesis was proposed: 

If the RF classification model offers a significant improvement over the current surrogate model 

approach, a significantly higher percentage of feasible points would be sampled through the use 

of this RF classification model than would be sampled using randomly design points across the 

entire design space.   

To test this hypothesis on an engineering design problem, a case study was carried out using a UH-60 

helicopter as the baseline model. First, a RF model was fit to NDARC using the process outlined in Figure 

2-2. Two separate tests were then carried out, as described by Figure 6-6. First, a set of 1000 design points 

were randomly selected and classified across the entire hypercubic design space. This serves as a baseline 

value to approximate the percentage of the design space that is infeasible. Next, the RF classification model 

was use to suggest 1000 design points that it had already classified as feasible. The percentage of infeasible 

design points sampled between these two tests are then compared. If the hypothesis is correct, then the RF 

classification model offers a significant improvement to the current method, as it would be capable of 

accurately classifying design points that are tested through surrogate models without requiring the user to 

run each design point through an expensive engineering model. 

 

Figure 2-26: Approach used to test the proposed hypothesis and determine if SeBBAS approach 

yields significant results 
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Setup of UH-60 Case Study 

Design Space 

Five NDARC variables were varied from the baseline values during this case study. These five variable, 

along with their ranges are provided in Table 2-6. These five variables were randomly selected from the list 

of available NDARC variable in Appendix B. The study was limited to five design variables based solely 

on time constraints, and can be extended to any number of NDARC variables in the future. 

Table 2-6: Design variables and ranges used during the NDARC case study 

NDARC Design Variable Lower Limit Upper Limit 

Diskload 5 10 

CWs 0.04 0.15 

TECH_blade 0.75 1.25 

TECH_eng 0.75 1.25 

Peng 1000 1800 

Design Point Classification  

No constraints were applied to the UH-60 performance results. Classification was made solely based on 

whether NDARC successfully converged (feasible) or failed to converge (infeasible) at a given design 

point. This was intentionally done to test the ability of the SeBBAS approach to handle “black-box” 

engineering functions that have zones of non-convergence.  

Fitting Random Forest Model 

For this case study, the Random Forest model was fit using 5000 training data points, with 5000 design 

points allotted for refinement.  

Results of UH-60 Case Study 

The UH-60 case study was repeated three times using the design variables outlined in Table 2-6, with the 

results shown below in Table 2-7. Though the Random Forest classification model did show an 

improvement in sampling feasible design points over a purely random sampling method, the results were 

by no means impressive. However, based on the validation data set the RF classification model was accurate 

97.35% of the time. This would strongly indicate that the SeBBAS approach could produce significant 

results under the right circumstances. That is, one would expect the benefits gained from the SeBBAS 

approach to increase as the extent of the infeasible region of the design space increases. 
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Table 2-7: Results of UH-60 case study 

Run 
# Design 

Points 

RF Model Random Sampling 

# Infeasible DP % Infeasible # Infeasible DP 
% 

Infeasible 

1 1000 22 2.20% 43 4.30% 

2 1000 26 2.60% 61 6.10% 

3 1000 30 3.00% 55 5.50% 

 

Examining Table 2-7, the random sampling performed in this case study only found approximately 5% of 

the randomly selected sample space to be infeasible. To test the theory stated above, the same study was 

run again, with additional constraints placed on performance metrics of the helicopter in an attempt to create 

larger infeasible regions within the design space. Two arbitrary constraints were applied purely to restrict 

the feasible region of the design space: 

1) Empty Weight < 11,000 lbs. 

2) Total Helicopter Cost < $13 million 

With these new constraints applied, approximately 46% of the design space was found to be infeasible 

based on the random sampling results. From the validation data set, the accuracy of RF classification model 

was about 97.56%, which was practically identical to the unconstrained case study. With this newly 

constrained design space, there is clearly an advantage gained from using a RF classification model to test 

design points for feasibility.  

Table 2-8: Results from the constrained design space analysis 

Run 
# Design 

Points 

RF Model Random Sampling 

# Infeasible DP 
% 

Infeasible 
# Infeasible DP 

% 

Infeasible 

1 1000 31 3.10% 445 44.50% 

2 1000 37 3.70% 451 45.10% 

3 1000 27 2.70% 484 48.40% 

 

Two initial conclusions were drawn from this case study. First, as one might expect the RF classification 

model is more beneficial for problems that have large infeasible regions within the design space. This is 

simply because as the infeasible regions grow in size, a random sampling or structured DOE approach has 

a greater probability of sampling a design point from the infeasible region, whereas the RF classification 

model has at least some knowledge of the design space, allowing it to classify design points with relatively 

high accuracies. Secondly, even for design problems that aren’t highly constrained, the RF classification 
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model still offers an improvement, though the computational effort required to fit the RF model may not  

be worth it in these cases.  

2.7 Suggested Use of SeBBAS Approach 

Once the SeBBAS approach has been used to fit a Random Forest classification model to the design space, 

it is up the user on how to use it. The approach suggested by this author is outlined in Figure 2-27. This 

approach takes advantage of the fact that a RF model fit in R provides not only a classification, but also the 

probability that the classification is correct. In actuality, for a given design point the RF model will calculate 

the probability that it should be classified as feasible (value of 1) or infeasible (value of -1), and it will 

return the classification that had the highest probability of being correct. For example, for a design point �̅� 

the RF model might return 𝑃(1) = 0.95 and 𝑃(−1) = 0.05, the RF classification model would classify �̅� 

as feasible. In this case there is a strong confidence that the design point is feasible, and thus the surrogate 

model would be used to evaluate the design point. On the other hand, if 𝑃(1) = 0.51 and 𝑃(−1) = 0.49, 

the RF model would still classify the design point as feasible. However, there is clearly little confidence in 

this classification being correct, and thus it would be prudent to evaluate this design point using the actual 

engineering model.  

To perform this refinement, a threshold confidence limit, 𝜀, must be selected. The threshold limit is simply 

the probability that the RF model classification is correct. Any design point for which the confidence level 

is above the threshold limit would be evaluated using the surrogate model, while those design points that 

have a high probability of being classified incorrectly according to the RF classification model are evaluated 

using the actual engineering model. This process attempts to correct for false classifications provided by 

the RF model, while minimizing the number of design points that have to be evaluated using the (potentially 

expensive) engineering model(s). 
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Figure 2-27: Suggested use of SeBBAS approach to determine whether or not surrogate model or 

engineering model will be analyzed based on the confidence of the RF classification 

The process outlined in Figure 2-27 was performed using the case study presented in Table 2-8. A threshold 

confidence level of 80% was used in this study. The results, shown in Table 2-9, indicated that this method 

shows promise in identifying and correcting for false classifications provided by the RF classification 

model. In addition, depending on the availability of computational resources and time, the accuracy of this 

method can be improved by setting a higher threshold confidence limit requirement, at the cost of more 

calls to the engineering model. An example of this is shown by the results presented in Table 2-10, which 

used a threshold confidence limit of 90%. Here, slightly better accuracy was gained at the cost of 

approximately three times the computational expense, indicating diminishing returns on the accuracy 

gained as the threshold confidence limit approaches 100%. 

Table 2-9: Study conducted to attempt to identify incorrect classifications from RF model using ε = 

0.80 

Run 
# Design 

Points 

Original % 

Correct 

Classifications 

Refined % 

Correct 

Classifications  

Number of Engineering 

Model Runs Required 

1 1000 96.90% 98.00% 77 

2 1000 96.30% 97.60% 107 

3 1000 97.30% 98.30% 78 
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Table 2-10: Study conducted to attempt to identify incorrect classifications from RF model using ε 

= 0.90 

Run 
# Design 

Points 

Original % 

Correct 

Classifications 

Refined % 

Correct 

Classifications  

Number of Engineering 

Model Runs Required 

1 1000 96.90% 98.70% 251 

2 1000 96.30% 97.90% 260 

3 1000 97.30% 99.00% 243 

2.8 Future Work 

Based on work done by Justin Kizer in his PhD dissertation [2], the SeBBAS algorithm has been 

implemented using a combination of MATLAB and the R statistical programming language. This 

combination is required as the desired Random Forest machine learning algorithm is not available directly 

in MATLAB. However, the same Random Forest algorithm available in R is also available in Python. Thus, 

Python would provide a single, open source platform to implement the SeBBAS algorithm, which would 

streamline the process immensely. For example, as disused in Section 2.4 MATLAB and R communicate 

through .csv files that must be written and read during each iteration. Though this process is not 

prohibitively expensive, it does provide the opportunity for user errors if the .csv files are not located in the 

proper location. Because of this, it is highly suggested that the SeBBAS algorithm be transitioned from 

MATLAB/R implementation to a single Python based code.  

Work must also continue on testing the SeBBAS algorithm using NDARC. As outlined in Section 2.6, a 

MATLAB function has been created to run NDARC and classify a design point as either feasible or 

infeasible. This function provides some flexibility on the selection of design variables, though more can be 

added if needed. To date, SeBBAS tests on NDARC have been successfully run with up to five design 

variables, resulting in a classification accuracy of approximately 97% when checked against validation data 

sets. Future work should focus on expanding the number of design variables from five to a sample size 

representative of CATEs modeling capabilities. The only limitation to selecting a larger subset of design 

variables is the computational expense associated with exploring a larger design space. 

Caution should be used when setting the ranges for the design variables though. If the range of a design 

variable is too large (thus the design variable takes on infeasible values), it may cause NDARC to enter an 

infinite loop and never converge. If the design variable ranges are found to be reasonable and the code still 

enters an infinite loop (i.e. NDARC never completes its run and return command to SeBBAS), then it is 

likely that NDARC is having issues with the solvers used within the code. If this is the case, further 
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investigation is required to identify the underlying cause of the issue before the SeBBAS algorithm can 

successfully be run. [2] 
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3.  Create a method for selecting and applying multiple quantitative technology forecasting 

techniques to a specific rotorcraft configuration 

3.1 Introduction 

Within the engineering community as a whole, technology forecasting involves assessing the impact of 

emerging technologies on future system design and performance. [5] Complex system design relies heavily 

on accurate forecasting as decision makers utilize these forecasts to better understand the problem at hand. 

Technology forecasting can be a difficult endeavor as there are many uncertainties associated with the 

process. As such, properly selecting and implementing a technique, or set of techniques, is vital to future 

system design. This study seeks to develop a methodology to select the proper technology forecasting 

technique, or set of techniques. First the motivation of such effort is discussed, followed by an extensive 

literature search that must be performed in order to understand existing technology forecasting techniques. 

Next, a methodology is developed to aid selecting the appropriate technique for the given study. Finally, 

the methodology implemented in the form of a Microsoft Excel-based decision support tool and 

demonstrated with a technology applicable to complex systems of interest, particularly to Rotorcraft. 

3.2 Motivation 

Previous research with the Capability Assessment and Tradeoff Environment (CATE) has identified the 

need for an improved technology forecasting approach. [6] CATE currently utilizes a “k-factor” approach 

to estimate performance impacts. This approach utilizes quantitative representations of technologies by 

estimating their impacts as changes to baseline metrics. In order to develop these estimated impacts in the 

past, the Del-phi method was used. The Del-phi method is essentially obtaining expected technology 

impacts from expert elicitation. There are several draw backs to this type of approach. First, the process of 

locating and contacting Subject Matter Experts (SMEs) can be difficult and time consuming. Second, 

educating the SMEs on the method itself can also be strenuous task. Finally, the results of iterating with the 

SMEs can be prone to bias as they want to “sell” their technology. This can lead to poor technology 

forecasts. Understanding these difficulties has led to the need for a better way to forecast a given 

technology. There is a need to implement new technology forecasting techniques to better represent 

technologies within the CATE environment. 

3.3 Background and Literature Search 

There are two main ways to characterize a given technology forecasting technique: (1) normative and (2) 

exploratory. Normative technology forecasting involves determining a course of action to help reach a 

future goal. On the other hand, exploratory technology forecasting is used when a decision maker desires 

to predict the future state of a given technology area. [7] There are many different types of forecasting 
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techniques, but it is important to note that they can be fit into 9 basic families of techniques: Expert Opinion, 

Trend Analysis, Monitoring and Intelligence methods, Statistical Methods, Modeling and Simulation, 

Scenarios, Valuing/Decision/Economics Methods, Descriptive and Matrices Methods, and Creativity. [8]  

 

Upon understanding the motivation and background for the task, it is important to perform an extensive 

literature search in order to better understand the task at hand. This literature search consists of three main 

components: (1) understanding the families of forecasting techniques in some detail, (2) understanding 

what forecasting techniques are related to the complex systems of interest, and (3) understanding the current 

state of technology forecasting technique selection. 

3.3.1 Families of Forecasting Techniques 

Each of the families of forecasting techniques utilizes a different approach to forecast a given technology 

based on the characteristics of the technology itself as well as the desired outcome of the forecast. The 

following descriptions are based on the work of Firat, unless otherwise noted. [9] 

Expert Opinion 

Methods in the Expert Opinion family understand or forecast technological development utilizing intensive 

discussions with subject matter experts. The most common method in this family is the Del-phi Method, 

which is discussed in the previous section. Firat states that this method “combines expert opinions 

concerning the likelihood of realizing the proposed technology as well as expert opinions concerning the 

expected development time into a single position.” Essentially, iterating with the SMEs will lead to an 

expected system-level impact of a given technology while maintaining an understanding of the time it will 

take to realize that technology. 

Trend Analysis 

Trend Analysis methods involve prediction of a technology’s impact utilizing quantitative historical 

information and continuing it into the future. Such methods include economic forecasting models and 

techniques such as regression, exponential smoothing and Box-Jenkins’ ARINA model and growth curve 

fitting. [10] These methods utilize the fact that a technology usually has a life cycle of development that 

follows some kind of trend. For example, growth curve fitting utilizes an estimation of a technology’s life 

cycle development curve. This curve is then used to forecast the technology’s impact into the future based 

on its development up to its current state 
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Monitoring and Intelligence Methods 

Monitoring and Intelligence methods are suitable for making one aware of changes on the horizon that 

could impact the penetration or acceptance of the technologies in the marketplace. [11] Resource 

availability is an issue for these methods given the fact that many of these methods require “scanning a 

technology’s environment” in order to understand the impact of adoption. This means that experts must be 

identified and “tracked” by maintaining contact with them. 

Statistical Methods 

Two of the most popular methods in the Statistical Methods family are Correlation Analysis and 

Bibliometric Analysis. Correlation Analysis forecasts the development of a new technology when the 

development patterns of an existing, related technology are known. Martino describes one such method, 

i.e. Lead Lag Correlation, by comparing the time lag between the development of composite components 

in aircraft and the application of such components into actual aircraft as shown in Figure 3-1 Bibliometric 

Analysis involves a text mining approach to search existing publications as well as existing and up-and-

coming patents. [12] An important aspect of bibliometric analysis is that it goes beyond expert biases by 

using sound data from published results. 

 

Figure 3-1: Time Lag from Development to Application of Advanced Composites in Aircraft 

Modeling and Simulation (M&S) 

Modeling and Simulation methods utilize the development of a “model” of the “real world” where a 

technology of interest can be infused in order to understand its impacts at a system level. One such method 

is a Causal Model. The development of causal models requires the understanding of what causes 

technological change. Martino introduces what’s called Technology-Only causal models that assume 

“technological change can be fully explained by factors internal to the technology-producing system.” [12] 
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In his discussion of this type of causal model, Martino discusses the universal growth curve developed by 

Floyd (1968) which attempts to explain growth toward an upper limit based on the effort extended by active 

researchers. [13] 

Scenarios 

The Scenarios family of methods seeks propose different concepts of future technology based on a well-

defined set of assumptions. [9] Each different concept, or alternative, represents different characteristics of 

a future technology. Each concept is then evaluated against the assumptions and results in being able to 

determine the scenario most likely to occur. [10] 

Valuing/Decision/Economics Methods 

According to Levary and Han, the most popular method in this category is the “relevance tree approach”. 

This normative approach to technology forecasting involves breaking down the goals and objectives of the 

technology of interest into lower level goals and objectives in a hierarchical format. The probabilities of 

achieving each goal and objective in the various levels of the “tree” must be estimated, allowing the decision 

maker to forecast the likelihood of achieving the stated goals and objectives of the technology of interest. 

[10] 

Descriptive and Matrices Methods 

There are two main methods in this family of techniques: technology road-mapping and analogies. 

Technology road-mapping consists of projecting major technological elements of product design and 

manufacturing together with strategies for reaching desirable milestones efficiently. One such forecast 

related to the complex systems of interest to CATE are the goals set forth in the Aviation Science & 

Technology Strategic Plan (ASSP). [14] Such roadmaps aid decision makers by providing a vision for 

where a given technology area may be going in the future. Analogies involve a systematic comparison of 

an up-and-coming technology with an existing technology that is believed to have been similar in some 

respects. [9] The down side of analogies is that there is no guarantee that technologies being developed 

today and in the future will in fact follow the same development process as past technologies. As such, 

these forecasts are probable at best, but never certain. [12] 

Creativity 

The creativity family of methods is the most interesting. It includes methods such as brainstorming and 

science fiction analysis. Brainstorming involves simply thinking about where a technology may go using 

sound engineering judgement, while science fiction analysis involves looking at technologies used in 

science fiction novels and movies and trying to understand the author’s or writer’s basis for conjuring up 
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such technology. Due to the creative nature of such methods, techniques in this category can only give a 

decision maker a direction that a technology may go and not any concrete results. 

3.3.2 Forecasting Techniques Related to Complex Systems 

Given the wealth of information on forecasting techniques, it is important to understand the techniques that 

are related to the complex system design of interest. Previous research as part of the CATE development 

effort, involved developing a taxonomy of forecasting techniques for complex systems. [15] In his paper, 

Smith compiled a taxonomy of forecasting techniques related to complex system design utilizing a text 

mining approach. The development of the taxonomy involved 3 steps: (1) techniques were compiled based 

on results of existing literature surveys, (2) the techniques were screened utilizing the text mining approach, 

and (3) the techniques were characterized based on criteria relevant to complex systems. As a result of this 

effort, a taxonomy of 60 techniques was compiled, utilizing techniques across all 9 families of techniques. 

After performing an extensive literature search, Smith developed a way to describe techniques which 

resulted in 12 characteristics found in Table 3-1 below. [16] [17] [18] 

Table 3-1. Technology Forecasting Technique Characteristics 

Technique Characteristics 

1. Capability to forecast incremental change 

2. Capability to forecast radical innovations 

3. Capability to forecast modular 

technologies 

4. Life cycle prediction capability 

5. Capability to forecast for stipulated time 

horizon 

6. Data availability 

7. Data validity 

8. Technology development predictability 

9. Technology similarity 

10. Method of adaptability 

11. Ease of technique implementation 

12. Cost of technique implementation 

 

More details about the approach used to compile this list of characteristics, as well as a description of each 

technique characteristic from Table 3-1, can be found in Intepe’s work. [16] 
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3.3.3 Current State of Technology Forecasting Technique Selection 

Given the number of forecasting techniques that exist, there is a need to aid decision makers in selecting 

the appropriate technique to use for their analysis. One such approach is described by Mishra and Deshmukh 

and is outlined herein. [18] Mishra discusses the steps for selecting an individual forecasting technique. It 

begins with rating the technology of interest based on characteristics that are related to the characteristics 

of the techniques. One such mapping is shown in Table 3-2 below. Next a multi-criteria decision making 

technique is used to evaluate the techniques and select the technique that is closest to the ideal technique. 

One such MCDM technique that could be used is Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS). 

Table 3-2. Matching Technology Characteristics to Technique Characteristics 

Technology Characteristic Technique Characteristic 

Evolutionary change Capability to forecast incremental change 

Revolutionary change Capability to forecast radical innovations 

Modularity of technology Capability to forecast modular technologies 

Life cycle Life cycle prediction capability 

Time frame of interest Capability to forecast for stipulated time horizon 

Existing data availability Data availability 

Exiting data validity Data validity 

Technology readiness level Technology development predictability 

Existing similar technologies Technology similarity 

Amount of existing information Method of adaptability 

Time available for study Ease of technique implementation 

Resources available for study Cost of technique implementation 

 

The method described above can be utilized to select a single forecasting technique that can be applied to 

the desired technology to be forecasted. Given the complexity of the systems to which technologies can be 

infused, accurate forecasts are vital. As such, developing a way to select multiple techniques can provide a 

more accurate forecast. 

3.4 Methodology and Implementation 

The overall approach used for this effort is outlined in Figure 3-2. The first step involves developing and 

refining a methodology, applicable to CATE, to select technology forecasting techniques. This involves 

leveraging the taxonomy of forecasting techniques developed by Smith. [15] Doing so would limit the 

scope of the problem, with the focus now being on developing a selection methodology rather than further 
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exploring the forecasting techniques themselves. The next step is to demonstrate the developed 

methodology on a technology related to the UH-60 Blackhawk. This is desired as the UH-60 is used as a 

case study under the CATE research efforts. The UH-60 is a relevant system that is still being used today 

as well as looking to be upgraded for future endeavors. Finally, integrating this methodology into the CATE 

environment would allow decision makers to get more accurate forecasts of technologies they desire to 

infuse onto the complex system of interest 

 

Figure 3-2. Outlined Approach 

3.4.1 Methodology Development 

Most of the effort for this research effort is concentrated on the first step of the overall process in Figure 2 

due to time constraints. Figure 3 illustrates a closer look at this first step.  

 

Figure 3-3. A Closer Look at Step 1 

As shown in Figure 3-3, this step begins by examining the technology and technique characteristics set 

forth by Smith and Mishra what are contained in Table 3-2. [15] [18] This examination involves 
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determining if this list is not only comprehensive but also if there are any redundancies as well. Next, the 

mapping from technology characteristics to forecasting technique characteristics is explored. There needs 

to be a way to select a technique based on the technology’s characteristics. After investigating the mapping, 

a Microsoft Excel-based decision support tool is developed in order to implement the methodology in a 

usable fashion. Finally, this process is demonstrated utilizing a relevant technology. Given most rotorcraft 

are powered by turboshaft engines and upgrades are always being performed to improve engine 

performance, a turboshaft engine upgrade is take through this process, namely the 3,000 shaft horsepower 

Improved Turbine Engine Program (ITEP) engine. Each sub-step in Figure 3-3 is explained in detail below. 

Examine Technology and Forecasting Technique Characteristics 

For the purpose of this research, the list of technology and technique characteristics is inclusive enough as 

well as without any redundancies. This list is compiled utilizing the works of Mishra, Cheng, and Intepe. 

Mishra validated the first 5 characteristics in Table 3-2 through a questionnaire given to 45 random 

technology forecasting experts and he selected characteristics encompass many aspects of a given technique 

[18]. Characteristics 6-12 are used by both Cheng and Intepe in separate efforts. [17] [16] 

Investigate Technology to Forecasting Technique Mapping for Selection 

With the characteristics of both the technology and techniques now established, the next step is to begin 

developing a way to select a technique, or subset of techniques, to be used for forecasting. Initial thoughts 

were to just utilize the TOPSIS method described by Mishra. [18] The TOPSIS process is done with the 

technology’s characteristics being scored and used as the ideal solution. Then the characteristics of each 

technique are evaluated and the techniques are ranked based on their relative distance to the ideal technique 

(i.e. how close they are to the technology characteristics).  

 

During the implementation of this method, it was discovered that this is not very effective given the 

taxonomy developed by Smith that is being used. In order to use Mishra’s method, each technique’s 

characteristic needs to be scored on a scale of 1-10, with 1 meaning that the technique does a poor job with 

the characteristic and 10 meaning that the technique performs the characteristic exceptionally. The 

taxonomy developed by Smith scores each characteristic with either a 0 or a 1, with 0 meaning it does not 

have this characteristic and 1 meaning it does. Utilizing this method resulted in the technique with the most 

1’s for its characteristics being selected as the best technique. This makes sense because if a technique has 

every characteristic, it can perform a forecast for almost any technology. This is undesirable as a technique 

can be over performing beyond what is necessary. More potential mappings needed to be explored. 

Intepe and Cheng utilized similar approaches but using fuzzy logic. [16] [17] After exploring their results, 

the same conclusions can be made. Given the fact that the taxonomy only scores each characteristic with a 
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0 or a 1 rather than on a scale, it is ineffective to use any of the multiplicative approaches. There is a need 

for a new approach in order to utilize the taxonomy developed by Smith. It is important to note that the 

scores for each characteristic in Smith’s taxonomy could be reevaluated in order to score them on a scale 

of 1-10. However, given the scope and timeframe of this research, developing the questionnaires and 

requesting experts to rate each technique characteristic was not possible. Future work in this area should 

consider surveying experts. For this period of work, a method was developed to filter the technology 

forecasting methods that could be utilized that have a total commonality score above a given threshold 

when compared to the technology characteristic scores. This method does not allow a decision maker to 

select a technique, but it reduces the number of techniques that need to be explored in greater detail, saving 

time and resources. Essentially, each characteristic of the technology of interest is evaluated with whether 

or not each technique can perform an analysis based on that characteristic. For example, if a technology is 

an evolutionary technology, such as an engine upgrade, the technique to be used will need to be able to 

forecast an evolutionary technology. If it can, it is given a score of 1; if it cannot, it is given a score of 0; 

and this is applied to all characteristics. Some of the technique characteristics are given a score of 0.5. This 

indicates that the technique can “somewhat” handle that type of characteristics. Although this method is 

not an exact science, it does provide a qualitative way to handle such characteristics. 

 

Each technique characteristic is weighted in order to determine the relative importance of each 

characteristic. This is important as it means that the more important characteristics achieve a higher score 

based on their higher importance to the forecast, while characteristics of lower importance receive a lower 

score. The weightings of each characteristic are taken from Mishra. Mishra developed a questionnaire that 

was then given to technology experts. The experts came to a consensus on what Mishra calls the “inter 

characteristic weightage” (i.e. the weightings of each technology forecasting technique characteristic). [18] 

The technique ratings from Mishra are shown in Table 3-3. 
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Table 3-3. Technique Characteristics Weighting 

Technique Characteristic Weighting 

Capability to forecast incremental change 10 

Capability to forecast radical innovations 10 

Capability to forecast modular technologies 5 

Life cycle prediction capability 8 

Capability to forecast for stipulated time horizon 5 

Data availability 10 

Data validity 8 

Technology development predictability 10 

Technology similarity 8 

Method of adaptability 8 

Ease of technique implementation 10 

Cost of technique implementation 10 

Quantitative or Qualitative 10 

Exploratory or Normative 10 

 

Next, the characteristics of the technology and the characteristics of each technique are compared for 

commonality. This is done in a logical progression of four steps. 

If the technology characteristic score is the same as the technique score, this is considered highly favorable 

and given a comparison score of 1. 

1. If the technique characteristic score is greater than the technology characteristic score, this is also 

considered highly favorable and given a comparison score of 1. 

2. If the technique characteristic score is 0.5 and the technology characteristic score is 1, this is 

considered favorable and given a comparison score of 0.5. 

3. If the technology characteristic score is a 1 and the technique characteristic score is a 0, this is 

considered unfavorable and given a comparison score of 0. 

 

Finally, each of the commonality scores for each technique are summed to obtain a final total technique 

commonality score. This technique commonality score is a measure of how common a technique’s 

characteristic scores are to the technology’s characteristic scores. The techniques with comparison scores 

that are above a user-defined threshold are selected to be filtered for further exploration in greater detail. 

Develop Decision Support Tool Utilizing Established Methodology 

The final step is to implement this methodology into a Microsoft Excel-based decision support tool that 

allows the user to answer questions about the technology he or she would like to forecast. This results in a 

list of techniques that can be further explored in more detail, with the end result being the ability to select 

a forecasting technique. Figure 3-4 below outlines the data flow of the tool. The images in this sub-step are 

snapshots of the tool itself. 
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The first step in tool’s data flow (outlined in Figure 3-4) is a technology questionnaire. The user is asked 14 

questions about the technology as shown in Figure 3-5. 11 of the questions are related to the 12 

characteristics of the technology from Table 3-1. One question asks whether a quantitative or qualitative 

approach is desired and one question asks whether a normative or exploratory approach is desired. These 

questions are used in conjunction with the classifications of each technique as either quantitative or 

qualitative and exploratory or normative and help select the most desirable techniques. The final question 

is about an acceptable score threshold to filter out a technique for further exploration. This question is 

answered with a slider bar. For questions 2-8, an error message is displayed if both or neither check boxes 

are selected as only one can be utilized for a successful filtering effort. Once scored, the user will click the 

“Filter Techniques” button which resides below the Technology Questionnaire in order to obtain a filtered 

list of acceptable techniques to be further explored in greater detail.  

 

Figure 3-4. Tool Data Flow 

 

 

Figure 3-5. Technology Questionnaire 

Once the “Filter Techniques” button is clicked, each technology characteristic is scored based on the 

answers to the Technology Questionnaire. The characteristic can either be give a score of 0 or 1 for each of 
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the first 11 questions, while certain text is used for the answers to questions 12 and 13 (depending on the 

answer) as shown in blue column in Figure 3-6. These are based on how the techniques are categorized in 

the taxonomy. [15] The answer to question 14 is used to filter the forecasting techniques later in the process. 

 

Figure 3-6. Technology Characteristic Scores 

Next, and most importantly, the technology characteristic scores are compared to the technique 

characteristic scores using the logic described in sub-step 2 of this process. Each characteristic score is 

multiplied by a weighting factor based on how important that characteristic is to the technology forecasting 

technique selection process as also described earlier. This results in a “vector” of commonality scores for 

each technique in the taxonomy comparing its characteristics to the technology desired to be forecasted. 

Next each “vector” of commonality scores is summed to obtain a total commonality score for each 

technique. 

 

Finally, a list of acceptable forecasting techniques is displayed to the user. The acceptable techniques are 

determined based on the threshold score from question 14 of the technology questionnaire. The techniques 

with a total commonality score greater than this threshold are displayed in an alphabetical list, as shown in 

Figure 3-7, to the right of the technology questionnaire. As can be seen in Figure 3-7, there is also a bar chart 

that illustrates the distribution of the total commonality scores for all of the techniques. This will allow the 

user to alter the acceptable score threshold (question 14 of the technology questionnaire) in order to better 

filter the techniques based on the user’s purpose. Once this list is obtained, the user can now explore a sub-

set of the technique taxonomy that contains techniques that are more applicable to the technology of interest 

as well as the user’s own forecasting preferences.  
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Figure 3-7. Filtered List of Acceptable Forecasting Techniques 

Take Relevant Technology through the Methodology 

The final step is to demonstrate this process with a relevant technology. For this demonstration, the 3,000 

shp Improved Turbine Engine Program (ITEP) engine was selected as it is in development by General 

Electric (GE), now designated as the GE T901, as it is very relevant to the UH-60 Blackhawk upgrades. 

GE is expected to begin production of the engine in 2025. It is designed to produce 50% more power at 

SL/ISA, reduce fuel consumption by 25%, and have 20% longer life than compared to the GE T700 family 

of engines currently being used on the UH-60. [19] For this demonstration, it is important to note that the 

purpose of such forecast is to understand how the power-to-weight ratio (shp/lb) of the engine will be 

improved at the time of the engine’s production, as this influences the vehicles vertical rate of climb 

(VROC) and maximum forward speed, both of which are of interest to UH-60 operators today. There are 

many other performance parameters that could be explored, such as specific fuel consumption and 

efficiency, but the power-to-weight ratio is the most applicable at this time. 

 

To begin the process, information is needed about the prospects of the engine and the desired forecast in 

order to complete the Technology Questionnaire. As most engines, the ITEP engine is an evolutionary 

technology as it is based on previous engines built by GE. The engine is expected to operate with current 

UH-60 aircraft without a redesign, indicating that it is modular in nature (i.e. can be swapped with current 

engines). For the purposes of simply determining power-to-weight ratio, the ability to forecast the lifecycle 

of the engine is not necessary. Given the engine is expected to begin production is 2025 (less than 10 years), 

the timeframe for the engine’s adoptions is assumed to be “short-term” as it is already in development, 

though in its early stages. Given that many turboshaft engines are already in use and the turboshaft engine 
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development began over 60 years ago, it is assumed that there is a lot of data that can be obtained and that 

this data is considered reliable. This fact also means that there are many similar technologies. For this 

forecast, it is desired that expert opinion is not utilized, as this is the goal of this task for the CATE research 

team. Given that the outcome of the forecast will be used in a Modeling and Simulation environment, such 

as the CATE environment, a quantitative and exploratory approach needs to be used. A total commonality 

score of 100 will be used as an acceptable score to keep a technique for further exploration. Utilizing this 

information, the Technology Questionnaire is answered as shown in Table 3-4 below. 

 Table 3-4. ITEP Engine Demonstration Technology Questionnaire Answers 
 

 

With these answers to the Technology Questionnaire, the “Filter Techniques” button is clicked and 15 

forecasting techniques are filtered for further exploration, shown in Table 3-5, all with a total commonality 

score greater than the indicated 100 threshold. The forecasting technique family is also recovered from the 

taxonomy and displayed. 

 

 

 

 

 

1. Is this technology evolutionary or revolutionary? x Evolutionary  Revolutionary 

2. Is the technology modular in nature (or having modular 

components)? 

 No x Yes 

3. Would you like to forecast the life cycle of the technology? x No  Yes 

4. What is the timeframe for the technology’s adoption? x Short-term  Long-Term 

5. How much data do you have access to?  A little x A lot 

6. How reliable is this data?  Not Reliable x Reliable 

7. Where is the technology in its development? x Early Stages  Late Stages 

8. How many similar technologies exist?  A little x A lot 

9. Will you need to rely on expert opinion? x No  Yes 

10. How much time do you have to spend on forecasting?  A little x A lot 

11. What are your resources like? x Minimal  Many 

12. Would you like a quantitative or qualitative approach?* x Quantitative  Qualitative 

13. Would you like a normative or exploratory approach?*  Normative x Exploratory 

14. What is an acceptable score to keep a technique? 100 
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 Table 3-5. ITEP Engine Demonstration Filtered Forecasting Techniques 
 

 

In order to examine if the selected threshold score of 100 is acceptable, it is important to look at the 

distribution of commonality scores. This distribution is shown in Figure 3-8. Examining Figure 3-8, it is 

clear that a total commonality score of 100 is a good lower bound to filter out the acceptable techniques as 

all of the techniques have a total commonality score less than 120, and 15 techniques is a reasonable number 

of techniques to further explore without too much effort. 

 

Filtered Techniques Family 

Agent modeling [Brownian agents] M&S 

Analogies Descriptive and matrices 

Artificial Intelligence [Machine Learning] Statistical 

Artificial Neural Network [Adaptive neuro-fuzzy inference] M&S 

Bibliometrics [research profiling, patent analysis, text mining, 

citation network analysis] 

Monitoring & 

Intelligence/Statistical 

Causal Models M&S 

Complex Adaptive System modeling (CAS) [Chaos] M&S 

Correlation Analysis Statistical 

Precursor analysis Trend 

Sustainability analysis [life cycle analysis] Descriptive and matrices/M&S 

Systems simulation [system dynamics, KSIM] M&S 

Technological substitution M&S 

Technology assessment Descriptive and matrices/ M&S 

Trend extrapolation [growth curve fitting and projection] Trend 

Trend impact analysis Trend/Statistical 
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Figure 3-8. Technique Commonality Score Distribution 

The next step is to explore the filtered techniques. Due to time constraints of this research effort, the two 

highest-scoring techniques were selected for further exploration: Causal Models and Trend Extrapolation. 

Causal models are in the Modeling and Simulation technique family and are exploratory in nature. There 

are two categories of causal models. The first are closed-form, analytical models (equation or set of 

equations) and the second are simulation models (set of differential equations). In addition to these two 

categories, there are three types of causal models: technology-only models, techno-economic models, and 

economic and social models. [12] For the purpose of this exercise, the technology-only model is used as it 

is the most applicable. 

 

The Universal Growth Curve, as discussed by Martino, is a regression equation used to model the 

progression of a functional capability (f) of a technology that approaches an upper limit (F). [12] It also 

utilizes the functional capability of a competitive technology (fc). [12] The regression equation is as follows: 

 

It is important to note that Ct is not the coefficient of thrust; it is simply a constant parameter determined 

from the data points. It is assumed that the power-to-weight upper limit for turboshaft engines is 10, while 

the reciprocating engine is used as the competitive technology (as it was common when turboshaft engines 

were first being developed), with a power-to-weight ratio of 0.6 at the time. More details about this method 

can be found in Martino’s paper.  

 

tCYY  )1ln(  
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Using the regression equation above, it is possible to construct an “s-curve” to model the progression of 

turboshaft engine power-to-weight ratio over time. This is done utilizing turboshaft engine power-to-weight 

ratios vs development year data points from Leishman’s “Principles of Helicopter Aerodynamics” and are 

shown in Table 3-6 below. [20] 

 

Using these data points, with each approximate power-to-weight ratio as a different f value, a Ct value can 

be calculated for each power-to-weight ratio in Table 3-6. Then, each Ct value is plotted against its 

corresponding year of development, with a linear regression equation is fit to these points. This regression 

is then used to find Ct values for various years from a time before the first data point in Table 3-6 to, and 

beyond, the year that the forecast is desired for. Then, using these Ct values corresponding Y values must 

be iteratively determined (based on the relationship between Ct and Y from Equation 1) and finally power-

to-weight values can be determined for each Y value. Figure 3-9 illustrates the progression of turboshaft 

engine power to weight ratio over time from 1945 to 2050 with the regression equation also displayed. In 

order to utilize this forecast, one simply enters the year of a future turboshaft engine’s development into the 

regression equation (i.e. x) and the result (i.e. y) is the power-to-weight ratio of that turboshaft engine.  

 

Figure 3-9. Turboshaft Engine Power-to-Weight Ratio Progression Utilizing the Technology-Only 

Causal Model 
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Table 3-6. Turboshaft Engine Power-to-Weight vs. Development Year Data Points 

 

Table 3-7 illustrates using this method for two different turboshaft engines: the GE T700, the first 

generation of the current UH-60 Blackhawk engine as well as the future ITEP engine. It is assumed that the 

ITEP engine has a development start year of 2016 as this is when GE was officially awarded the contract 

to begin developing the engine by the US Department of Defense (DoD). [21]  

 

Table 3-7. Turboshaft Engine Forecast with Technology-Only Causal Model Results 

From Table 3-7, it can be concluded that the Causal Model can predict a future turboshaft engine’s power-

to-weight ratio rather accurately but with some uncertainty. This uncertainty is mostly attributed to the 

sensitivity of the regression curve in Figure 3-9 to the upper limit (F) as well as the competitive technology 

value (fc) used in the beginning of the model’s development. There is also a level of uncertainty in the data 

points obtained from Leishman as they are taken from a graph of power-to-weight ratio vs year of 

development. 

 

Next the Trend Exploration technique is considered. Trend Extrapolation is in the Trend technique family 

and is also Exploratory in nature. The Trend Extrapolation method utilized for this demonstration is the 

Exponential Trends method. There is also a Qualitative Trend method that is also part of this family, but in 

order to be applicable to the CATE research effort, Quantitative methods are desired. Overall, Trend 

Extrapolation methods are simpler to implement when compared to the Causal Model. Using the same data 

points from Table 3-6, a curve fit is constructed by regressing the natural logarithm of the data points versus 

time utilizing the following regression equation: [12] 

 

Using the data points in Table 3-6 as y values and Equation 2, it is possible to construct a graph of the 

engine power-to-weight ratio versus time as shown in Figure 3-10.  

Year of Engine Development Power-to-Weight Ratio (shp/lb) 

1958 1.959 

1979 4.149 

1984 4.686 

1987 6.302 

 

Engine 

Name 

Year of 

Development 

Forecasted P/W 

(shp/lb) 

Actual (Expected*) P/W 

(shp/lb) 

Pct. Error (%) 

GE T700 1976 4.129 4.15 0.50% 

ITEP 2016 7.784 7.24 7.46% 

 

ktyYy  )ln()ln( 0  (2) 
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Figure 3-10. Turboshaft Engine Power-to-Weight Ratio Progression Utilizing the Trend 

Extrapolation Method 

As can be seen from Figure 3-10, the trend, as the forecasting technique’s name implies, follows an 

exponential trend. Upon further inspection of Figure 3-10, it is possible to see that by the year 2025, the 

expected year of production of the ITEP engine, turboshaft engines will have a power-to-weight ratio of 

about 20 with it exponentially increasing to over 30 almost ten years later. This is not an acceptable forecast 

for the power-to-weight ratio of turboshaft engines. These extremely large results are most likely due to the 

fact that the trend extrapolation method does not take into consideration the fact that fundamental limits 

need to be considered as a turboshaft engine power to weight ratio of about 65 is expected by the year 2055. 

This does not make sense as by then other technologies will be in play such as hybrid electric technologies 

and possibly even fuel cells as battery technology evolves. 

 

This demonstration shows that the developed tool can successfully aid decision makers in selecting a sub-

set of the technique taxonomy for further exploration. It can filter techniques that can be used effectively, 

such as the Causal Model. In potential use of this method, other high-scoring techniques should also be 

considered while evaluating the technology.  

3.5 Conclusion 

This study utilized an existing taxonomy of technology forecasting techniques and developed a 

methodology to select a sub-set of techniques from this taxonomy for further exploration. This methodology 

was implemented into a Microsoft-Excel based decision support tool that can help decision makers reduce 

the number of technology forecasting techniques to explore based on the forecasting task at hand. A 

demonstration was done using the turboshaft engine in the Improved Turbine Engine Program (ITEP) in 
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order to show the capability of the tool. This demonstration resulted in list of 15 techniques. Two of which 

were explored in more detail. The Causal Model was deemed applicable to the turboshaft engine upgrade 

forecast, while the Trend Extrapolation was not. This implies the methodology as well as the tool both need 

improvements to be more effective to the decision maker. These improvements can become future research 

tasks for the CATE research team. First and foremost, research is necessary to change the ratings of each 

technique’s characteristics from discrete 1’s and 0’s to a scale of how well a technique handles that 

characteristic (rather than whether it can or not). This will allow the implementation of a decision-making 

technique to select the best forecasting technique (closest to the ideal technique) utilizing a method like 

TOPSIS. Another area of improvement is the link between the Technology Questionnaire in the tool and 

the technology score. Some of the questions in the questionnaire should be able to be answered with a slider 

bar rather than check boxes. For example, the question related to how much data is available can be 

answered with either “a little” or “a lot” when the amount of data available can vary between no data at all 

and plentiful data, not just the two end points. Adding some kind of scale will remove any ambiguity in the 

questionnaire. Another potential area of improvement is the commonality aspect of the tool. Currently there 

is a simple method to determine if a technique characteristic is common to the technology’s characteristic, 

but it appears there need to be a more systematic way of determining this. 

Though there are many improvements necessary to make the methodology and the tool more effective, this 

research results in a framework to build upon, and with a little more research can be used to quickly and 

efficiently select the appropriate forecasting technique to use in any research effort. 
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4. RCAS-CATE Optimization of RCAS Representation in NDARC Using Optimization 

Schemes 

4.1 Introduction 

The following section documents the work done in improving vehicle performance analysis methods 

including quantification of uncertainty. The impact of technologies as well as the impact of variance are 

studied and presented. To quantify uncertainty, first, the sources of uncertainty in performance analysis 

must be established. Once these sources are identified, their effects are quantified by using the Probabilistic 

Certificate of Correctness (PCC) methodology; in which simulations are performed to establish confidence 

in predicted performance.  

This report outlines the logic and assumptions made by the author to arrive at the current implementation 

of the NDARC Optimized Calibration (NDARC – OC) and NDARC Optimized Performance Spreadsheet 

(NDARC – OPS) tools. The objective of this work is to reduce the effort required by the user to calibrate a 

NDARC model against data from a comprehensive analysis tool, and not to remove subject matter experts 

from the process. Any feedback NDARC users is highly encouraged, and will be incorporated into future 

revisions of the tool.  

4.2 Motivation 

The NDARC Performance Spreadsheet was developed by Wayne Johnson to facilitate the process of 

calibrating NDARC’s rotor power models against experimental or hider fidelity comprehensive analysis 

data. The spreadsheet consists of a set of NDARC coefficients and exponential factors that control the shape 

of NDARC’s built-in polynomials, which estimate the induced power coefficient and profile drag 

coefficient of the rotor under the specified flight conditions. The calibration process aims to minimize the 

overall error between the NDARC models and higher fidelity comprehensive data for both of these 

coefficients, and is an essential task of using NDARC for rotorcraft design and performance analyses.  

The rotor spreadsheet as distributed with NDARC requires the user to manually perform iterations by 

changing the NDARC variables, one at a time, until they are satisfied that the NDARC power models 

approximate the higher fidelity comprehensive data accurately enough. This leads to ambiguity in the 

results, as there is currently no direct way to quantify the accuracy of the results. Additionally, this process 

relies heavily on the user having an intimate knowledge of the behavior of the power model variables, and 

severely restricts exploration of the design space (made up of the different combinations of NDARC 

variables) as the manual iteration will almost certainly hone in on a single local minimum rather than finding 

the best global solution to minimizing the error. Finally, the use of manual iteration to perform this task is 
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incredibly inefficient, especially if the task is to be repeated many times for different sets of calibration 

data, requiring a lot of user effort and time.  

To address these issues, the calibration of the NDARC variables can be formulated as an optimization 

problem. In doing so, the calibration process can be fully automated, requiring minimal user set up through 

a single input file. This optimization approach is described in the remainder of this report. 

4.3 Problem Formulation 

This section outlines the steps and assumptions that went into formulating the NDARC model calibration 

process into an optimization problem. First the calibration process is reviewed, identifying the NDARC 

variables that make up the design space and the approach used to quantify the error between the 

comprehensive calibration data and NDARC model. Justification is then provided for the selection of a 

genetic algorithm as the optimization algorithm, as well as a brief explanation for how the algorithm itself 

is implemented.  

4.3.1 Calibration Process 

Design Space 

Within NDARC, the rotor power model is broken down into two independent design spaces: induced power 

and profile power. The induced power NDARC variables determine the calculation of the induced power 

coefficient (𝜅), while the profile power NDARC variables determine the calculation of the profile drag 

coefficient (𝐶𝐷). The NDARC variables associated with the induced and profile power design spaces are 

provided in Table 4-1 and Table 4-2, respectively. Default values are also listed for each of the design 

variables, which will be addressed in Section 0.  

The user should be aware that some of the NDARC variables listed in the two tables below represent 

physical values. The physical variables are the induced velocity factors (Ki_hover, Ki_climb, etc.), the 

variables with a CTs_ prefix, and the advance ratio variables (mu_ prefix). It is up to the user to set 

physically feasible values for these design variables. All other variables represent a coefficient or exponent 

of a polynomial curve fit and have no physical meaning. 

As can be seen from these two tables, the design space of this problem has the potential to become quite 

large, encompassing over 30 design variables in each separate design space. In addition, almost all of the 

NDARC variables must be treated as continuous variables over some practical range of values, further 

increasing the complexity of the problem. To reduce the dimensionality, it is desired that the user have the 

ability to select which of the NDARC variables will be varied during the optimization process (henceforth 

referred to as “design variables”), and which NDARC variables will be held fixed during the optimization 
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algorithm (henceforth referred to as “constant parameters”). This drives the need for a flexible, scalable 

optimization algorithm. The selection of the optimization algorithm is discussed in detail in Section 4.3.2. 

Table 4-1: Rotor induced power design variables 

Description Variable Default Value 

model (1 constant, 2 standard) MODEL_ind 2 

Induced velocity factors (ratio to momentum theory induced velocity) 

Hover Ki_hover 1.12 

Axial climb Ki_climb 1.08 

Axial cruise (propeller) Ki_prop 2 

Edgewise flight (helicopter) Ki_edge 2 

Variation with Thrust 

CT/s for Ki_h variation CTs_Hind 0.08 

Coefficient for Ki_h kh1 0 

Coefficient for Ki_h kh2 0 

Exponent for Ki_h Xh2 2 

CT/s for Ki_p variation CTs_Pind 0.08 

Coefficient for Ki_p kp1 0 

Coefficient for Ki_p kp2 0 

Exponent for Ki_p Xp2 2 

Variation with Shaft Angle 

Coefficient for Ki_p kpa 0 

Exponent for Ki_p Xpa 2 

Variation with Lift Offset 

Coefficient for f(offset) ko1 0 

Factor for f(offset) ko2 8 

Constant in Ki transition from hover to axial cruise Maxial 1.176 

Exponent in Ki transition from hover to axial cruise, Xaxial 0.65 

Variation with Axial Velocity 

Advance ratio for Ki_prop mu_prop 1 

Coefficient for Ki(muz) (linear) ka1 0 

Coefficient for Ki(muz) (quadratic) ka2 0 

Coefficient for Ki(muz) ka3 0 

Exponent for Ki(muz) Xa 4.5 

Variation with Edgewise Velocity 

Advance ratio for Ki_edge mu_edge 0.35 

Coefficient for Ki(mu) (linear) ke1 0.8 

Coefficient for Ki(mu) (quadratic) ke2 0 

Coefficient for Ki(mu) ke3 1 

Exponent for Ki(mu) Xe 4.5 

Variation with rotor drag kea 0 

Minimum Ki Ki_min 1 

Maximum Ki Ki_max 10 
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Table 4-2: Rotor profile power design variables 

Description Variable 
Default 

Value 

Technology Factor 

Profile power TECH_drag 1 

Reference Reynolds number (0. for no correction) Re_ref 0 

Basic model (1 array, 2 equation) MODEL_basic 2 

Array (cd vs thrust-weighted blade loading) 

Number of points (maximum 25) ncd 24 

Equation 

CT/s for minimum profile drag CTs_Dmin 0.07 

Coefficient in drag vs CT/s function (constant for 

hover/edgewise) d0_hel 
0.009 

Coefficient in drag vs CT/s function (constant for axial) d0_prop 0.009 

Coefficient in drag vs CT/s function (linear hover/edgewise) d1_hel 0 

Coefficient in drag vs CT/s function (linear for axial) d1_prop 0 

Coefficient in drag vs CT/s function (quadratic for 

hover/edgewise) 
d2_hel 0.5 

Coefficient in drag vs CT/s function (quadratic for axial) d2_prop 0.5 

Variation with shaft angle, coefficient for cdp dprop 0 

Variation with shaft angle, exponent for cdp Xprop 2 

CT/s for separation (Dcd = d(CT/s-CT/s_sep)^X) CTs_sep 0.07 

Factor in drag increment dsep 4 

Exponent in drag increment Xsep 3 

Variation with edgewise velocity, coefficient df1 0 

Variation with edgewise velocity, coefficient df2 0 

Variation with edgewise velocity, exponent Xf 2 

Stall model (0 none) MODEL_stall 1 

CT/s at stall (D=|CT/s|-f*CT/s_stall, Dcd=d1*D^X1+d2*D^X2) 

Number of points (maximum 20) nstall 10 

Constant in stall drag increment fstall 1 

Factor in stall drag increment dstall1 2 

Factor in stall drag increment dstall2 40 

Exponent in stall drag increment Xstall1 2 

Exponent in stall drag increment Xstall2 3 

Variation with Lift Offset 

Coefficient for f(offset) do1 0 

Factor for f(offset) do2 8 

Variation with rotor drag dsa 0 

Compressibility model (0 none, 1 drag divergence, 2 similarity) MODEL_comp 1 

Similarity Model 

Factor fSim 1 

Blade tip thickness-to-chord ratio thick_tip 0.08 

Drag Divergence Model (D=(Mat-Mdd), Dcd=d1*D+d2*D^X) 

Coefficient in drag increment dm1 0.056 

Coefficient in drag increment dm2 0.416 

Exponent in drag increment Xm 2 

Drag Divergence Mach Number (Mdd = Mdd0 - Mddcl*cl) 
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Mdd at zero lift Mdd0 0.88 

Derivative with lift Mddcl 0.16 

 

Required Calibration Data 

The information required from a comprehensive analysis tool to calibrate a NDARC model is provided in 

Table 4-3. The information includes four independent variables (mux, muz, CT/, offset, and MAT), and 

two dependent variables (values for profile drag and induced power coefficients from the comprehensive 

analysis tool). A “calibration data point” refers to a single, unique set of the independent variables and 

associated dependent variable values, while the “calibration data set” refers to the collection of all 

calibration data points. A single NDARC model is calibrated against the entire calibration data set, which 

may consist of any number of calibration data points. 

Table 4-3: Information required to calibrate NDARC models 

Variable Description 

mux Advance ratio along the x-axis 

muz Advance ratio along the z-axis 

CT/s Blade Loading (thrust coefficient / solidity) 

MAT Maximum Mach number at the advancing tip 

Offset Design lift offset value 

Cd Profile drag coefficient 

Kappa Induced power coefficient 

 

Calculation of Calibration Error 

Error calculations for both the induced power coefficient and profile drag coefficient serve as the objective 

functions to be minimized during the optimization. For both coefficients, the total error is calculated as the 

sum of the absolute relative error (summed over N calibration data points), where the value estimated from 

the NDARC curve fits is measured relative to the true value provided by either a comprehensive analysis 

tool (such as RCAS or CAMRAD) or some other form of higher fidelity data. As the number of calibration 

data points, N, may vary from case to case, the objective functions in the optimization problem are 

represented as the average of this total error calculation, as shown in the equation below. This approach 

provides a metric to measure the calibration accuracy that is independent of the number of calibration data 

points used (i.e. the magnitude of the error does not scale directly with the number of calibration data 

points). 

𝐶𝐷𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (
 1

N
) ∑ |

𝐶Dest
−𝐶𝐷true

𝐶𝐷𝑡𝑟𝑢𝑒

|𝑁
𝑖=1        𝜅 𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (

1

N
) ∑ |

𝜅𝑒𝑠𝑡−𝜅𝑡𝑟𝑢𝑒

𝜅𝑡𝑟𝑢𝑒
|𝑁

𝑖=1  
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4.3.2 Selection of Optimization Algorithm 

The nature of the design space drove several requirements for the selection of the optimization algorithm: 

 Algorithm must maintain efficiency when scaling to handle large design space 

 Potentially handle both discrete and continuous design variables 

 Must be capable of efficiently exploring a multi-modal design space 

Gradient based optimization algorithms were ruled out due to their inability to efficiently explore design 

spaces that are highly multi-modal. This led to the investigation of metaheuristic algorithms, which tend to 

exhibit better global optimization properties for multi-modal design spaces. The need for the optimization 

algorithm to efficiently scale to large design spaces while potentially handling both continuous and discrete 

variables led the selection of a genetic algorithm. The genetic algorithm implemented for the NDARC 

calibration process is described in the following subsection.  

Genetic Algorithm for NDARC Calibration 

A semi-elitist genetic algorithm was implemented for the NDARC calibration process. The genetic 

algorithm first requires that all design variables be discretized into a base-2 binary number. The number of 

bits required to represent a given design variable can be calculated using Equation 1, which is dependent 

on both the desired range and resolution of a given design variable. An “individual” in the genetic algorithm 

describes a unique design (i.e. combination of design variables within the feasible design space). Each 

individual is represented in the base-2 system by a single “chromosome”, which is simply the concatenation 

of the binary strings of all design variables. A notional example of an individual’s chromosome is illustrated 

in Figure 4-1 for a system with three design variables.  

𝑁𝑏𝑖𝑡𝑠 =
ln((𝑅𝑎𝑛𝑔𝑒 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛⁄ )+1)

ln(2)
  

Equation 1 

 

Figure 4-1: Composition of an individual of the genetic algorithm 

The implementation of the genetic algorithm is outlined in Figure 4-2. It begins with the generation of an 

initial “parent population”, which is a collection of N individuals within the feasible design space. The next 
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step requires that individuals from the parent population be selected for reproduction. Selection is carried 

out through a deterministic tournament, where two individuals are randomly sampled with replacement 

from the parent population. As the aim of the NDARC calibration is to minimize the error between the 

NDARC model and calibration data, the parent with the lower calibration error has the higher rank, and is 

thus selected as the preferred parent for reproduction. The tournament selection is performed N times, such 

that N/2 pairs of parents have been selected. Next, reproduction occurs in which each pair of parents 

generates two new individuals, or “children”, which occurs through a combination of crossover and 

mutation of the parent chromosomes. The result of the reproduction step is a child population of N 

individuals. The next generation begins by establishing the new parent population, which consists of the 

top 10% of the parent individuals (to enforce elitism) and top 90% of the child individuals (to encourage 

exploration).  

 

Figure 4-2: Single iteration of genetic algorithm for NDARC calibration process 

Handling Discrete Variables 

As genetic algorithms necessitate that all continuous design variables be discretized, the algorithm can 

easily handle both the discrete variables (such as “MODEL_ind” from Table 4-1) and continuous design 

variables, while also allowing the user to easily set bounds on the allowable range for each variable. The 

latter characteristic requires the user to have some knowledge of the NDARC design space, such that 

realistic ranges are set for each variable, a requirement that simply cannot be avoided.  
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Scaling the Genetic Algorithm 

The calibration of a NDARC model suffers from the “curse of dimensionality”, in that the size of the design 

space grows exponentially as the number of, and allowable range of the design variables increases. Because 

of this, there is not one global setting for the genetic algorithm (in terms of number of individuals in a 

population and number of generations to iterate through) that allows for an efficient and effective 

exploration of all possible design spaces. To address this issue, the NDARC genetic algorithm is scaled on 

a case by case basis by using linear scaling factors to vary the number of individuals (𝑁𝑖𝑛𝑑 ) in each 

population and the number of generations (𝑁𝑔𝑒𝑛) that the genetic algorithm is run to based on the estimated 

size of the design space. The number of bits in an individual’s chromosome (𝑁𝑏𝑖𝑡𝑠) serves as representation 

for the size of the design space. The number of individuals that make up a population is then calculated as 

the product of 𝑁𝑏𝑖𝑡𝑠 and the population scaling factor (popFactor). The number of generations that the 

algorithm is run to is determined as the product of 𝑁𝑖𝑛𝑑 and the generation scaling factor (genFactor). This 

process is demonstrated in Figure 4-3. 

 

Figure 4-3: Scaling the number of individuals and generations of the genetic algorithm based on the 

size of the design space 

Despite the effectiveness of this approach, the “curse of dimensionality” begins to dominate the 

optimization problem as the design space grows in size. That is, as the number of design variables increases, 

the size of the design space grows exponentially while the explorative parameters of the genetic algorithm 

(𝑁𝑖𝑛𝑑 and 𝑁𝑔𝑒𝑛) only scale linearly. At first thought, one might suggest scaling the exploration parameters 

exponentially as well. However, doing so makes the run times prohibitively expensive, and is thus not a 

viable solution.  As an alternative to this approach, the optimization algorithm has been written such that 

the linear scaling factors are inputs to the genetic algorithm (as discussed in Section 2593088.0.-

946779886). Thus, for larger design spaces the magnitude of the scaling factors can be increased to account 

for the increased dimensionality of the problem, at the cost of computational expense. At this point the 

calibration of the NDARC models becomes a tradeoff that the user must make between design space 

exploration and execution time. Despite this drawback, the case study discussed in Section 4.6 demonstrated 

that the NDARC – OC tool is capable of arriving at a better solution in a more efficient manner then could 

be obtained through manual iterations. 
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4.3.3 Selection of Programming Language 

Two key criteria went into the selection of the programming language for this process: 1) the code must be 

open source, and 2) it must be capable of being compiled into an executable file that can be run on any 

machine without the need for an interpreter. The requirement that the code be open source ruled out the use 

of common engineering tools with optimization capabilities such as Model Center and MATLAB. Because 

of this, consideration was given to developing the optimization process in both Python v3.4 and Fortran 95. 

Python was ultimately selected due to its ease of integration with the NDARC – OPS and its ability to meet 

the two criteria stated above. However, the design space of this problem has the potential to grow to the 

point that it is computationally prohibitive to run a full analysis in Python. If this becomes a major roadblock 

in the use of the NDARC calibration tools, the optimization code can be transitioned to Fortran for 

computational efficiency, requiring minimal restructuring of the optimization process.  

4.4 Implementation of NDARC – OC Tool 

The use of optimization techniques to automate the calibration of NDARC models relies on two things: the 

set of available NDARC design variables is fixed, and the calibration data set is known and can be provided 

in some structured format. With this information, enough structure is provided to allow the entire process 

to be automated, requiring minimal user set up while providing fast, accurate results given that the 

information provided is appropriate. An overview of the new calibration process is provided in Figure 4-4, 

which requires the three general steps described below.  

1. In the input files, set: which NDARC variables are design variables for the optimization process 

versus constant parameters, the calibration data, and the run settings 

2. Run the optimization algorithm  

3. Analyze results, and if necessary make adjustments to design space and re-run the optimization  
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Figure 4-4: Automation of calibration process using optimization technique 

4.4.1 NDARC Calibration Input File 

A single input file is required to run the NDARC – OC tool. This input file MUST be called “NDARC 

Calibration Settings.inp”, and it must be located in the “Input Files” folder shown in Figure 4-8 in order for 

the NDARC optimization code to find and access the file. The calibration input file is organized similarly 

to a Fortran style NAMELISTs input file (but it is not a true NAMELIST input file). All NAMELIST group 

names must be preceded by an ampersand (“&”), and must be in all caps. The NAMELISTs may occur in 

any order. The available NAMELISTs are described in Table 4-4, and the inputs available to each 

NAMELIST are described in the following sections. For an example input file, please refer to Appendix C. 

Table 4-4: Available NAMELISTs in NDARC Calibration Settings input file  

NAMELIST Description 

&RUN_SETTINGS Specify desired run settings 

&INDUCED_NDARC_VARIABLES Set default values for constant parameters, or range/resolution 

for design variables &PROFILE_NDARC_VARIABLES 

&CALIBRATION_DATA_SET 
Set data from comprehensive analysis tool to calibrate NDARC 

model against 

 

Several requirements must also be followed when setting input variables in the input file.  

 All input variable names are case sensitive and must be spelled correctly 

 Variable names should be separated from the input data by an equals sign (e.g. Ki_hover = 1) 

 Any input variable that contains more than one value should separate these values using a comma 

(e.g. Ki_hover = 1, 3, .1) 

RUN_SETTINGS NAMELIST 
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Currently, six settings are available in the &RUN_SETTINGS NAMELIST as described in Table 4-5, along 

with default values if no input is provided. If NumRuns is set to a value greater than 1, then the optimization 

algorithm will optimize an NDARC model using the current settings NumRuns times, and will record the 

NDARC model with the lowest error for both the induced and profile power design spaces. The intent of 

this setting is to allow the user to run the optimization several times to reduce the chance that the genetic 

algorithm gets stuck in a local minima, without requiring the user to be present to manually re-run the 

optimization code themselves.  

Table 4-5: Input variables available in the &RUN_SETTINGS NAMELIST 

Variable Name Description Default Value 

saveAsFilename Specify filename to save output files to 
NDARC Optimized 

Model 

numRuns 
Set the number of runs performed during the 

optimization (should be integer value) 
1 

inducedPopulationFactor 

Factor that scales the size of the population in 

the genetic algorithm uses to optimize the 

induced power design space 

4 

inducedGenerationFactor 

Factor that scales the number of generations 

the genetic algorithm uses to optimize the 

induced power design space 

5 

profilePopulationFactor 

Factor that scales the size of the population in 

the genetic algorithm uses to optimize the 

profile power design space 

4 

profileGenerationFactor 

Factor that scales the number of generations 

the genetic algorithm uses to optimize the 

profile power design space 

5 

 

INDUCED/PROFILE_NDARC_VARIABLES NAMELISTs 

The variables available for the induced power and profile power design spaces are the same as those listed 

in Table 4-1 and Table 4-2, respectively. The input variables can be listed in any order. However, all 

variables must be spelled correctly with the correct capitalization. Table 4-6 shows the proper format for 

setting a constant parameter, design variable, and a match variable. Again, the variable name should be 

separated from the input values by an equals sign, and for design variables the input values should all be 

separated by a comma. The match variable type requires that the current variable always have the same 

value as another variable during the optimization. The example listed in Table 4-6 requires that “Ki_hover” 

always have the same value as “Ki_edge”, even if “Ki_edge” is varied during the optimization runs. In 

addition, if a variable is not found in the proper NAMELIST (or is simply omitted from the input file), then 

it will be set to the default values listed in Table 4-1 or Table 4-2.  
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Table 4-6: Formatting design variable versus constant parameters in the induced/profile 

NAMELISTS 

Variable Type Expected Input Order Example 

Constant Parameter Constant Value Ki_hover = 1.1 

Design Variable Lower Bound, Upper Bound, Resolution Ki_hover = 1, 3, .1 

Match Variable 
String containing variable name that 

current variable must have same value as 
Ki_hover = Ki_edge 

CALIBRATION_DATA_SET NAMELIST 

The $CALIBRATION_DATA_SET NAMELIST has no variable declarations, but instead expects a list of 

information. The list should be in table format, with columns corresponding to the independent/dependent 

variables listed in Table 4-3, and the rows corresponding to individual calibration data points. In each row, 

data must be entered in the following order: mux, muz, CT/s, MAT, 𝜅, and 𝐶𝐷, and all data entries must be 

separated by a comma.  If the user does not wish to calibrate against one of the dependent variables under 

certain conditions, then a value of “0” should be entered for that dependent variable. An example of this is 

shown in Figure 4-5, where the last three calibration data points are only being used to calibrate the induced 

power coefficient, kappa. 

 

Figure 4-5: Example showing format of &CALIBRATION_DATA_SET NAMELIST 

The implementation of the calibration data in this manner adds flexibility to the spreadsheet, as the user can 

now quickly change the calibration data and run the optimization with very little effort. However, the code 

is limited to calibration data in this specific format. If for any reason the type of calibration data must be 

changed (i.e. no longer calculating values for drag, but some other parameter), the NDARC – OC will have 

to be altered to reflect this. 

4.4.2 Input File Error Checking 

Error checks have been built into the optimization code to ensure that the input file has been formatted 

properly before running the optimization. Two main checks are performed: 1) The variable names are 

checked against a list of possible input file variables to prevent spelling or capitalization errors, and       2) 

The values associated with each variable are checked to make sure that no logical rules are broken and that 

the correct number of input values is provided. Checking the variable name spelling is important because 

the optimization code heavily utilizes the Python dictionary variable type, which accesses fields within the 
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dictionary using the NDARC variable name strings. The input value checking ensures that the correct 

information has been provided and in the proper format to properly set up the optimization problem. Both 

error checks are elaborated on in the following sections.  

Checking Variable Names 

Every variable name read from the input file is automatically checked against the list of available input 

variables. If the variable name does not match a known variable of the current NAMELIST exactly (spelling 

and capitalization), then the NDARC – OC tool will automatically alert the user and suggest the closest 

found matches within the current NAMELIST as alternatives. The user then has the ability to re-type the 

intended variable into the command prompt or select the closest suggested match, without having to end 

the optimization run and fix the input file directly. For this to work, the intended input variable MUST be 

in the proper NAMELIST, as other NAMELISTs are not checked if the variable was not found. Once all 

variable name errors are corrected, the code will indicate that the NDARC input file was successfully 

loaded, and the optimization will begin. A demonstration of this is shown in Figure 4-6.  

 

Figure 4-6: NDARC - OC tool automatically checking variable names from the input file to make 

sure that they match a known variable exactly 

Error Report 

In addition to the two output files listed Section 4.4.4, a file called “ERROR REPORT.out” is written to the 

“Output Files” folder after each run. This file contains information regarding the incorrect formatting of the 

input data for all NAMELISTs. Unlike with the variable names, no “best guess” can be made for the 

intended value for each input variable. Thus, if an error for the NDARC variable values is found (i.e. 

incorrect number of inputs listed for a given variable), then the code is aborted before the optimization 

begins and an error message is written to the output file. There are three input file format errors that have 

been accounted for; these three errors are described in Table 4-7. In addition to the error message, the error 
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report will contain information regarding what NDARC variable caused this error (this does not apply for 

errors in the calibration data set table), as well as the line of the input file where the specified error occurred. 

If a known error occurs, the code will finish reading the input file to determine all formatting errors before 

printing the final “ERROR REPORT.out” file and aborting. An example of this error report is shown in 

Figure 4-7. The input file associated with this error report is provided in Appendix F with the input errors 

highlighted in yellow.  

If the NDARC – OC code crashes unexpectedly, the file will return “NDARC-OC crashed unexpectedly”, 

and the code will abort immediately. If this occurs, please save the input file and contact Eric Spero so that 

the issue can be addressed. If the run is completed successfully, the “ERROR REPORT.out” file will simply 

print “RUN COMPLETED SUCCESSFULLY”. 

Table 4-7: Error messages in Error Report that occur when reading input file 

Error Message Description 

DESIGN VARIABLE BOUND 

ERROR 

The lower bound entered for a design variable is greater than or 

equal to the upper bound.  

NDARC VARIABLE INPUT 

ERROR 

The user has listed the incorrect number of inputs for an NDARC 

variable. One input should be listed for a constant parameter, and 

three should be listed for a design variable. 

CALIBRATION DATA INPUT 

ERROR 

The user has listed an incorrect number of inputs for the calibration 

data set table. Six values should be entered in each row, as 

addressed in Figure 4-5. 

 

 

Figure 4-7: Example of error report from input file with multiple input formatting issues (input file 

in Appendix F) 

4.4.3 Running Optimization Algorithm 

The optimization code is written in a single Python file called “NDARC_Optimized_Calibration.py”, which 

contains all the functions required to run the optimization process. This python file, along with the “Input 

Files” folder, and the “Output Files” folder must all be located in the same folder or directory location, as 

shown in Figure 4-8. To run the python file directly, the following command should be entered into the 

command prompt after navigating to the directory that contains the “NDARC_Optimized_Calibration.py” 
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file (assuming that “python” is a windows environment variable that refers to the python interpreter): python 

NDARC_Optimized_Calibration  

 

Figure 4-8: Required contents of the “NDARC Optimized Calibration” folder 

 

Runtime User Displays 

Once the NDARC – OC code is run, a command window will appear providing the user with information 

regarding the progress of the optimization algorithm. The initial display indicates to the user: the design 

space that is currently being optimized (induced or profile power design space), the run number that is 

currently being executed, the number of generations that the genetic algorithm will be run to, and the 

number of individuals in each population. An example of this is shown below in Figure 4-9. This display 

occurs every time that a new run has been started. 

2  

Figure 4-9: Initial display to user when optimization executable is launched 

During execution of the optimization algorithm, the display will indicate the current generation, the relative 

percent error of the current best configuration, and the estimated time remaining. It should be noted that 

this estimated time remaining is ONLY in reference to the current run. 
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Figure 4-10: User display during the execution of the optimization algorithm 

The user also has the option to abort a run early by typing “Ctrl+C” into the command prompt once. This 

will abort the current run, but will still save the top ranked configuration from this run. For instance, if the 

optimization algorithm is currently on Run 1 of 2 in the profile drag coefficient design space, then typing 

“CTRL+C” will end Run 1, and Run 2 of the profile drag coefficient design space will begin immediately 

after. To abort the entire optimization algorithm, type “Ctrl+C” twice within a three second span, or simply 

close out of the window directly. This will prevent any results from being written to the “Output Files” 

folder.  

 

Figure 4-11: User display upon aborting the current run 

4.4.4 NDARC Calibration Output Files 

Two separate output files are written by the optimization code; one contains the NDARC model with all 

NDARC variables and associated values, and the other contains a table with the calibration data, calculated 

values for the induced power and profile drag coefficients, and the errors associated with each calibration 

data point. Both files are written to the “Output Files” folder in the location as shown in Figure 4-8. The 

“SaveAsFilename” variable from the &RUN_SETTINGS NAMELIST is used as the base name for each 
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file, with an additional string attached to differentiate between the residuals file (“Residuals.out”) and the 

NDARC model file (“NDARC Model.out”). Sample file names are provided in Figure 4-12, while sample 

output files can be found in Appendix D & E  

 

Figure 4-12: Sample output file name formats 

4.4.5 Limitations of NDARC – OC Tool 

As discussed in Section 2593088.0.-946779886 the calibration of NDARC models using this approach 

suffers from the “curse of dimensionality”. This issue is encountered whether the calibration is done through 

the NDARC – OC tool, or by manual iterations. Though the genetic algorithm used within the NDARC – 

OC is scaled in an attempt to account for the increase in dimensionality that occurs as the number of 

NDARC variables considered increases, due to computational limitations, it is not possible to scale the 

algorithm exponentially with the design space. Thus, if the size of the design space is extremely large 

(considering over ≈15-20 design variable simultaneously) the performance of the NDARC – OC tool will 

likely be degraded. It has been found that this is especially true for the profile drag coefficient design space.  

Because of this it is highly suggested that users does not to attempt to optimize the entire design space (for 

both induced and profile power) in a single optimization run. Rather, judgement should be made in selecting 

a representative set of NDARC variables as design variables. An alternative solution is to perform the 

optimization in multiple steps, optimizing a subset of the design space during each optimization run. 

Though this is not ideal, this approach can produce acceptable results in a reasonable amount of runtime. 

An alternative to the approach stated above is to set up the NDARC – OC code to run overnight, while 

using large values for the population factors to account for extremely large design spaces. Successful 

calibrations have been performed using all NDARC variables as design variables, while using population 

factors on the order of 40~50 with a generation factor of 1. These runs are obviously extremely expensive 

to perform, often taking over 6 hours for a single run, but they have been found to provide good results. 

After completing such a run, the calibration can be fine-tuned by using the NDARC variable values found 

from the long run as the constant parameter values, and then performing smaller optimization runs on a 

subset of the original NDARC design variables. 
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4.5 Implementation of NDARC – OPS Tool 

The NDARC – Optimized Performance Spreadsheet tool is an extension of the NDARC – Optimized 

Calibration (NDARC – OC) tool for Windows OS users. The NDARC – OPS took makes use of Microsoft 

Excel as a GUI for running the NDARC – OC tool. The NDARC – OPS process (shown in Figure 4-13) is 

nearly identical to the process described in Figure 4-4 for the NDARC-OC tool. The only difference is that 

the design variables and calibration data is now set in the Excel sheet, and the process of writing the 

NDARC – OC input files is automated using VBA. This, in general, should make it easier to run the 

calibration process for Windows users, and reduce user errors in formatting the NDARC – OC input file. 

In addition to automatically writing the input files, the NDARC – OPS also provides several plots to help 

visualize the accuracy of the current model, as will be discussed in Section 4.5.3.   

 

Figure 4-13: NDARC - OPS optimization process 

To allow for the process described above to be automated, the NDARC – OPS must be located in a folder 

with the “NDARC Optimized Calibration” folder. The “NDARC Optimized Calibration” folder must have 

the same contents as described in Figure 4-8. This allows the NDARC – OPS to write the input files to the 

correct location, as well as extract the output files after the calibration process has finished. The remainder 

of this section described the proper use of the NDARC – OPS user interface.  

 

Figure 4-14: Proper location of "NDARC Optimization" folder relative to NDARC – OPS 
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4.5.1 Setting Calibration Data 

The calibration data (from comprehensive analysis tools such as CAMRAD or RCAS) is set on the 

"Calibration Data Sets" sheet of the NDARC – OPS. The information required in this table is the same that 

was outlined in Table 4-3 and Figure 4-5. The only difference between the table shown in Figure 4-15 and 

the previous examples is the first column labeled “Case”. This column is purely for the user to be able to 

group sets of calibration data points by different case numbers for post-processing of results within the 

NDARC - OPS, and will have no effect on the optimization itself (this column is not written to the NDARC 

– OC input file). The VBA code within the NDARC – OPS will pull the data out of this specific table. The 

table can be of arbitrary length (the code will read the calibration tables until it has found a blank row with 

no data in it), but the column order MUST be followed exactly.  

 

Figure 4-15: Calibration data set table used to structure the information for the NDARC – OC tool 

4.5.2 Setting Design Variables 

The user interaction required to set up and run the optimization is contained within the “Optimization Set 

Up” sheet of the NDARC – OPS, which is labeled below in Figure 4-16. This interface provides the user 

with the following capabilities: 

 Set the value of all $RUN_SETTINGS NAMELIST variables 

 Set the values of each NDARC variable 

 Ability to change which NDARC variables will be design variables (to be varied during the 

optimization) versus constant parameters  
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 A “Run Optimization” button that calls the NDARC – OC tool to run the entire optimization process 

based on the information in the current spreadsheet.  

 

Figure 4-16: "Optimization Set Up" sheet of NDARC – OPS used to set up optimization problem 

As noted in Figure 4-16, the current design variables of the optimization problem have a green shaded 

background in the spreadsheet, while all constant parameters have white backgrounds. To change a variable 

between a design variable and a constant parameter, the user simply has to double click on the variable 

name itself, as clearly specified in Figure 4-17. 

In addition, the values that the user must set for each variable are dependent on the type of variable. Constant 

parameters require only a fixed value to be set, which is simply the constant value they will be held at 

during the optimization process. For design variables, the genetic algorithm requires that three values be 

provided: a lower bound, upper bound, and a resolution. To make it clear to the user what values should be 

provided, only the necessary inputs for each variable are visible. This is clearly shown in Figure 4-16, where 

the design variables have values visible in the “Lower Bound”, “Upper Bound”, and “Resolution” columns, 

while the constant parameters only have values visible in the “Fixed Value” column. 
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Figure 4-17: Demonstrating how to change variable type between design variable and constant 

parameter 

A limitation of this process is that a value must be provided for every column of a design variable, as the 

VBA code is reading these values and has no logic embedded within it to assign values to variables if they 

are missing from the spreadsheet table. That is, if a variable is a design variable, then the user must input a 

value for the “Lower Bound”, “Upper Bound”, and “Resolution”. The “Fixed Value” is hidden from the 

user for the design variables, as it is not required for the optimization algorithm, but the current “Fixed 

Value” does not need to be deleted; it can be left as is and its value will just be hidden from view. Because 

of this, checks have been built into the VBA script to ensure that the proper values have been assigned. 

Upon clicking the "Run Optimization" button, the VBA code will check all of the inputs, and provide alert 

messages if any input values are missing. A few examples of this are shown below in Figure 4-18. The 

alerts will tell the user what variable to look at, what table the variable is in (either induced or profile 

power), and it will select the cell that needs to be changed. 

Likewise, for a constant parameter the values for the “Lower Bound”, “Upper Bound”, and “Resolution” 

will be hidden from the user (but their values will not be deleted).  However, a constant parameter does not 

require a value to be set. If the “Fixed Value” column is left blank for a constant parameter, then the default 

value for that NDARC variable (based on values from Table 4-1 and Table 4-2) will be assigned to it for 

the entire optimization run.  Additionally, if a string representing a different variable is input in the “Fixed 

Value” column, then that NDARC variable will be treated as a match variable during the optimization run. 

For example, in Figure 4-17 shown above, the value for “kp1” will always be the same as the value assigned 

for “kh1” during the optimization runs. 
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Figure 4-18: Possible error messages that occur when NDARC variables are not set correctly 

4.5.3 NDARC – OPS Displays and Results 

At the completion of the optimization run, a new sheet is generated in the NDARC – OPS under the 

“SaveAsFilename” name. An example of this sheet is shown in Figure 4-19. This sheet contains the 

NDARC variable values of the newly calibrated NDARC model, along with the complete calibration data 

set table with corresponding NDARC estimated values and relative residual errors for each calibration data 

point.  

 

Figure 4-19: NDARC - OPS user display for results 
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To help visualize the accuracy of the results, an actual by predicted and residual by predicted plot are 

automatically generated for both the induced power coefficient and profile drag coefficient, shown in the 

bottom left of Figure 4-19. In the actual by predicted plot, a perfect fit is represented by the solid black line, 

which would indicate that for each calibration data point the estimated value from the NDARC curve fits 

perfectly matched the actual value from the comprehensive analysis data. The residual by predicted plot 

helps to visualize how large the residual is for each data point, where the residual for each data point is 

calculated as the relative percent error from the actual value. An example of a good fit (shown by the Kappa 

values) and a poor fit (shown by the Cd values) is provided in Figure 4-20. Though this example is 

exaggerated by stopping the profile drag coefficient optimization early, it still represents the trends in 

accuracy that should be looked for. That is, the closer the data points are to the “perfect fit” line and the 

smaller the residual errors, the more accurate the NDARC model fit. 

 

 

Figure 4-20: Example of results for a good fit (Kappa values) and poor fit (Cd values) on the actual 

by predicted and residual by predicted plots 

4.6 NDARC – OPS Efficiency Case Study 

A case study was performed to compare the required user effort and the accuracy of calibrating a NDARC 

model for rotor induced power using a manual calibration process versus the NDARC – OPS tool. To 

maintain consistency, the same NDARC variables used by the experienced user performing the manual 

calibration were used in the NDARC – OPS tool. The NDARC variables that were used as design variables 
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in this process are listed in Table 4-8, along with the lower and upper bound used in the NDARC – OPS 

tool. All other NDARC variables were set to default values (See Appendix G.2 for complete design space 

used). The run settings used for the NDARC – OPS calibration are shown in Table 4-9.  

Table 4-8: Induced power design space used in NDARC - OPS for case study 

Description Variable 
Lower 

Bound 

Upper 

Bound 
Resolution 

Induced velocity factors (ratio to momentum theory induced velocity) 

hover Ki_hover 1 1.3 0.001 

Variation with Thrust     
CT/s for Ki_h variation CTs_Hind 0 0.1 0.001 

coefficient for Ki_h kh1 -8 8 0.001 

coefficient for Ki_h kh2 -25 25 0.001 

exponent for Ki_h Xh2 0 4 0.001 

CT/s for Ki_p variation CTs_Pind 0 0.1 0.001 

Variation with Edgewise 

Velocity     
advance ratio for Ki_edge mu_edge 0 0.45 0.001 

coefficient for Ki(mu) (linear) ke1 -5 5 0.001 

coefficient for Ki(mu) (quadratic) ke2 -5 5 0.001 

coefficient for Ki(mu) ke3 -25 25 0.001 

exponent for Ki(mu) Xe 4 12 0.001 

 

Table 4-9: Settings for NDARC - OPS calibration run 

 

The case study used a calibration data set provided by Wayne Johnson for an unknown edgewise flight 

helicopter. This data set is provided in Appendix G.1. A summary of the results are listed in Table 4-10. 

The “user effort” time quoted in this table is the time required by the user to set up the calibration data set 

into a useable form, and then perform the calibration itself. For the NDARC – OPS tool, the run time of the 

optimization code (which was approximately 15 minutes on an i7 processor with 12 GB ram) is not included 

in the user effort, as the optimization code requires no user interaction or input at all, whereas the manual 

calibration requires the users input at all times.  

 

 

Table 4-10: Results of NDARC calibration case study 
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Calibration Method User Effort (min.) Calibration Error 

Manual Calibration 37 min. 3.98% 

NDARC – OPS 6 min. 2.97% 

 

The results overwhelming show that the NDARC – OPS tool is capable of obtaining more accurate results 

while requiring a fraction of the user effort. In addition, of the 6 minutes of user effort required for this case 

study, approximately five of those minutes were spent reformatting the calibration data provided into the 

table format required by the NDARC – OPS tool. Thus, if the calibration data is already provided in this 

table format, the user effort can be reduced to merely the time required to select the design variables and 

set the design variable ranges. Another comment that should be mentioned here is that the calibration error 

of the NDARC – OPS fell below that of the manual calibration error in less than ten seconds, but the code 

was allowed to run for the remainder of the 15 minutes to continue to explore the design space.  

At this time, it is again stressed that the NDARC – OPS tool does not remove the need for SMEs input. 

Given the type of helicopter being modeled (i.e. edgewise flight versus axial flight), the SME must select 

the correct NDARC variables to optimize, while setting other NDARC variables to proper default values 

based on the current helicopter configuration. The NDARC variables that represent physical quantities (as 

discussed in Section 2593088.0.-946779886) must also be constrained to physically allowable values, or 

the models will have no physical significance. Given that a SME can properly set the design space for a 

given helicopter configuration, the NDARC – OPS becomes a valuable tool capable of rapidly calibrating 

NDARC models while requiring minimal user effort. 

4.7 Conclusion  

This report outlined the process used to develop the NDARC – Optimized Calibration (NDARC – OC) tool. 

The objective of the NDARC – OC tool is to automate the calibration of NDARC models against 

comprehensive analysis data. The optimization process is implemented in Python v3.4, using a genetic 

algorithm to perform the optimization. The optimization problem is set up through a distinct I/O file system, 

which allows the user to change run settings of the genetic algorithm, as well as change the design space 

with regards to what NDARC variables are design variables versus constant parameters.  

For Windows OS users, an Excel GUI has been wrapped around the NDARC – OC tool to create the 

NDARC – Optimized Performance Spreadsheet (NDARC – OPS). The NDARC – OPS simply provides a 

GUI to allow users to set calibration data, as well as to define the design space and run settings for the 

optimization problem. A VBA script within the NDARC – OPS automates the process of writing the 

required input file for the NDARC – OC, reducing user error and effort required. 
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In Section 4.6 of this report, a case study is performed to compare the efficiency and performance of the 

NDARC – OPS against a previous method where the calibration is performed through manual iteration. 

The case study uses a set of calibration data provided by Wayne Johnson for an unknown edgewise flight 

helicopter (this data is provided in Appendix G). The manual calibration effort was performed by an 

experienced NDARC user, while a second model was calibrated with the NDARC-OPS tool using the same 

NDARC variables as the expert used. The results showed that the NDARC – OPS tool was capable of 

getting more accurate results than the manual calibration at a greatly reduced effort to the user.  

There are several areas that could be investigated to improve the performance of the NDARC – OC tool. 

Alternative optimization algorithms could be implemented if it is believed that they will outperform the 

genetic algorithm implemented in efficiency and/or consistency of results. If a new optimization algorithm 

is being investigated, the concerns noted in Section 4.3.2 should be taken into consideration. Additionally, 

many of the limitations of the NDARC – OC code revolve around computational limitations that arise when 

the design space grows exponentially. To partially address this issue, the code could be converted to a faster 

programming language such as Fortran or C/C++. However, the Python version of the code uses the 

numerical python (NumPy) library whenever possible, which is a pre-compiled C code for efficiency. Thus, 

the speed-up obtained by switching to Fortran or C/C++ may not be as large as one might expect. 
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5. Framework for linking system capability uncertainty to individual technologies and 

groups of technologies in a portfolio: uncertainty ovals –or- uncertainty around tech 

factors 

5.1 Introduction 

The following section documents the work done in improving vehicle performance analysis methods 

including quantification of uncertainty. The impact of technologies as well as the impact of variance are 

studied and presented. To quantify uncertainty, first, the sources of uncertainty in performance analysis 

must be established. Once these sources are identified, their effects are quantified by using the Probabilistic 

Certificate of Correctness (PCC) methodology; in which simulations are performed to establish confidence 

in predicted performance. 

Uncertainty assessment of complex systems has been studied for many projects, and an important body of 

literature is available in the subject. First, a literature review of the uncertainty sources throughout the 

vehicle lifecycle is shown in Figure 5-1. [22] 

 

 

Figure 5-1. Uncertainty Sources Throughout the Vehicle Lifecycle 

5.2 Sources of Uncertainty 

Previous literature [22] also outlined the sources of uncertainty. 

 Physical and mathematical modeling 

o Ignorance 
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o Lack of understanding 

o Incomplete knowledge 

 Model uncertainty 

o Inherent system variations 

o Model structure uncertainty 

o Model Parameter uncertainty 

 Model error 

o Computational implementation and numerical programming 

o Discretization, round off, programming error 

 Computational simulation model 

o Model uncertainty 

o Model error 

 Model input uncertainty 

o Design variable uncertainty 

5.3 Uncertainty in numerical simulations 

 

 

Figure 5-2. Uncertainty in Numerical Simulations [22] 
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5.4 Uncertainty in CATE 

The current Uncertainty module in CATE shown in Figure 5-3 allows for a Monte Carlo simulation of the 

sizing output subjected to user defined uncertainty on the sizing parameters. The uncertainty on the input 

can be a uniform distribution or a normal distribution. This process is done on the sizing of the aircraft. 

Consequently, the input are related to the mission parameters, the sizing condition and technology factors. 

The output is expressed graphically and is related to vehicle weights, size (geometrically and power), and 

weights. 

 

 

Figure 5-3. Current CATE Uncertainty Dashboard 

5.5 PCC Methodology 

The Probability Certificate of Correctness (PCC) methodology has been studied for rotorcraft. The 

process is outlined below and shown pictorially in Figure 5-4. It allows to perform a probabilistic 

assessment of the performance goals based on a numerical process. 

• 1- Procedure:  

o Error distribution estimation 

o Assign distribution to appropriate variables 

o Run Monte Carlo Simulation (MCS) 
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o Derive performance metric probability density function 

• 2- Technology impact (UH-60M) 

o Distribution on technology impact factors 

 Rotor aerodynamics, engine performance, and tail drag 

o Probabilistic assessment of performance goals 

 

 

Figure 5-4. PCC Methodology 

5.6 Uncertainty in NDARC 

The vehicle design and analysis in CATE has been performed through NDARC. This software has its own 

sources of uncertainty. Because NDARC is component based, the breakdown of the sources of uncertainty 

was performed accordingly. 

• Rotor performance: 

The rotor model, as suggested by Johnson, is based on a decomposition of the profile power and induced 

power. The process is to take flight test data, perform a higher fidelity rotor analysis of the data using 

RCAS or CAMRAD and extract a set of parameters describing the profile and induced power coefficient 

as a function of various parameters. This last step is done using the rotor spreadsheet, a spreadsheet that 

helps the tuning of those parameters. Consequently, the sources of error can come from: 

• Flight test : Test conditions (ex: trim) 

• High fidelity rotor analysis: error associated with the numerical representation in the analysis 

tool 

• Rotor spreadsheet: error on the calibration of the parameters 
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• Engine performance 

Unfortunately, there is no knowledge on engine performance error modeling from NDARC 

documentation as engine decks often contain proprietary data. In the past, the CATE team calibrated the 

power available and fuel flow with user manual available data. In this case, error can come from 

o Error on available data (form the user manual itself) 

o Error on the calibration method 

• Weights 

The weight models in NDARC have published error models associated with each one of them. 

5.6.1 Bayesian approach to the rotor spreadsheet calibration 

As mentioned previously, part of the rotor calibration is to find the parameters that represent the coefficient 

of induced and profile power as a function of the operating condition. Given the models and available 

performance data, Bayesian statistics can be used to find calibration related uncertainty.  

In a test case, the 3 variables representing the Cd Mean as a function of CT/sigma in the rotor spreadsheet 

were calibrated using Bayesian statistics. Note that only data at low CT/sigma was used (before any stall 

on the rotor).  For low Ct/sigma, the model is a quadratic. The equation is: 

𝐶𝑑𝑚𝑒𝑎𝑛 = 𝑎1 + 𝑎2

𝐶𝑇

𝑠
  +  𝑎3 (

𝐶𝑇

𝑠
)

2

   

Figure 5-5 illustrates data coming from higher fidelity tool for 2 altitude conditions. The blue dots are data, 

and the orange line is the least-square fit of the parameters a1 a2 and a3. It can be seen that a least-square 

cannot be fit perfectly with the second order model. Consequently, there is uncertainty in the representation 

of the model through this model. 
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Figure 5-5. Cd Mean Data and the Exponential Curve Model 

A Bayesian approximation of the 3 parameters describing the second order Cd_mean model was performed 

and is shown in Figure 5-6. A prior distribution (blue curves) was associated with each parameter, based 

on the least-square regression performed before and engineering judgment. The data was used to update the 

Bayesian model and the posterior distribution of each parameter is an output expressed by the orange 

curves. This representation allows to associate a distribution to each coefficient used in the numerical 

model. This can be used to performed uncertainty analysis. 

 

Figure 5-6. Bayesian Approx. of the 3 Parameters Describing Second Order Cd Mean Model 

5.6.2 Uncertainty propagation methods 

This section evaluates how to propagate the uncertainty of the max speed of a helicopter based on 

uncertainty on the operating condition, using either Taylor series approximation or Monte Carlo simulation. 
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The performance characteristic studied was the max speed of a UH60-L evaluated in through a performance 

calculation in NDARC. The input that were assumed as uncertain were the CG location, the operating 

temperature and the altitude conditions.  

In order to propagate uncertainty, two methods were evaluated: 1) The Monte Carlo Simulation and the 2) 

Taylor Series Approximation.  

The Taylor series approximation assumes a linear variation of each output/input pairing. The variance and 

average of the input are propagate to the output by the equation below. [22] 

μ =E(x), 𝜎 = √(∑
𝜕𝑓

𝜕𝑥𝑖
)

2
𝜎𝑥𝑖

2 

A more involved formulation allows one to take into account input coupling and co variance. The only 

modeling required is the local derivative (1 variable) or the local derivatives of each output to each 

(Jacobian). 

A sweep of CG location was performed, as is shown in Figure 5-7. This results shows that the speed as a 

function of the Cg Location cannot be treated linearly. Consequently the Taylor Series approximation 

cannot be used, and a Monte Carlo Simulation was performed. The Monte Carlo simulation is more 

computationally expansive, as the input distribution are approximated and ran multiple times and the output 

distribution can be assessed.  

The inputs are shown in Table 5-1 and results are shown in Figure 5-8. The distribution on the CG location 

was based on the uncertainty of the CG location of a CH47 [23] 

 

Figure 5-7. Maximum Speed vs. Center of Gravity Location 
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Table 5-1. Inputs to the Monte Carlo Simulation 

Variable Mean Sigma 

CG 0.07 0.05 

Temp 95F 5F 

Alt 4000’ 300’ 

 

 

Figure 5-8. Maximum Speed Distribution, Standard Deviation of 2.4 kts 

The standard distribution of the maximum velocity is 2.4knots. This can be used as a first approximation 

of the uncertainty during the flight test for example, and can be used to inform the uncertainty about the 

calibration. Due to lack of interest in the uncertainty in the calibration of the model, the task was 

discontinued. 

5.7 Conclusion 

Uncertainty on the design and performance of rotorcraft can come from various sources. Some aspects of 

the CATE process were studied, and specific examples were used as test cases to demonstrate possible 

notional process of uncertainty assessment and propagation, specifically in the calibration process.  
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6. UH-60 Upgrade Study 

6.1 Introduction 

 

Using the CATE integration environment, two possible UH-60 upgrade studies (5-blade rotor system, ITEP 

engine) have been performed. The detailed descriptions of the investigation methodologies and the results 

are summarized in the following chapters.  

 

6.2 5-Blade Rotor System Investigation 

 

To demonstrate the procedure from a high fidelity analysis tool (RCAS) to the CATE (NDARC) 

environment through the calibration step, a 5-blade rotor system has been investigated. As the first step in 

the investigation, the UH-60A NDARC model has been updated to match with the published data better. 

The new UH-60A model results have been obtained by modifying the engine parameters and weight factors 

and compared with the published data and the previous results in the Table 6-1. As shown in the table, new 

calibration results show more close to the published data. 

 

Table 6-1. New Calibration Results 

Sizing Results Published 
Previous 

Calibration 

New 

Calibration 
Diff (%) 

Design Gross Weight (lbs) 16,500 17,088.8 16,493.5 0.04 

Drive System Limit (HP) 2,828 2,805.1 2,828.2 0.007 

IRP Power SLS (HP) 1,560 1,762.9 1,560.7 0.04 

MCP Power SLS (HP) 1,313 1,487.6 1,317.0 0.3 

 

For the 5-blade rotor system analysis, either fixing the solidity by the reduced blade dimensions or 

increasing the solidity by adding a same blade can be possible. In case of the same solidity analysis, there 

is no difference in the performance results by the RCAS analysis, so the case with the increased solidity 

analysis with the additional same blade has been chosen and performed. If this investigation is aimed at an 

optimized design analysis, then an intensive parametric investigation and optimization among the solidity, 

the rotor speed, and the blade configuration parameters need to be performed, along with structural and 

dynamic analyses. However, the current investigation is focused on linking the RCAS and the CATE 

(NDARC) environment and detailed parametric optimization is beyond the work scope, only the parametric 

investigation has been performed and the analysis results below should not be considered as the optimum 

design results for the 5-blade rotor system.   
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Figure 6-1 and Figure 6-2 show the hover rotor power comparison at the sea level standard condition and 

the 4,000ft, 95F condition. As shown in these figures, the power required for the 5-blade rotor system is a 

little higher in the UH-60 CT range (~0.007) because the current 4-blade rotor system is optimized for the 

UH-60 weight range. However, as the CT values increase, the 5-blade rotor system becomes more efficient 

and results in lower power required due to the induced power reduction. 

 

 

Figure 6-1. 4-Blade/5-Blade Hover Power Comparison at SLS Condition 
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Figure 6-2. 4-Blade/5-Blade Hover Power Comparison at 4K/95F Condition 

 

Figure 6-3 and Figure 6-4 show the forward flight power required at two different CT conditions. The CT 

values are close to the UH-60 value for both cases, so there show higher power required for the 5-blade 

rotor system. But the difference becomes smaller at the higher CT case (Figure 6-4), which is the same trend 

with the hover results. This trend shows more clear in the Figure 6-5 which includes three different CT 

conditions. It is obvious that the 5-blade rotor system without reducing the rotor speed should be less 

efficient in the UH-60 CT range.  

Thus, more analyses with the different RPM values have been conducted with the CT value fixed as 0.0083 

and the results are shown in the Figure 6-6. With the RPM reduced, the rotor system is operated within the 

more efficient rotor pitch angle ranges, so the power required gets reduced. However, this rotor speed 

investigation should be conducted with the dynamic stability analysis and the optimum RPM can be found 

with a more comprehensive analysis. 
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Figure 6-3. 4-Blade/5-Blade Forward Flight Power Comparison (CT = 0.0074)  

 

 

 

Figure 6-4. 4-Blade/5-Blade Forward Flight Power Comparison (CT=0.0091)  
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Figure 6-5. 4-Blade/5-Blade Forward Flight Power Comparison (RPM=258)  

 

 

Figure 6-6. 4-Blade/5-Blade Forward Flight Power Comparison (CT=0.0083)  
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To connect the RCAS results into the CATE (NDARC) environment, the Optimized Performance 

Spreadsheet (OPS) analysis has been performed as shown in the Figure 6-7. 

 

 

 
 

 

Figure 6-7. Integration Flow between the RCAS and the CATE 

 

 

The hover induced power related NDARC variables and the profile power related variables have been 

obtained using the spreadsheet and the resulting hover induced power factor and the mean drag coefficient 

are plotted in comparison with the optimized spreadsheet results in the Figure 6-8, which show good 

correlation.   

 

 

  
 

Figure 6-8. Hover Induced/Profile Parameters Comparison 
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RCAS forward flight induced power trend is different from the optimized spreadsheet trend in the high 

speed region, so the forward flight rotor power factors are manually tuned to match with the total power 

required.  

Table 6-2 and Table 6-3 include the list of the NDARC variables identified through this procedure.  

 

Table 6-2. Rotor Induced Power NDARC Variables 

Description Variable Value 

model (1 constant, 2 standard) MODEL_ind 2 

Induced velocity factors (ratio to momentum theory induced velocity) 

Hover Ki_hover 1.086 

Axial climb Ki_climb 1.11 

Axial cruise (propeller) Ki_prop 2 

Edgewise flight (helicopter) Ki_edge 2 

Variation with Thrust 

CT/s for Ki_h variation CTs_Hind 0.09 

Coefficient for Ki_h kh1 0 

Coefficient for Ki_h kh2 0 

Exponent for Ki_h Xh2 2 

CT/s for Ki_p variation CTs_Pind 0.1 

Coefficient for Ki_p kp1 1.25 

Coefficient for Ki_p kp2 0 

Exponent for Ki_p Xp2 2 

Variation with Edgewise Velocity 

Advance ratio for Ki_edge mu_edge 0.28 

Coefficient for Ki(mu) (linear) ke1 0.51 

Coefficient for Ki(mu) (quadratic) ke2 0.03 

Coefficient for Ki(mu) ke3 1 

Exponent for Ki(mu) Xe 4.56 

Variation with rotor drag kea 0 

Minimum Ki Ki_min 1.06 

Maximum Ki Ki_max 10 

 

Table 6-3. Rotor Profile Power NDARC Variables 

Description Variable Value 
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Technology Factor 

Profile power TECH_drag 1 

Reference Reynolds number (0. for no correction) Re_ref 0 

Basic model (1 array, 2 equation) MODEL_basic 2 

Array (cd vs thrust-weighted blade loading) 

Number of points (maximum 25) ncd 24 

Equation 

CT/s for minimum profile drag CTs_Dmin 0.05 

Coefficient in drag vs CT/s function (constant for hover/edgewise) d0_hel 0.0075 

Coefficient in drag vs CT/s function (constant for axial) d0_prop 0.0083 

Coefficient in drag vs CT/s function (linear hover/edgewise) d1_hel 0 

Coefficient in drag vs CT/s function (linear for axial) d1_prop 0 

Coefficient in drag vs CT/s function (quadratic for hover/edgewise) d2_hel 0.7 

Coefficient in drag vs CT/s function (quadratic for axial) d2_prop 0.5 

CT/s for separation (Dcd = d(CT/s-CT/s_sep)^X) CTs_sep 0.07 

Factor in drag increment dsep 4 

Exponent in drag increment Xsep 3 

Variation with edgewise velocity, coefficient df1 0 

Variation with edgewise velocity, coefficient df2 0 

Variation with edgewise velocity, exponent Xf 2 

Stall model (0 none) MODEL_stall 1 

 

The Sizing results comparison between the UH-60A and the 5-blade rotor configuration with the reduced 

RPM of 238 has been performed and the results are shown in the Table 6-4. When being sized based on the 

same design mission, the 5-blade rotor configuration shows slightly higher design gross weight because the 

CT value is low around in a 0.006 range and the empty weight increases due to the additional blade. 

Table 6-4. Sizing Comparisons of 4-blade and 5-blade rotor system 

Sizing Results 4-Blade UH-60A 5-Blade UH-60A 

Design Gross Weight (lbs) 16,493.5 16,565.4 

Empty Weight (lbs) 11,026.6 11,131.0 

 

Table 6-5 shows the performance run results without the sizing run at the 22,000 lbs MTOW condition. 

The vertical rate of climb doesn’t change because the rotor power required at the 22,000 lbs (CT = 0.0078) 

is almost same for the 4-blade system and the 5-blade rotor system as shown in the Figure 6-1 and the 
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maximum speed improves slightly. Thus, as shown in these results, the 5-blade rotor system investigation 

doesn’t show significant performance improvements. This conclusion is possibly due to the lack of the 

comprehensive optimization analyses, and the better design results can be obtained if additional higher 

fidelity analyses tools are connected to the CATE environment and the integrated procedures and analyses 

are performed. 

 

Table 6-5. Performance Comparisons of 4-blade and 5-blade rotor system 

Performance Results 4-Blade UH-60L 5-Blade UH-60L 

MTOW (lbs) 22,000 22,000 

VROC (ft/min) 726 726 

Max Speed (kts) 147 150 

 

6.3 UH-60 with the ITEP Engine 

An upgrade of the UH-60 from the baseline engine to General Electric’s ITEP (T901 Turboshaft) engine 

has been investigated. The ITEP engine represents a new technology that, when combined to the existing 

UH60 airframe, is cited by GE to yield the following performance improvements: 

 50% more power at SL/ISA 

 40% more power at 4k/95 

 25% reduced fuel consumption 

 Lower maintenance costs 

Evaluation of this upgrade has been conducted through trade studies outlined in the environment below and 

compared to the existing UH60 performance outlined in NASA’s NDARC analysis tool. 

6.3.1 Trade Study Environment 

The current trade study involves collecting a series of results from NDARC for comparison. To accelerate 

the process, an environment was prepared in ModelCenter which can be seen in Figure 6-9. A QuickWrap 

model parses information from the NDARC inputs, runs NDARC, and reads the output files.  That 

information is shared between Excel and Matlab.  Excel stores the values for record while Matlab does the 

calculations and produces graphs of the power sweeps for sea level standard and high, hot day. 
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Figure 6-9. Trade Study Environment Built in ModelCenter 

6.3.2 Analysis Methodology 

The capability of the UH60 with ITEP upgrades was assessed by comparing the power sweep curves of the 

rotorcraft in forward flight using each engine to obtain crucial changes in performance such as hover rate 

of climb margin, maximum forward flight speed, and the maximum power consumed. This was 

accomplished using NASA’s NDARC integrated into the trade study environment described above. 

 

Another critical aspect to consider in evaluating the upgrade to ITEP is the increased robustness offered by 

a more powerful engine against performance losses or compromises on other systems of the rotorcraft. For 

example, a more powerful engine may offer equivalent top speeds to the baseline except at higher parasitic 

drag coefficients, allowing for more external storage for the same performance as the baseline. Evaluations 

of these sensitivities/robustness were conducted for the following cases using the integrated trade study 

environment with NDARC. 

Table 6-6. Metrics evaluated for upgrade sensitivity and robustness 

Hover Rate of Climb Margin 

Parasitic Drag Coefficient 

Fuel Weight Consumed 

Range 

Endurance 

Maximum Speed 

Endurance at Hover Ceiling 
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6.3.3 Comparison Results 

Using NASA’s NDARC, the following results were generated for a forward flight power sweep using the 

UH60’s baseline engine and the higher performance ITEP engine under consideration for FVL.  Initially, 

the UH60L was sized with and without the ITEP engine to determine the predicted effects of the ITEP 

engine.  As seen in Table 6-7. , the empty weight does increase from the size of the ITEP engine as compared 

to the sized rubber engine. Table 6-7 also shows that the fuel required decreases although.  This is because 

of the increased efficiency of the engine. Overall, the increase in design gross weight is negligible and it 

can be claimed that the sizing process for the specific missions in consideration produces the same design 

gross weight.  Thus, the performance analysis has been be done with each vehicle at max takeoff weight 

(MTOW) for the UH60L, which is 22,000 lb. 

 

Table 6-7. ITEP vs. non-ITEP Sized Vehicle Comparison 

Variable Units ITEP % Change 

Weight Empty lb 3.42% 

Fuel Weight lb -9.03% 

DESIGN GROSS WEIGHT lb 1.34% 
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Figure 6-10. Power Required and Available Comparison with/without ITEP Engine 

 

The comparison of the forward flight power required and power available at SLS condition is shown in the 

Figure 6-10. From the chart, the vertical rate of climb and the maximum speed are obtained and summarized 

in the Table 6-8.  

 

 

Table 6-8. ITEP vs. non-ITEP Sized Vehicle Comparison 

Performance Results 
UH-60L 

Without ITEP 

UH-60L 

With ITEP 
% Change 

VROC (ft/min) 726 1450 100% 

Max Speed (kts) 147 157 7% 
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6.3.4 Robustness 

For the above cases, the nominal values for the UH60 were altered by a percent change with the impact to 

forward flight speed and vertical rate of climb evaluated. By upgrading to an ITEP engine, the UH60 can 

sustain performance equivalent to the baseline configuration under harsher conditions. In the case of 

increased flat plate drag, for example, the forward flight speed of the UH60 with ITEP remains unchanged 

for less clean configurations (due to stall/compression dominating over parasitic drag) compared to the 

baseline, indicating that the UH60 with ITEP can endure aerodynamic deficiency in the way of externally 

mounted equipment, for example. Similarly, variation of air density and gross weight revealed significant 

performance for hover for the ITEP configuration, indicating robustness to atmospheric conditions and 

eight loading that cannot be accomplished by the baseline. 

 

 

Figure 6-11. UH60 performance sensitivities to changes in drag, air density, and gross weight 

6.4 Future Trade Studies 

To further evaluate the engine upgrades, mission analyses will be conducted on top of individual sensitivity 

studies and power sweep curves. Given that operational range is a large factor of concern to the 

stakeholders, two missions will be analyzed for comparing baseline range: one in which both aircraft are 

loaded to MTOW (each carries as much fuel as possible), and one in which both aircraft carry the same 

fuel. This will allow for a comparison of operational performance and pure performance. Additionally, 

further studies into the impact of the higher power ITEP engine on the maneuverability and longevity of 

the UH60 will be analyzed using NDARC for cases of quick climb, dash, and turns. 
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6.5 Technology Evaluation 

A suite of technologies has been researched for CATE. Table 6-9. includes the previous technologies of 

interest.  These technologies and a growing list of developing technologies in Table 6-10 will be detailed 

and implemented into NDARC to examine the potential of applying it to the UH60.  In addition, the 

technologies and new UH60 models can be implemented into an updated version of CATE. 

 

Table 6-9. CATE Evaluated Technologies 

Technology Impact 

CTEF (Continuous Trailing Edge Flap) Reduce vibration, maintenance, and noise [24] 

Plasma Flow Control Increased payload capacity, higher speeds, and 

increased range [25] 

Wide Chord Blades Increased lift [26] 

Leading Edge Slot Delay retreating blade stall [27] 

Individual Blade Control (IBC) 

i.e. RADICL 
Suppress noise and vibration [27] 

Swashplateless Rotor Reduce complexity and improve reliability [27] 

Advanced Actuator Technology 

i.e. Actuation Material in Airfoil Structure 
SEE MORPHING BLADES 

Hybrid Gears 20% reduction in gear weight [27] 

Hover Infrared Suppression System (HIRSS) Reduce IR signature [26] 

Ceramic Matrix Composites (CMC) Reduce fuel burn, emissions, and weight [28] 

Helicopter Active Control Technology 

(HACT) 

i.e. Fly-by-Light/Wire Control System 

Control system to improve all-weather/night mission 

performance [27] 

Health and Usage Management Systems 

(HUMS) 

Maintenance Reductions 

Unscheduled MMH/FH: -52%* 

Mission Aborts MMH/FH: -48%* 

Total MMH/FH: -17%* 

*Actual data from U.S. Army Deployed UH-60 Black Hawk helicopters with UTC 

Aerospace Systems HUMS  [29] 
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Table 6-10. Extended List of Evaluated Technologies  

Technology Impact 

Rotor chord extension Tests with UH60A (Max benefits of 14% power 

reduction, or increase of 1300 lbs gross weight [30] 

Rotor twist / camber morphing Hover performance gains of 4 – 15% [30] 

Variable span rotor Tests with UH60A showed power reduction in 

certain conditions [30] 

Reversible airfoils for stopped rotor Used on NASA X-Wing [30] 

Wing folding for compound helicopter Early prototypes show reduction in downwash 

during takeoff [30] 

Control reconfiguration Reconfigure controls for situations of minimum 

power, minimum noise, or sudden failure.  Tested 

with UH60. [30] 

Advanced anti-torque Noise reduction, safety, thrust vectoring for control.  

Seen on the Bell FCX-001. [31] 

Composites Weight reduction 

Shrouded tail rotor Increased anti-torque efficiency 

Biplane stabilizers Reduces aerodynamic penalties in low-speed flight 

and hover.  Seen on Airbus H160 [32] 

 

Information on morphing or reconfigurable rotorcraft was presented by Dr. Farhan Gandhi at a presentation 

at Georgia Tech title “Reconfigurable Vertical Lift”. [30]   

The technologies in question involve some with direct application to the UH60 upgrade and others with 

more potential for the FVL concepts.  In either case, the research allows a more holistic comparison to be 

made inside NDARC by involving updated technology factors. 

6.6 Configuration Comparison 

Another significant concept is that the choice of the V/STOL configuration largely depends on the hover 

time required for the mission as seen in Figure 6-12. Design cruising speed can be related to the hovering 

time for each concept as seen in Figure 6-12.  The shorter hover time configurations have lower cruise 

speeds, which is understandable as the requirement to hover usually requires more fuel, often leading to a 

larger engine selection to carry the weight, and then creating a geometry with a higher flat plate drag [33]. 

From the previous statements, it is understood that, just as the AHS competition is looking for, to design a 

system that is truly robust in a range of mission scenarios a reconfigurable system is required.  The level of 

reconfiguration is of course at the hands of the designer and decision maker. Examples of reconfigurable 

rotorcraft using stowed-rotors include the Sikorsky stowed-rotor or the Lockheed folding blade concept 

[34]  
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While 

investigating technologies and configurations three factors are key to finding a design which can meet hover 

and speed requirements of the future.  The rotor tip speed must be reduced, the CT/σ must be unloaded to 

some alternative form of lift, and the angle of attack of the rotor disc to the flight path must approach zero. 

[35]  

 

In conclusion, the future of V/STOL aircraft requires advancements in five areas to reach proposed levels 

of operation.  The difference in thrust required from vertical flight and cruise must be handled.  During 

hover, a proper distribution of thrust must be situated for low-speed maneuverability.  Internal complexity 

must be reduced as to lower empty weight.  The addition of propulsors or more stringent operational areas 

must be met with higher fuel efficiency.  Controls must be aimed at all regimes of flight for the safety of 

operating around urban areas and at lower altitude [33]. Future trade studies will look to take technology 

and configuration factors into account to compare the UH60 to FVL concepts.  The goal will be to determine 

the areas in which an upgraded UH60 can achieve success with a lower cost and faster introduction timeline 

then FVL designs. 

  

Figure 6-12:  Operational ranges for traditional vehicle concepts 
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7. A Numerical Method to Calibrate and Forecast Technology Improvements for the UH-

60 Helicopter Using NDARC 

This work was presented at the 73rd American Helicopter Society forum in Fort Worth, TX. [36] 

7.1 Introduction 

A concept level tradeoff environment for future helicopters has been proposed in a previous paper. [1] The 

present document aims at performing the verification and demonstration of the environment by generating 

a use case for an existing aircraft: the UH-60. This paper proposes an alternative calibration process that 

aims at including data from additional sources, such as using optimization routines to minimize error 

between NDARC predictions and published data. 

7.2 Calibration 

Extensive details on NDARC calibration process and theory are found in NDARC theory and validation 

references [37] [38]. The present section will discuss a new way to construct the NDARC files to expand 

on what was proposed in a previous paper [39] by including new set of data. 

Table 7-1 UH-60A/L/M Technologies Modeled 

Aircraft UH-60A UH-60L UH-60M 

Engine T700-GE-

700 

T700-GE-

701C 

T700-GE-

701D 

Improved Durability 

Gearbox 

 Installed Installed 

Wide Chord Blade system   Installed 

 

 

Figure 7-1 Calibration Process 

Three calibration loops are performed consecutively as illustrated in Figure 7-1: the geometry is calibrated, 

then the power available and specific fuel flow are calibrated, and finally the vehicle weight and size are 

calibrated. 

NDARC Execution

Geometry

Operating 
conditions and 
Calibrated Data

Power required
Power Available and 

Specific Fuel Flow

Vehicle weights and size
Loop 3

Loop 2

Loop 1
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7.2.1 Geometry 

Geometry for the UH-60A was derived using dimensions from the UH-60A mathematical model [40] and 

the UH-60A/L operator’s manual [41]. This includes the aerodynamic coefficient and size of the fuselage 

and the tail, as well as the location of the main components.  

7.2.2 Power Required 

The calibration of power required involves many parameters. A typical model for power requirement 

decomposition in NDARC is detailed in NDARC’s theory manual [38] and requires an adequate 

bookkeeping of power losses. The power required is a sum of installation losses, transmission losses, the 

accessory power and the power required by each rotor. In the case of a single main rotor configuration, two 

rotors are used: the main rotor and the tail rotor. The power required 𝑃𝑟𝑒𝑞 by each rotor is a sum of induced 

power 𝑃𝑖 , profile power 𝑃0, interference power 𝑃𝑡 and the parasitic power 𝑃𝑃 which is the thrust multiplied 

by velocity, which includes the power to climb. The rotor can be modeled in NDARC by using a Table 

Performance Method or by using an Energy Performance Method. The Table Performance generates a 

linear interpolation for the induced power coefficient and the average drag coefficient of the rotor from a 

table. Both the induced power coefficient and the profile drag coefficient have to be generated from a higher 

fidelity aerodynamic code, such as CAMRAD or RCAS. The energy performance method generates the 

induced power coefficient and profile drag coefficient from a series of parameters. The energy performance 

method was chosen for this project due to the flexibility of the performance parameters that the method 

allows. 

 

Two methods were selected to generate the rotor performance parameters: an automated calibration based 

on higher-fidelity aerodynamics results and a calibration of power required compared to the operator’s 

manual operating points. 

Energy Performance Method 

The energy performance method is the process used in NDARC to evaluate the rotor power required. Within 

NDARC, the rotor power model is broken down into two independent design spaces: induced power and 

profile power. The induced power NDARC variables determine the calculation of the induced power 

coefficient (κ), while the profile power NDARC variables determine the calculation of the profile drag 

coefficient (𝑐𝑑 𝑚𝑒𝑎𝑛).  

 

NDARC generates the coefficients based on a series of equations which can be found in the theory manual 

[38]. Among the factors of influence, there is variation with thrust coefficient, shaft angle, axial and 
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edgewise velocity and Mach number at the tip. Typically, users match NDARC predictions of the induced 

power coefficient and profile drag coefficients to the ones given by higher fidelity aerodynamic codes. The 

data required at various operating conditions is provided in Table 7-2. The information includes four 

independent variables (𝜇𝑥, 𝜇𝑧, CT/σ, and MAT), and two dependent variables (values for profile drag and 

induced power coefficients from the comprehensive analysis tool).  

Table 7-2 Information Required to Calibrate Rotor Model 

Variable Description 

𝜇𝑥 Advance ratio along the x-axis 

𝜇𝑧 Advance ratio along the z-axis 

CT/ σ Blade Loading (thrust coefficient / 

solidity) 

MAT Maximum Mach number at the 

advancing tip 

Cd Profile drag coefficient 

𝜅 Induced power coefficient 

 

The design space of this problem has the potential to become quite large, encompassing over 30 design 

variables for both induced and profile power. In addition, almost all of the NDARC variables must be 

treated as continuous variables over some practical range of values, further increasing the complexity of 

the problem. Consequently, the calibration of the parameters associated with the rotor energy performance 

method was posed as an optimization problem, with a genetic algorithm chosen to handle the various design 

variables. 

 

Error calculations for both the induced power coefficient and profile drag coefficient serve as the objective 

functions to be minimized during the optimization. For both coefficients, the total error is calculated as the 

sum of the absolute relative error (summed over N calibration data points), where the value estimated from 

the NDARC curve fits is measured relative to the true value provided by either a comprehensive analysis 

tool or some other form of higher fidelity data. As the number of calibration data points, N, may vary from 

case to case, the objective functions in the optimization problem are represented as the average of this total 

error calculation, as shown below. This approach provides a metric to measure the calibration accuracy that 

is independent of the number of calibration data points used (i.e. the magnitude of the error does not scale 

directly with the number of calibration data points). 

𝐶𝐷𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (
 1

N
) ∑ |

𝐶Dest
−𝐶𝐷true

𝐶𝐷𝑡𝑟𝑢𝑒

|𝑁
𝑖=1     

    𝜅 𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (
1

N
) ∑ |

𝜅𝑒𝑠𝑡−𝜅𝑡𝑟𝑢𝑒

𝜅𝑡𝑟𝑢𝑒
|𝑁

𝑖=1  
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Operators Manual Power Required 

A second technique to calibrate the rotor required power uses the operator’s manual published data [41]. 

The proposed process is based on the work already published [39]. For the UH-60A, the data are in the 

form of engine torque as a function speed, aircraft weight, altitude and temperature.  

 

The UH-60A operator’s manual includes the torque per engine for vehicle gross weight from 13,000-

22,500lbs, for various advance ratio including hover, from sea level to 20,000ft, at temperatures ranging 

from -50C to 60C. Calibration points were gathered by digitizing performance charts from the Operator’s 

Manual for operations at Sea Level Static (SLS) and at 4,000ft, 95F condition. 

 

A NDARC performance runs wrapper was created and the power required at each of the conditions was 

evaluated. The wrapper includes the generation of NDARC files from templates, the parsing of the output 

and the automatic execution of NDARC. A multi-objective genetic algorithm was used to minimize the two 

objectives given below by varying the parameters related to required power. A Non-Sorting Genetic 

Algorithm (NSGA) was chosen because it handles non-linear, discontinuous computation models and 

performs multi-objective optimization. For simplicity, the following two objectives are used: 

1. Minimization of Root Mean Squared Error (RMSE) of power required to hover for gross weights 

between 12,000 lbs and 21,000 lbs, and at sea level standard (SLS) and 4,000 ft, 95F 

2. Minimization of RMSE of power required in forward flight for set of forward speeds ranging from 

0 to 155 kts at gross weights of 16,000 lbs and 18,000 lbs, and at SLS and 4,000 ft, 95F 

The optimizer generates a Pareto frontier of possible combination of parameters that represent tradeoff 

between modeling error in hover and in forward flight. One cannot choose to reduce the modeling error in 

hover without worsening the modeling error in forward flight. A multi-objective decision-making 

technique, TOPSIS, was used to select the combination of parameters that represent a good tradeoff between 

both cases.  

7.2.3 Engine 

NDARC allows for two types of engine models suitable for the UH60 model: the turboshaft engine tabular 

model and the Referred Parameter Turboshaft Engine Model (RPTEM).  

The turboshaft engine tabular model is comprised of tables of Power available and fuel flow, as a function 

of altitude, flight speed and rating. In the case of this research, the required data could have been extracted 

from the operator manual, for example. 
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The RPTEM consists of a set of physics-based equations that provide the power available and the 

performance at power required based on calibration factors. The RPTEM was selected for this research as 

it provides a flexible way to represent the engine and apply some technologies, which can be scaled and 

modified throughout the process. Around 20 variables can be modified to calibrate the engine models. The 

calibration was made in two steps: first, the power available is calibrated, and second, the fuel flow is 

calibrated.  

7.2.4 Engine Power Available 

In a first step, the power available parameters were calibrated for various flight conditions documented in 

the operator’s manual, including the vehicle weight. The process is based on published work [39]. Power 

required points were digitized from the operator’s manual, and a NDARC performance evaluation was 

performed at each point. A genetic algorithm was used to minimize the error function in power available, 

by changing the various parameters affecting power available of the main rotor. At this point, efforts to 

adequately bookkeep between of the power available and the power losses is important. 

7.2.5 Engine Fuel Flow 

In a second step, the engine fuel flow was calibrated against the same documented flight conditions. 

Because the fuel flow is dependent on the required power at that flight condition, the error on power 

required predictions would affect the fuel flow, which would additionally affect the fuel flow calibration. 

Consequently, a true function of the fuel flow against power required was created. Once again, a genetic 

algorithm as was used to minimize the error between the true function and the generated function by 

NDARC. 

7.2.6 Weight and Sizing 

Once the Engine and rotor performance models are calibrated, the helicopter is sized to perform the 

expected mission. The sizing task in NDARC internally converges on the vehicle size and weight in order 

to successfully perform the mission. In order to obtain the correct vehicle size, weight factors are modified.  

 

To complement the actual calibration process illustrated in the NDARC theory [38], an optimizer is used 

to minimize the discrepancy between the vehicle weight and the NDARC predictions. The aircraft weights 

were based on published UH-60A weight breakdowns of an actual production helicopter.  
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7.3 Calibration Results 

7.3.1 Engine Calibration 

This section details the results of the T700-GE-700 engine calibration from the method discussed in the 

previous section. The calibration of the T700-GE-701C is also performed independently and as a derived 

configuration from the T700-GE-700 in the next section Technology Infusion. 

First, the T700-GE-700 engine was calibrated as per described in the previous section. The results of the 

power available as a function of various altitudes, temperature and airspeed match well with the published 

data. The fit is characterized namely by a RMSE of 35 hp (total) for the power available for the various 

operating conditions, and a RMSE of 0.048 lb/(hr hp) for the specific fuel flow. 

Similarly, the GE T700-GE-701C was calibrated using the operator’s manual published data. Similar to the 

previous engine model, an RMSE of 37hp (total) was found between the NDARC optimized calibrated 

model and the operator’s manual data, and 0.083 lb/(hr hp) for the specific fuel flow. 

7.3.2 Power Required Calibration 

The two power required calibration methods proposed in the previous sections are conceptually very 

different from one another. In the “Energy Performance Calibration Process”, the data comes from higher 

fidelity aerodynamic codes which separated the induced and profile power of the rotor. In the “Operator’s 

Manual Power Required” calibration process, the data comes from the overall torque required as a function 

of the flight condition, which includes all sources of power required for the main and tail rotor.  

In order to compare the models, a vehicle performance evaluation was performed with aircraft models 

generated by the two methods. The “Operator’s Manual Power Required” calibration method led to good 

agreement between the NDARC results and the operator’s manual. The RMSE of the power in hover is 

6.3hp and 41.5hp in forward flight.  

 

Due to limited access of high fidelity data, the aerodynamic data of a UH-60 in hover was extracted from a 

published paper [37] [42]. The Energy Performance Method model calibration result is shown in Figure 

7-2 and in Figure 7-3. The root mean squared error (RMSE) of the induced power coefficient is 0.004 and 

0.02 for the profile drag. The results show that the optimizer is successful at matching the provided data 

set.  
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Figure 7-2 Optimization results: Profile drag coefficient in hover and the verification data from 

[37] 

 

Figure 7-3 Optimization results: Induced power coefficient in hover and the verification data from 

[37] 

The aircraft description file was modified to include the parameters found with this technique. This method 

leads to an under prediction of the power to hover at SLS and 4,000ft, 95F, with a RMSE of 32hp (total) 

for the various GW expressed in the operator’s handbook. The NDARC performance runs at various CT/σ, 

in SLS conditions show that the induced power coefficients are identical between the two techniques. 

However, Figure 7-4 shows the discrepancy between the profile power coefficient. The discrepancy is 

relatively small, and is constant for the three cases illustrated in the figure. This difference could possibly 

be a result of how the power was bookkept in the Operator’s Manual calibration technique, and could be 

reduced if more information was available on the other loss mechanisms, such as transmission losses, etc.  
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Figure 7-4 Profile power coefficient comparison between the Operator’s Manual Power Required 

Motor Model and the Energy Performance Method Model 

The results show a relatively interesting potential for this technique and relatively good agreement between 

the two calibration techniques. It also opens to more test cases, including some operation in climb and in 

forward flight. 

Due to the lack of available data for advancing flight, the results from the “Operator’s Manual Power 

Required” calibration process will be used as the principal helicopter model for the following sections of 

this paper. 

7.4 Technology Infusion 

The technologies implemented on the UH-60 variants are illustrated in Table 7-1. In an attempt to mimic 

the prediction of the UH-60L and UH-60M performance and sizing, the model of the UH-60A is modified 

with the technology impact factors to represent the respective technologies. The following section details 

how the technology impact factors were calculated and how their impacts are propagated in a sizing and 

performance evaluation environment.  

For the engines, documents [43] gave values for the weight, engine ratings and fuel consumption. NDARC 

was coupled with an optimization routine that acted as a numerical solver to calculate the values for the 

technology impact factors. It was assumed that each engine had some level of technology that impacted 

engine weight. After inputting the intermediate rating power (IRP) for the engines into NDARC, an 

optimization routine was used in which the engine weight technology factor was varied until the output 

engine weight matched the data. For the T700-GE-701C, the calibration factor used for estimating the 

original T700-GE-700 engine weight resulted in an output engine weight of 457.4 lb, which is close to the 

458 lb value given by the technical specifications. For the T700-701D, the optimization routine indicated 

that the technology of the T700-701D engine resulted in a 3.6% weight decrease. Neither reference 
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indicated changes to the entire propulsion group (changes in nacelle and structural weight), so NDARC 

parameters relating to these groups were left unchanged. 

The information found regarding the improved durability gearbox (IDGB) indicated the increased power 

rating, but no information about efficiency or weight was found. For performance analysis in NDARC, the 

IDGB is simply represented by increasing the transmission ratings. For sizing analysis, performance 

requirements such as MTOW or VROC are used to calculate the drive system rating, so there are no 

technology impacts to evaluate for sizing purposes.    

A different approach was taken for evaluating the wide chord blade (WCB) system to demonstrate how to 

make predictions when technology is still being developed. The WCB is a new rotor blade, with new 

planform, a wider chord and different airfoils. Yeo et al. modeled the WCB system in a high-fidelity code 

and found that the increase in solidity was a main performance driver as a result of the de-loading the blades. 

[42] Due to the absence of the results of high fidelity aerodynamic simulation, only the change of solidity 

is implemented. The 10% increase in solidity reported for the WCB by Yeo et al. results in a 9.1% decrease 

in blade loading.  

Blade weight changes were based on results from a NASA project, which focused on modeling the structure 

of a composite rotor blade and using optimization to find minimum weight designs. [44] This research used 

the UH60A as a validation case. Nixon’s results for estimating blade weight changes due to composite 

designs were based on the aerodynamics of the UH-60A. Nixon’s paper concluded that a single-spar 

composite design would result in a 21.3% weight reduction and a multi-spar composite design would result 

in a 12.1% weight reduction relative to the metallic design used for the UH-60A. There was no specific 

information found on how the control weight would change, so no assumptions were made as to potential 

technology impacts for these. The technology impact factors are summarized in Table 7-3, and includes the 

more conservative blade weight impact factor.  

Table 7-3 UH-60A/L/M Technology Impact Factors 

Technology Blade Loading Engine Weight Factor Blade Weight Factor 

T700-GE-701C 0% 0% 0% 

T700-GE-701D 0% -3.6% 0% 

Improved Durability Gearbox N/A N/A N/a 

Wide Chord Blade System -9.1% 0% 12.1% 

 

The operator’s manual gives information regarding UH-60L fuel flow, allowing to verify the engine fuel 

consumptions made earlier. The operator manual’s data on power required was used to compare the 
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NDARC model predictions. Finally, high-level mission performance characteristics of the UH-60A, UH-

60L, and UH-60M models were used to verify the models. This data was used to indicate how close the 

NDARC performance models represented the various Black Hawk models. 

Though there are no technology factors to attribute to the UH-60L model, it is still modeled in NDARC by 

increasing the engine power available. Doing so also increases the engine weight and represents the T700-

GE-701C, and increasing the drive system limit represents the IDGB. The power required output was 

compared with data from the operator’s manual.  

In general, power required was overestimated, which will underestimate the performance calculations for 

maximum speed, ceilings, hover VROC, or maximum gross weight. NDARC estimates component 

reference surface area based on weight, so the heavier engine results in more drag, which will cause 

increased power required. Nothing was known about the change of drag coefficient of the UH-60L, so no 

change was made on this aspect. Fuel flow was underestimated, which will cause mission range or 

endurance to be potentially overestimated. No assumptions were made about fuel flow of the new engine, 

so the consistent underestimation indicates that the new engine burns more fuel. It is expected that the 

RSME will increase as other vehicles are modeled.  

Table 7-4 NDARC Weight Predictions Error for the UH-60L 

Component Error between NDARC and 

production UH-60L 

Rotor Group 3% 

Empennage Group 3% 

Fuselage Group 25% 

Structure Total 14% 

Engine System 11% 

Propulsion Total 3% 

Empty Weight 9% 

 

Modeled weight predictions for selected groups were compared with reported weight values for the UH-

60L and the error are illustrated in Table 7-4. Note that no tech factors were changed between the UH-60L 

and the UH-60A NDARC representation models, and that only two technologies were implemented on the 

UH-60A to represent the UH-60L. Upgrades to avionics, crashworthiness, hover infrared suppression 

systems, and any other modifications in the block upgrade were not included. The technologies were not 

included to reduce the scope of the problem to only performance related technology. Thus, it is expected 

that there will be error in the weight estimates.  

A large source of error in the fuselage weight drove the high error in structure group weight. Similarly, the 

engine system weight error drove the propulsion system error. The UH-60L incorporated many things from 
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the variants developed from UH-60A (the Navy and Air Force utility helicopters) in addition to general 

weight creep, so it is possible that investigating what these changes were and how they affect fuselage 

weight would allow for better predictions. The error of the engine weight was negligible (less than 1%). 

The error of the engine system group weight is largely due to underestimating the exhaust system weight 

by 66.7%. It is likely that an updated hover infrared signature suppressor (IRS) increased the weight of the 

exhaust system. Information relating to hover IRS is generally restricted so it was not selected as a 

technology to investigate. More information about technology upgrades will result in better predictions, but 

the results show that the system sizing can still be represented with a limited information. The error in the 

results above stems from a partial representation of the block upgrade. However, the model still allows for 

inferences about the two upgrades that were applied. This model can be used to answer questions about 

how a new transmission and engine will affect the useful load of the black hawk helicopter. 

To represent the UH-60M, the UH-60L file was modified. Similarly for the UH-60L, the engine available 

power was increased and the -3.6% technology factor was applied to the engine technology factor to 

represent the T700-701C. Additionally, the rotor blade loading was decreased by 9.1% and the main rotor 

weight technology factor was decreased by 12.1%. No other changes were made to represent the UH-60M. 

Table 7-5 NDARC Performance Analysis of UH-60A, UH-60L, and UH-60M vehicles 

Model VROC (ft/min) Vcr (kts) MTOW (lbs) 

Data NDARC Data NDARC Data NDARC 

UH-60A 377 0 140 142.5 20,250 20,620 

UH-60L 1315 412 155 151 22,000 23,505 

UH-60M 1646 862 151 153 22,00 23,406 

 

Table 7-5 gives the results of the NDARC performance prediction of the UH-60A, UH-60L, and UH-60M 

along with the published results. [45] This reference was used because data on the UH-60M similar to the 

data used for the UH-60L and UH-60A is not available to use for comparisons. The vertical rate of climb 

(VROC) and maximum speed performance estimates are for a gross weight of 16,800 lbs at 4000 ft, 95F. 

For VROC, maximum available power is 95% IRP and for maximum speed, maximum available power is 

100% MCP. The reference lacks the important operating condition information about the conditions of the 

performance points. However, it was used across all vehicles so that similar assumptions were used. 

There were significant errors in estimating the VROC. In the UH-60A case, there was not enough power 

available to hover at 4,000 ft, 95F, returning 0 for VROC and indicated that power available was exceeded. 

Further investigation of this operating condition results needs to be performed. NDARC has acceptable 

estimate of maximum speed and overestimates the MTOW for all cases. For the maximum speed, NDARC 
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is correctly giving power available due to ram effects increasing power. For the overestimates of MTOW, 

there was a lack of information relating to the environmental condition in the documentation. In the 

operator’s manual, the closest condition for reaching the UH-60A max weight was SLS and at 100% IRP 

or the drive limit. Without knowing the MTOW conditions for the reference data point, it is difficult to 

make conclusions regarding the accuracy of NDARC’s predictions. [45] Additionally, it is unknown if 

MTOW is limited by structural safety margins. However, the NDARC predictions do agree with the trends 

between the models. The VROC increases for each new model while the maximum speed and MTOW only 

see real increases between the UH-60A and the UH-60L models. Technology prediction focuses on the 

changes between models since models are inherently wrong. The previous table indicates that the 

technology analysis and modeling environment are capturing these changes, meaning that this NDARC 

method is acceptable to use in a vehicle development scenario. 

7.5 Conclusions 

This paper presented new approaches to calibrate rotorcraft performance models in NDARC. In most 

techniques, an optimizer was used to obtain the model parameters. The use of the optimizer reduced the 

input of the user during the process. However, it was noted that setting up the optimization problem requires 

experience from the user to choose the model types, which variables to change and to bound the problem 

by providing adequate limit and initial guesses on variables. 

The engine deck was built by reducing the discrepancy between operator’s manual power available and 

fuel flow and the NDARC model, using an optimizer that varied the RPTEM parameters. Good fit was 

obtained for power available and fuel flow for the T700-GE-700 and the T700-GE-701C. 

The power required calibration was made by two methods. First, the rotor parameters were modified to 

minimize the error between published power required from the operator’s manual. Then, minimization of 

the error between modeled and published profile drag coefficient and induced power coefficient was 

performed in hover. Both methods led to similar results for hover, which opens to more verification cases. 
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8. Development of a Framework for Mission and Operational Modeling 

This work was presented at the 73rd American Helicopter Society forum in Fort Worth, TX. [46] 

8.1 Introduction 

The loss of hundreds of rotorcraft aircrews during the conflicts in Afghanistan and Iraq has motivated the 

Future Vertical Lift (FVL) initiative, a plan to develop the next generation of military rotorcraft. Key goals 

of the initiative include developing “the most capable aircraft at the best value by minimizing development, 

acquisition, and life cycle costs through Joint solutions of common core technologies, architectures, and 

training, emphasizing the ability to conduct safe, reliable and continuous operations”. [47] The goals of the 

FVL initiative highlight both tradeoffs and opportunities for technology infusion, at both the component 

and system architecture level that have a strong impact on system capability, reliability, and life cycle cost. 

Estimates of traditional rotorcraft performance metrics are often available during the conceptual design 

phase and are obtained using rotorcraft performance analysis and sizing tools like the NASA Design and 

Analysis of Rotorcraft (NDARC) environment. [38] The NDARC environment was built with the intent to 

perform trades for technology infusion with respect to vehicle performance metrics including weight, size, 

range, and endurance. However, NDARC is unable to assess the impact of technologies on key system 

sustainment metrics including reliability, availability, maintainability, and affordability, which are key to 

FVL initiative goals. Reliability is the probability that the aircraft system will operate without failure during 

a given time period at specified conditions while Operational Availability represents the percentage of time 

that the aircraft system is operationally capable of performing a mission assigned to it. [48] Armstrong et.al. 

note that maintainability is a measure of the cost, time, and effort required to maintain the desired level of 

system reliability and availability. [49] 

System reliability, availability, and maintainability are related to the Operations and Support (O&S) cost, 

which contributes to approximately 70% of the system lifecycle cost. [50] The DoD Reliability, 

Availability, Maintainability (RAM), and Cost Rationale Report Manual highlights the importance of 

incorporating sustainment metrics early in system design because it “enables the acquisition and 

requirements communities to provide a weapon system with optimal availability and reliability to the 

warfighter at value.” [48] 

This work is a continuation of the work of Velden et al., presented previously at the Rotorcraft Virtual 

Engineering Conference. [51] The work of Velden et al. described an overall integrated simulation 

environment that encapsulated system capability, availability, and affordability, and presented results for 

availability and Mean Time Between Mission Affecting Failures (MTBMAF) for the UH-60M when 

performing a standard utility mission. However, this simulation effort did not include the effect of 
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maintenance actions or downtime on the rotorcraft availability. Previous work by Armstrong et al., 

presented at the AHS 72nd annual forum included a maintenance manager to study the downtime incurred 

due to part failure and replacement. [49] The work of Armstrong et al. modeled vehicles as a container of 

parts that accrued damage during normal operations. The method implemented also allowed for the 

incorporation of technology factors to explore the effects of technology infusion on operational availability, 

vehicle loss rate, and the operations and support costs. Results representing the availability and O&S costs 

for the UH-60M were presented. 

This paper describes the development of an integrated simulation environment in the form of a discrete 

event simulation that tracks the long-term, steady-state Operational Availability and Maintenance Free 

Operating Period (MFOP) of a rotorcraft system. A maintenance manager is included to aid in the study of 

system downtime due to part failure and replacement while the rotorcraft system architecture is represented 

by a series of event trees unique to each portion of a phased-mission profile.  Developing a modular 

simulation framework for investigating the Operational Availability and MFOP of a new rotorcraft system 

acts as an enabler for component technology and system architecture trade studies; this can be expected to 

be beneficial to achieving the goals of the FVL initiative. 

8.2 Simulation Environment Development Methodology 

8.2.1 Conceptual Approach 

The model is intended for use in simulating the usage of a single aircraft. In this model, the vehicle performs 

a mission, is evaluated in a post-flight inspection, and either goes to maintenance or begins the next mission 

based upon the presence or absence of failed systems as shown in Figure 8-1. 

 

Figure 8-1. Conceptual Model Description 

Both mission phases and maintenance actions occur at discrete time intervals throughout the simulation. 

The vehicle may be sent to maintenance for two reasons, a condition-based repair or replace action noticed 

during routine inspection or an in-flight failure identified during post-flight inspection or during flight that 

resulted in a mission abort. [52] In both cases, maintenance is a result of a trigger that occurs at a discrete 

time during a phased-mission. Because part hours are tracked at discrete time steps, constructing an 
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integrated discrete-event simulation is appropriate. Further, uncertainty in both individual part life and the 

time required to repair or replace components results in the need to introduce part life and repair time 

distributions rather than setting deterministic values for individual components. To capture the effect of the 

distributions on key parameters used in the models, Monte Carlo studies are performed to capture the 

variability of the key metrics tracked in the simulation environment.  

8.2.2 Metrics of Interest 

The key metrics tracked in the discrete-event simulation are related to reliability, availability, and 

maintainability of the system. These metrics are selected because they are directly related to the operations 

and support costs for an aircraft. The key metrics tracked are shown in Table 1.  

Top-down assessment of reliability, availability, and maintainability metrics relies on subject-matter 

experts and is qualitative in nature, a process that requires significant documentation to remain transparent. 

Further, performing tradeoffs from a top-down perspective with expert-in-the-loop evaluation methods is 

not practical. Evaluating reliability, availability, and maintainability metrics from the component level, a 

bottom-up approach, based on data obtained for individual components allows for an easily documented 

process that can be performed numerous times by an analyst, and results in a preliminary quantitative 

prediction as opposed to a qualitative comparison between architectures. 

 

Table 8-1. Metrics Tracked in the Simulation 

Parameter Units Description 

Operational Availability (A0) % The percentage of time that the vehicle is operational 

– capable of flying missions 

Maintenance Free Operating Period 

(MFOP) 

hr The number of hours a system can complete its 

assigned missions without required maintenance or 

restrictions due to system faults or limitations [53] 

Cost to Replace Failed Parts $ The total cost of replacing failed components 

Cost to Replace Parts on Condition $ The total cost of replacing parts due to deterioration 

of the part 

Maintenance Man Hours to Replace 

Failed Parts 

hr The maintenance man hours required to replace failed 

components 

Maintenance Man Hours to Replace 

Parts on Condition 

hr The maintenance man hours required to replace parts 

due to deterioration of the part 

Number of Failed Parts Parts The number of failed components of each type 

replaced during a simulation 

Number of Condition-Based  

Replacements 

Parts The number of parts replaced due to part condition 
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8.2.3 Modeling Approach 

The discrete-event simulation is developed for a single aircraft. A phased-mission with phase-dependent 

event trees for mission-critical and safety-critical failures is defined using an interface and loaded into the 

model. Component MTBF values with associated distributions are also loaded into the model. The single 

vehicle flies missions according to Figure 8-1 and interfaces with the maintenance manager that determines 

the amount of downtime incurred due to maintenance requirements. Each of these components ultimately 

feed into the evaluation portion of the simulation that determines the MFOP, mean time between system 

failures (MTBF), and the operational availability (Ao). The framework of the simulation is illustrated in 

Figure 8-2.  

The key simulation parameters are the number of hours for which the simulation will be run, or alternatively 

the number of MFOP cycles that will be simulated. Additionally, to account for the distributions included 

for component MTBF and MTTR values, the number of Monte Carlo cycles performed is also specified.  

 

 

Figure 8-2. Simulation Layout 

8.2.4 Phased-Mission Modeling 

The mission used for evaluation of the system consists of a single phased-mission. The phased-mission can 

be adjusted to model civilian transport missions or military missions including scout, attack, and transport 

or medevac, allowing for significant modeling flexibility. The key parameter defining a mission phase is 

its elapsed time. Additional parameters regarding component age and failure propagation are also required 

for each mission phase which are discussed in detail in the subsystem modeling approach section. 
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Implementing a phased-mission has several advantages. One of these advantage is related to the individual 

aging of the constituent aircraft systems. Using a phased-mission, active components are aged during a 

given mission segment while inactive components do not receive hours, the metric used to track component 

age. This allows for a more-accurate model of the effect of mission-specific component use than simply 

tracking cumulative age. Further, implementing a phased-mission allows for the definition of how 

component failures propagate during each mission phase due to the criticality of that component to safety 

or mission success. [53] During the mission, the consequence of a component failure on mission success 

and vehicle survivability depends on the mission phase. 

Although there are other advantages, using a phased-mission is required for proper evaluation of the MFOP 

for a particular aircraft system. The concept of MFOP is defined by Mitchell as a period of operation where 

a system must be able to complete all of its assigned missions without required maintenance action or 

restrictions on the operator due to system faults or limitations. [54] Here a phased-mission is critical because 

the MFOP concept is dependent upon the completion of a specific mission profile. The criticality of a failure 

with regard to the mission or vehicle safety is dependent upon the defined mission. 

8.2.5 Modeling the Vehicle Systems 

Modeling the vehicle accurately, and with a variable level of fidelity, is critical for the design trade studies 

envisioned at the subcomponent and architectural level. For the subsystem trades, it is important to capture 

information regarding each of the components in the subsystem as well as the interconnections between 

those parts. Capturing the component interaction at this level is required to allow for component trades or 

technology infusion at the subsystem level. At the architecture level, the interconnections between relevant 

subsystems drive the trades.  

The work of Armstrong models the vehicle as a set of parts, each with individual properties that specify 

how the part fails, when it will fail, and the cost and time required for repair or replace actions. [49] Here, 

a similar approach is taken in decomposing the system into constituent components with specific properties. 

The parameters required to define each component are shown in Table 8-2. Unlike the approach of 

Armstrong, each of the parts belong to event trees that describe the effect of failure on the system, 

specifically whether it is a safety-critical failure, a mission-critical failure, or does not affect the mission 

but must be repaired after returning from the mission. 
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Table 8-2. System Definition Inputs 

Parameter Units Description 

MTBF hr The mean time between failures for a repairable component, 

alternatively MTTF for a non-repairable component 

MTTR hr The mean time to repair a component, including removal, repair or 

replacement, and installation to the vehicle 

Start Age hr Starting age for a component that is installed on the vehicle 

Time to Repair 

Model 

N/A Model (Gaussian, Weibull, Exponential, or Lognormal) and necessary 

parameters to assign repair times for components 

Component Failure 

Model 

N/A Model (Gaussian, Weibull, Exponential, or Lognormal) and necessary 

parameters to assign failure times for components 

System Cost $ The cost to repair a system 

Component Life hr The manufacturer-determined life where a component will deteriorate 

such that an inspection of it will require repair or replacement 

Inspection Time 

Windows 

hr The window used in the field or shop to determine whether an 

inspection should be undertaken to evaluate part condition 

 

A notional example of an event tree for a mission phase is shown in Figure 8-3. This example shows only 

a few components, but is intended to highlight the key features of the modeling approach. ‘And’ gates are 

implemented to require the failure of two or more items concurrently for the failure to propagate to the top 

level and signal a mission failure in a specific mission phase. ‘Or’ gates allow for the propagation of a 

single failure upward in the event tree. 

The organization of components using event trees to capture failures during a given mission phase allows 

for the capture of failures that may not be mission or safety critical when considered in isolation, but 

contribute to the workload experienced by maintenance personnel. 
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Figure 8-3. Notional Event Tree 

8.2.6 Maintenance Manager 

A maintenance manager is implemented to determine when the helicopter requires maintenance as well as 

how that maintenance is performed. Service may be required in two distinct cases. The first case is when a 

part deteriorates and must be replaced when found during a routine inspection. In this instance, no failure 

is experienced by the aircrew during a mission. The second case occurs as a result of an in-flight failure 

triggered by a component exceeding its operable life assigned based upon the MTBF distribution specified 

for the part in the simulation inputs.  

If the maintenance manager determines that the helicopter requires maintenance after a mission, the first 

action is to determine if the helicopter needs to undergo additional preventive maintenance. By checking to 

determine if parts with specified inspection windows must be replaced soon, the amount of time that the 

helicopter must be removed from service can potentially be reduced. 

After determining the key components that must be maintained or replaced, the maintenance tasks are 

assigned to available maintenance personnel on a longest-first basis. Using this approach, the total 

downtime is minimized as the amount of work performed concurrently by the mechanics is maximized. 

Ultimately, the maintenance manager is key to determining the downtime, maintenance man hours, and 

cost incurred due to necessary maintenance actions. The downtime calculated by the maintenance manager 

is based on delay time to acquire the part and necessary tools, the component MTTR, personnel availability, 

shop availability, and the number of maintenance personnel in the shop. A flowchart describing the inputs 

and outputs of the maintenance manager is shown in Figure 8-4. 
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Figure 8-4. Structure of the Maintenance Manager 

The key inputs to the maintenance manager are briefly discussed in Table 8-3. 

Table 8-3. Maintenance Manager Inputs. 

Parameter Description 

Shop Availability Distribution Defines parameters for a distribution that describe whether the 

shop is available 

Personnel Availability Distribution Define parameters for a distribution that describe whether a 

maintenance person is available 

Number of Maintenance Personnel Total number of maintenance personnel assigned to the vehicle 

LDT Factor Multiplicative factor on downtime used to model LDT 

Required Maintenance Actions Maintenance actions that are required when the vehicle enters 

the shop 

Preventive Maintenance Parameters The time when the part will be revealed to need repair or 

replacement during specified part inspection intervals 

Preventive Maintenance Switch Switch that may be toggled to turn off all forms of preventive 

maintenance 

 

The maintenance delay time incurred due to the acquisition of a part or specialized tools as well as the setup 

time required to perform a specific maintenance action is known as the Logistics Delay Time (LDT) and is 

largely based upon the logistical support network and environment of operations. [55] Estimating the LDT 

is beyond the scope of this model as an accurate estimation of this value would require in-depth modeling 

of the logistical pathways used for part transfer as well as the initial distribution of parts across multiple 

maintenance facilities or warehouses. LDT is exceptionally difficult to estimate and will change 

significantly over the lifetime of a vehicle. [56] For example, during introduction, the supply system will 

not be fully-stocked with spare parts for a given aircraft. Further, under combat conditions, estimating the 

LDT is not feasible in most cases. For a well-stocked maintenance facility, away from combat operations 

or in a civilian context, the LDT will be small. For this model, it is assumed that this is the case. LDT is 

assumed to increase the total downtime by 10%. However, it is acknowledged, that in cases where a 

maintenance facility is not well-stocked, LDT can quickly balloon to become the largest component of 

downtime. [56] For the discrete event simulation constructed, LDT is included in the model by including a 
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multiplicative factor on the downtime reported by the maintenance manager, in this case the factor is 1.1, 

representing a 10% increase in downtime due to LDT for a well-stocked maintenance facility. 

Another form of delay incurred is known as the Administrative Delay Time (ADT). ADT is a component 

of downtime not spent waiting on spare parts, instead the delay is due to a lack of maintenance personnel 

or other non-part-related resources. [57] Because the maintenance manager considers shop availability and 

the availability of maintenance personnel, ADT is modeled directly through consideration of shop personnel 

and availability rather than a correction factor. 

During calculation of the downtime incurred due to maintenance actions, two metrics that are key drivers 

for the maintenance cost are tracked: total part cost, and the maintenance man hours. Because preventive 

maintenance is considered in this simulation, the cumulative part cost and maintenance man hours are 

tracked for both preventive maintenance actions and maintenance due to during-mission failures. Tracking 

cost and maintenance man hours for preventive and failure-based maintenance separately allows for trades 

to be performed on the parameters that govern preventive maintenance where otherwise the necessary data 

would be inseparable from a single cost metric. 

8.2.7 Modeling Technology Impacts 

Using the developed discrete-event simulation to evaluate a given system architecture with a known set of 

subsystems is valuable and does provide insight into a system. However, the discrete-event simulation is 

also valuable in quantitatively modeling the effects of technology infusion on an in-service vehicle system. 

For technology infusion at the component level, a model may be built for the baseline aircraft and 

modifications made to the system of interest to include the effects of technology infusion on that system. 

These modifications may come in the form of adjusting the distributions for the MTBF, the MTTR, or both, 

in addition to the cost of the system. This allows for a one-to-one comparison on the effect of technology 

infusion at the component level on vehicle operational and supportability metrics. It is difficult to accurately 

identify the MTBF, MTTR, and cost values for a given set of subsystems if data is unavailable. [56] 

However, by constructing a baseline and a technology infused variant using the best available 

approximations, the effect of the subsystem data takes a secondary role to the technology impact. This 

occurs because the subsystem data is consistent between the models and key differences will arise due to 

the infusion of a component-level technology. 

Evaluating the effect of technology infusion at the component level on operations and supportability metrics 

for in-service vehicles is critical because it allows decision makers to see the true impact of upgrades. 

Although upgrades may provide performance benefits like reduced fuel burn, considering how these 
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systems affect supportability metrics must also be considered to determine how the upgrade impacts the 

vehicle system. 

8.2.8 Modeling Architectural Tradeoffs 

The developed discrete-event simulation is also useful in performing architectural tradeoffs during system 

design. Early in the system design process, tradeoffs of system architecture with regard to reliability, 

availability, and maintainability are critical to selecting both components and the architecture that meet 

performance and sustainability metrics.  

Utilizing the discrete-event simulation to evaluate candidate architectures at the conceptual design level 

allows for consideration of novel concepts as well as more specific architectural decisions that may include 

component redundancy for example. The key to utilizing the discrete-event simulation to evaluate candidate 

architectures with regard to operations and supportability metrics early in design is the flexibility to define 

systems and architectures that are representative of many points throughout the design space. 

8.3 Model Implementation 

The discrete-event simulation is applied to a Bell 206 civilian helicopter. Dougherty notes that the Bell 206 

is one of the most commonly used aircraft by flight hours. [58] In addition to being pervasive in the civilian 

market, the Bell 206 is closely related to the OH-58, a military rotorcraft typically used for scout missions. 

Due to the limited availability of specific data for the Bell 206, the implementation documented in this 

publication may be best thought of as modeling a notional generic helicopter similar in features to a Bell 

206.  

Implementing the developed model for the notional aircraft is a multistep process which requires definition 

of the system architecture, the mission, and component attributes including failure densities, repair times, 

and cost data. 

8.3.1 Model Implementation 

The purpose of developing an architecture for the aircraft of interest is to understand, at an appropriate 

level, the systems that are present in the aircraft as well as the linkages between the different components 

so that the event trees similar to those shown in Fig. 3 may be defined.  

The methodology used to develop the event trees is based on the process used to complete a functional 

hazard assessment, “a systematic, comprehensive, examination of functions to identify and classify failure 

conditions to those functions according to their severity.” [59] The process of completing the functional 

hazard assessment is as follows: 
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1. Identify all functions associated with the system under consideration 

2. Identify and describe the failure conditions associated with each function 

3. Determine the effect of the failure conditions 

4. Classify the failure condition by its effect on the aircraft 

Based on the process outlined to perform a functional hazard assessment, the process to define event trees 

starts with performing a functional decomposition of the notional rotorcraft. Using the developed functional 

architecture, individual components are enumerated and assigned to specific functions. Using 

interconnections between components defined in the functional and physical architectures, subsystem or 

component failures are defined to be safety or mission critical. The process is illustrated in Figure 8-5. 

 

 

Figure 8-5. Process Used to Define Event Trees  

A functional architecture for a notional single main rotor helicopter in the cruise mission segment is 

developed and is shown in Figure 8-6. [60] [61] Figure 8-6 is not meant to be exhaustive, rather it is intended 

to capture the most critical functions. In some cases, multiple functions map to a single component and in 

other cases, a single function maps to multiple components. The key components during the cruise mission 

phase are included in a notional physical architecture provided in Figure 8-7. [60] [61] [31] Although not 

shown in this paper, functional and physical architectures for the notional helicopter are also developed for 

additional mission phases including startup, takeoff, setdown, and shutdown. 

The physical architecture of components required during the cruise mission phase can be broken down into 

two distinct event trees, also commonly called fault trees. The mission abort event tree defines the failures 

required to trigger a mission abort, while the safety critical event tree defines the failures that result in a 

vehicle crash. An example of a mission abort tree and a safety critical event tree for the cruise segment is 

shown in Figure 8-8. These event trees are also developed for the other mission phases including startup, 

takeoff, setdown, and shutdown. 

It is worth noting that based on component type, specific failure modes will exist. The failure modes of a 

single component may be very different in nature as shown in Table 8-4. Table 8-4 is not exhaustive but is 

intended to highlight the diversity of failure modes experienced by several different classes of components. 
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Figure 8-6. Notional Single Main Rotor Helicopter Functional Architecture for Cruise Segment 

 

Figure 8-7. Notional Single Main Rotor Helicopter Physical Architecture Applicable to Cruise 

Segment 
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Figure 8-8. Mission Abort and Safety Critical Fault Trees for Cruise Segment 

Table 8-4. Failure Modes by Component Type. 

Component Class Failure Modes 

Structural [58] [62] Buckling, Corrosion, Delamination, Disbond, Cracking, Bolt 

Loosening, Hole Elongation, Foreign Object Damage  

Electrical [63] Loss of Power, Loss of Backup Power, Loss of Input Signal, 

Unable to Process/Accept Input Signal, Unable to Output 

Command Signal, Sensor Failure 

Dynamic Component [58] [64] [65] Bearing Failure, Damper Failure, Foreign Object Damage, 

Unbalanced Component, Misaligned Component, Component 

Structural Failure, Oil Leakage or Sludge Accretion 

Actuation Component [58] Loss of Power, Loss of Input Signal, Loss of Sensor for Control 

Feedback, Foreign Object Damage, Component Structural 

Failure, Leak or Broken Connection 

 

For the failure modes experienced by each class of component, the repair time, cost, and severity may vary 

substantially. For example, loss of a blade erosion strip, is technically a failure within the main rotor system, 

but will not constitute a safety critical failure. For the representative data used for the notional helicopter 

example, it is assumed that the failures encountered allow the component to continue performing its 

function well enough to return to the point of origin, constituting a mission abort rather than the loss of the 

vehicle.  
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When component failure modes are diverse, it may be useful to model failure modes of individual 

components rather than the component as a whole. Because the current model is based on the definition of 

subsystems and components, which can easily be abstracted to a set of failure modes, it is possible for the 

model in its present state to handle the modeling of specific failure modes. However, for the notional 

helicopter modeled in this example for illustrative purposes, the decomposition to component failure modes 

is not performed. 

8.3.2 Mission Modeling 

The mission used for modeling this notional single main rotor helicopter is 110-minutes in duration and is 

intended to be representative of a common transport mission for a civil helicopter. The duration of each 

mission phase is based on a mission in an Army Tactical Environment and the details of the phased-mission 

are shown in Table 8-5. [66] 

Table 8-5. Model Implementation Phased-Mission. 

Phase Duration (min) 

Start-Up 5 

Takeoff 2 

Cruise-Out 45 

Setdown 6 

Cruise-Back 45 

Setdown 2 

Shutdown 5 

 

8.3.3 Approximating Failure Densities 

Without data from a regulatory agency, manufacturer or large operator of a given aircraft system, it is 

impossible to construct accurate distributions for the failure density and mean time to repair. However, 

because the discrete-event simulation is meant for use at the conceptual design level, and is intended to 

incorporate uncertainty through probabilistic inputs, accurate failure distributions are not required as long 

as the user accepts that the outputs of the simulation will only be representative. 

The process of using data for a similar system is undertaken in this study for a generic helicopter. Given 

that this is a generic helicopter, no inference should be made regarding the reliability, availability, or 

maintainability to any current system. Because the data used to model the systems is notional, the data used 

is not presented in detail here. The failure densities are assumed to be Gaussian with a standard deviation 

equivalent to 10 percent of the mean value obtained for similar parts. Component cost to repair or replace 

data is difficult to estimate without a reliable source. Therefore, repair cost will not be discussed in the 
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implementation due to significant limitations regarding data availability. However, the simulation retains 

the capability to track the part cost for both failure-based and preventive maintenance. 

In this implementation, replacement/repair windows for parts with specified service intervals (multiples of 

a required 25-hour inspection) are assumed to be 0 percent of the service interval in the field and 5 percent 

of the service interval if the aircraft is already in the shop. [67] The service intervals are unknown and must 

be approximated. The approach is to set the value at 10 percent less than the mean of the specified failure 

density for a component while rounding to the nearest 25-hour inspection interval. Mechanical subsystems 

are assumed to have field inspection and maintenance windows while monolithic components and electrical 

subsystems are not assumed to have these specified field inspection and maintenance windows. 

8.4 Results 

The vehicle architecture discussed above is modeled using the integrated discrete-event simulation 

environment with the input process streamlined using an Excel interface. Because the MTBF and MTTR 

values are distributions rather than deterministic values it is appropriate to run several Monte Carlo cycles 

to appropriately capture the operations and support characteristics for the system. 

For this implementation, meant to show the capability of the developed discrete-event simulation, the data 

used is notional. This includes the models used to determine the component life, time to repair, shop 

availability, and logistical delay time. System cost is not modeled in this example. The key metrics tracked 

in this example include the operational availability, maintenance free operating period, the total number of 

failures of each component, the total number of preventive maintenance actions required for each 

component, and the maintenance man hours required for failure-based and preventive maintenance during 

the simulation. 

The simulation used to evaluate the operational availability and mean time between failures is run for 5,000 

hours and 200 Monte Carlo cycles. For the simulation used to evaluate the MFOP, 200 missions are 

attempted in each of the 200 Monte Carlo runs. During the evaluation of the maintenance free operation 

period, it is assumed that the vehicle has completed a maintenance recovery period prior to starting a 

maintenance free operation period, which means that all necessary inspections have been performed. 

Performing Monte Carlo cycles allows for quantification of the variability of the key metrics evaluated. 

This means that for a given reported value, there is also a confidence level associated with that value. 

 

A histogram showing the distribution of the operational availability for each of the 200 Monte Carlo cycles 

is shown in Figure 8-9. This data can also be used to construct an inverse cumulative distribution that is 
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useful in visualizing the probability that the operational availability was above a given value in the 

simulations that were performed. For reference, lines are added on the inverse cumulative distribution that 

correspond to 75% and 95% confidence levels. The inverse cumulative distribution plot is shown in Figure 

8-10. 

 

Figure 8-9. Operational Availability Histogram 

 

Figure 8-10. Operational Availability Inverse CDF 

The Mean Time Between Failures (MTBF) is also determined during each Monte Carlo cycle. In the same 

way as the operational availability, the MTBF may be shown on a histogram, Figure 8-11, or used to 

construct an inverse cumulative distribution, Figure 8-12. 



143 

 

 

Figure 8-11. Mean Time Between Failures Histogram 

 

Figure 8-12. Aircraft MTBF Inverse Cumulative 

During the 5,000-hour simulation, 291 hours were required to repair failed parts while 560 hours were 

required to repair parts that met condition-based failure criteria. 

The results presented above show vehicle level metrics in detail but provide no insight into how much an 

individual subsystem or component is being serviced. By tracking the preventive maintenance performed 

on each component as well as failures experienced, it becomes possible to track components that fail most 

often, a valuable insight at the conceptual design level. Early in the design process this shows engineers 

where reliability improvements are the most needed. The average number of component failures during the 

5,000-hour Monte Carlo cycles are shown in Figure 8-13 for the notional helicopter performing the 

transport mission shown in Table 8-5. During the same simulation, the number of repair actions performed 

on each component as a result of the component condition is shown in Figure 8-14. 
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Figure 8-13. Component Failures per Cycle 

 

Figure 8-14. Condition-Based Actions per Cycle 

The MFOP of the helicopter is evaluated next using a different mode of the integrated discrete-event 

simulation environment. Similar to the other vehicle-level metrics, performing Monte Carlo cycles allows 

for estimation of the probability that a vehicle will be able to complete a number of flight cycles without 

required maintenance. The inverse cumulative distribution for the number of maintenance free flight cycles 

performed is shown in Figure 8-15. 
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Figure 8-15. Inverse Cumulative for MFOP Cycle Success 

From Figure 8-13 and Figure 8-14, it is evident that, for this notional helicopter, the hydraulic pump, tail 

rotor pitch links, tail rotor assembly, and the main rotor would benefit greatly from reliability 

improvements. To simulate such an improvement, the mean of the mean time between failures is increased 

by 10 percent to simulate the effect of reliability improvements at the component and subsystem level. 

Using this approach, the model may be used to quantify the impact of investments in component reliability, 

an RDT&E cost, on vehicle level O&S metrics. This is a similar approach to that used by Bhattacharya 

when modeling the relationship between investment in reliability and cost. [68] The realized improvement 

to the operational availability is shown in the operational availability inverse cumulative distribution in 

Figure 8-16 and the improvement to mean time between failures for the aircraft is shown in Figure 8-17. 

Both metrics show improvement compared to the baseline values reported previously. 

 

Figure 8-16. Improved Operational Avail. Inverse CDF 
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Figure 8-17. Improved Aircraft MTBF Inverse CDF 

    The effect of reliability improvements on the maintenance free operation period is shown in Figure 8-18. 

This shows that the maintenance free operation period is lengthened slightly due to reliability 

improvements. 

 

Figure 8-18. Improved Inverse CDF for MFOP Success 

During the 5,000-hour simulation, 283 hours were required to repair failed parts while 563 hours were 

required to repair parts that met condition-based failure criteria. 

The notional results shown above for a notional single main rotor helicopter seek to show the value of the 

integrated discrete-event simulation environment. At the conceptual design level, improvements to 

component reliability and maintainability are traditionally evaluated by subject matter experts in a 

qualitative manner. When the effect of multiple reliability improvement programs are compounded, with 

the possible side effect of longer repair times, it becomes difficult to accurately predict the effect on the 

vehicle level metrics. This implementation shows the ability to perform trades at the component level 
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against key operations and support metrics for the vehicle that are quickly evaluated quantitatively. 

Although not demonstrated here, it is possible to perform additional trades at the system architecture level 

by including component redundancy or the use of advanced concepts. Performing architectural trades 

results in modification of Figure 8-7 and Figure 8-8 to account for changes in the physical architecture and 

fault trees. The ability to rapidly evaluate the effect of adjusted architectures or changes in component 

reliability and maintainability are critical to assessing the impact of new technologies on a vehicle system. 

8.5 Key Questions and Implications of Model Assumptions in FY17 Scope of Work 

Understanding the limitations of a model is as important as understanding its realm of predictive 

capabilities. Many limitations and assumptions used in generating the model have been discussed in the 

preceding sections in great detail. Several questions asked by peers and attendees at the 73rd AHS forum 

are presented in Table 8-6 to highlight how specific limitations have been addressed in FY17 or are not 

currently planned to be addressed at present. 

The first question regarding mission critical and non-mission critical event trees has been addressed by 

performing a functional and physical decomposition of the air vehicle of interest during FY17. In this case, 

the vehicle of interest is a single main rotor helicopter. Critical functions that are required during each 

individual mission phase are grouped and the components that contribute to this functionality are included 

in the event tree for that individual mission phase. In this way, a methodology is developed that is useful in 

performing similar studies for different classes of air vehicles. 

Another common question is whether maintenance actions for individual components are scheduled or 

whether maintenance actions only occur when a failure occurs. On air vehicles, many components require 

periodic maintenance even in the absence of failures. This required effort, discussed here as preventive 

maintenance was added to the model in FY17. This is captured in the model by setting the scheduled 

maintenance interval for a part, which triggers required maintenance actions (but not a part failure) when 

the part life is with a user-defined range of that maintenance interval. This leads to the question of whether 

unscheduled and scheduled maintenance are tracked separately or whether the results are aggregated. In the 

FY17 work, the unscheduled and scheduled maintenance man hours and part repair cost are tracked 

separately. 

Another relevant question is related to system redundancy. It is worth noting that there are ‘hot’ redundant 

systems that operate at a fully-operational state continuously, ‘warm’ redundant systems that operate 

continuously but at a reduced workload compared to the primary system, and ‘cold’ redundant systems that 

do not operate while the primary system is fully operational. Modeling ‘hot’ redundant systems is 

accomplished by adding the appropriate logic in the fault trees and including another identical system to 
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the simulation manually in the Excel interface. ‘Warm’ and ‘cold’ redundant systems cannot be modeled 

accurately at present because the parts will inherently age differently than the primary system because they 

operate at a lower workload than a ‘hot’ redundant system. Such non-uniform aging is not provided for in 

the current model. 

The process used for part replacement and repair is another important topic. In the FY17 work, it is assumed 

that part repair and replacement fully reset the part age. However, this may not be the case for some 

components. As an example, a repaired or refurbished component may have a significantly shorter time 

between failures than a new part used to replace the failed component. Additional insight into each 

component would be required to effectively address this concern and modifications to the simulation would 

be required to incorporate this consideration. 

Only a single level of maintenance is considered in the FY17 work. One significant expansion of this work 

would be to both include additional maintenance levels while also considering more than a single vehicle, 

thus allowing for fleet-wide considerations rather than concerns only at the vehicle level.  

The final limitation discussed is related to vehicle safety. Addressing safety concerns requires significant 

analysis at the tails of the distributions because safety critical failures are rare. In the context of a single 

vehicle, the likelihood of a safety-critical failure on mission is small and does little to improve the prediction 

of the expected maintenance workload for a single vehicle. This is the case because the non-safety-critical 

failures occurring at a much higher frequency than safety critical failures constitute a large majority of the 

maintenance actions while typical safety-critical failures often lead to significant vehicle damage. Such 

damage cannot be accurately predicted at a high level due to the many factors that contribute to the level of 

damage sustained during a safety-critical event including but not limited to terrain, weather, load-out, fuel 

state, and the flight conditions when the failure occurred. 

The purpose of this discussion is to identify key implications of assumptions in the current model and 

modeling efforts undertaken in FY17 to reduce these limitations and improve the predictive capability of 

the model. The discussion above is summarized in Table 8-6. 
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Table 8-6. Model Limitations and Questions Presented at the AHS 73rd Forum 

Question/Limitation Addressed in FY17 Not Addressed 

1. How are the mission-

critical and non-mission 

critical event trees 

populated? 

A functional and physical 

decomposition of a notional 

Bell 206 helicopter is 

performed, grouping 

essential functions (and the 

related components) for 

each mission phase 

  

2. No maintenance actions 

are scheduled at regular 

intervals to maintain parts 

prior to the occurrence of a 

failure 

Scheduled maintenance 

intervals are included that 

trigger maintenance actions 

when a part is within a 

given percentage of the 

service interval 

  

3. The maintenance man 

hours and component cost 

for unscheduled and 

preventive maintenance are 

not tracked separately 

The model has been 

updated to track 

unscheduled and preventive 

maintenance metrics 

separately 

  

4. Are redundant systems 

considered? 

Adding 'hot' redundant 

components can be 

completed manually simply 

by the addition of another 

identical system in the 

simulation 

Including 'cold' and 'warm' component 

redundancy requires modification to the 

simulation approach as well as additional 

simulation inputs to age the parts 

differently than a 1-to-1 mapping with 

flight hours 

5. Parts may be repaired 

rather than replaced during 

maintenance, how is the 

component life reset in this 

case? 

  It is assumed that both part repair and 

replacement fully reset part age, additional 

data and modeling are required to 

accurately capture this effect 

6. Are only single level 

maintenance paradigms 

considered? 

  No multi-level maintenance paradigms are 

implemented in the FY 17 work 

7. Safety critical failures, 

though rare, do occur. Are 

these types of failures 

considered in the 

simulation? 

  Looking at system safety requires 

examination of the extreme tails of 

complete failure distributions. Considering 

the non-safety critical failures where the 

vehicle can return to base for maintenance 

captures an overwhelming portion of the 

maintenance and operational activity of the 

vehicle 
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8.6 Opportunities for Future Work 

The development and implementation of the integrated discrete-event simulation discussed in this paper 

provides many opportunities to improve the model in several key areas: component, mission, and 

maintenance modeling. 

At present, components are tracked using the number of accrued flight hours. For some components, like 

landing gear or even some turbine engine components, tracking hours alone may not be sufficient to fully 

capture life limits and failure phenomenon. [69] Tracking the number of flight cycles in addition to flight 

hours would represent an improvement in the component modeling approach. 

Part failure is modeled as a binary phenomenon though limits are set to trigger replacement at regular 

inspection intervals. This means that individual components show no signs of failure in the immediate time 

preceding failure. Given that component degradation prior to failure is often a gradual process, components 

do show signs of degradation prior to failure. This slow degradation was referenced in interviews conducted 

with pilots and operators who indicated that they inspect for fluid leakage or grease accumulation during 

pre-flight checks as a method to ensure mechanical systems are functioning properly. Appropriately 

modeling mechanical components, considering that part failure is not a binary phenomenon, requires 

additional data. Specifically, this data includes the length of time before failure when degradation becomes 

noticeable by a pilot or mechanic. Including this effect essentially involves adding condition-based 

maintenance in addition to the currently implemented time-based and failure-based maintenance. [70] 

Another modeling consideration is how the age of a repaired part is reset. When a part is replaced, it is 

natural to reset the component age to zero. However, when a part is repaired in the field, it is likely that the 

part will not be restored to a like-new condition. This is based on the notion that a refurbished part likely 

has a reduced mean time between failures as compared to a brand new component. Capturing the effect of 

repair actions using empirically derived values would represent an improvement of the model and would 

decrease the optimism of the model in predicting component life after component repairs are complete. 

A common technology implemented in an effort to improve the operational availability is Health and Usage 

Monitoring Systems (HUMS). HUMS monitors a large number of key parameters throughout the air vehicle 

to predict failures before they happen and alert maintenance personnel to act. The current approach uses a 

discrete event simulation and therefore abstracts away many of the details that would be required to fully 

model HUMS. However, the purpose of implementing a HUMS system is to predict impending failures so 

that they can be fixed or mitigated to reduce downtime. In this simulation, the part failure times are assigned 

a priori using a user-provided random distribution, which may provide a means to approach the problem 

successfully from a different perspective. By knowing the failure time, there may be a way to send the 
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vehicle to preventive maintenance before the failure occurs. However one must also model the fact that 

HUMS may not always warn of an impending failure and may lead to the replacement of parts that are not 

approaching a failure. The adaptation of the simulation to include HUMS should not be considered a trivial 

modeling task. Modeling HUMS is not easily accomplished using simple technology k-factors because 

HUMS fundamentally changes the approach used to perform maintenance rather than simply adjusting a 

maintenance parameter. Although implementing HUMS may seems like an obvious and purely beneficial 

approach to increase operational availability, there is definitely a tradeoff due to the increased number of 

analysts required to support HUMS on the air vehicle and more frequent part replacement as mentioned 

previously. Therefore, HUMS should not be arbitrarily included in vehicle systems without a full 

consideration of the associated costs and benefits. Including the analysis of HUMS in a modeling 

framework such as this may be one part of the effort required to determine the efficacy of including HUMS 

in future air vehicles. 

Phased-mission modeling is another aspect of the present model. However, in the presence of a mission 

abort, it is assumed that the helicopter is nursed back to the point of origin for maintenance without 

additional age being accrued by the parts on the vehicle. In reality, parts are aged while returning to the 

point of origin. Beyond simply accruing flight hours, the functional components may accrue additional 

wear during the flight due to increased vibratory loads or increased strain on one system due to the failure 

of another. Modeling the increase in wear on one system due to the failure from another would require 

significant understanding of the physical system architecture and layout. This consideration, though 

relevant in the physical scenario, is likely beyond the scope of this high-level model intended to predict 

vehicle-level operations and support costs, operational availability, and MFOP. 

Maintenance actions performed in the current model are assumed to occur at a single-level, one maintenance 

facility. Part availability is included using a user-specified scaling factor that multiplies the aircraft 

downtime. Improving the modeling approach to include multi-level maintenance paradigms as well as the 

delay (in hours) due to difficulty in acquiring certain parts would make the model significantly more 

realistic. However, this represents a significant increase in model complexity as modeling multiple 

maintenance facilities and the logistics network required to supply spare parts and tools requires significant 

knowledge about the maintenance program for a particular aircraft system and may not be the same between 

different aircraft of interest. 

The shortcomings in the present model provide room for improvement in the component, mission, and 

maintenance modeling approach. However, even with these assumptions in the current model, it is possible 

to perform tradeoffs at the component and system architecture level to determine the effect of improved 
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component reliability or a different architecture on the reliability, availability, and maintainability of the 

system. 

8.7 Available Applications for the Developed Model 

Much effort is expended in documenting the limitations of the discrete-event simulation in its current state. 

Even with these limitations, it is possible to apply this simulation tool to evaluate different architectures 

with varied component reliabilities at the single vehicle level. There are three distinct approaches that are 

envisioned as opportunities to apply this simulation framework. The first is comparing the MFOP and 

operational availability for a variety of vehicle concepts and architectures using a standardized library of 

components. This relies on the individual architecture of the vehicles and the ‘hot’ redundancy within each 

as well as the criticality of different failures. The second approach would be to look at a single vehicle to 

determine how improvement or degradation to the reliability (MTBF) and/or maintainability (MTTR) of 

vehicle components affect the operational availability and MFOP for that single vehicle. The third option 

is to consider the first and second options together as a way to determine which vehicle architecture is the 

most robust to changes in the maintainability and reliability of individual components. 

These three approaches provide a means to evaluate various concepts as part of an analysis of alternatives 

for example at the vehicle level. Although no provision is currently made for fleet-level modeling, 

improving the operational availability and MFOP of individual assets leads to improvements in fleet 

performance. As such, the same fleet-level performance may maintained with a reduced number of assets.  

8.8 Considerations Regarding Reliability and Maintainability Data Needs 

There are three significant limitations to applying this model to a current vehicle system. The first is more 

accurately understanding how maintenance is currently performed. The second is better understanding how 

component age resetting should be completed and the third is the raw maintenance data required to 

accurately populate failure distributions for each component. 

Knowledge about how maintenance is currently performed on a particular aircraft is critical to accurately 

modeling the system. This knowledge includes not only the different levels of maintenance that are 

performed but also the type of maintenance actions that are performed at each level. These actions may 

include inspections, replacement of expendable items such as filters and seals, or the replacement of entire 

assemblies. Obtaining such knowledge requires a close relationship with operators and access to current 

maintenance documentation and practices. 

 

Additional data needs are related to eliminating the assumption that refurbished components are ‘as good 

as new.’ This also requires a close relationship with the OEM to obtain reliability data for both new and 
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reconditioned parts needed for an accurate comparison. In addition to proprietary information protection 

another reason that this information may be difficult to obtain is because when used together could be used 

to conclude that refurbished parts may not be nearly as reliable as new components. Such a conclusion 

could be detrimental to various business interests. Although raw data may be difficult to obtain, there may 

be a consensus or rule of thumb within the industry that would allow for a reasonable approximation that 

could be used in the model that has yet to be documented. 

 

Additional data required is used to populate the part reliability and maintainability distributions. This data 

includes raw part life, failure mode, failure impact on the mission, maintenance action (repair or replace), 

required repair/replace time, and repair/replace cost data for each tracked component on the helicopter. 

Several open source documents provide the mean time between failures or the mean repair time for a 

component. However, such knowledge about the mean of the distribution provides only limited insight into 

component reliability and maintainability because the distribution is abstracted to a single number that 

provides no insight on the actual distribution shape or width. Collecting such data again requires a close 

partnership with an OEM or operator and proprietary information agreements. 

 

In the event that an operator or OEM makes the data available, condensing and operating on such data is a 

non-trivial task. Collecting the data outlined above will likely result in in many gigabytes/terabytes of non-

uniform text documents that must be interrogated rapidly and efficiently to distill the metrics of interest 

that are required for this model, a task that can be classified as a ‘big data’ problem. Alone, the data 

reduction is a task within itself that is often undervalued because the work products of such a task provide 

only an intermediate result that must be further applied within other simulations. Considering this, only 

collecting the data from an OEM or operator is not enough, steps must be taken to reduce the data to a 

usable form. 

Given that there are significant challenges to both obtaining access and reducing the necessary component 

and system architecture data, it is worth searching for alternatives to this approach. Such alternatives may 

provide a more direct modeling approach that is not based on the component reliability data. However, such 

approaches must pass through verification and validation activities to ensure that the model is internally 

correct and represents the reality that we wish to capture. 

 

The challenges of acquiring data to use in the developed discrete-event simulation are certainly formidable. 

Considering the full depth of the challenge of acquiring component reliability and maintainability data is 

necessary to provide a true appreciation for the work that remains to make a model such as this one useful 

in accurately predicting operational availability and MFOP for current air assets. Predicting operational 
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availability and MFOP for future assets must rely on data for components of current assets with adjustments 

made for increases or decreases in the reliability or maintainability a result of technology infusion or 

improved manufacturing processes. The data required is neither simple to acquire or reduce and motivates 

further exploration into alternative approaches not based upon component reliability and maintainability 

data. 

8.9 Concluding Remarks 

The methodology used to construct an integrated discrete-event simulation for evaluation of rotorcraft 

operations and support metrics has been presented. Specifically, this model may be used to estimate the 

Operational Availability, MFOP, mean time between mission affecting failures, part failure rates, and 

maintenance man hours required for both conventional and novel rotorcraft architectures. Using an 

integrated discrete-event simulation environment allows for quantitative trade studies at the subsystem or 

component level and the system architecture level against key operations and supportability metrics. The 

need for such an environment is highlighted in the implementation provided. Significantly improving 

components with the greatest number of maintenance actions required only slightly improved the operations 

and supportability metrics for the single vehicle considered.  

One key limitation of the model is that the data requirements to accurately model a proposed system are 

immense. Because this environment is meant for use at the conceptual design level, part failure and repair 

time data are rarely available for the specific components of interest. Using data for similar systems 

provides a rough estimate of component and subsystem failure data, which may be used to calculate the 

operations and supportability metrics. Although this approach will not yield a value for any one of the 

metrics that is a true prediction for the realized system, it enables a quantitative evaluation of the system 

early in the design process among other vehicles modeled using this approach. Under this standardized 

approach each component must have representative failure and repair data that can be perturbed according 

to anticipated improvement or degradation. 

Improvements in the current model are most beneficial in several key areas including component definition, 

mission representation, and maintenance modeling. Nonetheless, the model in its current state provides a 

framework to quantitatively evaluate operations and support metrics in the context of rotorcraft conceptual 

design activities. 
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10. Appendix 

10.1 Appendix A: Test Objective Function for SeBBAS 

10.1.1 Script to Call SeBBAS 

%% Script to call and test SeBBAS code 

  

clc; clear; close all; 

% Constraint: A number corresponding to the constraint on the design space that will be applied. 

% The constraints are numbered as follows. If a constraint is a negative number, than the inverse 

%       of the constraint will be applied 

%           1) Infeasible cross in middle, creating 4 squares in each corner 

%           2) Upper triangle of hypercube is infeasible 

%           3) Parabolic constraint 

%           4) Points that fall within circle centered at (2.5, 2.5) are infeasible 

%           5) Hyperbolic constraint 

%           6) Triangular constraint in the middle of the hypercubic design space 

%           7) linear band with slope 1 across hypercubic design space is infeasible 

%           8) Cubic constraint on x1 variable 

%           9) Slightly different cubic constraint 

%           10) 3D sphere 

  

% Setting constraint number 

Constraint = 1; 

  

% Setting the run_Case name and the total budget available for this study 

run_Case = ['Test_C', num2str(Constraint)]; 

total_Budget = [1000, 3000, 10000]; 

  

% Writing the DV_Range_Filename file 

DV_Range_Filename = 'Test_DOE_DV_Range.csv'; 

DV_Range_path = [pwd, '/R Files/Design Variable Range/', DV_Range_Filename]; 

  

% Setting up lower and upper bounds for the design variables and writing the table to the proper 

% file location which was shown above 

x1 = [0; 5]; 

x2 = [-5; 5]; 

DV_Range = table(x1, x2); 

% x3 = [-5; 5]; 

% DV_Range = table(x1, x2, x3); 

writetable(DV_Range, DV_Range_path) 

  

% Defining the other parameters required 

validation_Case = 50000; 

max_Iter = 8; 

tolerance = 0.01; 

  

% Running SeBBAS 

[suggested_DOE] = SeBBAS(run_Case, total_Budget, DV_Range_Filename, validation_Case, max_Iter, tolerance, 

@run_Test_SeBBAS, Constraint); 

  

% Plotting the results of the classification of SeBBAS 

ind_s = find(suggested_DOE.Classification == 1); 

ind_f = find(suggested_DOE.Classification == -1); 

  

% Plotting for either 2D or 3D cases the number of correct classifications and incorrect 

% classifications 

if abs(Constraint) == 10 

    x1 = suggested_DOE.x1; 



160 

 

    x2 = suggested_DOE.x2; 

    x3 = suggested_DOE.x3; 

     

    figure(1) 

    plot3(x1(ind_s), x2(ind_s), x3(ind_s),'go') 

    xlabel('x1') 

    ylabel('x2') 

    zlabel('x3') 

    axis([-5, 5, -5, 5, -5, 5]) 

else 

    x1_Final = suggested_DOE.x1; 

    x2_Final = suggested_DOE.x2; 

     

    figure(1) 

    plot(x1_Final(ind_s), x2_Final(ind_s),'go', x1_Final(ind_f), x2_Final(ind_f), 'ro') 

    xlabel('x1') 

    ylabel('x2') 

    axis([x1(1), x1(2), x2(1), x2(2)]) 

    legend('Correct Classifications', 'False Positive Classifications') 

end 

 

10.1.2 Test Objective Function 

function [Classification] = run_Test_SeBBAS(DOE, Constraint) 

% This function runs a series applies various constraints to create a non-hypercubic design space to 

% test the accuracy of the SeBBAS.m function. Most of the functions are 2D, but can be expanded to 

% any dimensions 

% 

% Inputs: 

%   DOE: NxM array containing a DOE or set of design points to run through the constraint. The columns  

%       of the array correspond to the M design variables, and the columns must be in the same order  

%       as the variables listed in the VariableNames cell array. Rows of the array correspond to 

%       differentn design points 

%   VariableNames: Mx1 cell array containing strings pertaining to each design variable.  

%   Constraint: A number corresponding to the constraint on the design space that will be applied. 

%       The constraints are numbered as follows. If a constraint is a negative number, than the inverse 

%       of the constraint will be applied 

%           1) Infeasible cross in middle, creating 4 squares in each corner 

%           2) Upper triangle of hypercube is infeasible 

%           3) Parabolic constraint 

%           4) Points that fall within circle centered at (2.5, 2.5) are infeasible 

%           5) Hyperbolic constraint 

%           6) Triangular constraint in the middle of the hypercubic design space 

%           7) linear band with slope 1 across hypercubic design space is infeasible 

%           8) Cubic constraint on x1 variable 

%           9) Slightly different cubic constraint 

%           10) 3D sphere 

% 

% Outputs: 

%   Classification: A Nx1 array that contains either a (1) or (-1) for each design point, with a 

% value of 1 corresponding to a feasible design point, and value of -1 meaning infeasible 

  

% Initializing run settings 

failedCaseTotal = 0; 

  

% Calculating the number of cases in the array 

numCases = length(DOE(:,1)); 

     

% Initializing feasibleCase array 

Classification = zeros(numCases, 1); 
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% Calling constraint function to classify DOE 

for k = 1:numCases 

    % Running NDARC and processing results 

    [Classification(k)] = applyConstraint(DOE(k,:), Constraint); 

     

end 

  

%==========================================================================================

=============================== 

 

function [Classification] = applyConstraint(DesignVariables, Constraint) 

% This function applies the desired constraint to the current design point 

% 

% Inputs: 

%   DesignVariables: MxN array containing the DOE for N design variables, where M = numLHcases + numRandomCases 

%   Constraint: A number corresponding to the constraint on the design space that will be applied. 

%       The constraints are numbered as follows. If a constraint is a negative number, than the inverse 

%       of the constraint will be applied 

%           1) Infeasible cross in middle, creating 4 squares in each corner 

%           2) Upper triangle of hypercube is infeasible 

%           3) Parabolic constraint 

%           4) Points that fall within circle centered at (2.5, 2.5) are infeasible 

%           5) Hyperbolic constraint 

%           6) Triangular constraint in the middle of the hypercubic design space 

%           7) linear band with slope 1 across hypercubic design space is infeasible 

%           8) Cubic constraint on x1 variable 

%           9) SLightly different cubic constraint 

%           10) 3D sphere 

%  

% Outputs: 

%   Classification: -1 for infeasible design, 1 for feasible design 

  

x1 = DesignVariables(1); 

x2 = DesignVariables(2); 

  

sign_Constraint = sign(Constraint); 

Constraint = abs(Constraint); 

if Constraint == 1 

    if (x1>2 && x1 <3) || (x2>2 && x2<3) 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

elseif Constraint == 2 

    if x1+x2>5 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

elseif Constraint == 3 

    if x2 > (x1-2.5)^2 + 0.5 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

elseif Constraint == 4 

    if (x2-2.5)^2 + (x1-2.5)^2 < 0.5 

        Classification = -1; 

    else 

        Classification = 1; 

    end 
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elseif Constraint == 5 

    if (x2-2.5)^2 -(x1-2.5)^2 < 1  

        Classification = 1; 

    else 

        Classification = -1; 

    end 

elseif Constraint == 6 

    if x2 > 1 && x2 < 1 + x1 && x2 < 6-x1 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

elseif Constraint == 7 

    if x2 > x1 - 1 && x2 < x1 + 1 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

elseif Constraint == 8 

    if x2 > (x1-2.5)^3/3.125 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

elseif Constraint == 9 

    if x2 > (x1-2.5)^3/3.125 && x2 < -(x1-4)^3/3.125 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

else  

    x3 = DesignVariables(3); 

     

    if 4 < x1^2 + x2^2 + x3^2 

        Classification = -1; 

    else 

        Classification = 1; 

    end 

end 

  

% Taking inverse of classification if the constraint value is negative 

Classification = Classification * sign_Constraint; 

 

10.2 Appendix B: Current NDARC Design Variables Available 

Table 10-1: NDARC variables available in the Aircraft Configuration template file 

NDARC Variable Description 

diskload Disk loading 

CWs Blade Loading (𝐶𝑊 𝜎⁄ ) 

CD_fus Zero lift drag coefficient of fuselage 

CD_fit Drag coefficient for fixtures and fittings 

CDV_fus Vertical drag coefficient of fuselage 

CD_MR_hub Drag coefficient of the main rotor hub 

CD_MR_pylon Drag coefficient of the main rotor pylon 

CD_TR_hub Drag coefficient to the tail rotor hub 

log_cg_XoL Location of the cg in non-dimensional x-coordinate 
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Vtip_ref Reference tip speed 

TECH_body Technology factor for basic body 

TECH_blade Technology factor for blade weight 

TECH_gb Technology factor for gear box weight 

TECH_rs Technology factor for rotor shaft weight 

TECH_ds Technology factor for drive shaft weight 

TECH_eng Technology factor for engine weight 

TECH_drag_MR Technology factor for drag of main rotor 

TECH_drag_TR Technology factor for drag of tail rotor 

TECH_RWfc_b Technology factor of boosted rotary wing flight control weight 

TECH_RWfc_mb 
Technology factor of control boost mechanism of rotary wing flight 

control weight 

TECH_RWfc_nb Technology factor of non-boosted rotary wing flight control weight 

TECH_RWhyd Technology factor for weight of rotary wing flight control hydraulics 

TECH_cost_maint Technology factor for maintenance cost 

Wcrew Weight of the crew 

Wpay Payload weight 

Peng Engine power (SLS static takeoff rating) 

Pacc_0 Accessory power loss constant 

Ki_prop Axial cruise propeller induced velocity factor 

 

Table 10-2: NDARC variables in the engine template file 

NDARC Variable Description 

SP0C_tech Technology factor for specific power at MCP 

sfc0C_tech Technology factor for specific fuel consumption at MCP 

 

 

Table 10-3: NDARC variables for the sizing conditions input file 

NDARC Variable Description 

VROC Vertical rate of climb flight speed 

VROC_alt Reference altitude for rate of climb sizing condition 

VROC_temp Reference temperature for rate of climb sizing condition 

Vkts Horizontal flight speed velocity 

VFWD_alt Reference altitude for horizontal flight sizing condition 

VFWD_temp Reference temperature for horizontal flight sizing condition 

 

Table 10-4: NDARC variables for the mission input file 

NDARC Variable Description 

FT_hov_time Time spent in hover for fuel tank sizing 

MIS_hov_time Time spent in hover mission segment 

MIS_hov_alt Reference altitude for hover mission segment 

MIS_hov_temp Reference temperature for hover mission segment 

FT_cr_time Time spent in cruise for fuel tank sizing 

MIS_cr_Vkts Forward flight velocity in cruise mission segment 

MIS_cr_time Time spent in cruise mission segment 
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MIS_cr_alt Reference altitude for cruise mission segment 

MIS_cr_temp Reference temperature for cruise mission segment 

MIS_res_alt Reference altitude for reserve mission segment 

MIS_res_temp Reference temperature for reserve mission segment 

MIS_res_Vkts Forward flight velocity in reserve mission segment 

MIS_idle_alt Reference altitude for idle mission segment 

MIS_idle_temp Reference temperature for idle mission segment 

10.3 Appendix C: Sample “NDARC Calibration Settings.inp” File&RUN_SETTINGS 

    

SaveAsFilename = Single Input File 2 

    NumRuns =  1 
    inducedPopulationFactor =  3 

    inducedGenerationFactor =  6 

    profilePopulationFactor =  10 

    profileGenerationFactor =  6 

&END 

 
&INDUCED_NDARC_VARIABLES 

    MODEL_ind = 2 

    Ki_hover = 1, 3, .1 
    Ki_climb = 1.125 

    Ki_prop = 2 

    Ki_edge = 1, 2, .1 
    CTs_Hind = .05, .15, .01 

    kh1 = 0, 2, .1 

    kh2 = 0, 1, .1 
    Xh2 = 2 

    CTs_Pind = .05, .15, .001 
    kp1 = 1.25 

    kp2 = 0 

    Xp2 = 2 
    kpa = 0 

    Xpa = 2 

    ko1 = 0 
    ko2 = 8 

    Maxial = 1.176 

    Xaxial = .65 
    mu_prop = 1.59 

    ka1 = 0 

    ka2 = 0 
    ka3 = .92 

    Xa = 5 

    mu_edge = .25, .4, .01 
    ke1 = .5, 1.5, .01 

    ke2 = 0, 2, .1 

    ke3 = 1.4 
    Xe = 2, 6, .1 

    kea = 0 

    Ki_min = 1.085 
    Ki_max = 10 

&END 

 

&PROFILE_NDARC_VARIABLES 

    TECH_drag = 1 

    Re_ref = 0 
    MODEL_basic = 2 

    ncd = 24 

    CTs_Dmin = .025, .1, .001 
    d0_hel = .001, .1, .001 

    d0_prop = 0, .01, .001 

    d1_hel = 0 
    d1_prop = .1 

    d2_hel = .25, .75, .01 

    d2_prop = .25, .75, .01 
    dprop = 2 

    Xprop = 4 

    CTs_sep = .04, .1, .01 
    dsep = 1.6 

    Xsep = 2.9 

    df1 = 0 

    df2 = 0 

    Xf = 1.3 

    MODEL_stall = 1 
    nstall = 10 

    fstall = 1 

    dstall1 = 2.6 
    dstall2 = 60 

    Xstall1 = 2.2 

    Xstall2 = 2.7 
    do1 = .2 

    do2 = 4.7 

    dsa = 0 
    MODEL_comp = 1 

    fSim = 1 
    thick_tip = .08 

    dm1 = .01 

    dm2 = .79 
    Xm = 3.1 

    Mdd0 = 0, 2, .01 

    Mddcl = 0, 2, .01 
&END 

 

&CALIBRATION_DATA_SET 
    #  mu muz CT/s MAT Offset Actual_Kappa Actual_Cd 

    0, 0, .05997, .6163, 0, 1.0158, .00837 

    0, 0, .06894, .6163, 0, 1.0549, .00842 
    0, 0, .07814, .6163, 0, 1.0887, .0085 

    0, 0, .08744, .6163, 0, 1.1206, .00867 

    0, 0, .0969, .6163, 0, 1.1486, .00888 
    0, 0, .10656, .6163, 0, 1.1724, .00916 

    0, 0, .11641, .6163, 0, 1.1922, .00963 

    0, 0, .12644, .6163, 0, 1.2064, .01075 
    0, 0, .13666, .6163, 0, 1.2172, .01196 

    0, 0, .14685, .6163, 0, 1.228, .0134 

    0, 0, .15688, .6163, 0, 1.2364, .0152 
    0, 0, .16665, .6163, 0, 1.2408, .01786 

    0, 0, .1761, .6163, 0, 1.2431, .02135 

    0, 0, .1761, .6163, 0, 1.2431, .02135 

    0, 0, .19258, .6163, 0, 1.2353, .035 

    0, 0, .1992, .6163, 0, 1.2323, .04284 

    0, 0, .20479, .6163, 0, 1.2289, .05138 
    0, 0, .20981, .6163, 0, 1.2225, .06283 

    0, 0, .21415, .6163, 0, 1.2181, .07734 

    .1687, 0, .06998, .7203, 0, 1.0706, .00857 
    .1927, 0, .06997, .7351, 0, 1.1432, .00859 

    .2167, 0, .07002, .7499, 0, 1.1412, .00859 

    .2407, 0, .06994, .7647, 0, 1.3486, .00865 
    .2645, 0, .07, .7794, 0, 1.4106, .00869 

    .2883, 0, .0699, .7941, 0, 1.6112, .00869 

    .312, 0, .06997, .8088, 0, 1.8293, .00884 
    .3354, 0, .07008, .8233, 0, 2.0511, .0091 
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    .3587, 0, .06997, .8378, 0, 2.3868, .00936 

    .3816, 0, .07, .8522, 0, 2.7063, .00977 

    .4041, 0, .07009, .8664, 0, 3.2166, .0104 

    .4262, 0, .07003, .8804, 0, 3.8686, .01126 
    .4474, 0, .06998, .8941, 0, 4.8397, .01262 

    .4675, 0, .06994, .9074, 0, 6.0793, .01449 

    .1687, 0, .08005, .7203, 0, 1.0635, .00863 

    .1928, 0, .08007, .7351, 0, 1.1503, .00866 

    .2168, 0, .07994, .7499, 0, 1.2454, .00867 

    .2408, 0, .07997, .7647, 0, 1.2312, .00874 

    .2647, 0, .07997, .7795, 0, 1.3395, .00873 
&END 

 

 

10.4 Appendix D: NDARC Model.out File Format 

Induced Power Design Variables  

 
    MODEL_ind = 2.0 

    Ki_hover = 1.0 

    Ki_climb = 1.125 
    Ki_prop = 2.0 

    Ki_edge = 1.8 

    CTs_Hind = 0.05 

    kh1 = 1.7 

    kh2 = 0.1 

    Xh2 = 2.0 
    CTs_Pind = 0.149 

    kp1 = 1.25 

    kp2 = 0.0 
    Xp2 = 2.0 

    kpa = 0.0 

    Xpa = 2.0 
    ko1 = 0.0 

    ko2 = 8.0 

    Maxial = 1.176 
    Xaxial = 0.65 

    mu_prop = 1.59 

    ka1 = 0.0 
    ka2 = 0.0 

    ka3 = 0.92 

    Xa = 5.0 
    mu_edge = 0.32 

    ke1 = 0.83 

    ke2 = 0.0 
    ke3 = 1.4 

    Xe = 4.8 

    kea = 0.0 
    Ki_min = 1.085 

    Ki_max = 10.0 

 
Profile Power Design Variables  

 

    TECH_drag = 1.0 

    Re_ref = 0.0 
    MODEL_basic = 2.0 

    ncd = 24.0 

    CTs_Dmin = 0.026 
    d0_hel = 0.008 

    d0_prop = 0.003 

    d1_hel = 0.0 

    d1_prop = 0.1 

    d2_hel = 0.31 

    d2_prop = 0.25 
    dprop = 2.0 

    Xprop = 4.0 

    CTs_sep = 0.08 
    dsep = 1.6 

    Xsep = 2.9 

    df1 = 0.0 
    df2 = 0.0 

    Xf = 1.3 

    MODEL_stall = 1.0 
    nstall = 10.0 

    fstall = 1.0 

    dstall1 = 2.6 
    dstall2 = 60.0 

    Xstall1 = 2.2 

    Xstall2 = 2.7 
    do1 = 0.2 

    do2 = 4.7 

    dsa = 0.0 
    MODEL_comp = 1.0 

    fSim = 1.0 

    thick_tip = 0.08 
    dm1 = 0.01 

    dm2 = 0.79 

    Xm = 3.1 
    Mdd0 = 0.74 

    Mddcl = 0.14 
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10.5 Appendix E: Residuals.out File Format 

  
 

10.6 Appendix F: Input File with Formatting Errors     

&RUN_SETTINGS 

saveAsFilename = Very Long Run 4    numRuns =  1 

    inducedPopulationFactor =  3 
    inducedGenerationFactor =  6 

    profilePopulationFactor =  6 

    profileGenerationFactor =  5 
&END 

 

&INDUCED_NDARC_VARIABLES 
    MODEL_ind = 2 

    Ki_hover = 1.1, 0 

    Ki_climb = 1 
    Ki_prop = 1 

    Ki_edge = 1.6 

    CTs_Hind = .12 
    kh1 = 0 

    kh2 = 1 

    Xh2 = 1 
    CTs_Pind = .1 

    kp1 = 3 

    kp2 = 0 
    Xp2 = 3.8 

    kpa = .62 

    Xpa = 1.5 
    ko1 = .69 

    ko2 = 8.9 

    Maxial = 2 

    Xaxial = .05 

    mu_prop = .1 
    ka1 = .42 

    ka2 = .76 

    ka3 = 0 
    Xa = 5.8 

    mu_edge = .28 

    ke1 = .83 
    ke2 = 0 

    ke3 = 1.2 

    Xe = 3.7 
    kea = 0 

    Ki_min = .5 

    Ki_max = 10 
&END 

 

&PROFILE_NDARC_VARIABLES 
    TECH_drag = 1 

    Re_ref = 0 

    MODEL_basic = 2 
    ncd = 24 

    CTs_Dmin = 0, .1, .01, 5 

    d0_hel = 0, .05, .001 
    d0_prop = 0, .05, .001 

    d1_hel = 3, 2, .01 
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    d1_prop = 0, 2, .01 

    d2_hel = .25, .75, .01 

    d2_prop = .25, .75, .01 

    dprop = 0, 2, .1 
    Xprop = 4, 6, .1 

    CTs_sep = 0, .1, .01 

    dsep = 1, 4, .1 
    Xsep = 2, 5, .1 

    df1 = 0 

    df2 = 0 
    Xf = 1.3 

    MODEL_stall = 1 

    nstall = 10 
    fstall = 1 

    dstall1 = 2.6 

    dstall2 = 60 
    Xstall1 = 2.2 

    Xstall2 = 2.7 

    do1 = .2 
    do2 = 4.7 

    dsa = 0 

    MODEL_comp = 1 
    fSim = 1 

    thick_tip = .08 

    dm1 = 0, .25, .01 
    dm2 = 0, 1, .01 

    Xm = 2, 4, .1 
    Mdd0 = 0, 2, .01 

    Mddcl = 0, 2, .01 

&END 
 

&CALIBRATION_DATA_SET 

    #  mu muz CT/s MAT Offset Actual_Kappa Actual_Cd 
    0, 0, .05997, .6163, 0, 1.0158,  

    0, 0, .06894, .6163, 0, 1.0549, .00842 

    0, 0, .07814, .6163, 0, 1.0887, .0085 

    0, 0, .08744, .6163, 0, 1.1206, .00867 

    0, 0, .0969, .6163, 0, 1.1486, .00888 

    0, 0, .10656, .6163, 0, 1.1724, .00916 
    0, 0, .11641, .6163, 0, 1.1922, .00963 

    0, 0, .12644, .6163, 0, 1.2064, .01075 

    0, 0, .13666, .6163, 0, 1.2172, .01196 
    0, 0, .14685, .6163, 0, 1.228, .0134 

    0, 0, .15688, .6163, 0, 1.2364, .0152 

    0, 0, .16665, .6163, 0, 1.2408, .01786 
    0, 0, .1761, .6163, 0, 1.2431, .02135 

    0, 0, .1761, .6163, 0, 1.2431, .02135 

    0, 0, .19258, .6163, 0, 1.2353, .035 
    0, 0, .1992, .6163, 0, 1.2323, .04284 

    0, 0, .20479, .6163, 0, 1.2289, .05138 

    0, 0, .20981, .6163, 0, 1.2225, .06283 
    0, 0, .21415, .6163, 0, 1.2181, .07734 

    .1687, 0, .06998, .7203, 0, 1.0706, .00857 

    .1927, 0, .06997, .7351, 0, 1.1432, .00859 
    .2167, 0, .07002, .7499, 0, 1.1412, .00859 

    .2407, 0, .06994, .7647, 0, 1.3486, .00865 

    .2645, 0, .07, .7794, 0, 1.4106, .00869 
    .2883, 0, .0699, .7941, 0, 1.6112, .00869 

    .312, 0, .06997, .8088, 0, 1.8293, .00884 

    .3354, 0, .07008, .8233, 0, 2.0511, .0091 
    .3587, 0, .06997, .8378, 0, 2.3868, .00936 

    .3816, 0, .07, .8522, 0, 2.7063, .00977 
    .4041, 0, .07009, .8664, 0, 3.2166, .0104 

    .4262, 0, .07003, .8804, 0, 3.8686, .01126 

    .4474, 0, .06998, .8941, 0, 4.8397, .01262 
    .4675, 0, .06994, .9074, 0, 6.0793, .01449 

    .1687, 0, .08005, .7203, 0, 1.0635, .00863 

    .1928, 0, .08007, .7351, 0, 1.1503, .00866 
&END

10.7 Appendix G: Case Study Calibration Data Set and Design Space 

10.7.1 Appendix G.1: Case Study Calibration Data Set 

Case mu muz CT/s MAT Offset Actual_Kappa Actual_Cd 

1 0 0 0.05997 0.6163 0 1.0158 0.00837 

1 0 0 0.06894 0.6163 0 1.0549 0.00842 

1 0 0 0.07814 0.6163 0 1.0887 0.0085 

1 0 0 0.08744 0.6163 0 1.1206 0.00867 

1 0 0 0.0969 0.6163 0 1.1486 0.00888 

1 0 0 0.10656 0.6163 0 1.1724 0.00916 

1 0 0 0.11641 0.6163 0 1.1922 0.00963 

1 0 0 0.12644 0.6163 0 1.2064 0.01075 

1 0 0 0.13666 0.6163 0 1.2172 0.01196 

1 0 0 0.14685 0.6163 0 1.228 0.0134 

1 0 0 0.15688 0.6163 0 1.2364 0.0152 

1 0 0 0.16665 0.6163 0 1.2408 0.01786 

1 0 0 0.1761 0.6163 0 1.2431 0.02135 

1 0 0 0.1761 0.6163 0 1.2431 0.02135 

1 0 0 0.19258 0.6163 0 1.2353 0.035 

1 0 0 0.1992 0.6163 0 1.2323 0.04284 

1 0 0 0.20479 0.6163 0 1.2289 0.05138 

1 0 0 0.20981 0.6163 0 1.2225 0.06283 
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1 0 0 0.21415 0.6163 0 1.2181 0.07734 

2 0.1687 0 0.06998 0.7203 0 1.0706 0.00857 

2 0.1927 0 0.06997 0.7351 0 1.1432 0.00859 

2 0.2167 0 0.07002 0.7499 0 1.1412 0.00859 

2 0.2407 0 0.06994 0.7647 0 1.3486 0.00865 

2 0.2645 0 0.07 0.7794 0 1.4106 0.00869 

2 0.2883 0 0.0699 0.7941 0 1.6112 0.00869 

2 0.312 0 0.06997 0.8088 0 1.8293 0.00884 

2 0.3354 0 0.07008 0.8233 0 2.0511 0.0091 

2 0.3587 0 0.06997 0.8378 0 2.3868 0.00936 

2 0.3816 0 0.07 0.8522 0 2.7063 0.00977 

2 0.4041 0 0.07009 0.8664 0 3.2166 0.0104 

2 0.4262 0 0.07003 0.8804 0 3.8686 0.01126 

2 0.4474 0 0.06998 0.8941 0 4.8397 0.01262 

2 0.4675 0 0.06994 0.9074 0 6.0793 0.01449 

3 0.1687 0 0.08005 0.7203 0 1.0635 0.00863 

3 0.1928 0 0.08007 0.7351 0 1.1503 0.00866 

3 0.2168 0 0.07994 0.7499 0 1.2454 0.00867 

3 0.2408 0 0.07997 0.7647 0 1.2312 0.00874 

3 0.2647 0 0.07997 0.7795 0 1.3395 0.00873 

3 0.2886 0 0.08002 0.7942 0 1.4785 0.0088 

3 0.3123 0 0.07991 0.8089 0 1.8123 0.00894 

3 0.3359 0 0.07997 0.8236 0 2.0282 0.00936 

3 0.3594 0 0.08001 0.8382 0 2.2177 0.00948 

3 0.3826 0 0.07999 0.8526 0 2.5439 0.00992 

3 0.4055 0 0.07985 0.867 0 2.9751 0.01054 

3 0.428 0 0.07994 0.8812 0 3.5804 0.01141 

3 0.4501 0 0.07989 0.8952 0 4.3215 0.0127 

3 0.4713 0 0.07988 0.9089 0 5.3301 0.01456 

4 0.1687 0 0.09014 0.7203 0 1.0673 0.00874 

4 0.1928 0 0.09 0.7351 0 1.1725 0.00876 

4 0.2169 0 0.08999 0.7499 0 1.2369 0.00877 

4 0.2409 0 0.08997 0.7648 0 1.3527 0.00886 

4 0.2648 0 0.08997 0.7795 0 1.3985 0.0089 

4 0.2887 0 0.09003 0.7943 0 1.4718 0.00896 

4 0.3126 0 0.08996 0.809 0 1.6821 0.0091 

4 0.3363 0 0.08995 0.8237 0 1.9353 0.00952 

4 0.3598 0 0.08996 0.8384 0 2.1439 0.00988 

4 0.3833 0 0.08997 0.8529 0 2.4108 0.01014 

4 0.4065 0 0.08988 0.8674 0 2.8108 0.0108 

4 0.4294 0 0.08992 0.8818 0 3.358 0.01173 

4 0.4518 0 0.08994 0.8959 0 4.0417 0.01299 

4 0.4737 0 0.08992 0.9099 0 4.8654 0.01491 

5 0.1687 0 0.1002 0.7203 0 1.0747 0.0089 

5 0.1928 0 0.09999 0.7351 0 1.1757 0.00893 

5 0.2169 0 0.09999 0.75 0 1.2303 0.00894 

5 0.2409 0 0.09998 0.7648 0 1.3401 0.00905 

5 0.2649 0 0.09997 0.7796 0 1.4199 0.00914 



169 

 

5 0.2889 0 0.10002 0.7944 0 1.4823 0.00927 

5 0.3128 0 0.09996 0.8091 0 1.6677 0.0094 

5 0.3365 0 0.09996 0.8239 0 1.9029 0.00969 

5 0.3602 0 0.09999 0.8385 0 2.0964 0.01025 

5 0.3837 0 0.09999 0.8531 0 2.349 0.01076 

5 0.4072 0 0.09991 0.8677 0 2.7359 0.01123 

5 0.4303 0 0.09995 0.8822 0 3.2475 0.01233 

5 0.4531 0 0.09995 0.8965 0 3.8925 0.01397 

5 0.4754 0 0.09992 0.9106 0 4.6806 0.01609 

6 0.1688 0 0.1102 0.7203 0 1.0904 0.00917 

6 0.1928 0 0.11 0.7351 0 1.1817 0.00918 

6 0.2169 0 0.10998 0.75 0 1.2322 0.00921 

6 0.241 0 0.11 0.7648 0 1.333 0.00934 

6 0.265 0 0.10996 0.7796 0 1.4176 0.00947 

6 0.289 0 0.11004 0.7944 0 1.5128 0.00978 

6 0.3129 0 0.10999 0.8092 0 1.6806 0.00995 

6 0.3367 0 0.10997 0.8239 0 1.8826 0.01031 

6 0.3605 0 0.11002 0.8386 0 2.0932 0.01092 

6 0.3842 0 0.10999 0.8533 0 2.3445 0.01156 

6 0.4077 0 0.10996 0.868 0 2.7063 0.01244 

6 0.4311 0 0.10994 0.8825 0 3.2389 0.01413 

6 0.4541 0 0.10993 0.8969 0 3.8761 0.01603 

6 0.4766 0 0.10996 0.9111 0 4.6874 0.0185 

7 0.1688 0 0.12021 0.7203 0 1.1097 0.00962 

7 0.1929 0 0.11999 0.7351 0 1.1929 0.00959 

7 0.2169 0 0.11999 0.75 0 1.2367 0.00963 

7 0.241 0 0.12 0.7648 0 1.3329 0.0098 

7 0.265 0 0.11997 0.7796 0 1.4331 0.0103 

7 0.289 0 0.11993 0.7945 0 1.6082 0.01071 

7 0.313 0 0.11994 0.8093 0 1.7881 0.0112 

7 0.3369 0 0.12002 0.824 0 1.8915 0.0122 

7 0.3608 0 0.11998 0.8388 0 2.1439 0.01327 

7 0.3845 0 0.11999 0.8535 0 2.3895 0.01416 

7 0.4081 0 0.11993 0.8681 0 2.7545 0.01529 

7 0.4317 0 0.11993 0.8828 0 3.2549 0.0171 

7 0.4548 0 0.11993 0.8972 0 3.9212 0.01961 

7 0.4776 0 0.11992 0.9115 0 4.6583 0.02248 

8 0.1688 0 0.13017 0.7203 0 1.1145 0.01056 

8 0.1929 0 0.13002 0.7351 0 1.2071 0.01029 

8 0.2169 0 0.13002 0.75 0 1.2414 0.01033 

8 0.241 0 0.12995 0.7648 0 1.3532 0.01099 

8 0.2651 0 0.12998 0.7797 0 1.4598 0.01194 

8 0.2891 0 0.1299 0.7945 0 1.6607 0.01331 

8 0.3132 0 0.12999 0.8093 0 1.8249 0.01475 

8 0.3371 0 0.12995 0.8241 0 1.9981 0.01617 

8 0.3611 0 0.12998 0.8389 0 2.2222 0.01776 

8 0.3849 0 0.13001 0.8536 0 2.4644 0.01967 

8 0.4086 0 0.12988 0.8683 0 2.8501 0.02107 
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8 0.4321 0 0.12995 0.883 0 3.3635 0.02403 

8 0.4554 0 0.12984 0.8975 0 4.0092 0.02653 

8 0.4783 0 0.12987 0.9119 0 4.7688 0.03045 

9 0.1688 0 0.14002 0.7203 0 1.173 0.01172 

9 0.1929 0 0.14002 0.7352 0 1.2282 0.01176 

9 0.217 0 0.14 0.75 0 1.2564 0.01192 

9 0.2411 0 0.13995 0.7649 0 1.3917 0.01441 

9 0.2651 0 0.13999 0.7797 0 1.5042 0.01635 

9 0.2892 0 0.13995 0.7945 0 1.7245 0.01889 

9 0.3133 0 0.14002 0.8094 0 1.9076 0.02141 

9 0.3373 0 0.13993 0.8242 0 2.104 0.02503 

9 0.3613 0 0.13999 0.839 0 2.3129 0.0264 

9 0.3852 0 0.13996 0.8538 0 2.5466 0.02951 

9 0.409 0 0.13997 0.8685 0 2.9524 0.03444 

9 0.4326 0 0.13998 0.8832 0 3.5103 0.03782 

9 0.4559 0 0.13994 0.8977 0 4.193 0.04363 

9 0.4786 0 0.13999 0.912 0 5.1341 0.05247 

10 0.1687 0 0.09012 0.7717 0 1.0729 0.00886 

10 0.1928 0 0.08993 0.7876 0 1.1713 0.0089 

10 0.2168 0 0.08997 0.8035 0 1.2388 0.00895 

10 0.2409 0 0.09 0.8194 0 1.3594 0.00911 

10 0.2648 0 0.08999 0.8352 0 1.3376 0.00921 

10 0.2887 0 0.08991 0.851 0 1.5016 0.00941 

10 0.3125 0 0.08995 0.8668 0 1.7036 0.00982 

10 0.3362 0 0.08999 0.8825 0 1.9594 0.01065 

10 0.3598 0 0.08997 0.8982 0 2.1831 0.0114 

10 0.3831 0 0.08999 0.9137 0 2.4845 0.01266 

10 0.4061 0 0.0899 0.9291 0 2.9295 0.01433 

10 0.4287 0 0.08995 0.9444 0 3.4817 0.01644 

10 0.4508 0 0.08989 0.9595 0 4.242 0.01887 

10 0.4722 0 0.08989 0.9742 0 5.1027 0.02188 

11 0.1687 0 0.09014 0.7203 0 1.0673 0.00874 

11 0.1928 0 0.09 0.7351 0 1.1725 0.00876 

11 0.2169 0 0.08999 0.7499 0 1.2369 0.00877 

11 0.2409 0 0.08997 0.7648 0 1.3527 0.00886 

11 0.2648 0 0.08997 0.7795 0 1.3985 0.0089 

11 0.2887 0 0.09003 0.7943 0 1.4718 0.00896 

11 0.3126 0 0.08996 0.809 0 1.6821 0.0091 

11 0.3363 0 0.08995 0.8237 0 1.9353 0.00952 

11 0.3598 0 0.08996 0.8384 0 2.1439 0.00988 

11 0.3833 0 0.08997 0.8529 0 2.4108 0.01014 

11 0.4065 0 0.08988 0.8674 0 2.8108 0.0108 

11 0.4294 0 0.08992 0.8818 0 3.358 0.01173 

11 0.4518 0 0.08994 0.8959 0 4.0417 0.01299 

11 0.4737 0 0.08992 0.9099 0 4.8654 0.01491 

12 0.1687 0 0.08998 0.6661 0 1.093 0.00871 

12 0.1687 0 0.09017 0.6661 0 1.061 0.00871 

12 0.1928 0 0.08998 0.6799 0 1.1678 0.00873 
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12 0.2169 0 0.08999 0.6936 0 1.2312 0.00873 

12 0.2409 0 0.09 0.7073 0 1.3415 0.00881 

12 0.2648 0 0.09 0.7209 0 1.4193 0.00879 

12 0.2887 0 0.08997 0.7346 0 1.4713 0.00885 

12 0.3126 0 0.08999 0.7482 0 1.6625 0.00893 

12 0.3363 0 0.08995 0.7618 0 1.9823 0.00929 

12 0.3599 0 0.08998 0.7753 0 2.1418 0.00957 

12 0.3834 0 0.08995 0.7888 0 2.3892 0.00963 

12 0.4066 0 0.08989 0.8022 0 2.7747 0.00999 

12 0.4296 0 0.08991 0.8155 0 3.2782 0.01048 

12 0.4522 0 0.08995 0.8287 0 3.9301 0.01106 

12 0.4743 0 0.08991 0.8418 0 4.7144 0.01215 

10.7.2 Appendix G.2: Case Study Design Space 

 

Description Variable Lower Bound Upper Bound Resolution Fixed Value

model (1 constant, 2 standard) MODEL_ind 2

Induced velocity factors (ratio to momentum theory induced velocity)

hover Ki_hover 1 1.3 0.001

axial climb Ki_climb 1.08

axial cruise (propeller) Ki_prop 2

edgewise flight (helicopter) Ki_edge 2

Variation with Thrust

CT/s for Ki_h variation CTs_Hind 0 0.1 0.001

coefficient for Ki_h kh1 -8 8 0.001

coefficient for Ki_h kh2 -25 25 0.001

exponent for Ki_h Xh2 0 4 0.001

CT/s for Ki_p variation CTs_Pind 0 0.1 0.001

coefficient for Ki_p kp1 0

coefficient for Ki_p kp2 0

exponent for Ki_p Xp2 2

Variation with Shaft Angle

coefficient for Ki_p kpa 0

exponent for Ki_p Xpa 2

Variation with Lift Offset

coefficient for f(offset) ko1 0

factor for f(offset) ko2 8

constant in Ki transition from hover to axial cruise Maxial 1.176

exponent in Ki transition from hover to axial cruise Xaxial 0.65

Variation with Axial Velocity

advance ratio for Ki_prop mu_prop 1

coefficient for Ki(muz) (linear) ka1 0

coefficient for Ki(muz) (quadratic) ka2 0

coefficient for Ki(muz) ka3 0

exponent for Ki(muz) Xa 4.5

Variation with Edgewise Velocity

advance ratio for Ki_edge mu_edge 0 0.45 0.001

coefficient for Ki(mu) (linear) ke1 -5 5 0.001

coefficient for Ki(mu) (quadratic) ke2 -5 5 0.001

coefficient for Ki(mu) ke3 -25 25 0.001

exponent for Ki(mu) Xe 4 12 0.001

variation with rotor drag kea 0

minimum Ki Ki_min 1

maximum Ki Ki_max 10

 Rotor Induced Power Variables


